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ABSTRACT OF THE DISSERTATION

Investigating Valley States and their Interactions in Silicon/Silicon-Germanium

Quantum Dots

by

Nicholas Evan Penthorn

Doctor of Philosophy in Physics

University of California, Los Angeles, 2020

Professor HongWen Jiang, Chair

Quantum computing in nanoscale silicon heterostructures has received much attention, both

from the scientific community and private industry, largely due to compatibility with highly-

developed silicon-based device fabrication and design present in essentially all aspects of

modern life. Breakthroughs in quantum control and coupled qubit systems in silicon in the

last five years have accelerated scientific research in this area, with gate-defined quantum

dots at the forefront of this effort.

As techniques for quantum control become more sophisticated, subtle details of the silicon

band structure are now of vital importance for the ultimate success of silicon quantum

computing. Chief among these band features are the valley states, regions of the conduction

band that form the ground state and a nearly degenerate excited state in quantum dot

heterostructures. These valley states and their effects on electron dynamics can lead to

quantum information loss and qubit decoherence, and so detailed characterization of the

valleys is of great importance.

In this work, I first describe a spectroscopic technique utilizing fast voltage pulses on one

ii



or two gates in a double quantum dot device to precisely measure the relevant valley state

energies in both quantum dots as well as the coupling between valley states and electron or-

bital states. With this information, the valley states are leveraged to form a novel qubit basis

with innate protection against decoherence from charge noise. Sub-nanosecond operations

on this “valley qubit” are used to demonstrate complete quantum control. Finally, using

real-time read-out of energy-selective tunneling in a single quantum dot, pure valley state

coherence in the form of intervalley relaxation is directly probed. This relaxation is sub-

sequently linked to spin-valley electron dynamics and the observance of a valley-dependent

tunneling process is discussed theoretically using tight-binding formalism.
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CHAPTER 1

Introduction

1.1 Developments in quantum computing

The concept of quantum computing is almost as old as the modern computer. The explosion

of research in the nascent field of solid-state physics after World War II led to new under-

standing of many-body quantum physics, as well as to the development of the transistor in

1947 [202]. With this convergence of a groundbreaking technology and a growing field of

study, the idea of a computer that manipulates and measures coherent quantum states follows

a natural progression. A conceptual work from 1980 gave a quantum mechanical treatment

to computer processes [Ben80] and shortly thereafter the idea of a “universal quantum com-

puter” was discussed by Richard Feynman for the purposes of simulating quantum systems

[Fey82]. The power of such a computer would come from the ability of each quantum bit,

or “qubit”, to couple to other qubits via quantum entanglement. The state of a quantum

computer during operations would be a complex, coherent quantum state that collapses to

a single outcome across all qubits upon measurement of any single qubit. Entanglement is

ultimately the motivation for pursuing quantum computation, as it leads to unique applica-

tions tailored to solve problems that are functionally impossible for normal computers, some

of which are enumerated below.

As is often the case, it took many more years before experimental efforts were capable

of exploring some of the possibilities that were proposed theoretically. It wasn’t until the

late 1990s that the first physical implementation of a qubit was realized in superconducting
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Josephson junctions [MSS01]. Even then, the prospect of a quantum computer with an entire

chip of individually addressable qubits seemed far off.

Interest in quantum computing was stimulated by the 2011 development of a 128-qubit

quantum annealer by D-Wave Systems [JAG11]. Although its capabilities were limited to

a specialized procedure for finding global energy minima, it demonstrated that a scalable

quantum system was possible with modern fabrication techniques. Within the last five years,

boosted by a healthy amount of international competition [Str][MRT19], the field of quantum

computing research has blossomed into a global innovation effort. Google, IBM and Microsoft

are developing their own quantum computers [Cas17], and Intel is fabricating silicon-based

qubits in partnership with QuTech at Delft University in the Netherlands [LPF18]. Now,

even the terms “quantum computing” and “qubit” have made their way into the public

lexicon.

1.1.1 Quantum simulation

Many-body quantum systems are hard to isolate in a laboratory setting, which makes it

difficult to experimentally probe various condensed matter phenomena. Instead, researchers

would like to perform computational simulations of many-body systems under the constraints

of some theoretical model. Unfortunately, a large class of physical systems involves interac-

tions between every particle, which for a system of N particles with two available states each

involves a Hilbert space of size 2N . With N ≈ 40, modern supercomputers are incapable of

finding a solution within any reasonable time frame. This category of classically intractable

problems includes fundamental phenomena like ferromagnetism and Mott insulators.

With a quantum simulation, each particle in the system of interest can be mapped to

one or more qubits. Then the qubits are coupled in a manner that suits the model under

study and the quantum system is allowed to evolve naturally. Using ≈ 100 beryllium ions

in a Penning trap, researchers were able to simulate ferromagnetism in the 2-D Ising model

[BSK12].
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1.1.2 Quantum cryptography

Of particular interest to government funding sources is the prospect of encrypting information

in such a way that is impossible to decrypt by an eavesdropper, or at least so that any

tampering with the information is immediately known. An important concept in quantum

encryption is quantum key distribution, where some encryption key in the form of a qubit

string is shared between parties. The key gives the receiver information on how to decrypt

the data. Just this year (2020), researchers in China were able to send entangled photons

via satellite over a distance of 1,120 km to transmit a quantum key [YLL20].

Beyond facilitating unbeatable data encryption, a quantum computer would also be able

to break any public-key encryption scheme, all of which rely on the fact that normal comput-

ers struggle with prime-factoring large numbers. Using Shor’s algorithm for integer factor-

ization [Sho94], a quantum computer can find the factors of integer N with approximate time

complexity O(log2N). Any classical computer would require at best ≈ O[exp(2log1/3N)].

1.2 Quantum computing in the abstract

1.2.1 The qubit

In its most general form, a qubit can be any quantum system that has two well-defined,

independent energy states. Practically speaking, it must also be possible to probe the two-

state system with a measurement that returns one level or the other, in such a way that the

states can represent Boolean variables 0 and 1. Ignoring the stipulation that the system is

quantum, this definition can be applied to a “classical” bit as well. A solid-state transistor is

in the “1” state when it is in the conduction phase due to a gate voltage, and it is in the “0”

state when it is in its insulating phase. The major difference is that prior to measurement,

a qubit will be in a quantum superposition of its logical basis states, so that the qubit state

can be written as
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|ψ〉 = c0 |0〉+ c1 |1〉 , (1.1)

where complex state coefficients c0 and c1 give the relative weights of the basis states and

are typically normalized so that |c0|2 + |c1|2 = 1. Using the language of quantum mechanics,

measuring the qubit state amounts to performing a projective measurement, wherein the

qubit wavefunction collapses and the probability of measuring, for example, the qubit to be

in state |1〉 is just | 〈1|ψ〉 |2 = |c1|2. Once a projective measurement is made, the qubit is

no longer in a coherent state and the system must be re-initialized into a known quantum

configuration (for instance, allowing the qubit to relax into the ground state) before further

qubit operations.

1.2.2 The Bloch sphere

It is useful to express the basis state coefficients in (1.1) with real-valued parameters that

automatically satisfy the normalization condition. One way to do this is to start with the

state |0〉 and apply unitary operations to rotate the state by polar angle θ and azimuthal

angle φ:

|ψ〉 = exp(−iσzφ)exp(−iσyθ) |0〉 (1.2)

= cos(θ/2) |0〉+ eiφsin(θ/2) |1〉 . (1.3)

In (1.2), σy and σz are Pauli matrices. From (1.3) it is clear that the sum of absolute

squares of these coefficients must be equal to 1, and any (normalized) linear combination of

|0〉 and |1〉 can be generated with θ ∈ {0, π} and φ ∈ {0, 2π}. The form (1.3), and the manner

in which it was obtained, is highly suggestive of a unit vector in spherical coordinates. If

we treat the qubit state as such a vector, then each possible superposition of |0〉 and |1〉
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is represented as a unique point on the surface of a unit sphere (Figure 1.1a). Using the

coordinate system suggested by the choice of angle notation, we can determine the qubit

state representation for a vector pointing along the Cartesian x-axis by setting θ = π/2 and

φ = 0:

|x〉 =
1√
2

(|0〉+ |1〉). (1.4)

Similarly we can find the states that point along the y and z axes:

|y〉 =
1√
(2)

(|0〉+ i |1〉), (1.5)

|z〉 = |0〉 . (1.6)

The unit sphere mentioned above, oriented so that the logical |0〉 state points in the

+z direction and the logical |1〉 points in the −z direction, is known as the Bloch sphere

and is a useful tool for describing qubits and their operations. In fact, any coherent qubit

operation can be represented as a two independent rotations about orthogonal axes, mapping

one point on the Bloch sphere surface to another. A simple example of this can be found in

the original construction of the Bloch vector (1.2), where we have started with the qubit in

|0〉 and applied a y rotation followed by a z rotation.

1.2.3 Single qubit operations

As demonstrated above, full quantum control of a qubit can only be achieved if rotations can

be performed about no less than two orthogonal axes. Without yet going into detail about

real-world qubit implementations, there are two fundamental quantum two-state processes

that are widely used to accomplish two-axis control: Larmor precession and Rabi oscillations.
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Consider a two-level system with energy difference ε between levels. Switching now to

matrix notation, the simple diagonal Hamiltonian of this system can be written as

H =

0 0

0 ε

 , (1.7)

where we can choose the ground state energy to be zero for simplicity without affecting

the physics. If we apply this Hamiltonian to one of its eigenstates and calculate the time

evolution of the system with the Schrödinger equation, we find the trivial solution that the

wavefunction is constant in time and no dynamics are obtained. However, if we apply the

Hamiltonian to a quantum state that is not an eigenstate, for instance |ψ〉 = c0 |0〉 + c1 |1〉

(c0, c1 6= 1), we find that

|ψ(t)〉 = c0 |0〉+ c1exp(−iεt/h̄) |1〉 (1.8)

and if we assume both coefficients are real (i.e. the Bloch vector lies somewhere on the

x− z plane), the probability of measuring the qubit Bloch vector to be along x is

| 〈x̂|ψ(t)〉 |2 =
1

2

[
1 + 2c0c1cos

(
εt

h̄

)]
. (1.9)

In other words, the qubit vector undergoes Larmor precession about the z axis of the

Bloch sphere with angular frequency ω = ε/h̄ (in the original Hamiltonian basis), providing

one of the required qubit rotation axes. When the qubit starts near a pole of the Bloch

sphere by setting either c0 or c1 to be very small, the precession is very weak. When

the state coefficients are equal (the qubit vector lies on the Bloch sphere equator), the

precession is maximized. Of course, Larmor precession can’t be directly measured with a

projective measurement of an observable quantity since the evolving parameter is the phase

φ between eigenstates and the z projection of the qubit state is independent of φ. However,
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the accumulated phase can be mapped to the z axis by way of a second, orthogonal rotation;

for instance a π/2 rotation about the x axis.

The second axis of rotation can be achieved utilizing Rabi oscillations (Figure 1.1b).

For this, consider the application of some oscillating potential along the x axis of the form

H1 = V0cos(ωt)σx, where σx is the x Pauli matrix. The full Hamiltonian for the system

including the original Hamiltonian (1.7) is now

H =

 0 V0cos(ωt)

V0cos(ωt) ε

 . (1.10)

The time evolution of this system is described by two coupled first-order differential

equations with no known analytic solution. However, a well-known approximate solution

can be found by transforming the qubit state to a reference frame that rotates with the

oscillating potential:

|ψ〉 = c0 |0〉+ c1 |1〉 → c0 |0〉+ c1e
−iωt |1〉 . (1.11)

The transformed differential equations in the rotating frame contain some terms of order

exp(2iωt). With the rotating wave approximation, these terms oscillating at twice the drive

frequency can be neglected and the probability of measuring the qubit to be in the excited

state is given by

|c̃1(t)|2 =
V 2

0

V 2
0 + (h̄ω − ε)2

sin2

(√
V 2

0 + (h̄ω − ε)2

2h̄
t

)
, (1.12)

where c̃1(t) is the state coefficient in the rotating frame given by the mapping (1.11).

Equation (1.12) describes rotations of the qubit state about some axis in the x− y plane on

the Bloch sphere. The efficiency of oscillations is maximized when the Rabi drive frequency

ω matches the two-level energy splitting, and the frequency of oscillations at resonance is
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Figure 1.1: The Bloch sphere representation of the qubit state. (A) General state vector 1.3

lies on the surface of the Bloch sphere and is described by spherical coordinates θ and φ. (B)

Rabi oscillations (x rotations) in the rotating frame. (C) Larmor precession (z rotations) in

the presence of dephasing.

proportional to the drive strength V0. It is important to note that Rabi oscillations can only

be considered as simple x or y rotations in the rotating frame. In the lab frame, the qubit

vector is actually spiralling from one qubit basis state to the other.

Armed with two rotation-inducing processes, a general qubit operation would be com-

posed of, for example, a short burst of oscillating Rabi drive at the natural qubit frequency

followed by a pause to allow Larmor precession.

1.2.4 Multi-qubit states and entanglement

As discussed previously, the true power of quantum computers comes from entanglement

between two or more qubits. A multi-qubit state before entanglement can be written as a

tensor product of single-qubit states, for example

|011〉 ≡ |0〉1 ⊗ |1〉2 ⊗ |1〉3 . (1.13)

By contrast, any quantum state that cannot be written as a tensor product of single-qubit

states is an entangled state. When two qubits are maximally entangled, any measurement on
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both qubits in the same basis will always yield the same result. One simple way to produce

an entangled state (although not necessarily maximally entangled) is to apply the two-qubit

gate known as a conditional NOT, or “CNOT”. The CNOT gate performs an x rotation of

angle π on a target qubit, transforming |0〉 → |1〉 and |1〉 → |0〉, if and only if the control

qubit is in state |1〉. Generally, if the control qubit is in state |ψa〉 = a0 |0〉 + a1 |1〉 and the

target qubit is in state |ψb〉 = b0 |0〉+ b1 |1〉, then the result of a CNOT gate would be

CNOT(|ψa〉 , |ψb〉) = a0(b0 |00〉+ b1 |01〉) + a1(b0 |11〉+ b1 |10〉). (1.14)

The only case in which state (1.14) produces no entanglement is when the target qubit

is already in state |±x〉 = 1/
√

2(|0〉 ± |1〉), which is unaffected by x rotations. It is also

straightforward to confirm that when the target qubit starts in the y−z plane, then a CNOT

generates maximum entanglement. Since the CNOT requires only a single control axis on

one qubit, it is a popular method of experimentally implementing two-qubit entanglement

and is a benchmark process for demonstrating a fully realized multi-qubit device.

Although the topic of qubit entanglement and various gate strategies for implementing

quantum algorithms is vital in developing physical quantum computers, the focus of this

dissertation is single-qubit processes and characterization. As such, it is sufficient to provide

a useful reference [AMM14] should the reader be interested in higher-level concepts.

1.2.5 Decoherence

With any physical qubit implementation, there is always the possibility of unwanted coupling

of the qubit to the environment. By environment, I am referring to perturbations to the

qubit in the form of noise or nearby extraneous energy levels. A qubit state that couples to

the environment can no longer be considered as a pure state, since the nominally isolated

two-state system now interacts in unknown ways with a much larger, multi-state system.

Instead, the qubit is in a mixed state, or a statistical ensemble of pure states. All possible
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mixed states can be represented as points within the Bloch sphere, just as all pure states exist

on the Bloch sphere surface. While we can’t exactly know the precise quantum mechanical

details of the environment, we can measure the effects of environmental coupling on the

qubit that manifest as decoherence. Qubit decoherence comes in two flavors, relaxation and

dephasing, which in turn lead to errors in x−y rotations and z (phase) rotations, respectively.

Relaxation causes the qubit in its excited state |1〉 to decay to the ground state |0〉, while

dephasing acts as a damping force that on average causes the qubit vector to spiral inward

during precession, as in Figure 1.1c (in reality dephasing causes the qubit vector to “blur”

so that instead of single spherical angles θ and φ to describe the state, there is a distribution

of angles centered on θ and φ). Often, relaxation and dephasing are characterized in real

systems by their characteristic time scales T1 and T2. These quantities are explored further

in Chapters 5 and 7. In modern research efforts, decoherence is one of the greatest hurdles

in achieving a full quantum computer and a simple figure of merit for a physical qubit is the

coherence time over the operation time; in other words, how many single-qubit operations

are possible before the system loses coherence.

With the introduction of decoherence processes, it is no longer sufficient to describe a

general qubit state in the state vector representation. A more useful representation is the

density matrix:

ρ =
∑
j

pj |j〉 〈j| , (1.15)

where states |j〉 span the Hilbert space relevant to the qubit that may include other

energy levels accessible to the physical qubit, and pj is the corresponding weight of state |j〉

such that
∑
pj = 1. A projective measurement of some observable O can be expressed as

tr(ρO). The time evolution of a mixed state under a Hamiltonian H is then given by the

von Neumann equation:
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∂ρ

∂t
= − i

h̄
[H, ρ]. (1.16)

This describes unitary evolution, equivalent to the Schrödinger equation. To include

decoherence, a generalized master equation known as the Lindblad equation is used (see

Chapter 5).

1.3 Semiconductor quantum computing

Certain qubit implementations in physical systems have found success in particular areas.

For instance, superconducting qubits and qubits encoded in photon polarization have been

used in proof-of-principle implementations of Shor’s algorithm, and trapped ions have proven

well-suited to certain quantum simulations. Despite these milestones, a great deal of research

has pursued qubit implementations in semiconducting structures. The prospect of utilizing

the same well-established fabrication processes that have been so finely developed for the

most famous semiconductor — silicon — has proven to be a strong motivation both for

university and private research. Following a theoretical proposal for qubits as single electron

spins in semiconductor quantum dots in 1998 [LD98], early progress in this sub-field was

limited to quantum dots in GaAs/AlGaAs heterostructures [HKP07]. Since 2010, interest

has shifted to silicon-based devices. Apart from the appealing properties of a very low

hyperfine interaction strength and minimal spin-orbit coupling, qubits in silicon would be

fully compatible with the impressive technological framework responsible for virtually all

computer hardware used today.

1.3.1 Gate-defined quantum dots in silicon

Quantum dots in silicon are a leading device architecture for semiconductor quantum com-

puting owing to a relatively simple fabrication procedure and the flexibility in design. Al-
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though quantum dots are certainly not the only semiconductor device architecture being

pursued, they comprise the majority of relevant literature. For a discussion on various semi-

conductor device schemes, see [ZDM13] and [CSD20].

There are two ways of describing quantum dots that offer their own insights. For the

more engineering-oriented reader, a quantum dot is a field-effect transistor (FET) where the

gate-controlled conduction path is isolated from its source and drain terminals by tunneling

barriers. The quantum dot is a conducting island of two-dimensional electron gas (2DEG)

formed by a positive bias on the gate electrode, and electrons from the adjacent source and

drain charge reservoirs can tunnel into the dot at some rate determined by the tunnel barrier

heights. The charge occupation of the quantum dot can be probed with the application of a

source-drain bias voltage across the dot, and the resulting current is sensitive to the number

of confined electrons.

In the context of atomic physics, a quantum dot can be considered a man-made atom

in two dimensions. Confinement in the z direction (out of the plane of the semiconductor

wafer), comes from the applied out-of-plane gate voltage and the semiconductor-insulator

interface. A two-dimensional (in-plane) confining potential, not substantially different from

the Coulomb potential generated from atomic nuclei, is formed by local electric fields from

some gate configuration in the vicinity of the quantum dot. Just like atoms in a lattice,

electrons in a system of quantum dots have orbital states and some tunable degree of inter-

action with neighboring sites. Unlike an atomic lattice, the details of the confining potential

and the coupling strength between potential wells can be finely tuned over a wide dynamic

range, which gives quantum dots a degree of electrical control that surpasses other semicon-

ductor structures. However, with strong electrical control comes equally strong coupling to

electronic noise sources that lead to decoherence, like Johnson noise from electronic hard-

ware and 1/f noise from charge flucuators embedded in the insulator and at the interface.

Additionally, conduction in any semiconductor is determined by the band structure of the

material, and every conduction electron in the quantum dot is actually a psuedoparticle
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composed of a bare electron and its interactions with atoms in the semiconductor lattice.

Band structure effects can have a dramatic impact on elecron dynamics, leading to effects

such as the ones described in Chapter 2. A final challenge that deserves mention is the fact

that all silicon qubit devices must be operated at cryogenic temperatures, typically T < 1K,

in order to prevent thermal population of excited electron states or higher conduction bands.

1.3.2 Quantum dot heterostructures

Although the gate patterns used to form quantum dots generally follow the same basic design

rules, there are two distinct material choices for the layers that make up the silicon-based

wafer (Figure 1.2). The first type is Si/SiO2, where the quantum dot forms at the interface

of silicon and its native oxide. The wafer is single-crystal silicon with the oxide layer,

usually ten nm thick or less, grown with thermal processes [AFD07]. The incredibly abrupt

surface potential at the silicon-oxide interface allows for sharp out-of-plane confinement and

gates patterned on the wafer are very close to the 2DEG, meaning that deep, stable lateral

potentials can be formed. Of course, the main interest in Si/SiO2 quantum dots is the

full compatibility with silicon metal-oxide-semiconductor FET (MOSFET) technology and

fabrication processes. From a coherence standpoint, natural silicon has very low intrinsic

spin-orbit coupling and minimal magnetic noise from atomic nuclei, assets that are further

improved when dealing with isotopically enriched 28Si [ZTT19]. A practical drawback often

arises in the form of defects and charge traps at the interface and in the oxide, which generate

their own potentials and make it difficult to form intentional, gate-defined quantum dots.

The second common heterostructure is the Si/SiGe quantum dot. In this system, the

silicon quantum well is embedded in a SiGe alloy buffer that is weakly insulating [Sch97]. This

separates the quantum dot from the surface potential where charge defects can accumulate

and makes it much easier for form well-controlled dots [KSW14]. The price for better dot

formation is shallower confining potentials, owing to the extended distance of the local gates

from the quantum well. Additionally, there are indications that charge noise is slightly
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Figure 1.2: Two varieties of quantum dot heterostructures. Left: Si/SiO2. Right: Si/SiGe.

Both structures involve forming a quantum dot with electrostatic potentials from one or

more local metallic gates. Potential energy landscapes in the x and z directions E(x) and

E(z) for both structures are indicated.

greater in Si/SiGe quantum dots than in Si/SiO2 [FSJ16].

1.3.3 Qubit encoding schemes

A testament to the freedom of design that quantum dots afford, there are many ways of en-

coding a qubit; that is, choosing a two-state subspace of the full Hilbert space encapsulating

the electron orbitals, spin states, and band occupation. In his seminal work in 2000, theorist

David DiVincenzo outlined basic requirements for the physical implementation of quantum

computing [DiV00]. Those requirements, which are now known as the DiVincenzo Criteria,

are now enumerated with bold text taken directly from the paper.

A scalable system with well-characterized qubits. First, any qubit device architec-

ture must be configured so that hundreds or thousands of qubits can exist together with at

least nearest-neighbor interactions. A challenge for scalability is the sheer number of wires

that must be used to control all of the relevant quantum dot gates. This can be partially

resolved with the use of multiplexing, where wires that are never used at the same time
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can be shared between qubits. Additionally, every qubit subspace must be composed of two

well-defined states with minimal coupling to states outside of the qubit subspace. Related to

this and equally important is the capability of one qubit to couple to another, which imposes

restrictions on what states can be used as the qubit basis.

The ability to initialize the qubits to a simple fiducial state. This requirement

comes from the need for a known, un-entangled qubit state before any operations are per-

formed. A simple initialization scheme is to turn off interactions and allow the qubits to relax

to their ground states, i. e. |ψ〉 = |000 · · ·〉. However, for qubits with excellent coherence

times this initialization may be restrictively long, and conversely if the initialization is quick

then the qubits probably have poor coherence. One alternative is to first move the qubits

into a configuration where the decoherence is maximized, then return them adiabatically to

their original subspace after relaxation.

Long relevant coherence times, much longer than the gate operation time. As

previously discussed, it must be possible to perform many operations before the qubit loses

coherence. In semiconducting systems, the natural coherence times are usually too short for

many-qubit operations to be feasible, but there is a way of extending qubit coherence with

quantum error correction. These correction strategies still require a threshold coherence

of 104 − 105 times the qubit operation time in order to achieve fault-tolerant quantum

computing.

A “universal” set of quantum gates. A given quantum algorithm may involve multi-

qubit gates and the qubit control protocols must be equipped to handle this possibility.

Fortunately, just as a classical algorithm can be decomposed into single-bit NOT and two-

bit NAND gates, a quantum algorithm can be decomposed into a finite set of one- and

two-qubit gates. A popular fault-tolerant gate set is the “Clifford+T” set [KMM13], which

uses the Hadamard gate H = (σx + σz)/
√

2, the Phase gate P =
√
σz, and the T -gate
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T = |0〉 〈0|+ eiπ/4 |1〉 〈1| in combination with the two-qubit CNOT gate. The Clifford+T set

is fault-tolerant because it includes gate operations needed for controlling ancillary qubits

used for quantum error correction protocols.

A qubit-specific measurement capability. Each qubit should be individually address-

able with electronic measurements. This can be a real challenge since, in the case of quantum

dots, a single electron is tough to measure sensitively. Moreover, with the single quantum dot

probe available (a source-drain current through the dot), it is impossible to assign a change

in current to a particular electron if there are many quantum dots in series. Qubit-specific

measurement can be achieved with charge sensing, a technique that will be described further

in Chapter 4.

1.3.4 Charge qubit

With the DiVincenzo Criteria in mind, I will now discuss some well-studied qubit encoding

schemes that at least have the potential to satisfy all five requirements. The charge qubit

can be formed by a single electron in a double quantum dot potential well (Figure 1.3a).

When the two dot energies are very different, the electron can tunnel from the high-energy

dot to the low-energy dot. This toggles the qubit state between, for example, |0〉 = |L〉 when

the electron is in the left dot and |1〉 = |R〉 when the electron is in the right dot. When

the dot energies are equal, the electron can be found in either dot with equal probability

and the qubit state lies on the Bloch sphere equator. Since electric fields are the primary

control mechanism, it is very easy to electrically manipulate, measure and couple charge

qubits [PYA03]. On the other hand, the charge qubit is highly susceptible to charge noise

that limits the coherence time to a few nanoseconds [PPL10].
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1.3.5 Spin qubit

Otherwise known as the Loss-DiVincenzo qubit from the original proposal in quantum dots

[LD98], the spin states of an electron in the presence of an applied magnetic field form a good

qubit basis (Figure 1.3b). Because pure spin states do not directly couple to electric fields,

the spin coherence time in quantum dots is unparalleled. For the same reason, spin qubits

are very hard to manipulate and read out. In addition to Larmor precession, the second

axis of control comes from electron spin resonance (ESR). An oscillating magnetic field,

typically the Oersted field from a nearby current-carrying wire, provides the off-diagonal

driving Hamiltonian needed to induce Rabi oscillations when the driving frequency matches

Zeeman splitting of the spin states: fESR = gµBB/h where g is the electron g-factor (nearly

equal to 2 when intrinsic spin-orbit coupling is low), µB is the Bohr magneton, and h is

Planck’s constant [HRX14]. An alternate, and possibly more scalable, method of driving

Rabi oscillations is by moving the electron in a periodic fashion through a magnetic field

gradient. The motion is achieved with oscillating in-plane electric fields from the same gates

used to form the quantum dot, and the magnetic field gradient is generated from a thin

magnetic layer deposited around the location of the dot. When the frequency of lateral

motion is equal to the ESR frequency, electric dipole spin resonance (EDSR) is induced

[YTO18]. The spin state can be measured either with Pauli spin blockade in a double-dot

transport measurement [HVv04], or with single-dot energy-selective tunneling [EHW04b].

1.3.6 Singlet-triplet qubit

These are usually implemented in a double quantum dot system with two electrons (Figure

1.3c). When both electrons are in one dot, the system is in state |0〉 = |S〉, the spin

singlet. As the dot energies are changed to move one electron to the empty dot, the spins

are decoupled and evolve independently. If some form of spin-orbit coupling is present, such

as a difference in magnetic field strength seen by the two dots, then the spins will precess
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at different rates. Then, when brought back together, it now becomes possible for the zero-

net-spin triplet state to form, |1〉 = |T0〉 [DSH13]. The qubit state can be measured with

Pauli spin blockade, either with a transport measurement or with charge sensing. Since the

total spin of the two-electron system is zero at all times, the singlet-triplet qubit is immune

to magnetic noise. However, since the quantum dot energies are electrically tuned this qubit

is still susceptible to charge noise, leading to a dephasing time at best of 10 µs [JJH18].

1.3.7 Charge-spin hybrid qubit

With three electrons in a double quantum dot, it is possible to form a qubit basis that has

protection against charge noise in one double-dot tuning limit and fast operation times and

charge read-out in the other limit [KSS14]. Exploiting a process where the third electron

can tunnel between the dots and facilitate a singlet-triplet transition, the hybrid qubit has

one axis of control from Larmor precession between the |S〉 and |T0〉 states and a second axis

from Larmor precession in the orthogonal charge basis between |L〉 and |R〉. Although both

operations are z rotations on the Bloch sphere in their respective bases, when the basis is

fixed to be |S〉−|T0〉 the charge precession resembles x rotation (although it occurs outside of

the singlet-triplet subspace and therefore the Bloch vector moves through the origin). This

qubit encoding has the benefit of fast manipulation times like the charge qubit, as well as

a factor of two improvement in the dephasing time during singlet-triplet operations (Figure

1.3d).
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Figure 1.3: Common examples of qubit encodings in quantum dots with simplified operation

steps. (A) The charge qubit in a double quantum dot is controlled by modifying the relative

dot energies. (B) A single spin in a magnetic field can be manipulated with ESR. (C) The

singlet-triplet qubit relies on separation and individual precession of two electron spins. (D)

The hybrid qubit utilizes a singlet or triplet state, with a third electron as an exchange

mediator in a double-dot system.
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CHAPTER 2

Valley states in silicon

2.1 Silicon band structure

When discussing physical qubit implementations, it would be nice to describe a given qubit

device as a controlled potential well, into which we can deposit individual charges to form

a qubit in the basis we desire. The only energy levels seen by the qubit in this situation

would be the levels that form the qubit basis states, well-separated from higher orbital levels.

