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Abstract

Brouwer’s views on the foundations of mathematics have inspired the study of intuitionistic logic,
including the study of the intuitionistic propositional calculus and its extensions. The theory of these
systems has become an independent branch of logic with connections to lattice theory, topology, modal
logic, and other areas. This paper aims to present a modern account of semantics for intuitionistic
propositional systems. The guiding idea is that of a hierarchy of semantics, organized by increasing
generality: from the least general Kripke semantics on through Beth semantics, topological semantics,
Dragalin semantics, and finally to the most general algebraic semantics. While the Kripke, topological,
and algebraic semantics have been extensively studied, the Beth and Dragalin semantics have received
less attention. We bring Beth and Dragalin semantics to the fore, relating them to the concept of a
nucleus from pointfree topology, which provides a unifying perspective on the semantic hierarchy.
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1 Introduction

Luitzen Egbertus Jan Brouwer (1881–1966) was one of the great mathematicians of the 20th century. The
present volume is dedicated to his numerous contributions and the subsequent developments they have
inspired. Not only did Brouwer prove fundamental results in several areas of mathematics, but also he ad-
vocated a revolutionary view of the nature of mathematics itself—Brouwer’s intuitionism. The intuitionistic
philosophy of mathematics demands a radical revision of the accepted canons of mathematical reasoning,
as formalized by classical logic. Consequently, intuitionism has led to a significant strand in the study of
foundations of mathematics and formal logic over the last century. Other papers in this volume analyze
aspects of intuitionistic mathematics. The focus of the present paper is on the analysis of intuitionistic
logic—in particular, the intuitionistic logic of propositions and its extensions. Intuitionistic systems have
proved to be a rich source for both proof-theoretic and semantic studies. In this paper, we aim to present a
modern account of a hierarchy of different semantics for intuitionistic propositional systems.1

1For earlier surveys covering semantics for intuitionistic systems, see, e.g., Ruitenburg 1991, van Dalen 2001, 2002, Bezhan-
ishvili and de Jongh 2006, Moschovakis 2009, and for treatments in books, see, e.g., Rasiowa and Sikorski 1963, Gabbay
1981, Goldblatt 1984, Dragalin 1988, Troelstra and van Dalen 1988a,b, Chagrov and Zakharyaschev 1997, Dummett 2000,
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1.1 Background

In 1927, the Dutch Mathematical Association published a prize question calling for the construction of a
formal calculus to codify patterns of reasoning used in Brouwer’s intuitionistic mathematics (see Troelstra
1990). In 1928, the prize was awarded to Brouwer’s former student, Arend Heyting. In the first part of his
prize-winning paper, Heyting [1930] proposed a formal calculus governing the following “four basic concepts”:

p→ q “from p follows q”

p ∧ q “p and q”

p ∨ q “p or q”

¬p “not p”.

These four concepts were taken by Whitehead and Russell to be of “fundamental importance” in their
treatment of classical propositional logic in Principia Mathematica [Whitehead and Russell, 1910, p. 6].
According to Heyting (see van Atten 2014), he arrived at his calculus by going through the axioms and
theorems of Principia Mathematica and including only the intuitionistically acceptable ones in a set of
independent axioms, shown in Figure 1.1.

((p→ q) ∧ (q → r))→ (p→ r)
q → (p→ q)
(p ∧ (p→ q))→ q

p→ (p ∧ p) p→ (p ∨ q)
(p ∧ q)→ (q ∧ p) (p ∨ q)→ (q ∨ p)
(p→ q)→ ((p ∧ r)→ (q ∧ r)) ((p→ r) ∧ (q → r))→ ((p ∨ q)→ r)

¬p→ (p→ q)
((p→ q) ∧ (p→ ¬q))→ ¬p

Figure 1.1: Heyting’s axioms.

The set of theorems of Heyting’s calculus is the smallest set of formulas that contains Heyting’s axioms and
is closed under the rules of modus ponens (if ϕ and ϕ→ ψ are theorems, so is ψ) and uniform substitution
(if ϕ is a theorem, then so is any ψ obtained by uniformly substituting formulas for the propositional letters
in ϕ). This logic has come to be called the intuitionistic propositional calculus (IPC). Heyting proved that
the axioms in Figure 1.1 are independent—none is derivable from the others—and stated that, in contrast
to classical logic, in intuitionistic logic none of the connectives →, ∧, ∨, or ¬ is definable in terms of the
others (as was proved in Wajsberg 1938, McKinsey 1939). Heyting also extended IPC to the intuitionistic
predicate calculus (IQC) with the quantifiers ∀ (“for all”) and ∃ (“there exists”), which forms the logical basis
for formalized intuitionistic arithmetic, analysis, and set theory (see Troelstra and van Dalen 1988a,b).

An alternative tradition to the formalization of intuitionistic logic, starting with Kolmogorov [1925], leads
to a weaker logical calculus, now known as minimal calculus [Johansson, 1937].2 The distinguishing feature

Humberstone 2011.
2Kolmogorov’s [1925] propositional calculus is in fact equivalent to the implication-negation fragment of minimal calculus

(see Plisko 1988).
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of the minimal calculus is that the formula ¬p→ (p→ q), corresponding to the principle ex falso quodlibet,
is not a theorem. Though the historical debate over the intuitionistic acceptability of ex falso quodlibet is
interesting, here we focus only on Heyting’s formalization of intuitionistic propositional logic as IPC.

Modern treatments of intuitionistic logic often take as the basic connectives only →, ∧, ∨, and the
propositional constant ⊥. The connective ¬ is then defined by ¬ϕ := ϕ → ⊥. A modern axiomatization of
IPC in this language is given in Figure 1.2 [Chagrov and Zakharyaschev, 1997].

q → (p→ q)
(p→ (q → r))→ ((p→ q)→ (p→ r))

(p ∧ q)→ p p→ (p ∨ q)
(p ∧ q)→ q q → (p ∨ q)
p→ (q → (p ∧ q)) (p→ r)→ ((q → r)→ ((p ∨ q)→ r))

⊥ → p

Figure 1.2: A modern axiomatization of IPC.

From IPC one obtains a system equivalent to the classical propositional calculus (CPC) used in Principia
by adding any of the following axioms:

• p ∨ ¬p (excluded middle);

• ¬¬p→ p (double negation elimination);

• ((p→ q)→ p)→ p (Peirce’s law).3

A close connection between IPC and CPC was discovered by Glivenko [1929], who was in communication
with Heyting.4 Using a set of axioms that he considered intuitionistically admissible, Glivenko showed that a
formula ϕ is classically provable iff ¬¬ϕ is intuitionistically provable. In modern terminology, ϕ is a theorem
of CPC iff ¬¬ϕ is a theorem of IPC. As a corollary, Glivenko showed that ¬ϕ is a theorem of CPC iff ¬ϕ
is a theorem of IPC. Another corollary, observed by Gödel [1933a], is that if a formula ϕ contains only the
connectives ∧ and ¬, then ϕ is a theorem of CPC iff ϕ is a theorem of IPC (also see Kleene 1952, § 81).5

While adding certain classical tautologies such as the principle of excluded middle to IPC yields CPC,
this is not the case for all classical tautologies.6 The resulting logic may be intermediate in strength between
IPC and CPC. Examples of intermediate logics include:

KC = IPC + ¬p ∨ ¬¬p;
LC = IPC + (p→ q) ∨ (q → p).

The study of these and other intermediate logics may be viewed as a study of the classification of classically
valid principles in terms of their interdeducibility in intuitionistic logic [Hosoi, 1967a].

3According to Mints [2006, p. 701], “Russell anticipated intuitionistic logic by clearly distinguishing propositional principles
implying the law of the excluded middle from remaining valid principles. In fact, he states what was later called Peirce’s law.”

4See van Atten 2014, § 4 for historical details and discussion of Glivenko’s [1928] earlier paper containing a set of axioms for
intuitionistic propositional logic weaker than IPC.

5Since in classical logic conjunction and negation are sufficient to define classical disjunction and implication, the corollary
just cited led Łukasiewicz [1952] to view IPC as an extension of CPC with two new connectives, intuitionistic → and ∨. For a
critique of this view, see Humberstone 2011, p. 305.

6For a characterization of those axioms whose addition to IPC yields CPC, see § 2.1.
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Brouwer objected to certain classical principles, such as excluded middle, as involving a commitment to
the solvability of all mathematical problems [Brouwer, 1908, 1923]. If p represents some unsolved problem of
mathematics, Brouwer took an assertion of p ∨ ¬p as a commitment to the solvability of the given problem.
From a classical perspective, excluded middle says nothing about the solvability of problems; it is traditionally
accepted on the basis that every proposition is either true or false, which in the classical view has nothing
to do with what humans or machines can solve (unless of course the proposition concerns solvability).
Intuitionists reject this classical conception of transcendent truth and understand logical principles such
as those above differently. The intuitionistic view is often explained in terms of what it takes to prove a
mathematical statement formed from others using the logical operators, resulting in what has become known
as the Brouwer-Heyting-Kolmogorov (BHK) interpretation of logical operators. In the version presented by
Troelstra and van Dalen, the conditions of proof are as follows:

(H1) A proof of A ∧B is given by presenting a proof of A and a proof of B.

(H2) A proof of A ∨ B is given by presenting either a proof of A or a proof of B (plus the stipulation that
we want to regard the proof presented as evidence for A ∨B).

(H3) A proof of A→ B is a construction which permits us to transform any proof of A into a proof of B.

(H4) Absurdity ⊥ (contradiction) has no proof; a proof of ¬A is a construction which transforms any
hypothetical proof of A into a proof of a contradiction. [Troelstra and van Dalen, 1988a, p. 9]

According to this interpretation, to claim that excluded middle is a logical law is to claim that for any
mathematical statement, either we can prove the statement or find a method of transforming any hypothetical
proof of it into a proof of a contradiction. This is a bold claim for which we seem to lack adequate justification.

Are the theorems of IPC precisely the principles justified by the BHK interpretation? Unfortunately, there
is no way to prove that they are or are not, since the BHK interpretation is an informal explanation (e.g.,
what is a “construction”?), rather than a mathematically defined formal semantics for Heyting’s language.7

Our interest in this paper is in such formal semantics.

1.2 Formal Semantics

The BHK interpretation has inspired interesting formal semantics, such as Kleene’s realizability [Kleene,
1945] and Medvedev’s finite problems [Medvedev, 1962], but the resulting logics are stronger than IPC (see
Rose 1953, Medvedev 1962, 1963, 1966, Skvortsov 1979, Chagrov and Zakharyaschev 1997, § 2.9, Dummett
2000, § 6.1, and Plisko 2009).8 For discussion of how the BHK interpretation relates to a number of formal
semantics, see Artemov and Beklemishev 2005, § 11.

In the case of classical logic, a formal semantics for CPC is easily defined, using a notion of satisfaction
in the style of Tarski [1933]. Given a valuation function v assigning to each propositional letter p, q, . . . a
value 0 or 1 (false or true), one recursively defines a relation |=v of satisfaction of formulas:

• 6|=v ⊥;

• |=v p iff v(p) = 1;
7Compare this with the case of Church’s Thesis identifying intuitively computable functions with recursive functions as

formally defined by Gödel (for discussion, see Kleene 1952, § 60).
8There are also proof-theoretical and type-theoretical takes on BHK, building on the Curry-Howard correspondence (see,

e.g., Sorensen and Urzyczyn 2006).

5



• |=v ϕ ∧ ψ iff |=v ϕ and |=v ψ;

• |=v ϕ ∨ ψ iff |=v ϕ or |=v ψ;

• |=v ϕ→ ψ iff 6|=v ϕ or |=v ψ;

• |=v ¬ϕ iff 6|=v ϕ.

A formula ϕ is valid according to this Tarskian semantics if |=v ϕ for all valuations v. One can then prove
that the valid formulas are exactly the theorems of CPC (see, e.g., Johnstone 1987, Ch. 2).

In this paper, we survey and study a family of formal semantics for IPC and its extensions. Rather than
trying to formalize the BHK interpretation, these semantics exploit a remarkable connection between IPC

and topology. As Rasiowa and Sikorski [1963] put it, it is amazing that the intuitionists’ “philosophical ideas
concerning the notion of existence in mathematics have led to the creation of formalized logical systems
which, from the mathematical point of view, proved to be equivalent to the theory of lattices of open subsets
of topological spaces” (pp. 8–9). All of the semantics we will study are either special cases or generalizations
of the topological interpretation of intuitionistic logic. The semantics are:

• Kripke semantics;

• Beth semantics;

• Topological semantics;

• Dragalin semantics;

• Algebraic semantics.

The order of this list is not arbitrary. One of the main themes of this paper is that the five semantics form
a strict hierarchy in terms of generality:

Kripke < Beth < Topological < Dragalin < Algebraic.

On one level, the first four semantics work in a similar way: they use special structures to produce algebras,
known as Heyting algebras, in which the theorems of IPC are valid. The hierarchy above indicates that Beth
frames can produce all the algebras that Kripke frames can and more; topological spaces can produce all the
algebras that Beth frames can and more; and Dragalin frames can produce all the algebras that topological
spaces can and more, but not all Heyting algebras.

1.3 The Modal Perspective

The Kripke, topological, and algebraic semantics are the most widely used semantics for IPC and intermediate
logics. These semantics may be seen as closely related to Gödel’s [1933b] translation of IPC into the classical
modal logic S4. The language of modal logic extends that of propositional logic with a unary operator �,
which admits many interpretations (see, e.g., van Benthem 2010). To motivate Gödel’s translation, �ϕ is
understood as ϕ is provable (to be distinguished from: provable in a particular formal system). The modal
logic S4 extends CPC with the axioms

• �p→ p,
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• �p→ ��p, and

• �(p→ q)→ (�p→ �q),

while closing under the rules of modus ponens, substitution, and “necessitation”: if ϕ is a theorem, so is
�ϕ. Arguably these principles are reasonable in light of the reading of � as absolute provability (cf. Orlov
1928). Different readings of � would motivate different axioms. For example, for the reading of �ϕ as ϕ is
necessarily true, the standard system is the logic S5 that extends S4 with the axiom ¬�p→ �¬�p.

There are a number of translations t from the propositional language to the modal language such that
ϕ is a theorem of IPC iff t(ϕ) is a theorem of S4, as proved by McKinsey and Tarski [1948]. One such
translation is defined recursively as follows:

• t(⊥) = ⊥;

• t(p) = �p for p a propositional letter;

• t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ);

• t(ϕ ∨ ψ) = t(ϕ) ∨ t(ψ);

• t(ϕ→ ψ) = �(t(ϕ)→ t(ψ)).

For example, p ∨ q translates to �p ∨�q (either p is provable or q is provable). Using this translation, any
formal semantics for the modal logic S4 may be converted into a formal semantics for IPC: in the most
direct way, the same models may be used, and the semantic value assigned to a propositional formula ϕ
in the intuitionistic semantics may be defined as the semantic value assigned to the modal formula t(ϕ) in
the modal semantics. Thus, the Kripke semantics for S4 based on preordered sets [Kripke, 1963a,b] may be
converted into Kripke semantics for IPC based on preordered sets [Kripke, 1965] (see § 2.3). In the case of
topological semantics, of which Kripke semantics is a special case, the topological semantics for IPC came
first historically [Stone, 1938, Tarski, 1938] and the topological semantics for S4 later [Tsao-Chen, 1938,
McKinsey, 1941]; still, the topological semantics for S4 may be converted into the topological semantics for
IPC as above (see § 2.2). Finally, for algebraic semantics, the semantics for S4 based on interior algebras
may be converted into the algebraic semantics for IPC based on Heyting algebras.9 This uses the fact that
the open elements of an interior algebra—those a such that a = �a, where � is the interior operator in the
interior algebra—form a Heyting algebra, and every Heyting algebra can be represented in this way.

After a survey of these standard semantics in §§ 2.1–2.3, we will turn in § 3 to less standard semantics.
Because they are less standard, our emphasis on these semantics requires more motivation.

1.4 The Nuclear Perspective

We begin in § 3.1 with Beth semantics [Beth, 1956, 1964] (see Troelstra and van Ulsen 1999 for some
history). Although Beth semantics has been less widely used than the later Kripke semantics for the study
of propositional logics, it has been preferred for some applications involving intuitionistic predicate logic
(see, e.g., van Dalen 1978, Dummett 2000). In both Beth and Kripke semantics, formulas are evaluated at
nodes in a poset,10 but the definition of when a formula is satisfied at a node are different. One result of this

9The algebraic semantics for S4 and IPC were first given using the dual concepts of closure algebras [McKinsey and Tarski,
1944] and Brouwerian algebras [McKinsey and Tarski, 1946]. The switch to interior algebras and Heyting algebras came with
later authors (Rasiowa and Sikorski 1963, Blok 1976, Esakia 1985).

10Beth originally used trees, but in § 3.1 we use a more general version of Beth semantics over posets from van Dalen 1984.
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is that in Beth semantics for predicate logic, one can associate with each node the same domain of objects,
while in Kripke semantics one must allow the domain of objects to grow from a node to one of its successors
in order to invalidate the principle

∀x(ϕ ∨ ψ)→ (ϕ ∨ ∀xψ),

where x is not free in ϕ, which is not a theorem of intuitionistic predicate logic (cf. Görnemann 1971).
This gives Beth semantics an advantage in the formalization of intuitionistic analysis, as explained by van
Dalen: Beth semantics allows one to use a constant domain of standard natural numbers, whereas in Kripke
semantics one would have to allow the first-order domains to grow with non-standard numbers, which would
“make the model totally unmanageable” [van Dalen, 1978, p. 1]. Dummett [2000] argues that in light of the
ability of Beth semantics to invalidate the formula above in a constant domain model, “the advantage, in
supplying a representation of the intended meanings of the intuitionistic logical constants, lies heavily with
the Beth trees as against the Kripke trees” (p. 150).11

Our interest in Beth semantics in this paper comes not from its advantages for predicate logic, but by an
illuminating way of viewing Beth semantics already for propositional logic. As Dragalin [1979, 1988] makes
clear, the essence of satisfaction in a Beth model is that the evaluation of a formula does not take place
in the Heyting algebra directly supplied by the poset of the model, as in Kripke semantics, but rather in
another Heyting algebra formed by the fixpoints of a special operator—a nucleus—on the Heyting algebra
supplied by the poset.12 Nuclei on Heyting algebras, especially complete Heyting algebras, have been studied
extensively in connection with pointfree topology (see § 3.2 for references), so Dragalin’s perspective allows
a powerful theory of nuclei to be applied to Beth-like semantics.

In traditional Beth semantics, the nucleus used to evaluate formulas is always defined in the same way,
yielding what we call the Beth nucleus in § 3.2. But this way of viewing Beth semantics unlocks a door to
a more general style of semantics, which we call nuclear semantics: take as the basic semantic structures
not just a poset, but rather a pair of a poset and a nucleus on the Heyting algebra supplied by the poset.
We call such pairs nuclear frames [Bezhanishvili and Holliday, 2016]. Dragalin observed that any complete
Heyting algebra can be realized as an algebra of fixpoints arising from a nuclear frame (see § 2.1 and § 3.2 for
definitions). Thus, nuclear semantics based on posets and nuclei is as general as algebraic semantics based
on complete Heyting algebras.

Nuclear semantics has one foot in the world of posets and another foot in the world of algebras. It is
therefore natural to ask whether the nucleus in a nuclear frame can be replaced by some more concrete data.
Dragalin proposed a way of doing so by essentially generalizing the notion of a “path” that is at the heart
of Beth semantics to what we will call a development. As explained in § 3.3, Dragalin’s semantic structures,
which we call Dragalin frames [Bezhanishvili and Holliday, 2016], consist of a poset together with a function
that assigns to each node in the poset a set of developments coming out of that node. Dragalin showed
that a semantics based on these frames is at least as general as topological semantics, in the sense that any
topological space can be realized by starting from an appropriate Dragalin frame. Yet topological spaces
only give rise to a special class of complete Heyting algebras (see § 2.2). Thus, the question remains of
whether Dragalin’s development functions are adequate to replace the nuclei in all nuclear frames. In fact,

11Dummett’s [2000] argument is as follows: “It is true enough that the use of variable domains can be given a sound
intuitionistic sense as a representation of quantification over an undecidable species; but the fact that, with the Kripke trees, it
is essential to use variable domains in order to falsify our formula makes it appear that this formula is invalid only in view of
the possibility of quantifying over an undecidable domain; from an intuitionistic viewpoint, however, this is not so at all – the
formula remains just as invalid when we take the variable to be ranging over the natural numbers” (p. 50).

12Dragalin [1979, 1988, § 3.2.3] worked with a slightly more general concept of a completion operator.
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Dragalin’s idea is fully successful: the nucleus in a nuclear frame can always be replaced by a development
function [Bezhanishvili and Holliday, 2016]. As a consequence, Dragalin provides a semantics based on quite
concrete objects that is as general as algebraic semantics based on complete Heyting algebras.

Another concrete realization of nuclear semantics is the semantics of Fairtlough and Mendler [1997],
based on what we call FM-frames. An FM-frame is simply an enrichment of a Kripke frame with an
additional preorder that is a subrelation of the Kripke order (see § 4.7). Surprisingly, this Kripke-style
semantics is as general as Dragalin semantics and hence algebraic semantics based on complete Heyting
algebras [Bezhanishvili and Holliday, 2016, Massas, 2016, Bezhanishvili et al., 2018], as explained in § 4.7.

semantics underlying structure associated nucleus
Kripke poset identity nucleus
Beth poset Beth nucleus
Nuclear poset with nucleus j on upsets nucleus j
Dragalin poset with development function Dragalin nucleus
FM poset with additional partial order FM nucleus

Figure 1.3: Preview of the nuclear perspective.

1.5 Comparing Semantics

The varying generality of the different semantics makes a difference in the study of intermediate logics.
Shehtman [1977, 1980, 2005] has shown that there are intermediate propositional logics that cannot be
characterized by Kripke frames. In fact, there are continuum many such logics [Litak, 2002]. Moreover,
some of these Kripke-incomplete logics can be characterized by topological spaces [Shehtman, 2005, § 8].
It is a famous open problem of Kuznetsov [1975] whether every intermediate logic can be characterized by
topological spaces. The semantic hierarchy displayed in § 1.2, which we will establish in § 4 of this paper,
raises further questions of this kind. For example:

• given the hierarchy and Shehtman’s result, we know that either there are intermediate logics that are
Beth-complete but Kripke-incomplete or there are intermediate logics that are topologically-complete
but Beth-incomplete, but it is unknown which disjunct holds.

• Another natural question, a variation on Kuznetsov’s, is whether every intermediate logic can be
characterized by complete Heyting algebras, or equivalently—in light of the results mentioned in § 1.4—
by Dragalin frames or FM-frames.

