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CONSPECTUS:

In response to water scarcity and an increased recognition of the risks associated with the presence 

of chemical contaminants, environmental engineers have developed advanced water treatment 

systems that are capable of converting municipal wastewater effluent into drinking water. This 

practice, which is referred to as potable water reuse, typically relies upon reverse osmosis (RO) 

treatment followed by exposure to ultraviolet (UV) light and addition of hydrogen peroxide 

(H2O2). These two treatment processes individually are capable of controlling many of the 

chemical and microbial contaminants in wastewater; however, a few chemicals may still be present 

after treatment at concentrations that affect water quality.

Low-molecular weight (<200 Da), uncharged compounds represent the greatest challenge for RO 

treatment. For potable water reuse systems, compounds of greatest concern include oxidation 

products formed during treatment (e.g., N-nitrosodimethylamine, halogenated disinfection 

byproducts) and compounds present in wastewater effluent (e.g., odorous compounds, organic 

solvents). Although the concentrations of most of these compounds decrease to levels where they 

no longer compromise water quality after they encounter the second treatment barrier (i.e., 

UV/H2O2), low-molecular weight compounds that are resistant to direct photolysis and exhibit low 

reactivity with hydroxyl radical (·OH) may persist. While attempts to identify the compounds that 

pass through both barriers have accounted for approximately half of the dissolved organic carbon 

remaining after treatment, it is unlikely that a significant fraction of the remaining unknowns will 

ever be identified with current analytical techniques. Nonetheless, the toxicity-weighted 

concentration of certain known compounds (e.g., disinfection byproducts) is typically lower in 

RO-UV/H2O2 treated water than conventional drinking water.
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To avoid the expense associated with managing the concentrate produced by RO, environmental 

engineers have begun to employ alternative treatment barriers. The use of alternatives such as 

nanofiltration, ozonation followed by biological filtration, or activated carbon filtration avoids the 

problems associated with the production and disposal of RO concentrate, but they may allow a 

larger number of chemical contaminants to pass through the treatment process. In addition to the 

transformation products and solvents that pose risks in the RO-UV/H2O2 system, these alternative 

barriers are challenged by larger, polar compounds that are not amenable to oxidation, such as 

perfluoroalkyl acids and phosphate-containing flame retardants.

To fully protect consumers who rely upon potable water reuse systems, new policies are needed to 

prevent chemicals that are difficult to remove during advanced treatment from entering the sewer 

system. By using knowledge about the composition of municipal wastewater and the mechanisms 

through which contaminants are removed during treatment, it should be possible to safely reuse 

municipal wastewater effluent as a drinking water source.

Graphical Abstract

INTRODUCTION

In the early 1900s, environmental engineers invented a means of treating source waters that 

were contaminated with waterborne pathogens.1 The development of drinking water 

treatment systems meant that over approximately two decades, outbreaks of waterborne 

diseases like typhoid fever decreased, as lifespans were extended.2 The system responsible 

for this public health triumph typically involved a combination of physical removal of 

microbes by sand filtration followed by disinfection with chlorine. The term “multiple 

barrier,” which originally referred to watershed protection, water treatment, and addition of a 

chemical disinfectant after treatment, was adopted by researchers to describe this series of 

processes commonly employed during drinking water treatment.3

Although drinking water treatment was originally developed to address the risks of 

waterborne pathogens, it was extended to include removal of chemical compounds that 

impact aesthetics (e.g., geosmin, a compound with an organoleptic threshold of ~1 ng/L4) 

and pose potential health risks (e.g., arsenic, which can cause cancer and other diseases5). To 

address the potential presence of chemical contaminants in drinking water, regulations 

developed in the 1970s and 1980s specified targets (e.g., maximum contaminant levels, 

MCLs) for chemicals known to impact human health, including synthetic organic 

compounds in source waters and toxic compounds formed during disinfection.
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During this period, discharges of municipal wastewater effluent (i.e., treated sewage) were 

viewed as a potential risk to water supplies that could be mitigated through dilution of 

wastewater-impacted waters with water from cleaner sources. Over the past 50 years, 

expanding populations and decreasing availability of pristine water sources, coupled with 

advances in treatment technologies, have led to a gradual shift in attitude and practice.6 