In semiconductor quantum computing, and silicon in particular, we can no longer rely on

such a simple model. The energies of electrons in the semiconductor lattice form bands

determined by the crystal structure in addition to any intentional levels arising from the

device confinement potential.

2.1.1 The silicon lattice

The silicon crystal is described by the diamond lattice [AM76]. The lattice is composed of

two inter-penetrating face-centered cubic (fcc) structures, meaning that there is one pair of

silicon atoms at the eight points of a cube of side a = 0.543 nm and four additional pairs

centered in the six cube faces. The silicon atoms in each pair are themselves separated by

a distance of a/4 (Figure 2.1a). Periodicity of the lattice requires electron wavefunctions to

be periodic themselves according to Bloch’s theorem:

ψ(r) = eik·ru(r), (2.1)
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where u(r) is some periodic function that depends on the crystal lattice in real space and

independently satisfies Schrödinger’s equation [AM76]. In the nearly free electron model,

we assume that electrons are weakly affected by the lattice potential and the wavefunctions

resemble the free-space solutions, i. e. plane waves, to zeroth order so that ψ(r) ≈ eik·r. The

associated free-space energies are simply given by parabolas in k space:

E(k) =
h̄2k2

2m
, (2.2)

where for now the value of electron mass m is left intentionally vague, since corrections to the

free-space solution can alter the effective mass substantially. It turns out that for conductors

the parabolic bands obtained in the free electron solution (2.2) are a good approximation

within a single reciprocal lattice period (the first Brillouin zone), with modifications from

lattice interactions contributing near the Brillouin zone boundary.

2.1.2 Band structure with pseudopotentials

The goal is now to calculate the conduction bands in silicon to find energy minima, which

will give the true electron ground state. This can be done perturbatively, keeping in mind

the possibility of degenerate states, with the pseudopotential formalism [Phi58]. The peri-

odic part of the wavefunction u(r) and the periodic potential are both Fourier expanded in

reciprocal space. The Schrödinger equation at reciprocal lattice vector Gl then reads

h̄2

2m0

|k + Gl|2AGl
+
∑
n

VGl−nAGn = E(k)AGl
(2.3)

where AGl
and VGl

are the Fourier coefficients of u(r) and potential V (r), respectively. Since

the lattice potential is explicitly included, the mass term m0 is just the free electron mass.
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Figure 2.1: Silicon crystal and band structure. (A) The silicon primitive unit cell in real

space adapted from [AM76]. Blue vertices are the traditional fcc lattice points, red points are

the basis silicon atoms. (B) Silicon band structure near the band gap, calculated in Matlab

using a pseudopotential script modified from [Zak10]. Valley states are indicated at ±k0 by

red points. (C) Valley equipotentials shown as red ellipsoids within the first Brillouin zone.

Solving for E(k) amounts to finding the eigenvalues of the matrix with elements

Hi,j(k) =
h̄2

2m0

|k + Gi|2δi,j + VGi−j , (2.4)

VGm = V S
Gm

cos(Gm · τ). (2.5)

Here I’ve introduced the silicon symmetric form factor V S
Gm

, found experimentally through

x-ray attenuation [MMB85], and the reciprocal vector τ = 1
8
(1, 1, 1) representing the offset

of the two basis silicon atoms from the lattice origin. Performing the diagonalization of (2.4)

with 125 terms in the Fourier expansion [Zak10] took about 15 seconds on my laptop, a

testament to the power of the pseudopotential method (Figure 2.1b).

In Figure 2.1b, the silicon bands are plotted along the kz direction from one face of

the fcc Brillouin zone to the opposite face through the zone center point Γ, in the vicinity

of the band gap. There are several important quantities that can be extracted from the

bands, notably the degeneracy, effective masses, and crystal momenta of electrons in the

conduction band. As a relevant example for what is to follow, suppose an electron is in the

lowest possible energy in the conduction band. From Figure 2.1b it is apparent that there
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are at least two degenerate minima located at ±k0 = ±0.82(2π/a), close to the Brillouin

zone boundary. Considering there are six equivalent X points on the Brillouin zone, the

conduction band minimum is actually six-fold degenerate. These six conduction states are

known as the valley states.

2.2 Valley state electrons

2.2.1 Effective mass

Any local energy minimum can of course be expanded in a polynomial series and it is often

a good approximation to keep terms up to degree 2, provided the region of interest doesn’t

deviate much from the minimum point. Using this approximation at a valley minimum in

the conduction band and enforcing a dispersion relation of the form (2.2), it is possible to

write the energy at, for instance, k0 = k0ẑ as

E(k) = E0 +
h̄2

2

[
k2
x

mx

+
k2
y

my

+
(kz − k0)2

mz

]
, (2.6)

where mx, my, and mz are the electron’s effective mass in the associated k space direction.

This relation plots an ellipsoid, centered at k0, with axes determined by the effective mass

components (Figure 2.1c). Appropriately, this is called the effective mass approximation

[Kit05]. In silicon the two mass components perpendicular to the reciprocal vector given by

ΓX are equal, so along the kz axis the valley state energy terms are grouped together with

a longitudinal mass ml and a transverse mass mt:

E(k) = E0 +
h̄2(k2

x + k2
y)

2mt

+
h̄2(kz − k0)2

2ml

. (2.7)
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Finally, the effective mass components can be calculated from the local band curvature:

1

mi

=
1

h̄2

∂E(k)

∂ki
. (2.8)

Using the band calculations in the previous section, we get longitudinal and transverse effec-

tive masses of ml = 0.92m0 and mt = 0.19m0 [Gre90]. Considering the physical implications

of the effective mass approximation, this result says that an electron in a valley state be-

haves like a free particle (subject to periodic boundary conditions) with a fifth of the electron

rest mass. Despite the many bands of silicon and the details of the crystal structure that

comprise band calculations, most of the relevant physics is simply encapsulated in the scalar

effective mass terms.

2.2.2 Valley wavefunctions in bulk silicon

Using the effective mass approximation, it is now possible to obtain a simple form of the

valley state wavefunctions in bulk silicon. Details of the potential landscape are wrapped

into the mass, so the Hamiltonian of the system is just the kinetic energy given by (2.7).

If the wave vector h̄k is treated as a form of momentum (the crystal momentum), then the

Schrödinger equation simply describes a free particle and the solutions are plane waves eik·r.

The solutions in just the kz dimension, for instance, are a superposition of the two z valley

Bloch waves [AFS82]

ψ±(z) =
1√
2

[u+k0(z)eik0z ± u−k0(z)e−ik0z]. (2.9)

This is an interesting result, because it shows that a conduction electron in the ground

state in silicon has a wavefunction that rapidly oscillates in real space. In a material with

k0 = 0 (a direct gap semiconductor), the wavefunction is just the periodic term in the Bloch

wavefunction (2.1). Since silicon has a nonzero k0, and in fact a crystal momentum very

close to the Brillouin zone boundary, the associated ground-state valley wavelength is on
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the order of the atomic spacing. This in and of itself is a drastic departure from the classic

“particle in a box” assumption that researchers would like to make when operating qubits,

and leads to an acute sensitivity of electron physics to atomic-scale details of the quantum

dot heterostructure.

2.3 Modifications to the valley states in quantum dot heterostruc-

tures

2.3.1 Heterostructure confinement

Thus far, the discussion has been limited to valley states in bulk silicon where the crystal

symmetry guarantees that the valley states are sixfold degenerate. However, in quantum dot

devices the valley state energies are modified. In Si/SiO2 quantum dots, the out-of-plane (z)

wavefunction is strongly confined from the sharp interface potential and the gate-generated

electric field (see Figure 1.2). This breaks the symmetry in the z direction and lifts the

valley degeneracy [AFS82]. In Si/SiGe quantum dots, the lattice mismatch between the

silicon quantum well and the SiGe alloy buffer creates tensile strain in the quantum well,

breaking the symmetry in the x − y plane [Sch97]. In both cases, the result is a two-fold

degenerate z-valley ground state, while the four-fold degenerate x and y valleys are lifted

by around 20 meV in the case of Si/SiO2 and 200 meV for Si/SiGe. Taking into account

electrostatic confinement within a quantum dot, the degeneracy of the z valleys is lifted to

form the ground state and first excited state of the quantum dot [SCH09][ZDM13]. The

energy difference between z valleys, which will from now on will be referred to as the valley

splitting, is around 1 meV in Si/SiO2 and on the order of 0.1 meV in Si/SiGe in the ideal limit.

Since the in-plane valley state energies are situated above the z valleys by tens or hundreds of

meV, they are not particularly relevant on the energy scale of quantum dots, with charging

energies of 1− 10 meV. However, the nearly degenerate out-of-plane valley states can wreak

havoc on basic quantum dot measurement, for instance by allowing supposed violations of
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the Pauli exclusion principle [CCL10]. Important for qubit operation, an uncontrolled state

near the qubit ground state can become an avenue for quantum information leakage, being

a state outside the qubit subspace.

2.3.2 Confined valley wavefunctions in the tight-binding model

To make any substantive theoretical predictions about the behavior of confined electrons in

valley states, the issue again becomes correctly modeling the Bloch functions uk(r). Effective

mass theory is capable of producing analytic Bloch functions, and has been applied in detail

to Si/SiGe heterostructures [FCT07], but the calculations can be strenuous. The tight-

binding model is a simplified approach to lattice wavefunctions that accurately reproduces

atomic-level behavior and avoids explicit calculation of the Bloch functions [SK54]. The

basic assumption, rather than starting from the free electron case and applying weak effects

from the lattice, is to start with non-interacting atoms at each lattice site and apply weak

interaction between sites. This implies that the bound electron wavefunctions are more or

less localized at individual lattice points rather than spread out over many atoms. Given

some Hamiltonian Hatom for the dynamics of an electron bound to an isolated atom and a

correction term ∆U(r) that contains all the interactions with neighboring sites, the tight-

binding Hamiltonian can be written in second quantization formalism as [AS06]

HTB = t1
∑
i,j=nn

(c†icj + cic
†
j) + t2

∑
k,l=nnn

(c†kcl + ckc
†
l ) + · · · , (2.10)

where c†, c are creation and annihilation operators for atomic site occupation, indices i, j

iterate over nearest atomic neighbors, and indices k, l iterate over next nearest neighbors.

Coefficients tn are overlap integrals that measure the amount of wavefunction overlap between

bound electron wavefunctions, calculated in terms of the mth orbital function φm(r) and
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assumed to be small [AM76]:

tn = −
∫
φ∗m(r)∆U(r)φl(r−Rn)d3r (2.11)

In (2.11), Rn is the real-space vector separation between nth nearest neighbors. A further

simplification, instead of directly calculating the overlap integrals, is to choose scalar values

of tn so that the eigenstates of (2.10) lead to known band structure characteristics. From the

nearly free electron model we have established that ground state conduction electrons have

a crystal momentum of h̄k0 and a longitudinal effective mass ml = 0.92m0, which leads to

nearest-neighbor and next-nearest-neighbor overlap integrals of t1 = 0.683 eV and t2 = 0.612

eV [BKE04].

It may seem counter-intuitive to base some calculations in the tight-binding model to

quantities obtained with the nearly-free electron model. The former assumes that electrons

barely see the atomic lattice, and the latter assumes that electrons barely see beyond a single

atomic potential. We can get away with this for two reasons: first, silicon as a semiconductor

falls between the separate limits dealt with by the two models and so neither one is perfectly

suited to deal with silicon bands. Second, the valley states as bounded by the constant-

energy ellipses (2.7) are small enough compared to the full Brillouin zone that the parabolic

dispersion approximation is quite accurate.

Finally, the valley wavefunctions in the out-of-plane direction confined to a silicon quan-

tum well embedded in SiGe and in the presence of a gate-generated electric field Fz can be

obtained by diagonalizing the full Hamiltonian

H = HTB + Vwell(z) + eFzz. (2.12)

The left panel of Figure 2.2 shows the valley state wavefunctions in a 10 nm wide quan-

tum well (the details of this calculation are discussed in Chapter 8). As expected, the valley

wavefunctions have fast oscillations with a periodicity of almost one atomic spacing. Confine-
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SiGe Si

Figure 2.2: Valley state calculations with the tight-binding model (2.12). Left: ground state

(blue) and excited state (orange) wavefunctions in a silicon quantum well with an applied

electric field. The wavefunctions are described by a slowly varying orbital envelope function

on top of a rapidly oscillating Bloch wave. Top: corresponding potential energy. Right:

valley splitting as a function of the number of silicon atomic layers in the quantum well with

no electric field. Oscillations become more dramatic as the quantum well is made thinner.

ment leads to a slowly varying envelope on top of the waves to satisfy boundary conditions,

amounting to multiplying (2.9) by some normalized first orbital state of the well. In addi-

tion, there is a phase difference of almost π/2 between the ground state and excited state

wavefunctions, called the valley phase, that relates to the valley splitting. Taken together,

the oscillation wavelength and valley phase imply that the number of atomic layers in the

quantum well have a substantial impact on the valley eigenstates, and therefore the valley

splitting (Figure 2.2).
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2.3.3 Effects of interface disorder

In physical heterostructures it isn’t realistic to assume that the interface is atomically flat.

Although the random placement of a few stray atoms at the interface may not have much

affect on the orbital electron energies, it is clear that the valley wavefunctions can change

if even a single atomic layer is added or removed from the quantum well. In Figure 2.2,

the ground state wavefunction has a node at the upper Si/SiGe interface and, due to the

valley phase, the excited state wavefunction is near a maximum at the same interface. If

the quantum well width were now reduced by one atomic spacing, the excited state will

change while the ground state is mostly unaffected. This leads to a measurable change in

the valley splitting (Figure 2.2, right panel). Moreover, if the quantum well width has some

in-plane spacial dependence then the valley splitting depends on the lateral quantum dot

location. This is the origin of valley-orbit coupling, which can significantly reduce the valley

splitting from the ideal device case. In Si/SiO2, valley splitting is found experimentally to be

around 100 µeV [VHY14][GHJ16]. In Si/SiGe, where the interface potential barrier isn’t as

sharp, the valley splitting can vary drastically from 10 to 100 µeV [MPB17][SFJ17][BRK11].

The variability seen in Si/SiGe devices presents yet another obstacle for reproducible qubit

behavior, since it’s impossible to know a priori what the valley splitting will be in a given

quantum dot device. The various degeneracies of the valley states, including the reduction

in valley splitting from disorder, are qualitatively displayed in Figure 2.3.

2.4 Forms of valley hybridization

The magnitude of the valley splitting, specifically compared with standard qubit bases, is

a challenge in and of itself (for example, a spin qubit operated at a magnetic field of 1T

and a charge qubit operated at the inter-dot anti-crossing will both have an energy splitting

of ∼ 100 µeV). However, there is the opportunity for even bigger problems due to the

hybridization of valley states with other measurable electron degrees of freedom. Mentioned

29



v
a

ll
e

y
 s

ta
te

 e
n

e
rg

y

6-fold 

degenerate

4-fold

𝑥, 𝑦 valleys

𝑧 valley (+)

200 meV

bulk silicon quantum dot 

confinement

interface 

disorder

𝑧 valley (-) 𝐸VS

Figure 2.3: Lifting of the six-fold valley degeneracy. The z valleys are split off from the

in-plane valleys due to lattice strain in Si/SiGe and are themselves split by quantum dot

confinement. Interface roughness reduces the valley splitting depending on the amount of

valley-orbit coupling.
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in the previous section is valley-orbit coupling, responsible for a reduction in valley splitting.

Coupling between valleys and spin states is also possible, leading to complex and often

unwanted electron behavior.

2.4.1 Valley-orbit coupling

At this point I have established that valley-orbit coupling arises from spatial nonuniformity of

the potential well at the atomic level. Valley-orbit coupling can be quantitatively calculated

by considering the full electron wavefunction in the valley-orbit hybrid state ψ
(j)
±z(r), which

includes the z direction valley wavefunctions shown in Figure 2.2a and the in-plane function

determined by the lateral, gate-defined quantum dot confinement. The valley-orbit coupling

is then given by

∆(j) = 〈ψ(j)
z |V (r)|ψ(j)

−z〉 . (2.13)

If the interface potential V (r) = V (z), meaning total interface uniformity, then the coupling

between valleys and in-plane orbital states will be zero as expected. It is useful to give a

qualitative example of how such hybridization would affect the operation of a charge qubit.

Consider an electron in a double quantum dot potential with some degree of inter-dot tunnel

coupling ∆. Ignoring valleys and higher orbital states, the two-state subspace depends on the

detuning ε, or the difference in energies between the two quantum dots. When |ε| >> 0, the

electron is almost certain to be found in the dot with the lowest energy and the eigenstates

are just |L〉 and |R〉, corresponding to occupation in the left or right dot. When ε = 0, the

dot energies are equal and the electron can be measured in either dot with equal probability

with eigenstates |±〉 = 1√
2
(|L〉 ± |R〉). The charge qubit Hamiltonian in the charge basis

{|L〉 , |R〉} is

H =

−ε/2 ∆

∆ ε/2

 (2.14)
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Figure 2.4: Left: a charge qubit spectrum. Lines are colored based on dot occupation (blue

= more in the right dot, red = more in the left dot). Right: the same charge qubit in the

presence of valley splitting. Note that the valley splitting in the two dots are different in

principle.

and the energy gap at the zero detuning anti-crossing is 2∆. The eigenenergies for this

Hamiltonian are plotted against detuning in the left panel of Figure 2.4.

With the addition of non-degenerate valley states and valley-orbit coupling, the two-state

spectrum turns into a four-state spectrum, two valleys per quantum dot, and each valley can

couple to the two valleys in the opposite dot [GEC13][TH19]. In the pseudo-charge basis

{|L, v−〉 , |L, v+〉 , |R, v−〉 , |R, v+〉}, the general Hamiltonian can be written as

H =


−ε/2 0 0 0

0 −ε/2 + EVS(rL) 0 0

0 0 ε/2 0

0 0 0 ε/2 + EVS(rR)

+ ∆(rL, rR), (2.15)

where EVS(ri) is the local valley splitting in the vicinity of dot i and Hermitian matrix

∆(rL, rR) contains off-diagonal terms that couple states of different charge occupation. Ex-
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perimentally the coupling matrix and how it evolves with lateral dot positions isn’t known,

but it is possible to put (2.15) into a phenomenological form assuming the dot positions are

independent of detuning:

H =


−ε/2 0 ∆1 −∆2

0 −ε/2 + EVS,L −∆3 ∆4

∆1 −∆3 ε/2 0

−∆2 ∆4 0 ε/2 + EVS,R

 . (2.16)

The four-state spectrum is plotted in Figure 2.4 (right panel) in the case where the left and

right dot valley splittings are less than the inter-dot coupling. Obviously, any researcher

endeavoring to make a charge qubit that sees this spectrum would likely throw the device

away and try a new one. However, certain aspects of the valley-orbit hybridization could

lead to a unique qubit subspace, as demonstrated in Chapter 6.

2.4.2 spin-valley coupling

Pure spin states with their outstanding coherence times make an excellent qubit basis. An

electron in a single quantum dot in the presence of an applied in-plane magnetic field B will

have non-degenerate spin states with Zeeman splitting EZ = gµBB (Figure 2.5, left panel).

The ideal spin qubit Hamiltonian, again ignoring valleys and higher orbitals, is automatically

diagonal, with eigenenergies ±EZ/2. However, spin states can in general couple to other

electron degrees of freedom like orbital states and valley states. Intrinsic spin-orbit coupling

in silicon is quite low which contributes to the appeal of silicon as a semiconductor qubit

material [PKJ11], but spin-valley coupling is often non-negligible. Since spin energies of the

same valley occupation diverge according to the Zeeman energy, spin-valley coupling occurs

between states of different spin and valley numbers (Figure 2.5, right panel) leading to a
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Figure 2.5: Left: a spin qubit spectrum. The spin states are split by the Zeeman energy.

Right: the same spin qubit in the presence of valley splitting. The spin-valley anti-crossing

occurs at gµBBext = EV S.

spin-valley Hamiltonian of the form

H =


−1

2
gµBB 0 0 ∆a

0 −1
2
gµBB + EVS ∆a 0

0 ∆a
1
2
gµBB 0

∆a 0 0 1
2
gµBB + EVS

 (2.17)

in the spin-valley basis {|↑, v−〉 , |↑, v+〉 , |↓, v−〉 , |↓, v+〉}. As I will discuss in Chapter 7, spin-

valley coupling leads to spin decoherence, making careful characterization of the valley states

critical for spin qubits.
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CHAPTER 3

Device fabrication and testing capabilities

3.1 Fabrication

It is a long and sometimes painful process to go from a full silicon wafer to a grid of quan-

tum dot devices. The gates used to define the dots are around 50 nm wide at their smallest

and separated from other gates by less than that amount. These design constraints and

others make careful fabrication crucial, since errors lead to un-reproducible device perfor-

mance, shorted gates or unwanted conduction paths. Fortunately, we are able to carry out

many of the semiconductor processing steps in-lab and accomplish what remains at the on-

campus cleanroom facilities, the California NanoSystems Institute (CNSI) and the UCLA

Nanofabrication Laboratory (Nanolab).

3.1.1 Quantum dot operating principle

Figure 3.1 shows the typical schematic of a double quantum dot device fabricated on a

Si/SiGe wafer. Two layers of metallic gates, separated by an insulating oxide layer, are used

to form quantum dot potential wells and conducting channels from the dots to source and

drain charge reservoirs. The top layer is a global accumulation gate (or “top gate”) below

which a quasi-two-dimensional inversion layer of conduction electrons is formed in the silicon

quantum well. The bottom metallic layer, deposited directly on the wafer, is composed of

local depletion gates that selectively “turn off” the 2DEG, much like a hand in front of a

movie projector selectively blocks light from reaching the screen. When the top gate is biased
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global accumulation gate

oxide (Al2O3)

local depletion gates

quantum well

Figure 3.1: A typical schematic of the innermost portion of a double quantum dot device

fabricated on Si/SiGe. The lateral positions of the two dots within the quantum well are

shown as red areas surrounded by local depletion gates.

above the threshold voltage, the local gates control the dot sizes, positions, and coupling to

each other and the nearby reservoirs. Due to the mode of operation, devices like these can

be called accumulation-depletion devices.

It is important to point out that this type of quantum dot design is certainly not universal.

In our accumulation-depletion designs, the quantum dots form next to or between local

gates operating below the threshold voltage. There are other research groups using a pure

accumulation-mode structures, where quantum dots form directly under local gates biased

above the threshold voltage. This allows deeper potential wells and a higher degree of

electrical control, at the cost of reduced robustness against insulator breakdown and more

difficult fabrication.

36



3.1.2 Silicon wafer structure

All experiments detailed in Chapters 5 through 8 were carried out on a single device fab-

ricated on a 6” Si/SiGe wafer, grown by Lisa Edge at HRL Laboratories and given to us

by Jason Petta’s lab at Princeton. Although some details of the wafer are confidential,

some relevant cross-sectional details are presented in Figure 3.1. The lowest wafer layer is

single-crystal silicon, followed by a Si1−xGex alloy graded buffer. The alloy concentration x

is spatially varied from 0 at the bottom to the final concentration of typically 0.3 at the top

of the buffer [HLL12][LHR13]. Next is the 10 nm-wide strained silicon quantum well and a

Si1−xGex spacer of 30-50 nm, with a constant concentration x. Finally, the wafer is capped

with a thin (2 nm) silicon layer.

3.1.3 Wafer characterization

Figures of merit for silicon wafer quality are electron mobility and electron density. The

mobility µ is a scalar quantity that relates how fast conduction electrons drift on average in

response to an electric field E [Kit05]:

vd = µE, (3.1)

where vd is the average drift velocity. Mobility and electron density n are related to

electrical conductivity σ by the relation σ = neµ. In general, high mobility is better for

transistors (or quantum dot devices) since it implies low susceptibility to scattering sources.

Mobility and electron density can be measured with the Hall effect. To this end, a single

aluminum gate in a Hall bar geometry was deposited with thermal evaporation on top of

an aluminum oxide layer, grown with atomic layer deposition on the Si/SiGe wafer. The

six contact points of the Hall bar were formed with ion-implanted Ohmic contacts that

extend partially under the Hall bar top gate. Graduate student Blake Freeman carried
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Figure 3.2: Si/SiGe mobility from Hall bar transport. (A) Transverse (Hall) resistance and

(B) Longitudinal resistance as a function of applied out-of-plane magnetic field. (C) Hall

bar design as seen by the photolithography mask (see Section 3.1.4). Green areas are ion-

implanted Ohmic contacts and blue area is the top gate. (D) Mobility obtained from (3.4)

showing saturation at 7× 105 cm2/V·s
.
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out the fabrication and HongWen Jiang performed the Hall measurements at 300 mK. My

contribution to this effort was the Hall bar design and corresponding photolithographic mask

(Figure 3.2c).

In the presence of an out-of-plane magnetic field, electrons will be deflected according to

the right-hand rule and generate a voltage perpendicular to the direction of applied current as

charge accumulates along one edge of the conducting material. With the Hall bar geometry,

this perpendicular voltage VH is measured across terminals 2 and 6 or 3 and 5 with current

I applied across the long axis to get a Hall resistivity (Figure 3.2a)

ρxy =
VH
I

A

b
. (3.2)

In (3.2), A is the bar area and b is the distance between terminals. Similarly, a longitu-

dinal resistance ρxx can be measured across adjacent terminals 2 and 3 or 5 and 6 (Figure

3.2b). Then electron density and mobility as a function of applied field B are given by

[MHP15]

n =
B

eρxy
, (3.3)

µ =
1

B

ρxy
ρxx

. (3.4)

At cryogenic temperatures, it is possible to see the quantum Hall effect wherein the

Hall resistivity will be exactly quantized in steps of h/e2 and longitudinal resistivity will

exhibit Shubnikov-de Haas oscillations [KDP80]. Although the quantum Hall effect is itself

a remarkable phenomenon, its presence in mobility and density measurements is not desirable

and so the applied magnetic field is low enough that oscillations in longitudinal resistivity

are not yet visible, below 0.5 T in our sample. Then the peak mobility can be determined

by observing the saturation point as top gate voltage is increased (Figure 3.2d). We found
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a peak mobility of 7 × 105 cm2/V·s, which is comparable to the highest known published

mobility value in Si/SiGe heterostructures [MDS17].

3.1.4 Fabrication procedure

The next sections will detail the steps for fabricating a quantum dot device on a Si/SiGe

wafer. The procedure is the result of more than ten years’ worth of refining over the

course of four graduate students’ PhD work. The foundational work in silicon metal-oxide-

semiconductor (MOS) heterostructures was begun by Ming Xiao and is detailed in the dis-

sertations of Matt House and Hong Pan [Hou12][Pan13], while the development of the design

used in this work on Si/SiGe can be attributed to Blake Freeman and Joshua Schoenfield

[Fre17][Sch17]. In addition to the standard fabrication recipe, I will also briefly discuss our

development of a novel application of nano-imprint lithography to reduce charge impurities

in silicon MOS in Section 3.2. Detailed procedures for standard fabrication and nano-imprint

lithography can be found in Appendix B.

3.1.5 Alignment markers

In an ideal setting all fabrication would be done on a full wafer, with a subsequent cleaving

into individual devices. However, some of the in-lab fabrication processes are area-limited

(notably the electron-beam lithography) and require the wafer to be cleaved into four or

more manageable pieces.

After the wafer is cleaved, a pattern of global alignment markers is photolithographically

developed on each wafer piece and aligned to the square crystal lattice. Photolithography

entails spinning a few-micron-thick layer of photoresist polymer onto the wafer, then exposing

the polymer to a UV light source that is masked by a geometry of our design. After a bath

in a developer solution, the only photoresist left on the wafer is the material that was not

directly exposed to the UV source. Masks for photolithography were designed in KLayout
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and made by UCLA Nanoelectronics Research Facility (NRF). The alignment marker mask

is simply a set of brackets that define the corners of each device’s working area. After

photolithography, a 50 nm layer of chrome is thermally evaporated, only adhering to the

wafer where the photoresist was removed. After a wash in acetone to dissolve the remaining

photoresist, all that remains on the wafer are chrome brackets matching the bracket design

on the photolithography mask (Figure 3.3a). All subsequent lithography steps will be aligned

to these markers, or to features that were themselves aligned to the markers.