• If we consider languages more expressive than the basic propositional language, then differences at
the level of logics arise more easily between the different semantics. For example, Nadel [1978] shows
that the infinitary intuitionistic propositional logic of Beth frames differs from that of Kripke frames.
Other natural extensions to consider include the language of intuitionistic propositional logic with
propositional quantifiers and the language of intuitionistic predicate logic.

In addition to comparing semantics by their relative generality, we can compare them along another
dimension. We can ask not only how well a formal semantics serves as a mathematical tool for the study of
logics, but also whether it reflects any intuitive view of the meaning of the logical connectives (cf. Dummett
2000, p. 256 on “merely algebraic valuation systems” vs. “genuine semantics”). For example, for the modal
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logic S5 mentioned above, a standard semantics interprets � as a kind of quantifier over a nonempty set of
points:

�ϕ is true at a point w iff ϕ is true at all points v in the set.

While one could view this semantics purely as a tool for proving results about S5, typically it is understood
as reflecting an intuitive picture of the meaning of the necessity operator: the points in the set are thought of
as possible worlds and necessity is analyzed as truth in all possible worlds. As we will briefly discuss, several
of the intuitionistic semantics can be seen as reflecting a picture not of truth relative to possible worlds, but
rather of verifiability relative to information states. (In § 3.2, we will show that the theory of nuclei sheds
light on Dummett’s explanation of Beth semantics in terms of verification.) We hope that readers will find
the semantics discussed in this paper both of mathematical and conceptual interest.

2 Standard Semantics

In this section, we survey the semantics outlined in § 1.3. The algebraic interpretation of the intuitionistic
propositional language using Heyting algebras (§ 2.1) is central in our story. Other semantics can be viewed
as providing more concrete ways to produce the Heyting algebras in which formulas are evaluated. For
topological semantics (§ 2.2), the lattice of open sets of any topological space is a Heyting algebra. For
Kripke semantics (§ 2.3), the upward-closed sets of a preordered set form a topology and hence give rise to
a Heyting algebra. We discuss how these semantics apply not only to IPC, but also to intermediate logics.

2.1 Algebraic Semantics

Algebraic models of IPC are algebras A = (A,∧,∨,→, 0, 1) with three binary operations ∧,∨,→ and two
constants 0, 1 satisfying equations that correspond to the axioms of IPC, assuming the definition ¬a := a→ 0.
Among many equivalent sets of equations, a standard choice (see, e.g., Rasiowa and Sikorski 1963, p. 123,
Johnstone 1982, p. 8) is to take the equations for bounded lattices plus the following equations for →:

• x→ x = 1;

• x ∧ (x→ y) = x ∧ y;

• (x→ y) ∧ y = y;

• x→ (y ∧ z) = (x→ y) ∧ (x→ z).13

Birkhoff [1940, pp. 128–30] showed that algebras for IPC can also be described as algebras A = (A,∧,∨,→, 0, 1)

such that (A,∧,∨, 0, 1) is a bounded lattice and → is a residual of ∧; that is, for all a, b, x ∈ A,

a ∧ x ≤ b iff x ≤ a→ b. (1)

In other words, a → b is the maximum element of the set {x ∈ A | a ∧ x ≤ b}. In particular, ¬a is the
maximum element of {x ∈ A | a ∧ x = 0}. From the equivalent equational or order-theoretic definitions
above, it follows that the lattice is distributive (see Birkhoff 1967, p. 45, Johnstone 1982, p. 8).

13In place of the bounded lattice axioms, one can simply add to the four axioms for → above the axioms x ∧ 0 = 0 and
(x ∨ y)→ z = (x→ z) ∧ (y → z) (see Monteiro 1955, Birkhoff 1967, p. 47).
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It is now customary to call the algebras defined above Heyting algebras. Other names that were used in
the past include Brouwerian logics [Stone, 1938, Birkhoff, 1940], Brouwerian algebras [McKinsey and Tarski,
1946], and pseudo-Boolean algebras [Rasiowa and Sikorski, 1963].14

A complete lattice A is a Heyting algebra iff it satisfies the join-infinite distributive law [Birkhoff, 1967,
p. 128] stating that for all a ∈ A and X ⊆ A,

a ∧
∨
X =

∨
{a ∧ x | x ∈ X}. (2)

If (2) holds, then the join of X := {x ∈ A | a ∧ x ≤ b} belongs to X and is therefore its maximum, so
a → b exists. Conversely, given an arbitrary subset X and b :=

∨
{a ∧ x | x ∈ X}, for each x ∈ X we have

a ∧ x ≤ b and hence x ≤ a → b, so
∨
X ≤ a → b and hence a ∧

∨
X ≤ b. Thus, that → is a residual of ∧

gives us the ≤ direction of (2), while the ≥ direction is immediate. By contrast, we are not guaranteed the
meet-infinite distributive law with ∨ and

∧
in place of ∧ and

∨
, so there is an inherent asymmetry between

meet and join in Heyting algebras (see McKinsey and Tarski 1946, Appendix). Finally, note that since any
finite distributive lattice satisfies (2), it becomes a Heyting algebra with a→ b :=

∨
{x ∈ A | a ∧ x ≤ b}.

Heyting algebras provide an algebraic semantics for IPC as follows.15 A valuation on a Heyting algebra
A is a function that sends propositional letters to elements of A, which extends to a function sending
propositional formulas to elements of A by interpreting the logical connectives ∧,∨,→ as the corresponding
operations of A and interpreting ⊥ as 0. An algebra A validates a propositional formula ϕ, written A |= ϕ,
if every valuation on A sends ϕ to 1. It is then straightforward to see that IPC is sound with respect to
the class HA of Heyting algebras: IPC ` ϕ implies A |= ϕ for each A ∈ HA. For completeness, if IPC 0 ϕ,
then the standard Lindenbaum-Tarski construction yields that ϕ is refuted in the free Heyting algebra on
countably many generators (see, e.g., Rasiowa and Sikorski 1963, Ch. IX, § 2).

In fact, IPC is complete with respect to finite Heyting algebras, as first observed by Jaśkowski [1936] (also
see Surma et al. 1975). A different proof of this fact was given by McKinsey and Tarski [1946, Thm. 1.11],
along the following lines. Suppose IPC 0 ϕ. Then there is a valuation v on the Lindenbaum algebra A of
IPC such that v(ϕ) 6= 1. Let

S = {v(ψ) | ψ is a subformula of ϕ},

and let H be the bounded sublattice of A generated by S. As is well known, any finitely generated distributive
lattice is finite (see, e.g., Grätzer 1978, p. 68), so from the fact that S is finite, we have that H is a finite
distributive lattice. Hence H is a Heyting algebra, where for a, b ∈ H,

a→H b =
∨
{x ∈ H | a ∧ x ≤ b} =

∨
{x ∈ H | x ≤ a→ b}.

Clearly a →H b ≤ a → b, and indeed a →H b = a → b provided a → b ∈ H. Thus, if vH is a valuation
on H that agrees with v for all propositional letters appearing in ϕ, then an obvious induction shows that
vH(ψ) = v(ψ) for all subformulas ψ of ϕ, so that v(ϕ) 6= 1 implies vH(ϕ) 6= 1. This shows that IPC is
complete with respect to finite Heyting algebras.16

It is easy to construct a Heyting algebra that refutes the classical law of excluded middle p∨¬p. For this
14To be precise, Brouwerian logics/algebras are Heyting algebras turned upside down, i.e., co-Heyting algebras.
15This is an instance of a more general approach of providing algebraic semantics for non-classical logics (see, e.g., Rasiowa

1974, Galatos et al. 2007).
16This is one of the earliest proofs establishing the finite embeddability property for a variety (see, e.g., Galatos et al. 2007,

§ 6.5).
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observe that each bounded chain (C,≤) is a Heyting algebra C = (C,∧,∨,→, 0, 1), where for a, b ∈ C:

a ∧ b = min{a, b};

a ∨ b = max{a, b};

a→ b =

{
1 if a ≤ b
b otherwise.

Let C3 be the three-element chain in Figure 2.1 and let v be a valuation on C3 assigning a to p. Then

v(p ∨ ¬p) = a ∨ ¬a = a ∨ (a→ 0) = a ∨ 0 = a 6= 1,

so p ∨ ¬p is refuted in C3. In fact, the law of excluded middle can be refuted in any Heyting algebra that is
not a Boolean algebra. A special feature of C3 is that for any classical tautology ϕ, IPC + ϕ = CPC iff ϕ is
not valid in C3 (Jankov 1963, 1968b, Troelstra 1965, Hanazawa 1966).

1

a

0

Figure 2.1: The chain C3.

While CPC is the logic of the two-element Boolean algebra C2, it follows from Gödel 1932 that IPC is
not the logic of any single finite Heyting algebra. One way to see this is to consider the following formulas
generalizing the law of excluded middle (Maksimova 1972, Chagrov and Zakharyaschev 1997, § 2.5):

• bd1 = p1 ∨ ¬p1;

• bdn+1 = pn+1 ∨ (pn+1 → bdn).

A direct calculation shows that bdn is refuted in the (n + 2)-element chain Cn+2. Therefore, no bdn is a
theorem of IPC. On the other hand, if A is a finite Heyting algebra, then there is a sufficiently large n such
that A |= bdn. A similar argument can be given using a sequence of formulas that generalize Peirce’s law
[Nagata, 1966].

Dummett [1959] showed that the logic of all finite chains is the logic LC, mentioned in § 1.1, that extends
IPC with the axiom (p → q) ∨ (q → p).17 Later Thomas [1962] axiomatized the logic of each finite chain
Cn (cf. Hosoi 1966a,b, 1967b). In terms of the bdn formulas, the logic of Cn+1 is the intermediate logic LCn

that extends LC with bdn. In fact, Hosoi [1967a] proved that every intermediate logic strictly extending LC

is LCn for some n (cf. Dunn and Meyer 1971).
The set of intermediate logics18 forms a complete lattice Λ(IPC) where the meet of a family of logics

is their intersection and the join is the least intermediate logic containing each logic in the family; in fact,
17The logic LC is often called the Gödel-Dummett logic.
18The term intermediate logic for logics between IPC and CPC comes from Umezawa 1959. Extensions of IPC (closed under

modus ponens and substitution) are also known as superintuitionistic logics [Kuznetsov, 1975]. Note that the inconsistent
logic is an example of a superintuitionistic logic that is not an intermediate logic. However, this is the only example, since for
consistent logics the two notions coincide.
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Λ(IPC) is a complete Heyting algebra [Hosoi, 1969]. This lattice has a rather complicated structure. Jankov
[1968a] proved that there are continuum many intermediate logics.

The lattice Λ(IPC) is dually isomorphic to the lattice Λ(HA) of nontrivial varieties of Heyting algebras,
where we recall that a class of algebras is a variety if it is closed under homomorphic images, subalgebras,
and products. By the celebrated Birkhoff theorem (see Burris and Sankappanavar 1981, § 11), varieties are
exactly the equationally definable classes. The dual isomorphism between Λ(IPC) and Λ(HA) can be seen
by observing the following:

• If L is an intermediate logic, then Var(L) := {A ∈ HA | A |= L} is a nontrivial variety of Heyting
algebras.

• If V is a nontrivial variety of Heyting algebras, then Log(V) := {ϕ | ∀A ∈ V : A |= ϕ} is an intermediate
logic.

• If L ⊆ L′, then Var(L) ⊇ Var(L′), and if V ⊆ V′, then Log(V) ⊇ Log(V′).

• Log(Var(L)) = L and Var(Log(V)) = V.

A convenient way of viewing Λ(IPC) is by breaking it into slices in the manner of Hosoi [1967a], as shown
in Figure 2.3 below. For n ≥ 1, let IPCn be the least intermediate logic containing bdn. An intermediate
logic L belongs to slice n if L is between IPCn and LCn, and L belongs to slice ω if it is between IPC and LC.
Using algebraic methods, Hosoi [1967a] proved that these slices partition Λ(IPC). Since IPC1 = LC1 = CPC,
slice 1 contains only CPC, while every other slice contains infinitely many logics. Hosoi and Ono [1970]
showed that slice 2 is a countable chain of logics

LC2 ⊃ Log(A2) ⊃ Log(A3) ⊃ · · · ⊃ IPC2

where An is the Heyting algebra obtained by adding a new top element above the 2n-element Boolean
algebra, as in Figure 2.2 below. By contrast, Kuznetsov [1975] observed that for every n ≥ 3, slice n contains
uncountably many logics (cf. Hosoi and Masuda 1993).

A2 A3

. . . .

Figure 2.2: The algebras A2, A3, . . . .

Although working with Heyting algebras has proven to be a powerful method for establishing properties of
IPC and the lattice Λ(IPC), one may have the feeling that algebraic “semantics” does not take us very far away
from the syntax with which we began. As van Benthem put it, paraphrasing others, one could argue that
algebraic semantics is “merely ‘. . . syntax in disguise’. . . ” [van Benthem, 2001, p. 358].19 This is a legitimate

19Along similar lines, Grayson [1984] writes: “The interpretation of intuitionistic propositional logic in a. . . Heyting alge-
bra. . . can perhaps hardly be counted as “interpreting” at all; it is more a matter of algebraicising logic” (p. 184).
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CPC

IPC2

IPC3

IPC4

IPC

LC2

LC3

LC4

LC

L(A2)
L(A3)

L(A4)

Figure 2.3: The lattice Λ(IPC).

objection if all one means by “giving algebraic semantics” is to translate the axioms of IPC into equations
defining a class of algebras and then observe that IPC is sound and complete with respect to such algebras.
In this case, soundness and completeness is hardly illuminating. By contrast, it is quite illuminating to know
that IPC is sound and complete with respect to Heyting algebras defined order-theoretically as above. If we
think of the partial order ≤ as a relation of entailment between propositions, so a ≤ b means that proposition
a entails proposition b, then the order-theoretic definition above embodies the following ideas:

• the conjunction a ∧ b is the weakest proposition that entails both a and b (the greatest lower bound);

• the disjunction a ∨ b is the strongest proposition that both a and b entail (the least upper bound);

• the implication a→ b is the weakest proposition such that its conjunction with a entails b (the maximum
of the set {x ∈ A | a ∧ x ≤ b});

• 0 is the proposition that entails everything;

• the negation ¬a = a→ 0 is the weakest proposition such that its conjunction with a entails everything.

It is rather remarkable that if this is what one assumes about the meaning of conjunction, disjunction,
implication, and negation, then the resulting logic is IPC.
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2.2 Topological Semantics

2.2.1 Formal Semantics

While algebraic semantics adds much to our understanding of IPC and intermediate logics, it would still be
desirable to also have a semantics based on more concrete models. A step in this direction is provided by the
topological semantics for IPC, developed by Stone [1938] and Tarski [1938]. A valuation v on a topological
space X assigns to propositional letters open subsets of X; the logical constant ⊥ is interpreted as ∅; the
logical connectives ∧,∨ are interpreted as set-theoretic intersection and union; and we set

v(ϕ→ ψ) = Int(v(ϕ)c ∪ v(ψ)), (3)

where Int is the interior operator and (·)c is set-theoretic complement. In particular,

v(¬ϕ) = Int(v(ϕ)c).

We say that a formula ϕ is satisfied at x ∈ X under v, written x |=v ϕ, provided that x ∈ v(ϕ). It is easy
to see, where Ω(x) is the set of open neighborhoods of x, that:

• x 6|=v ⊥;

• x |=v ψ ∧ χ iff x |=v ψ and x |=v χ;

• x |=v ψ ∨ χ iff x |=v ψ or x |=v χ;

• x |=v ψ → χ iff ∃U ∈ Ω(x) ∀y ∈ U : y 6|=v ψ or y |=v χ;

• x |=v ¬ψ iff ∃U ∈ Ω(x) ∀y ∈ U : y 6|=v ψ.

If x |=v ϕ for all x ∈ X and all valuations v on X, then we say that ϕ is valid in X and write X |= ϕ.
For the purposes of topological semantics, we can restrict our attention to T0-spaces, i.e., spaces in which

any two distinct points can be distinguished by an open set. Any space can be turned into a T0-space that
validates the same formulas by identifying points that belong to the same open sets.

It is easy to see that for the law of excluded middle p ∨ ¬p to be valid in a topological space X, each
closed set must be open, which with T0-separation yields that every set is open. Thus, for a counterexample
to excluded middle we can take X to be the Sierpiński space as in Figure 2.4, in which {0} is closed and {1}
is open, and define v(p) = {1}. Then 0 6|=v p, and since the only open neighborhood of 0 is the whole space,
which contains a point satisfying p, we have 0 6|=v ¬p. Hence 0 6|=v p ∨ ¬p.

0 1

Figure 2.4: The Sierpiński space.

From the perspective of § 2.1, the essence of the topological semantics above is that we are evaluating
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formulas in the algebra (Ω(X),∩,∪,→,∅, X) where Ω(X) is the set of opens of X and

U → V =
⋃
{W ∈ Ω(X) | U ∩W ⊆ V }

= Int(U c ∪ V ).

Since Ω(X) is a complete lattice, with
∨

as
⋃

and
∧

as Int
⋂
, and since ∩ and

⋃
satisfy the join-infinite

distributive law in (2), we have that Ω(X) is a complete Heyting algebra by the reasoning given at the
beginning of § 2.1. We follow standard terminology in pointfree topology [Johnstone, 1982] and call complete
Heyting algebras locales.20 They provide a pointfree generalization of topological spaces. For a topological
space X, we call Ω(X) the locale of opens of X. Locales that arise from topological spaces in this way are
known as spatial locales. As a simple example, the locale Ω(X) of the Sierpiński space X is isomorphic to
the three-element chain C3 from § 2.1.

Since X and Ω(X) validate the same formulas, the soundness of IPC with respect to topological semantics
follows from soundness with respect to algebraic semantics. For completeness, if IPC 0 ϕ, then by § 2.1
there is a Heyting algebra that refutes ϕ. Stone’s [1938] representation of bounded distributive lattices
yields that every Heyting algebra embeds in Ω(X) for some topological space X. Given a Heyting algebra
A = (A,∧,∨,→, 0, 1), let X be the set of all prime filters of A. For a ∈ A, let

β(a) = {x ∈ X | a ∈ x}. (4)

Then {β(a) | a ∈ A} generates a topology on X such that β : A → Ω(X) is a Heyting algebra embedding
(which is an isomorphism if A is finite). Given this embedding, A 6|= ϕ implies Ω(X) 6|= ϕ, so from the
algebraic completeness of IPC we obtain the topological completeness of IPC.

Tarski [1938, 1956] strengthened the topological completeness result for IPC by showing that IPC is the
logic of any dense-in-itself metrizable separable space. This implies that IPC is the logic of the real line, the
rationals, the Cantor space, or any Euclidean space. Rasiowa and Sikorski [1963] showed that separability
could be dropped from Tarski’s assumptions, but their proof (unlike Tarski’s) requires a nontrivial use of
the axiom of choice.

Natural topological semantics can also be given for intermediate logics. For example, it can be shown
that the axiom ¬p ∨ ¬¬p of KC is valid in X iff the closure of each open set is open, which means that the
space is extremally disconnected (ED) (see, e.g., Johnstone 1982, pp. 101–2). In addition, it can be shown
that X validates the axiom (p → q) ∨ (q → p) of LC iff every subspace of X validates ¬p ∨ ¬¬p (see, e.g.,
Johnstone 2002, p. 1004, Bezhanishvili et al. 2015, Prop. 3.1). Thus, X validates (p→ q)∨ (q → p) iff every
subspace of X is ED, so X is hereditarily extremally disconnected (HED).

As mentioned in § 1, it is a famous open problem of Kuznetsov [1975] whether every intermediate logic is
the logic of some class of topological spaces—or equivalently, of spatial locales, which form a special subclass
of locales. In fact, it is still unknown whether every intermediate logic is the logic of some class of locales.
We will discuss additional questions of this kind in § 4.

2.2.2 Verificationist Interpretation

While one can treat the above formal semantics purely as a mathematical tool for the study of logics, one
can also try to understand it as an account of the meaning of the logical connectives in terms of a notion

20Locales are also known as frames in the pointfree topology literature (but the category of locales is dual to the category of
frames). However, in this paper we reserve the term ‘frame’ for Kripke frames (§ 2.3) and generalizations thereof (§ 3).
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of verifiability, as follows.21 Think of the points in a topological space X as partial states of information.
Such states settle some but not necessarily all questions about how things are, including questions about
the possibility of acquiring more information. Consider the set V of information states according to which
2147483647 is a prime number. If one has done a calculation verifying that 2147483647 is prime, then (under
some idealization) one knows that whatever additional information one may acquire, one’s richer information
state will be inside V . In general, given any set U of states, let us say that one has verified U iff one knows
that whatever additional information one may acquire, one’s richer information state will be inside U ; and
U is verifiable, relative to one’s current information state, iff it is possible to achieve such verification of U
after a finite amount of time, starting from the current information state.

To connect this with topology, let Int(U) be the set of states in which U is verifiable.22 With this
definition, one can try to justify the axioms of the interior operator on a topological space. First, it is
clear from the definition that Int(U) ⊆ U . Second, if we assume that it is possible to perform any finite
sequence of possible verifications in a finite amount of time, then the Int operator should distribute over
finite intersections.23 Yet we do not assume that it is possible to perform an infinite sequence of verifications
in a finite amount of time, so we do not assume distribution over arbitrary intersections (cf. § 2.3). Finally,
one could adopt a notion of verification according to which by verifying U , one also verifies that one has
verified U , which implies that if it is possible to verify U , then it is also possible to verify that it is possible
to verify U , so Int(U) ⊆ Int(Int(U)).24 In this way, the axioms of the interior operator may be justified.

Let us now return to topological semantics. According to a basic verificationist view of meaning, mean-
ingful propositions are such that their truth is equivalent to their verifiability, corresponding to sets U such
that U = Int(U). Thus, meaningful propositions correspond to open sets; so these are the semantic values
of formulas, rather than arbitrary sets as in classical semantics. The semantics of implication—and hence
negation—also involves verification: x |=v ψ → χ iff in x it is possible to verify v(ψ)c ∪ v(χ), where v(ϕ)

is the set of states in which ϕ is verifiably true. From this perspective, excluded middle is invalid because
there may be ϕ for which it is not possible to verify v(ϕ) or to verify v(ϕ)c. Typical examples arise when ϕ
stands for a statement quantifying over an infinite domain (see Dummett 2000).