Now, blending highly treated municipal wastewater into a source water (i.e., potable water 

reuse) is seen as a viable means of augmenting drinking water supplies.7

Around the time that potable water reuse systems were expanding, high-performance liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) enabled the measurement of polar 

compounds that had rarely been detected in the aquatic environment. In particular, the 

discovery that trace concentrations (i.e., <5 ng/L) of steroidal estrogens in wastewater were 

responsible for feminization of fish in effluent-receiving rivers,8–11 coupled with detection 

of pharmaceuticals and personal care products in municipal wastewater effluent,10,12,13 

raised awareness of the issue of wastewater-derived contaminants.

There are currently ~25 full-scale potable water reuse projects in operation worldwide.7 

Orange County (California) Water District’s potable water reuse system was the first system 

to employ reverse osmosis (RO) and has served as a trendsetter, as the practice has expanded 

beyond Southern California. The project began in 1977 with the installation of an advanced 

treatment plant that injected 57 000 m3/d of highly treated wastewater to counteract seawater 

intrusion caused by overpumping of groundwater. The facility originally treated half of the 

wastewater by RO to remove salts and chemical contaminants. Because of the high cost of 

early RO systems, the other half of the flow was subjected to granular activated carbon 

(GAC) filtration. Researchers studying these parallel physical treatment barriers reported 

that RO treatment resulted in lower concentrations of contaminants, such as 

ethylenediaminetetraacetic acid (EDTA) and dissolved organic carbon (DOC; i.e., after GAC 

and RO, DOC concentrations were 5.4 and 0.8 mg C/L, respectively).14,15

When the capacity of the system was expanded to 265 000 m3/d in 2008, an integrated 

membrane system with microfiltration and RO treated the entire flow. When the expansion 

was being designed, the toxic compounds N-nitrosodimethylamine (NDMA) and 1,4-

dioxane were discovered in water produced by the first-generation treatment plant at 

concentrations exceeding levels known to pose chronic health risks. This discovery led to the 

installation of an additional chemical treatment barrier after RO: an advanced oxidation 

process (AOP) using UV and H2O2. The resulting advanced treatment plant, referred to as 

the Groundwater Replenishment System (GWRS), consisted of three sequential barriers to 

control waterborne pathogens: microfiltration, RO, and high-intensity UV light in the AOP. 

The system also combined physical (RO) and chemical (UV/H2O2) barriers to chemical 

contaminants (Figure 1). The GWRS currently operates with a flow of 379 000 m3/d. After 

its planned expansion to 492 000 m3/d in 2023, essentially all of the wastewater that can be 

recovered practically will be returned to the water supply. Research on the performance of 

this system is relevant worldwide, because the advanced treatment plant has operated longer 

than other projects that employ similar approaches, and it has been well-accepted by the 

community.16 As a result, Orange County’s multiple barrier treatment system has been 

replicated in potable water reuse projects in Texas,17 Arizona,7 Singapore,7 and Western 
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Australia.18 Simply put, the GWRS potable reuse project has emerged as the “Gold 

Standard” to which proposed projects are compared.

Given the array of chemicals potentially present in wastewater, it would be difficult to 

validate their removal on a chemical-by-chemical basis. A key assumption behind the “dual 

barrier” system is that physical (RO) and chemical (UV/H2O2) treatment systems will 

control chemical contaminants with different physical and chemical properties, and few 

chemicals will be insufficiently treated by the treatment sequence7,19 (Figure 1). The 

veracity of this assumption is key to the performance of the dual barrier system.

