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Statistical and Mechanistic Information in Evaluating Causal Claims 
 

Samuel G. B. Johnson & Frank C. Keil 
(sgbjohnson@gmail.com, frank.keil@yale.edu) 

Department of Psychology, Yale University, New Haven, CT 06520 USA 
 

Abstract 

People use a variety of strategies for evaluating causal 
claims, including mechanistic strategies (seeking a step-by-
step explanation for how a cause would bring about its 
effect) and statistical strategies (examining patterns of co-
occurrence). Two studies examine factors leading one or 
the other of these strategies to predominate. First, general 
causal claims (e.g., “Smoking causes cancer”) are 
evaluated predominantly using statistical evidence, 
whereas statistics is less preferred for specific claims (e.g., 
“Smoking caused Jack’s cancer”). Second, social and 
biological causal claims are evaluated primarily through 
statistical evidence, whereas statistical evidence is deemed 
less relevant for evaluating physical causal claims. We 
argue for a pluralistic view of causal learning on which a 
multiplicity of causal concepts lead to distinct strategies for 
learning about causation. 

Keywords: Causal reasoning; concepts and categories; 
information evaluation; statistical reasoning. 

Introduction 
Causal knowledge is crucial for understanding and 
controlling the world, and strategies for evaluating causal 
claims are central to gatekeeping that crucial knowledge. 
Humans seem especially prone to two strategies—a 
mechanism strategy, on which we consider potential 
mediating causal links as evidence favoring a causal 
connection; and a statistical strategy, on which we look 
for correlations between a cause and effect. For example, 
Jack is assessing the risk that smoking causes cancer. He 
can assess this claim mechanistically by considering the 
plausibility of potential mediating mechanisms that 
explain relationship between smoking and cancer. Or he 
can assess the claim statistically by observing whether the 
frequency of cancer is higher in a population that smokes 
compared to a population that does not. 

There is ample evidence that people use both of these 
strategies, though different theoretical approaches to 
causal cognition emphasize different types of information. 

According to mechanism-based approaches to causal 
cognition, we learn about causal relations primarily by 
searching for generative mechanisms through which 
causes can produce their effects. Several convergent lines 
of evidence are consistent with causal relations being 
represented in terms of underlying mechanisms (see 
Johnson & Ahn, in press). Knowledge of underlying 
mechanisms affects whether discounting or conjunction 
effects occur in causal attribution (Ahn & Bailenson, 
1996), whether the Markov principle is applied to causal 
networks (Park & Sloman, 2013), and whether causal 
chains are judged to be transitive (Johnson & Ahn, 2015). 

If we learn about causation by searching for plausible 

mechanisms, then people would seek out evidence of 
underlying mechanisms when determining whether one 
thing causes another. Indeed, people do sometimes assess 
causal hypotheses by forming a mechanistic narrative that 
would lead from X to Y and assessing the plausibility of 
that narrative (e.g., Fernbach, Darlow, & Sloman, 2011; 
Kahneman & Tversky, 1982; Taleb, 2007). For example, 
Jack might imagine some physiological mechanism by 
which smoking and lung cancer could be connected, then 
evaluate the plausibility of these steps. Moreover, people 
prefer mechanism evidence overwhelmingly in causal 
attribution—that is, in determining which cause to assign 
to an effect (Ahn, Kalish, Medin, & Gelman, 1995). 

In contrast, statistics-based approaches to causal 
learning emphasize the role of statistical knowledge in 
inferring causal relationships. These theories hold that 
causal relationships are primarily discovered through 
information about the co-occurrence of the cause and 
effect, although individual theories differ in the details of 
how these inferences work (e.g., Cheng, 1997; Gopnik et 
al., 2004; Griffiths & Tenenbaum, 2005). These theories 
do not necessarily claim that causal relations are 
represented in terms of statistical patterns, but often hold 
that causal relations are represented in terms of abstract 
causal powers underlying the connection between cause 
and effect, which are then inferred through statistical 
means (Cheng, 1997; Pearl, 2000). Nonetheless, statistical 
approaches do claim that causal relations are primarily 
learned through co-occurrence information, and there is 
abundant evidence that people are often able to learn from 
statistical evidence (e.g., Gopnik et al., 2004; Steyvers, 
Tenenbaum, Wagenmakers, & Blum, 2003). 