2.3 Kripke Semantics

2.3.1 Formal Semantics

The most popular of the standard semantics for intuitionistic propositional logic is the relational semantics
[Dummett and Lemmon, 1959, Kripke, 1963b, Grzegorczyk, 1964, Kripke, 1965], which has come to be called
Kripke semantics.25 It is a particular case of topological semantics. Call a topological space X Alexandroff
if the intersection of any family of opens is again open, or equivalently, if interior distributes over arbitrary

21Compare the following account with Vickers 1989, Ch. 2 and references therein. For discussion of the relation between
“truth” and “verifiability” for a constructivist, see Dummett 1998. Another conceptual explanation of topological semantics for
intuitionistic logic is given by Scott [1968, p. 195]: “One may view a neighborhood of a topological space as a kind of “proof”:
a proof that a point belongs to a more complicated set because the neighborhood of the point is included in the set” (cf. van
Dalen 2002, § 4 for a similar explanation but in terms of “evidence” instead of proof).

22In § 2.3, we will consider an alternative definition of Int(U) as the set of states in which U has been verified.
23This assumes there is not an exclusion principle by which performing one verification precludes performing another verifi-

cation that would have otherwise been performable.
24To see the implication, observe that if V (for verification) is a monotone operator on a poset such that V a ≤ V V a for all

elements a, and ♦ (for possibility) is a monotone operator such that a ≤ ♦a for all a, then ♦V is such that ♦V a ≤ ♦V ♦V a.
25Kripke [1965] was the first to develop the predicate version of this semantics and prove the completeness of intuitionistic

predicate logic with respect to it. Relational semantics for intuitionistic logic is closely related to relational semantics for modal
logic (see, e.g., Chagrov and Zakharyaschev 1997). For the historical development of relational semantics for modal logic, see,
e.g., Goldblatt 2006.
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intersections [Alexandroff, 1937]. Then each x ∈ X has a least open neighborhood Ux, and the topology on
X is determined by the specialization preorder given by x ≤ y iff y ∈ Ux. Open sets are simply the upward
closed sets (upsets) with respect to ≤ (i.e., if x ∈ U and x ≤ y, then y ∈ U), and the least open neighborhood
Ux is the principal upset ↑x := {y ∈ X | x ≤ y}. The closure of A ⊆ X is calculated as

Cl(A) = ↓A := {x ∈ X | ∃a ∈ A : x ≤ a},

and the interior is calculated as

Int(A) = (↓(Ac))c = {x ∈ X | ↑x ⊆ A}.

A Kripke frame for IPC is a preordered set X. We can view it as an Alexandroff space and interpret
formulas of IPC in X as in § 2.2.1. In particular, v(ϕ) is an upward closed set, and the clauses for → and ¬
from § 2.2.1 can now be written as follows, since we may take U ∈ Ω(x) to be the least open neighborhood
of x, namely ↑x:

• x |=v ψ → χ iff ∀y ≥ x : y 6|=v ψ or y |=v χ;

• x |=v ¬ψ iff ∀y ≥ x : y 6|=v ψ.

Since upsets do not feel the difference between preorders and partial orders, it is customary to only work
with partially ordered Kripke frames (which correspond to T0 Alexandroff spaces). Given a partial order ≤,
we will sometimes consider its strict part < defined by x < y iff x ≤ y and x 6= y.

Figure 2.5 shows the simplest Kripke frame refuting p∨¬p, with v(p) = {1}. Note that the corresponding
topological space is the Sierpiński space considered in § 2.2.1.

0 6|=v p ∨ ¬p

1

Figure 2.5: The simplest Kripke frame refuting p ∨ ¬p.

If X is a poset, let Up(X) be the locale of all upsets, in which → is given by

U → V = Int(U c ∪ V ) = {x ∈ X | ↑x ∩ U ⊆ V }.

Up(X) is just Ω(X) for X viewed as an Alexandroff space, but we write Up(X) when thinking of X in terms
of its order.

Remark 2.1. The locale Up(X) is a very special spatial locale. A locale is completely join-prime generated
if every element is the join of completely join-prime elements, i.e., elements p such that p ≤

∨
S implies

p ≤ s for some s ∈ S. The completely join-prime elements of Up(X) are the principal upsets ↑x, and every
element of Up(X) is a union of principal upsets, so Up(X) is completely join-prime generated. In fact, a
locale L is isomorphic to Up(X) for some poset X iff L is completely join-prime generated (see, e.g., Davey
1979, Prop. 1.1).
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The soundness of IPC with respect to Kripke semantics follows from soundness with respect to topological
semantics. For completeness, similar to Stone’s topological representation of Heyting algebras, for Kripke
semantics we have the following relational representation of Heyting algebras (see, e.g., Fitting 1969, Ch. 1,
§ 6, Esakia 1985, Ch. III, § 4). Let A be a Heyting algebra and X the set of all prime filters of A. If we
order X by inclusion, then X is a poset, and the map β in (4) is a Heyting embedding of A into the locale
Up(X) (which is an isomorphism if A is finite). Thus, any formula refutable in A is refutable in Up(X), so
from the algebraic completeness of IPC we obtain the Kripke completeness of IPC.

Remark 2.2. In the literature on Kripke semantics for intuitionistic predicate or modal logic (see, e.g.,
Veldman 1976, Fairtlough and Mendler 1997), one also finds the notion of a fallible Kripke frame, which in
the propositional case is a pair (X,F ) where X is a poset and F is a distinguished upset. In a model based
on a fallible frame, v(p) is an upset containing F , and v(⊥) = F ; otherwise the definition of satisfaction is
the same. IPC is still sound with respect to this semantics, because the collection Up(X)F of all upsets that
contain F is still a locale, whose operations are the obvious relativizations of those of Up(X); and IPC is
complete with respect to this semantics because ordinary Kripke frames are the special case wherein F = ∅.

If we work with Kripke frames instead of topological spaces, then topological properties translate into
graph-theoretic properties, which are rather easy to work with. This is one of the reasons for the widespread
success of Kripke semantics. For example, it is well known (see, e.g., Chagrov and Zakharyaschev 1997,
p. 42) that a Kripke frame X validates the KC axiom ¬p ∨ ¬¬p iff X satisfies the Church-Rosser property
for all x, y, z ∈ X:

if x ≤ y and x ≤ z, then ∃u ∈ X : y ≤ u and z ≤ u.

x

y z ⇒

x

y z

∃u

Figure 2.6: The Church-Rosser property.

In addition, a Kripke frame X validates the LC axiom (p→ q) ∨ (q → p) iff X satisfies upward linearity for
all x, y, z ∈ X:

if x ≤ y and x ≤ z, then y ≤ z or z ≤ y.

If we view X as an Alexandroff space, then the Church-Rosser property corresponds to X being ED and
upward linearity corresponds to X being HED as in § 2.2.1.

A price we pay for the increased concreteness of Kripke semantics is a decrease in the ability to characterize
logics. Shehtman [1977] presented an intermediate logic that is not the logic of any class of Kripke frames—
in fact, there are continuum many such logics [Litak, 2002]. Moreover, Shehtman [2005, § 8] showed that
there are intermediate logics that are Kripke incomplete but topologically complete. However, in contrast
to the detailed theory of Kripke-incomplete modal logics that has developed since the 1970s, relatively little
is known in general about Kripke-incomplete intermediate logics.
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2.3.2 Verificationist Interpretation

In § 2.2.2, we considered an explanation of topological semantics in terms of a notion of truth as verifiability.
As noted there, from the fact that for each i ∈ I, a proposition Ui is in principle verifiable in a finite amount
of time, it does not follow that

⋂
i∈I
Ui is in principle verifiable in a finite amount of time; for we do not assume

that any infinite sequence of possible finite verifications is such that it can be performed in finite time. Thus,
we could not assume that all our spaces were Alexandroff.

However, let us now consider not what is verifiable, but instead what has actually been verified. As in
§ 2.2.2, assume the equivalence that one has verified U iff one knows that whatever additional information
one may acquire, one’s richer information state will be inside U . In this case, it is more reasonable to accept
the following chain of implications:

for each i ∈ I, one has verified Ui;

⇒ for each i ∈ I, one knows that one’s richer information states will be inside Ui;

⇒ one knows that one’s richer information states will be inside
⋂
i∈I
Ui;

⇒ one has verified
⋂
i∈I
Ui.

Thus, if we take the interior of U to be the set of states in which one has verified U , then the interior operator
distributes over arbitrary intersections, so we have an Alexandroff space. The preorder ≤ defined from this
Alexandroff space tells us that x ≤ y iff every proposition (open set) that has been verified in state x has
also been verified in state y.

This explanation is clearly related to the well-known interpretation of points in a Kripke frame as states
of information, suggested by Kripke [1965, § 1.1]. As Dummett [2000] explains it:

A state of information consists in a knowledge of two things: which of the constituent statements
have been verified; and what future states of information are possible. That the constituent state-
ment represented by a sentence letter p has been verified in the state of information represented
by a point a is itself represented by the fact that a ∈ φ(p) [in our notation: a ∈ v(p)]. That the
state of information represented by a may subsequently be improved upon by achieving the state
represented by a point b is represented by the fact that b ≤ a [in our notation: a ≤ b]. . . . The
extension of the assignment φ to a valuation vφ may now be interpreted as supplying inductively
defined sense for saying that a complex statement represented by a formula A, has been verified
in a state of information represented by a point a. (p. 132–3)

Grzegorczyk [1964] also explained his semantics for intuitionistic propositional logic, which is very similar
to Kripke’s semantics, in terms of states of information acquired in the course of scientific research (also see
Grzegorczyk 1968). These informational explanations of the semantics lead naturally to an analysis from
the perspective of epistemic logic, for which we refer to van Benthem 2009, 2017.

Remark 2.3. Interpreting Kripke semantics in terms of verification depends on adopting a notion of “ver-
ification” according to which an information state that verifies an implication and verifies the antecedent
counts as verifying the consequent. By contrast, a stricter notion of verification may allow for the possibility
that one has verified both p and p → q without having yet verified q, e.g, if one has a concrete proof of p
and a method for transforming any proof of p into a proof of q, but one has not actually applied the method
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to produce a concrete proof of q, as required by the stricter notion of verifying q. In § 3.2.2 we consider a
modification of the Kripke clause for implication, due to Dummett, related to this idea about verification.

Remark 2.4. It is natural to ask what relationship Kripke semantics might bear to the BHK interpretation
of the logical constants. According to Smoryński [1973], “Kripke’s model theory bears no resemblance to
intuitionistic reasoning. . . ” (p. 324). By contrast, Humberstone [2011] remarks that it is “hard to escape
the feeling that because of its consilience with the informal explanations of the meanings of the connectives
offered by intuitionists, the Kripke semantics throws considerable light on their favoured logic” (p. 311).
Recently Fine [2014] has argued that Kripke semantics over special Kripke frames can indeed be understood
as related to the BHK interpretation. Fine’s frames (see Fine 2014, Appendix) are fallible Kripke frames
(X,F ) as in Remark 2.2 but in which the poset X is a complete co-Heyting algebra, i.e., the dual of a
complete Heyting algebra. Fine thinks of the join x t y of x and y as the “fusion” of these states—the least
state that includes both x and y. Where .− is the operation of co-implication, he thinks of x .− y as the state
of “x’s leading to y”—the least state whose fusion with x includes y.26

Given such a frame, Fine defines the notion of a state exactly verifying a formula ϕ, in the spirit of the
BHK interpretation. Each propositional letter p is assigned a subset E(p) ⊆ X thought of as the set of
states that exactly verify p, such that E(p) ⊇ F . The set E(p) is not required to be an upset, for if x exactly
verifies p and x < y, then y may have additional content that is irrelevant to p, so y does not exactly verify
p. Fine then defines E(ϕ) for all formulas ϕ using operations ∧E , ∨E , and →E on ℘(X) that are defined in
the spirit of the BHK interpretation:

• x ∈ A ∧E B iff x = a t b for some a ∈ A and b ∈ B;

• x ∈ A ∨E B iff x ∈ A ∪B;

• x ∈ A→E B iff ∃f : A→ B with x =
⊔
{a .− f(a) | a ∈ A}.

In the first two clauses, a state exactly verifies a conjunction iff it is the fusion of exact verifiers for each
of the conjuncts, and a state exactly verifies a disjunction iff it exactly verifies one of the disjuncts. The
third clause is supposed to relate to the BHK idea that a proof of an implication is a general construction
transforming any particular proof of the antecedent to a proof of the consequent.

To relate this notion of exact verification to Kripke semantics, Fine defines the Kripke valuation v(p) of
p as ↑E(p), so x satisfies p iff x extends some state y that exactly verifies p. Then using the fact that X is a
complete co-Heyting algebra, it can be proved by induction that for any formula ϕ, a state x satisfies ϕ in
the sense of Kripke semantics iff x extends some state y that exactly verifies ϕ in Fine’s BHK-inspired sense.
In this way, at least Kripke semantics using fallible Kripke frames based on complete co-Heyting algebras
can be understood as related to the BHK interpretation. Fine [2014] then proves the completeness of IPC
with respect to the class of such fallible Kripke frames.27

While Fine [2014] demonstrates that in a special case of Kripke semantics, satisfaction can be reduced to
a notion of exact verification, in § 3.2 we shall see Dummett’s [2000] demonstration that in Beth semantics,
satisfaction can be reduced to a different notion of verification.

26Fine writes ‘→’ for the co-implication, but we reserve ‘→’ for Heyting implication. Since the modern notation ‘←’ for
co-implication clashes with Fine’s language of “x leading to y”, we use ‘ .−’ for co-implication as in McKinsey and Tarski 1946.

27Note that IPC is not complete with respect to non-fallible Kripke frames based on co-Heyting algebras (or indeed any poset
with a maximum), because such frames satisfy the Church-Rosser property and therefore validate KC.
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3 Semantics Based on Nuclei

In this section, we present the semantics outlined in § 1.4. While in surveying the standard semantics above
we proceeded from more general to less general semantics, in this section we proceed from less general to
more general. Our starting point is Beth semantics (§ 3.1), which shows how posets can give rise to Heyting
algebras in a way different than in Kripke semantics. Understanding the essence of how Beth semantics gives
rise to Heyting algebras leads to a more general approach that we call nuclear semantics (§ 3.2), which in
turn takes a more concrete (but equally general) form in what we call Dragalin semantics (§ 3.3).

3.1 Beth Semantics

3.1.1 Formal Semantics

In Beth’s [1956, 1964] original version of his semantics, models are based on finitely branching trees. Kripke
[1965] and Dummett [2000] work with a more general version of Beth semantics with models based on
arbitrary trees, and van Dalen [1984] works with a still more general version of Beth semantics with models
based on arbitrary posets. Requiring that models be based on trees is too restrictive for Beth semantics for
intermediate logics (see Example 3.12), so in this paper we follow van Dalen’s approach (with a modification).

In Beth semantics, as in Kripke semantics, a model is a poset X together with a valuation v assigning
to each propositional letter an upset v(p) of X. The difference between Beth and Kripke semantics lies in
the definition of the satisfaction relation. The key concept for defining Beth satisfaction is that of a path.
Van Dalen [1984] defines a path in a poset to be a maximal chain. As a result, proving certain properties of
the semantics (see, e.g., Remark 3.9.1) requires the non-constructive Hausdorff maximality principle stating
that every poset contains a maximal chain, which is classically equivalent to the axiom of choice [Rubin and
Rubin, 1970, § 4]. In order to avoid reliance on this principle, we relax the notion of path to the following.

Definition 3.1. A path in a poset X is a nonempty chain C that is closed under upper bounds: for all
u ∈ X, if u is an upper bound of C, then u ∈ C. If C is a path and x ∈ C, then we call C a path through x.

The definition of the satisfaction relation |= in Beth semantics is the same as in Kripke semantics for ⊥,
∧, and →, but differs for propositional letters and disjunctions:

• x |=v p iff every path through x intersects v(p);

• x |=v ϕ ∨ ψ iff every path through x intersects {y ∈ X | y |=v ϕ or y |=v ψ}.28

Thus, unlike in Kripke semantics, in Beth semantics if a propositional letter will “inevitably” be verified,
then it is already satisfied;29 and if “inevitably” one of the disjuncts of a disjunction will be satisfied, then
the disjunction is already satisfied, even if neither of the disjuncts is already satisfied.

Remark 3.2. Given that Kripke semantics and Beth semantics (as well as its generalizations in §§ 3.2–3.3)
differ in their interpretations of disjunction, it is noteworthy that any intermediate logic axiomatized by
disjunction-free formulas is the logic of a class of finite Heyting algebras [McKay, 1968] and hence of a class
of finite Kripke frames.

28Beth semantics is often presented using the concept of a bar for x ∈ X, which is a B ⊆ X such that every path through
x intersects B (see, e.g., Kripke 1965, Dummett 2000). Then |=v is defined by: x |=v p iff there is a bar B for x such that
B ⊆ v(p), and x |=v ϕ ∨ ψ iff there is a bar B for x such that B ⊆ {y ∈ X | y |=v ϕ or y |=v ψ}. It is easy to see that the two
definitions of |=v are equivalent.

29See below for the distinction between verification (x ∈ v(p)) and satisfaction (x |=v p) in Beth semantics, following Dummett
2000.
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The following example shows how calculations in Beth semantics differ from those in Kripke semantics.

Example 3.3.

1. In Beth semantics, every finite poset validates p ∨ ¬p. For if there is no infinite path, then every path
through x contains an endpoint, and each endpoint satisfies p or ¬p, whence x |=v p ∨ ¬p for any v.

2. An example of an infinite poset refuting p ∨ ¬p is the “Beth comb” in Figure 3.1.

p

p

p

. . .

Figure 3.1: The Beth comb.

Let v(p) be the set of all teeth of the comb. The spine of the comb is a path through the root that
never intersects v(p), so for every x in the spine, x 6|=v p; but also x 6|=v ¬p since x can step to a tooth
y with y |=v p; thus, p ∨ ¬p does not hold at the root.

In trees, the Beth comb is characteristic of refuting p ∨ ¬p, as in Proposition 3.4 below. Here we take a
tree to be a (rooted) poset X in which {y ∈ X | y < x} is a finite chain for each x ∈ X.30 In such trees,
every path is countable, and a path has a maximal point iff it is finite.

Proposition 3.4. If X is a tree, then X validates p ∨ ¬p iff the Beth comb is not a subposet of X.

Proof. From right to left, if the Beth comb is a subposet, define v(p) to be the upset of the teeth. Then
p ∨ ¬p is refuted at any point on the spine.

From left to right, suppose X refutes p ∨ ¬p with some valuation v. It follows that there is a path C

such that C ∩ v(p) = ∅ and C ⊆ ↓v(p), which implies that C is infinite. We will take C to be the spine of
our Beth comb subposet. Let us write C as c0, c1, c2, . . . . Using dependent choice,31 we construct a function
that assigns a tooth to each node of the spine C as follows:

• set f(c0) to be a t ∈ v(p) such that c0 ≤ t, which exists since C ⊆ ↓v(p);

• set f(cn+1) to be a t ∈ v(p) such that cn+1 ≤ t and for all m < n+ 1:

– height(t) > height(f(cm)), where height(x) is the cardinality of {y ∈ X | y < x}, and

– ↑t ∩ ↑f(cm) = ∅.

The existence of such a t is guaranteed by the facts that C is infinite, C ⊆ ↓v(p), and X is a tree: simply
find a ck ∈ C such that height(ck) > height(f(cm)) for all m < n + 1 and then a t ∈ v(p) such that

30Later, in Remark 3.15, we will consider a more general notion of tree from set theory.
31Here we are working in what Schechter [1996] calls quasi-constructive mathematics, defined as “mathematics that permits

conventional rules of reasoning plus ZF + DC, but no stronger forms of Choice” (p. 404).
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ck ≤ t, so height(t) > height(f(cm)). Suppose for contradiction that ↑t ∩ ↑f(cm) 6= ∅ for some m < n+ 1.
Then since X is a tree and height(t) > height(f(cm)), we have f(cm) ≤ t. We also have ck 6≤ f(cm)

since height(ck) > height(f(cm)); and f(cm) 6≤ ck because with X being a tree and v(p) an upset with
f(cm) ∈ v(p), from f(cm) ≤ ck we would have ck ∈ v(p), contradicting C ∩ v(p) = ∅. Thus, we have that
f(cm) ≤ t, ck ≤ t, and that f(cm) and ck are incomparable, contradicting the assumption that X is a tree.
Therefore, ↑t ∩ ↑f(cm) = ∅, as desired.

We have shown that for all cn, cm ∈ C with n 6= m, we have cn ≤ f(cn) and ↑f(cn)∩ ↑f(cm) = ∅. Thus,
by restricting the relation ≤ to C ∪ {f(cn) | cn ∈ C}, we have our Beth comb subposet.

If X is not a tree, then X may refute p ∨ ¬p even if the Beth comb is not a subposet of X (see, e.g.,
Example 4.13). In general, Beth frames validating p ∨ ¬p can be characterized as follows.

Proposition 3.5. A poset X validates p ∨ ¬p in Beth semantics iff there is no path C and upset L in X
such that C ∩ L = ∅ and C ⊆ ↓L.

In § 3.3, we will prove a more general fact (Proposition 3.42.1) from which Proposition 3.5 follows.
As suggested above, in Beth semantics there is a connection between what will inevitably be satisfied

and what is already satisfied. To state this precisely, we introduce the following definition.

Definition 3.6. A subset U of a poset X is fixed if for all x ∈ X, we have x ∈ U iff every path through x
intersects U .

It is often helpful to think of this definition in the contrapositive: x 6∈ U iff there is a path through x

that does not intersect U . It is a consequence of the definition of |= above and the assumption that v(p) is
an upset that the semantic value of a formula will always be a fixed upset.

Proposition 3.7. For every ϕ, the set {x ∈ X | x |=v ϕ} is a fixed upset.

Proof. For the atomic case, to see that {x ∈ X | x |=v p} is an upset, suppose x |=v p and x ≤ y. If C is
a path through y, then C ′ := (C ∩ ↑y) ∪ {x} is a path through both x and y (see Figure 3.2). Then since
x |=v p, there is some z ∈ C ′ ∩ v(p). Either z ∈ C, in which case C intersects v(p) at z, or else z = x, in
which case C intersects v(p) at y, since z = x ≤ y and v(p) is an upset. Thus, C intersects v(p). Since this
holds for all paths C through y, we have y |=v p. Now to see that {x ∈ X | x |=v p} is fixed, suppose that
every path through x contains a y such that y |=v p. Let C be such a path. Then since C contains a y with
y |=v p, it follows that C also contains a z ∈ v(p). Hence every path through x contains a z ∈ v(p), whence
x |=v p. The rest of the proof is a straightforward induction. Since disjunction is non-standard, we give the
proof for this case. An argument similar to that above gives us that {x ∈ X | x |=v ϕ ∨ ψ} is an upset. To
see that it is fixed, if every path through x contains a y such that y |=v ϕ ∨ ψ, then it is easy to see that
every path through x intersects {z ∈ X | z |=v ϕ or z |=v ψ}, whence x |=v ϕ ∨ ψ.