REVERSE OSMOSIS AS A CHEMICAL BARRIER

Modern water reuse systems employ thin-film composite membranes for RO.20 Dissolved 

solutes are excluded, because they diffuse through the polymer at rates that are much slower 

than that of the water molecules.21 Other factors, such as electrostatic repulsion and van der 

Waals interactions, also affect solute removal during RO.22,23 In general, uncharged 

compounds with molecular weights less than 200 Da are only partially rejected by RO 

membranes.24 For charged compounds and larger compounds, concentrations typically 

decrease by over 95% during RO treatment under conditions employed in water reuse.25,26

In contrast, compounds that pose the greatest challenges to the GWRS and similar facilities 

are uncharged, low-molecular weight compounds. NDMA (molecular weight = 74 g/mol) is 

a mutagenic and carcinogenic compound27 (e.g., the notification level for NDMA in 

California is 10 ng/L28) that has been particularly problematic for potable water reuse 

systems. Early efforts to identify the source of NDMA implicated sewage (e.g., NDMA 

concentrations as high as 790 ng/L were detected in sewage29). NDMA was also formed 

when chloramines30,31 or ozone32 were applied upstream of microfiltration to control 

biological fouling on membrane surfaces. Precursors of NDMA include industrial 

chemicals33 and chemicals present in domestic discharges, such as the wastewater from 

clothes washing.34

After NDMA was detected, efforts were made to control its formation and enhance its 

removal. Researchers discovered that minimizing the concentration of dichloramine—the 

chloramine species most responsible for NDMA formation—by using preformed 

monochloramine,35 or by employing multiple introduction points for hypochlorite into 

ammonia-containing wastewater,36 decreased NDMA formation. They also demonstrated 

that removal of NDMA during RO was affected by the type of membrane used,37 the water 

temperature,38 and the membrane age.39

Chloramination upstream of membrane processes can also produce low-molecular weight 

halogenated disinfection byproducts (DBPs) through reactions with effluent organic matter.
31,40 These include a variety of toxic halogenated compounds (e.g., haloacetonitriles, 

haloacetamides, haloacetaldehydes, haloketones, and halonitromethanes).41,42 Because of 

their small size (i.e., mostly <200 Da), these uncharged compounds are poorly rejected by 

RO membranes43,44 (Figure 2).
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When ozone is used as an oxidant upstream of microfiltration to reduce fouling,45 the bulk 

organic matter in the wastewater effluent reacts with ozone and/or ·OH produced during 

ozone decomposition46 to form aldehydes and ketones, such as formaldehyde and glyoxal.47 

Not only are many of these uncharged compounds poorly rejected during RO,48,49 some 

exhibit high toxicity.50

In addition to oxidation products, there are compounds present in wastewater effluent that 

are poorly rejected by RO systems. Because most uncharged compounds are difficult to 

quantify by LC-MS/MS and are not monitored routinely, their presence has only come to the 

attention of researchers using sensitive gas chromatography-tandem mass spectrometry (GC-

MS/MS) methods. For example, compounds with extremely low odor thresholds (i.e., 0.5–

10 ng/L) are responsible for most consumer complaints about drinking water.51 Odorous 

compounds, including 2,4,6-trichloroanisole (molecular weight = 211 g/mol), have been 

detected at concentrations up to an order of magnitude above their odor threshold after RO 

treatment.52 Municipal wastewater also contains a variety of uncharged, low-molecular 

weight organic solvents (e.g., acetone, 1,4-dioxane). Concentrations of solvents in recycled 

water are usually below values developed for protection of public health.53,54

Despite their low frequency of detection in wastewater samples, solvents sometimes can 

pose serious problems for potable reuse systems. In 2001, at Orange County’s GWRS, 1,4-

dioxane was detected prior to RO at up to 200 μg/L and in supply wells receiving recycled 

water at concentrations ranging from 4 to 20 μg/L55 (the California notification level for the 

compound at the time was 3 μg/L). One significant 1,4-dioxane source was a manufacturer 

of cellulose acetate membranes (ironically, similar to membranes used in the facility).55 In 

2013, acetone was detected at the same facility at elevated concentrations for ~1 day56 

(Figure 3). Although solvents typically do not pose acute health risks at the concentrations 

detected after RO, such episodic events could result in taste and odor problems.

UV/H2O2 AS A CHEMICAL BARRIER

When H2O2 absorbs UV light, it undergoes homolytic cleavage to form ·OH (eq 1).

