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 1992 WALD MEMORIAL LECTURE

 RECURSIVE SELF-SIML[ARITY FOR RANDOM TREES, RANDOM
 TRIANGULATIONS AND BROWNIAN EXCURSION'

 BY DAVID ALDOUS

 University of California, Berkeley

 Recursive self-similarity for a random object is the property of being de-
 composable into independent rescaled copies of the original object. Certain
 random combinatorial objects-trees and triangulations-possess approxi-
 mate versions of recursive self-similarity, and then their continuous limits

 possess exact recursive self-similarity. In particular, since the limit con-
 tinuum random tree can be identified with Brownian excursion, we get a
 nonobvious recursive self-similarity property for Brownian excursion.

 1. Introduction. There is a Big Picture of a world of discrete and contin-
 uous random trees, surveyed several years ago in [2]. This paper treats a new
 aspect of this world, which hopefully will be interesting and comprehensible
 to the reader who has not seen this world before. In Section 1 we jump right
 into the specific issue of this paper and lay out some concrete calculations in
 the discrete world of random trees and triangulations. In Section 2 we use the
 Big Picture to see consequences in the continuous world. In Section 3 we do
 some explicit distributional calculations, which can be viewed as exact calcu-
 lations for continuum random trees or Brownian excursion, or as asymptotics
 for discrete random trees and triangulations.

 I do want to make an ideological point, illustrated by the following joke.
 A tourist was enjoying a beautiful panoramic vista of mountains interspersed
 with lakes when she heard a neighbor comment, "This country would be so much
 tidier if all the mountains were moved over there and all the lakes were moved
 over there!" To me, the beauty of this topic is the interaction between the discrete
 and continuous worlds. It is possible to be tidy-minded and treat asymptotics
 of discrete random objects via discrete methods which pay no attention to the
 existence of continuous limit objects, and to treat continuous random objects by
 continuous methods without reference to discrete approximations, but why?

 1.1. Recursive self-similarity. The idea (I shall not attempt a precise def-
 inition) of recursive self-similarity of a random set is that the set can be de-
 composed as a union of (perhaps randomly) rescaled independent copies
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 FIG. 1.

 of itself. The most familiar example is the Brownian motion sample path
 B = {B(t): 0 < t < 1}. The prescription (see Figure 1)

 3-1/2B,(3t), 0O< t< 1,

 B(t) = +3-1/2(B1()+B2(3t-1)), 3 < t 3 ,
 3-1/2 (B1(1) + B2(1) + B3(3t - 2)), 7 3 t - 1,

 decomposes B into three independent copies B1, B2, B3 of B. (Yes, we could have
 used just two copies, but three is more in keeping with the theme of the paper.)
 A simple application of Donsker's theorem for triangular arrays shows that
 Brownian motion is (up to scaling) the unique continuous random process with
 this particular decomposition property.

 A somewhat different, large class of examples are obtained by suitably ran-
 domizing the type of recursive constructions of deterministic fractals-such as
 the Cantor set and the Sierpinski gasket-with which the reader is surely fa-
 miliar. For definiteness, let us specify an example, essentially what Mandelbrot
 415] calls canonical curdling.

 Split the unit square into four equal subsquares. Choose one subsquare at
 random and delete it, retaining the other three. Repeat recursively within each
 retained subsquare. This yields a decreasing sequence of random sets, whose
 intersection S is a random set with dimension log2 3. Also, S has an obvious
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 FIG. 2.

 self-similarity property which can be written as

 (1) S =d (2S1 + a,) U (2S2 + a2) U (2S3 + a3)X

 where the Si are independent copies of S and the ai are sampled without re-
 placement from {(OO), (0, 2)' (2 'O) ' (12 ') }. See Figure 2. Taking the discarded
 subsquares to be open makes S closed, and it is easy to check that S is the unique
 nonempty closed random set satisfying (1).