Moreover, statistical evidence could be an antidote to 
the shallowness of people’s knowledge of causal 
mechanisms: Even though people do use mechanism 
knowledge in evaluating causal relationships when it is 
available, we do not seem to have extensive knowledge of 
mechanisms. People greatly overestimate their knowledge 
of how everyday devices such as flush toilets work, 
revealing misconceptions and pervasive gaps in 
understanding (Rozenblit & Keil, 2002). People’s beliefs 
in mechanisms underlying causal relationships are more 
likely to take the form of generic or highly unspecified 
‘placeholders’, akin to our beliefs in abstract category 
essences (Medin & Ortony, 1989). Such skeletal 
representations are difficult to square with a strong 
mechanism view on which people seek a detailed 
understanding of how causal relationships work and use 
that understanding to guide inference, but they might 
seem to be more consistent with statistical approaches to 
causal thinking on which covariation is used to infer the 
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existence of abstract underlying mechanisms without 
being committed to particular mechanistic details. 

The mechanism and the statistical approaches, however, 
need not be in conflict and can be mutually compatible 
with a third approach known as causal pluralism 
(Cartwright, 2004; Danks, 2005; Hitchcock, 2003; 
Lombrozo, 2010; Waldmann & Mayrhofer, 2016). 
According to this approach, people might use a 
multiplicity of causal concepts and a concordant variety 
of learning strategies in systematic, context-dependent 
ways. Some prima facie support for the pluralistic 
position comes from experiments where people used 
mechanism and statistical evidence in an interactive 
manner (Fugelsang & Thompson, 2000; Spellman, 1996). 

Yet, little is known about contextual factors that lead 
each type of evidence to predominate. Here, we look at 
two dimensions along which causal relations can vary—in 
its level of abstraction and its domain. Because people 
seem to use different sorts of causal concepts for 
representing these relations, we anticipated that people 
may also use different strategies to learn about these 
relations. If you need to decide whether something is a 
banana, the best question to ask would be about its shape, 
whereas if you need to decide whether something is a 
peach, the best question would be about its texture. And 
just as we must consult our concept of ‘banana’ when 
deciding whether something is a banana and our concept 
of ‘peach’ when deciding whether something is a peach, 
we must consult our concept of ‘cause’ when deciding 
whether a relationship is causal. When we deploy 
different causal concepts across contexts, this can lead to 
different learning strategies. 

General and Specific Causation. General causal 
claims refer to generic causal patterns (“Smoking causes a 
person to get lung cancer”), whereas specific claims refer 
to concrete occasions when a pattern was instantiated 
(“Smoking caused Jack to get lung cancer”). The 
inferences supported by general and particular claims 
differ in several ways. General claims are associated with 
more essentialist inferences (Cimpian & Erickson, 2012) 
and, in the domain of human behavior, with more 
neuroscientific rather than psychosocial explanations 
(Kim, Ahn, Johnson, & Knobe, 2016). Might these claims 
also differ in the evidence used for their evaluation? 

General claims refer to an entire category of causal 
relationships (i.e., a set of event pairs), whereas specific 
claims refer to an instance of that category (one single 
event pair in that set). Thus, general claims necessarily 
quantify over multiple instances and intrinsically carry 
statistical content, whereas specific claims do not. We 
suggest that this conceptual difference could lead 
statistical evidence to be privileged more for general 
rather than specific causal claims. 