H2O2 + hν 2 ⋅ OH (1)

This process is particularly effective when it is used after RO due to the low concentrations 

of dissolved organic carbon (i.e., DOC <0.5 mg C/L), which typically serves as both a sink 

for·OH and as a source of chromophores that compete for absorption of UV light. The 

steady-state concentration of ·OH ([·OH]ss) is a function of the rate of formation from 

photolysis of H2O2 (Rform,·OH,H2O2), which can be reduced due to light screening from 

DOC and other chromophores, as well as by solutes that consume ·OH (eq 2). Steady-state 

·OH concentrations typically range from 1 × 10−10 to 1 × 10−13 M when UV/H2O2 is 

employed after RO in potable water reuse.57

[ ⋅ OH]ss = Rform, ⋅ OH, H2O2
∑k ⋅ OH, ci Ci + k ⋅ OH, H2O2 H2O2 + k ⋅ OH, DOC[DOC] (2)
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Under typical operating conditions employed during UV/H2O2 after RO treatment, an 

increase in DOC from 0.1 to 4 mg C/L will decrease [·OH]ss by approximately an order of 

magnitude.

The transformation of a contaminant in UV/H2O2 depends on its rate of photolysis and its 

reactivity with ·OH (kHO·). Only compounds with high molar absorption coefficients and 

quantum yields (e.g., NDMA) are transformed to a significant extent by photolysis in 

UV/H2O2 systems, and ·OH reacts with most organic compounds at nearly diffusion-

controlled rates (i.e., kHO· = (5–10) × 109 M−1 s−1). The UV/H2O2 process in advanced 

treatment is typically designed to achieve 1.2-log reduction (i.e., where a 1.2 log reduction 

corresponds to a 94.7% decrease in initial concentration or [C]/[C]0 = 1 × 10−1.2) in the 

concentration of NDMA (by direct photolysis) and 0.5-log reduction in the concentration of 

1,4-dioxane (by ·OH oxidation). However, some of the same uncharged, low-molecular 

weight solvents and halogenated DBPs that are poorly rejected by RO also exhibit low 

reactivity with ·OH or do not undergo direct photolysis. For example, compounds like 

formaldehyde (kHO· = 1.3 × 108 M−1 s−1) or chloroform (kHO· = 5.4 × 107 M−1 s−1) will not 

be removed to an appreciable extent (Figure 4).

Chloroform does not absorb UV light at 254 nm and exhibits low reactivity with ·OH. The 

UV dose needed for 50% removal of chloroform in a UV/H2O2 system would be 5500 

mJ/cm2 (Figure 5).58 The more toxic brominated trihalomethane species are better removed 

by both direct photolysis and to a minor extent by reaction with ·OH (kHO· = (6–10) × 107 M
−1 s−1), yet only 65% removal of bromoform would be expected under conditions used in 

most advanced treatment facilities (i.e., 750 mJ/cm2 UV dose).

The design constraint of UV/H2O2 in advanced treatment reflects the trade-off between 

system cost and the efficacy of the barrier. The less reactive, low-molecular weight 

compounds could be removed by increasing the size of the reactor. For example, 50% 

removal of chloroform through indirect photolysis could be achieved (Figure 5) but only by 

increasing the dose (and hence reactor size and energy consumption) by a factor of ~5.58 

Thus, oxidation of less-reactive contaminants, while theoretically possible, is too costly in 

practice.

When UV/H2O2 or any other treatment process that relies upon oxidation is used, it is 

important to understand the potential formation of toxic byproducts. Although 

concentrations of target contaminants typically decrease during UV/H2O2 treatment, 

oxidation processes mostly lead to compound transformation rather than complete 

mineralization.59 For example, phenolic compounds can be transformed into products that 

are more toxic than the parent compounds (e.g., benzoquinones60 and α,β-unsaturated 

enedials and oxoenals61) during UV/H2O2 treatment.