 Falconer [7], Graf [101 and Mauldin and Williams [161 abstracted this type
 of example to define a notion of "random recursive construction" which allows,
 for instance, the recursive step to consist of replacing a square by randomly po-
 sitioned subsquares of differing sizes. See [11, Section 61 for examples. See also
 Patzschke and Zahle [221 for how these constructions fit into a general "self-
 similarity" framework, and see Falconer and Grimmett J81 for further results.
 These authors were mainly concerned with fractal dimension, instead of the
 distributional questions which underlie this paper. Also, I view these construc-
 tionsarather differently from how I'view Brownian motion. Brownian motion is
 a "natural" process which happens to have a recursive self-similarity property,
 whereas the constructions above are "artificial" and are specifically designed to
 have a recursive self-similarity property. Are there other "natural" examples?
 The next two sections treat two different-looking discrete-world examples.
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 1.2. Trees and branches. Figure 3 illustrates the idea that, given three
 typical vertices {1,2,3} in a typical large tree, these should lie in different
 branches from a branchpoint v, and these three branches should contain almost
 all the vertices of the tree. This suggests an approximate recursive decomposi-
 tion of random trees into three subtrees. To say this carefully we recall some

 terminology. A finite tree is a connected graph without cycles. Apath vo , v1... , Vk
 is a sequence of distinct vertices for which each (vi, v+1) is an edge. Saying a
 tree is rooted just means that one of the vertices is distinguished and called the
 root. In a rooted tree we may use the language of families. That is, in a path

 (root = v0, v1, ... , Vk) we call vi+1 a child of vi, and we call vi the parent of vi+,.
 If the root has d children w,... , Wd, then the tree has d branches, each branch
 being the subtree consisting of some ws and its descendants. (Our convention
 is to exclude the root from the branches). The size of a tree or subtree is its
 number of vertices.

 The precise version of our initial idea is as follows. Consider an n-vertex tree
 with vertices labeled {1, 2,. . ., n}. Consider three distinct vertices, say, 1, 2, 3.
 There are two alternatives: (a) One of these vertices is on the path joining the
 other two. (b) There exists a vertex v > 3 such that, considering the tree rooted
 at v, vertices 1, 2 and 3 are in different branches, and these branches have sizes
 Mi1, M2 and M3 satisfying

 ml > 1 m2>, m3>, ml +m2+m3< n -1.

 We want to argue that (b) is the "likely" alternative. Cayley's formula says
 there are nn-2 different unrooted trees on n labeled vertices. So consider a
 "uniform random n-tree", that is, a uniform random choice from these nn-2
 trees. Using the fact (e.g., [191, Theorem 7.8) that

 k

 P(distance between vertices l and 2 = k) = k1 n I
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 it easily follows that the probability of (a) equals

 E 3( k + 1 ) ( 3-1) I n /2
 n 2~~~1/

 So far large n, (b) is indeed the more likely possibility. Write qn(ml, M2, M3) for
 the probability of (b). An elementary counting exercise shows

 1
 qn(ml, m2,m3) -2 x (n-3)

 (2) x(n-4)!
 (ml - 1)!(m2 - 1)!(m3 - 1)!(n - 1 - ml - M2 - M3)!

 X ml1 2mIln m32- l(M - (n - ml i2 - )n-mj-m2-m3-2 1 2 3 - i n 3,M

 for there are (n-3) choices for the root v; the next term is the multinomial for the
 number of ways to split the remaining n - 4 vertices into subsets of size mi - 1
 to comprise the other vertices in the branches containing i, i = 1, 2,3; the terms
 mini1 give the number of ways to put tree-structure on these subsets, with one
 vertex distinguished as being attached to v; the final term is the number of
 ways to put tree-structure on the remaining n - ml - M2 - M3 vertices, with
 vertex v as root.

 It is straightforward to use Stirling's approximation to get asymptotics. Write

 MM-1
 in) -;!-e -, M >1

 For t1, t2, t3 satisfying

 (3) t1 > O, t2 > O, t3 > O, t1+t2+t3=1

 we find

 (4) qn(Ml, M2,M3)- n-2 (2-7r)-l(tlt2t3)_ 1/2 P(M4)

 as n -* x0, mi/n -* tj, i = 1,2, 3,whereiM4 = n-rm1 - M2 - M3.
 Now p is the distribution of a random variable Z [which can be interpreted as

 the total population of the Galton-Watson branching process with Poisson(l)
 offspring], and (27r)-l(tlt2t3)1/2 is the Dirichlet( , 2 1) density ofrandom vari-
 ables (A1, A2, A3), say, on the simplex (3). Thus (4) is the local limit theorem
 corresponding to the following (formally weaker) convergence in distribution
 assertion.

 PROPOSITION 1. In the uniform random n-tree, in case (b) let AI A(n) and 1' 2

 AW be the sizes of the branches containing vertices 1, 2 and 3, and in case (a)
 let AW IAW and AW be arbitrary. Then, as n-* 00,

 (n-1A , n- A)in- 1AW),n -_ A[) _ W _ A(n)) -*d(AliL\27A37Z),
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 where Z and (A1, A2, A3) are independent with the distributions specified above.