3.1.6 Ion implantation

The Ohmic contacts that allow direct electrical connection to the silicon quantum well are

first defined with photolithography, this time with a double layer of photoresist, and aligned

to the chrome markers. Then the wafer is sent out for implantation with 25-30 keV phospho-

rus ions at a dosage of 2× 1015 cm−2 (Leonard Kroko, Inc.). Ion implantation has the effect

of doping the silicon in select areas, increasing the electron concentration and effectively

moving the Fermi level up to the conduction band, leading to fully conducting regions of

silicon. These conducting regions extend out to the edges of the device area for later wire

bonding and form channels that travel inward toward the center so that there are small por-

tions of the ion implanted regions that are below where the global accumulation gate will be

deposited (Figure 3.3b). The precise ion energy doesn’t seem to have a significant impact on

the Ohmic contact conductivity, although there are dangers in deviating too much from the

10-30 keV range. If the energy is too small, then the ions won’t penetrate deep enough into

the wafer and the conductivity will be reduced. If the energy is too large, then the ions will

be able to penetrate the double photoresist layer and cause unwanted doping of the active

quantum dot area. Following the ion implantation, the wafer undergoes a rigorous solvent

clean to remove all burned-on photoresist.
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3.1.7 Rapid thermal annealing

After experiencing high-energy ion bombardment, the silicon crystal lattice is physically

damaged. Exposed to a high enough temperature, atoms in the lattice can migrate and

repair most dislocations. The required temperatures, up to 1000 ◦C, can be reached within

seconds using a rapid thermal annealer (RTA). In past years an Ulvac-Riko MIL-5000 in

our lab was used, however the sample chamber is too small even for a quarter-wafer piece

and using it required an additional cleaving step. We have since moved to the full-wafer

MPTC RTP-600XP Rapid Thermal Annealing System at CNSI, which allows us to heat the

wafer up to 700 ◦C for 30 seconds and reach room temperature within a minute. Since the

implanted phosphorus ions can also migrate away from the Ohmic contact regions during

RTA, it’s important that the whole process is done as quickly as possible.

3.1.8 Outer depletion gates

The depletion gates start out very small near the center of the device where the quantum dots

are formed, but they must end in large (20 mm) pads near the device perimeter so we can

connect wires from the chip holder to the finished wafer piece. Masked photolithography is

capable of defining the depletion gates on the larger scale, but is practically limited to about

1 mm minimum feature size. As a result, photolithography is performed to make a portion

of the depletion gates that starts at the bonding pads and ends before reaching the device

center, leaving a 16 mm × 16 mm empty square at the center of the device (Figure 3.3c).

Following photolithography, 5 nm of chrome and 45 nm of gold are deposited with thermal

evaporation (Cooke Vacuum Products). Gold is used for the gates due to its malleability

and relatively good conductivity, but it doesn’t adhere well to the bare silicon wafer. The

initial chrome layer is needed because it has good surface adhesion to silicon and its oxides,

and gold adheres well to the chrome intermediary layer. We also sometimes use electron

beam evaporation at Nanolab or CNSI for this step to produce a higher quality metal film.
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Figure 3.3: First three quantum dot fabrication steps. (A) Chrome alignment markers. (B)

Ion-implanted regions. (C) chrome-gold or titanium-gold outer depletion gates. Top panels

represent wafer cross-sections (not to scale) and lower panels are the mask patterns used for

photolithography. Masks designed by Hong Pan.

In this case we start with 5 nm of titanium followed by 45 nm of gold.

3.1.9 Inner depletion gates

For the smallest features of the depletion gates, the resolution of photolithography is in-

sufficient. Since electrons have a much smaller de Bloglie wavelength than UV photons, it

is possible to perform electron-beam lithography to define features on the scale of tens of

nanometers. Analogously to photolithography, we first apply a polymer resist that is devel-

oped by exposure to an electron beam. We use two resists for this step, first 950PMMA A4

and then 950PMMA A2. The A4 polymer is thicker and develops faster than its copolymer

A2, so when the double layer is exposed and developed there will be an overhang of A2,

making subsequent lift-off of metal films much easier. E-beam exposure takes place in our

Hitachi S3000H scanning electron microscope (SEM), and the gate pattern is traced with

a focused 30 keV beam controlled by Nano-Pattern Generation System (NPGS) software.

Each device on the wafer piece is aligned in the SEM to markers defined as part of the outer
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gate photolithography. Although there are some dedicated 1 mm square markers that can be

used, in practice it is easier to simply align to four of the outer gates where they terminate

at the edge of the e-beam writing area.

Compared to the photolithographic fabrication steps that take about 10 minutes of align-

ment time followed by 10 seconds of UV exposure for the entire wafer piece, e-beam lithog-

raphy (EBL) is delicate and time-consuming. The writing area of our SEM is about 20 mm

× 20 mm, meaning that each set of inner gates must be aligned and written individually.

Furthermore, the electron beam moves in a raster pattern, so writing the diagonal lines that

make up the gates is inefficient. We are beginning to use the Vistec EBPG 5000+ e-beam

writer at CNSI that is capable of automatically writing a full wafer with better resolution

than our SEM, and its writing area is large enough that the entire depletion gate pattern

can be written without needing the previous photolithography step.

Following e-beam lithography, 5 nm of titanium and 45 nm of gold are deposited with

e-beam evaporation (Figure 3.4a). For the inner gates, thermal evaporation isn’t possible in

our system due to gold spitting, a process where droplets of gold are ejected from the metal

source and land on the wafer. Since the droplets are in a liquid phase and not the vapor

phase, their viscosity prevents them from smoothly coating the wafer and the result is a very

uneven metallic film. We can get away with a rough deposition for the outer gate pattern

because the photoresist is much thicker than the gold film, but the size and intricacy of the

inner gate pattern requires the higher-quality e-beam evaporation.

3.1.10 Top gate

The large accumulation gate used to turn on the device must be electrically isolated from

the local depletion gates. To achieve this, we grow an insulating layer of aluminum oxide by

atomic layer deposition (Savannah 100). The oxide thickness is 1000 atomic layers, roughly

100 nm. Then the top gate is defined with photolithography aligned to the initial alignment

markers and 100 nm of aluminum is thermally evaporated on the oxide (Figure 3.4b).
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Figure 3.4: Last three quantum dot fabrication steps. (A) Titanium-gold inner depletion

gates. (B) Aluminum oxide layer (not shown) and aluminum top gate. (C) Etch windows

through the oxide to reach contact pads. Top panels represent wafer cross-sections (not to

scale) and lower panels are the mask patterns used for photolithography / e-beam lithogra-

phy.
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3.1.11 Exposing the Ohmic contacts

With the deposition of a 100 nm-thick oxide layer, it is impossible to make good electrical

connection to the ion-implanted Ohmic contacts or even the depletion gates from the wafer

surface. To remove the oxide from the contact pads for the depletion gates and ion-implanted

regions, square windows are first defined with photolithography over every pad. Then the

wafer is briefly submerged in Transetch-N, a solvent that attacks aluminum oxide (and

aluminum, to a lesser extent), heated to 150 ◦C. The oxide layer is eaten away in the

windows while the photoresist protects the rest of the wafer (Figure 3.4c).

3.1.12 Mounting and electrical contacts

The finished wafer is first cleaved by hand with a diamond scribe to separate all of the

fabricated devices. A dab of indium is placed with a low-power soldering iron on each of

the Ohmic contact pads, visible by the etched window in the oxide. Each device to be

tested is then mounted to a custom printed circuit board (PCB). Devices intended for high-

throughput testing are mounted with super glue, while devices that may undergo extended

experiments are mounted with silver epoxy. Unlike super glue, which can be easily removed

with acetone, silver epoxy is permanent and gives better thermal contact between the device

and the PCB. The final step is to bridge the device and PCB contacts, accomplished by wire

bonding with a West Bond wedge bonder.

3.2 Nano-imprint lithography

Quantum dots in Si/SiGe heterostructures fabricated with the standard method described

above are quite reliable, to the point where any quantum dot device that has passed initial

screening can repeatably be tuned to the single-electron regime with no adverse effects from

charge traps and defects in the aluminum oxide layer. Devices fabricated on silicon MOS

46



wafers, on the other hand, are often plagued by defects in the silicon oxide or at the Si/SiO2

interface. If the charge impurity density were improved to the level of Si/SiGe, then silicon

MOS would be the device material of choice with its lower charge noise [FSJ16], robust

stability from stronger confinement [YLH20], and enhanced valley splitting. One way to

reduce the impurity level is to cut out or replace fabrication steps that create defects. It has

been known since the late 1980s that ionizing radiation leads to charge traps [TM92], and

the radiation from high-energy electrons scattering in the oxide during e-beam lithography

has more recently been shown to cause such traps [NES09][KTL17]. However, since it seems

that e-beam lithography is an unavoidable processing step for nanoscale gates, there has

been no way of isolating the effects of e-beam lithography on trap density in quantum dots.

Nano-imprint lithography (NIL) is a process that uses a rigid mold to press a pattern into

a polymer layer on the target wafer, just like an embosser imprints a design onto paper.

Although the mold is ultimately fabricated using e-beam lithography, the target wafer never

experiences ionizing radiation. Thus, devices made with NIL in place of EBL should in

principle be completely free of charge traps arising during fabrication.

In a manner similar to [CGS03], the mold used in NIL can be fabricated from a silicon

wafer with 350 nm of thermally grown oxide. After chrome alignment markers are deposited

with photolithography and thermal evaporation, the outer gate pattern is photolithograph-

ically defined. Now, instead of evaporating metal, the wafer is submerged in a bath of

hydrofluoric acid buffered oxide etchant for 4.5 minutes to remove all of the oxide in the

gate pattern. After removal of the photoresist, the outer gate pattern is deeply etched into

the oxide. Then the inner gate pattern is aligned to the outer gate shapes (which have high

contrast since the etched regions go straight to the bare silicon) and written with EBL. Next,

50 nm of aluminum are evaporated on top of the double PMMA layer. After lift-off, the

aluminum inner gates remain on the oxide surface. These gates serve as an etch mask for

a reactive ion etch (RIE) with CHF3 that uniformly removes about 120 nm of oxide from

the wafer. Unlike a solvent etch, the RIE is highly anisotropic and only etches in the z
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direction, into the wafer plane. When the aluminum mask is removed with Transetch-N, the

inner gate pattern remains on the wafer as plateaus in the silicon oxide. To complete the

mold, a self-assembled fluorocarbon monolayer was deposited on the wafer via a evaporation

of an FDTS droplet at room temperature in an dry nitrogen environment. This layer is

hydrophobic and prevents the mold from getting glued to the target wafer after imprinting.

The target MOS wafer is a 2” silicon wafer grown with the float zone process with

20 nm of thermal oxide, purchased from University Wafer. It is prepared with a single

thick layer (≈ 70 nm) of PMMA A2 as the imprinting polymer following the standard ion

implantation. Then the target wafer and the mold are brought together in an Obducat

EITRE 6 hot embosser at Nanolab (pressure of 44 bar at 130 ◦C). The imprinted pattern in

the A2 polymer is a mirror image of the mold pattern. Despite the hydrophobic monolayer,

the mold is difficult to remove from the target wafer without breaking one or both pieces.

The rate of success was significantly increased by fixing double-sided tape on two halves of

a small vice, securing the mold and wafer on one half, and then gently clamping down on

the wafer pieces and slowly separating them.

With the gate pattern imprinted in the polymer coating, 35 nm of Ti/Au is evaporated

followed by careful lift-off in acetone to complete the inner gates. Then the outer gate pattern

is aligned to the inner gates with photolithography. The remaining fabrication steps follow

the normal procedure, only an additional 30-second buffered oxide etch is required to remove

the silicon oxide at the Ohmic contact pads. Then the wafer undergoes a 20-minute forming

gas anneal (15% H2, 85% N2) at 400 ◦C as a final step before cleaving and mounting.

3.2.1 Reduction of charge impurities in the absence of electron-beam lithogra-

phy

With the NIL procedure replacing EBL for forming the inner depletion gates, we fabricated

single-quantum dot devices and analyzed their performance in comparison to nominally iden-

tical devices fabricated in the standard method. Although we discovered a clear qualitative
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Figure 3.5: Nano-imprint lithography. (A) Schematic of the NIL process. A silicon oxide

mold is fabricated with e-beam lithography and the target wafer is prepared with a polymer

layer. The mold is pressed against the wafer at elevated temperature, leaving the mold

pattern imprinted in the polymer. Then metal is evaporated and the polymer is dissolved to

leave the metal gate pattern. (B) SEM image of the single-quantum-dot mold taken at an

angle. Inset: top view. (C) SEM image of a device written with NIL. (D) A device written

with e-beam lithography for comparison. The NIL device features are slightly distorted along

one axis from lateral motion during imprinting.
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improvement in the number of charge traps near and at the quantum dot locations, we were

unable to completely remove defect effects. Further, the charge noise measured in NIL de-

vices was unchanged from EBL devices. Since shallow traps near the Fermi level are the

main contributors to charge noise, this implies that EBL primarily causes defects that create

deep, localized charge traps. Further details and a thorough analysis can be found in our

published work [PSR19b].

As to the feasibility of NIL as a tool for scalable quantum dot fabrication in silicon MOS,

it is difficult to make a general conclusion. The hot embosser used to perform NIL had serious

performance issues that almost certainly do not manifest in a high-end imprinting tool; for

example, a dent in the base plate would cause the wafer and mold to shatter under the 44 bar

pressure used for imprinting. The only way around this issue was to use small wafer pieces

with at most 15 devices each and carefully place them to avoid the dent. In addition, the

imprinter would regularly lose pressure and ruin the pattern transfer. A final problem was the

completely inoperable mold alignment tool, without which precise placement of the mold on

top of the target wafer was impossible. In lieu of a proper alignment, we were forced to place

the molds on the wafer pieces by hand. These issues with the imprinting led to an atrocious

device yield of less than 20%. However, state-of-the-art NIL technologies can certainly allow

reliable, large-scale pattern transfer [BSH07]. We also encountered difficulties with the metal

lift-off after imprinting. The double PMMA layer used for EBL allows for reliable lift-off,

but using the same recipe for NIL is impossible since the two layers aren’t well-defined after

the mold is imprinted. Lift-off can be potentially improved by using a layer of Microposit

Lift-Off Layer 2000 followed by a layer of PMMA A2. Provided the first polymer layer has

a much higher viscosity than the upper polymer at imprinting temperatures, it should be

possible to create the same PMMA A2 overhang that helps lift-off following EBL. Imprinting

obstacles notwithstanding, this work provided a proof-of-principle study of the technique,

which may one day be used to greater effect to provide full-wafer, EBL-free quantum dot

fabrication.
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3.3 Device testing environment

In order to operate a quantum dot qubit, two primary functions of the experimental appara-

tus must be satisfied. First, microwave (gigahertz frequency) signals must be able to reach

the qubit. A spin qubit operated at Bext = 1 T has spin states separated by EZ = 116 µeV,

meaning that a sinusoidal current or voltage with frequency EZ/h = 28 GHz is needed to

induce efficient Rabi oscillations. Similarly, operating a charge qubit with abrupt (diabatic)

voltage pulses requires a pulse ramp time of around 0.1 ns. At microwave frequencies, cur-

rent transmission through closely spaced wires is complicated by mutual interactions with

electromagnetic fields, leading to unwanted signal attenuation and resonances without the

proper microwave engineering. Second, the qubit must be operated at a sufficiently low

temperature. This is again related to the spacing of relevant energy levels. When thermal

fluctuations are comparable to or larger than the qubit energy splitting, the qubit no longer

has well-defined states. At T = 1 K, thermal energy reaches kbT = 86 µeV and random

transitions are possible between qubit states. At T = 12 K, thermal energy exceeds 1 meV

and overcomes the typical Coulomb repulsion of an electron in our quantum dots, meaning

an additional electron can jump into the dot in a stochastic manner.

3.3.1 Microwave-compatible sample holders

After fabrication, devices are mounted onto PCBs that interface the various on-chip contacts

with the instruments and circuitry needed to run experiments. They also provide protection

against user error, such as the occasional tweezers-induced wafer scratch. For all experiments

described here, we use the sample holder designed by Blake Freeman. The holder body is a

four-layer PCB consisting of two layers of DC wires and one layer of high-frequency wires

separated by a grounding plane (Figure 3.6). All wires are routed from standard connectors

— SMA jacks for microwave lines and single in-line pin sockets for DC lines — to contact

pads surrounding the sample space with minimal overlap between wires. The sample space
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24×SIP

4×SMA

Figure 3.6: Left: the PCB sample holder. Right: a device super-glued to the sample area and

connected with bonding wires. Bonding pads for the four high-frequency lines are indicated

with red boxes.

itself is a rectangular area of exposed copper near the top of the PCB connected to the

ground net. The back of the board will eventually be in thermal contact with the mixing

chamber plate in a dilution refrigerator, so a grid of vias connects the sample space to the

lower-most copper layer for increased thermal conductivity. In total, there are 24 DC lines

and 4 microwave lines available on one sample holder and space in the sample area for two

devices. For ease of wire bonding, all exposed copper is plated with gold. Once the devices

are in place, a custom 3D-printed plastic shell is attached over the sample area to prevent

us from accidentally breaking the wire bonds.

After attempting some high-frequency signals above 10 GHz, we began to suspect that

microwave signals were heavily attenuated at some point between the signal generator and

the device. This was proven to be the case with a transmission analysis. Although high-

frequency lines on the PCB accounted for some attenuation, the wire bonds that link holder

to sample were the dominant source. This is not so surprising, considering every bonding

wire becomes an unshielded antenna at microwave frequencies. The four bonding pads for

high-frequency signals are arranged in two pairs of adjacent contacts near the bottom of the
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c d

Figure 3.7: New PCB sample holders. (A) Top layer copper routes and (B) printed circuit

board compatible with the Triton-200 refrigerator. (C),(D) sample holder compatible with

Triton-200 and JDR-500 refrigerators.

sample area, meaning that the bonding wires run close to each other for the length of their

trip to the device.

To improve attenuation, a new version of the sample holder was designed with several con-

siderations in mind (Figure 3.7a,b). First, the bonding pads are around the entire perimeter

of the sample area and the SMA/SIP connections are placed so that our wedge bonder can

make the wire connections at most angles of approach. The high-frequency lines in the PCB

are coplanar waveguides designed with an impedance of 50 Ohms and are well-separated

from each other until they reach the sample area. Critically, the high-frequency line bonding

pads are situated to be closest pads to the sample area center to minimize bonding wire

length. The new sample holder was designed for the Triton-200 dry dilution refrigerator,

but it is too big for our other dilution refrigerator. Therefore a version of the holder with

different dimensions was made at the same time (Figure 3.7c,d). The PCBs were designed

in PCBArtist and manufactured by Advanced Circuits.
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3.3.2 Device screening at T = 77 K

When a new quantum dot design is made or a new batch of devices have been fabricated,

we would like to be confident that all gates are working on each device before we commit

to installing them in one of our cryogenic refrigerators. To this end, it is useful to screen

samples at some temperature low enough that conduction is only possible by raising the top

gate voltage. Low-temperature device testing is performed, one sample holder at a time, in

a dewar of liquid nitrogen. At liquid nitrogen temperatures it is possible to measure current

transport through the quantum dots with a positive top gate voltage, and the depletion

gates can be tested by lowering each gate’s voltage until the transport current is pinched off.

Weeding out bad devices with 77 K screening ultimately saves time and valuable refrigerator

real estate. Even though each device to be screened requires an hour or so of slow lowering

into the liquid to prevent thermal shock, the danger of running a refrigerator for months

with one or more bad devices stuck inside is incentive enough to carry out the screening

process.

3.3.3 Principles of cryogenic refrigeration

To achieve single-Kelvin temperatures, it is necessary to thermally isolate the sample space

from the 294 K lab environment. In liquid nitrogen dewars, heat conduction can be reduced

considerably with a vacuum jacket that covers an interior volume, with only a small thermally

insulating area connecting the inner volume to the dewar exterior. The entire dewar is made

with stainless steel for its strength and poor thermal conductivity. This is sufficient for

liquid nitrogen which is 77 K at atmospheric pressure, but does not provide enough thermal

isolation for the liquid helium used in cryogenic refrigerators. Despite the vacuum jacket

limiting direct heat conduction, black-body radiation can still transmit heat between the

concentric surfaces that make up the vacuum jacket. However, since the energy of thermal

radiation scales as T 4 according to the Stefan-Boltzmann law [Rei65], it is possible to reduce
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𝑇 < 4K

liquid 4He

liquid N2

Figure 3.8: General cryogenic concepts. Left: radiation shielding with cryogen baths. Liquid

nitrogen at 77 K is used to shield liquid helium at 4 K, which in turn shields the sample

space at sub-Kelvin temperature. Each layer is separated by vacuum, indicated by cross-

hatching. Right: vapor pressures of 3He and 4He as a function of temperature. Helium-3

can be brought to a lower temperature than helium-4 at the same vapor pressure through

vacuum pumping. Figure from BlueFors Cryogenics BF-H400 operator’s manual.

radiation heating by cooling the outer vacuum jacket area. With a volume of liquid nitrogen

surrounding the vacuum jacket (with a second vacuum jacket surrounding the nitrogen to

minimize boil-off), the radiation energy is reduced by a factor of (294/77)4 = 213. This

principle of radiation reduction can be carried out in series, so a sample space below 4 K is

surrounded by vacuum, followed by a bath of liquid helium, followed by a vacuum jacket,

followed by a liquid nitrogen bath, and finally a third vacuum jacket (Figure 3.8, left panel).

The end result is a reduction of radiation heating by a factor of 3×107. Concentric radiation

shields in vacuum are standard practice for cryogenic refrigerators.

Using the natural liquid phase temperature of 4He at ambient pressure, it is possible to

cool samples to 4 K. To go below that, one can simply decrease the working pressure of the

helium bath with a vacuum pump. Practically speaking, pumping on liquid helium in the

presence of a heat load brings down the temperature to T ≈ 1 K. Operating silicon quantum

dots requires milliKelvin temperatures, necessitating more advanced methods of cooling.
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3.3.4 Oxford Helium-3 sorption refrigerator

With simple vacuum pumping, it is difficult to bring liquid 4He below 1 Kelvin. However,

the isotope 3He in the liquid phase can be brought to a few hundred milliKelvin with the

same vacuum pressure (Figure 3.8, right panel). This is the operation principle of the 3He

sorption-pumped refrigerator. Within an evacuated sample space that is radiation-shielded

by concentric liquid helium-4 and nitrogen baths, gaseous 3He can be introduced. At 4

Kelvin it is still in the gas phase, so a small reservoir of 4He liquid in thermal contact with

the sample space (called the “1 K pot”) is vacuum pumped to T = 1.2 K. As the 3He gas

reaches thermal equilibrium with the 1 K pot, it condenses to the liquid phase and covers the

sample. Now to reach lower temperatures the vapor pressure of liquid 3He must be reduced

by pumping; but rather than using an external vacuum pump, a charcoal sorb is used. When

the sorb is cooled by the surrounding 4He bath, incident helium-3 atoms will be adsorbed

on the porous surface and the pressure drops. Our 3He refrigerator can reach 300 mK and is

equipped with a large superconducting electromagnet that allows single-axis fields of up to 7

T. Samples are loaded from the top and can be switched out without needing to warm up the

refrigerator. The main benefits of this refrigerator are the fast sample loading and unloading

time (6 hours, or less if liquid 4He loss isn’t a concern) and the magnetic field capabilities,

but it is difficult to run extended experiments. The 3He liquid is completely adsorbed within

twenty-four hours, at which point the sample will heat up to 1 Kelvin. The sorb must then

be heated with a resistive element so that it releases the 3He as gas, to be re-condensed by

the 1 K pot. In addition, this refrigerator has space and wiring for only a single quantum

dot device. As such, the sorption refrigerator is best suited to characterization studies such

as the Hall bar mobility measurements on a Si/SiGe wafer. Recently we have operated the

refrigerator at 4 K for experiments on magnetic tunnel junctions.
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3.3.5 JDR-500 dilution refrigerator

Extended experiments that require low temperatures and a magnetic field can be carried

out in the Janis Dilution Refrigerator JDR-500. Dilution refrigerators are the most widely-

used cryogenic systems for quantum computing due to their unparalleled base temperature

of tens of milliKelvin. They employ a mixture of 3He and 4He that flows in a closed loop

from a room-temperature pump through the radiation-shielded inner volume of the dilution

unit. As the gaseous mixture enters the refrigerator, it is cooled to 1.2 K by a 1 K pot

and condenses. The liquid flows down to the still, where returning mixture cools it below

1 Kelvin. At this temperature, the mixture separates into a concentrated phase of almost

pure 3He and a dilute phase of 6.6% 3He. The separated phases enter the mixing chamber

with the dilute phase resting on the concentrated phase like oil on water. In the mixing

chamber, concentrated 3He will cross through the phase boundary to the dilute phase in

an endothermic process that drives the cooling power of the refrigerator. Then the dilute

mixture leaves the mixing chamber and enters the still where it exchanges thermal energy

with the incoming mixture, and back out to the pump to be recycled. This process can be

used to achieve temperatures in the 10-20 mK range, however we usually run the JDR-500

without its still shield to give us extra sample space at the cost of a higher base temperature

of 60-75 mK. As with the Oxford sorption-pumped refrigerator, the JDR-500 dilution unit

is surrounded by baths of liquid helium and nitrogen that require weekly maintenance. It

is the best choice for studying electron spins in quantum dots with a base temperature five

times lower than what can be achieved in the Oxford refrigerator and a magnet capable of

reaching 4 T. A major drawback is the sample loading process: the entire helium bath must

be completely evaporated before samples can be taken out and replaced, which can take a

few days to a few weeks. To load a new sample, a full 100-liter dewar of liquid helium is

required to fill the helium bath and cool-down is a two-day procedure. Furthermore, the

sample space is kept at ultra-high vacuum and a fresh indium seal is applied each time a

sample is loaded. Although the seal is leak-checked at room temperature, a leak can appear
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at cryogenic temperatures and make operation below 1 Kelvin impossible to attain. I learned

of this particular issue from personal experience. Still, once a sample or two are successfully

cooled to based temperature, the refrigerator can run for over a year with only minor routine

maintenance required.

3.3.6 Triton-200 dry dilution refrigerator

This refrigerator can reasonably be considered the workhorse of the lab. Although it relies

on the same endothermic phase transition in a mixture of 3He and 4He as JDR-500, the

intermediate temperature stages are all cooled via pulse tube refrigeration by ultra-pure

helium in a closed loop. This eliminates the need for a large helium bath or even a nitrogen

radiation shield. The end result is a refrigerator that requires almost no maintenance while

running and a fully automated cool-down procedure from room temperature over 24 hours.

The sample space in thermal contact with the mixing chamber is the size of a dinner plate

and there are 76 DC lines plus 14 high-frequency lines running to the sample space from

outside the refrigerator. In total, it is possible to cool down and test 7 double-dot devices

simultaneously at a base temperature of 36 mK. The Triton-200 gets the most daily use of

all the refrigerators and is well-suited for a more careful screening of devices that pass the

first round of 77 K screening. It is the only refrigerator that doesn’t have a magnet installed,

so spin physics must be studied in one of the other two refrigerators.

3.3.7 Electron temperature

When we measure the operating temperature of a device, we record the current through

a silicon diode or a resistor with well-known thermal characteristics. This measurement

gives the local temperature in the vicinity of the sample, and usually reflects the actual

temperature of the silicon wafer. However, electrons in the inversion layer may have a

much higher temperature than the silicon lattice. Electrical currents used to control the
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device are generated from instruments at room temperature, and heat can travel via kinetic

energy transfer between conduction electrons directly to electrons in the source and drain

reservoirs. Even with no applied voltages, nonzero current is possible due to mismatched

ground voltages between instruments or the refrigerator. Ground mismatch may only result

in a picoamp-level current, but that is enough to severely limit device electron temperature

to a few hundred milliKelvin.

There are several approaches to alleviating electron heating. Quantum dot researchers

often run their signal lines through filter circuits in thermal contact with sequential temper-

ature stages in the refrigerator. In a similar fashion, any DC-plus-microwave signals that are

meant to be combined can be run through cryogenic bias tees at the mixing chamber, and

signals intended to be reduced can be passed through cryogenic attenuators. In general, it

is better to have passive circuitry moved into the refrigerator than to keep it at room tem-

perature. If and when a full silicon quantum computer is demonstrated, I am confident that

most of the signal generation and processing will happen at 4 Kelvin or lower. Perhaps more

important than cryogenic circuitry, it is vital that instrument chassis all share a common

ground and that the ground shields of every signal wire share another isolated ground point.

We have seen the electron temperature improve by a factor of 3 with nothing more than

thorough grounding.

3.4 Manipulation and measurement techniques

Next I will outline the standard equipment and techniques used to manipulate and read out

the state of electrons in quantum dot devices. As mentioned in Chapter 1, the control knobs

available to us are various gate voltages and the response is measured with a source-drain

current. Within these simple constraints, many diverse electrical manipulations are possible.

The techniques described here will be used to characterize devices (Chapter 4) and perform

experiments on one or two isolated electrons (Chapters 5 – 7).
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3.4.1 Source-drain current measurement

By applying a voltage to one Ohmic contact and measuring the transmitted current from

another, the effective transconductance between contacts is measured. When the source-

drain current passes through one or more dots, the conductance will depend of the number

of electrons confined in each potential well, the dot energies, and the electron tunneling

rates. The source-drain current can be measured by a Stanford Research Systems 570 current

preamplifier or a DLPCA-200 low-noise current amplifier depending on the application. The

DLPCA-200 has a higher bandwidth of 7 kHz compared to 200 Hz at a gain of 10 nA/V,

making it better suited to real-time measurements. Since a current measurement gives a

scalar quantity, it’s impossible to know what the contributions of each device component to

the conductance are with a single measurement. Instead, the effects of each dot or tunneling

barrier can be surmised by seeing how the current changes while one or more gate voltages

are modified.

Typical source-drain currents fall in the range of picoamps to nanoamps. In the presence

of electrical noise, an electron signal that represents a fraction of the current may easily be

lost. A simple background subtraction scheme often doesn’t work because the background

fluctuates on the same time scale as the measurement. The solution is a lock-in amplifier, a

ubiquitous presence in all research labs performing high-sensitivity electronic measurements.