This pattern of evidence preferences can lead to non-
normative behavior. If we are not privy to the particulars 
of Jack’s case, the only strategy for evaluating a token-
causal claim will be to look for a more general causal 

pattern between smoking and cancer—to evaluate the 
general claim. Thus, evidence relevant for evaluating the 
general claim would be equally relevant for evaluating the 
specific claim. Imagine that a tobacco company is being 
sued under one of two different circumstances: (1) a class 
action suit (the plaintiffs’ lawyers arguing that “Smoking 
causes a person to get lung cancer”), or (2) Jack’s single 
party action (his lawyers arguing that “Smoking caused 
Jack to get lung cancer”). In both cases, jurors might be 
confronted with mechanism evidence, such as a 
biologist’s testimony concerning biochemical 
mechanisms, or with statistical evidence, such as an 
epidemiologist’s testimony comparing cancer rates across 
populations. It seems difficult to justify a difference 
between these two cases in jurors’ relative weighing of 
mechanistic and statistical testimony. Yet, if people rely 
on different processes for evaluating general and specific 
claims, then the jurors may well behave differently. 

Causation across Domains. People use different 
intuitive theories of causality across domains. Whereas 
physical causation is typically conceptualized in terms of 
force propagating down branching causal chains, social 
and biological causation are thought of as webs of 
interconnected influences. People tend to identify 
physical events as having one cause but many effects, 
whereas social events are seen as having many causes and 
many effects (Strickland, Silver, & Keil, 2016; see also 
Johnson, Valenti, & Keil, 2017). Likewise, even young 
children seem to view biological systems as causally 
interacting parts in homeostatic balance (Keil, 1989). 
Thus, the simple, linear causal pathways thought to be at 
play in the physical world give way to more complex 
causal structures in the social and biological domains. 

Similarly, social (e.g., psychological or economic) 
causation is often goal-directed (Lombrozo & Carey, 
2006) or equipotential (Heider, 1958)—the same ends can 
often be brought about through many different means. For 
this reason, people’s causal theories of social (and likely 
biological) systems often focus on counterfactual 
dependence (Lombrozo, 2010), whereas their theories of 
physical systems are characterized more by ideas about 
physical force and transference of conserved quantities. 

Given the relatively linear and force-based conceptions 
of physical causation, and the relatively web-like and 
dependence-based conceptions of causality in biological 
and social causation, people may use a more deterministic 
concept of physical causation and a more stochastic 
concept of social and biological causation (Johnson, 
Valenti, & Keil, 2017). Thus, people may rely more on 
mechanistic strategies when learning about physical 
systems and more on statistical strategies when learning 
about biological and social systems. 

Overview of Studies. Two studies test differences in 
evidence-seeking between general and specific causal 
claims, with the studies differing in the framing of the 
claims. After testing this hypothesis about general versus 
specific causation, we present an analysis of evidence-
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seeking preferences across domains, aggregating across 
studies. In the General Discussion, we assess the 
prospects for a pluralistic view of causal learning. 

Experiment 1 
In Experiment 1, we tested what kind of information 
people thought most relevant for assessing general causal 
claims (e.g., “Eating polar bear liver causes a person to 
become dizzy”) and specific causal claims (“Eating polar 
bear liver caused Bill to become dizzy”). The mechanism 
view holds that we learn about causal relationships 
primarily by searching for underlying mechanisms, 
leading to a preference for mechanism evidence, whereas 
the statistical view holds that we learn about causal 
relationships primarily through contingency information, 
leading to a preference for statistical evidence. In contrast 
to both positions, we predicted that, whatever people’s 
baseline preferences for one or the other type of evidence, 
the preference for statistical evidence would be stronger 
when evaluating general rather than specific claims. 

Method 
We recruited 80 participants from Mechanical Turk, and 
excluded 5 from data analysis because they incorrectly 
answered more than 33% of the check questions. 

Participants saw either the general or specific version of 
each of 24 causal claims, presented in a box. For each 
item, participants were asked “Which of the following 
types of evidence would be most helpful to you in 
determining whether the statement in the box is true?” as 
a forced-choice. For the polar bear item, the options read: 

Statistical: “Measurements of the frequency of 
dizziness of many people after they eat or do not eat 
polar bear liver.” 

Mechanism: “An explanation of why eating polar bear 
liver would cause a person to become dizzy.” 

Anecdotal: “Knowing whether there is another occasion 
on which a person ate polar bear liver and then they 
felt dizzy.” 