 Implicit in the argument for (2) is the fact that, conditional on

 {tin) = mi; i = 1, 2, 3}, the three branches are independent uniform random
 mi-trees, and the three vertices in these branches which attach to the root are
 independent uniform choices. With these observations, Proposition 1 provides
 an approximate recursive decomposition of random n-trees as ajoining-together
 of three smaller random trees. This is only approximate for two reasons: There
 is some chance that the three vertices do not determine a branchpoint, and
 there are O(1) vertices left out of the three branches. However, in the n - oo
 limit these difficulties vanish; see Theorem 2 later.

 1.3. Triangulations of the n-gon. An undergraduate-level exposition of some
 of the ideas in this paper relating to triangulations was given in [4], but the
 presentation there has a different emphasis.

 A triangulation of a finite set Q in the plane is a collection of nonintersecting
 line segments with endpoints from Q such that the convex hull of Q is parti-
 tioned into triangular regions. We shall be concerned only with the cases Qn
 consisting of the vertices of a convex n-gon, which are labeled as 1, 2,.. ., n in
 clockwise order from an arbitrary starting vertex. In such a triangulation each
 point is linked to its neighbor on either side and may or may not be linked to
 other points. It is well known ([23] and [9], Chapter 20) that the number of
 different triangulations of Qn is given by the (n - 1)st Catalan number cn1,
 where

 (2m - 2)!
 (5) Cm = (m - 1)!m!' m > 1.

 One way to check this is from the recursion (6). The edge (1, n) is part of a

 triangle whose other vertex is some j with 2 < j < n - 1, and then the whole
 triangulation decomposes into a triangulation of vertices 1, 2,. .. ,j and a tri-
 angulation of vertices jj + 1,... , n. Thus the number En-1 of triangulations of
 Qn satisfies

 n-i

 (6) Zn-l Ecy_16n-;, n > 3,
 j=2

 where El = 1, and this is a standard recursion for the Catalan numbers.
 Consider now the uniform random triangulation of Qn. What is the chance

 it contains the triangle with vertices (i2, i3), where 1 < il < i2 < i3 < n?
 If it does contain this triangle, then the triangulation decomposes into three

 triangulations of the vertices {il.. . ., i2}, {V2, * * , i3} and {i3, ... , n, 1,.il,},
 respectively. So

 P(random triangulation of Qn contains triangle (il, i2 3))

 (7) Ci2-i1Ci3-i2Cn+ij-s3
 Cn-1

This content downloaded from 108.226.241.26 on Sat, 24 Feb 2018 21:33:01 UTC
All use subject to http://about.jstor.org/terms



 RECURSIVE SELF-SIMILARITY 533

 Noting that (5) and Stirling's formula give

 Cm r-1/2m-3/222m-2

 we can take asymptotics in (7) to get

 P(random triangulation of Q, contains triangle (i 1, j2 i3))

 9(tl i t2 i (Was --,- (tl7 t2 t3)

 where

 0b(t1, t2, t3) =-(t2 - t1)-3/2(t3 - t2)-3/2(1 + t1 -3)-3/2
 (8) 4ir

 0 < t1 < t2 < t3 < 1.

 To get a recursive decomposition, consider the case where n is odd. A trian-

 gulation of Q, contains a unique triangle with vertices 1 < il < i2 < i3 < n
 such that

 (9) max(i2-il, i3-i2 il + n-i3) < n/2

 because, when Qn is the regular n-gon inscribed in a circle, this is the triangle
 containing the center of the circle. Arguing as in (6), the uniform random trian-
 gulation can be decomposed into three conditionally independent uniform ran-

 dom triangulations of vertices {II,. . . ,12}, {12,. , I3} and {I3,. .. n, 1, ...il
 where (I1,12, I3) is the triangle in the original random triangulation containing
 the center of the circle. Figure 4 is an illustration, where the triangulations of
 {I1, ... , I2} and so on are redrawn as triangulations of regular polygons.

 This recursion is not exact for even n, because there may be an edge through

 the center of the circle. However, we shall see in subsection 2.3 that there is a
 notion of "random triangulation of the circle" which does have exact recursive
 self-similarity.