Remark 3.8. In general the concept of a fixed upset is stronger than that of a fixed set:

1. For example, in the two-element tree in Figure 2.5, the set {0} is not an upset, but it is a fixed set
given our notion of path in Definition 3.1 because 1 is the only element that does not belong to {0},
and {1} is a path through 1 that does not intersect {0}.

2. Even if paths are defined as maximal chains per tradition, a fixed set still need not be an upset. For
example, in the simplest non-tree in Figure 3.3, {x} is not an upset, but it is a fixed set, because for
every w 6∈ {x} there is a maximal chain, namely {r, y,m}, that contains w but does not intersect {x}.
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x

y

C

Figure 3.2: Diagram for the proof of Proposition 3.7.

3. However, if paths are defined as maximal chains per tradition and in addition X is a tree, then every
fixed set is an upset. For if x ≤ x′ and C is a maximal chain through x′ that does not intersect U ,
then C is also a maximal chain through x that does not intersect U .

r

x y

m

Figure 3.3: The simplest non-tree.

Remark 3.9.

1. If we had defined a path as a maximal chain as in van Dalen 1984, then Proposition 3.7 would require
a non-constructive proof. Indeed, with that definition of path, Proposition 3.7 is equivalent to the
non-constructive Hausdorff maximality principle mentioned above, stating that every poset contains
a maximal chain. To see that the Hausdorff maximality principle follows from Proposition 3.7 with
paths defined as maximal chains, let X be any poset. Define X ′ to be the result of adding three new
points a, b, and c, and setting

≤′=≤ ∪{〈a, a〉, 〈b, b〉, 〈c, c〉} ∪ {〈x, b〉 | x ∈ X ∪ {a}},

so X ′ is a poset as in Figure 3.4. Define v(p) = {c}. Hence v(p) is an upset, and {a, b} is a maximal
chain that does not intersect v(p), so b 6|=v p. Now take any x ∈ X, so x ≤′ b by the definition of
≤′. Then by Proposition 3.7, x 6|=v p, which with the definition of path as maximal chain implies that
there is a maximal chain C such that x ∈ C and C ∩ v(p) = ∅. Since C is a maximal chain in X ′ with
x ∈ C, it follows by construction of X ′ that C∩X is a maximal chain in X, which completes the proof.

2. The principle that every poset contains a maximal chain is equivalent to the principle that every
chain in a poset can be extended to a maximal chain. Assuming this principle, we can show that the
definition of |= in terms of chains closed under upper bounds is equivalent to that in terms of maximal
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b

c
X

Figure 3.4: Construction of X ′ for Remark 3.9.1.

chains—hence Proposition 3.7 for our paths implies Proposition 3.7 for van Dalen’s paths. It suffices
to show that for every x ∈ X and upset U ⊆ X, every chain closed under upper bounds that contains
x intersects U iff every maximal chain that contains x intersects U . The left-to-right implication holds
because every maximal chain is closed under upper bounds. From right to left, consider a chain C that
is closed under upper bounds and contains x. Extend C to a maximal chain C∗, so by assumption, C∗

intersects U at some point y. If y ∈ C, we are done, so suppose y 6∈ C. Then since C is closed under
upper bounds, y is not an upper bound of C. Yet since y ∈ C∗, y is comparable with every element of
C. Thus, there is some z ∈ C such that y ≤ z, which with y ∈ U implies z ∈ U . Hence C intersects U ,
which completes the proof.

3. If X is a tree, as in traditional presentations of Beth semantics [Troelstra and van Dalen, 1988b, § 13.1],
then the axiom of choice is not required to extend C to the maximal chain C∗ in the argument of part
2. Simply take C∗ = ↓C.

A crucial fact about fixed upsets is that the collection of all such sets in X becomes a locale with ∧
defined as usual, by U ∧ V = U ∩ V , but now with∨

i∈I
Ui = {x ∈ X | every path through x intersects

⋃
i∈I
Ui}.

That this is a locale will follow from a more general result in § 3.2 (see Theorem 3.20). The soundness of
IPC with respect to Beth semantics then follows from Proposition 3.7.

Remark 3.10. Unlike in the case of Kripke frames, whose associated locales can be characterized as the
completely join-prime generated ones (see Remark 2.1), in the case of Beth frames, a characterization of
their associated locales is unknown (see Problem 1 in § 4.2).

For completeness, Beth used his method of semantic tableaux to show that any non-theorem of IPC can
be refuted in a finitely branching tree according to his semantics. In § 4.1, we go a different route: we
show how any poset X can be turned into a poset Xb such that the set of formulas valid in X according
to Kripke semantics is exactly the set of formulas valid in Xb according to Beth semantics. This yields the
Beth completeness of IPC, given the Kripke completeness of IPC.

The transformation of Kripke frames into Beth frames just mentioned establishes much more: every
intermediate logic that is Kripke complete is also Beth complete. However, the properties characterizing
posets that validate intermediate axioms in Beth semantics are typically more complex than in Kripke
semantics since they have a second-order flavor. For example, de Beer [2012, § 5.3.1–3.2] proves the following.
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Proposition 3.11. For any poset X:

1. X validates the axiom ¬p ∨ ¬¬p of KC according to Beth semantics iff there is no path C and sets L
and M such that C ⊆ ↓L ∩ ↓M and ↑L ∩ ↑M = ∅;

2. X validates the axiom (p→ q)∨ (q → p) of LC according to Beth semantics iff there is no path C and
subsets L and M such that: C ⊆ ↓L ∩ ↓M ; for every l ∈ L, there is a path through l that does not
intersect ↑M ; and for every m ∈M , there is a path through m that does not intersect ↑L.

In § 3.3, we will prove a more general fact (Proposition 3.42) from which Proposition 3.11 follows.

Example 3.12. If X is a tree with the Beth comb of Figure 3.1 as a subposet, then X refutes ¬p∨¬¬p. To
see this, index the teeth of the comb by natural numbers, let L be the set of even numbered teeth, let M be
the set of odd numbered teeth, and let C be the spine of the comb. Then C ⊆ ↓L ∩ ↓M and ↑L ∩ ↑M = ∅
(since X is a tree), so X refutes ¬p ∨ ¬¬p by Proposition 3.11.1. It follows, using Proposition 3.4, that if
X is a tree that refutes p ∨ ¬p, then it also refutes ¬p ∨ ¬¬p. This shows that for the purposes of studying
intermediate logics, we cannot restrict attention to trees in Beth semantics.

Example 3.13. Figure 3.5 shows an elegant example from de Beer [2012, § 5.3.2] of a poset validating
KC but not LC according to Beth semantics. To see that the poset has the property for KC in Proposition
3.11, observe that any two nonempty upsets will have a nonempty intersection at some di. On the other
hand, to see that the poset does not have the property for LC, let C = {c1, c2, . . . }, L = {l1, l2, . . . }, and
M = {m1,m2, . . . }. Then C ⊆ ↓L∩↓M , and for every l ∈ L, there is a path, namely L itself, through l that
does not intersects ↑M , and similarly for M .

l1

l2

l3

l4

c1

c2

c3

c4

d1

d2

d3

d4

m1

m2

m3

m4

...

...

...

...

Figure 3.5: A poset validating KC but not LC in Beth semantics.

Due to its more complex definition of satisfaction, Beth semantics has been less usable than Kripke
semantics for the study of intermediate logics. However, as noted in § 1.4, Beth semantics has been more
usable than Kripke semantics for the purposes of intuitionistic analysis [van Dalen, 1978].

3.1.2 Verificationist Interpretation

We now turn to motivating the definition of satisfaction in Beth semantics. In § 2.3.2, we considered an
explanation of Kripke semantics in terms of a notion of truth as verification. Dummett [2000, p. 138–39]
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explains two related ways to understand Beth semantics, the second of which is more appropriate for us here:

On this approach, we are distinguishing between the verification of an atomic statement in a
given state of information, and its being assertible; the latter notion is represented by truth
at a node, and is defined, for all statements, in terms of the verification of atomic statements.
The knowledge that a given atomic statement will be verified within a finite time does not itself
constitute a verification of it, but is sufficient ground to entitle us to assert it. (p. 139)

While in Kripke semantics, x |=v p iff x ∈ v(p), Dummett suggests that in Beth semantics we can make a
distinction: x ∈ v(p) means that p is verified in x, while x |=v p means that in x, it is known that p will be
verified. The same idea helps to explain the different treatment of disjunction in Beth semantics vs. Kripke
and topological semantics. Assume a constructivist view according to which one has verified a disjunction
only if one has verified one of the disjuncts. Thus, in Kripke semantics, which is based on what has been
verified, x |= p ∨ q only if x |= p or x |= q. It also follows from this view of verification that it is possible
to verify a disjunction only if it is possible to verify one of the disjuncts.32 Thus, in topological semantics,
which is based on what is possible to verify, x |= p∨q only if x |= p or x |= q. However, it does not follow from
the constructivist view of verification that one knows that a disjunction will be verified only if one knows of
one of the disjuncts that it will be verified; unlike verification, knowledge is not assumed to distribute over
disjunction. Thus, in Beth semantics, which is based on knowledge of what will be verified, it does not hold
in general that x |= p ∨ q only if x |= p or x |= q. Instead, in Beth semantics, x |= p ∨ q if it is known that
however the future unfolds, one of the disjuncts will be verified (though we may not know which).

Remark 3.14. Just as the Beth semantic clause for ∨ is compatible with the idea that verifying a disjunction
requires verifying a disjunct, it is also compatible with the idea from the BHK interpretation, as presented
in § 1.1, that proving a disjunction requires proving a disjunct. Beth semantics does not offer an alternative
account of verification or proof, but rather an account of the validity of principles of propositional logic in
terms of knowledge of what will inevitably be verified. For further discussion of the relation between the
BHK interpretation and Beth semantics, see Humberstone 2011, pp. 893–4. The generalizations of Beth
semantics in §§ 3.2–3.3 are also compatible with the BHK view of what counts as a proof, though they define
validity in terms of additional notions (see the discussion of assertability in § 3.2.2).

Figure 3.6 summarizes the views of |= in Kripke, Beth, and topological semantics that we have discussed
(which of course do no exhaust the possible views that one could associate with these semantics—see,
e.g., Rabinowicz 1984 for further discussion and subtleties). To compare these views, consider the example
discussed by Dummett [1998, p. 123] of whether a certain large number n is prime. A very strict constructivist
might only accept that ‘n is prime or composite’ is true if it has been verified that n is prime or that it is
composite. A slightly less strict constructivist might allow that ‘n is prime or composite’ is true provided
we know that it will eventually be verified that n is prime or that it is composite. Finally, a more liberal
constructivist might hold, as Dummett suggests, that ‘n is prime or composite’ is true because there is a
decision procedure for primality and hence it is in principle possible to verify that the number is prime or
that it is composite, even if we do not know if it will ever be verified.

Remark 3.15. As an aside, let us mention an intriguing variant of Beth semantics. Instead of working with
paths (chains closed under upper bounds), we could work with the following weaker concept. Let a trace in

32To see this, note that if V (for verification) is an operator that distributes over join, and ♦ (for possibility) is an operator
that also distributes over join (a standard assumption about possibility), then ♦V distributes over join.
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semantics understanding of x |= p
Kripke at x, p has been verified
Beth at x, it is known that p will be verified
Topological at x, it is possible to verify p

Figure 3.6: Comparing Kripke, Beth, and topological semantics.

a poset X be a nonempty chain C such that for every x ∈ C, either x is maximal (there is no y ∈ X such
that x < y) or there is a y such that x < y ∈ C. Clearly every path is a trace. Conversely, every trace is
a path if X is a tree, understood as a poset in which {y ∈ X | y < x} is a finite chain for each x ∈ X.33

There is a more general notion of a tree used in set theory, in which {y ∈ X | y < x} is only required to be
well-ordered by < [Jech, 2002, p. 114]. In this case, as in the case of an arbitrary poset, there may be traces
that are not paths (see below). Now consider the following modified definition of |= for Beth semantics over
posets:

• x |=v p iff every trace through x intersects v(p);

• x |=v ϕ ∨ ψ iff every trace through x intersects {y ∈ X | y |=v ϕ or y |=v ψ}.

With this semantics, we can refute p ∨ ¬p in the linear order ω + 1 by setting v(p) = {ω} as in Figure 3.7;
for the set of natural numbers is a trace (but not a path) that never intersects v(p), so for every n, n 6|=v p;
but also n 6|=v ¬p, since n can step to ω and ω |=v p; thus p ∨ ¬p does not hold at any n. It is noteworthy
that the chain ω + 1 with v(p) = {ω} is bisimilar, in the standard sense from modal logic [Blackburn et al.,
2001, § 2.2], to the Beth comb in Figure 3.1 by relating ω to all the teeth of the comb as in Figure 3.8.

0 1 2 3 ω

0 1/2 3/4 7/8 1

p. . .

Figure 3.7: Poset refuting p ∨ ¬p with the trace semantics.

The distinction between traces and paths can be thought of in terms of the intuitive interpretation of Beth
semantics discussed above. If we think of the elements of the poset as information states—not associated
with any particular times—that one may pass through at different speeds, then the trace picture makes
sense: if 0 is one’s current information state in the linear order ω + 1, then one possible future is the one in
which each day, one’s information state increments by one unit, thus never reaching ω. By contrast, suppose
we think of the elements of the poset as possible moments, at 0 seconds, 1/2 second, 3/4 second, 7/8 second,
. . . , 1 second from a starting time, as in Figure 3.7. Then any possible future must eventually reach 1, as
required by the path picture of Beth semantics. We leave for the future a further comparison of the path
and trace versions of Beth semantics.

33To see this, suppose u is an upper bound of a trace C but u 6∈ C. Then there is a y1 ∈ C such that y1 < u, so y1 is not
maximal. Hence by the definition of a trace, there is a y2 such that y1 < y2 ∈ C, which implies y2 < u, so y2 is not maximal.
In this way we obtain y1 < y2 < y3 < · · · < u so that {y ∈ X | y < u} is infinite.
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0 1 2 ω
p. . .

Figure 3.8: A bisimulation between ω + 1 and the Beth comb.

3.2 Nuclear Semantics

3.2.1 Formal Semantics

At the heart of Beth semantics is an operation jb on the upsets of a poset X defined as follows:

jbU = {x ∈ X | every path through x intersects U}. (5)

A fixed upset, as in Definition 3.6, may now be equivalently defined as an upset U that is a fixpoint of jb,
i.e., U = jbU . In addition, the two key satisfaction clauses in Beth semantics may now be written as:

• x |=v p iff x ∈ jbv(p);

• x |=v ϕ ∨ ψ iff x ∈ jb{y ∈ X | y |=v ϕ or y |=v ψ};

and Proposition 3.7 now says that {x ∈ X | x |=v ϕ} is a fixpoint of jb for each formula ϕ.
It is easy to check that jb is a closure operator on Up(X), where a closure operator on a poset P is a

unary function c : P → P satisfying, for all a, b ∈ P :

• a ≤ ca (inflationarity);

• cca ≤ ca (idempotence);

• if a ≤ b, then ca ≤ cb (monotonicity).

Closure operators play a crucial role in logic, lattice theory, and universal algebra [Wójcicki, 1988, Birkhoff,
1967, Davey and Priestley, 2002, Burris and Sankappanavar, 1981]. The following is well known (see, e.g.,
Burris and Sankappanavar 1981, § 5).

Theorem 3.16. L is a complete lattice iff it is isomorphic to the lattice of fixpoints (“closed sets”) of a
closure operator on a powerset.

The operator jb on Up(X) is not only a closure operator but also a nucleus on Up(X).

Definition 3.17. A nucleus34 on a Heyting algebra H is a closure operator j : H → H that also satisfies,
for all a, b ∈ H:

34Macnab [1981] uses the term ‘modal operator’ instead of ‘nucleus’.
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• j(a ∧ b) = ja ∧ jb (multiplicativity).

A nucleus j is dense if j0 = 0.

Remark 3.18.

1. The inequality j(a ∧ b) ≤ ja ∧ jb (for all a, b ∈ H) is equivalent to monotonicity.

2. Multiplicativity and the properties of the Heyting implication together yield:

• j(a→ b) ≤ ja→ jb (distribution over →).

3. Inflationarity, distribution over →, and idempotence together yield:

• ja→ jb = j(ja→ jb).

4. The nucleus jb on Up(X) is dense because jb∅ = ∅.

5. Henceforth we will call jb the Beth nucleus.

Nuclei play an important role in pointfree topology [Simmons, 1978, Johnstone, 1982, Picado and Pultr,
2012], as they characterize sublocales of locales (recall § 2.2.1). For a collection of key facts about nuclei,
see the above references as well as Fourman and Scott 1979, Wilson 1994.

Definition 3.19. A nuclear algebra is a pair (H, j) of a Heyting algebra H and a nucleus j on H.

The following result is well known (see, e.g., Macnab 1981 or Dragalin 1988, p. 71).

Theorem 3.20. Given a nuclear algebra (H, j), let Hj = {a ∈ H | ja = a} be the set of fixpoints of j.
Then Hj is a Heyting algebra, called the algebra of fixpoints in (H, j), where for a, b ∈ Hj :

• a ∧j b = a ∧ b;

• a→j b = a→ b;

• a ∨j b = j(a ∨ b);

• 0j = j0.

Moreover, if H is a locale, then so is Hj , where
∧
j S =

∧
S and

∨
j S = j(

∨
S). Furthermore, the map

j : H → Hj is a lattice homomorphism (though not necessarily a Heyting algebra homomorphism), and if
H is a locale, then j is a (∧,

∨
)-homomorphism.

Example 3.21. If j were only a closure operator, but not a nucleus, then Hj would not necessarily be
a Heyting algebra. For example, consider the real line R with its usual topology. Let H be the powerset
of the real line, and let c be the topological closure. Its fixpoints give the closed subsets of the real line,
which do not form a Heyting algebra: if a1, a2, . . . is an increasing sequence of reals converging to a and
a < b, as in Figure 3.9, then we can refute the join-infinite distributive law (2) characterizing complete
Heyting algebras by taking x as [a, b] and Y as the family of intervals [ai, ai+1], so that x∧

∨
c Y = {a} while∨

c{x ∧ y | y ∈ Y } = ∅.

Example 3.22.
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a1 a2 a3 a4 a b
· · ·

Figure 3.9: Diagram for Example 3.21.

1. An important example of a nucleus on a Heyting algebra is the operation of double negation ¬¬, where
¬a = a → 0 as in § 2.1. For any Heyting algebra H, the algebra H¬¬ of fixpoints of double negation
is a Boolean algebra (see, e.g., Rasiowa and Sikorski 1963, p. 134). This fact may be used to prove
Glivenko’s theorem mentioned in § 1.1.

2. If H is the locale of opens of a topological space, then the double negation of an open set is the interior
of its closure. A set is regular open if it is equal to the interior of its closure, so the fixpoints of double
negation are the regular open sets of the space. The well-known result that the regular open sets
form a complete Boolean algebra (see Tarski 1938, Givant and Halmos 2009, Ch. 10) follows from the
facts above that H¬¬ is a Boolean algebra for any Heyting algebra H and that Hj is a locale for any
locale H.

3. More generally, for any a ∈ H, the operation wa defined by

wab = (b→ a)→ a

(which is ¬¬ when a = 0) is a nucleus whose fixpoints form a Boolean algebra. In fact, if j is a nucleus
on H, then the algebra Hj of fixpoints is a Boolean algebra iff j = wa for some a ∈ H (see, e.g.,
Johnstone 1982, p. 51).

That Hj is a Heyting algebra for any nuclear algebra (H, j) explains the soundness of IPC with respect
to Beth semantics. By Proposition 3.7, the Beth definition of |=, and the definition of the operations in
Hj above, we can see that what Beth semantics is doing is evaluating formulas in the algebra Up(X)jb of
fixpoints in the nuclear algebra (Up(X), jb). Since the algebra of fixpoints is always a Heyting algebra, IPC
is sound with respect to Beth semantics.

By the same reasoning, we can obtain the soundness of IPC with respect to a more general nuclear
semantics as follows.

Definition 3.23. A nuclear frame is a pair (X, j) where X is a poset and j is any nucleus on Up(X). A
nuclear frame is dense if j is dense. The algebra of fixpoints of a nuclear frame (X, j) is the algebra of
fixpoints in the nuclear algebra (Up(X), j).

A valuation on a nuclear frame assigns to propositional letters elements of Up(X) as usual, and the
definition of |= simply replaces the Beth nucleus jb with the given nucleus j:

• x |=v ⊥ iff x ∈ j∅;

• x |=v p iff x ∈ jv(p);

• x |=v ϕ ∨ ψ iff x ∈ j{y ∈ X | y |=v ϕ or y |=v ψ}.

Thus, Beth semantics may be regarded as a special case of nuclear semantics. The same is true of Kripke
semantics since a Kripke frame X may be regarded as a nuclear frame (X, jk) where jk is the identity nucleus
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on Up(X) (jkU = U). The nuclear semantic clauses above then reduce to the standard Kripke clauses. From
these observations it follows that IPC is complete with respect to nuclear semantics, because it is complete
with respect to the class of nuclear Beth frames (X, jb), by Beth completeness, or the class of nuclear Kripke
frames (X, jk), by Kripke completeness.

As observed in Remark 2.1, only very special locales—the completely join-prime generated ones—arise
from Kripke frames. By contrast, for nuclear frames Dragalin [1979, 1988, p. 75] proved the following
analogue of Theorem 3.16.

Theorem 3.24 (Dragalin). L is a locale iff L is isomorphic to the algebra of fixpoints of a dense nuclear
frame.

Proof. (Sketch) The right-to-left direction follows from Theorem 3.20. From left to right, given a locale L, let
L+ be the result of deleting the bottom element from L, and let (L+)∂ be the dual poset of L+ (i.e., with the
order reversed);35 then L can be represented as the algebra of fixpoints of the nuclear algebra (Up((L+)∂), j)

with j defined by:
jU = ↓

∨
U,

where
∨

is the join in L, and ↓ gives the downset in L+, which is an upset in (L+)∂ .

It follows from this representation theorem that if an intermediate logic L is the logic of some class C of
locales, according to algebraic semantics, then L is also the logic of a class of nuclear frames, according to
nuclear semantics, namely the class of nuclear frames representing the locales in C. Thus, nuclear semantics
is as general as algebraic semantics based on locales. In § 3.3 and §§ 4.6–4.7, we will improve this result by
providing more concrete representations of nuclear frames.