The lock-in amplifier accomplishes what can be though of as a background subtraction on

a timescale many times faster than the measurement time. Consider the simple example of

a signal chopper. For some time δ the noisy signal is measured unimpeded, and then for

another time interval δ the signal is cut off and the noise background is measured. In the

case of a quantum dot measurement, the noisy signal could be thermally excited electron

tunneling between locations when a gate voltage is V , and the background without the signal

occurs at V −∆V . Then the DC output signal is given by
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Ĩ =
1

2δ

[∫ t+δ

t

I(V )dt′ −
∫ t+2δ

t+δ

I(V −∆V )dt′
]

=
1

2
[I(V )− I(V −∆V )] , (3.5)

provided the noise doesn’t fluctuate on the scale of δ. Making the further assumption

that the current change in response to ∆V is very small, it can be said that the chopped

signal is the numerical derivative of the noisy signal when divided by the gate voltage change

∆V :

Ĩ

∆V
≈ 1

2

dI

dV
. (3.6)

A lock-in amplifier achieves a similar outcome by modulating gate voltages with a sinu-

soidal perturbation ∆V sinωt and measuring only the Fourier component of the modulated

signal that is equal to ω. When integrated over a time τ much longer than the modulation

frequency, all frequency components of the signal except for ω average out:

Iout(t) =
1

τ

∫ t

t−τ
[I(V + ∆V sinωt′)] sinωt′dt′. (3.7)

Again, as long as the modulation amplitude is small enough, a lock-in measurement of

the source-drain current over ∆V can be considered the differential transconductance of the

current channel. We use Stanford Research Systems SR830 lock-in amplifiers with a typical

modulation frequency on the order of 100 Hz and integration time 0.3 seconds. They have

built-in current amplifiers with up to 10 nA/V gain and bandwidths of around 100 Hz. If

a higher bandwidth is needed, the modulated current can be converted to a voltage with a

current amplifier and sent to the lock-in’s voltage input. Sometimes we want to modulate

the signal with a separate source; this is possible by sending a square pulse trigger from the

modulation source to the lock-in amplifier, as long as the frequency is less than 1 kHz.
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3.4.2 Current in the time domain

Lock-in amplifiers are the best choice for signals averaged over 0.1 second or more, limiting

their ability to capture faster signals in real time. Electron tunneling typically occurs at a

rate on the order of 1-10 kHz for single-shot spin read-out and requires an oscilloscope to

capture. For this, current is fed through the DLPCA-200 current amplifier and the voltage

output is read out on the Agilent Infiniium 54855A oscilloscope, capable of 20× 109 samples

per second. This technique in particular requires a very good signal-to-noise ratio since there

is no noise filtration.

3.4.3 Current in the frequency domain

A dominant source of decoherence in silicon quantum dot qubits is charge noise, manifesting

as fluctuations in the quantum dot potential. The low-frequency noise spectrum can be

studied to identify the nature of charge noise in these systems. The noisy signal is sent

through a current amplifier to a spectrum analyzer, the SR 785 for frequencies below 100

Hz or the HP 8563E for frequencies up to 20 GHz. Since the amplifiers are bandwidth-

limited to no more than 7 kHz at the required gain, the HP 8563E is not used for this

particular application. An important consideration for spectrum measurements is the 60

Hz line noise of standard U. S. power lines. Despite electrical isolation of instrument power

supplies from their voltage outputs, the line noise and its harmonics can bleed into the signal,

upstream or downstream from the device. Ensuring that all output shields are isolated from

instrumentation and are grounded to a common point can significantly reduce this effect.

3.4.4 DC gate biases

Every quantum dot gate needs its own low-noise DC voltage, requiring 8 to 16 simultaneously

controlled voltage sources per device. These biases can be supplied from the floated auxiliary

voltage outputs of our lock-in amplifiers, however there are only four outputs on each SR-
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830. Lock-in auxiliary outputs can be supplemented with the BS-16 precision voltage source

from Stahl Electronics. The BS-16 has 16 digital voltage outputs with a 16-bit resolution.

Currently we have two BS-16s with grounded outputs, good for shielding high-frequency

environmental noise, and an additional instrument with floated outputs to alleviate ground

mismatch for low-frequency measurements. Source-drain biases are also supplied with these

instruments, although an isolated battery supply is sometimes used to reduce noise.

DC biases are fed into the refrigerator through vacuum-sealed breakout boxes with BNC-

type connectors. The wires that run down to the device are stainless steel mini coaxial cables

from Cooner Wire to minimize heat load on the sample stage via thermal conductivity.

Additionally, the wires are in good thermal contact with each temperature stage in the

refrigerator to reduce heat exchange.

3.4.5 Arbitrary voltage waveforms

Many experiments make use of multi-stage pulses sequence consisting of several voltage

levels. The Tektronics Arbitrary Waveform Generator (AWG) 520 and AWG 610 accept a

string of voltages with some temporal spacing to create (aptly) an arbitrary periodic output.

The maximum frequency that can be generated with an AWG is half its sampling rate —

that is, alternating points of low and high voltage to create a triangular wave. The AWG 520

is equipped with two output channels that can send independently programmed waveforms

with a sampling rate of 1 GHz. The AWG 610 has a faster sampling rate of 2.6 GHz with

the trade-off being a single output channel. Both AWGs can operate in function generation

mode, outputting standard functions with controllable frequency and amplitude like square,

sinusoidal and sawtooth waves.

A powerful aspect of the AWG is the ability to construct a custom trigger that can be

synchronized to any point of the waveform. The trigger or triggers can be sent to a lock-in

amplifier for modulated signal measurement, or to a different function generator to chop the

output. Both uses for the trigger are implemented in chapter 7.
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3.4.6 Fast gate pulses and microwave signals

Qubit energy level spacing seen in our lab is usually 10–100 µeV. Addressing transitions

between levels requires signals with frequency ∆E/h = 2.4–24 Ghz. Accordingly we use

Anritsu 68369B signal generator or the Agilent N5183A microwave analog signal generator

to output microwave voltages. The Anritsu generator is capable of 10 MHz to 40 GHz

frequencies with 1 kHz resolution, while the Agilent generator can go from 100 KHz to

20 GHz with single Hz resolution. Normal use for qubit applications entails amplitude

modulation with a pulsed trigger from an AWG, or faster chopping with a fast gate pulse

via a Marki microwave mixer.

Qubit levels can also be addressed with sub-nanosecond square pulses on local gates. The

Agilent 81134A pulse pattern generator can output pulses on two channels with indepen-

dently set pulse heights, widths, and delays. Critically, pulses have a nominal rise time of 60

ps so diabatic level transitions are possible. Its minimum repetition rate is 3.35 GHz which

is too fast for most electron relaxation processes, but the effective pulse rate can be lowered

substantially. In data mode, each channel can accept a 12 megabit binary string, telling the

pulse generator to turn on the pulse in period j when bit j is 1 and keep the pulse off when

bit j is 0. Not only does data mode allow for slower pulse rates, but it also allows a kind of

modulation where the pulse is on for x periods and off for the same number of periods. Then

the bit string in voltage form can be fed to a lock-in amplifier as a trigger. Combinations of

fast pulses from the 81134A are used extensively in Chapters 5 and 6.

Signals from these instruments experience too much attenuation from normal BNC cables,

only rated for up to 1 GHz. We instead use semi-rigid SMA coaxial cables rated up to 20

GHz and connect them to hermetically sealed feedthroughs on the refrigerator. Inside the

refrigerator, fast signals travel to the device by way of rigid stainless steel SMA coaxial cable,

with heat sinking at every temperature stage. Fast signals are combined with the standard

DC gate voltage using a bias tee at room temperature or, better, a cryogenic bias tee at the
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refrigerator base temperature.
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CHAPTER 4

Quantum dot characterization

Before any qubit experiments can be carried out, the quantum dot qubit device must be

well-characterized. Characterization entails measuring the effects of each depletion gate,

accurately counting the number of electrons in the quantum dot system, controlling various

tunnel couplings, and tuning parameters to maximize measurement sensitivity. At this stage

in quantum dot research, many characterization tools have become standardized and can be

found with detailed discussion in review papers such as [KMM97], [vDE02], [HKP07] and

[ZDM13]. These references have been ordered from more general to more specific.

4.1 Single quantum dot transport

The simplest possible measurement on a quantum dot is to pass a current from one Ohmic

contact (designated as the source) to the other (drain). When a quantum dot is electrostat-

ically formed, classical current transport is forbidden and electrons tunnel from source to

drain via the dot. The quantized energy levels of the quantum dot are revealed in transport

measurements by Coulomb blockade, discussed below.

4.1.1 The constant interaction model

To understand quantum dot transport from a theoretical perspective, and to provide insight

into some common terminology used, the system can be modeled as a network of conductive

nodes connected by capacitors (Figure 4.1a). The dot is assumed to be well-defined, meaning
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Figure 4.1: (A) Quantum dot equivalent circuit diagram. The dot is coupled to source

and drain electron reservoirs by capacitances Cs and Cd, respectively. The plunger gate

controlling the quantum dot energy is coupled to the dot by Cg. (B,C) Principle of current

transport through a quantum dot. Current is allowed to flow from source to drain when there

is at least one available quantum dot level between the source and drain electrochemical

potentials. If there isn’t a level in the bias window, current is blocked.
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that the barrier equivalent resistances are large and tunneling into or out of the dot is

restricted to first-order processes. The constant interaction model further assumes that

interactions between dot electrons and source/drain electrons are encapsulated in a single

constant capacitance C, and that the dot energy levels aren’t affected by C [KMM97]. Then

the electrochemical potential of a dot with N bound electrons is given by [HKP07]

µ(N) =

(
N − 1

2

)
e2

C
− |e|
C

(∑
j

CjVj

)
+ EN , (4.1)

where electrostatic potential term CjVj represents the coupling of the dot to the source,

drain, or any relevant gates biased at voltage Vj and EN is the N th single-particle energy

level in the dot. According to (4.1), the dot electrochemical potential is controlled linearly

with source, drain, and gate voltages. If an additional electron is added to the dot in the

same energy level — in accordance with Hund’s rules — then the change in electrochemical

potential is just µ(N + 1) − µ(N) = e2/C. This can be thought of as the energy stored in

capacitor C due to the charge of a single electron, and therefore Ec ≡ e2/C is called the

charging energy.

The current through a quantum dot can be modeled in terms of tunneling rates through

the left and right barriers Γl, Γr [Bee91]:

Il = Ir = −|e|
∞∑
j=1

∑
{n}

Γrj(µ)p({n}). (4.2)

In (4.2), j indexes dot states and the second sum is over all possible sets of energy level occu-

pations {n}. The steady-state solution for the current requires that occupation probabilities

are constant (dp({n})/dt = 0) so the problem boils down to solving a system of coupled rate
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equations [BDR02]:

dp

dt
= Γ · p = 0, (4.3)

Γαβ =


Γβ→α, α 6= β

−
∑

k 6=α Γα→k, otherwise.

(4.4)

The tunneling rates from state α to state β have an implicit dependence on the electron

temperature T and chemical potentials of both states:

Γα→β(µα, µβ, T ) =
γα→β

1 + exp [(µα − µβ)/kbT ]
, (4.5)

where the denominator originates from the Fermi-Dirac distribution and γα→β is determined

by the tunneling barrier height in relation to the energies of states α and β. The null space

of (4.3) can be fed back into (4.2) to produce a current.

4.1.2 Coulomb blockade

In the absence of quantum dot level quantization, transport as a function of gate voltage

would appear very similar to the I-V characteristics of a field-effect transistor: As the deple-

tion gate voltage is made more negative, current decreases monotonically and continuously

until it is completely pinched off. The bound state energy levels have the effect of com-

pletely blocking electron tunneling into the dot unless there is an available level within the

bias window −|e|Vsd = µsource−µdrain (Figure 4.1b,c). As the gate voltage controlling the dot

energy is varied, dot levels will pass in and out of the bias window to create sharp, periodic

peaks in current where Coulomb blockade is lifted. If there are multiple dot levels below

the source and drain Fermi levels, then electrons can tunnel from the reservoirs to fill them.

Ultimately, in the steady state, each Coulomb peak represents the addition or subtraction of

an electron from the dot. Coulomb blockade can therefore be used to count the total number
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of dot electrons, starting with zero when the Coulomb peaks disappear at very negative gate

voltages. Using the model in Section 4.1.1 in the limit of vanishing source-drain bias, we

can replicate Coulomb blockade as a function of charging energy, temperature and dot Fermi

level controlled by gate voltage Vg (Figure 4.2a).

4.1.3 Coulomb diamonds

When source-drain bias is increased, it becomes more likely that a quantum dot energy

level will fall within the bias window and the Coulomb-blockaded region shrinks. When the

bias window is further increased to surpass the charging energy, there will always be an

available level between source and drain electrochemical potentials and Coulomb blockade is

lifted. Since gate voltages control the dot potential with a linear dependence, the Coulomb-

blockaded region is bounded by lines where the gate voltage or voltages match the source or

drain potentials. Coulomb blockade will therefore form diamonds in Vg − Vsd space (Figure

4.2b,c).

It is possible to extract all of the equivalent capacitive couplings of the circuit once

Coulomb diamonds are observed. First, with the recognition that the tops and bottoms of

the diamonds along the Vsd axis correspond to points where Coulomb blockade is lifted, we

can extract the charging energy Ec as the diamond height. Then, knowing that the zero-

bias separation between Coulomb blockade peaks is also equal to Ec, we obtain a conversion

between gate voltage and dot energy: ∆Vg = αgEc, where ∆Vg is the separation of adjacent

Coulomb peaks in gate voltage space. The coefficient αg, with units eV/V, is known as

the “lever arm” for gate g. This quantity is one of the key characteristic parameters for a

quantum dot device since it allows us to know the dot energy, given some set of gate voltages.

In terms of equivalent capacitances, the lever arm can be expressed as [HKP07]

αg =
|e|Cg
C

. (4.6)
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Figure 4.2: Coulomb blockade. (A) Simulated transport as a function of gate voltage at

T = 0.1 K (blue) and T = 0.7 K (orange). (B) Simulated Coulomb blockade as the bias win-

dow VSD is modified. Coulomb blockade is completely lifted when VSD reaches the charging

energy (3 meV). Gate lever arm α is obtained from the edge of a Coulomb diamond. (C)

Experimental data taken on a Si/SiO2 quantum dot. (D) Simulated differential transcon-

ductance using the parameters in (B).
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4.1.4 Differential transconductance

To improve the signal-to-noise ratio, a small sinusoidal voltage can be added to the source-

drain bias. The modulated transport current can then be read by a lock-in amplifier and

divided by the modulation amplitude to obtain the differential transconductance through the

quantum dot. This is a useful technique for bringing out the edges of the Coulomb peaks,

especially in the low-bias regime (Figure 4.2d). Additionally, the differential transconduc-

tance can reveal the locations of excited states if relaxation and tunneling processes from

the excited states are slow enough.

4.2 Charge sensing measurements

There are a few practical limitations to transport measurements. First, passing a current

through the dot system strongly couples the dots to the measurement apparatus, reducing

coherence times. Second, the gate or gates used to control the dot energies also have an effect

on the tunneling barrier heights via stray capacitance. This means that as the dot energy

is increased to remove electrons, the tunneling rates out of the dot are decreased. With

the dot gate separated from the tunnel barrier gates by only tens of nanometers the stray

capacitance can be considerable, making it impossible to tune to the single-electron regime

and still have a healthy transport current. A less invasive method of probing quantum dots

involves measuring transport through a nearby gate-defined conducting channel. As long

as there is a high sensitivity of the tunneling current on local electric fields, such as the

field from a single electron, then transport changes in a quantized manner every time an

electron is added to or removed from the dot. In addition, charge sensing measurements do

not require a source-drain current through the dot system to work.
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4.2.1 Quantum point contact

A quantum point contact (QPC) can be formed with two depletion gates. The gap between

gates forms a tunnel barrier through which a current can pass. When the QPC is narrow

enough so that the opening width W is comparable to the wavelength of electrons at the

Fermi level λF , then transverse wave-vectors are quantized: ky = nπ/W, n = ±1,±2, · · ·

(here the current is taken to be in the x direction). Then the QPC conductance is given by

[vvB88]

G =

bkFW/πc∑
n=1

e2

πh̄
. (4.7)

At zero temperature, G is quantized in steps of e2/πh̄ and with nonzero temperature there

is a finite-sloped transition between each step. The sloping transitions are the key to charge

sensing with a QPC: when the QPC gate voltage — and therefore the QPC opening width

— is adjusted to be between quantized conductance steps, then a small change in local

electric field will cause a maximum change in transport current [FSP93]. The difference of

one electron in the quantum dot can change QPC current by 1–100 pA depending on the

proximity of the dot. More importantly, charge sensing is still effective at very low tunneling

rates on the order of 10 Hz where dot transport is impossible.

4.2.2 Single-electron transistor

In recent years the common practice has been to use a single-electron transistor (SET)

for sensing quantum dot charges. An SET is a tunnel junction that displays Coulomb

blockade, so for all intents and purposes it is just another quantum dot. As shown in Section

4.1.2, transport through a quantum dot can produce incredibly sharp periodic peaks in

conduction. Just as a QPC charge sensor is most sensitive where the conductance has the

highest dependence on gate voltage, an SET charge sensor has the best sensitivity when

the gate is set to the edge of a Coulomb peak. Unlike a QPC, the peaks aren’t limited to

an integer of e2/πh̄ and so an SET can yield a much higher sensitivity. The trade-off is a
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smaller range of sensitivity, so an SET will quickly become maximally insensitive when local

gates are changed too much. However, this problem is easily overcome either by introducing

a feedback loop circuit to keep the SET at the sensitive configuration or by sweeping the

charge sensor gates along with the dot gates to correct for stray capacitances. Using an SET

charge sensor, we have been able to induce a change of 1 nA in SET transport with the

addition of a single electron into a nearby quantum dot (Figure 4.3a).

4.2.3 Differential charge sensing

As with quantum dot transport measurements, a charge sensor’s signal-to-noise ratio can

be improved by use of modulation. Instead of modulating the sensor source-drain bias,

a periodic perturbing voltage is added to one of the quantum dot gates. The resulting

differential charge sensing current is essentially a derivative of the original transport current

with respect to the gate voltage. Differential charge sensing on a single quantum dot as

a function of gate voltage will then closely resemble normal Coulomb blockade despite the

absence of current through the dot (Figure 4.3b,c).

4.2.4 Measuring electron temperature

With the quantities obtained in the previous sections, it is possible to get a measurement of

the effective electron temperature with current transport. In the constant interaction model

and at vanishing source-drain bias, the profile of a Coulomb peak at low temperatures is

given by [KMM97]

Isd(Edot, T ) ∝ Vsd

T
cosh−2

(
Edot − E0

2kbT

)
. (4.8)

In (4.8), E0 is the dot energy at which the Coulomb peak occurs. The width of the peak ∆

at half the amplitude satisfies cosh2(0.5∆/2kbT ) = 2, or ∆ = 3.5255 kbT . Knowing that the

linewidth in gate voltage space is just ∆/α, the electron temperature can be quoted directly

from Coulomb blockade as a function of gate voltage. However, current transport isn’t
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Figure 4.3: Charge sensing with an SET. (A) The discontinuity in SET transport current

at Vg = −0.308V represents the addition of one electron to the quantum dot. This trace

is taken at a maximally sensitive region where one electron causes a 1 nA change in charge

sensing current. (B) SET transport over a wider range and (C) corresponding differential

measurement recorded on a lock-in amplifier. Sensitivity quickly vanishes as Vg modifies the

SET configuration.

the best method to measure electron temperature. Seeing a Coulomb peak experimentally

involves getting sufficient current flow to increase the signal, but a source-drain bias increases

the linewidth of Coulomb peaks and the profile is no longer described by (4.8). Additionally,

a source-drain bias introduces Joule heating and charge noise that broaden the peak. It

is much better to use differential charge sensing, either by taking a numerical derivative of

transport current or by a lock-in measurement with sufficiently small modulation amplitude.

Such a measurement will have the same form but without the back-action on the quantum

dot.

4.3 Double quantum dot

The foundation for qubit entanglement and quantum simulation is a system containing multi-

ple quantum dots with mutual interactions. The bulk of research we do is in double quantum

dot systems, where the quantum dots share a tunneling barrier gate (Figure 4.4). The shared
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SET channel
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𝑅𝐿 𝑀𝐵𝐿 𝐵𝑅

𝐼SET

𝑊𝐿 𝑊𝑅

Figure 4.4: An SEM micrograph of the double quantum dot structure used in almost all

experiments discussed here. The top three depletion gates form an SET charge sensor in the

upper channel. Gates WL and WR are wall gates, usually grounded. Gate L (R) controls

the energy of the left (right) dot, gate BL (BR) controls the tunnel rate from the left (right)

dot to the adjacent charge reservoir, and gate M controls the inter-dot tunnel coupling.

Global top gate is not shown.

gate M controls the tunnel coupling between the dots, plunger gates L and R control the

dot energies, and gates BL and BR tune the tunneling rates from each dot to the adjacent

electron reservoirs. There are two additional gates that separate the dot system from the

charge sensor, WL and WR, that are almost always grounded during normal operation. The

top half of the device contains a charge sensor, either a single-gate QPC or a triple-gate

SET.

4.3.1 The stability diagram and inter-dot tunnel coupling

Mutual Coulomb repulsion modifies the electrochemical potentials of both dots, leading to

complex behavior. If we have a double quantum dot with capacitance Cm between dot

sites, then the charging energies of both dots are modified from the standard e2/Cg as below
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[vDE02]:

Ec1 =
e2

C1

(
1

1− C2
m/C1C2

)
, (4.9)

Ec2 =
e2

C2

(
1

1− C2
m/C1C2

)
, (4.10)

Ecm =
e2

Cm

(
1

C1C2/C2
m − 1

)
. (4.11)

In (4.11), the new quantity Ecm can be thought of as the energy change in one dot when an

electron is added to the other dot. Then the electrochemical potentials of the two dots are

given by

µ1(N1, N2) =

(
N1 −

1

2

)
Ec1 +N2Ecm −

1

|e|
(C1V1Ec1 + C2V2Ecm), (4.12)

µ2(N1, N2) =

(
N2 −

1

2

)
Ec2 +N1Ecm −

1

|e|
(C1V1Ecm + C2V2Ec2). (4.13)

Equations (4.12 and 4.13) can be used to construct a charge stability diagram that depicts the

number of electrons in each dot as a function of V1 and V2 at equilibrium for small to moderate

inter-dot coupling Cm. This is accomplished by asserting that the electrochemical potential

on dot 1 (dot 2) is lower than the source (drain) potential, assuming dot 1 is adjacent to the

source. Imposing another physical constraint that electrons will continue to enter both dots

until the chemical potentials are as close as possible — while still being lower — than the

source and drain potentials, it is possible to find pairs (N1, N2) that meet these conditions for

each set of gate voltages V1, V2 (Figure 4.5, left). The charge stability diagram is a series of

hexagonal plateaus, each with a unique combination of left and right dot occupation number.

The vertices are triple points where two stable charge regions with the same total number of

electrons meet a third charge region with total charge differing by one. The spacing of triple

points gives the charging energies of both dots. Charge stability diagrams can be measured

directly with charge sensing, and the boundaries between occupations can be obtained from

differential charge sensing.
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At this point, the circuit model has given us all the information that it can give. It hasn’t

captured the important effect of inter-dot tunnel coupling, however. When inter-dot coupling

is added, the eigenstates of a constant-N configuration become hybridized and the quantities

N1, N2 are no longer good quantum numbers. At extreme coupling strengths, the system

merges into a single dot. To go further, we need to employ an explicitly quantum mechanical

model. In a manner suggestive of the potential applications to quantum simulation, we can

use a two-site Hubbard model to give a more accurate depiction of the stability diagram

[YWD11]. Neglecting exchange terms, the two-site Hubbard Hamiltonian is given by H =

Hµ +HU +Ht where

Hµ = −
∑
i,σ

µiniσ, (4.14)

HU =
∑
i

Uini↑ni↓ + U12

∑
σ,σ′

n1σn2σ′ , (4.15)

Ht = −t
∑
σ

(c†1σc2σ + c1σc
†
2σ). (4.16)

In (4.14)–(4.16), i = {1, 2} iterates over dot sites, σ = {↑, ↓} iterates over electron spin

states and c†iσ, ciσ are creation and annihilation operators. Hµ simply describes the electro-

chemical potential of the double-dot electron configuration and HU describes Coulomb repul-

sion between two electrons on the same site (with repulsion strength U1, U2) and inter-site

Coulomb repulsion parameterized by U12. Using only these two terms, the Hubbard Hamilto-

nian is equivalent to the classical capacitance model. Hubbard model parameters can then be

mapped to capacitive terms [YWD11]: Ui = Eci , U12 = Ecm , µ1 = |e|(αLVL+αLRVR)−Ec1/2,

µ2 = |e|(αRVR + αLRVL)− Ec2/2. The terms in Ht parameterized by hopping amplitude t

contain the inter-dot tunnel coupling and are not present in the classical capacitance model.

These Hamiltonian terms are accompanied by certain boundary conditions. Each quantum

dot “valence” shell can only contain zero, one or two electrons. Additionally, Pauli exclu-

sion prevents two electrons of the same spin and valley-orbital states to exist in the same
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Figure 4.5: Simulated charge stability diagrams for a double quantum dot. Left: regions of

stable charge calculated with the circuit model (Equations 4.12 and 4.13). Right: Equivalent

calculations using a two-site Hubbard model (Equations 4.14–4.16). The Hubbard model

reproduces the quantum dot hybridization effects arising from nearest-neighbor hopping.

quantum dot. If we consider only the lowest valley-orbital level in each dot, then two spins

in the same dot must be anti-parallel.

When the full Hamiltonian is diagonalized, the lowest-energy eigenstate represents the

true electron occupation in the double quantum dot, in general a superposition of N1 and N2

(Figure 4.5, right). Framing the stability diagram as the outcome of a Hubbard model hints

at the important application of quantum dot arrays as quantum simulators [HFJ17]. As

seen in Figure 4.6, the Hubbard model closely resembles actual data taken with differential

charge sensing.

4.3.2 Transport

Current transport through two quantum dots can be addressed with the same constant-

interaction circuit model and transition-balancing strategies used for the single-dot case
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𝑑𝐼SET
𝑑𝑉𝑅

Figure 4.6: Left: experimental charge stability diagram from differential charge sensing with

the same modulation applied to VL and VR. Right: simulated Hubbard model stability

diagram. Parameters are U1 = 3.2 meV, U2 = 6 meV, U12 = 0.5 meV, and t = 0.1 meV.

Lever arms are α1 = 0.09, α2 = 0.075, α12 = α21 = 0.02.

in Section 4.1.1, where now a source-drain bias is applied across the dots. In the circuit

picture, current will flow only when both dots have levels that are in the bias window, and

the available level in the dot closest to the source is at a higher energy than the dot near the

drain. Resonant tunneling, which should give the strongest transport signal, occurs when

both dot levels are equal (and in the bias window, of course). The triple points at zero bias

now become bias triangles, representing the only region where Coulomb blockade is lifted

[vDE02]. Just as the slope along one edge of a Coulomb diamond gives the plunger gate’s

lever arm, two side lengths of a bias triangle give the lever arms of the double dot plunger

gates. However, when inter-dot capacitance Cm is small enough so that Cm ∼ C1C2V/|e|,

then the bias triangles from nearby triple points begin to merge together Figure (4.7, left).

The circuit model falls short when it comes to considering spin states, even when they are

degenerate at zero magnetic field. If there is one valence electron in the left dot, for instance,

and zero in the right dot, then an interesting current rectification effect can transpire. When
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𝑑𝐼SET/𝑑𝑉 (arb.)𝐼DC (nA)

Figure 4.7: Left: current transport through a double quantum dot in the multi-electron

regime. Bias triangles appear where Coulomb blockade is lifted, with positions correspond-

ing to vertices of the charge stability diagram (triple points). Visibility decreases with

decreasing VL, VR due to stray capacitance effects on the tunnel barriers. Right: differential

charge sensing in the single-electron regime. All tunnel couplings are much smaller, making

transport in this regime virtually impossible.
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an electron flows tunnels from the source to the left dot, it must occupy the empty spin state

to form a singlet with the existing electron. Then it can tunnel to the right dot and leave the

system through the drain. However, when the bias is reversed then an electron entering the

right dot can occupy either spin state since spin coupling with the bound left dot electron is

very weak. At this point the electron is not allowed to tunnel from the right dot to the left

if its spin is parallel with the left electron’s spin. In other words, there is classical transport

when current flows from the singly occupied dot to the unoccupied dot and there is Pauli

spin blockade when current tries to flow in the opposite direction [OAT02][JPM05].

4.3.3 Charge sensing

Charge sensing is, for most applications, a far better choice than transport for probing a

double quantum dot due to the ability to measure charge transitions at very low tunneling

rates and the reduced electrical noise (there are also dispersive read-out techniques that

have less back-action than charge sensing and a much higher bandwidth [HCC17], but they

remain un-implemented in our lab for the time being). As long as electrons have a tunneling

path from one of the dots to one of the charge reservoirs, even if the inter-dot coupling is

vanishingly small, charge transitions can be observed (Figure 4.7, right).