We assumed that few people would choose the weak 
anecdotal evidence, and used this option to assess the 
degree to which participants used poor causal reasoning. 
The order of the options was randomized for each item, 
and the items were presented in a random order. 

Results and Discussion 
As shown in Table 1, statistical evidence was chosen 
more frequently when evaluating general compared to 
specific claims. Due to non-normality, Mann-Whitney U-
tests were used to compare the number of items for which 
participants chose each evidence type in each condition.  

These tests showed that statistical evidence was chosen 
for more items when evaluating general claims than when 
evaluating specific claims [U = 496.5, p = .028, r = .25]. 
This corresponded to relatively fewer mechanism 
responses for the general claims than for the specific 
claims and fewer anecdotal responses for the general 

claims than for the specific claims. Thus, responses 
shifted relatively more toward statistical evidence for the 
general than for the specific claims. 

This result indicates that people use pluralistic causal 
learning strategies. Specifically, it appears that the 
conceptual differences between general and specific 
claims had downstream consequences for evidence-
seeking preferences: Because general claims quantify 
over instances, statistical evidence is seen as more 
relevant to evaluating such claims, compared to specific 
claims, and mechanism evidence is seen as less relevant. 

 
Table 1: Results of Experiments 1 and 2 

 

 Statistical Mechanism Anecdotal 
Exp. 1    
   General 55.3% 36.8% 7.9% 
   Specific 41.6% 47.5% 11.0% 
Exp. 2    
   General 62.0% 30.4% 7.6% 
   Specific 47.6% 41.4% 11.0% 
Domain Analysis    
   Physical 47.5% 46.6% 5.9% 
   Biological 53.6% 38.9% 7.5% 
   Psychological 51.6% 36.0% 12.4% 
   Economic 53.7% 34.7% 11.6% 

Note. Entries indicate the proportion of choices of each evidence 
type in each experiment. For the domain analysis, the proportion 
of participants choosing each evidence type was calculated for 
each item in Experiments 1 and 2, and those proportions were 
averaged across all items in each domain. 

Experiment 2 
Experiment 2 sought to generalize the effect of general 
versus specific causation to contexts where it is known 
that the events in the specific causal relationship actually 
occurred. That is, participants in Experiment 1 evaluated 
claims such as “Smoking cigarettes caused Jack to get 
lung cancer” without knowing whether or not Jack in fact 
smoked and whether or not he had cancer. In such 
contexts, both statistical and mechanism information may 
seem irrelevant, since a crucial part of evaluating this 
claim is establishing first that the cause and effect both 
occurred. In contrast, Experiment 2 examined contexts 
where it is known that both cause and effect occurred 
(e.g., by prefacing the causal claim with the statement 
“Jack smoked cigarettes, and then Jack got lung cancer”), 
where the primary concern is distinguishing causation 
from coincidence (see Cartwright, 2017) and where the 
available evidence would be seen as more relevant. 

Method 
We recruited 80 participants from Mechanical Turk, and 
excluded 5 from data analysis because they incorrectly 

620



answered more than 33% of the check questions. 
Participants responded to a new set of 24 causal claims. 

The format of these items differed from Experiment 1 in 
that contextual information was given for each claim, 
establishing that the cause and effect occurred. This 
information was printed above the box containing the 
claim. For example, one general item read (background 
information in regular typeface, claim in italics): 

Researchers sometimes observe that a person consumes 
large amounts of meat, and then that the person 
develops kidney stones. 

Consuming large amounts of meat causes a person to 
develop kidney stones. 

The specific version of that item read: 
Researchers observed that Tom consumed large 

amounts of meat, and then that Tom developed 
kidney stones. 

Consuming large amounts of meat caused Tom to 
develop kidney stones. 

The procedure was otherwise identical to Experiment 1. 

Results and Discussion 
Although participants preferred statistical information 
overall, this preference was far stronger when evaluating 
general than when evaluating specific claims [U = 481.5, 
p = .019, r = .27], consistent with Experiment 1. They 
correspondingly chose mechanism evidence less 
frequently for general than for specific claims and 
anecdotal evidence less frequently for general than for 
specific claims, as shown in Table 1. 