Remark 3.25. In the setting of nuclear semantics, the difference between intuitionistic and classical logic
arises not from different definitions of satisfaction, but rather from different choices of the nucleus j. If we
maintain the definition of satisfaction above but restrict attention to nuclear frames (X, j) in which j is the
nucleus of double negation, then we obtain a semantics for which CPC is sound and complete. Soundness
follows from the fact that the fixpoints of the double negation nucleus form a Boolean algebra as in Example
3.22.1.36 Completeness follows from the completeness of CPC with respect to the two-element Boolean
algebra, which is the algebra of fixpoints in a nuclear frame with one point, wherein the identity nucleus
is also the nucleus of double negation. Note that for any nuclear frame, if j is double negation, then the
satisfaction clauses above are equivalent to:

• x |=v p iff ∀x′ ≥ x ∃x′′ ≥ x′: x′′ ∈ v(p);

• x |=v ϕ ∨ ψ iff ∀x′ ≥ x ∃x′′ ≥ x′: x′′ |=v ϕ or x′′ |=v ψ.

This definition appears as “weak forcing” in the literature on set theory [Cohen, 1966] and as “possibility
semantics” in the literature on modal logic [Humberstone, 1981, Holliday, 2015, 2018].

Remark 3.26.
35We reverse the order because we have chosen to work with upsets instead of downsets in posets. If we worked with downsets

as in Dragalin 1979, 1988, then there would be no need to reverse the order.
36In fact, CPC is sound with respect to the larger class of all nuclear frames of the form (X,wU ) for U ∈ Up(X), where wU

is the nucleus in Example 3.22.3.
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1. The notion of a nucleus on a locale has been generalized to that of a quantic nucleus on a quantale
(see, e.g., Rosenthal 1990). Theorem 3.20 has an analogue in this more general setting, which has been
applied to the semantics of substructural logics, as in, e.g., Ono 1993, Sambin 1995. Rumfitt [2012,
2015, § 6] utilizes Sambin 1995 to give a philosophically motivated semantics for intuitionistic logic.

2. Semantics for substructural logics can also be given using an arbitrary closure operator—not necessarily
a nucleus—by evaluating formulas as fixpoints of the closure operator and interpreting disjunction by
taking the closure of the union [Restall, 2000, § 12.2]. However, note that in light of Example 3.21,
we cannot simply replace the nucleus j with an arbitrary closure operator c in the nuclear semantics
above and maintain the soundness of IPC.

Remark 3.27. Given the centrality of nuclei in our story here, it is important to note that there is a
formal calculus for reasoning about nuclei: just as IPC is the logic of Heyting algebras, the propositional lax
logic PLL [Goldblatt, 1981, Fairtlough and Mendler, 1997] is the logic of nuclear algebras. The language of
PLL adds a unary connective © to the language of IPC, which is interpreted as the nucleus j in a nuclear
algebra. The logic PLL is the smallest extension of IPC in this language that contains the axioms p → ©p,
©©p → ©p, and (©p ∧ ©q) → ©(p ∧ q), and is closed under uniform substitution, modus ponens, and
the monotonicity rule: if PLL ` ϕ→ ψ, then PLL ` ©ϕ→©ψ.37 It is straightforward to show that PLL is
sound and complete with respect to its algebraic semantics based on nuclear algebras. A number of other,
more concrete semantics for PLL have also been proposed [Goldblatt, 1981, Fairtlough and Mendler, 1997,
Benton et al., 1998, Alechina et al., 2001, Goldblatt, 2011].

3.2.2 Verificationist Interpretation

Next we discuss connections between nuclei and the theme of verification from § 2.2.2, § 2.3.2, and § 3.1.2.
In § 3.1.2, we discussed Dummett’s distinction between a propositional letter p being verified in a state x
and p being assertible in x. Beth semantics suggests a particular sufficient condition for the assertibility of
p in x: knowledge that p will be verified. To extend this idea to all formulas ϕ, Dummett [2000, p. 278]
defines in Beth models a notion of x verifying ϕ, which we will write as x v ϕ:

• x v p iff x ∈ v(p);

• x v ϕ ∧ ψ iff x v ϕ and x v ψ;

• x v ϕ ∨ ψ iff x v ϕ or x v ψ;

• x v ϕ→ ψ iff ∀y ≥ x : if y v ϕ, then every path through y contains a z with z v ψ.

The verification clauses for ∧ and ∨ are just as in Kripke semantics. The→ clause says that ϕ→ ψ is verified
if we know how, given any verification of ϕ we might obtain, to obtain a verification of ψ in due time, though
perhaps not immediately.38 Shortly we will see that the formulas that are always verified according to  are
exactly the theorems of IPC. First, let us connect verification with Beth semantics. Where |= is the Beth
satisfaction or “assertibility” relation, Dummett [2000, Thm. 7.2] proves the following by induction on ϕ:

x |=v ϕ iff every path through x intersects {y ∈ X | y v ϕ}. (6)
37As an admissible rule (given p→©p and modus ponens), we have the rule of necessitation: if PLL ` ϕ, then PLL ` ©ϕ.
38Cf. Joosten 2006, p. 26: “Once the creative subject knows that A→ B, in a future world, where he gets to know A he shall

obtain B but possibly at some later time as he might need to perform some calculations.”
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Thus, as Dummett suggested, in Beth semantics ϕ is assertible iff it is known that ϕ will be verified.
One may abstract from this particular view about assertibility and distill a more general view as follows:

there is a set V (ϕ) of states in which ϕ is verified and a set jV (ϕ) of states in which ϕ is assertible. What-
ever one’s view of assertibility, verification should be sufficient for assertibility, so j should be inflationary.
Moreover, one could reasonably adopt a notion of assertibility according to which if it is assertible that some
statement is assertible, then that statement is indeed assertible, so j should be idempotent. Finally, it is
also reasonable that a conjunction is assertible iff each conjunct is assertible, so j should be multiplicative.
In this way, the axioms of a nucleus—not just a closure operator—are motivated.

Dummett’s result (6) can also be explained in terms of nuclei. Dummett’s definition of  uses the
standard definitions of ∧ and ∨ in Up(X) but changes the definition of implication. One can easily check
that the operation →′ on Up(X) corresponding to the bulleted clause for implication above is defined by
U →′ V = U → jbV , where → is the standard implication, defined by A → B = {x ∈ X | ↑x ∩ A ⊆ B},
and jb is the Beth nucleus. More generally, given any nuclear algebra (H, j), we can define a new algebra
D(H, j) (in the same signature as H) by changing only the definition of implication to a →j b = a → jb,
which is equivalent to39

a→j b = ja→ jb.

Definition 3.28. We call D(H, j) a Dummett algebra.

Dummett’s (6) is a consequence of an algebraic fact: jb is a homomorphism from the Dummett algebra
D(Up(X), jb), in which the verification clauses evaluate formulas, to the algebra Up(X)jb of fixpoints, in
which the Beth satisfaction clauses evaluate formulas. This is in turn a consequence of the following more
general fact.

Lemma 3.29. If H is a Heyting algebra and j a nucleus on H, then j is a (∧,∨,→)-homomorphism from
the Dummett algebra D(H, j) to the algebra Hj of fixpoints.

Proof. That j is a lattice homomorphism was noted in Theorem 3.20. For implication, by the definitions
of →j and →j , we have j(a →j b) = j(ja → jb) = ja → jb = ja →j jb, where the second equality uses
inflationarity from right to left and distribution over → and idempotence from left to right.

Above we noted that the theorems of IPC are exactly the formulas that are always verified in Dummett’s
sense. Completeness follows from Dummett’s (6) together with Beth completeness: if IPC 0 ϕ, then there
is some state in a Beth model that does not satisfy ϕ, which by (6) implies that there is some path along
which ϕ is never verified. For soundness, below we will prove the more general result that all theorems of
IPC evaluate to 1 in every Dummett algebra, so in particular they are verified at all states in all posets.

Remark 3.30. Care is needed if one wishes to define a relation of consequence based on Dummett’s notion
of verification. If one were to define Γ  ϕ iff whenever a state verifies all formulas in Γ, it verifies ϕ, then
the detachment property would fail: Γ  ϕ → ψ would not guarantee that Γ ∪ {ϕ}  ψ. For example,
(p ∧ (p → q)) → q is always verified, yet a state x may verify p ∧ (p → q) without verifying q, as the
verification of q awaits a later state. The failure of detachment is avoided by defining Γ  ϕ iff whenever x
verifies all formulas in Γ, every path through x eventually reaches a state y that verifies ϕ.

The heart of the issue in Remark 3.30 is that Dummett algebras often fail to be Heyting algebras, as the
following example shows.

39That ja → jb ≤ a → jb follows from inflationarity. That a → jb ≤ ja → jb follows because a → jb ≤ j(a → jb) ≤ ja →
jjb = ja→ jb, using inflationarity, distribution over →, and idempotence.
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Example 3.31. Consider a two-element posetX and its associated nuclear algebra (Up(X), jb) shown in Fig-
ure 3.10 with the Beth nucleus indicated by dashed arrows. The associated Dummett algebra D(Up(X), jb)

is not a Heyting algebra; for we have {0, 1} →jb {1} = {0, 1} → jb{1} = {0, 1} → {0, 1} = {0, 1}, and yet
{0, 1} 6⊆ {1}, so→jb violates the residuation condition (1) in the definition of a Heyting algebra. Nonetheless,
in this Dummett algebra, as in all Dummett algebras, all theorems of IPC still evaluate to 1.

0

1

∅

{1}

{0, 1}

Figure 3.10: A poset X and its associated nuclear algebra (Up(X), jb).

Theorem 3.32. IPC ` ϕ iff ϕ is valid in all Dummett algebras.

To prove Theorem 3.32, we can use the language of lax logic introduced in Remark 3.27. Define a
translation (·)D from the propositional language to the lax language as follows:

• pD = p;

• (ϕ ∧ ψ)D = ϕD ∧ ψD;

• (ϕ ∨ ψ)D = ϕD ∨ ψD;

• (ϕ→ ψ)D =©ϕD →©ψD.

Then the following lemma is immediate from the definitions.

Lemma 3.33. A propositional formula ϕ is valid in a Dummett algebra D(H, j) iff ϕD is valid in the nuclear
algebra (H, j).

To prove Theorem 3.32, we simply combine Lemma 3.33 together with the following.

Lemma 3.34. A propositional formula ϕ is valid in all Heyting algebras iff ϕD is valid in all nuclear algebras.

Proof. For the right-to-left direction, if ϕ is refuted in a Heyting algebra, then adding the identity nucleus
to this Heyting algebra produces a nuclear algebra that refutes ϕD.

For the left-to-right direction, we prove by induction on propositional formulas ϕ that if ϕD can be
refuted in a nuclear algebra, then ϕ can be refuted in a Heyting algebra. The base case is obvious since each
propositional letter can be refuted in a Heyting algebra, and ⊥ is refuted in every nontrivial Heyting algebra.
The ∧ case is straightforward using the inductive hypothesis. For ∨, suppose (ϕ1 ∨ ϕ2)D = (ϕD1 ∨ ϕD2 ) is
refuted in a nuclear algebra (H, j). Hence both ϕD1 and ϕD2 are refuted in (H, j). Then by the inductive
hypothesis, there is a Heyting algebra H1 refuting ϕ1 and a Heyting algebra H2 refuting ϕ2. We now apply
the standard construction of taking the product of H1 and H2 and adding a new top element to refute
ϕ1 ∨ ϕ2.

For →, suppose (ϕ1 → ϕ2)D = ©ϕD1 → ©ϕD2 is refuted in a nuclear algebra (H, j). Then since
ja→ jb = j(ja→ jb), it follows that ©(©ϕD1 →©ϕD2 ) =©(ϕ1 → ϕ2)D is also refuted in (H, j). We will
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use this to show that ϕ1 → ϕ2 is refuted in the fixpoint algebra Hj . To this end, we define a translation (·)]

from the lax language to the lax language and a translation (·)[ from the lax language to the propositional
language40:

p] = ©p p[ = p

(ϕ ∧ ψ)] = ϕ] ∧ ψ] (ϕ ∧ ψ)[ = ϕ[ ∧ ψ[
(ϕ→ ψ)] = ϕ] → ψ] (ϕ→ ψ)[ = ϕ[ → ψ[

(ϕ ∨ ψ)] = ©(ϕ] ∨ ψ]) (ϕ ∨ ψ)[ = ϕ[ ∨ ψ[
⊥] = ©⊥ ⊥[ = ⊥

(©ϕ)] = ©ϕ] (©ϕ)[ = ϕ[.

Now we reason as follows:

1. For any propositional formula ψ and valuation v for (H, j), we have v((ψD)]) = v(©ψD). This is
proved by induction on ψ, using ja ∧ jb = j(a ∧ b) and j(ja ∨ jb) = j(a ∨ b) in the ∧ and ∨ cases, and
using idempotence and ja→ jb = j(ja→ jb) in the → case.

2. For any lax formula χ, if χ] is refuted in (H, j), then (χ])[ is refuted inHj . To see this, given a valuation
v for (H, j), define a valuation v] for Hj by setting v](p) = jv(p) and extending v] to complex formulas
using the operations of Hj as usual. An easy induction shows that for any lax formula χ, we have
v(χ]) = v]((χ])[). Thus, if v refutes χ] in (H, j), then v] refutes (χ])[ in Hj .

3. An easy induction shows that for any propositional formula ψ, we have ((ψD)])[ = ψ

4. Combining steps 1–3, we have that if ©ψD is refuted in (H, j), then ψ is refuted in Hj .

Setting ψ := ϕ1 → ϕ2 completes the proof.

Thus, Theorem 3.32 is proved, showing that Dummett’s notion of verification provides another semantics—
a kind of hybrid of Kripke and Beth semantics—with respect to which IPC is sound and complete.

Having explained Beth semantics in terms of nuclei, it is important to note that nuclear frames are more
general than Beth frames. In one sense, this is obvious: there are many nuclei on the upsets of a poset
distinct from the Beth nucleus. Less obviously: not every locale can be realized as the fixpoints of the Beth
nucleus on a poset (see § 4.4). Next we will see a way of overcoming these limitations of Beth semantics.

3.3 Dragalin Semantics

Beth semantics differs from nuclear semantics in two respects. First, each poset uniquely determines the
Beth nucleus on its upsets, whereas in nuclear frames we can vary the nucleus that we attach to a given
poset. Second, the Beth nucleus can be naturally understood with a picture of quantifying over paths of
information growth, whereas it is not at all obvious whether all nuclei can be understood in a similar way.

In this section, we will consider a semantics due to Dragalin [1979, 1988] that in a way combines the best
of both nuclear and Beth semantics—the flexibility of being able to vary the nucleus attached to a given
poset, plus the naturalness of thinking in terms of progressions toward richer information or more refined
possibilities. Later in § 4.6 we will show that all nuclei on the upsets of a poset can be thought about in this
way.

40The (·)[ translation is also used in Fairtlough and Mendler 1997, Thm. 2.4 (under different notation).
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The key to getting from Beth semantics to Dragalin semantics is to liberalize the notion of a path from
Definition 3.1 (chain closed under upper bounds) to allow more varied kinds of sets. For instance, the
following example shows how we can be more liberal in not requiring the sets to be chains.

Example 3.35. Let us say that a direction I in a poset X is a nonempty upward directed set (if x, y ∈ I,
then there is a z ∈ I such that x ≤ z and y ≤ z) that is closed under upper bounds. For x ∈ X, by a
direction through x we mean a direction I with x ∈ I. Now define a function jd on Up(X) by

jdU = {x ∈ X | every direction through x intersects U}. (7)

It is straightforward to verify that jd is a nucleus on Up(X).41 To see that jd may differ from the Beth
nucleus jb, let X be the poset of all countable subsets of R ordered by inclusion. Let U be the upset of all
countably infinite sets. For any r ∈ R, we claim that {r} ∈ jbU but {r} 6∈ jdU . First, any chain C closed
under upper bounds must contain a countably infinite set. For if every set in C were finite, then the union
of C would be countable, in which case C would not be closed under upper bounds in X. Thus, every chain
closed under upper bounds intersects U , whence {r} ∈ jbU . But now consider the directed set I of all finite
sets. This is closed under upper bounds in X, because the union of I is R, which is uncountable and hence
not in X. Thus, not every directed set closed under upper bounds intersects U , whence {r} 6∈ jdU .

Paths and directions, as well as the traces of Remark 3.15, are examples of what we will call ‘develop-
ments’. We will use the letters S and T for developments and the letters s and t for elements of developments,
which we call ‘stages’ of the developments. The idea of Dragalin semantics is to add to a poset X a function
D that assigns to each s ∈ X a set D(s) of developments. With natural constraints on D given in Definition
3.36 below, the pair (X,D) will generate a nucleus on Up(X) in exactly the way expected from the definitions
of jb and jd in (5) and (7):

jDU = {s ∈ X | every development in D(s) intersects U}. (8)

For the following definition, given developments S and T , if S ⊆ ↓T , so ∀s ∈ S ∃t ∈ T : s ≤ t (every stage
of development in S is extended by a stage of development in T ), then we say that S is bounded by T .

Definition 3.36. A Dragalin frame42 is a pair (X,D) where X is a poset and D is a function from X to
℘(℘(X)), called a Dragalin function, that satisfies the following properties for all s, t ∈ X:

(1◦) ∅ 6∈ D(s).

Intuitively: the empty set is not a development of anything.
41If x ≤ y and I is a direction through y, then I ∪ {x} is a direction through x, which implies jdU ∈ Up(X) for every

U ∈ Up(X). Clearly U ⊆ jdU . For jdjdU ⊆ jdU , if x ∈ jdjdU and I is a direction through x, then I intersects jdU at
some point y. Thus, I is a direction through y, which with y ∈ jdU implies that I intersects U , which shows x ∈ jdU . For
jdU ∩ jdV = jd(U ∩V ), the right-to-left inclusion is obvious. From left to right, if x ∈ jdU ∩ jdV and I is a direction through x,
then I intersects U at some point y. Then by directedness, there is a y′ ∈ I such that y ≤ y′ and x ≤ y′. Since U, jdV ∈ Up(X),
from y ≤ y′ we have y′ ∈ U , and from x ≤ y′ we have y′ ∈ jdV . Now ↑y′ ∩ I is a direction. Directedness is clear. For closure
under upper bounds, we claim that if u is an upper bound of ↑y′ ∩ I, then it is also an upper bound of I. For if v ∈ I, then
directedness of I implies there is a z ∈ I such that v ≤ z and y′ ≤ z, so z ∈ ↑y′ ∩ I, which implies z ≤ u by our choice of u,
which with v ≤ z implies v ≤ u, so u is an upper bound of I. Hence u ∈ I, which with y′ ≤ u gives us u ∈ ↑y′ ∩ I. Thus, ↑y′ ∩ I
is a direction, which with y′ ∈ U ∩ jdV implies that ↑y′ ∩ I intersects U ∩ V . Therefore, I intersects U ∩ V , so x ∈ jd(U ∩ V ).

42Dragalin used the term ‘Beth-Kripke frame’. To give due credit to Dragalin, we introduced the term ‘Dragalin frame’
in Bezhanishvili and Holliday 2016. Note that Dragalin started with a preordered set, but there is no loss of generality in
starting with a poset, as one can always take the skeleton of the preorder. Also note that Dragalin worked with downsets in
the preorder. Since most of the subsequent literature on intuitionistic semantics works with upsets, we decided to follow the
prevailing convention.
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S ∩ U = ∅

Figure 3.11: The condition for s ∈ jDU vs s 6∈ jDU .

(2◦) if t ∈ S ∈ D(s), then ∃x ∈ S : s ≤ x and t ≤ x.

Intuitively: every stage t in a development of s is at least compatible with s, in that s and t have a
common extension x.

(3◦) if s ≤ t, then ∀T ∈ D(t) ∃S ∈ D(s) : S ⊆ ↓T .

Intuitively: if at some “future” stage t it will be possible to follow a development T , then it is already
possible to follow a development bounded by T .

(4◦) if t ∈ S ∈ D(s), then ∃T ∈ D(t) : T ⊆ ↓S.

Intuitively: we “can always stay inside” a development, in the sense that for every stage t in S, we can
follow a development T from t that is bounded by S.

A Dragalin frame is normal if the set F = {s ∈ X | D(s) = ∅} of fallible states is empty.43

The following key lemma is due to Dragalin [1988, pp. 72–3] (cf. Prop. 3.1 of Bezhanishvili and Holliday
2016).

Lemma 3.37. For any Dragalin frame (X,D), the function jD defined in (8) is a nucleus on Up(X). Thus,
(X, jD) is a nuclear frame, and hence Up(X)jD is a locale. Moreover, jD is dense iff (X,D) is normal.

Remark 3.38. The conditions of Dragalin frames (in particular, the condition (4◦)) are more than one
needs to prove Lemma 3.37. In Bezhanishvili and Holliday 2018, we introduce a more general concept of
development frame in which the conditions on D actually correspond, in the precise sense of correspondence
theory [van Benthem, 2001], to the axioms of nuclei. We will not need this more general concept here, but
it is used in Bezhanishvili and Holliday 2018 to relate frames like Dragalin’s to the localic cover systems
of Goldblatt 2011 and, more generally, to relate Beth-Dragalin style “path” or “development” semantics to
Scott-Montague style “neighborhood” semantics [Scott, 1970, Montague, 1970].

43Dragalin [1988, p. 73] called this F the set of strange worlds.
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We can now regard Beth frames as normal Dragalin frames: for any poset X, if for every s ∈ X, D(s) is
the set of all paths (resp. directions, traces) through s, then (X,D) is a normal Dragalin frame.

One can motivate still stronger conditions on D than those in Definition 3.36. For example, let a path
starting from s be a path in ↑s. It is easy to see that the Beth nucleus can be equivalently defined by

jbU = {s ∈ X | every path starting from s intersects U}.

Now if for every s ∈ X, D(s) is the set of all paths starting from s, then the following stronger conditions
are satisfied:

(2◦◦) if S ∈ D(s), then S ⊆ ↑s.

Intuitively: the stages in a development starting from s are extensions of s.

(3◦◦) if s ≤ t, then D(t) ⊆ D(s).

Intuitively: developments that will be possible to follow at “future” stages are already possible to follow.

(4◦◦) if t ∈ S ∈ D(s), then ∃T ∈ D(t) : T ⊆ S.

Intuitively: we “can always stay inside” a development in the stricter sense that for every state t in S,
we can follow a development T from t that is included in S.

Similarly, these conditions are satisfied if we define a direction starting from s as a direction in ↑s and for
every s ∈ X, take D(s) to be the set of all directions starting from s (and similarly for traces).

Definition 3.39. A Dragalin frame (resp. Dragalin function) is standard if it satisfies (2◦◦)–(4◦◦).

The following fact is a consequence of Theorem 4.26 in § 4.6 and Lemma 3.37.