Transport through a charge sensor as a function of dot plunger gate voltages VL and VR

will yield a stability diagram almost identical in structure to Figure 4.5, with incremental

plateaus of conductance representing different charge configurations in the double dot af-

ter a linear background conductance has been subtracted [PJM04]. The source and drain

reservoirs adjacent to the dots are typically grounded for these measurements. To increase

contrast, differential charge sensing measurements can be used to show only the boundaries

of each stable charge region (Figure 4.6). Again, differential charge sensing can be replicated

with simple transport by taking a numerical derivative of the current with respect to a gate

voltage, provided the signal-to-noise ratio is good enough.

With two dot plunger gates, there are four choices for modulating the charge sensor
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signal. The modulation can be applied to either the left or right plunger, causing only the

left or right charging lines to appear in the lock-in signal. One can also apply the same

modulation in phase to both gates, yielding sets of charging lines with the same polarity

(as in Figure 4.6). An third option is to apply modulation to both gates with a 180◦ phase

difference, so that the charging lines from one dot will appear as dips in current and the

other set of lines will appear as peaks. This method can be used to effectively discriminate

sets of lines, and it also brings out the inter-dot charge transition for smaller values of

inter-dot coupling. The 180◦ phase is accomplished with an inverting amplifier. A final

modulation strategy is to modulate both gates with a relative phase of 90◦. This will shunt

charge transition signals of one dot to the Y channel of the lock-in amplifier and leave the

other dot’s charging lines in the X channel, allowing each dot to be addressed separately

in measurements. Practically, this last option is not too useful since it requires two lock-in

amplifiers to produce the modulation, or one lock-in and a phase shifter.

4.4 Determining tunnel rates

At zero temperature, charge transitions are abrupt: Coulomb peaks become delta functions

and charge sensing transport in this limit would show steps in conductance with infinitesimal

transition times. Thermal energy adds the possibility of an electron jumping into or out of

the quantum dot to make some excited state configuration, which can then decay back to the

ground state naturally or through thermal processes. The probability of thermal excitations

occurring increases as the dot electrochemical potential nears the source or drain potential,

creating broadened Coulomb peaks and conductance transitions. Broadening is merely the

result of averaging over many instances of abrupt thermally excited charge transitions, an

averaging that every experimental measurement tool does to some extent; a voltmeter that

measures post-amplification source-drain current is actually performing many averages over

some integration time determined by the circuitry, for example. When we probe a charging
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N = 1

N = 0

Figure 4.8: Real-time thermally excited tunneling events in the vicinity of the N = 0 → 1

charge transition with electron temperature T ≈ 0.2 K. Left: SET transport as a function of

measurement time and VR. Right: individual traces taken from the right plot at three values

of VR showing random telegraph noise. Individual tunneling events turn into a thermally

broadened signal when averaged many times.

line, we are actually recording the ensemble effect of an electron hopping in and out of the

dot with characteristic frequency Γ (Figure 4.8). When we refer to the tunnel rate, we are

discussing Γ. Tunnel rates depend on many factors, including the barrier height and the

available dot levels involved in the transition.

4.4.1 Tunnel rate through pulsed modulation

Typically we modulate our charge sensing measurements with a sine wave from the lock-in

amplifier. We can also modulate the gate voltage with a square pulse with pulse width τ

and repetition rate 1/2τ . Pulse modulation provides nearly the same measurement, except

not all Fourier components of the square pulse have the same phase, leading to some of the

signal appearing in the lock-in Y channel. The benefit with pulse modulation is it becomes

very easy to describe the average electron tunneling behavior. When the rising edge of the
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pulse modulation voltage crosses a charge transition line at time t0, a single electron will

tunnel into the dot with probability 1−e−Γ(t−t0). Then, as the falling edge of the pulse passes

back over the transition, the electron will tunnel back out of the dot giving an occupation

probability of e−Γ(t−t0−τ). As long as the pulse width τ >> 1/Γ, the electron will always

tunnel in or out of the dot before the pulse voltage changes and the differential charge sensing

will show the maximum possible transition peak height. However, when τ gets shorter it

becomes less and less likely that the electron will be able to hop between do and reservoir. It

has been found that the charging line peak height as a function of pulse height, as measured

with a lock-in amplifier, is given by [EHW04a]

I

I0

= 1− π2

Γ2τ 2 + π2
. (4.17)

From (4.17), the peak height will drop to half its maximum value I0 when τ = π/Γ. There-

fore, the tunnel rate can be found be scanning over a charging line and stepping up the

pulse rate until peak current drops by a factor of 2 (Figure 4.9, left). This strategy is very

useful for measuring tunnel rates that are too fast to capture with real-time charge sensing

measurements. In our case, the bandwidth is limited by the lock-in amplifier maximum lock

frequency of 100 kHz, meaning we should be able to measure tunnel rates up to 2πf = 630

kHz.

4.4.2 Direct time-domain measurement

Alternatively, if there is an oscilloscope nearby it is possible to see the exponential tunneling

probability directly. As before, a pulse train is applied when the gate voltage is just below a

charging line. In this instance the pulse height doesn’t matter provided it’s large enough to

fully cross the thermally broadened transition. When the oscilloscope is measuring charge

sensor current triggered on the pulse, then it will see single-electron tunneling in real-time.

Oscilloscope traces can be averaged many times to obtain the exponential behavior repre-
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Figure 4.9: Determining tunnel rates using the pulsed modulation technique (left) and real-

time exponential fitting technique (right). The left curve follows Equation (4.17) and the

average tunnel rate Γ is given by Γ = 2πf0, where f0 is the pulse rate at the point where the

charge sensing peak height is half its maximum value. In this case, Γ = 40 kHz. In the right

plot, tunnel-in and tunnel-out rates can be determined separately by fitting the rising and

falling exponentials with probablity at the start of a pulse period given by Equation (4.19).

Here, a periodic background containing the capacitive effects of the voltage pulses has been

subtracted to leave the pure electron tunneling response and the data has been averaged

2000 times. Fitting results in Γin = Γout = 3 kHz.

senting the quantum dot occupation probability distribution over time.

The averaged oscilloscope data can be recorded over a single period to obtain tunnel-in

and tunnel-out rates Γin and Γout by fitting to exponential functions 1−e−Γint and e−Γout(t−τ).

I found that a more precise method involves fitting several periods to an exact probability

function, obtained in the following way. Given a pulse with width τ and period T , then the

nth period begins with an initial occupation probability of pn. Over the course of the pulse,

the probability of occupation increases as p(t, n) = 1 − (1 − pn)e−Γint. At the end of the

pulse, the probability is p′n = 1− (1− pn)e−Γinτ . Then, when the pulse voltage returns zero,
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occupation is given by p′(t, n) = p′ne
−Γout(t−τ). The start of the next period begins with initial

probability pn+1 = p′ (T, n+ 1). This can be collapsed recursively to the starting point with

initial probability p0 = 0. Ultimately, initial occupation in the nth period is given by the

sum

pn = (1− eΓinτ )e−Γout(T−τ)

n−1∑
j=0

e−j[Γinτ+Γout(T−τ)]. (4.18)

After many repetitions, pn trends toward pn+1. The steady-state solution is given for n→∞,

which converges as a geometric sum:

pn→∞ =
eΓinτ − 1

eΓinτ+Γout(T−τ) − 1
. (4.19)

We can verify that when Γ� τ , pn→∞ = 0 and when Γ� τ , pn→∞ = 0.5 as expected.

With an algebraic expression for the initial occupation probability after many pulses, we

can fit the average time-domain data to extract tunnel-in and tunnel-out rates (Figure 4.9).

The nice thing about this technique is it gives us separate values for Γin and Γout, but it is

limited by the bandwidth of the charge sensor (tens of kHz).

4.4.3 Inter-dot tunneling

As discussed in Section 4.3.1, inter-dot tunnel coupling causes mixing of charge configurations

with the same total number of electrons. Until now we have relied on equivalent capacitive

elements to relate experimental observables with electrostatic quantities. Since inter-dot

coupling does not factor into the circuit model, we need a new method for characterization.

A quick and simple solution is to simply fit the charge transitions to the Hubbard model

and find the value of t that gives the best fit. A more precise metric is the width of the

(N,M) → (N − 1,M + 1) transition. If we perform charge sensing on the left dot, for

instance, while scanning plunger voltages to cross the inter-dot line, we should see a jump

in conductance. In the limit of zero tunnel coupling, the jump should be perfectly abrupt
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(subject to thermal broadening, of course). As the tunnel coupling increases, the transition

will look like [WPD13]

P(N,M) =
1

2

[
1− ε

Ω
tanh

(
Ω

2kBT

)]
, (4.20)

where ε = αRVR−αLVL is the energy difference between dots and Ω =
√
ε2 + t2. As long as

the tunnel coupling is larger than kBT , the linewidth should be determined by t. However, in

practice it is difficult to have a large enough tunnel coupling for this measurement while also

keeping the inter-dot transition abrupt. In Chapter 5 we find the tunnel coupling directly

with Ramsey spectroscopy, giving us values of 2t = 108-132 µeV depending on the valley

state occupation for large values of VM .

4.5 Counting electrons

Ideally, it should be possible to determine the number of electrons in each quantum dot

by decreasing the relevant plunger gates further and further until there are no more charge

transitions. As I alluded earlier, this is usually not a robust method of electron counting

because of the contributions of plunger gates to the tunneling barriers via stray capacitance.

As the dot energy increases, it becomes more isolated from electron reservoirs and other

dots nearby. As such, observing the complete absence of charging lines in a charge sensing

measurement does not always constitute the complete absence of confined electrons.

4.5.1 Magnetospectroscopy

The least ambiguous method of precisely determining the number of electrons is with mag-

netospectroscopy by exploiting the interactions of electron spin with available valley states

and orbital levels [LYZ11]. In the presence of an out-of-plane (z) magnetic field, the spin

degeneracy is lifted and Zeeman levels diverge. However, valley and orbital states (which will

here be referred to collectively as valley-orbit levels due to disorder-induced hybridization)

88



are either weakly dependent or independent of the same magnetic field, meaning that the

spin states will have an avoided crossing with each valley-orbit level it encounters as the

magnetic field is increased. The N = 1 ground state experiences a linear decrease in energy

with magnetic field as 1
2
gµBBext and remains the ground state for all |Bext| > 0. However,

when a second electron is added to the dot at zero field it must occupy the excited spin

state to form a singlet due to Pauli exclusion. Accordingly, when the field is increased, the

energy of the two-electron state gets larger. Then, when the magnetic field is increased to

exceed the valley-orbit splitting, it becomes energetically favorable for the second electron to

occupy the first excited valley-orbital level and form a spin triplet with the first electron. At

this point, the second electron ground state begins to decrease with increasing field (Figure

4.10). It turns out that any electron occupation N > 1 will experience at least one crossing

with a valley-orbit state and its energy dependence versus field will change sign each time a

crossing occurs. Thus, the N = 0 → 1 charge transition can always be positively identified

as the only transition that does not experience a sign change in slope as the magnetic field

is increased from zero.

Experimentally, performing this measurement entails scanning a plunger gate voltage

across a charge transition and repeating the scan while incrementing the magnetic field. As

long as the transition linewidth — determined by the electron temperature and modulation

amplitude, if any — is less than the splitting between the ground state and the first valley-

orbital level and the scan is slow enough that the N th electron is always in its ground state,

then it should be possible to identify any level crossings that occur. Electron counting with

magnetospectroscopy fails when the valley splitting approaches EV S ∼ kbT , or when the

spin relaxation time is slow compared to the scanning rate. However, magnetospectroscopy

is a useful tool in characterizing quantum dots beyond electron counting. For instance,

knowing that the slope of a charging line (neglecting any sign changes) in Edot—B space is∣∣dE
dB

∣∣ = 1
2
gµB, then the slope of the charging line in Vg—B space is dVg

dB
= αg

dE
dB

. This leads
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𝑁 = 0
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Figure 4.10: Ground-state magnetospectroscopy on the right dot in a double quantum dot

devices. Left: first two valley-orbital levels. Red trace: ground state for a single electron.

Blue trace: ground state for the two-electron configuration. The second electron is forced

into the excited valley-orbit state by Pauli exclusion. Right: differential charge sensing

measurement of the N = 0→ 1 transition as a function of magnetic field. As expected, the

position of the peak follows the red path in the left plot.
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to a nice way of determining the gate lever arm:

αg =
2

gµB

∣∣∣∣dVgdB

∣∣∣∣ . (4.21)

4.5.2 Tunneling cut-off

Given that magnetospectroscopy requires a sizable external magnetic field and long scan

times, we often use an alternate technique for counting electrons that utilizes the idea of

relative lever arms. As a plunger gate voltage is decreased to deplete its quantum dot,

the stray capacitance effect on the tunneling barrier can be compensated for as long as we

know the ratio of plunger gate lever arm to barrier gate lever arm. This information can

be acquired simply from a scan of charge sensing current as a function of plunger gate and

barrier gate in some region that contains charge transition lines. The apparent line slope

dVbarrier/dVplunger is equal to αbarrier/αplunger. This ratio then tells us how much to compensate

the barrier gate voltage as we squeeze down on the plunger gate to empty electrons from

the quantum dot. The assumption here is that the lever arms are constant with respect to

the number of electrons and gate voltages, which isn’t generally the case. However, that

assumption isn’t even needed if we just scan the barrier gate and plunger gate voltages over

a large enough range. With a wide scanning window, it should be possible to see where

the charging lines cut off due to slow tunneling rates, as in Section 4.4. That cut-off point

should be more or less the same for each charge transition, accounting for stray capacitance

effects. We can say with confidence that we have emptied the dot of all electrons when we

see no more charge transitions while (1) the barrier gate voltage is positive enough to allow

for fast tunneling out of the dot if there remain confined electrons and (2) the gate voltage

has been decreased to at least twice the nearest observed charging energy (Figure 4.11).

If the tunneling cut-off method is used in conjunction with pulsed modulation, then the

barrier-plunger plots also give us a rough estimate of the tunnel rates. When the a given

transition’s tunnel rate is fast compared to the pulse width, then the electron occupation
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𝑑𝐼/𝑑𝑉𝑅 (pS) 𝑑𝐼/𝑑𝑉𝑅 (pS)

𝑁 = 0

Figure 4.11: Counting electrons from zero. Scanning a quantum dot’s plunger gate and

barrier gate together allows us to see how the plunger gate affects the tunneling rate via

stray capacitance. In the X channel of the lock-in measurement (left), VR seems to affect

the tunnel barrier linearly as seen by the points where charge sensing is cut off, making it

easy to see where the final charge transition is located. Right: the same data measured

in the lock-in amplifier Y channel. The transitions reverse sign and become dips when the

average tunnel rate is close to the pulse rate. Here the pulse rate is 200 Hz.
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probability follows the pulse shape closely and the transition line will appear mostly in-

phase with the modulation (i. e. in the lock-in amplifier X channel). When the tunnel

rate falls below approximately 8/τ , or four times the pulse repetition rate, then the average

occupation probability is close to 90◦ out of phase with the pulse and the charging line will

appear mostly in the lock-in amplifier Y channel.
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CHAPTER 5

Valley-orbit spectroscopy

From the discussion in Chapter 2, a good understanding of the valley states and their effects

on quantum dot electrons is crucial. Small valley splitting leads to quantum information

leakage and can interfere with standard quantum state read-out techniques like Pauli spin

blockade and double-dot occupation. In Si/SiGe heterostructures, we have almost no control

over the magnitude of the valley splitting due to its dependence on atomic-level interface

details. It is therefore important for the silicon qubit research community to have a toolkit

for valley characterization. Like the spin quantum number, valley occupation does not easily

couple to electric fields and so manipulation and charge-based read-out of valley states is

challenging. However, three years ago our group demonstrated electrical manipulation and

charge-sensor measurement of valleys using fast square voltage pulses [SFJ17]. This strategy

leverages inter-dot valley-orbit coupling to transform a double quantum dot charge state into

a single-dot valley state and back again. This chapter and its successor are based on our

group’s published work [PSR19a].

5.1 Pulse-excited coherent oscillations

We begin by utilizing the same square-pulse technique to probe valley states in a double

quantum dot as in [SFJ17]. This scheme presupposes a energy spectrum of the form (2.16),

where a given valley state in each quantum dot can couple to both valleys in the other dot.

We use the device shown in Figure 5.1a, where gates in the lower channel form the double

quantum dot and we pass a current through a large dot in the upper channel to sense the
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charge occupation of the double dot system. The sensor is closer to the right quantum dot,

so we generally see a weaker signal from the left dot. Gate M is given a large positive bias

of around 0.4 V to strongly couple the dots.

5.1.1 Procedure

The device is kept at a based temperature of 36 mK, as measured on the mixing chamber

plate, in our Triton 200 dry dilution refrigerator. The quantum dot channel began to ac-

cumulate charges at a top gate voltage of around 3 V. We first tune into the two-electron

region by squeezing down on gates L and R. We focus on the (2, 0) ↔ (1, 1) transition,

where one electron is always in the left dot and a second electron is free to tunnel between

the two dots (Figure 5.1b). Then a fast voltage pulse with a roughly 200 ps rise time is

applied simultaneously to both plunger gates with opposite polarity to create a pulse that

moves diagonally through VL–VR space. If we start in (1, 1) and pulse diagonally to (2, 0)

through the inter-dot transition, we are effectively pulsing from negative to positive detun-

ing ε = ER − EL. Similarly if we start in (2, 0) and pulse into (1, 1), the transition is from

positive to negative detuning. The inter-dot transition line represents zero detuning where

the dot energies are equal. The outcome of the pulse is measured by a lock-in amplifier with

modulation applied to L and R.

In both pulse directions, subject to some constraints, oscillations in charge sensing current

are visible as a function of pulse width (5.1c,d). At large pulse heights (highly positive or

negative detuning), the oscillation frequency and phase are constant with detuning. These

oscillations can be understood as arising from Larmor precession between valley states in

whichever dot the pulse travels to and are discussed in the following sections.

To avoid singlet-triplet complications we would like to be in a region with one electron

shared between dots. However, in this device the (1, 0) ↔ (0, 1) hybridization isn’t strong

enough to achieve the desired transition so we instead stay in the (1, 1) ↔ (2, 0) region.

Since we find the same oscillatory behavior when pulsing in the (1, 1) → (2, 0) direction as
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Figure 5.1: Coherent valley oscillations excited with a square detuning pulse. (A) SEM

micrograph of the double-dot device used. Pulses are applied to gates L and R with opposite

polarity. (B) Charge stability diagram in the vicinity of the (2, 0) ↔ (1, 1) configuration.

Arrows indicate the approximate start positions and directions of the detuning pulse. (C)

Precession between left dot valleys when pulsing to (2, 0) and (D) precession between right

dot valleys when pulsing to (1, 1).
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when we pulse in the (2, 0) → (1, 1) direction, we can conclude that the spin states do not

dramatically affect the operation.

5.1.2 Operation mechanism

As the detuning pulse rises to its maximum value determined by the pulse height, it can

pass through an anti-crossing between the lowest two energy levels in the four-state system.

Pulse operation relies on a Landau-Zener transition between the lowest two energy levels

of the double dot system in the vicinity of this anti-crossing [Wit05][PLG10]. Essentially,

the Landau-Zener formula is a generalization of transitions in two-state systems subject to

a time-dependent Hamiltonian:

PD = e−2πΓ, Γ =
∆2/h̄

d
dt

∂
∂ε
|E2 − E1|

, (5.1)

where PD is the probability of a diabatic transition ∆ is the effective coupling between the

two states with energies E1 and E2. Two known limits can be extracted from (5.1). If the

pulse is abrupt with respect to the coupling, then the probability of a transition from one

state to the other approaches 1. In the opposite limit, the pulse is slow enough to maintain

adiabatic evolution and the transition probability is close to zero. To maximize Larmor

precession between valley states, the pulse must produce a Landau-Zener transition with

probability 0.5. If the pulse rise time is too slow or the inter-dot coupling is too large, then

the system will evolve smoothly from |R, v−〉 to |L, v−〉 or the other way around. On the other

hand, if the pulse is too fast then the initial state |L, v−〉 or |R, v−〉 with initial Hamiltonian

Hi = ε/2σz will encounter a final Hamiltonian of the form Hf = EVS |ES〉 〈ES| where ES

is the excited valley in whichever dot is being pulsed into. Since the initial wavefunction is

also an eigenstate of the final Hamiltonian, there is no time evolution of the state. The pulse

shape must fall between these limits in order to see oscillations.
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5.1.3 Read-out mechanism

At the height of the pulse, provided the Landau-Zener transition generated a good valley

superposition of the form |ψ〉 = 1√
2
(|v−〉+eiφ0 |v+〉), the state will undergo Larmor precession

between valley states. Phase is accumulated as the state precesses leading to an overall

phase difference of φ0 + EVS

h̄
t. We know that any projective measurement in the |v−〉 , |v+〉

basis at this point would always yield a probability of 0.5 to be in either valley, and a

charge sensing measurement is incapable of distinguishing valley occupation even if the

projective measurement was able to probe the phase. Both problems are solved with a

second Landau-Zener transition as the pulse again passes through the anti-crossing to return

to the initialization point. The pulse is fast enough compared to the anti-crossing energy

gap that the valley superposition is mapped to double-dot charge occupation, and it is slow

compared to the two highest energy states that most quantum information stays in the

lowest two states. Ultimately, the falling edge of the pulse performs the mapping |L, v−〉 7→

|R, v−〉 , |L, v+〉 7→ |L, v−〉 in the case of a (1, 1) → (2, 0) pulse direction. The final state is

a superposition of both dot ground states, and a projective measurement can therefore be

accomplished with charge sensing.

5.1.4 Valley phase coherence

We can fit the oscillations to a decaying sinusoidal function to obtain the precession frequency

and the decay constant. Assuming the initial state is pure, the damped oscillations will have

the form

P (t) =
1

2

[
1 + e−(t/T2)α cos

(
EVS

h̄
t− φ0

)]
. (5.2)

In (5.2), T2 is the dephasing time and α is a coefficient that depends on the noise source. For

1/f charge noise, α = 2. Dephasing manifests as decay in the average precession amplitude,

leading to a maximally mixed state (Bloch vector has length 0) and a constant projective

probability of 0.5 in the limit where t� T2. In silicon quantum dot systems, any quantum
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states that are in some way dependent on the detuning parameter are coherence-limited by

low-frequency charge noise, which manifests as perturbations in detuning. When systemic

fluctuations play a large enough role in coherence, T2 is replaced with the inhomogeneous

dephasing time T ∗2 . The value of T ∗2 obtained from fitting the data to (5.2) reflects the worst

possible dephasing time that can give the experimentally observed decay in precession. For

a charge qubit, dephasing away from the anti-crossing at ε = 0 will be determined by T ∗2 .

However, the charge qubit level splitting in the vicinity of the anti-crossing can be expanded

to second order as 2∆ + 1
2
(ε/2∆)2, meaning that charge noise doesn’t effect coherence at

ε = 0 to first order. This has been experimentally verified in semiconductor charge qubits,

where dephasing at the inter-dot transition is an order of magnitude longer than dephasing

elsewhere [PPL10].

The four-state spectrum required to give us coherent valley oscillations at positive and

negative detuning gives us a unique opportunity to explore the idea of states protected against

dephasing. Since the valley states are parallel sufficiently far away from zero detuning,

the valley splitting should be independent of detuning. This is verified by examining the

frequency of precession at large pulse heights, which is constant to within error bars. In this

scenario, perturbations in detuning due to charge noise should have no effect on the valley

states to N th order, giving electron spin-like coherence times. This provides the ultimate

motivation for valley qubit proposals, where the valleys themselves are the qubit basis states

[CSK12][RRB14][BSC16].

We find a maximum valley dephasing time of T ∗2 ≈ 7 ns with the square pulse procedure.

Observed valley coherence is substantially shorter than what is typically seen in spin systems,

which we attribute to charge noise fluctuations in coupling parameters (off-diagonal terms

in the Hamiltonian) and a small but non-negligible first-order dependence of the valley

splitting on detuning. To make comparisons to charge qubit dephasing, we can make use of

an independent measurement of the low-frequency 1/f charge noise spectrum in a similarly

patterned Si/SiGe device [FSJ16]. Charge noise at 1 Hz was found consistently to be σε ≈ 2
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µeV, which can be used to estimate the inhomogeneous dephasing time for a charge qubit

at the same operation point as the valley oscillations. Using the expression

T ∗2 =

√
2h̄

σε
, (5.3)

the equivalent charge qubit dephasing time is 0.5 ns, consistent with reported values [PJM04]

[PPL10]. The valley dephasing time, on the other hand, is 14 times longer than an average

charge qubit T ∗2 . This confirms that there does exist some form of charge noise protection

in the far-detuned valley basis.

In principle we should also be able to see valley relaxation (parameterized by relaxation

time T1) during precession. However, indirect measurements have put valley relaxation in

the microsecond range, much longer than the valley dephasing time [KSW14]. As detailed

in Chapter 7, we later directly measure valley relaxation as T1 = 12 ms in this device.

5.2 Constraints on coherent valley oscillations

With enough parameter tweaking, we have been able to see pulse-induced valley oscillations

in every sufficiently tunable double-dot device tested, with frequencies no larger than 15

GHz and no smaller than 2 GHz. This isn’t to say that the pulse operation is trivial; there

are several limitations during initialization, pulse operation, and read-out that first needed

to be understood.

5.2.1 Initialization constraints

Referring back to the DiVincenzo criteria from Chapter 1, the ability to initialize the system

into a simple, well-known state is crucial for qubit implementations. To maximize the oscil-

lation amplitude and also to better model quantum dynamics, the initial state in the (1, 1)

or (2, 0) configuration is made to be the ground state, i. e. |R, v−〉 or |L, v−〉. Once a pulse
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Figure 5.2: Constraints on pulse-excited valley oscillations. (A) The charge qubit enhanced

co-tunneling initialization is shown as a red triangle in the (1, 1) configuration. The true

enhanced initialization window is given by the yellow region. (B) In a dot with valley

splitting, co-tunneling to the ground state via (1, 0) can only occur if the (1, 1) valleys

straddle the (1, 0) electrochemical potential (left). If both valleys are lower than (1, 0), then

the electron can get stuck in the excited valley (right). (C) Blue area within the initialization

window represents the read-out region. If read-out occurs too far into (1, 1), then the lowest

states are the right dot valleys with equal charge content. (D) good read-out occurs at a

range of detuning where the lowest states have different charge content.
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is applied and subsequently ends at the initialization point, the final quantum state could

be any superposition of |R, v−〉 and |L, v−〉. If the excited state is occupied, there must be

enough time between pulses for the electron to relax to the ground state. For our fast pulse

generator, the maximum time between pulses was around 30 ns. Unfortunately, natural

charge relaxation is comparable to or slightly less than our pulse period, meaning that the

electron does not always fully return to the initial state. This is not a unique problem by

any means, and we can gain some insight from the charge qubit literature. If, for instance,

initialization occurs in the (1, 1) configuration, then the (1, 0) ↔ (2, 0) transition line can

be extended into (1, 1) region to form a triangular area of enhanced relaxation (red area in

Figure 5.2a). In this area, it is energetically favorable for an electron in the excited state

(2, 0) to tunnel out of the dot to (1, 0) and back into the (1, 1) ground state rather than

decay directly to (1, 1). This tunnel process occurs faster than natural charge relaxation,

leading to quick initialization.

The charge qubit enhanced relaxation region does not impose a strict enough constraint

on initialization in our system, because we must still contend with valley splitting in the dot

we initialize into. If the excited valley in (1, 1) is lower in energy than (1, 0), then enhanced

tunneling may lead to that excited valley being occupied instead of the ground state. The

only subsequent pathway to the ground state is through pure valley relaxation, which occurs

on a much slower timescale (Figure 5.2b). Accordingly, the true enhanced relaxation region

is a line along the (1, 0)↔ (1, 1) boundary, with a width equal to the right dot valley splitting

[JPC19] (Figure 5.2a, yellow region).

5.2.2 Operation constraints

Due to the nature of the Landau-Zener transition needed to observe coherent valley oscilla-

tions, operation fidelity is determined by the pulse ramp slope dε/dt in relation to inter-dot

coupling. We are limited in shaping the pulse itself due to severe attenuation through wire

bonds by the time the signal gets to the device, but we have excellent control of the tunnel
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coupling through gate M . We can tune the voltage on M until we maximize visibility of

oscillations, which in this device occurs at a tunnel coupling of around 100 µeV as measured

in section 5.3. In relation to the charging energy, the required tunnel coupling is substantial

and the double quantum dot begins to resemble a single, peanut-shaped dot. The oscillations

can completely disappear if VM is reduced by as little as 2 mV, placing stringent limits on

the optimal coupling strength. This is also the reason that we did not see oscillations in

the single-electron region, because stray capacitance from the plunger gates increased the

effective inter-dot tunneling barrier to the point where we couldn’t compensate with gate

M .

5.2.3 Read-out constraints

For good valley-to-charge conversion, read-out must take place at a detuning where the lowest

two levels have very different double-dot charge content. In the absence of valley splitting

in the initialization and read-out charge configuration, every value of detuning such that

|ε| − 2∆� 0 is sufficient for charge sensor measurement, where ∆ is the inter-dot coupling.

When valley splitting is considered, this is no longer the case. At very large detuning, the

lowest levels are the valley states that contain equal charge content. If read-out takes place

too far from ε = 0, then the valley precession will map to (as an example) |R, v−〉 and |R, v+〉

instead of |L, v−〉 and |R, v−〉 (Figure 5.2). This places a final, tight constraint on the pulse

starting location to a subset of the initialization window, represented as the blue region in

Figure 5.2c.

