UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

A Cognitive Modeling Approach for Predicting Behavioral and PhysiologicalWorkload Indicators

Permalink

https://escholarship.org/uc/item/2vp8698v

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors

Stevens, Christopher Morris, Megan Fisher, Christopher <u>et al.</u>

Publication Date 2019

Peer reviewed

A Cognitive Modeling Approach for Predicting Behavioral and Physiological Workload Indicators

Christopher Stevens

Air Force Research Laboratory, Dayton, Ohio, United States

Megan Morris

Ball Aerospace, Fairborn, Ohio, United States

Christopher Fisher

Air Force Research Laboratory, Dayton, Ohio, United States

Christopher Myers

Air Force Research Laboratory, WPAFB, Ohio, United States

Abstract

Measuring cognitive workload is a persistent challenge in cog-nitive science. Cognitive architectures may offer a principledway to measure, define, and understand workload and its be-havioral and physiological consequences in terms of under-lying cognitive dynamics. Previous research has shown thatmodel-based workload relates to subjective workload judg-ments in simple tasks. Our goal was to further validate model-based workload measurement with known physiological work-load indicators in a complex task characterized by varying de-grees of workload levels. Participants completed an unmannedvehicle management task while their physiology was recorded.Correlations between model-based workload and physiologi-cal metrics generally trended in the predicted direction, andthe engagement index showed the strongest and most consis-tent relationship to model workload. The results provide pre-liminary validation for model-based workload measurement.