 1.4. Combinatorial recursions. What we have done looks strange from a
 purely combinatorial viewpoint. Instead of the simple recursion (5) for the
 number of triangulations, we are using in (6) the more complicated and in-
 complete recursion

 Cn-l = E Ci2-i1Ci3-i2Cn+ij i3l n odd.
 l<i1<i2<i3<n,

 max(i2-i1,i3-i2,n+il i3)<n/2

 Similarly, the natural recursion for the number of rooted trees of size n is ob-
 tained by considering branch sizes at the root, and this is simpler than the
 approximate recursion implicit in subsection 1.2. However, these sorts of re-
 cursions (see [18] for the case of rooted trees), from the probability viewpoint,
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 split random size-n objects into smaller random objects of typical sizes 0(1)
 and n - 0(1), whereas we want to split into smaller objects whose sizes are

 order n rather than smaller order. More vividly, we are "splitting logs" instead
 of "chipping away at a glacier."

 2. The continuous world.

 2.1. The continuum random tree. The main idea of this paper is that the
 approximate recursive decompositions of discrete objects in subsections 1.2 and
 1.3 become exact recursive decompositions in the continuous limit (Theorems 2
 and 4). Here we need to start giving some of the Big Picture from [2]. The
 classical invariance principle formalizes the idea that if partial sums grow as
 order n1/2, then the rescaled partial sum process should converge to Brownian
 motion. There is an analogous invariance principle for trees. If random n-vertex
 trees are such that the distance between typical vertices grows as order n1/2,
 then the rescaled trees (make each edge have length n-/2) should converge to a
 particular limit, the Brownian continuum random tree (CRT). This is proved in
 [3] for a particular family of random tree models, which include those appearing
 in this paper. Abstractly, a continuum tree is a pair (S, i), where S is a set
 representing the vertices and with certain natural properties (in particular,
 that there is a unique path in S between any two vertices) and At is a probability
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 RECURSIVE SELF-SIMILARITY 535

 measure on S representing picking a vertex uniformly at random.
 In this paper we will not give details of weak convergence arguments-[3] is

 a kind of "proof intimidation" that it is indeed possible to write out details. But
 granted a weak convergence theorem [3, Theorem 23] saying that uniform ran-
 dom n-trees can be rescaled to converge to the Brownian CRT, Proposition 1 and
 the remarks following it imply an exact recursive self-similarity property for
 the limit Brownian continuum random tree. This property is stated as Theorem
 2. "Brownian-scaling by c" means multiplying distances by c1/2 and measures
 byc.

 THEOREM 2. Given the Brownian CRT (S, i), pick three vertices Z1, Z2, Z3
 independently according to pa, let V be the branchpoint of these three vertices, let
 B1,B2,B3 be the branches and let A1i = p(Bi). Then the following hold:

 (a) A = (A1, A2, A3) has the Dirichlet (2X 2X 2) density (2ir)1 (t9t2t3)-1/2.
 (b) For i = 1, 2, 3, let (Si, pi) be the branch (Bi, l) Brownian-scaled by A7-,

 and let Zi be the position of Zi after scaling. Then the (Si, 7 i) are distributed
 as the Brownian CRT, independently of each other and of A, and each Z. is
 distributed as a pi-random vertex in Si.

 Let us say this property the other way round. Take three independent copies
 of the Brownian CRT. Pick a vertex uniformly at random in each. Take an
 independent Dirichlet-distributed (Al, A2, A3). Brownian-scale the ith tree by
 Ai, and join the trees at the randomly picked vertices. Then the resulting tree
 is also distributed as the Brownian CRT. We can envisage the decomposition as
 in Figure 3, but adding more and more smaller and smaller branches (cf. [1],
 Figure 2).

 2.2. Coding from Brownian excursion. Another aspect of the Big Picture
 is that the Brownian CRT can be constructed from Brownian excursion (of
 unit length). This story really goes back forty years to Harris [12, Theorem 5],
 who noted a one-to-one correspondence between excursions of walks with ?1
 steps and a certain kind of tree (rooted, ordered trees). With the advantage of
 hindsight, it is obvious that Harris's mapping {excursions of walks} -* {discrete
 trees} has a continuous analog, a mapping

 {excursions of continuous functions} -+ {continuum trees}.

 In fact, mappings of this type were discovered independently in the 1980's in
 the context of Brownian motion [21, 20, 14], and the general case is discussed
 in [3] and [13].