KNOWING THE UNKNOWNS IN THE DUAL BARRIER SYSTEM

After close to three decades of research on chemical compounds in potable water reuse 

systems, it is evident that only a small subset of contaminants in wastewater effluent passes 

through RO membranes and resists oxidation by ·OH during UV/H2O2 treatment. Under 
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conditions typically employed in advanced treatment plants, the final product water typically 

contains ~100 μg C/L.31,49 Known organic compounds (mainly formaldehyde, acetone,49 

and halogenated DBPs31,54) account for ~35% of the organic carbon present post-RO 

treatment (Figure 6). The remainder of the organic carbon (~65 μg/L) likely consists of other 

uncharged, low-molecular weight compounds.

Because most of these neutral, low-molecular weight compounds are not amenable to 

quantification at these low concentrations by either GC-MS/MS or LC-MS/MS, it may be 

necessary to employ other approaches, such as bioanalytical tools, to assess the potential 

health risks associated with the residual constituents in product waters. A challenge for the 

application of bioanalytical tools to the problem is the significant concentration factor 

needed to obtain bioassay responses. Furthermore, the low-molecular weight, uncharged 

compounds are often lost during sample concentration due to their high volatility.62 The 

National Research Council concluded that NDMA and DBPs likely pose the greatest 

chemical risks for consumers of recycled water.7 However, it is important to note that these 

contaminants are present in source waters or can be formed during conventional drinking 

water treatment. When DBP concentrations from different types of waters are weighted by 

metrics of toxic potency, the total toxicity-weighted byproduct concentration is typically 

lower in recycled water produced by RO-UV/H2O2 systems relative to conventional drinking 

water.31,63

POTABLE WATER REUSE WITHOUT REVERSE OSMOSIS TREATMENT

Under conditions typically employed during potable water reuse, ~15% of the wastewater 

effluent is retained as RO concentrate.64 Most communities that were early adopters of 

potable water reuse discharged their RO concentrate through existing ocean outfalls. 

However, discharge of RO concentrate is challenging for many inland communities, because 

zero-liquid discharge technologies65 are expensive. As a result, many utilities are seeking 

alternatives to RO treatment.

Nanofiltration has been proposed as an alternative to RO, because tight nanofiltration 

membranes reject organic matter as well as microbes but allow monovalent salts to pass, 

resulting in a smaller volume of concentrate.66 Another advantage is that nanofilters 

operating in place of RO membranes require less pressure, thereby reducing energy 

consumption and cutting electricity costs by up to 50%.66 However, nanofiltration 

membranes are not as effective as RO with respect to rejection of uncharged, low-molecular 

weight compounds (Figure 7). Furthermore, relative to RO, elevated concentrations of DOC 

after nanofiltration could reduce the efficacy of the UV/H2O2 process by scavenging ·OH 

and absorbing UV light.

Another alternative to RO employs the use of either powdered or granular activated carbon 

(PAC or GAC). For example, the Upper Occoquan Service Authority (Virginia) uses GAC to 

remove trace organic compounds and DOC prior to reservoir augmentation with recycled 

water.69 Hydrophobic compounds tend to be well-removed by activated carbon, whereas 

charged compounds (e.g., naproxen, gemfibrozil, and ibuprofen) or hydrophilic compounds 

tend to be poorly removed under conditions typically employed during water treatment.26,70 
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In addition, activated carbon is inefficient with respect to removal of perfluoroalkyl acids 

(PFAAs).71 Finally, activated carbon must be regenerated more frequently when it is used to 

treat water with relatively high DOC concentrations, like municipal wastewater effluent.69

Another advanced treatment process involves use of ozone followed by sand filtration or 

filtration through GAC, which due to the presence of a biofilm is referred to as biologically 

activated carbon (BAC).72 Combinations of ozone and BAC are currently being used in 

Switzerland to upgrade wastewater treatment plants discharging to sensitive aquatic 

ecosystems.73 Compared to RO/AOP, combined ozone/BAC consumes less than half of the 

energy and costs approximately half as much to operate and maintain.74 This approach does 

not remove compounds that exhibit low reactivity with ozone or ·OH (e.g., PFAAs). 