5.3 Ramsey spectroscopy

The technique described above is relatively simple to implement and allows us to quickly

identify the parameter space that gives us high-visibility valley oscillations. One major

downside with the square pulse is that the visibility of oscillations reduces to zero as the
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pulse height approaches the anti-crossing. This is because evolution becomes more adiabatic

as the pulse height is reduced as governed by (5.1). To get around this issue, we implement

a Ramsey fringe experiment. The construction starts with the same square pulse as before

beginning in (1, 1), with initialization and tunnel coupling tuned to produce maximum-

amplitude oscillations. The square pulse will generate a state composed of equal parts |L, v−〉

and |L, v+〉. A dip is inserted in the middle of the pulse of variable height and width, and the

dip position εp is swept through the detuning region we wish to probe (Figure 5.3c, inset).

As long as the dip isn’t too abrupt, the valley superposition will never be an eigenstate of

the Hamiltonian at εp and Larmor precession will continue for the duration of the dip. Then

the pulse voltage is brought back to its maximum detuning and returned to the initialization

point for read-out.

To construct the Ramsey pulse, two channels of the Agilent 81134A pulse generator were

added with a high-frequency combiner. Channel 1 was used as the standard square pulse, and

channel 2 with negative polarity was added to channel 1 as the central dip. Consequentially,

we could no longer pulse along a VL/VR diagonal and were forced to add the pulse to VR

only. Ultimately this provided the same oscillations as the diagonal pulse, but at a cost of

coherence. Beyond a pulse width of 2 ns, the oscillation amplitude rapidly decreases with a

decay envelope that isn’t well described by exponential or gaussian processes. Since the pulse

now passes over the (1, 1) ↔ (1, 0) transition line, we speculate that the loss in coherence

is caused by fast relaxation to (1, 0) with a rate that is exponentially dependent on how

deep into (1, 0) the pulse travels. If relaxation out of the qubit subspace is treated as an

effective dephasing process (which is a little dubious), then the effective T ∗2 with a horizontal

or vertical pulse in place of a diagonal pulse is around 1.5 ns, a five-fold decrease from the

original 7 ns dephasing time.
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Figure 5.3: Ramsey spectroscopy of valley-orbit states. (A) Larmor precession between the

lowest two valley-orbit levels is visible at all values of detuning. (B) The Fourier transform

of (A). White points represent the frequency of oscillations we would expect to see given

precession between the lowest two states according to the model fit. (C) The four-state

spectrum modeled by (5.4), fit to the data in (B). Line colors represent state occupation in

the charge-valley basis. Inset: pulse profile.

5.3.1 The valley-orbit spectrum

When the Ramsey pulse is carried out for different εp, oscillations are visible as a function

of dip width tp (Figure 5.3a). As expected, the oscillations remain in the vicinity of the

anti-crossing at ε ≈ 0. The minimum oscillation frequency is not exactly at zero detuning

because inter-dot coupling modifies the position. We can fit the frequency of oscillations as

a function of detuning to extract a full four-state energy spectrum using the model obtained

from diagonalizing (5.4), repeated here for readability:

H =


−ε/2 0 ∆1 −∆2

0 −ε/2 + EVS,L −∆3 ∆4

∆1 −∆3 ε/2 0

−∆2 ∆4 0 ε/2 + EVS,R

 . (5.4)

In Figure 5.3b, the Fourier transform of the original Ramsey pulse-induced oscillations is

shown with white points indicating the oscillation frequencies expected from the fit results.
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The good agreement suggests that while coupling terms ∆i and valley splittings EV S may

have some detuning dependence expected from the dots moving through an interface disorder

landscape, the effect is small enough in our detuning range that the Hamiltonian parameters

can safely be treated as constant.

Figure 5.3c shows the calculated four-state spectrum, with colors corresponding to the

charge-valley basis state coefficients. The only parameter that does not have a unique solu-

tion from the fit of Figure 5.3a is ∆4, which couples the left and right dot excited valleys.

This is because the |L, v+〉/|R, v+〉 mixing occurs between the highest two energy levels,

inaccessible to the applied pulse from rise time considerations. We find precise values of

the valley splitting in the limit |ε| → ∞ as EVS,L = 4.55 GHz and EVS,R = 15.74 GHz.

Additionally, we find a valley-dependent inter-dot coupling of ∆2 = 12.7 GHz and ∆3 = 15.6

GHz. The coupling responsible for the Landau-Zener transition is described by ∆1 = 1.8

GHz and we set ∆4 = 2 GHz, motivated by symmetry considerations.

Surprisingly, the quantum states at the anti-crossing (ε = 45 µeV) are not simple bonding

and anti-bonding states 1√
2
(|L, v−〉±|R, v−〉) as is the case with charge qubits. Instead, they

are given by a superposition of all four charge-valley basis states:

|−〉 = −0.47 |R, v−〉+ 0.36 |R, v+〉+ 0.66 |L, v−〉 − 0.46 |L, v+〉 , (5.5)

|+〉 = 0.52 |R, v−〉+ 0.30 |R, v+〉+ 0.59 |L, v−〉+ 0.55 |L, v+〉 . (5.6)

This is a consequence of the inter-dot couplings ∆2,∆3 being larger than inter-dot, intra-

valley couplings ∆1,∆4. It also may explain the impressive coherence at the anti-crossing seen

in Figure 5.3a. Due to pulse imperfections, the oscillations appear to drift with increasing

tp making it hard to analyze the oscillations at that location.
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5.4 Simulating dynamics

We can gain insight into valley-orbit dynamics and predict how certain pulse shapes drive

state transitions through numerical simulation. The simplest case with no decoherence effects

can be calculated with the von Neumann equation (1.16). Here the Hamiltonian acquires

time dependence through the pulse effect on detuning: ε → ε(t). For a pure initial state

and fully coherent operations, the density matrix formalism is overkill and evolution can

be calculated much faster with other state vector methods. However, any time we consider

decoherence we must use the Lindblad equation to solve the quantum dynamics:

∂ρ

∂t
= − i

h̄
[H, ρ] +

N2−1∑
j=1

γj

(
LjρL

†
j −

1

2
{L†jLj, ρ}

)
. (5.7)

The first term on the right hand side is just the von Neumann equation, and the coefficients γj

are rates associated with jump operators Lj. Pure dephasing is associated with operators of

the form γjLj = 1
T2
|j〉 〈j| and leads to off-diagonal damping terms. For relaxation processes,

the coefficient will just be γj = 1/T1 with associated operator Lj = |R〉 〈L| in the case of

relaxation from the left dot to the right dot. This operator applied to a two-state system

will make the second and third terms on the right hand side of (5.7) look like

1

T1

(
|R〉 〈L| ρ |L〉 〈R| − 1

2
{|L〉 〈L| , ρ}

)
=

1

T1

 ρRR −1
2
ρRL

−1
2
ρLR −ρLL

 . (5.8)

Note that terms with this relaxation operator contribute diagonal and off-diagonal terms to

the equations of motion, meaning relaxation leads to an additional dephasing effect separate

from T2 or T ∗2 . As an additional complication, the decoherence operators only hold in the

diagonalized basis instead of the charge-valley basis. This can be seen by considering charge

relaxation in a double quantum dot. At negative detuning, relaxation occurs from the excited

left dot state to the right dot. However, at positive detuning the same relaxation process
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occurs in the opposite direction, from the excited right dot state to the left dot. The only

basis in which the process is unchanged for all detuning is the diagonalized basis. Since we

put in an initial state measured in the charge-valley basis and get out a final state in that same

basis, I found the most natural version of the Lindblad equation comes from diagonalizing

the Hamiltonian H so that H̃ = V −1HV for some matrix of column eigenstates V , and

then applying the same transformation to the density matrix and performing the inverse

transformation after adding the Lindblad operators:

∂ρ

∂t
= V

[
− i
h̄

[H̃, ρ̃] +
N2−1∑
j=1

· · ·

]
V −1, (5.9)

where ρ̃ = V −1ρV is the density matrix in the diagonalized basis. Since V is composed of

normalized, orthogonal column vectors by construction (i. e. unitary), V −1 = V † and the

transformations are computationally inexpensive. See Appendix A for details on implement-

ing numerical simulations in MATLAB.

Using the four-state spectrum obtained in Section 5.3.1, we simulated the effects of square

pulses and the Ramsey pulse. We get good agreement between calculations and experimental

results, indicating that the process applied to the quantum state are well understood.
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Figure 5.4: Numerical simulation of detuning pulses. Left: simulation of a square pulse from

(1, 1) to (2, 0). Right: simulation of the Ramsey spectroscopy experiment in Figure 5.3.

Simulations use the Lindblad equation (5.7) with dephasing and no relaxation. Parameters

are EVS,L = 4.55 GHz, EVS,R = 15.74 GHz, ∆1 = 1.8 GHz, ∆2 = 12.7 GHz, ∆3 = 15.6 GHz,

and ∆4 = 2.0 GHz.
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CHAPTER 6

Two-axis valley qubit control

Now that we have a good idea of the valley-orbit spectrum accessible by Ramsey spec-

troscopy, we can perform valley qubit operations. Whatever set of operations we choose

to perform must be able to transform any point on the Bloch sphere to any other point

before the qubit loses coherence. Since complete qubit control in this manner requires at

least two independent rotation axes to implement, we consider two-axis control requisite in

demonstrating a valley qubit.

One way to achieve two-axis control is with resonant rf gating. A microwave burst is ap-

plied in detuning space via one or more gates that drives Rabi oscillations for some controlled

amount of time. As long as the qubit states couple to electric fields, Rabi oscillations will

lead to X rotations in the interaction frame. The second axis is simply Larmor precession

about z. This form of control has been achieved to great effect with the hybrid qubit, a very

similar qubit system [KWS15]. In that work, researchers found that they could stay in the

far-detuned regime for operation and read-out, relying on the qubit energy levels straddling

the ground state in a different double-dot charge configuration to give state-dependent tun-

neling rates out of the qubit subspace. In operating this way, the qubit remains protected

against charge noise at all times. We found resonant gating to be challenging to implement

for several reasons. First, valley states can only couple to electric fields if there is sufficiently

strong valley-orbit coupling [VRY15][SKJ17][CBM18], so electrically driven valley resonance

has yet to be observed. From a more practical standpoint, we’ve established that the atten-

uation from wire bonds between the device and PCB sample holder is substantial beyond
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about 3 GHz, meaning that addressing a valley splitting of 5 GHz or larger requires a large

input power.

6.1 Pulse operation

Having already demonstrated baseband control of valley oscillations in Chapter 5, we are

able to borrow from another publication on the hybrid qubit to implement a DC-gated

pulse scheme [KSS14]. The pulse consists of three stages, each separated by a mostly di-

abatic transition, that allows us to excite precession in the left dot valleys and read out

when the right dot is the ground state (Figure 6.1). As with the pulse used in Ram-

sey spectroscopy, the qubit control sequence is constructed from the summation of two

pulse channels from the Agilent 81134A pulse generator. We initialize the qubit into state

|R, v−〉 at detuning point ε0 < 0. The effective two-state Hamiltonian at this point is

Heff(ε0) = ε
2

(|R, v−〉 〈R, v−| − |L, v−〉 〈L, v−|). In the first stage of the pulse, the detuning is

abruptly brought to the anti-crossing at εx and held there for time tθ. At εx, the new effective

Hamiltonian is approximately given by Heff(εx) ≈ ∆1(|R, v−〉 〈R, v−|+ |L, v−〉 〈L, v−|). This

new Hamiltonian is orthogonal to Heff(ε0), meaning that the state will precess with total

accumulated angle θ(t) = 2∆1tθ/h̄. Note that the Bloch sphere at this point is actually in

the {|−〉 , |+〉} basis with states defined by equations (5.5) and (5.6). In the valley basis

these rotations will show up mostly in the center of the Bloch sphere as mixed states.

In the second stage of the pulse, the detuning is abruptly brought to the left dot valley

basis at εz � 0 and held there for time tφ. Now we have an effective Hamiltonian Heff(εz) =

EVS,L |L, v+〉 〈L, v+| which is again orthogonal to the previous stage’s Hamiltonian. The

qubit will precess about the z axis in the valley-basis Bloch sphere to reach an azimuthal

angle φ = EVS,Ltφ/h̄.

The third pulse stage consists of a return to εx for a second set of x rotations, with

duration tθ as in the first pulse stage. In principle the time spent in this stage could be set
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Figure 6.1: The valley qubit control pulse sequence. Left: pulse profile. Right: the locations

of operation points εx and εz and initialization/read-out ε0 in the valley-orbit spectrum.

so that the qubit rotates by exactly θ = π/2, allowing us to measure the y projection of

the qubit state during Z rotations. However, we don’t know before applying the pulse what

time or detuning point is required for a perfect X rotation. We can identify a theoretical

operation point and duration from spectroscopy, but in reality pulse imperfections and charge

drift make that difficult. After the third and final pulse stage, the detuning is brought back

to the initialization point at ε0 for charge sensing read-out.

The danger when carrying out detuning-dependent qubit operations is that decoherence

from charge noise can severely limit Bloch rotation fidelity. Although the valley basis in the

limit of inter-dot valley couplings ∆1,∆4 << ε is insensitive to detuning and has strong pro-

tection against charge noise, this is not generally true for other areas of detuning. However,

a key feature of the three-step pulse sequence is the majority of operation time is spent at

two detuning points εx and εz that are both at least first-order insensitive to charge noise.

In addition to the valley state protection and analogous to the charge qubit, operation point

εx is located at an anti-crossing and the energy gap there is a constant to first order in ∆1.

Consequently, the bulk of the operation time during the pulse is spent in protected regions.

The qubit is subject to the most dephasing during transitions from one operation point to

the next (determined by the pulse ramp time after transmission loss of around 250 ps) and
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at the read-out point where charge noise susceptibility is maximal.

6.2 Tracing the Bloch sphere

Using the pulse described above and initializing in the right dot ground state (which through

adiabatic passage maps to |L, v−〉), it is possible to sweep the qubit vector through every

direction in the Bloch sphere. Ignoring the effects of dephasing, this set of operations would

return all possible pure states. Bloch sphere tracing is accomplished by changing the times

tθ and tφ spent during X and Z rotations. The probability of being in the left dot excited

state, designated as the logical |1〉, as a function of rotation times at fixed εx, εz is shown in

Figure 6.2a. Two-axis qubit control is evident in this plot by independent oscillations along

both operation axes. Furthermore, the frequency of oscillations along the tφ axis is equal

to the left dot valley splitting and the frequency of oscillations along the tθ axis is equal

to the energy gap at the inter-dot, intra-valley coupling point. A careful reader will notice

that the applied pulse results in two sets of X rotations, which should lead to an X rotation

frequency of twice the energy gap. This missing factor of two, as well as the tθ-dependent

phase shift in valley oscillations, is accounted for in Section 6.3.

Figure 6.2a can be interpreted in the following way. Valley oscillations have maximum

amplitude along the Bloch sphere equator, so θ at these points will be an odd multiple of

π/2. By contrast, valley oscillations should completely vanish when the state vector points

along the z axis so the horizontal low-contrast lines represent points where θ is a multiple of

π (Figure 6.2c). Turning to rotations along z now at θ = π/2, the probability of measuring

the qubit in state |1〉 = |L, v+〉 is highest when the qubit state is 1√
2
(|0〉 − i |1〉) = |−y〉

before the final X rotation. Since we have some freedom in defining what encapsulates the

qubit operation and what can be considered state measurement, we can choose to wrap the

final X rotation into the projective measurement and make the claim that the first two pulse

stages perform the qubit operation. Framed in this way, we perform an arbitrary X rotation
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Figure 6.2: Two-axis control of the valley qubit. (A) Measurement of qubit state |1〉 as a

function of X and Z operation times tθ and tφ. (B) Numerical simulation of (A), includ-

ing dephasing, calculated by plugging the four-state system Hamiltonian into the Lindblad

equation. (C) Qubit trajectories on the Bloch sphere for two fixed values of tθ. Red trace:

oscillations near the Bloch sphere pole are very small (dotted red line in (B)). Blue trace:

oscillations near the equator have maximum amplitude (dotted blue line in (B)).

followed by an arbitrary Z rotation and then measure the resulting state with a dynamical

projection axis determined by tθ. I will establish in Section 6.3 that the final rotation is not

truly about the x axis at all, which complicates the state projection considerably but doesn’t

effect two-axis control.

6.2.1 Numerical simulation

The simulated results of our control pulse capture the key aspects of the experiment, in-

cluding the initially baffling X rotation frequency of roughly 2.5 GHz (Figure 6.2b). When

simulated without dephasing effects, high-frequency oscillations corresponding to precession

between the first and second excited states near the X rotation point were faintly visible on

top of the qubit oscillations. There is no sign of such oscillations in the experimental data,

leading me to speculate that they are artifacts of the simulated pulse profile. The control

pulse was modeled as three flat operation points separated by abrupt, linear slopes with
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a fixed ramp time. In reality, transmission loss would act as a low-pass filter and smooth

out the sharp pulse edges. The high-frequency oscillations were removed by adding charge

qubit-like dephasing during precession involving states outside the qubit subspace. This

procedure keeps the effects of leakage into the highest-energy states which must be acknowl-

edged in fidelity calculations, while maintaining oscillation frequencies corresponding to pure

state transformations. Additionally, dephasing within the qubit subspace was added using

experimentally determined values of T ∗2 at the two operation points. Since the operation

detuning doesn’t change during the experiment, it was enough to treat dephasing as a step

function in detuning, with an abrupt transition from T ∗2 ≈ 10 ns at the anti-crossing to

T ∗2 = 1.5 ns in the valley basis. As was the case with Ramsey spectroscopy, the effective T ∗2

during Z rotations is reduced from 7 ns because we are forced to pulse purely along VR and

expose the qubit to enhanced relaxation processes. Dephasing at smaller εp, such as near

the anti-crossing, is reduced for the same reason.

It is generally possible to plot the qubit state trajectory on the Bloch sphere from the

results of numerical simulation in order to quantify rotation errors, leakage and decoherence.

This is easily accomplished when the X rotation brings the qubit to the Bloch sphere equator,

since the basis states are simply the qubit states. Simulations reveal that valley precession

does result in rotations very nearly about the z axis, with deviations of about 6◦. However,

plotting the qubit trajectory during X rotations for a fixed φ is not as instructive since

rotations are occurring in a different 2-state subspace. They appear in the qubit basis as

small rotations, roughly about x, but far from the Bloch sphere surface indicating a mixed

state.

6.3 A unitary operation model

As previously discussed, the experimental result of our three-stage control pulse didn’t quite

match what we expected to see. Rotations about z in the valley basis behaved as predicted
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up to a phase shift that was in some way dependent on tθ, but the X rotation frequency

was off by a factor of two. To gain understanding about state evolution during the pulse, we

turn to a simple model of SU(2) rotation operations. This model does not assume anything

about the system Hamiltonian or pulse details. Individual rotations are expressed in the

form

U(n̂, ϕ) = exp(−iσ · n̂), (6.1)

where n̂ is a unit vector defining the rotation axis, ϕ is the total rotation angle about n̂, and

Cartesian components of σ are Pauli matrices.

6.3.1 Perfect rotations

To start, we assume that the control pulse results in rotations purely about x and z. The

three pulse stages will then have associated operators

U1(θ) = cos

(
θ

2

)
− i sin

(
θ

2

)
σx, (6.2)

U2(φ) = cos

(
φ

2

)
− i sin

(
φ

2

)
σz, (6.3)

U3(θ′) = cos

(
θ′

2

)
− i sin

(
θ′

2

)
σx. (6.4)

The resulting probability of measuring the qubit in |1〉 is then

| 〈L, v+|U3(φ)U2(θ)U1(φ)|L, v−〉 |2 = 1/4[1− cos(2θ)][1 + cos(φ)]. Here we set θ′ = θ because

the X rotation operation times are equal. This solution is periodic in φ and independently

periodic in 2θ, as expected from pulse construction (Figure 6.3a). However, this solution

doesn’t capture key aspects of the experimental results, especially the θ-dependent phase

shift in Z rotations and the true θ periodicity.
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Figure 6.3: Effects of off-axis tilt during rotations. (A) Pure X and Z rotations with no

errors lead to oscillations periodic in φ and 2θ. (B) The outcome when the third rotation

is about an axis in the x–z plane making an angle of α = π/4 with the x axis. (C) Adding

rotation tilts to the first two operation stages of 18◦ and 6◦ lead to a result that qualitatively

matches the experiment. (D) Qubit trajectory on the Bloch sphere during the control pulse

with the parameters in (B).
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6.3.2 Rotation errors

The perfect rotation model assumes that the pulse is sufficiently abrupt and that the oper-

ation detuning points are perfectly tuned. If either one of these assumptions isn’t true then

errors in rotation can occur. We can first consider errors in the final X rotation, motivated

by the small change in qubit frequency between εz and εx that can lead to an adiabatic

component in evolution. The true error-prone rotation axis is fixed to lie in the x–z plane

and the deviation angle α from the x axis is increased from zero. Now the final unitary

transformation has the form

U3(θ′) = cos

(
θ′

2

)
− i sin

(
θ′

2

)
(σx cosα + σz sinα). (6.5)

With this modification, the probability of measuring the qubit to be in |L, v+〉 as a function

of θ with α = π/4 looks like

| 〈L, v+|U(θ, φ = 0)|L, v−〉 |2 = (1− cos θ)

(
1 +

1√
2

cos θ

)
, (6.6)

where U(θ, φ) is the product of the three pulse stage operators. This solution goes to zero

when θ is an even multiple of π, giving the function an overall periodicity in θ of 2π instead

of π (Figure 6.3b and d). This is the origin of the missing factor of two from earlier.

The solution with a sizable tilt in the final rotation still does not give qualitative agree-

ment with experiment. However, it is certainly conceivable that rotation errors occur in the

other two pulse stages. We know from numerical simulation that the Z rotation has a tilt of

about 6◦. By also allowing the first X rotation to have a tilt of 18◦ from x in the x–z plane,

we arrive at a result that closely resembles the data (Figure 6.3c). Critically, the solution

maintains periodicity of 2π in θ and φ, and now it includes the phase shift that appears to

slant the oscillations.
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6.4 Benchmarking valley qubit performance

Now that we understand the operations that are truly being applied to the qubit with the

control pulse, we can see how well qubit operations fulfill their intended purpose. A figure of

merit for qubit operations is the fidelity, which has many definitions but generally involves

comparing a measured quantum state before and after some string of operations to the

expected “ideal” case. For state-of-the-art qubits, the accepted methodology is randomized

benchmarking, where N randomly selected operations from some universal set are applied to

the qubit(s) initialized at |0〉, and then a final operation is performed to bring the quantum

state back to |0〉. The fidelity with randomized benchmarking describes how well the final

state matches the initial state as a function of N . However, this technique relies on an

incredibly stable device and a great deal of flexibility in control pulse shaping. With our

valley qubit, we decided to perform quantum process tomography (QPT) to measure operation

fidelities. With our control pulse and the data in Figure 6.2a, we can first extract the state

vector at every point along θ and φ. Then we can define the prepared qubit state at the

point just before the Z rotation occurs.

6.4.1 State tomography

The first step in QPT is to find the state vector for a given θ and φ. We are most interested

in the fidelities of processes occurring in the valley basis, so the goal is to prepare various

input states along Cartesian axes and see how they each evolve under Z rotations. With

the variable tθ spanning a few periods, we automatically have initial states prepared as |0〉,

|±y〉, and |1〉. We don’t explicitly prepare |±x〉 and they will be needed for QPT later, but

they can be extracted from traces at fixed θ = 3π/2, 7π/2, · · · where the phase shift from

the tilted third rotation is equal to π/2. Strictly speaking, traces satisfying this condition

are still Z rotations with prepared state |±y〉, but they allow us to fill in the remaining

state preparations without double-counting other Z rotation data. For each prepared state,
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Figure 6.4: Quantum state tomography. Red traces indicate an input state of |0〉, while blue

traces indicate an input state of |−y〉. Projection (A) is along |x〉, (B) is along |y〉, and (C)

is along |z〉. (D) Equivalent trajectories on the Bloch sphere.

projections along x, y, and z must be captured during Z rotations. Given the dynamic

projection axes determined by tθ in the third pulse stage, it becomes possible to find traces

with θ such that the tilted third rotation projects the qubit state along the desired axis

(Figure 6.4). It is important to stress that this is certainly not the best way to obtain a full

set of state tomography. Ideally, with better pulse control, we can construct individual pulse

sequences to prepare arbitrary states and then measure them along an arbitrary projections

axis. In lieu of proper pulse engineering, the partial data set from our control pulse is

sufficient to find reasonable process fidelities from QPT.
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6.4.2 Quantum process tomography

The goal of QPT is to find an expression for a process—consisting of a chain of Bloch

rotations—in terms of some set of basis operators. Since QPT handles processes that may

include decoherence, the involved states are density matrices instead of state vectors. The

basis set of operators must form all possible transformations on the Bloch sphere; in other

words, they must form a basis for the vector space of 2 × 2 Hermitian matrices. Any basis

set will work, although a natural choice is the Pauli matrices together with the identity

operator. Armed with this basis set B, the map function E for a given input state ρ is given

by [CGT09]

E(ρ) =
d2∑

m,n=1

χmnBmρB
†
n, (6.7)

where d = 2 is the Hilbert space dimension and χ is the process matrix. The matrix described

by χ is unique for each quantum operation but independent of the choice of input state. Due

to this state preparation invariance, χ is a good metric for process quality. By comparing

an experimentally determined χ to the ideal target process matrix χideal, we can determine

the process fidelity:

F = Tr[χidealχ]. (6.8)

In practice, output states E(ρ) are determined by state tomography and χ is found by

inverting (6.7). In what follows, at least d2 linearly independent input states are needed

for each quantum process. With density matrices and the basis set {I, σx, σy, σz}, it is

straightforward to show that states |0〉, |1〉, |x〉 and |y〉 are linearly independent (note that

this is not true in the space of pure state vectors).

6.4.3 Calculating the process matrix

The first step is to combine the state projections obtained from state tomography into density

matrices. Given probabilities Px, Py, and Pz, the density matrix can be obtained from Stokes
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parameters si relating the probabilities to points on or in the Bloch sphere:

si = 2

(
Pi −

1

2

)
. (6.9)

The Stokes parameters have origins in the area of polarized radiation, but they can easily

be generalized to any two-dimensional mixed state. Starting with these quantities, a density

matrix can be written as

ρ =

 1 + sz sx − isy

sx + isy 1− sz

 . (6.10)

In calculating the input and output density matrices, complications can arise from noise in

the system. Fluctuations may lead to non-physical density matrices where Tr[ρ] 6= 1, for

instance. To enforce that ρ is positive semi-definite and Hermitian with a trace of 1, it can

be written in the following way [Bha14]:

ρ =
T †T

Tr[T †T ]
, T =

 t1 0

t3 + it4 t2

 (6.11)

Real-valued coefficients ti can then be calculated by maximum likelihood estimation (MLE).

This involves finding the values of ti that minimize the sum of squares
∑

m,n(ρmn − ρ′mn)2,

where ρ′ is the density matrix calculated from T .

The next step in calculating χ is to solve (6.7) by linear inversion. Note this will not

always result in a physical (positive, Hermitian) process matrix. First, (6.7) must be ex-

pressed as some matrix λ times the density matrix basis ρ such that E(ρj) = λjkρk [CCL01].

This can be related to the process matrix as

λjk = βmnjk χmn, βmnjk ρk = BmρjB
†
n. (6.12)

If we then use composite indices jk and mn to make βmnjk a two-dimensional matrix and
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λjk, χmn vectors, then the result is a vector equation that can be inverted to solve for χ:

βχ = λ =⇒ χ = κλ, (6.13)

where κ is the pseudoinverse of β.

The result (6.13) is a starting point for another round of maximum likelihood estimation

to enforce that χ is positive semi-definite and Hermitian with a trace of 1. As in (6.11), the

process matrix can be written in terms of a T matrix [JKM01]:

χ =
T †T

Tr[T †T ]
, T =


t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4

 . (6.14)

With MLE, the set of real-valued ti is found by minimizing the sum of squares

f(t) =
2∑

j,k=1

(ρout,jk − E(ρin,jk, t))2 , (6.15)

where E(ρ) is obtained from (6.7) with χ in the form (6.14). The initial guess of χ is the

solution to linear inversion, i. e. (6.13).

6.4.4 Valley operation fidelities

Input and output states for a given process are taken directly from the three state tomography

projections. For the Zπ/2 process, for instance, we choose an arbitrary starting point tφ,0 as

the input and identify the point at tφ,0 + tπ/2 as the output state. Given the qubit frequency

EVS,L/h, we have tπ/2 = h/4EVS,L. Similarly, tπ = h/2EVS,L and t2π = h/EVS,L.

We are prevented from directly plugging in our noisy data into (6.15) for two reasons.

First, there are some physically impossible points where the sum of projections is greater
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Figure 6.5: Calculated process matrices in quantum process tomography. (A,B) Measured

and ideal matrix elements of χπ/2. (C,D) Measured and ideal matrix elements of χπ. (E,F)

Measured and ideal matrix elements of χ2π. Colors indicate complex phase: blue is real, red

is imaginary.
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than 1 due to read-out noise. Second, the maximum likelihood calculation is incredibly

sensitive to the initial guess of χ, since there are many local minima giving wildly different

process matrices. For these reasons, we use a fit to the data in the form of a decaying sinusoid

for each tφ-dependent set of state tomography. In doing this, we lose information related to

uncertainty in state preparation and measurement. However, the fidelity calculation precision

in this case is dominated by uncertainty in MLE and can be obtained by performing separate

fidelity calculations for every input state at tφ,0. The variance of fidelities then produces a

reasonable standard error. After obtaining χ for a given process at all tφ,0, the process matrix

corresponding to the median fidelity in the data set is used as the starting point for a second

iteration of MLE. This can continue for as many iterations as needed to approach the true

process matrix, but in practice it usually only takes two iterations.