 The mapping is illustrated in Figure 5, which shows part of the tree derived
 from' an excursion function f. [The essential requirements of an excursion func-
 tion f are that f(O) = f(1) = 0, f(.) > 0 on (0, 1) and that f be continuous. There
 are other technical requirements, adapted to the technical definition of contin-
 uum tree. See [3], subsection 2.7.] Vertices of the tree are labeled by numbers
 0 < t < 1, with the root labeled 0, and vertex t is at distance f(t) from the root. A
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 key fact is that branchpoints in the tree correspond to (times of ) local minima
 off. Thus, given tj < t2, consider b, = argmin[tlt4] f. Then b, is the branchpoint
 for the triple (root, tl, t2) and the distances from b, to the root, to tj and to t2
 are f (b), f(tj ) - f (b) and fNt2 - f (b), respectively. Another fact is that Lebesgue
 measure on [O. 1] is carried byv the mapping to a probability measure ,u on the
 cdhtinuum tree, and we interpret ,u as picking a vertex uniformly at random
 from the continuum tree.

 By [3], Corollary 22, applying this mapping to Brownian excursion gives the
 Brownian CRT. [With the standardization convention of [3] we really use 2B(t),
 where B is standard Brownian excursion, but the factor 2 makes no difference

This content downloaded from 108.226.241.26 on Sat, 24 Feb 2018 21:33:01 UTC
All use subject to http://about.jstor.org/terms



 RECURSIVE SELF-SIMILARITY 537

 B(t)

 0 H_ Uml) H U12)H+ 1

 B,(t) B,(t) Bo(t)

 0 V, 1 0 V2 I 0 V0 1

 FIG. 6.

 to the issues of the present paper.] Theorem 2 can therefore be rewritten as a
 recursive self-similarity property of Brownian excursion. To state this property,
 it is simplest to regard one of the three random vertices in Theorem 2 as the
 root, so we only pick two more random vertices, say, U1 and U2. Below is the
 precise definition (Figure 6 is more understandable) of the rescaled Brownian
 excursions (B1, B2, B3) coding the branches in the decomposition of Theorem 2.

 Start with an independent triple (B, U1, U2), where B is Brownian excursion
 and U1 and U2 are U(O, 1). Define

 U(i) = min(Ul, U2), U(2) = max(Ul, U2);

 H = arg min B(t),
 U(l)<t<U(2)

 H_ = sup {t < U(): RB(t) = B(H)}

 H+ = inf {t > U(2) B(t) = B(H)};
 A1 =H-H_, A2=H+-H, AO= 1+H_ -H+;

 ____- _ U(2) - H .=
 V, = A(),\ , V2 =(2-H VO A0O

 Bl(t) = A- 1/2(B(H- + tAl)-B(H)), 0 < t < 1

 B2(t) = A- 1/2 (B(H + tA2) - B(H)) 0 < t < 1,

 BO(t) = AO-1/2B(tA) 0 < t < V0O
 = Aj-1/2B(H+ + (t - Vo)Ao) Vo t < 1.
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 COROLLARY 3. The seven quantities BoB1,B2, Vo, V1, V2 and (Ao, A1, A2) are
 independent. Each Bi is Brownian excursion, each Vi is U(O, 1), and
 (AO, Al, A2) has Dirichlet (2, 1X 2) distribution.

 REMARKS ON COROLLARY 3.

 (a) The obvious remark is that Corollary 3 is rather more complicated than
 Theorem 2. It is not immediately obvious that the three pieces (B1,B2,B3) in
 the Brownian excursion decomposition are exchangeable, let alone that they
 are independent Brownian excursions. This is one of many situations where it
 is more natural to work directly with abstract continuum trees than indirectly
 with Brownian excursion.

 (b) I believe there is no analogous decomposition of Brownian excursion in-
 to two independent Brownian excursions, but how would one prove such an
 assertion?

 (c) Various relationships between different members of the Brownian fam-
 ily (excursion, bridge, meander) are known in the stochastic processes litera-
 ture. Bertoin and Pitman [5] give a systematic treatment. Some of their dis-
 tributional identities have interpretations as limits of "obvious" symmetries of
 random combinatorial objects. For instance, in the uniform random n-tree (and
 hence the Brownian CRT) the distribution is unchanged by picking at random
 a new vertex to be the root, but this corresponds to a rather subtle transforma-
 tion Brownian excursion -+ Brownian excursion [5, Theorem 4.4]. Parallel to
 the Brownian excursion description of the limit of random trees is a Brownian
 bridge description of the limit of random mappings [4], and some transforma-
 tions between Brownian bridge and excursions can be regarded as the contin-
 uous analogs of discrete transformations between mappings and trees.