These two experiments together are consistent with the 
idea that people use different learning strategies 
depending on what causal concept they are consulting. 
However, there are other differences between general and 
specific causation that could plausibly account for some 
of the variance. First, the reference class from which the 
statistical evidence is drawn may be more relevant for the 
general than the specific claim, and second, plurality may 
have been more salient for the general than for the 
specific claims. We conducted an additional experiment 
with artificial stimuli to rule out these two alternative 
explanations, in which both the general and specific 
claims were prefaced by a statement about the reference 
class (e.g., “There is a group of 100 Garbotrons”), with 
the general claim then made about the entire group and 
the specific claim about an arbitrary member of that 
group. This equated the reference class and the salience of 
plurality, yet produced a similar shift across conditions. 

These experiments do not fully tease apart whether the 
difference is due to a statistics preference for general 
claims or a mechanism preference for specific claims. We 
conducted two additional studies to answer this question, 
one in which participants answered an open-ended 
question about what evidence they would want to use, and 
another in which participants rated the two types of 
evidence on independent scales. Consistent with our claim 
that these differences arise due to more stochastic 

representations of general causation, the condition 
differences were significant for statistical evidence but 
not for mechanism evidence in both cases. 

Domain Differences 
In Experiments 1 and 2, we drew our causal claims from 
four domains—physical, biological, psychological, and 
economic—across which causal representations are likely 
to differ. People typically conceptualize physical 
causation as flowing in branches, with each event having 
few causes but many effects, and social (and perhaps 
biological) causal systems as interconnected webs, in 
which events have many causes and many effects 
(Strickland et al., 2016). Similarly, people may use more 
transference-based (or mechanistic) causal concepts in 
the physical domain, and more dependence-based 
(counterfactual or statistical) causal concepts in the social 
domain (Lombrozo, 2010). Thus, physical systems may 
be seen as more deterministic and social systems as more 
stochastic. According to the pluralistic position, these 
conceptual differences across domains could translate into 
different learning strategies: We would expect relatively 
greater reliance on statistical information for social and 
biological systems and less for physical systems. 

We tested this possibility by comparing preferences for 
statistical evidence across all 48 items used in 
Experiments 1 and 2, collapsing across the general and 
specific versions. For each item, a statistics preference 
score was computed by taking the difference between the 
proportion of participants choosing statistical evidence for 
that item and the proportion choosing mechanism 
evidence for that item. An ANOVA on these scores with 
domain (physical, biological, psychological, or economic) 
as a between-items variable uncovered a marginally 
significant main effect of domain [F(3,44) = 2.22, p = 
.099, ηp

2 = .13], with the preference for statistics evidence 
smallest for the physical items [M = 0.01, SD = 0.17], 
followed by the biological [M = 0.15, SD = 0.19], 
psychological [M = 0.16, SD = 0.21], and economic [M = 
0.19, SD = 0.17] items. Independent-samples t-tests 
revealed that items from the physical domain had a 
smaller statistics preference than did items from the 
combined other domains [t(46) = -2.56, p = .014, d = 
0.85], while the biological, psychological, and economic 
domains did not differ from one another [ts < 1, ps > .50]. 

This result further supports the pluralistic position, 
suggesting that differences in causal concepts used across 
domains translated into different learning strategies. 

General Discussion 
Cognition requires us to attend to and integrate various 
sources of information into coherent representations of 
the world. Our representations of causal systems are 
particularly critical because they allow us to predict and 
understand events, and to plan interventions on the world 
to achieve goals. Humans use two distinct strategies for 
making inferences about causal claims—evaluating the 
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plausibility of mediating causal mechanisms, and 
evaluating statistical evidence for contingencies between 
cause and effect. What factors lead people to favor one 
strategy over the other? 

First, general causal statements, which refer to a 
category of causal events, are seen as more compatible 
with statistical evidence than are specific causal 
statements, which refer to only an individual causal event. 
We hypothesized that this would occur because 
representations of general claims intrinsically include 
statistical content, and people would seek evidence that 
conforms to their representation of the causal concept. 