Lemma 3.40. For any Dragalin frame (X,D), there is a standard Dragalin frame (X,D′) such that jD = jD′ .

Although it suffices to restrict attention to standard Dragalin frames, it is useful to have the more
general concept of Dragalin frame—both to see that the weaker conditions are sufficient for certain results
(e.g., Lemma 3.37) and to easily relate Dragalin frames to other frames, as in the following example.

Example 3.41. Kripke frames may be regarded as normal Dragalin frames (X,D) in which for every s ∈ X,
D(s) = {{s}}. Note, though, that Kripke frames so regarded are not standard Dragalin frames, as they
satisfy neither (3◦◦) nor (4◦◦). Of course, by Lemma 3.40, Kripke frames can be regarded as standard
Dragalin frames in a different way (see the proof of Theorem 4.26).

Since for any Dragalin frame (X,D), the function jD is a nucleus, Dragalin semantics may be defined in
exactly the same way as the nuclear semantics of § 3.2, but now using the nucleus jD defined in (8). Thus,
given s ∈ X and a valuation v assigning elements of Up(X) to propositional letters, we use the standard
clauses for ∧ and → plus the following:

• s |=v ⊥ iff D(s) = ∅;

• s |=v p iff every S ∈ D(s) intersects v(p);

• s |=v ϕ ∨ ψ iff every S ∈ D(s) intersects {x ∈ X | x |=v ϕ or x |=v ψ}.
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Since we define ¬ϕ as ϕ→ ⊥, we have:

• s |=v ¬ϕ iff for all t ≥ s, if t |=v ϕ, then t ∈ F ,

where F is the set of fallible states in (X,D) as in Definition 3.36.
IPC is sound with respect to Dragalin frames for the same reason it is sound with respect to nuclear frames,

namely that we are evaluating formulas in the algebra of fixpoints of a nucleus on Up(X), and this algebra
of fixpoints is always a Heyting algebra (Theorem 3.20). The completeness of IPC with respect to Dragalin
frames is immediate from completeness with respect to Kripke frames, given Example 3.41. Moreover, the
completeness of IPC with respect to standard Dragalin frames may be obtained from completeness with
respect to Beth frames, plus the observation following Remark 3.38 that working with paths starting from s

is equivalent to working with paths through s, and the former give us standard Dragalin frames.
Turning to intermediate logics, the properties characterizing Dragalin frames that validate intermediate

axioms generalize the properties characterizing Beth frames that validate the axioms (recall Propositions 3.5
and 3.11).

Proposition 3.42. Let (X,D) be a Dragalin frame and F = {s ∈ X | D(s) = ∅}.

1. (X,D) validates p∨¬p iff there is no s ∈ X, development S ∈ D(s), and upset L such that S ∩L = ∅
and S ⊆ ↓(L \ F );

2. (X,D) validates ¬p ∨ ¬¬p iff there is no s ∈ X, development S ∈ D(s), and sets L and M such that
(L ∪M) ∩ F = ∅, S ⊆ ↓L ∩ ↓M , and (↑L ∩ ↑M) \ F = ∅;

3. (X,D) validates (p → q) ∨ (q → p) iff there is no s ∈ X, development S ∈ D(s), and sets L and M
such that: S ⊆ ↓L ∩ ↓M ; for every l ∈ L, there is a development in D(l) that does not intersect ↑M ;
and for every m ∈M , there is a development in D(m) that does not intersect ↑L.

Proof. (1) Suppose there are such s, S, and L. Let v(p) = L. Then since S ⊆ ↓(L \ F ), we have t 6|=v ¬p
for all t ∈ S. In addition, we claim that t 6|=v p for all t ∈ S. By (4◦), t ∈ S ∈ D(s) implies that there is a
T ∈ D(t) such that T ⊆ ↓S. Then since S ∩L = ∅ and L ∈ Up(X), it follows that T ∩L = ∅, which implies
t 6|=v p. Thus, t 6|=v p and t 6|=v ¬p for all t ∈ S, which with S ∈ D(s) implies s 6|=v p ∨ ¬p.

Conversely, suppose there is a valuation v such that s 6|=v p ∨ ¬p. Then there is an S ∈ D(s) such that
for all t ∈ S, we have t 6|=v p and t 6|=v ¬p, so t 6∈ jDv(p) and there is a t′ ≥ t with t′ ∈ jDv(p) \F . Since this
holds for all t ∈ S, we can take L = jDv(p) to complete the proof.

(2) Suppose there are such s, S, L, and M . Let v(p) = ↑L. First, we will show that m |=v ¬p for every
m ∈ M . If not, then there is an m′ ∈ ↑m \ F such that m′ |=v p. Since m′ 6∈ F , it follows that there is an
S′ ∈ D(m′) that intersects v(p) = ↑L at some point t′. Then by (2◦), there is an x ∈ S′ with m′ ≤ x and
t′ ≤ x. Since m ∈ M , from m ≤ m′ ≤ x we have x ∈ ↑M , and since t′ ∈ ↑L, from t′ ≤ x we have x ∈ ↑L.
Thus, x ∈ ↑L∩↑M . Because (↑L∩↑M) \F = ∅, it follows that x ∈ F . But by (4◦), x ∈ S′ ∈ D(m′) implies
D(x) 6= ∅ and hence x 6∈ F , so we have a contradiction. This shows that m |=v ¬p for every m ∈M . Then
since S ⊆ ↓M and M ∩F = ∅, we have t 6|=v ¬¬p for every t ∈ S. Finally, since S ⊆ ↓L and L∩F = ∅, we
have t 6|=v ¬p for every t ∈ S. Therefore, given S ∈ D(s), we conclude that s 6|=v ¬p ∨ ¬¬p.

Conversely, suppose there is a valuation v such that s 6|=v ¬p∨¬¬p. Then there is an S ∈ D(s) such that
for all t ∈ S, we have t 6|=v ¬p and t 6|=v ¬¬p. Thus, (↑t \ F ) ∩ {x ∈ X | x |=v p} 6= ∅ and (↑t \ F ) ∩ {x ∈
X | x |=v ¬p} 6= ∅. Taking L = (↑t \ F ) ∩ {x ∈ X | x |=v p} and M = (↑t \ F ) ∩ {x ∈ X | x |=v ¬p}, clearly
we have (L ∪M) ∩ F = ∅, S ⊆ ↓L ∩ ↓M , and (↑L ∩ ↑M) \ F = ∅.
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(3) If there are such sets, let v(p) = ↑L and v(q) = ↑M . For every l ∈ L, there is a development in
D(l) that does not intersect ↑M = v(q), so l 6|=v q. Similarly, for every m ∈ M , m 6|=v p. Then since
S ⊆ ↓L ∩ ↓M , for every t ∈ S, we have t 6|=v (p → q) and t 6|=v (q → p), which with S ∈ D(s) implies
s 6|=v (p→ q) ∨ (q → p).

Conversely, if s 6|=v (p → q) ∨ (q → p), then there is an S ∈ D(s) such that for every t ∈ S, we have
t 6|=v p → q and t 6|=v q → p. Thus, t ∈ ↓{x ∈ X | x |=v p, x 6|=v q} and t ∈ ↓{x ∈ X | x |=v q, x 6|=v p}. Let
L = {x ∈ X | x |=v p, x 6|=v q} and M = {x ∈ X | x |=v q, x 6|=v p}, so S ⊆ ↓L ∩ ↓M . For each l ∈ L, since
l 6|=v q, there is a development in D(l) that does not intersect v(q) and hence does not intersect ↑M , because
↑M ⊆ v(q). Similarly, for each m ∈M , there is a development in D(m) that does not intersect ↑L.

As a direct consequence of Proposition 3.42, we obtain the following.

Corollary 3.43. Let (X,D) be a normal Dragalin frame.

1. (X,D) validates p∨¬p iff there is no s ∈ X, development S ∈ D(s), and upset L such that S ∩L = ∅
and S ⊆ ↓L;

2. (X,D) validates ¬p ∨ ¬¬p iff there is no s ∈ X, development S ∈ D(s), and sets L and M such that
S ⊆ ↓L ∩ ↓M and ↑L ∩ ↑M = ∅;

3. (X,D) validates (p→ q)∨ (q → p) iff there is no s ∈ X, development S ∈ D(s), and subsets L and M
such that: S ⊆ ↓L ∩ ↓M ; for every l ∈ L, there is a development in D(l) that does not intersect ↑M ;
and for every m ∈M , there is a development in D(m) that does not intersect ↑L.

Remark 3.44. Corollary 3.43 generalizes correspondence results for Beth semantics and Kripke semantics.

• If (X,D) is a Beth frame, so D(s) is the set of paths through s, then Corollary 3.43.1 immediately gives
us Proposition 3.5 for Beth semantics, and the rest of Corollary 3.43 immediately gives us Proposition
3.11 for Beth semantics.

• If (X,D) is a Kripke frame, so D(s) = {{s}}, then Corollary 3.43.1 says that p ∨ ¬p is valid iff the
partial order X is discrete (for if s ≤ t and s 6= t, then we can take S = {s} and L = ↑t); Corollary
3.43.2 says that ¬p∨¬¬p is valid iff for all s ∈ X and L,M ⊆ X, {s} ⊆ ↓L∩↓M implies ↑L∩↑M 6= ∅,
which is easily seen to be equivalent to the Church-Rosser property as in § 2.3.1 (by taking L and M
to be singletons); and Corollary 3.43.3 says that (p→ q) ∨ (q → p) is valid iff {s} ⊆ ↓L ∩ ↓M implies
that either there is an l ∈ L such that l ∈ ↑M or there is an m ∈M such that m ∈ ↑L, which is easily
seen to be equivalent to upward linearity as in § 2.3.1 (by again taking L and M to be singletons).

Not only do Dragalin frames provide a unifying framework that covers both Kripke and Beth frames, but
also any topological space can be transformed into a Dragalin frame that produces the same locale. This
result, due to Dragalin [1979, 1988, pp. 75–6], will be proved in § 4.5. Then we will go further in § 4.6
and discuss the result from Bezhanishvili and Holliday 2016 that every locale is produced by some Dragalin
frame. Thus, Dragalin frames provide a unifying framework of impressive generality.

As a result of the generality of Dragalin frames, we do not think it is possible to give a one-size-fits-all
conceptual explanation of all Dragalin frames in the way that we tried to do for Kripke frames, Beth frames,
and topological spaces in terms of information and verification. For those Dragalin frames in which each
development in D(s) is an upward directed set, an explanation can be given in terms of developments of
information. We have s ∈ jDU iff it is known that any development of information will eventually reach U .
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However, there are other Dragalin frames in which the developments in D(s) are not directed, and they have
a natural but different conceptual explanation. For example, the possibility frames for classical logic (with
modalities) in Humberstone 1981, Holliday 2015, 2018, van Benthem et al. 2016 may be regarded as normal
Dragalin frames (with additional modal accessibility relations) in which

D(s) = {↑t | t ∈ ↑s}, (9)

so the developments ↑t of s may obviously fail to be directed. With this definition of D, we have s 6∈ jDU
iff there is a t ≥ s such that for all u ≥ t, u 6∈ U , so that jD is the nucleus of double negation as in Remark
3.25.44 The idea is that if a partial “possibility” s does not settle the truth of a proposition, then there is
a “refinement” t of s that settles the proposition as false, so that no further refinement u of t settles the
proposition as true. This “possibility semantics” way of thinking is quite different than the information-and-
verification way of thinking, and yet both may be fit into Dragalin’s framework. For this reason, we doubt
that the class of all Dragalin frames has a univocal conceptual interpretation. Yet for the same reason, we
may establish results for different kinds of frames in one fell swoop when we work with Dragalin frames.

4 Semantic Hierarchy

Each of the semantics from §§ 2–3 supplies a map σ from a class of structures to the class of Heyting algebras,
as shown in Figure 4.1.

semantics class of structures map to Heyting algebras
Kripke posets X 7→ Up(X)
Beth posets X 7→ Up(X)jb
Topological spaces X 7→ Ω(X)
Nuclear nuclear frames (X, j) 7→ Up(X)j
Dragalin Dragalin frames (X,D) 7→ Up(X)jD
Localic locales identity
Algebraic Heyting algebras identity

Figure 4.1: Maps associating structures with Heyting algebras.

For semantics S and S′, we write S ≤ S′ if every Heyting algebra in the image of σS is isomorphic to a
Heyting algebra in the image of σS′ ; S < S′ if S ≤ S′ but S′ 6≤ S; and S ≡ S′ if S ≤ S′ and S′ ≤ S. In this
section, we establish that the following semantics form a hierarchy according to the relation <:

Kripke < Beth < Topological < Dragalin < Algebraic.

Figure 4.2 lists the results used to establish the non-strict and strict inequalities.
The semantic hierarchy above does not display nuclear or localic semantics because these are in fact

equivalent to Dragalin semantics in the sense of the relation ≡. In fact, there is yet another semantics
equivalent to these, which we call “FM-semantics” after Fairtlough and Mendler 1997. We will discuss

44Possibility frames are not the only normal Dragalin frames that validate classical logic, as shown by Corollary 3.43.1. The
classical Dragalin frames are exactly those in which jD is the nucleus wU from Example 3.22.3 for some U ∈ Up(X). In § 4.6
(proof of Theorem 4.26), we will see how to define the Dragalin function D so that jD = wU for any given U ∈ Up(X).
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semantics ≤ <
Kripke vs. Beth Theorem 4.15 Examples 4.16, 4.17
Beth vs. Topological Theorem 4.19 Theorem 4.21, Example 4.22
Topological vs. Dragalin Theorem 4.23 Example 4.24
Dragalin vs. Algebraic Lemma 3.37 Not every Heyting algebra is complete.

Figure 4.2: Results establishing the semantic hierarchy.

FM-semantics in § 4.7. Thus, we can expand the Dragalin place as follows:

Locales ≡ Nuclear ≡ Dragalin ≡ FM.

Figure 4.3 lists the results used to establish these equivalences.

semantics ≡
Localic vs. Nuclear Theorem 3.24
Nuclear vs. Dragalin ≤ by Theorem 4.26, ≥ by Lemma 3.37
Dragalin vs. FM ≤ by Theorem 4.30, ≥ by Lemma 4.28 and Theorem 4.26

Figure 4.3: Results establishing the equivalence of semantics.

One could also add to the equivalences above the cover semantics studied by Goldblatt [2011] (cf. Gold-
blatt 1981), which is compared to the other semantics in Bezhanishvili and Holliday 2018.

4.1 From Kripke to Beth

Kripke [1965, pp. 108–9] showed how to turn any Kripke frame X into a Beth frame Y in such a way that
any valuation refuting a formula ϕ in X according to Kripke semantics can be transferred to a valuation
refuting ϕ in Y according to Beth semantics. From our perspective, what Kripke showed is how to turn any
poset X into a poset Y such that Up(X) embeds as a Heyting algebra into Up(Y )jb . Before describing the
construction, we will give a sufficient condition for the existence of such an embedding. As in the literature
on modal logic, a p-morphism from a poset X to a poset X ′ is a map f : X → X ′ such that

f [↑x] = ↑f(x),

or equivalently, f−1[↓x′] = ↓f−1(x′). This is usually expressed as f being order preserving (x ≤ y implies
f(x) ≤ f(y)) and satisfying the “back” condition that if f(x) ≤ y′, then there is a y ∈ X such that x ≤ y

and f(y) = y′, as shown in Figure 4.4.

Definition 4.1. Given posets X and Y , a BK-morphism (for Beth-to-Kripke) from Y to X is a p-morphism
such that for all y ∈ Y and U ∈ Up(X), if f(y) 6∈ U , then there is a path C through y such that f [C]∩U = ∅
(equivalently, C ∩ f−1[U ] = ∅), as in Figure 4.5.

Lemma 4.2. Given posets X and Y , if f is a BK-morphism from Y to X, then f−1 is a Heyting homo-
morphism of Up(X) to Up(Y )jb preserving arbitrary meets and joins. Moreover, if f is onto, then f−1 is a
Heyting embedding of Up(X) into Up(Y )jb .
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Figure 4.4: p-morphism condition.
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Figure 4.5: BK-morphism from Y to X.

Proof. First, we observe that f−1[U ] = jbf
−1[U ]. The left-to-right inclusion follows from inflationarity, while

the right-to-left inclusion follows from the BK property that f satisfies in addition to being a p-morphism.
Then to see that f−1 preserves joins, recall that the join in Up(X) is union while the join in Up(Y )jb is jb
applied to union, so that

f−1
[∨
{Ui | i ∈ I}

]
= f−1

[⋃
{Ui | i ∈ I}

]
= jbf

−1
[⋃
{Ui | i ∈ I}

]
= jb

⋃
{f−1[Ui] | i ∈ I}

=
∨
{f−1[Ui] | i ∈ I}.

Since the meet in both Up(X) and Up(Y )jb is intersection, f−1 preserves meets; since jb is a dense nucleus,
f−1 preserves ∅; and since f is a p-morphism, f−1 preserves implication. Finally, if f is onto and for
U, V ∈ Up(X), we have x ∈ U \ V , then there is a y ∈ Y such that f(y) = x ∈ U \ V , so f−1[U ] 6= f−1[V ];
hence f−1 is injective.

Remark 4.3.
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1. The notion of BK-morphism in Definition 4.1 can be seen as a special case of the following more general
notion. Given nuclear frames (X, j) and (Y, k), a map f : Y → X is a nuclear p-morphism if it is a p-
morphism such that f−1[jU ] = kf−1[U ]. This ensures that f−1 is a nucleus-preserving homomorphism
from the nuclear algebra (Up(X), j) to the nuclear algebra (Up(Y ), k); and if f is onto, then f−1 is an
embedding, in which case Up(X)j embeds into Up(Y )k. Definition 4.1 and Lemma 4.2 are the special
case of this where (Y, k) is a Beth frame, so k = jb, and (X, j) is a Kripke frame, so j is the identity
nucleus.

2. Another example of a nuclear p-morphism comes from Remark 3.15: the function from the Beth comb
to the linear order ω + 1 sending the spine of the comb to the natural numbers and the teeth of the
comb to ω as in Figure 3.8 is a nuclear p-morphism from the nuclear frame consisting of the Beth
comb with the Beth nucleus onto the nuclear frame consisting of the linear order ω + 1 with the trace
nucleus (defined in the same way as the Beth nucleus, but with traces in place of paths). For further
discussion of nuclear p-morphisms, see Bezhanishvili and Holliday 2018.

We are now ready to present Kripke’s construction of Beth frames from Kripke frames.45

Notation 4.4. From now until the end of § 4.2 we will reserve ≤ for the standard ordering on the natural
numbers, and we will use v for the partial orders in our Kripke and Beth frames, with @ defined by x @ y

iff x v y and x 6= y. Unlike in previous sections, we will explicitly display the partial order with each poset.

Definition 4.5. Given a poset (X,v), we define its Beth unraveling (Xu,vu) by:

1. Xu is the set of all nonempty finite sequences 〈x1, . . . , xn〉 of elements from X such that for 1 ≤ i < n,
xi is not an endpoint and xi v xi+1;

2. for all σ, σ′ ∈ Xu, σ vu σ′ iff σ is an initial segment of σ′.

Example 4.6. Figure 4.6 shows the Beth unraveling of the two-point Kripke frame refuting p ∨ ¬p from
Figure 2.5. If we delete the disconnected point 〈b〉, then the result is isomorphic to the Beth comb refuting
p ∨ ¬p from Figure 3.1.

b

a

⇒

〈b〉

〈a〉

〈a, b〉

〈a, a〉

〈a, a, b〉

〈a, a, a〉

. . .

. . .

. . .

Figure 4.6: Beth unraveling (right) of a Kripke frame (left).

Remark 4.7. The Beth unraveling is infinite if X is not discrete. If one wants a tree, one can define for
any r ∈ X the Beth unraveling from r, (Xr

u,vru), in the same way as in Definition 4.5, except we require
that every sequence in Xr

u starts with r (as in Kripke 1965). For simplicity, we will stay with Definition 4.5.
45As in Dummett 2000, pp. 139–40, we do not repeat endpoints infinitely as in the definition from Kripke 1965, p. 108.
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To apply Lemma 4.2 to Beth unraveling, we use the obvious map from the unraveling of X onto X.

Lemma 4.8. The function l : Xu → X that sends each sequence σ to the last member of σ is a surjective
BK-morphism.

Proof. Clearly σ vu σ′ implies l(σ) v l(σ′) by the definition of (Xu,vu). In addition, if l(σ) v x, then the
concatenation σ_x of σ and the sequence 〈x〉 is such that σ_x ∈ Xu, σ vu σ_x, and l(σ_x) = x. Thus,
l is a p-morphism. To see that l satisfies the additional condition for a BK-morphism, suppose l(σ) 6∈ U . If
l(σ) is not an endpoint, then σ, σ_l(σ), σ_l(σ)_l(σ), . . . is a path through σ that does not intersect l−1[U ].
If l(σ) is an endpoint, then σ itself provides such a path. Thus, l satisfies the additional condition. Finally,
every element of X appears as the last member of a sequence in Xu, so l is surjective.

Together Lemmas 4.2 and 4.8 imply that Beth unraveling yields the desired embedding of the algebra
associated with the Kripke frame into the algebra associated with the Beth frame:

Proposition 4.9. For any poset X, there is a Heyting embedding of Up(X) into Up(Xu)jb .

Proposition 4.9 together with the Kripke completeness of IPC gives us the Beth completeness of IPC:
by Kripke completeness, any non-theorem of IPC can be refuted in a poset according to Kripke semantics,
whence by Proposition 4.9 it can be refuted in a poset according to Beth semantics.

To prove Beth completeness with respect to specific kinds of posets that do not arise as Beth unravelings,
we can still use the notion of BK-morphism, as in the proof of the following noteworthy fact.

Theorem 4.10. IPC is complete, according to Beth semantics, with respect to the full countable binary
tree.

Proof. Let T be the full countable binary tree, based on the set of all finite sequences of 0’s and 1’s. First,
we recall that the sequence of Jaśkowski frames is defined inductively as follows [Dummett and Lemmon,
1959, p. 258]:

• F1 is the one-point poset;

• Fn+1 is obtained by taking the disjoint union of n copies of Fn and then adding a new root.

. . .

Figure 4.7: Jaśkowski frames.

It is well known that IPC is complete with respect to the class of Jaśkowski frames (see, e.g., Surma et al. 1975
or Dummett 2000, p. 136).46 Kirk [1979] observed that for every Jaśkowski frame Fn, there is a surjective
p-morphism from T onto Fn.47 To prove the theorem, it suffices to show that these surjective p-morphisms
are BK-morphisms and then apply Lemma 4.2.