 (d) Our proof of Corollary 3 used the elementary discrete argument for
 Proposition 1, the invariance principle for random trees [3, Theorem 23] and the
 coding of the Brownian CRT from Brownian excursion [2, 13]. The reader who
 insists on working entirely within the Brownian world may like to prove Corol-
 lary 3 using the methods of [5]. Our argument really does need the force of the
 general invariance principle, rather than the simple special case of rooted or-
 dered trees, because for this special case the discrete calculations analogous to
 those of subsection 1.2 would be more complicated [essentially because ordered
 trees do not have the "invariance under random rerooting" property mentioned
 in (c)].

 2.3. Centroids and triangulations. The decomposition of Theorem 2 is bas-
 ed upon choosing three random vertices, and one might regard this as less
 natural than the decompositions in subsection 1.1. However, there is a more
 "deterministic" variation, which we now start to describe.

 The notion of centroid of an n-vertex tree is the analog of the notion of median
 of a set of numbers. Say v is a centroid if, for the tree rooted at v, the size of the
 largest branch is at most n/2. It is elementary [6, Theorem 3.2] that one of the
 following alternatives holds:
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 X tie,{; i4-n t
 FIG. 7.

 1. There exists a unique centroid.
 2. n is even and there exist two centroids v1 and v2 such that (v1, v2) is an edge

 which partitions the vertices into two subsets of size n/2 each.

 Turning to continuum trees, there is an elegant way of looking at the centroid.
 The key idea is that the two-way correspondence (Figure 5) between continuum
 trees and excursion functions can be extended to a three-way correspondence
 involving also triangulations of the circle.

 A local minimum of an excursion function f can be regarded as a triple
 (t1, t2, t3) with

 f(t1) = f(t2) = f(t3), fA() > f(t2) on (t1, t2) U (t2, t3).

 Take a circle of unit circumference, with points on the circumference labeled by
 0 < t < 1. For each local minimum (t1, t2, t3) of f, draw a triangle with vertices
 (t1, t2, t3). Figure 7 illustrates that, for a fixed functionf, the triangles associated
 with different local minima are typically disjoint.

 One could take several pages to discuss carefully, in the deterministic context,
 the correspondence {excursion functions} - {triangulations of the circle}, in
 the style of the discussion in [3, Section 2.7] of the correspondence {excursion
 functions} - (a certain subclass of){continuum trees}. However, this does not
 seem worthwhile. The essential feature of the three-way correspondence is that
 each triangle (t1, t2, t3) of the triangulation corresponds to a branchpoint of the

 continuum tree, where the branches have size (i.e., p-measures) t2 - t1, t3 - t2
 and 1 + t1 - t3, as well as to a local minimum of the excursion function. In
 particular, the centroid of the continuum tree corresponds to the triangle in the
 triangulation which contains the center of the circle. The point is that we can
 "see" the centroid in the triangulation representation much more easily than

 in a drawing of the tree itself or of an excursion funqtion.
 Now consider the random setting. Applying the coding of Figure 7 to Brownian

 excursion gives a certain random triangulation of the circle. A key fact is that
 this is the limit of the uniform random triangulations of the regular n-gon dis-
 cussed in subsection 1.3. I do not want to give details of the weak convergence
 argument, but here is an outline. There is a classical correspondence [9, 4] be-
 tween triangulations of the n-gon and a certain type of binary tree. Under this
 correspondence, a branchpoint in the tree corresponds to a triangle in the tri-
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 angulation, and a leaf in the tree corresponds to an edge of the convex hull of
 the n-gon. So the relative sizes of the three branches from a branchpoint v in
 the binary tree are essentially just the relative numbers of points of the n-gon
 cut off by the three sides of the triangle corresponding to v in the triangula-
 tion. The invariance principle shows that uniform random binary trees rescale
 to the Brownian CRT. So the asymptotic relative sizes of triangles in uniform
 random triangulations of the n-gon are just the sizes of branches from branch-
 points in the Brownian CRT. Using the coding from Brownian excursion gives
 the construction of Figure 7.

 What calculations can we do with this limit continuous "random triangulation

 of the circle"? There is a mean intensity function q(t1, t2, t3) for the positions of
 triangles in the random triangulation of the circle, or, equivalently, for the local
 minima of Brownian excursion. To spell this out, representing the vertices of a
 triangle by their distances t' around the circumference,

 OU1l, t2, t3) dt, dt2 dt3

 = mean number of triangles (t', t', t') with t' E [ti, ti + dti], i = 1, 2,3.

 And representing local minima of Brownian excursion as triples (ti, tl, t1),
 where t' is the time of the local minimum,

 b(t1, t2, t3)dtl dt2 dt3 = mean number of local minima with ti E [ViI ti + dti],
 i = 1,2,3.