Second, statistics were seen as more relevant for 
biological and social systems than for physical systems, 
whereas mechanistic evidence was more important for 
physical systems. We predicted this effect because causal 
representations vary across domains. Whereas physical 
systems are seen as more linear and force-based, social 
and biological systems are seen as more branching and 
counterfactual-based (Lombrozo, 2010; Strickland et al., 
2016). Thus, concepts of biological and social causation 
would be more stochastic than concepts of physical 
causation, leading people to favor statistical evidence. 

Causal Pluralism. Our causal representations subserve 
a variety of cognitive functions, and exhibit a concordant 
variety of properties that sometimes appear contradictory 
(Johnson & Ahn, in press). For instance, causal 
representations seem to have many of the properties of 
associations (Shanks, 1987), yet causal inferences exhibit 
directional biases that are inconsistent with symmetric 
associative representations (Waldmann & Holyoak, 
1992). These shortcomings of associative theories have 
led to the suggestion of causal models or Bayesian 
networks as the representation over which causal 
reasoning operates (e.g., Pearl, 2000; Sloman, 2005). Yet, 
other evidence suggests that people often fail to make the 
transitive inferences predicted by Bayesian networks (i.e., 
that A causes C, given that A causes B and B causes C), 
and that these failures occur when the connection between 
A and C is not seen as a coherent, schematized 
mechanism (e.g., sex causes pregnancy, which causes 
nausea, but sex does not cause nausea; Johnson & Ahn, 
2015). Thus, causal representations appear to have some 
association-like properties, some network-like properties, 
and some schema-like properties. Add to this evidence 
that causal relations are represented with some properties 
of forces (Wolff, 2007), icons that support mental 
simulation (Hegarty, 2004), and metacognitive place-
holders (Rozenblit & Keil, 2002), and it becomes clear 
that people do not represent causation using one unified 
representation (see Markman & Dietrich, 2000). 

Despite the overwhelming evidence for representational 
pluralism, it does not follow that people use distinct 
strategies for learning about different varieties of causal 
concepts. People may not tailor their learning strategies to 
the representation at hand, but could instead apply a 
single learning strategy across all types of causal systems, 

such as statistical learning algorithms (Pearl, 2000). 
However, the current experiments demonstrate learning 

patterns that are not only pluralistic, but appear to be 
tailored to the underlying representation. In the cases of 
specific causation we used, there is no prior knowledge, 
so the only option is to learn about the general causal 
relation anew. If the best strategy for learning about the 
general claim is statistics, then the best strategy for 
learning about the specific relation is also statistics. Yet, 
participants shifted dramatically from statistics when 
learning about specific claims—a signal that they had 
applied a heuristic, matching statistical  representations of 
general claims to statistical information. Therefore, any 
view of causal learning and representation that focuses on 
a single representation or learning mechanism will fail to 
capture important aspects of our causal thinking. 

In addition to clarifying the debate between mechanism 
and statistical views of causation, causal pluralism may 
also be a helpful framework for thinking about debates 
over causal semantics. Theories of causal semantics 
embrace diverse accounts based on physical forces 
(Wolff, 2007), on probability (Good, 1961), and on logic 
(Lewis, 1973). Teasing these accounts apart has been 
difficult because they often make similar empirical 
predictions (Barbey & Wolff, 2007; Goldvarg & Johnson-
Laird, 2001; Sloman, Barbey, & Hotaling, 2009). 

However, in a pluralistic framework, it may not only be 
difficult but in fact impossible to capture all of causal 
semantics using a single representational format. Our 
causal representations differ not only in reference (general 
or specific) and domain (physical, biological, social), but 
along many other dimensions as well, in potentially 
interconnected ways—among deterministic, chaotic, and 
indeterministic systems; among the past, present, and 
future; between observed, unobserved, and unobservable 
causes and effects; between categorically or continuously 
valued causes and effects; and among various potential 
causal structures. A useful strategy going forward may be 
to investigate the manner in which such variation in 
causal meaning propagates to causal learning processes. 
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