46IPC is also complete with respect to the class of frames defined as follows: F1 is the one-point poset; Fn+1 is obtained by
taking the disjoint union of n + 1 copies of Fn and then adding a new root (again see Surma et al. 1975 or Dummett 2000,
p. 136). Some authors call these frames the “Jaśkowski frames.”

47More generally, for every finite rooted Kripke frame F, there is a p-morphism from T onto F; this result was proved
independently by D. Gabbay, J. van Benthem, and A. G. Dragalin (see Goldblatt 1980, p. 222 and the editor’s note on p. 236).
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The function mapping every point of T to the single point of F1 is clearly a BK-morphism. For induction,
suppose we have a BK-morphism f from T onto Fn. Let G1 = (G1,≤1), . . . ,Gn = (Gn,≤n) be the n-copies
of Fn inside Fn+1, so for 1 ≤ i ≤ n, we have a BK-morphism fi from T onto Gi. As usual, we denote
the sequence 1 . . . 1︸ ︷︷ ︸

n times

by 1n. For each m ≥ 1, let Tm be the tree of all binary sequences of the form 1m−10σ

for an arbitrary binary sequence σ, as shown in Figure 4.8. Since the subtree Tm of T is isomorphic to
T , each BK-morphism fi above gives us a BK-morphism fi,m from Tm onto Gi. We now define a function
f : T → Fn+1 as follows, where r is the root of Fn+1:

f(σ) =

r if σ = 1k for some k ≥ 0

fi,m(σ) if σ ∈ Tm and m ≡ i (mod n).

One can easily check that f is a surjective p-morphism. To see that it is a BK-morphism, suppose U ∈
Up(Fn+1) and f(σ) 6∈ U , so r 6∈ U . We must show there is a path C through σ in T such that f [C]∩U = ∅.

If f(σ) = r, then σ, σ1, σ11, . . . is a path C such that f [C] ∩ U = {r} ∩ U = ∅.
If f(σ) = fi,m(σ), then we are given the desired path C by our assumption that fi,m is a BK-morphism.

Specifically, f(σ) 6∈ U ∈ Up(Fn+1) implies fi,m(σ) 6∈ U ∩Gi ∈ Up(Gi), which implies there is a path C in Tm
such that fi,m[C] ∩ U ∩ Gi = ∅, so fi,m[C] ∩ U = ∅ given fi,m[C] ⊆ Gi. Then C is also a path in T , and
since f(σ) = fi,m(σ) implies f(τ) = fi,m(τ) for all τ extending σ in T , from fi,m[C] ∩ U = ∅ we conclude
f [C] ∩ U = ∅.

T1

T2

Tn

Tn+1

Tn+2

〈 〉

〈1〉

. . .

. . . 1n−1

1n

1n+1

. . .

. . .
r

G1 G2
. . . Gn

f1,1

f2,2

fn,n

f1,n+1

f2,n+2

Figure 4.8: Part of Kirk’s map from T onto Fn+1.

Returning to the topic of Beth unraveling, it is important to note that while Proposition 4.9 gives us an
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embedding of Up(X) into Up(Xu)jb , it almost never gives us an isomorphism.

Example 4.11. For the Kripke frame X shown in Figure 4.6, Up(X) is clearly not isomorphic to Up(Xu)jb .
In fact, Up(Xu)jb does not even belong to the variety generated by Up(X): ¬p ∨ ¬¬p is valid in the Kripke
frame, but it can be refuted at 〈a〉 in the Beth unraveling by making p true at exactly the sequences of odd
length ending in b (recall Example 3.12).

We now improve on Proposition 4.9 by showing how to turn any Kripke frame X into a Beth frame Y so
that Up(X) is isomorphic to Up(Y )jb . This has the advantage of showing that not only IPC but in fact any
intermediate logic that can be characterized by Kripke frames can also be characterized by Beth frames.

Definition 4.12. Given a poset (X,v), its Bethification (Xb,vb) is defined by:

1. Xb is the set of all pairs 〈x, n〉 where x ∈ X and n ∈ N.

2. 〈x, n〉 vb 〈x′, n′〉 iff [x = x′ and n ≤ n′] or [x @ x′ and n < n′].

It is easy to see that vb is a partial order.
One can think of the second coordinate of each pair as the time according to a discrete clock. The

definition of vb reflects the idea that one may remain at the same state x for all time or one may transition
from x to a distinct extension x′ of x, which takes time. Whereas a state in the Beth unraveling of a Kripke
frame records the exact history of moves through the Kripke frame by which that state was reached, a state
in the Bethification records only the “current time” and one’s “current location” in the Kripke frame.

Example 4.13. Figure 4.9 shows the Bethification of the same Kripke frame whose Beth unraveling is
shown in Figure 4.6. If we are at b at time 1, then we may remain at b at time 2, so we have an arrow
from 〈b, 1〉 to 〈b, 2〉 in the Bethification; by contrast, we had no arrow between the matching states 〈a, b〉 and
〈a, a, b〉 in the Beth unraveling, since the second history is not an extension of the first.

b

a

⇒

〈b, 0〉

〈a, 0〉

〈b, 1〉

〈a, 1〉

〈b, 2〉

〈a, 2〉

. . .

. . .

. . .

Figure 4.9: Bethification (right) of a Kripke frame (left).

To prove that Bethification gives us the isomorphism between algebras that we want, we first prove the
following lemma characterizing the fixpoints of the Beth nucleus in the Bethification.

Lemma 4.14. Let (X,v) be a poset and (Xb,vb) its Bethification. The fixpoints of jb on Up(Xb,vb)
are the U ∈ Up(Xb,vb) that are uniform (in the second coordinate) in the sense that if 〈x, u〉 ∈ U , then
〈x, n〉 ∈ U for all n ∈ N.

Proof. First, we will show that if 〈x, u〉 ∈ U ∈ Up(Xb,vb), then 〈x, n〉 ∈ jbU for all n ∈ N; hence if U is a
fixpoint, then 〈x, u〉 ∈ U will imply 〈x, n〉 ∈ U for all n ∈ N, as desired. Note that in any path through 〈x, n〉,
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there is some state 〈x′, n′〉 wb 〈x, n〉 such that n′ > u, because the second coordinate is increasing along
any path. Since 〈x′, n′〉 wb 〈x, n〉, we have x′ w x, which with n′ > u implies 〈x′, n′〉 wb 〈x, u〉. Then since
〈x, u〉 ∈ U ∈ Up(Xb,vb), we have 〈x′, n′〉 ∈ U . Thus, every path through 〈x, n〉 intersects U , so 〈x, n〉 ∈ jbU .

In the other direction, suppose U is not a fixpoint, so there is some 〈x, n〉 ∈ X \U such that 〈x, n〉 ∈ jbU ,
so all paths through 〈x, n〉 intersect U . Then in particular, the path 〈x, n〉, 〈x, n+ 1〉, 〈x, n+2〉, . . . intersects
U . Thus, 〈x, u〉 ∈ U for some u ∈ N. Hence U violates the requirement that if 〈x, u〉 ∈ U , then 〈x, n〉 ∈ U
for all n ∈ N.

We are now ready to prove that Bethification turns any Kripke frame into an “equivalent” Beth frame.

Theorem 4.15. Let (X,v) be a poset, (Xb,vb) its Bethification, and g : Xb → X be defined by g(x, t) = x.
Then g−1 : Up(X,v)→ Up(Xb,vb)jb is an isomorphism.

Proof. First, it is easy to see that g is a p-morphism from (Xb,vb) onto (X,v). Moreover, it satisfies the
additional condition for a BK-morphism from Definition 4.1: if g(x, n) 6∈ U , then 〈x, n〉, 〈x, n+1〉, 〈x, n+2〉, . . .
is a path that never intersects g−1[U ]. Thus, by Lemma 4.2, g−1 is a Heyting algebra embedding. Finally,
to see that g−1 is surjective, given any V ∈ Up(Xb,vb)jb , we have that g−1[g[V ]] = V by Lemma 4.14, and
g[V ] ∈ Up(X,v) since g is a p-morphism.

Theorem 4.15 gives us the first inequality of the semantic hierarchy:

Kripke ≤ Beth.

4.2 Locales from Beth but Not Kripke

In this section, we will show that the above inequality is in fact strict:

Kripke < Beth.

That is, there are Beth frames Y such that Up(Y )jb is not isomorphic to Up(X) for any Kripke frame X.48

To show this, we recall from Remark 2.1 that Up(X) is always completely join-prime generated, i.e., every
element in Up(X) is a join of completely join-prime elements. Below we will present posets Y such that
Up(Y )jb contains no completely join-prime elements, so it cannot be isomorphic to Up(X) for any poset X.

Example 4.16. As in the proof of Theorem 4.10, consider the full countable binary tree T viewed as a
poset, so that x v y iff y is a descendant of x. First observe that any principal upset ↑x for x ∈ T is a fixpoint
of the Beth nucleus jb; for if y 6∈ ↑x, then since T is a binary tree, there is a path through y that never
intersects ↑x, so y 6∈ jb↑x. Using this fact, we will show that Up(T )jb has no completely join-prime elements.
Consider any fixpoint U of jb. First suppose that U is not a principal upset. Since U =

⋃
{↑x | x ∈ U},

we have jbU = jb
⋃
{↑x | x ∈ U} and hence U =

∨
jb
{↑x | x ∈ U}, which with the non-principalness of U

implies that U is not completely join-prime. Next suppose that U is a principal upset ↑x. In T , x has two
children, y and z. It is easy to see that ↑x = jb(↑y ∪ ↑z) = ↑y ∨jb ↑z, so U is not join-prime.

48López-Escobar [1981] compares Kripke and Beth semantics from a different, categorical perspective. Since he assumes that
Kripke models are rooted (in fact, are trees), his example of Beth models with no equivalent Kripke models does not suffice to
show that “Kripke < Beth” in our sense. Note that if X is a rooted poset, then the only Boolean algebra that can be realized
as Up(X) is the two-element Boolean algebra. By contrast, any finite Boolean algebra B can be realized as Up(Y )jb for an
appropriate finite rooted poset Y : if B has n atoms, let Y be the n-fork.
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While Example 4.16 shows how a familiar poset X gives rise to a locale Up(X)jb with no completely
join-prime elements, our next example shows how a familiar locale with no completely join-prime elements
arises as Up(X)jb for an appropriately chosen poset X.

Example 4.17. The interval [0, 1], ordered by the less-than-or-equal-to relation ≤, is a locale with no
completely join-prime element: for any r ∈ [0, 1], we have r =

∨
{r′ ∈ [0, 1] | r′ < r}. To obtain this locale

from a Beth frame, consider (X,v) with X = R×N and 〈r, t〉 v 〈r′, t′〉 iff 〈r, t〉 = 〈r′, t′〉 or both r < r′ and
t < t′. Note that (X,v) is a poset. We claim that the fixpoints of jb on Up(X,v) are ∅, sets of the form
{〈r′, t〉 | r ≤ r′, t ∈ N} for some r ∈ R, and X. Thus, Up(X,v)jb is isomorphic to [0, 1].

To prove the claim, we first observe that as in Lemma 4.14, the fixpoints U of jb on Up(X,v) are uniform:
if 〈r, u〉 ∈ U , then 〈r, t〉 ∈ U for all t ∈ N. Other than X and ∅, there are two kinds of U ∈ Up(X,v) with
this property: sets of the form (a) {〈r′, t〉 | r ≤ r′, t ∈ N} and sets of the form (b) {〈r′, t〉 | r < r′, t ∈ N}.
Sets of the form (b) are not fixpoints, because every path through 〈r, 0〉 intersects {〈r′, t〉 | r < r′, t ∈ N}
since the first coordinate is increasing along any path (in contrast to Definition 4.12). Yet sets of the form
(a) are fixpoints. To see this, given any 〈r∗, u〉 6∈ {〈r′, t〉 | r ≤ r′, t ∈ N}, so r∗ < r, consider the infinite
chain 〈r∗, 0〉, 〈r∗+ 1

2 (r− r∗), 1〉, 〈r∗+ 3
4 (r− r∗), 2〉, . . . , 〈r∗+ 2n−1

2n (r− r∗), n〉, . . . . This is a maximal chain
in 〈X,v〉, because if we add any new pair 〈s,m〉, then 〈s,m〉 and 〈r∗ + 2n−1

2n (r − r∗),m〉 are incomparable
by definition of v. In addition, this chain never intersects {〈r′, t〉 | r ≤ r′, t ∈ N}, since the first coordinate
never reaches r. Thus, 〈r∗, u〉 6∈ jb{〈r′, t〉 | r ≤ r′, t ∈ N}, which shows that {〈r′, t〉 | r ≤ r′, t ∈ N} is a
fixpoint. This completes the proof of the claim made in the previous paragraph.

In fact, Example 4.17 suggests the following general result.

Proposition 4.18. Every linearly ordered locale is isomorphic to Up(X)jb for some poset X.

Proof. Let (L,≤) be a linearly ordered locale. We will define a poset (X,v) with X = (L \ {0})×N. In the
definition of v below, one can think of (X,v) as representing possible movements down (L,≤) through time,
so for x 6= x′, we will have 〈x, t〉 v 〈x′, t′〉 only if x′ is below x in L, and t′ is later than t. For x ∈ L \ {0},
call x a dense point if there is a y ∈ L such that the interval [y, x] in L is dense (i.e., for any z, u ∈ [y, x] with
z < u, there is a w such that z < w < u). Otherwise call x a discrete point. Then we define v as follows: if
x is a dense point, then 〈x, t〉 v 〈x′, t′〉 iff either 〈x, t〉 = 〈x′, t′〉 or x′ < x and t < t′; if x is a discrete point,
then 〈x, t〉 v 〈x′, t′〉 iff either x = x′ and t ≤ t′ or x′ < x and t < t′. Note that this definition of v combines
that of Example 4.17 with that of Definition 4.12.

We claim that the fixpoints of jb on Up(X,v) are ∅ and sets of the form {〈x′, t〉 | x′ ≤ x, t ∈ N} for some
x ∈ L \ {0}. Thus, the algebra Up(X,v)jb of fixpoints will be isomorphic to L.

To prove the claim, we first observe that as in Lemma 4.14, the fixpoints U of jb on Up(X,v) are uniform:
if 〈x, u〉 ∈ U , then 〈x, t〉 ∈ U for all t ∈ N. Uniform upsets in (X,v) can be associated with downsets in
〈L,≤〉, of which there are two kinds: downsets D such that

∨
D ∈ D, and downsets D such that

∨
D 6∈ D.

Thus, uniform upsets in (X,v) are, in addition to ∅, sets of the form (a) {〈x′, t〉 | x′ ≤ x, t ∈ N} and sets
of the form (b) {〈x′, t〉 | x′ < x, t ∈ N}. Now observe that if an S ⊆ X is of form (b) but not (a), then the
x ∈ L \ {0} that makes S of form (b) must be a dense point. Hence 〈x, t〉 @ 〈x′, t〉 only if x′ < x. Thus,
every path through 〈x, 0〉 intersects {〈x′, t〉 | x′ < x, t ∈ N}. This shows that sets of form (b) but not (a) are
not fixpoints. On the other hand, sets of form (a) are fixpoints. Take any 〈x∗, s〉 6∈ {〈x′, t〉 | x′ ≤ x, t ∈ N}.
First suppose x∗ is a discrete point. Then the chain 〈x∗, 0〉, 〈x∗, 1〉, . . . is a path that never intersects
{〈x′, t〉 | x′ ≤ x, t ∈ N}. Now suppose that x∗ is a dense point. Then there is a y such that x ≤ y < x∗
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and the interval [y, x∗] is dense in L. Hence we can construct a path 〈x∗, 0〉, 〈x1, 1〉, 〈x2, 2〉, . . . such that
x < xn+1 < xn < x∗ for each n ≥ 1, so the path never intersects {〈x′, t〉 | x′ ≤ x, t ∈ N}.

The examples of this section show that it is not difficult to find posets X such that Up(X)jb is not
isomorphic to Up(Y ) for any poset Y . However, these examples quickly lead to more difficult problems.

Problem 1. Give a characterization of the locales that can be represented as Up(X)jb for a poset X.

Problem 2. Is there a variety of Heyting algebras that can be generated by locales of the form Up(X)jb but
not of the form Up(X)? Equivalently, is there an intermediate logic that is Beth complete but not Kripke
complete?

In fact, even the answer to the following is unknown.

Problem 3. Is there an intermediate logic that is not Beth complete?

4.3 From Beth to Spaces

The next piece of the semantic hierarchy is the inequality

Beth ≤ Topological.

That is, for any poset X there is a topological space Y such that Up(X)jb is isomorphic to the locale Ω(Y )

of opens of Y . Dummett [2000, p. 140] in effect proves the weaker version of this statement with ‘embeds
into’ in place of ‘is isomorphic to’. By modifying his construction, we will obtain the stronger statement.

Theorem 4.19. Given a Beth frame X, let Y be the set of all paths in X, and for U ⊆ X, let

[U ] = {α ∈ Y | α ∩ U 6= ∅}.

Then the pair (Y,Ω) with Ω = {[U ] | U ∈ Up(X)jb} is a topological space.49 Moreover, the function
[·] : Up(X)jb → Ω(Y ) is an isomorphism.

Proof. First, the empty set of paths is [∅], and the set Y of all paths is [X]. Next, given [U ] and [V ], observe
that [U ]∩ [V ] = [U ∩V ]. The right-to-left inclusion is obvious, and for the left-to-right, if a path α intersects
U and V , then since U and V are upsets and α is a chain, α must also intersect U ∩ V . Finally, given a
family {[Ui]}i∈I , we must show that

⋃
i∈I

[Ui] = [V ] for some fixpoint V of jb. We claim that

⋃
i∈I

[Ui] = [jb
⋃
i∈I
Ui].

Suppose α is a path in the left-hand side, so for some i ∈ I, there is an x ∈ Ui such that α is a path through
x. Then since x ∈ Ui ⊆ jbUi ⊆ jb

⋃
i∈I
Ui, it follows that α is in the right-hand side. Conversely, suppose α

is in the right-hand side, so there is some x ∈ jb
⋃
i∈I
Ui such that α is a path through x. Since x ∈ jb

⋃
i∈I
Ui,

every path through x intersects
⋃
i∈I
Ui, so in particular, α does, which implies there is some i ∈ I such that

α intersects Ui. Hence there is some y ∈ Ui such that α is a path through y, which means α ∈ [Ui], so α is
in the left-hand side. Thus, we have shown that Ω is a topology.

49The difference between this construction and Dummett’s is that Dummett takes Ω = {[U ] | U ⊆ X}.

52



We now prove that the function [·] is an isomorphism. That [·] is surjective is immediate from the definition
of (Y,Ω). Next, for any U, V ∈ Up(X)jb , we show that U 6⊆ V implies [U ] 6⊆ [V ]. Given U, V ∈ Up(X)jb , we
have U = jbU and V = jbV . Then from U 6⊆ V we have jbU 6⊆ jbV , so there is an x ∈ jbU with x 6∈ jbV . It
follows that there is a path α through x that does not intersect V , though it does intersect U , so [U ] 6⊆ [V ].
Thus, [·] is order-reflecting and hence injective. We also showed above that [·] preserves binary meets and
hence is order-preserving. Therefore, [·] is an isomorphism.

4.4 Locales from Spaces but Not Beth

We now add that the inequality of the previous section is strict:

Beth < Topological.

That is, there are topological spaces X such that Ω(X) cannot be represented as Up(Y )jb for any poset Y .
Given a topological space X and x ∈ X, let Ω(x) = {U ∈ Ω(X) | x ∈ U}. Recall that a local base (or

neighborhood base) of a point x is a B ⊆ Ω(x) such that

∀U ∈ Ω(x) ∃V ∈ B : V ⊆ U

and that X is first countable if each x ∈ X has a countable local base. This is easily seen to be equivalent
to each x ∈ X having a countable local base linearly ordered by ⊆ (by enumerating the countable base and
taking finite intersections). The following notion from Davis 1978 therefore generalizes the notion of first
countability.

Definition 4.20. A lob-space is a topological space in which each point has a linearly ordered local base.

Theorem 4.21. For any poset X, the locale Up(X)jb is isomorphic to the locale of open sets of a lob-space.

Proof. It suffices to show that the topological space (Y,Ω) constructed fromX in Theorem 4.19 is a lob-space.
Recall that Y is the set of all paths in X, and Ω = {[U ] | U ∈ Up(X)jb}, where [U ] = {α ∈ Y | α ∩ U 6= ∅}.
For any path α ∈ Y , we claim that

B = {[jb↑x] | x ∈ α}

is a linearly ordered local base of α. Since jb↑x ∈ Up(X)jb and α ∈ [jb↑x] for x ∈ α, we have B ⊆ Ω(α).
First, we show that B is linearly ordered. If x, x′ ∈ α, then since α is a path in X, either x ≤ x′ or x′ ≤ x.
Suppose x ≤ x′. Then ↑x ⊇ ↑x′, which implies jb↑x ⊇ jb↑x′ and hence [jb↑x] ⊇ [jb↑x′]. This shows that B
is linearly ordered. Next, to see that B is a local base of α, suppose [U ] ∈ Ω(α), so α ∩ U 6= ∅. Taking an
x ∈ α ∩ U , we have ↑x ⊆ U and hence jb↑x ⊆ jbU = U since U ∈ Up(X)jb . Thus, [jb↑x] ⊆ [U ].

By contrast, there are spatial locales that cannot be represented as Ω(Y ) for any lob-space Y .

Example 4.22. A standard example of a topological space that is not a lob-space is the uncountable
product 2c of the two-element discrete space (see, e.g., Bredon 1993, Problem 8(b), p. 24). Not only is 2c

not a lob-space, but in fact no point in 2c has a linearly ordered local base. Following the proof in Rüping
2016, consider any p ∈ 2c. One of {i ∈ c | p(i) = 0} and {i ∈ c | p(i) = 1} is uncountable. Without
loss of generality, suppose it is the former, and let I = {i ∈ c | p(i) = 0}. Let Si be the set of all x ∈ 2c

such that x(i) = 0. Since the topology in 2c is the product topology, any basic neighborhood of p is by
definition the intersection of finitely many Si’s. Therefore, any open neighborhood of p is a subset of only
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finitely many Si’s. Suppose for contradiction that p has a linearly order local base B. For each U ∈ B, let
f(U) = {i ∈ I | U ⊆ Si}, so f(U) is finite. For U, V ∈ B, observe that U ⊆ V implies f(V ) ⊆ f(U). In
addition, I =

⋃
{f(U) | U ∈ B} by the definition of the Si in terms of p and the definition of f in terms of

the Si. Thus, I is the union of a nested family of finite sets and hence is countable, a contradiction.
Next we claim that Ω(2c) is not isomorphic to Ω(Y ) for any lob-space Y . For this, we recall some basic

notions relating spaces and locales (see, e.g., Picado and Pultr 2012, Chs. I–II). For a locale L, the space
Sp(L) has as points the meet-prime elements of L and as open sets the sets {m ∈ Sp(L) | m 6≤ a} for a ∈ L.
A locale L is spatial iff L is isomorphic to Ω(Sp(L)). A space X is sober, meaning that every meet-prime
open set is the complement of the closure of a unique point in X, iff X is isomorphic to Sp(Ω(X)). Since
every Hausdorff space is sober, and 2c is Hausdorff, it is sober. Now suppose for contradiction that Ω(2c) is
isomorphic to Ω(Y ) for a lob-space Y . Thus, each y ∈ Y has a linearly ordered local base, which implies that
the corresponding point in Sp(Ω(Y )), namely Y \cl{y}, has a linearly ordered local base. By the assumption
that Ω(Y ) is isomorphic to Ω(2c), we have that Sp(Ω(Y )) is homeomorphic to Sp(Ω(2c)), which is in turn
homeomorphic to 2c because 2c is sober. Then since Sp(Ω(Y )) has a point with a linearly ordered locale base,
so does 2c, contradicting the previous paragraph. This completes the proof that Ω(2c) is not isomorphic to
Ω(Y ) for any lob-space Y .