 The simplest way to get the explicit formula for q is via the elementary com-
 putation with discrete triangulations (8) and the weak convergence argument
 outlined above, which gives

 b(tl, t2, t3) = 1 U2-t )-3/23 - t2)-3/2(1 + t -t3)-3/2,
 4i7r

 (10) 0< t1 <t2 <t3 < 1.

 We invite the reader to try to derive (10) directly from the Brownian excursion
 description-the t-3/2 power law is rather clear, being the law of excursion
 lengths under the Ito c-finite measure on excursions of variable lengths, but
 getting the numerical constant correct is a little tricky.

 It is clear that (with probability 1) the center of the circle will be in the
 interior of some triangle of the random triangulation. In other words, in the
 Brownian CRT there will be (with probability 1) a unique centroid, that is
 to say a branchpoint for which all three branches have size less than 2. Let
 S1, S2, S3 be the sizes of the branches from the centroid, arranged in random
 order. From (10) we may derive the density function

 fs1,s2,S3(XliX2,X3) = 1 (x1x2x3Y312

 (11) on {xi > 0, xi + X2 + x3 =1, max xi <
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 In deriving (11), the issue is that branchpoints with branch sizes

 (x1, x2, 1 - x1 - x2) arise with probability 1/3! from triangles (t, t + x1 mod 1, t +
 x1 + x2 mod 1) or (t, t + x2 mod 1, t + x1 + x2 mod 1) for arbitrary 0 < t < 1, so

 expression (11) on {xi > 0, x1 + X2 + x3 = 1} is the mean intensity of the point
 process of branch sizes at all branchpoints, and restricting to {maxi xi < 2
 picks out the centroid.

 The approximate recursive decomposition of triangulations of the n-gon, il-
 lustrated in Figure 4, becomes in the limit an exact recursive decomposition
 of the random triangulation of the circle about the triangle containing the cen-
 ter of the circle. Translating into an assertion about the Brownian CRT gives a
 recursive self-similarity property involving decompositions about the centroid.

 THEOREM 4. Given the Brownian CRT (S, b), let D1,D2, and D3 be the
 branches from the centroid, in random order, and let Si = pu(Di). Then the
 following hold:

 (a) S = (S1, S2, S3) has the density (11).

 (b) For i = 1,2,3, let (Si, ,i) be the branch (Di, u) Brownian-scaled by S7-,
 and let Z* be the position of the original centroid in Si. Then the (Si, pi) are
 distributed as the Brownian CRT, independently of each other and of S, and

 each Zz is distributed as a pi-random vertex in Si.

 We could of course rephrase this as a decomposition of Brownian excursion,
 analogous to Corollary 3, but we refrain from doing so, since the concept of the
 centroid is rather unnatural in the coding as Brownian excursion.

 3. Calculations.

 3.1. Sizes of branches from the centroid. As discussed in [2], if we explicitly
 know some distribution associated with Brownian excursion, then the invari-
 ance principle shows that the distribution is the limit distribution of some
 functional of combinatorial random trees. It turns out that, for most natural
 and interesting functionals, these limit distributions have been investigated in
 the combinatorial literature by generating function methods, independently of
 the stochastic process literature studying distributions of Brownian excursion.
 However, properties involving centroids of random trees have apparently not
 been studied in the combinatorial literature, so (11) implies a new result for
 random trees. To say this carefully, the invariance principle applies to what
 Meir and Moon [17] call 'simply generated families' of n-vertex random trees,
 which to a probabilist (see [3],'subsection 2.1) are Galton-Watson branching
 processes with mean offspring equal to 1, conditioned on the total family size
 until extinction being equal to n. Let S(n) SW) and SW) be the sizes of the three
 largest branches (in random order) from the centroid of a random tree in any
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 simply generated family. Then the invariance principle implies

 n l(s(ln), S(nf), S(nf)) '-d (Si, S2 i SO)

 where the limit has density (11).
 We now set about doing calculations based upon (11). We present these as

 exact calculations for the Brownian CRT, but as above they all have obvious
 interpretations as asymptotic distributions for random trees from any sim-
 ply generated family. Some of the calculations make use of the indefinite inte-
 gral formula

 (12) y-3/2(a _ y)-3/2 dy = 2a-2y-1/2(a - y)-1/2(2y - a), 0 <y <a.

 Unexplained integrations below were done using MATHEMATICA. I do not
 have a good "geometric" explanation of why surprisingly many of the integrals
 can be done explicitly.