Furthermore, ozonation of wastewater can produce high concentrations of bromate,75,76 a 

potential human carcinogen (MCL = 10 μg/L). Careful control of ozone doses during 

ozonation of wastewater can keep bromate concentration within an acceptable range.77 In 

addition to wastewater treatment plant upgrades, combined ozone/activated carbon systems 

have also been used in existing and planned potable reuse systems, including surface water 

augmentation in Gwinnett County (Georgia)7 and direct potable reuse in Windhoek 

(Namibia).18

THE THIRD BARRIER: CHEMICAL STEWARDSHIP TO SUPPORT POTABLE 

WATER REUSE

Industrial discharges were important sources of NDMA and 1,4-dioxane at Orange County 

Water District’s GWRS, despite a relatively modest number of industrial dischargers and a 

well-funded industrial source control program. Other examples of problematic compounds 

reported elsewhere include antiyellowing agents discharged by textile industries that produce 

high concentrations of NDMA upon ozonation78 and resin manufacturing plants that 

discharge problematic amounts of odorous solvent 1,3-dioxane.79 Consumer products like 

the insecticide fipronil, which is applied topically to dogs, has been detected in municipal 

wastewater at concentrations ranging from 13 to 88 ng/L.80

Ultimately, the dual barrier system may not provide adequate protection from all of the 

chemical contaminants present in wastewater. Rather than rely upon additional treatment 

processes, a third barrier may be necessary: robust source control programs that employ 

existing knowledge, as described in the previous sections, to identify and eliminate 

compounds that are not adequately removed in advanced treatment systems. The third 

barrier may be particularly important in systems that do not employ RO, where compounds 

like PFAAs and phosphate-containing flame-retardants like TCEP will not be well removed. 

Product substitution or better chemical stewardship could be much more cost-effective and 

sustainable than relying solely on treatment processes. This would also reduce exposure of 

aquatic ecosystems and downstream water supplies to these contaminants. The 

implementation of rigorous source control and chemical stewardship measures, coupled with 

research to identify problematic contaminants, will protect public health and provide 

confidence in potable water reuse as a viable path for communities worldwide.
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Figure 1. 
Advanced wastewater treatment for potable reuse employs microfiltration, RO, and UV/

H2O2.
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Figure 2. 
Apparent overall rejection of select DBPs during RO, including charged haloacetic acids 

(HAAs) and uncharged trihalomethanes (THMs), dihaloacetonitriles (DHANs), and 

bromophenols. Reproduced with permission from ref 43. Copyright 2010 Elsevier.

Marron et al. Page 15

Acc Chem Res. Author manuscript; available in PMC 2020 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Total organic carbon (TOC) online analyzer data at Orange County Water District GWRS. 

Immediate investigation as part of a source control program revealed that the increase was 

attributable to a pulse of acetone. The dashed line represents the TOC regulatory limit in 

California (0.5 mg C/L) for water produced in potable reuse. Raw data provided with 

permission from Orange County Water District and available from ref 56.
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Figure 4. 
Reactivity of compounds in UV/H2O2 as a function of the log of the second-order rate 

constants of their reaction with ·OH (log kHO·) assuming [·OH]ss = 4 × 10−10 M (calculated 

based on 0.5-log removal of 1,4-dioxane, kHO· = 2.8 × 109 M−1 s−1). The dashed line 

represents reactivity with a DOC concentration of 4 mg C/L under similar operating 

conditions.
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Figure 5. 
UV dose (254 nm) needed to achieve 50% abatement of trihalomethanes (left) and the 

percentage contribution of direct photolysis or ·OH oxidation (right) in UV/H2O2 with 3.4 

mg/L H2O2. Adapted with permission from ref 58. Copyright 2016 American Chemical 

Society.
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Figure 6. 
Approximate contributions of select chemical contaminants to the DOC (assuming 100 μg 

C/L) post-RO treatment in potable water reuse. Data averaged and compiled from three 

different treatment facilities in refs 31, 49, and 54.
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Figure 7. 
Percent remaining of NDMA, tris(2-carboxyethyl)-phosphine hydrochloride (TCEP), 

carbamazepine (CBZ), and perfluorooctanesulfonate (PFOS) after treatment by 

nanofiltration or RO. Data from refs 66–68.
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