Together Theorem 4.21 and Example 4.22 establish the strict inequality that Beth frames cannot give
rise to all spatial locales: Up(X)jb can always be realized as Ω(Y ) for a lob-space Y (Theorem 4.21), whereas
not all spatial locales can be so represented (Example 4.22).

As noted in § 1.5, it is known that there are intermediate logics that are topologically complete but
Kripke incomplete [Shehtman, 2005, § 8], or equivalently, that there are varieties of Heyting algebras that
can be generated by spatial locales but not by locales of the form Up(X). Given the inequalities

Kripke ≤ Beth ≤ Topological,

it follows that Problem 2 or Problem 4 has an affirmative answer.

Problem 4. Is there a variety of Heyting algebras that can be generated by locales of the form Ω(X) for a
topological space X but not of the form Up(Y )jb for a poset Y ? Equivalently, is there an intermediate logic
that is topologically complete but Beth incomplete?

4.5 From Spaces to Dragalin

The penultimate step in establishing our semantic hierarchy is the inequality

Topological ≤ Dragalin.

That is, for every topological space X there is a Dragalin frame (Y,D) such that Ω(X) is isomorphic to
Up(Y )jD . This result was proved by Dragalin [1979, 1988, pp. 75–6] using the construction in Theorem 4.23
below. To keep the paper self-contained, we include a proof of this result.

Theorem 4.23 (Dragalin). Given a topological space (X,Ω), the tuple (Ω,≤, D) where U ≤ V iff U ⊇ V ,
and

D(U) = {B | ∃x ∈ U : B is a local base of x and
⋃
B ⊆ U},
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is a standard normal Dragalin frame. Moreover, the function f : Ω(X)→ Up(Ω,≤)jD given by

f(U) = {V ∈ Ω | V ⊆ U}

is an isomorphism.

Proof. Since for any point x, the set of all open sets containing x is a local base for x, clearly D(U) 6= ∅ for
each U ∈ Ω, so the normality condition holds. Next we verify the conditions (1◦), (2◦◦), (3◦◦), and (4◦◦) of
a standard Dragalin frame:

(1◦) ∅ 6∈ D(U);

(2◦◦) if B ∈ D(U), then B ⊆ ↑U ;

(3◦◦) if U ≤ V , then D(V ) ⊆ D(U);

(4◦◦) if V ∈ A ∈ D(U), then ∃B ∈ D(V ): B ⊆ A.

Condition (1◦) is immediate because a local base of a point must be nonempty. For (2◦◦), since ↑U =

{V ∈ Ω | V ⊆ U}, the inclusion B ⊆ ↑U follows from
⋃
B ⊆ U . For (3◦◦), suppose U ≤ V , so U ⊇ V . If

B ∈ D(V ), so B is a local base of a point x ∈ V with
⋃
B ⊆ V , then we have that B is a local base of the

same point x ∈ U and
⋃
B ⊆ U , so B ∈ D(U). For (4◦◦), if V ∈ A ∈ D(U), then let B = {V ′ ∈ A | V ′ ⊆ V }.

Since A ∈ D(U), A is a local base of some point x ∈ U . It is then easy to see that B is also a local base of
x. By definition of B, we also have

⋃
B ⊆ V , so B ∈ D(V ), and B ⊆ A, so (4◦◦) holds.

To prove that f : Ω(X) → Up(Ω,≤)jD is an isomorphism, we show that the elements of Up(Ω,≤)jD are
exactly the principal upsets of (Ω,≤) plus ∅. Then since f sends each U to its principal upset in (Ω,≤), it
is clear that f is order preserving and reflecting, so it is an isomorphism.

To show that the fixpoints of jD are exactly the principal upsets, plus ∅, it suffices to show that for every
U ∈ Up(Ω,≤), we have jDU = {U ∈ Ω | U ⊆

⋃
U}, for this implies that U = jDU iff U is principal.

To show that jDU = {U ∈ Ω | U ⊆
⋃
U}, first suppose U ⊆

⋃
U and B ∈ D(U). Hence B is a local base

of some point x ∈ U . Since U ⊆
⋃
U and x ∈ U , there is some V ∈ U such that x ∈ V . Then since B is a

local base of x, there is a V ′ ∈ B such that V ′ ⊆ V , which with V ∈ U ∈ Up(Ω,≤) gives us V ′ ∈ U . Thus,
for every B ∈ D(U), there is a V ′ ∈ B ∩ U , which means U ∈ jDU . Conversely, if U 6⊆

⋃
U , then take an

x ∈ U \
⋃
U and let B = {V ∈ Ω | x ∈ V ⊆ U}. Then clearly B ∈ D(U), but B ∩ U = ∅, so U 6∈ jDU .

4.6 Locales from Dragalin but Not Spaces

The final step in establishing the semantic hierarchy is to show that the inequality of § 4.5 is strict:

Topological < Dragalin.

Example 4.24. As in the end of § 3.3, for any poset X, we can define a Dragalin frame (X,D) by D(x) =

{↑y | y ∈ ↑x}; jD is then the nucleus of double negation, so Up(X)jD is a complete Boolean algebra. If we
take, e.g., X to be the full countable binary tree, then it is easy to check that Up(X)jD is atomless. But a
complete Boolean algebra is spatial iff it is atomic. Thus, Dragalin frames can produce non-spatial locales.

In fact, something much more general holds:

Locales ≡ Dragalin.
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The inequality Locales ≥ Dragalin is a consequence of Lemma 3.37, while the inequality Locales ≤ Dragalin
is a consequence of the following.

Theorem 4.25. For every locale L, there is a standard normal Dragalin frame (X,D) such that L is
isomorphic to Up(X)jD .

To prove the theorem, recall from Theorem 3.24 that for every locale L, there is a dense nuclear frame
(X, j) such that L is isomorphic to Up(X)j . Thus, it suffices to show that for any dense nuclear frame (X, j),
there is a standard normal Dragalin frame (X,D) with j = jD. This is a consequence of the following more
general result proved in Bezhanishvili and Holliday 2016.

Theorem 4.26. Given any nuclear frame (X, j), there is a standard Dragalin frame (X,D) such that j = jD,
and j is dense iff (X,D) is normal.

Proof. (Sketch) As is well known, for any locale L, the collection N(L) of all nuclei on L, ordered by j ≤ k iff
ja ≤ ka for all a ∈ L, is itself a locale, in which meets are computed pointwise (see, e.g., Fourman and Scott
1979, Thm. 2.20, Johnstone 1982, Prop. II.2.5). As observed by Simmons [1978, p. 243], for any nucleus
j ∈ N(L), we have:

j =
∧
{wja | a ∈ L}, (10)

where for b ∈ L, wb is the nucleus from Example 3.22 defined on L by

wbc = (c→ b)→ b.

Thus, given our nuclear frame (X, j), we can assume that the nucleus j on L = Up(X) can be expressed as
a meet of nuclei wU , for certain U ∈ Up(X), as in (10).

Given any one of the nuclei wU on Up(X), we define a function DU : X → ℘(℘(X)) by

DU (x) = {↑y \ U | y ∈ ↑x \ U}.

As shown in Lemma 3.6 of Bezhanishvili and Holliday 2016, DU is a standard Dragalin function and

wU = jDU . (11)

Next, given any family {jα | α ∈ I} of nuclei on Up(X), if for each α ∈ I we have a Dragalin function Dα

such that
jα = jDα ,

then we define a function D : X → ℘(℘(X)) by

D(x) =
⋃
{Dα(x) | α ∈ I}. (12)

As shown in Lemma 3.7 of Bezhanishvili and Holliday 2016, D is a Dragalin function, which is standard if
each Dα is standard, and ∧

{jα | α ∈ I} = jD. (13)

Putting everything together, we have:
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j =
∧
{wjU | U ∈ Up(X)} by (10)

=
∧
{jDjU | U ∈ Up(X)} by (11)

= jD by (13),

where D is defined from the DjU ’s as in (12). Then (X,D) is a standard Dragalin frame, which is normal
iff j is dense (see Lemma 3.37).

4.7 Another Perspective: FM-Semantics

Theorem 4.26 shows that we can always replace the nucleus j in a nuclear frame with a Dragalin function
D, while keeping the underlying poset X the same. If we are willing to change X to a “larger” preorder
Y = (Y,≤1), then in place of a Dragalin function D : Y → ℘(℘(Y )) we can use something simpler: a
second preorder ≤2, which is a subrelation of ≤1. The following structures were introduced by Fairtlough
and Mendler [1997] as “constraint models” in their semantics for lax logic (recall Remark 3.27).50

Definition 4.27. An FM-frame is a tuple (Y,≤1,≤2, F ) where Y is a set, ≤1 and ≤2 are preorders on Y
such that ≤2 is a subrelation of ≤1, and F ∈ Up(Y,≤1). An FM-frame is normal if F = ∅, in which case
we may identify the FM-frame with (Y,≤1,≤2).

The distinguished upset F plays the same role as the set of fallible states in Dragalin frames (Definition
3.36) and fallible Kripke frames (Remark 2.2). The Heyting algebra of interest is then Up(Y,≤1)F := {U ∈
Up(Y,≤1) | F ⊆ U}. To extract a nucleus on Up(Y,≤1)F from the FM-frame, we define for U ⊆ Y :

�1U = {x ∈ Y | ∀y ≥1 x : y ∈ U}

♦2U = {x ∈ Y | ∃y ≥2 x : y ∈ U}

�1♦2U = {x ∈ Y | ∀y ≥1 x ∃z ≥2 y : z ∈ U}.

The following result is due to Fairtlough and Mendler [1997, p. 9], who phrase it in terms of the soundness
of the logic PLL mentioned in Remark 3.27 (for a proof using the present terminology and notation, see
Bezhanishvili and Holliday 2016, Prop. 4.2).

Lemma 4.28. For any FM-frame (Y,≤1,≤2, F ), the operation �1♦2 is a nucleus on the Heyting algebra
Up(Y,≤1)F . Moreover, this nucleus is dense if the FM-frame is normal.

It follows from Lemma 4.28 that an FM-frame gives rise to a nuclear algebra (Up(Y,≤1)F ,�1♦2) and hence
a locale (Up(Y,≤1)F )�1♦2

. Thus, FM-frames may be used to give nuclear semantics for the intuitionistic
propositional language as in § 3.2. Given a valuation v mapping propositional letters to upsets that include
F , the satisfaction clauses besides the Kripke clauses for ∧ and → are:

• x |=v ⊥ iff x ∈ �1♦2F ;

• x |=v p iff x ∈ �1♦2v(p);

• x |=v ϕ ∨ ψ iff x ∈ �1♦2{z ∈ Y | z |=v ϕ or z |=v ψ}.

Remark 4.29.
50The name ‘FM-frames’ is from Bezhanishvili and Holliday 2016.
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1. Kripke frames may be regarded as normal FM-frames in which ≤2 is the identity relation, for then
�1♦2U = �1U and hence the fixpoint algebra Up(Y,≤1)�1♦2

is simply Up(Y,≤1).

2. The following intuitive explanation of how FM-frames differ from Kripke frames is inspired by Massas
2016, § 5.4.51 Think of each point x in an FM-frame as a partial description of an information state
ix, which one may model as a partial function x : N → {0, 1}. Think of N as coding statements
that may or may not be verified in an information state. If x(n) = 1, then x reveals that the n-th
statement has been verified in ix; if x(n) = 0, then x reveals that the n-th statement has not been
verified in ix; and if x(n) is undefined, then x does not reveal whether or not the n-th statement has
been verified in ix. Think of x ≤1 y as meaning that every fact about what has been verified that is
revealed by x is maintained by y, so that if x(n) = 1, then y(n) = 1. Then we will say that y is an
enrichment of x; this is compatible with some statement going from being not verified according to x
to being verified according to y. By contrast, think of x ≤2 y as meaning that not only x ≤1 y but
also every fact about what has not yet been verified that is revealed by x is maintained by y, so that
if x(n) = 0, then y(n) = 0.52 Then we will say that y is an extension of x; for as partial functions,
x ⊆ y. This explains why ≤2 may be a proper subrelation of ≤1. For example, if x = {〈n, 1〉, 〈m, 0〉}
and y = {〈n, 1〉, 〈m, 1〉}, then we have x ≤1 y but x 6≤2 y. Allowing points to be partial descriptions
of information states explains why ≤2 need not be the identity relation as in Kripke semantics. For
example, if x = {〈n, 1〉, 〈m, 0〉} while z = {〈n, 1〉, 〈m, 0〉, 〈q, 1〉}, then x 6= z but x ≤2 z. Finally, we can
use the terminology above to explain satisfaction in FM-semantics: x satisfies p if any enrichment of x
(any y ≥1 x) has an extension (a z ≥2 y) according to which p is verified.

FM-frames are related to Dragalin frames by the following result of Bezhanishvili and Holliday 2016.

Theorem 4.30. For any Dragalin frame (X,D), there is an FM-frame (Y,≤1,≤2, F ) such that the nu-
clear algebras (Up(X), jD) and (Up(Y,≤1)F ,�1♦2) are isomorphic. Moreover, if (X,D) is normal, then
(Y,≤1,≤2, F ) is normal.

Proof. (Sketch) We sketch the proof for the case where the Dragalin frame is normal. First, we use the fact
that any Dragalin frame can be made convex, meaning that for each S ∈ D(x), S = ↑x ∩ ↓S, by simply
replacing each S ∈ D(x) by ↑x ∩ ↓S (see Bezhanishvili and Holliday 2016, Prop. 3.13). The transformation
of convex normal Dragalin frames into normal FM-frames is similar to the transformation of intuitionistic
neighborhood frames into intuitionistic relational frames in Kojima 2012 (cf. the transformation of monotonic
neighborhood frames into birelational frames in Kracht and Wolter 1999). Given a convex normal Dragalin
frame (X,≤, D), we define a normal FM-frame (Y,≤1,≤2) as follows:

• Y = {(x, S) | x ∈ X,S ∈ D(x)};

• (x, S) ≤1 (y, T ) iff x ≤ y;

• (x, S) ≤2 (y, T ) iff T ⊆ S.

To see that ≤2 is a subrelation of ≤1, suppose (x, S) ≤2 (y, T ), so T ⊆ S. By convexity, T ⊆ ↑y, so y ∈ ↓T
since T 6= ∅ by (1◦). Thus, y ∈ ↑y∩↓T = T . Hence y ∈ S, which with S = ↑x∩↓S implies x ≤ y. Therefore,
(x, S) ≤1 (y, T ).

51For a different intuitive explanation of FM-frames, see Fairtlough and Mendler 2002, p. 70.
52This interpretation yields that ≤2 is a partial order. However, this is a harmless assumption, as follows from Theorem 4.33

and Footnote 53.
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Define f : Up(X,≤)→ Up(Y,≤1) by

f(U) = {(x, S) | x ∈ U, S ∈ D(x)}.

Then f is an isomorphism between the nuclear algebras (Up(X), jD) and (Up(Y,≤1),�1♦2) (for details, see
Bezhanishvili and Holliday 2016, Thm. 4.7).

We can now relate FM-frames to nuclear frames and locales as follows.

Corollary 4.31.

1. For any nuclear frame (X, j), there is an FM-frame (Y,≤1,≤2, F ) such that the nuclear algebras
(Up(X), j) and (Up(Y,≤1)F ,�1♦2) are isomorphic. Moreover, if j is dense, then (Y,≤1,≤2, F ) is
normal.

2. For every locale L, there is a normal FM-frame (Y,≤1,≤2) such that L is isomorphic to Up(Y,≤1)�1♦2
.53

Proof. For part 1, apply Theorems 4.26 and 4.30. For part 2, apply Theorems 4.25 and 4.30.

The normal FM-frame produced for Corollary 4.31.2 by successively applying the transformations of
Theorems 4.25 and 4.30 is a substructure of the following FM-frame, which is related to the representation
of (complete) lattices in Urquhart 1978 and Allwein and MacCaull 2001 (for details, see Bezhanishvili et al.
2018).

Definition 4.32. The canonical FM-frame of a locale L is the normal FM-frame (XL,≤1,≤2) defined as
follows, where ≤ is the order in L:

1. XL = {(a, b) ∈ L2 | a 6≤ b}:

2. (a, b) ≤1 (c, d) iff a ≥ c;

3. (a, b) ≤2 (c, d) iff a ≥ c and b ≤ d.

Using this construction, we can give a direct proof that every locale is representable as the algebra of
fixpoints of an FM-frame. This is essentially the approach of Massas [2016, Cor. 6.3.10], except that Massas
constructs a smaller substructure of the canonical FM-frame (cf. Bezhanishvili et al. 2018).

Theorem 4.33. If L is a locale, then L is isomorphic to Up(XL,≤1)�1♦2
.

Proof. The elements of the form (a, 0) ordered by ≤1 form a lattice dually isomorphic to L \ {0}. Thus,
the principal ≤1-upsets of elements of the form (a, 0), plus ∅, ordered by ⊆, form a lattice isomorphic to
L. Therefore, to prove the theorem it suffices to show that the �1♦2-fixpoints are exactly the principal
≤1-upsets of elements of the form (a, 0), plus ∅.

First, we show that each principal ≤1-upset ↑1(a, 0) is a �1♦2-fixpoint. Suppose (c, d) 6∈ ↑1(a, 0), so
c 6≤ a. Then (c, a) ∈ XL and (c, d) ≤1 (c, a). Now consider any (c′, a′) ≥2 (c, a), so c′ 6≤ a′ and a′ ≥ a.
Then obviously a 6≥ c′, so (a, 0) 6≤1 (c′, a′). Hence (c, a) 6∈ ♦2↑1(a, 0), which with (c, d) ≤1 (c, a) implies
(c, d) 6∈ �1♦2↑1(a, 0).

Conversely, suppose U = {(ai, bi) | i ∈ I} is a �1♦2-fixpoint. Let e =
∨
{ai | i ∈ I} (taking the join

in L). We claim that U = ↑1(e, 0). Clearly U ⊆ ↑1(e, 0) (remember that ≤1 reverses the order ≤). Since
53In fact, for part 2 we may take ≤1 and ≤2 to be partial orders (see Proposition 4.5 of Bezhanishvili and Holliday 2016). It

is an open question whether a stronger version of part 1 holds in which ≤1 and ≤2 are partial orders.
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U is a ≤1-upset, to show U ⊇ ↑1(e, 0) it suffices to show that (e, 0) ∈ U . Since U is a �1♦2-fixpoint, it
suffices to show that for any (a, b) ≥1 (e, 0) there is a (a′, b′) ≥2 (a, b) such that (a′, b′) ∈ U . Consider
any (a, b) ≥1 (e, 0), so a 6≤ b and a ≤ e. Then for some i ∈ I, we have a ∧ ai 6≤ b. For if a ∧ ai ≤ b for
every i ∈ I, then

∨
{a ∧ ai | i ∈ I} ≤ b, which by the join-infinite distributive law implies a ∧ e ≤ b, which

with a ≤ e implies a ≤ b, contradicting a 6≤ b. Let j ∈ I be such that a ∧ aj 6≤ b. Let a′ = a ∧ aj and
b′ = a→ b. Since a′ 6≤ b, we also have a′ 6≤ b′ and hence (a′, b′) ∈ XL. In addition, since a′ ≤ a and b′ ≥ b,
we have (a′, b′) ≥2 (a, b). Finally, since U = {(ai, bi) | i ∈ I} is a ≤1-upset, a′ ≤ aj implies (a′, b′) ∈ U . This
completes the proof that (e, 0) ∈ U .

In light of the above results (see the summary in Figure 4.3), we arrive at the promised equivalence of
semantics:

Locales ≡ Nuclear ≡ Dragalin ≡ FM.

As noted at the beginning of § 4, this equivalence also expands to include the cover semantics of Goldblatt
2011 (see Bezhanishvili and Holliday 2018).

The results of this section and § 4.6 lead to open problems parallel to those stated in previous sections.

Problem 5. Is there a variety of Heyting algebras that can be generated by locales but not by spatial locales?
Equivalently, is there an intermediate logic that is Dragalin/FM complete but topologically incomplete?

Problem 6. Is every variety of Heyting algebras generated by locales? Equivalently, is every intermediate
logic Dragalin/FM complete?

5 Conclusion

In § 1.2 we recalled Rasiowa and Sikorski’s [1963] amazement that Brouwer’s philosophy of mathematics led
to the development of a formal system of intuitionistic logic that was later seen to be deeply connected to
topology. In this paper, we hope to have given readers a glimpse of the rich mathematical landscape to which
the semantical study of intuitionistic logic leads. Yet there are large parts of the landscape that we have not
touched upon here at all. One could continue with a study of semantics for intuitionistic predicate logic and
its extensions (see, e.g., Rasiowa and Sikorski 1963, Scott 2008, Gabbay et al. 2009). Or one could follow the
connection to modal logic mentioned in the introduction, with a study of intuitionistic-to-modal translations
(see, e.g., Chagrov and Zakharyaschev 1992). One could even study a semantic hierarchy parallel to ours in
the context of intuitionistic modal logic (see, e.g., Wolter and Zakharyaschev 1999). But there are also quite
different directions to explore: for example, the Curry-Howard-Lambek correspondence between intuitionistic
logic, simply-typed lambda calculus, and Cartesian closed categories (see, e.g., Lambek and Scott 1986), or
higher-order intuitionistic logic as the internal language of toposes (see, e.g., Fourman and Scott 1979,
Goldblatt 1984, Lambek and Scott 1986). That intuitionistic logic has proved to be of such mathematical
interest, in ways unanticipated by Brouwer, is a testament to the great value of Brouwer’s legacy.
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