 First consider the size Si of a typical branch B1 from the centroid, that is, of
 a branch chosen uniformly from the three branches. Its density is obtained by
 integrating out x2 in (11):

 1l/2 1 -/ X
 (13) fs1(x) = 12- 12 (XX2(1 - X - X2)) dx2

 2 x-1/2(1-2X)-1/2(1-X)2, 0<x<2'
 Tir 2)

 using (12).
 Now consider size-biasing. Let S* be the size of the branch from the centroid

 containing a randomly chosen point. Then

 fs() xfsI(x)
 I ES,

 and ES1 = 1 by symmetry. So the density of S* is

 (14) fsl (x) =-x 1/2(1-_x)-2(1 _ 2x)-1/2 (14) fsr(x) = 21

 In particular, the mean size ES* of the branch containing a randomly chosen
 vertex is

 ES* = j xfs*(x) dx = 21/2 1 - 0.414.

 Now suppose that we order the sizes of the branches as L1 > L2 > L3. Then
 the density is

 fLh,L2,L3(X1,X2,X3) = (x1x2x3
 2ir

 (15) on > Xi > X2 > X3 > 0; Zxi =
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 by (11), with an extra factor 3! = 6 coming from the number of possible reorder-

 ings. We can now compute the marginal density of the largest branch size L,
 on{f <x<

 (1-X)/2 1 (-3/2

 (16) J1-2x 2r3r -x -x3)) dx3
 3x - 1

 7r2( 1- X)2( 1-2X)1/2 X

 using (12) again. As remarked in [4], this shows that the maximal branch size
 is strongly biased toward the upper end of the interval [ , 1]. One can calculate

 P(L1 ? x) = arctan 3-1/2 - arctan(l - 2x)1/2 (3x - 1)(1 - 2x)1/2
 P(Li < x) = 67r 7rx(1- x)

 EL1 = 2arctanh3-1/2-2 arctan3-1/2-31/2
 7r

 median(Ll) 0.479.

 Similarly we can consider the smallest branch size L3. Its density on

 {0<X3 < 3}is

 J min(1-2x3,1/2) 1-3/2 dX
 (17) fL3(x3)2= (1)/

 = ,7r 1X3/2(1 - X3)-2(1 - 2X3)-1/2q(x3),

 where

 02x3, X3<
 x 1/2 (1-3x3), X3 > .
 1 1'

 The distribution is biased toward the lower end of the interval [0, 3], and nu-
 merically the median is 0.118.

 The next calculations relate the centroid to the decomposition of Theorem 2.
 Recall that Z1, Z2 and Z3 were three randomly chosen vertices of the Brownian
 CRT and that V was their branchpoint.

 PROPOSITION 5.

 (a) The probability that V is the centroid is 3 2-1/2 -2 0.121.
 (b) The probability that the centroid lies on the spanning subtree joining

 Zl, Z2,Z3 is 4 - 9 2-3/2 0.818.

 PROOF. (a) In the notation of Theorem 2, the condition for V to be the cen-
 troid is max(A\1, A\2, A3) < 2. By exchangeability this has probability
 1 - 3P(A1 > 2). However, A1 has density x1/2/2, so > = 1- .
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 (b) The only way that the centroid could not be in the spanning tree is if the
 event

 (18) all three of Z1, Z2, Z3 lie in the same branch from the centroid

 occurs. Conditional on the size St of the branch from the centroid which contains
 Z1, the chance of event (18) equals (St)2. Thus the probability in (b) equals

 2 1/22 1 -E(S* )2 = 1- j 2fs(hx

 for fs* defined by (14). Evaluating the integral gives the result stated. D

 As a final calculation, recall that the median x of a random variable X can be

 interpreted as arg minx EIX-xI . The analog holds for the centroid of a tree. Let's
 find the asymptotics of D,, the distance from the centroid to a uniform random
 vertex in an n-vertex tree from a simply generated family. Unlike previous
 results, here we need family-dependent scaling constants. It is perhaps easiest
 to work by comparison with the known result for the distance Dn from the root
 to a uniform random vertex. Here

 (19) EDn -A n
 2

 where a depends on the family (in the Galton-Watson description, a is the
 offspring standard deviation). This is [17, Theorem 4.6], and a derivation using

 the invariance principle is given in [3, equation (36)], where i7-/2 is misprinted
 as 2/i7r. The recursive self-similarity result, Theorem 4, immediately gives

 EDn EDn E S,

 where S* is the size-biased branch size (14). Evaluating the relevant integral
 gives EJt = 2/ir and hence

 (20) EDn 2a n
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