The process matrices for Zπ/2, Zπ, and Z2π and the corresponding ideal cases are shown

in Figure 6.5. There is good qualitative agreement between χ and χideal, confirming that

we are performing the intended quantum operations. Process fidelities are found to be

Fπ/2 = 0.85± 0.02, Fπ = 0.79± 0.02, and F2π = 0.93± 0.01. Compared to recent reports of

spin qubits with 99.9% NOT fidelity [YTO18], our valley qubit is certainly inferior. However,

the valley qubit benefits from fast (GHz) operation speeds and operation at zero magnetic

field with no need for microwave signals. As a proof of principle experiment with minimal

effort on our part towards parameter optimization, our results indicate a promising future

in this area of research.

6.4.5 Principle sources of error

We know from the dephasing time scale that charge noise dominates decoherence. Addition-

ally, from our analysis of the rotation tilts in Section 6.3 we are aware of systemic operation

errors that can also limit process fidelity. For future improvements of the valley qubit, it

is important to understand the contributions of each error source. Process fidelities can be

calculated for a simulated scenario in which there is dephasing but no rotation errors, and
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separately in the case where there are rotation errors but no dephasing. In both cases, a

simplified version of the fidelity estimate is used [NC00]:

F = Tr[
√
ρtρ
√
ρt]. (6.16)

Here, ρt is the target density matrix resulting from an error-free operation and ρ is the

“measured” density matrix after the imperfect operation. This expression does contain

an implicit dependence on the input state and is therefore less rigorous than the fidelity

calculation involving process matrices, but it is useful as a comparison tool between situations

with identical inputs.

In the pure dephasing case, the fidelity decreases monotonically with decreasing T ∗2 as

expected (Figure 6.6a). Fidelities for Z rotations of π/2, π, and 2π are estimated to be

0.98, 0.97 and 0.94 when the experimentally determined T ∗2 = 1.54 ns is used. Since the Z2π

operation takes the longest amount of time to perform, it has the worst fidelity of the three

processes. However, our experimental F2π is actually the best of the three processes despite

the operation time.

The case with rotation errors and no dephasing can be simulated by returning to the

unitary operation model and applying tilts to the first two rotations in the control pulse

sequence. When θ is fixed at π/2, we can see how tilt errors affect the fidelity (Figure

6.6b,c,d). In this situation, F2π is always the highest possible fidelity because the identity

operation is minimally sensitive to the choice in rotation axis. Similarly, Fπ will always be

the lowest fidelity because the NOT operation is maximally sensitive to the rotation axis.

These predictions are consistent with our observed fidelities. In fact, when dephasing is

ignored altogether and tilts in the X and Z rotation axes are set at 18◦ and 6◦ respectively,

then we arrive at Fπ/2 = 0.87, Fπ = 0.84, and F2π = 0.9. These values are fairly close to

the measured fidelities.

This analysis suggests that the fidelities are not yet limited by coherence, and are instead
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Figure 6.6: Theoretical effects of error sources on qubit fidelity. (A) Effect of dephasing in

the absence of rotation errors for operations Zπ/2 (solid purple), Zπ (dashed orange), and

Z2π (dot-dashed teal). (B,C,D) Effect of rotation errors in the absence of dephasing for Zπ/2

(B), Zπ (C), and Z2π (D).

largely determined by rotation errors. This is good news for the valley qubit, because

experimental errors are much easier to address than fundamental limitations like charge

noise. Proper pulse engineering can mitigate these errors, for example by correcting for

voltage drift during operations or reducing transmission loss effects to increase pulse ramp

time.

6.5 Conclusions, Chapters 5 and 6

Using simple square voltage pulses with a sufficiently slow rise time applied to plunger gates

in a double quantum dot, we induced Landau-Zener transitions that first lead to Larmor

precession between valleys and then map the precession phase back to double-dot charge

occupation for read-out. This process provides a good experimental technique to quickly

identify the proper regions for cotunneling initialization and charge-like read-out in the

presence of valley splitting.

We then demonstrated pulse spectroscopy that enabled us to map out the four-level

valley-orbit spectrum in the double quantum dot. With this process we determined the
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valley-dependent inter-dot tunnel coupling as well as the valley splitting in both dots. Co-

herent spectroscopy performed in this way may prove useful to the semiconductor quantum

computing research community, since valley splitting and valley-orbit coupling are important

factors in electron dynamics regardless of qubit implementation. Additionally, our Ramsey

spectroscopy can be done with no applied magnetic fields and at any electron configuration

(constrained by the Landau-Zener transition probability).

From the results of spectroscopy, we identified the exact location of the anti-crossing

between the lowest two levels and implemented valley qubit operations in a charge noise-

insensitive regime. Despite a reduced dephasing time due to relaxation processes, we demon-

strated full quantum control with sub-nanosecond operations along two independent rotation

axes. Importantly, we showed that the valley qubit was limited by errors in rotation axis

rather than decoherence, so improvements to the pulse design could significantly improve

qubit performance.
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CHAPTER 7

Intervalley relaxation

One main reason silicon is an appealing candidate for semiconductor quantum computing

is the small intrinsic spin-orbit coupling and weak hyperfine interaction from nuclear spins.

These two qualities imply that electron spins aren’t greatly affected by charge or magnetic

noise, both of which have a 1/f spectral density. When operated well away from any spin-

orbital crossings and with recent advancements in isotopically purified 28Si with no net

magnetic moment, silicon spin qubits can have dephasing times on the order of tens of

microseconds and relaxation times on the order of seconds [YTO18][YCH19].

Interestingly, there is no allowed decay process between pure spin states. There does exist

a nonzero amount of spin-orbit coupling, but orbital spacing is typically around 1 meV, an

order of magnitude larger than the spin splitting at a typical spin qubit operation point

of Bext = 1 T. However, spin relaxation is possible even in the total absence of spin-orbit

coupling due, of course, to the valley states. As long as there is some degree of spin-valley

coupling, spin relaxation mediated by pure valley relaxation will occur. In other words, at a

fundamental level, spin coherence is determined by valley coherence when orbital coupling

is negligible. It is therefore important to understand valley relaxation in order to fully

characterize spin systems in silicon. Despite this, there has never been a direct measurement

of intervalley relaxation in silicon quantum dots (to our knowledge).

In the context of valley qubits, and with our valley qubit in particular, knowing how

long quantum information can be stored in the excited state before spontaneously decaying

to the ground state is of great interest as well. For purely practical reasons related to the
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valley qubit control pulse construction, we were unable to get a measurement of the valley

relaxation time T1 using coherent excitation in the double quantum dot. This chapter and

the next will closely follow our recent work [PSE20], which as of writing has been submitted

for publication, in which we directly measure valley relaxation and relate it to spin coherence.

7.1 Electron coherence in spin and valley states

As briefly discussed in Chapter 2, states of different spin and valley quantum numbers can

hybridize at the point where the Zeeman splitting gµBB matches the valley splitting. This

spin-valley coupling exposes electron spins to environmental noise that would otherwise only

affect valley coherence. Considering the presence of valley-orbit coupling in realistic quantum

dot systems with disorder, spin and valley hybridization can be treated identically to spin-

orbit coupling.

7.1.1 Traditional spin-orbit coupling

Traditional spin-orbit interactions arise from the magnetic field proportional to E×k gener-

ated by an electron with crystal momentum k moving through an electric field E [HKP07].

It comes in two varieties related to asymmetries in electron confinement and the crystal

lattice, referred to as the Rashba [Ras60] and Dresselhaus [Dre55] contributions. In semi-

conductor heterostructures, Rashba spin-orbit coupling arises from the asymmetric (roughly

triangular) confinement potential generated by the heterostructure interface and an applied

out-of-plane electric field. The Rashba Hamiltonian at the interface has the form

HR = α(σxky − σykx), (7.1)

where α is a material-specific, experimentally determined constant. The Dresselhaus con-

tribution is the result of inversion asymmetry in bulk crystals and can also arise from an
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abrupt change in crystal structure at heterostructure interfaces. It has a form similar to the

Rashba contribution:

HD = β(σxkx − σyky), (7.2)

where as before the coefficient β depends on the heterostructure materials.

Due to the Pauli matrices σx and σy, both spin-orbit contributions appear as off-diagonal

elements in the total Hamiltonian and lead to inter-spin coupling (allowing for relaxation)

proportional to electric dipole matrix elements r↑↓:

〈↑ |HR +HD| ↓〉 ∝ (β − α)r↑↓, r↑↓ = 〈↑ |r| ↓〉 . (7.3)

In bulk silicon, inversion symmetry requires zero Dresselhaus spin-orbit coupling and Rashba

terms are generally small, α ≈ 5× 10−14 eV · cm [HVZ17].

7.1.2 Valley-mediated spin-orbit coupling

In the space of spin-valley states spanned by {|v+, ↑〉 , |v+, ↓〉 , |v−, ↑〉 , |v−, ↓〉}, the 4×4 valley

spin-orbit Hamiltonian at the heterostructure interface becomes [VRY15]

HSOC =

 sRhR + sDhD V + χRhR + χDhD

V ∗ + χ∗Rh
†
R + χ∗Dh

†
D sRhR + sDhD

 . (7.4)

In (7.4), hR and hD are the standard Rashba and Dresselhaus Hamiltonians without the

coefficients α and β, and V = |V |eiφV ≈ EVS is the valley-orbit coupling parameter with

associated valley phase φV . The block-diagonal elements of this Hamiltonian correspond

to intravalley transitions—that is, transitions involving a change in spin within the same

valley—with new Rashba and Dresselhaus coefficients sR, sD roughly corresponding to α

and β. The off-diagonal 2× 2 blocks describe intervalley transitions, either within the same

spin state with amplitude V or involving a spin flip according to the spin-orbit coefficients χR
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and χD. With the approximation that the valley splitting is large compared to spin-flipping

amplitudes, (7.4) can be transformed to be approximately diagonal with respect to the valley

basis. Then, in the valley subspace {|v−〉 , |v+〉}, the effective 2 × 2 spin-orbit Hamiltonian

can be written in the familiar form [VRY15]

Heff = αv±hR + βv±hD. (7.5)

Now, the coefficients depend on the intervalley and intravalley transition amplitudes as well

as the valley phase φV and the valley splitting EVS:

αv± = sR ∓ |χR| cos(φR − φV ), (7.6)

βv± = sD ∓ |χD| cos(φD − φV ). (7.7)

The spin-valley coupling amplitude with |↓〉 being the lower energy spin state is then given

by

∆a = 2| 〈↓, v+|Heff | ↑, v−〉 | =
mtEVS√

2h̄
r(〈β〉 − 〈α〉), (7.8)

where 〈α〉 =
√
αv−αv+ and similarly for 〈β〉. This is an important result, as it shows that

spin-valley coupling in silicon increases with the magnitude of the valley splitting.

7.1.3 Spin relaxation

In the presence of spin-valley coupling (Figure 7.1), spin relaxation can be found in terms of

the bare valley relaxation rate Γv simply by analyzing the spin-valley Hamiltonian found in

Chapter 2 (Equation 2.17). The following calculations were presented in the seminal work

by Yang, et al [YRR13].

We start with the unperturbed spin-valley eigenstates |σ, v〉. With the admixture of
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|↓, v+〉 and |↑, v−〉 near EZ = EVS, the first and second excited states need to be renormalized:

|2̃〉 = sin
(γ

2

)
|↑, v−〉 − cos

(γ
2

)
|↓, v+〉 , (7.9)

|3̃〉 = cos
(γ

2

)
|↑, v−〉+ sin

(γ
2

)
|↓, v+〉 , (7.10)

where γ = arctan(∆a/δ) with δ = gµBBext − EVS being the distance from the spin-valley

anti-crossing. Then the spin relaxation rate determined by Γv is screened by the degree of

spin-valley coupling at a given δ:

Γ↑→↓ =

√
δ2 + ∆2

a + |δ|
2
√
δ2 + ∆2

a

Γv. (7.11)

Equation 7.11 has a maximum at Γv/2 when δ = 0, or when the applied field matches the

valley splitting. This is the infamous “hot spot” where the spin relaxation time T1 sharply

drops by several orders of magnitude [BZH19].

In the two-electron case and at fields Bext < EVS/gµB, the ground state is the spin singlet

S and the first excited state formed with the second electron in the upper valley is the spin

triplet T−. As the Zeeman energy is increased to EVS, there is an anti-crossing between S

and T− since the singlet is unaffected by magnetic fields. The renormalized states that are

composed of hybridized singlet and triplet states |S, v−, v−〉 and |T−, v−, v+〉 are given by

|1̃〉2e = sin
(γ

2

)
|S, v−, v−〉 − cos

(γ
2

)
|T−, v−, v+〉 , (7.12)

|2̃〉2e = cos
(γ

2

)
|S, v−, v−〉+ sin

(γ
2

)
|T−, v−, v+〉 , (7.13)

with γ defined as before. The singlet-triplet relaxation is given by an expression that explic-

itly includes EVS as well as dipole matrix elements r−− = 〈v−|r|v−〉 and r++ = 〈v+|r|v+〉:

Γ2̃→1̃ = sin2
(γ

2

)
cos2

(γ
2

)
Γv[EVS, r−− − r++]. (7.14)
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Despite |r| generally being small (1–3 nm), experimentally measured singlet-triplet relaxation

is fast compared to single-electron spin relaxation far below the spin-valley anti-crossing.

This is due in part to singlet-triplet splitting ∆EST ≥ EVS, and a larger splitting samples a

higher frequency of environmental noise. Interestingly, singlet-triplet relaxation experiences

a “cold spot” in the vicinity of the spin-valley anti-crossing, with origins that can be traced

to the fact that the hybridization involves the ground state (as opposed to the single-spin

case where hybridization involves the first two excited states).

7.1.4 Valley relaxation

The expression for intervalley relaxation (with no spin-flip transition) can be obtained for a

given noise energy spectrum SE(ω) with Fermi’s golden rule. For single-electron inter-valley

relaxation, the rate is given by [HH14]

Γv =
4πe2

h̄2

∑
i=x,y,z

| 〈v−|ri|v+〉 |2SEii (EVS/h̄). (7.15)

Sources of electronic noise that can contribute to valley relaxation are charge noise, Johnson

noise, and phonons in the form of lattice deformation. Since charge noise has a 1/f spectrum,

its effect at valley splittings in the several GHz range is quite small. Johnson noise arises

from thermal effects in resistive circuit elements, with a spectrum of the form

SEJ (ω) =
1

(el0)2

2ξωh̄2

1 + (ωRC)2
coth

(
h̄ω

2kBT

)
, (7.16)

where ξ = e2R/h is the circuit resistance R divided by the quantum resistance, C is

any equivalent capacitance in series with R, and l0 is the length scale of the resistive cir-

cuit element. Under the reasonable assumption that GHz-level Johnson noise from room-

temperature elements is cut off due to the 1.9 MHz low-pass filters applied to all DC voltages,

we can treat l0 on the scale of tens of nanometers representing the distance from source to
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drain of the charge sensor, or from source to dot. At low temperatures, coth(h̄ω/2kBT )→ 1.

Additionally, the cutoff frequency 1/RC for the noise is fast compared to the valley splitting

due to a small capacitive coupling C of the dot(s) to the source or drain, meaning that the

ωRC term in (7.16) is very small. With these approximations, the Johnson noise spectrum

becomes white noise proportional to ω.

Acoustic-mode phonon noise expectedly depends on lattice properties, specifically de-

formation potentials, and the direction of propagation. With silicon-specific dilation and

uniaxial shear deformation potential constants Ξd and Ξu, the longitudinal deformation po-

tential strength is Ξl = Ξd+Ξu cos2 θ and the two transverse strengths are Ξt = Ξu cos θ sin θ,

Ξ′t = 0. Here θ is a polar angle in momentum space describing the phonon propagation vec-

tor [HH14]. Without derivation, the phonon spectrum along three crystal directions in the

dipole approximation are given by

SExx(ω) = SEyy(ω) =
∑

j=x,y,z

h̄ω5(2Nω + 1)

16π2e2ρcv7
j

∫ π/2

0

dθΞ2
jθ sin3 θ, (7.17)

SEzz(ω) =
∑

j=x,y,z

h̄ω5(2Nω + 1)

8π2e2ρcv7
j

∫ π/2

0

dθΞ2
jθ sin θ cos2 θ, (7.18)

where phonon excitation number Nω obeys the Bose-Einstein distribution. Again with low

temperature, Nω → 0 and the phonon spectra take on a ω5 dependence.

Combining the effects of Johnson noise and phonon noise, intervalley relaxation will have

a general form:

Γv = cJEVS + cphE
5
VS, (7.19)

with coefficients cJ and cph implicitly depending on the intervalley dipole moment according

to (7.15). The phonon contribution, which experimentally kicks in at around EV S ≈ 100

µeV, gives intervalley relaxation a strong dependence on valley splitting (Figure 7.1). This

imposes a significant limitation on what valley dynamics can be experimentally probed. In

[YRR13], the theoretically predicted relaxation rate for a valley splitting of EVS = 0.33 meV
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Figure 7.1: Left: spin-valley relaxation processes. Blue transitions: intravalley spin relax-

ation. Red transitions: intervalley relaxation. Right: theoretical intervalley relaxation rate

as a function of valley splitting according to (7.19). Parameters are chosen to match ref.

[YRR13] at large valley splitting.

was 10-100 MHz, too fast for state-of-the-art rf reflectometry [HCC17] and far beyond the

capabilities of standard charge sensing.

7.1.5 Magnetic field dependence of relaxation

For an in-plane magnetic field Bext, the valley splitting (and therefore Γv) should be invariant.

This seems to suggest that spin relaxation as per (7.11) only contains dependence on Bext

within the spin-valley coupling terms involving δ and ∆a. This is not quite the case, because

an analysis of single-electron spin relaxation rates on either side of the anti-crossing Γ2̃1 and

Γ3̃1 using the conventions of (7.15) are:

Γ2̃1 =
4πe2

h̄2

∑
i=x,y,z

| 〈1|ri|2̃〉 |2SEii (∆E2̃1/h̄), (7.20)

Γ3̃1 =
4πe2

h̄2

∑
i=x,y,z

| 〈1|ri|3̃〉 |2SEii (∆E3̃1/h̄). (7.21)
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Due to spin-valley coupling, the dipole matrix elements contain inter-valley terms 〈v−|r|v+〉

(they should be zero in the absence of coupling). However, the noise spectra are being

sampled at the field-dependent renormalized spin state splitting ∆E2̃1,∆E3̃1. Therefore,

despite the field invariance of pure valley relaxation, spin-valley mixing leads to a field

dependence arising from Zeeman splitting [PBE18]:

Γ↑→↓ = FSV (EZ)(cJEZ + cphE
5
Z), FSV (EZ) = 1−

[
1 +

∆2
a

(EVS − EZ)2

]− 1
2

. (7.22)

The spin-valley screening function FSV (EZ) is composed of the leading terms in 7.11. Mea-

suring spin relaxation as a function of field can therefore reveal the electrical noise spectrum

beyond the noise at the valley splitting.

7.2 Single-dot valley-to-charge conversion

From (7.19), the hope for real-time observation of intervalley relaxation depends upon a

small enough valley splitting. Assuming that such a condition is met in our device, which

may be the case based on our Ramsey spectroscopy in Chapter 5, we first need a method for

single-dot valley read-out in a regime with negligible inter-dot valley coupling. Our coherent

spectroscopy relied on strong inter-dot coupling, so it can’t be used in this case.

7.2.1 Energy-selective tunneling pulse sequence

Fortunately, there already exists a well-established method for distinguishing any two arbi-

trary adjacent levels in a single quantum dot based on energy-selective tunneling [EHW04b].

The technique is widely used to measure spin state occupation and provides the most com-

mon method of spin relaxation measurement [XHJ10]. It utilizes a slow pulse sequence on

the plunger gate of the quantum dot of interest, beginning with an initialization where the

quantum dot is empty (Figure 7.2). The first stage involves loading a single electron into
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the dot by pulsing the gate voltage across the N = 0→ 1 charge transition line. The prob-

abilities of the electron occupying the excited state and the ground state are roughly even.

Next, the gate voltage is moved to the transition line where the two dot levels of interest

straddle the reservoir Fermi level. At this point it is energetically favorable for the electron

to tunnel out of the dot only if it’s occupying the excited state. Then another electron from

the reservoir can tunnel into the ground state. The charge sensor transport current, which

only differentiates between the dot being occupied and unoccupied, will experience an abrupt

increase when the electron leaves the dot and an equally abrupt return to the baseline value

when an electron tunnels back in. If the loaded electron is already in the ground state during

this stage, then it will never tunnel out of the dot and the current is unchanged. Essentially,

during the second (“measurement”) phase of the pulse, there will be a brief change in charge

sensor current only if the electron was in the excited state prior to measurement. In the

final stage, the gate voltage is moved back to the N = 0 region to empty the dot. When the

level splitting is sufficiently larger than kBT (that is, no random thermal population of the

excited state during measurement is possible), then this measurement can be accomplished

with single-shot read-out [MPZ10]. When thermally excited population is possible, then

the measurement signal must be averaged over many instances of the pulse. The ensemble

average over many (noisy) single-shot measurements will then yield a smooth curve with a

“tunneling peak” near the beginning of the measurement pulse phase, with an amplitude

proportional to the fraction of instances in which the electron was in the excited state.

7.2.2 Experimental details

We use the same double quantum device as in Chapters 5 and 6. From our valley qubit

study, we know that the valley splitting in both dots is on the order of tens of µeV and so

we would expect a slow intervalley relaxation time. Since we would also like to examine spin

dynamics, we transferred the device to the JDR-500 refrigerator from the Triton-200. The

base temperature during measurements was about 60 mK.
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Figure 7.2: Pulse sequence and circuit diagram for relaxation measurements. Left: the pulse

is added to VR and applied to gate R. The charge sensing current is read with a current

amplifier and sent to a DMM, an oscilloscope and a lock-in amplifier for various average and

real-time measurements. Right: the energy-selective tunneling read-out sequence.

The device was tuned to the single-electron regime and inter-dot tunneling was heavily

suppressed by a negative bias on gate M . Tunneling is then restricted to occur only between

a single quantum dot and its adjacent electron reservoir, kept grounded.

The pulse sequence was generated with the Tektronics AWG 520 with a 30 dB attenuator

on the channel 1 output. It starts with a high-level voltage of around 0.1 V before attenuation

to load the electron for time twait, then a period of 10-20 ms at 0 V for measurement, and

then a period of 4-7 ms at -0.15 V for emptying the dot. The sequence is combined with the

standard DC plunger gate voltage using a summing amplifier. The charge sensor response

was fed through a high-bandwidth current amplifier (DLPCA-200 set at 10 nA/V gain) and

then to a variable low-pass filter with a cutoff frequency of 7 GHz and post-filtering gain of

10 dB. The filtered signal was sent to an oscilloscope (Agilent 54855A) and triggered on the

AWG 520 channel 1 marker, which was constructed to pulse at the start of the measurement

phase. The current amplifier output was also sent to a standard DMM so we could monitor

the DC charge sensing transport current, and to a lock-in amplifier in voltage mode so we
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could perform differential measurements with the AWG in function generation mode (Figure

7.2). The tunnel barriers were tuned with VBL and VBR so that the tunnel rate from each

dot to the reservoir was around 2 kHz.

Proper grounding of all instruments was essential to reduce the electron temperature and

improve the signal-to-noise ratio. Initially this involved triggering the oscilloscope on the

line frequency of 60 Hz and monitoring the average background noise amplitude far from

the charge transition. Instrument chassis were grounded to the instrument rack, and thick

stainless steel wire mesh ribbons were used to directly connect the BNC shields of signal

outputs to a common ground point. Instrument signals were added to the ground network

one at a time to check that the total noise didn’t increase. Eventually we were able to reduce

the electron temperature to about 150 mK from linewidth measurements, which allowed us

to observe random telegraph signal in realtime with a signal-to-noise ratio of about 3:1,

and potentially would have allowed us to perform single-shot spin readout at fields above

1 T. However, this still wasn’t enough of an improvement to do single-shot measurements

on valley states with small splitting. We therefore average the signal over 2000 oscilloscope

traces for right dot measurements and 4000 traces for the left dot since the charge sensor is

farther away. We also tried switching from a Stahl BS-16 power supply with BNC output

shields grounded to the chassis with an identical model but with the shields floated on the

supply side. This led to a noticeable improvement in the low-frequency background, but

caused a substantial increase in higher frequency (> 7 kHz) noise that artificially broadened

the charging lines.

7.3 Valley T1

By performing the energy-selective tunneling read-out pulse sequence and extending the

time twait spent in the “load” stage, an excited state electron has a higher probability of

relaxing to the ground state. This in turn reduces the probability of co-tunneling during
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the measurement stage, which causes the tunneling peak amplitude to decrease. As long as

the tunneling rates in the measurement stage are faster than the relaxation rate, then the

tunneling peak amplitude should follow an exponential decay as e−twait/T1 with T1 = 1/Γv in

the case of valley relaxation [XHJ10].

7.3.1 Converting charge sensing current to occupation probability

The raw transport current seen on the oscilloscope contains the capacitive effect of a single

dot electron modifying the charge sensor conductance as well as stray capacitance from the

plunger gate that is being pulsed on (Figure 7.3a). These contributions are roughly equal

with proper tuning of the charge sensor. To extract the probability of the dot being occupied

by the electron during the entire pulse sequence, we need to subtract the stray capacitance

contribution. At the start of all measurements, we first take an ensemble-averaged trace with

the same pulse scheme sufficiently far away from the charge transition so that electron tun-

neling is energetically unlikely. This trace only contains the stray capacitance contribution

(Figure 7.3b). Then we perform the measurement in the vicinity of the charge transition

and subtract the baseline current from it (Figure 7.3c). We know that the probability of

the dot being unoccupied will be exactly 0 by the end of the “load” stage provided the

load time is long enough compared to the 2 kHz tunneling rate, and we also know that it

will be 1 by the end of the “empty” stage. These provide the calibration, as we take the

background-subtracted data and re-scale it to match the expected occupation probabilities.

7.3.2 Observation of the valley tunneling peak

Figure 7.4a shows the results of a valley occupation measurement in the right dot with

twait = 4 ms. At zero field, the spin states are degenerate so the visible tunneling peak

in the measurement stage can’t be spin-related. It is conceivable that the peak is related

to orbital levels, but we establish later that the probed level splitting is far too small for
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a b c

Figure 7.3: Calibrating the right dot occupation probability. (A) Raw SET transport current.

The “load” stage occurs from 0 to 4 ms, the “measure” stage ends at 24 ms, and the “empty”

stage ends at 28 ms. (B) Results of the same pulse with no electron tunneling events.

This represents the pure stray capacitance effects from the pulsed gate. (C) The result

of subtracting (B) from (A), representing the charge sensor response to a single electron

tunneling in and out of the dot.

orbital spacing. We can therefore conclude, and later confirm, that the tunneling peak

arises from the valley states in the right dot. The unoccupation probability tends toward

a constant, nonzero value at large measurement times, which is caused by the thermally

excited random telegraph signal of an electron hopping from the dot ground state into the

reservoir. Accordingly we define the tunneling peak amplitude as the maximum probability

in the measurement stage minus the probability at the end of the measurement stage.

7.3.3 Tunneling peak vs. load time

We measure the tunneling peak amplitude as a function of twait and observe that the trend

is remarkably consistent with the expected exponential e−twait/T1 . This leads to a valley T1 of

12.0± 0.3 ms, found by fitting the data in semi-log with standard linear regression (Figure

7.4b). To our knowledge, this is the first direct measurement of pure valley relaxation.

This value is somewhat surprising, since the only indirect experimental estimate in Si/SiGe
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a b c

Figure 7.4: Measurement of intervalley relaxation. (A) Valley tunneling peak at zero field

with twait = 4 ms. Dotted line is the solution to a rate equation model (Chapter 8). (B) valley

tunneling peak amplitude as a function of twait, displaying a decaying exponential trend. The

decay time constant is T1 = 12± 0.3 ms. (C) Field dependence of spin relaxation. The spin-

valley hot spot occurs at 0.37 T. Red diamond at 80 Hz is the valley relaxation rate at zero

field for comparison.

quantum dots placed the valley T1 with comparable valley splitting to ours in the microsecond

range [KSW14]. Our measurement is three orders of magnitude longer. However, it should be

noted that the valley T1 estimate in [KSW14] comes from the Rabi oscillation T2, under the

speculation that T2 is limited by valley relaxation. Further, the valley splitting in that work

is only inferred from Rabi frequency shifts and not directly measured. It is also important

to remember that relaxation depends on the valley dipole term, which can be quite different

between systems and even within the same device.

7.4 Spin relaxation

Before claiming that our direct intervalley relaxation measurement is valid, it is important

to establish a second independent measurement and check for consistency. This can be

achieved through spin measurements by noting that single-electron spin relaxation reduces

to Γspin = Γv/2 according to (7.11) when δ = 0. Measuring spin relaxation as a function
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of field near the hot spot should therefore give us a reasonable estimate of the valley T1.

Even better, the position of the hot spot will give us an estimate of the valley splitting

(which may well have changed due to thermal cycling from spectroscopy measurements in

a different refrigerator) and the overall trend of spin relaxation versus field will allow us to

make conclusions about the dominant noise sources as per Section 7.1.5.

7.4.1 Spin read-out

Reading out the spin state works in exactly the same way as the energy-selective valley-to-

charge conversion. The same pulse sequence is applied in the presence of Bext > 0 to load,

measure, and empty an electron. Strictly speaking, there are now four available spin-valley

states that can be probed with the read-out process. However, as long as the voltage level

during the “measure” stage is between states of opposite spin and the “load” stage level is

above both spin states, the presence of valleys will not affect the measurement. This will

not be true at small fields where the valley splitting is larger than the Zeeman splitting, but

at that point read-out becomes difficult in any case.

In contrast to the valley tunneling peak, the spin tunneling peak is much easier to identify

due to a sharper profile. Since the tunneling peak is determined by the tunnel rate out of the

excited state and the tunnel rate into the ground state from the reservoir, we can conclude

that tunneling associated with these spin states is faster than valley state tunneling. This is

not generally the case, and in fact has nothing to do with the nature of the involved states.

As we will show in the next chapter, the factor determining tunneling peak sharpness is

the level separation. As the magnetic field is decreased, the spin tunneling peak becomes

broader.
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7.4.2 Spin relaxation hot spot

Spin relaxation is obtained by varying twait as before to allow an excited spin to decay. Since

the spin tunneling peak signal-to-noise ratio is much better than that of the valley tunneling

peak, the precision of amplitude measurements was improved. Signal quality notwithstand-

ing, an unexpected complication with read-out fidelity caused spin T1 measurements to have

worse precision than the valley T1 measurement. Our SET charge sensor experienced stochas-

tic drift on the timescale of an hour; for probing valley relaxation on the order of 10 ms,

and considering 2000 trace averages, the valley relaxation measurement would take about

3 hours total. With some luck, the SET wouldn’t drift during that time and the valley T1

precision would be limited by the tunneling peak precision. However, we found that the

maximum spin relaxation time was around one second, requiring much longer measurement

times to capture. In the worst case, we were only able to take four amplitude-versus-twait

data points to extract a spin T1 before the SET drifted.

Despite the problems with long spin relaxation times, we were able to plot the relaxation

rate 1/T1 as a function of external field (Figure 7.4c). We can easily identify the hot spot

where the spin and valley states mix, occurring at Bext = 0.37 ± 0.03 T. This corresponds

to a right dot valley splitting of 43 ± 3 µeV, a 30% change from our Ramsey spectroscopy

measurement in the Triton-200 refrigerator. The change likely has less to do with thermal

cycling and more to do with the quantum dot position, which has significantly shifted to

the right from a decrease in VM of about 0.8 V. Lateral motion of the quantum dot causes

the electron wavefunction to sample a different portion of the interface disorder landscape,

leading to a different valley splitting.

Fitting the spin relaxation data to the form (7.22), we can get an estimate for the peak

hot spot relaxation rate, 1/T1(δ = 0) = 20 Hz. From (7.11) this leads to an indirect result for

the valley T1 of 25 ms, about a factor of two slower than the direct measurement. While the

two values disagree, they both suggest a surprisingly long intervalley relaxation time. It is
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worth pointing out that the inferred spin relaxation rate at the hot spot is fairly imprecise,

given the error bars on the valley splitting and on individual data points. Additionally,

we rely on a fit to the data with noise amplitude coefficients cJ and cph treated as free

parameters, leading to further errors in hot spot relaxation. With this in mind, a factor of

two discrepancy between the direct and indirect valley T1 measurements is not unexpected.

This result also leads to a relatively simple way of estimating the valley T1, provided the

noise model gives a sufficiently good fit to the data. The hot spot estimate technique could

be especially useful in situations where the valley splitting is too small to probe, or where

the valley T1 is too short.

7.5 Spin and valley read-out at nonzero field

It is possible to probe spin and valley dynamics within the same measurement at Bext >

EVS. This is achieved by applying the same waveform to the plunger gate while modifying

the dot energy with a DC voltage. We already do this to obtain the background trace

in calibrating occupation probability, but this process also allows us to move between a

spin-discriminating tunneling peak measurement and a valley-discriminating measurement

(Figure 7.5a,b). Provided the “load” stage pulse height ∆µload satisfies EVS < ∆µload <

µ↑,v− − µ↓,v+ , then the experiment will measure spin occupation when the DC plunger gate

level moves states |↑, v−〉 and |↓, v+〉 to straddle the reservoir Fermi level. Similarly, it will

measure valley occupation when the reservoir level is between |↓, v−〉 and |↓, v+〉. In principle

the valley states can be probed at a measurement level between |↑, v−〉 and |↑, v+〉 as well,

but this proves difficult because the tunneling rate from the reservoir to the true ground

state grows exponentially with the distance from the tunnel barrier and the valley tunneling

peak becomes incredibly weak.

Keeping the read-out constraints in mind, it is possible to measure valley relaxation as

a function of field (Figure 7.5c). We find that the valley T1 is independent of Bext to within
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Figure 7.5: Reading out spin and valley occupation at nonzero field. (A) schematic of the

load and read levels (with fixed separation) in relation to the spin-valley quantum dot states.

Spin-discriminating read-out occurs when the read level is between states of opposite spin,

and valley-discriminating read-out occurs when the read level is between the lowest two

valley states and the load level is below the excited spin states. (B) A spin tunneling peak

(left) and a valley tunneling peak (right) measured at Bext = 2 T. Dotted lines are fits to

rate equation model (see Chapter 8). (C) Valley relaxation as a function of field. There is

no field dependence, confirming the behavior of valley splitting and allowing us to conclude

that second-order tunneling is not occurring.

error bars up to Bext = 3 T. This result may seem trivial, but it does allow us to confirm

several things. First, we can now rule out orbital splitting as the origin of the zero-field

tunneling peak and subsequent relaxation measurement. Second, this indicates that the

valley splitting is field-invariant as expected. Third, we can conclude that valley relaxation

at an electron temperature of 150 mK is determined by first-order processes (if second-order

processes with additional states were involved, then valley relaxation should have a field

dependence and we couldn’t claim direct intervalley decay).

7.5.1 Valley decoherence mechanisms

From the fit to the data in Figure 7.4c, we can get an idea of the regimes in which the two

primary noise sources (Johnson noise and lattice deformation phonons) play the biggest role
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in decoherence. We find that below about Bext = 0.5 T, spin relaxation is dominated by

Johnson noise contributions and phonon noise doesn’t really kick in until Bext ≥ 1 T. This

information can be used to draw conclusions about valley relaxation as well. With a splitting

of EVS/gµB = 0.37 T, the valley states fall squarely in the frequency range where Johnson

noise plays the biggest role. We can therefore say with some confidence that intervalley

relaxation is caused mostly by Johnson noise in this device. Of course, this is not generally

the case; for a quantum dot with larger valley splitting, phonon noise will be the biggest

contribution.
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CHAPTER 8

Modeling spin and valley tunneling peaks

In performing the spin and valley tunneling peak measurements in the previous chapter,

there were some features of the data that didn’t match our understanding of the relevant

electron dynamics. First, the valley tunneling peak was much broader than the spin tunneling

peak, meaning that the tunneling processes involved in the valley measurement were slower.

By carefully modeling the single-dot system and incorporating effects related to thermal

excitations and details of the tunnel barrier, we were able to address these features. Second,

we found that the window in quantum dot electrochemical potential for resolving the valley

tunneling peak was wider than we would have expected purely from energy considerations.

Finally, the tunneling rates associated with the ground valley state were found to be slower

than the tunneling rates associated with the excited valley. These last two observations were

explained with valley-orbit coupling that can lead to valley-dependent electron tunneling.

The observations and theoretical framework discussed in this chapter provide new insights

into valley physics in disordered quantum dot systems.

8.1 Classical rate equations

Time evolution of electron state occupation in the presence of relaxation can be described by

the Lindblad equation (5.7) as we’ve already seen. However, the tunneling events that occur

during the energy-selective tunneling read-out pulse are purely incoherent processes and so

expressing the time dependence with quantum formalism is overkill. Instead, we can use a

system of intuitive classical rate equations to replicate our measurements without resorting

149



to calculating full density matrices [BDR02]. The probabilities of finding the electron in

all accessible discrete states can be contained in a vector p of length N + 1, where N is

the number of confined dot levels (The additional state is the probability of the dot being

unoccupied, relevant when the electron tunnels out of the dot). Then the equations of motion

are given by the same expression used to describe current transport:

dp

dt
= Γ · p, Γαβ =


Γβ→α, α 6= β

−
∑

k 6=α Γα→k, otherwise.

(8.1)

The goal now is to find the tunneling rates to and from each available state from every other

state, during each stage of the waveform.

8.1.1 Two dot states, zero temperature

In the simplest case, the transition matrix Γ in the basis {pdot,2, pdot,1, pempty} is written as

Γ =


−Γ2→0Θ(µ0 − µ2)− Γ2→1 0 Γ0→2Θ(µ2 − µ0)

Γ2→1 −Γ1→0Θ(µ0 − µ1) Γ0→1Θ(µ1 − µ0)

Γ2→0Θ(µ0 − µ2) Γ1→0Θ(µ0 − µ1) −Γ0→2Θ(µ2 − µ0)− Γ0→1Θ(µ1 − µ0)

 ,

(8.2)

where µi is the chemical potential in state i (i = 0 is the reservoir Fermi level) and Θ(µ) is

the Heaviside step function. It is simple to confirm that this transition matrix is probability-

conserving, as the sum of rates in a given column always equals zero. The transition matrix

for each stage of the measurement waveform can be obtained by setting µ0 > µ2 for the

“load” stage, µ2 > µ0 > µ1 for the “measure” stage, and µ0 < µ1 for the “empty” stage. In

doing so, we recover the three separate transition matrices shown in [XHJ10]. In the zero-

temperature limit, a tunneling peak is only visible when the reservoir Fermi level is between

dot levels and the starting probability pdot,2 is nonzero. The amplitude of the tunneling peak

also depends on the relative tunneling rates out of the excited state and into the ground state.

150



In a situation where the excited state tunneling rates are much slower than the ground state

tunneling rates, the peak will disappear.

8.1.2 Thermal effects

A nonzero electron temperature drives stochastic jumps between states that would otherwise

be energetically forbidden. On average, thermal effects lead to a distribution of tunneling

probabilities, with a transition from state A to state B becoming more likely as µA is in-

creased to approach µB. At temperature T , the step functions in (8.2) become Fermi-Dirac

distributions:

Γα→β(µα, µβ, T ) =
Γ0
α→β

1 + exp[(µβ − µα)/kBT ]
. (8.3)

The tunneling peak amplitude decreases quickly as temperature is increased or the dot energy

splitting is decreased, which from a practical standpoint makes the measurement difficult

when the electron temperature is above 200 mK. Additionally, at long measurement times

the occupation probability will saturate at some value less than one. This is in contrast to

the zero-temperature case, where the dot ground state will always end up occupied by the

end of the measurement phase.

8.1.3 Energy-dependent tunneling

Under normal circumstances, incorporating the temperature dependence of tunneling rates

is sufficient to reproduce tunneling peaks during the measurement phase of the waveform.

However, the model fails when attempting to incorporate the dynamics during the “load”

and “empty” phases in a self-consistent way. For instance, a solution that accurately fits

the tunneling peak will underestimate the empty phase tunneling rates and overestimate the

load phase tunneling rates. More subtly, a model that only includes temperature dependence

does not reproduce the effects of dot level splitting on tunneling rates.

Under the assumption of purely elastic tunneling, we can treat the dot-reservoir system

151



in one dimension as two discrete bound states with an infinite barrier on one side and

some arbitrary finite barrier on the other side. Any undergraduate-level quantum mechanics

textbook [Gri05] will include an expression for the wavefunction corresponding to bound

state j within the barrier given by some potential V (x) in the WKB approximation (not

necessarily normalized):

ψj(x) =
1

[2m(V − Ej)]
1
4

e±
1
h̄

∫
dx
√

2m[V (x)−Ej ]. (8.4)

This wavefunction can be linearized in Ej and V (x) to give an expression for the tunneling

rate [MAR07]:

Γ(Ej) = Γ0,je
−β(δV−δEj). (8.5)

According to (8.5), the tunneling rate increases as the dot energy is increased relative to the

barrier. This gels with intuition when considering the case where the dot energy is above the

reservoir Fermi energy: the electron will certainly tunnel out of the dot faster if µdot � µF .

However, energy-dependent tunneling has the same tendency in both tunneling directions.

This means that the tunneling rate into the dot will actually decrease as the reservoir level

increases. This is again due to the fact that (8.5) only depends on the relation of the occupied

state to the barrier, not to the final state.

The exponential coefficient β and the constant Γ0,j contain the details of the tunneling

barrier and must be experimentally determined. Although we treat Γ0,j as a free parameter

for each discrete state, it is best to directly measure β from real-time tunneling. By applying

the read-out waveform to the right dot while varying the DC plunger gate voltage, we find

very consistent exponential dependence of the electron tunneling rate into the dot during

the “load” stage and out of the dot during the “empty” stage (Figure 8.1). The data is fit

to the form Γ ∼ e−λVR , giving a coefficient λ = 395 V−1. The right dot plunger gate lever

arm was previously found to be α ≈ 0.15 eV/V from magnetospectroscopy, which led to the

determination of β = λ/α = 6 × 103 eV−1. With the effects of elastic tunneling included,
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Figure 8.1: Energy-dependent tunneling in the right quantum dot. Each data point is

obtained from an ensemble-averaged real-time current trace, which is fit to an exponential

function to extract tunneling rates. The trend with dot plunger gate voltage is fit to e−λVR .

the final expressions for tunneling rates into and out of dot state j are given by

Γin
j (µ0, T ) = Γin

j,0n(µj − µ0, T )e−β(µ0−µj), (8.6)

Γout
j (µ0, T ) = Γout

j,0 n(µ0 − µj, T )e−β(µ0−µj). (8.7)

In (8.6) and (8.7), n(E, T ) is the Fermi-Dirac distribution. The first argument in the rate

function is the reservoir Fermi level instead of the individual dot level because the measure-

ment waveform only changes the dot levels uniformly with respect to the Fermi level. In

other words, increasing the Fermi level is equivalent to decreasing all dot levels by the same

amount.
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8.2 Valley states at zero field

With no applied field, the available quantum dot levels are just the valley states and we can

use a 3 × 3 transition matrix to describe possible tunneling paths. Incorporating thermal

effects and energy-dependent tunneling, the transition matrix in the basis {pv+ , pv− , p0}

becomes

Γ =


−Γout

v+
(µ0, T )− Γv 0 Γin

v+
(µ0, T )

Γv −Γout
v− (µ0, T ) Γin

v−(µ0, T )

Γout
v+

(µ0, T ) Γout
v− (µ0, T ) −Γin

v+
(µ0, T )− Γin

v−(µ0, T )

 . (8.8)

Given our measurements of intervalley relaxation Γv = 83 Hz and valley splitting EVS = 43

µeV, we set up the model so that the two dot levels are fixed at µv± = ±EVS/2 (Figure

8.2). Then we find from a best fit to the data the nominal tunneling rates Γin
v+,0

= 11.4

kHz, Γin
v−,0 = 2.3 kHz, Γout

v+,0
= 209 Hz, and Γout

v−,0 = 67 Hz (Figure 8.2). These values

don’t mean much on their own, and it is more useful to quote the actual tunneling rates

in the measurement phase: Γin
v+

= 97 Hz, Γin
v− = 177 Hz, Γout

v+
= 361 Hz, and Γout

v− = 85

Hz. Assuming an electron is fully loaded into the dot prior to measurement, the occupation

probability during the measurement phase is therefore initially dominated by Γout
v+

and then

later determined by the slower Γin
v− . The dotted fit line in Figure 7.4a is taken with a Fermi

level of µ0 = −70 µeV, which is actually below both valley states. Tunneling into the dot

is made possible through thermal excitations, and the electron is likely to be found in the

ground valley state as t→∞ because Γin
v−+Γv > Γout

v− . This leads to an interesting extended

read-out window that allows us to resolve the valley tunneling peak even when µ0 does not

fall between the valley states. A possible physical origin for the tunnel rate discrepancy

that allows this will be discussed in Section 8.4. Lending to our confidence that the model

reflects experimental observations, electron dynamics in the “load” and “empty” phases are

self-consistently reproduced with the same tunneling parameters.

154



Figure 8.2: Calculated state occupation probabilities during the valley read-out sequence

at zero field. Red diamonds: probability of the excited valley being occupied pv+ . Blue

triangles: probability of the ground state being occupied pv− . Solid black line: probability

of the dot being unoccupied, proportional to the charge sensor current. The valley tunneling

peak is visible between 4 ms and 24 ms.
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8.3 Spin-valley states at nonzero field

The five-state spin-valley transition matrix obtained for fields gµBBext > EVS can be written

for the probability vector p = (p↑,v+ , p↑,v− , p↓,v+ , p↓,v− , p0) as

Γ =



−Γout
↑,v+
− Γw − Γv 0 0 0 Γin

↑,v+

Γv −Γout
↑,v− − Γu − Γw 0 0 Γin

↑,v−

Γw Γu −Γout
↓,v+
− Γv 0 Γin

↓,v+

0 Γw Γv −Γout
↓,v− Γin

↓,v−

Γout
↑,v+

Γout
↑,v− Γout

↓,v+
Γout
↓,v− −

∑
σ,v Γin

σ,v


, (8.9)

where the functional dependence of tunnel rates on the Fermi level and temperature are

suppressed for compactness. Here I’ve introduced rates associated with intervalley and in-

travalley spin-flip transitions: from |↑, v+〉 to |↓, v+〉 with rate Γw, and from |↑, v−〉 to |↓, v+〉

with rate Γu. Γw describes simple spin relaxation, which for low fields is on the order of 1

Hz. Intervalley spin decay given by Γu is proportional to the difference in on-diagonal dipole

elements 〈v−|r|v−〉−〈v+|r|v+〉 according to [HH14], but under the assumption that electrical

noise affects both valleys equally, Γu vanishes. We subsequently set Γw = 1 Hz and Γu = 0.

With nondegenerate spin states, intervalley relaxation can now occur as |↑, v+〉 → |↑, v−〉

and |↓, v+〉 → |↓, v−〉; we assume Γv is independent of spin quantum number. Additionally,

there is also the possibility of an electron in |↑, v+〉 to decay directly to the ground state

|↓, v−〉 as another form of intervalley spin-flip transition. However, given the energy splitting

between the two states the probability is likely quite small.

Similar to the zero-field case, the available dot levels are fixed and the reservoir Fermi

level is moved in relation to the dot levels for different operating voltages (Figure 8.3). The

levels are µ↑,v± = 1
2
(gµBBext±EVS) and µ↓,v± = 1

2
(−gµBBext±EVS). These are constructed

so that a spin measurement can be achieved at µ0 = 0 and a valley measurement can be

performed at µ0 = ±1
2
gµBBext. The nominal tunneling rates and actual rates at the desired
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Figure 8.3: Calculated state occupation probabilities during spin read-out (left) and valley

read-out (right) at Bext = 2 T. Magenta circles indicate p↑,v+ , red squares indicate p↑,v− ,

cyan diamonds indicate p↓,v+ and blue triangles indicate the ground state p↓,v− . Solid black

line: probability of the dot being unoccupied, with a tunneling peak visible in both read-out

regimes.

measurement level are enumerated in Table 8.1.

When the Fermi level falls within the valley read-out window, an electron initially in the

excited spin state |↑, v±〉 quickly tunnels out of the dot at a rate Γ ≈ 2 kHz at the start of the

measurement phase. Similarly, an electron in the first excited state |↓, v+〉 will tunnel out of

the dot at a rate of 370 Hz. The electron will then slowly tunnel in to the ground state, the

only level with a sizable tunnel-in rate at this configuration. This could potentially lead to

simultaneous spin and valley tunneling peaks, but a loaded electron only has a 20% initial

chance of being in the excited spin state so spin-related contribution is small.

In the spin read-out window, the tunneling peak is largely determined by the three fastest

rates Γout
↑,v+

, Γout
↑,v− , and Γin

↓,v− . An important point to highlight is the difference in rates between

the two read-out windows. The spin tunneling peak has an average rise rate of roughly 1.5

kHz and a fall rate of 1.4 kHz, whereas the valley tunneling peak rises with a rate of 373 Hz

and falls at 95 Hz. This leads to the observed sharp spin tunneling peak and broad valley

tunneling peak, with origins in the energy-dependent tunneling terms in (8.6) and (8.7).
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Table 8.1: Tunneling rates used to fit spin and valley tunneling peaks at Bext = 2 T.

Γ Nominal E = −159 µeV (spin read-out) E = −215 µeV (valley read-out)

Γin
↑,v+

(Hz) 1800 0 0

Γout
↑,v+

(Hz) 287 1697 2373

Γin
↑,v− (Hz) 660 0 0

Γout
↑,v− (Hz) 306 1402 1960

Γin
↓,v+

(Hz) 16930 564 32

Γout
↓,v+

(Hz) 180 261 373

Γin
↓,v− (Hz) 5530 1371 95

Γout
↓,v− (Hz) 55 49 87

8.4 Evidence of valley-dependent tunneling

In Table 8.1, there is clearly a discrepancy between the tunnel-out rates of the lower valley

and excited valley. This would generally be true of the tunnel-in rates as well, if it weren’t

for the Fermi-Dirac statistics that come into play when the read level is below the relevant

dot levels. The difference is most evident in both read-out configurations between Γ↓,v+ and

Γ↓,v− : there’s a factor of 5 difference in the spin read-out region and a factor of 4 difference

in the valley read-out region. The nominal tunneling rates, independent of read-out, also

reflect this discrepancy (at least in the lower energy spin state).

Perhaps the most concrete evidence of valley-dependent tunneling is the observed valley

read-out window of 80 µeV, twice the valley splitting. This sort of extended read-out window

is only possible if the excited state tunneling rates are greater than the ground state tunneling

rates. These observations together point to a state-dependent tunneling effect, which we

investigate to give compelling evidence for a mechanism of valley-dependent tunneling.

8.4.1 Ruling out general barrier effects

Tunneling rate differences do in fact arise from generic effects originating from bound state

wavefunctions and realistic tunnel barriers. In a one-dimensional harmonic potential, for

instance, the first excited state wavefunction penetrates deeper into the classically forbidden
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region outside of the potential well, leading to a higher probability of an excited state tun-

neling out. This is the origin of spin-dependent tunneling in GaAs quantum dots [HvV05],

where the second electron in a spin triplet must occupy the orbital excited state due to

Pauli exclusion, leading to an order of magnitude difference in tunneling rates depending on

the spin state. This effect can be neglected in silicon, since the second electron in a triplet

state occupies the excited valley and not the excited orbital. Material notwithstanding, our

experiment occurs with a single electron and has been done at zero field.

Despite the absence of excited orbital occupation, there is a state-dependent tunneling

effect from elastic scattering that does come into play in our system. As a given occupied level

is moved closer to the tunnel barrier, the tunneling rate out of the state should increase. This

is, in fact, the same energy-dependent tunneling mechanism that was taken into account with

the rate expressions (8.6) and (8.7). That the nominal rates in the two valleys are different

is sufficient evidence that energy-dependent tunneling does not fully explain the observed

rate discrepancy; however, we can also measure the impact of state energy on tunneling by

recognizing that in the absence of temperature effects, the ratio of tunneling rate out of state

j to tunneling rate out of state k is given by

Γj
Γk

=
Γj,0
Γk,0

eβ(µj−µk). (8.10)

With all other barrier-related effects held equal, Γj,0 = Γk,0 and the ratio reduces to the

exponential term. Having already measured β, we can calculate the expected rate ratio due

purely to energy-dependent tunneling as eβ(µv+−µv− ) = eβEVS = 1.3. This is not at all close

to the factor of 4 or 5 observed, so we can safely conclude that there is another factor at

work leading to valley-dependent tunneling.
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8.4.2 Calculating valley wavefunctions: ideal interface

For a theoretically grounded discussion on valley state tunneling effects, we must calculate

the full wavefunction of an electron in the ground or excited valley state. There are many

ways to approach this problem using tight-binding models [BKF04][BKE04] or the effective

mass approximation [FCT07][FC10][CHD10]. Lately the effective mass approaches have

been favored due to the analytic solutions that allow theorists to gain deeper insights about

valley states. However, we are only interested in numerical wavefunction solutions for fixed

parameters and so the tight-binding model is better suited for the problem.

Elements of the tight-binding Hamiltonian matrix with nearest and next-nearest neighbor

hopping amplitudes t1 = 683 meV and t2 = 612 meV are given by [BSC16]

Hjk = t1(δj,k+1 + δj,k−1) + t2(δj,k+2 + δj,k−2) + VSiGe(j)δj,k + eFzzjδj,k, (8.11)

where Fz is the applied out-of-plane electric field at the Si/SiGe interface and zj = (j −

1/2)a0/4 is the real-space coordinate of atomic site j. The quantum well potential VSiGe(j)

is treated as a finite square well with energy V0 outside the well:

VSiGe(j) =


0, 0 < j ≤ 74

V0, otherwise.

(8.12)

As our Si/SiGe wafer has a quantum well width of 10 nm, the well potential is zero for 73

atomic layers (a0 = 0.543 nm), or 9.91 nm.

With V0 = 150 meV representing the conduction band offset of SiGe and applied in-

terfacial field Fz = 3 MV/m, the valley wavefunctions in the z direction are given by the

lowest-energy eigenstates of (8.11). To accommodate wavefunction penetration into the SiGe

barrier on both sides of the well, 50 atomic layers were included in the calculation added to

the −z side of the well (−50 < j ≤ 0) and 60 layers were added to the +z side (74 < j ≤ 134).
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This resulted in a 184× 184 Hamiltonian that was numerically diagonalized.

The tight-binding model accurately describes the valley wavefunctions in the out-of-plane

(z) direction, but we are most interested in the in-plane behavior leading to tunneling in and

out of the quantum dot. The gate-defined electrostatic potential that molds the quantum

dot is often modeled as a circular harmonic potential [TJ14], and it can be applied here

as well since the two quantum dots are only weakly coupled in these experiments. At first

glance it may seem that we must use the tight-binding model for the full three-dimensional

wavefunction, but fortunately the cardinal solutions are fully separable for a perfectly flat

interface. At this point it may become obvious that the valley wavefunctions calculated in

this way cannot possibly give rise to valley-dependent tunneling, but the form of the solution

and the obtained eigenstates will be useful in later discussions.

Claiming full separability of solutions, we can safely use the effective mass approximation

for the two in-plane components. The harmonic potential is given by

Hxy =
p2
x + p2

y

2mt

+
1

2
mtω

2
0(x2 + y2), (8.13)

where mt = 0.19m0 is the transverse electron effective mass in silicon and we take h̄ω0 = 0.5

meV as the orbital spacing, corresponding to a quantum dot diameter of about 50 nm.

Solutions are the well-known quantum harmonic oscillator eigenstates in two dimensions

taking the form of Hermite functions, with energies Enx,ny = (nx + ny + 1)h̄ω0. From

Figure 8.4b,c with nx = ny = 0, both three-dimensional valley wavefunctions have identical

envelopes with the fast valley oscillations differing by some phase factor. Since the probability

distribution is the same for both wavefunctions as a function of x and y, the valley states

will have the same tunneling rate.
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Figure 8.4: Valley state wavefunctions in the case of a flat interface. (A) The z component of

the wavefunctions obtained from diagonalizing (8.11). Blue line: ground valley state. Orange

line: excited valley state. The two eigenstates differ by a valley phase close to 90◦. (B) Total

ground state wavefunction in the x–z plane. (C) Total excited valley wavefunction. The

envelope functions are the same for both states, which results in identical tunneling rates.

8.4.3 Calculating valley wavefunctions: valley-orbit coupling

In the discussion of Section 8.4.1, it was slightly misleading to claim that the excited orbital

occupation is not affected by valley occupation. The concept of valley-orbit coupling has

already come up several times in this dissertation, and it is a likely suspect for the origin

of valley-dependent tunneling. Our motivation in investigating valley-orbit coupling comes

from two observations: first, the valley splitting in both dots in this device was found to

be small from coherent spectroscopy measurements and the position of the spin-valley hot

spot. As referenced in Chapter 2, the valley splitting is reduced from a few hundred µeV

in Si/SiGe quantum dots due to valley-orbit coupling. Second, we’ve already seen strong

inter-dot valley hybridization that allowed use to implement the valley qubit.

To introduce valley-orbit coupling, some perturbation must be added to the ideal model

described in the previous section that contains a dependence on z and on x or y. The

perturbation must also represent a physically realizable situation related to the quantum

dot formation or device fabrication. Valley-orbit coupling is often introduced as a single
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atomic step at the Si/SiGe interface, terminating at some location r0 in the x–y plane

[BSC16][HVZ17]. Such a step could arise stochastically during wafer growth. Given the

circular symmetry of the quantum dot confinement, the step can be set to be purely along

x without loss of generality. Of course, we can’t know that this is truly the origin of valley-

orbit coupling in our double quantum dot since we have no way of imaging the interface

in the vicinity of the dots without destroying the device. However, the results obtained

from a commonly-used model of the confinement potential with a commonly-used approach

to valley-orbit coupling will produce a qualitative picture of the effect that can be readily

compared to theoretical studies.

The single-step perturbation occurs at the −z interface, corresponding to the interface

closest to the surface of the wafer. With j = 1 being the first atomic layer in the silicon

quantum well, the perturbation has the form H1(x, j) = V0Θ(x − x0)δj,1. Adding this to

the full Hamiltonian presents a problem, since we treated the out-of-plane solution with a

discrete-space tight-binding model and the in-plane solutions with a continuous-space effec-

tive mass model. However, we can always express H1 as an infinite sum of unperturbed basis

states, and then add it to the (diagonalized) unperturbed Hamiltonian to find eigenstates of

the complete Hamiltonian Hxy +Hz +H1. The sum can be terminated to a computationally

reasonable number of basis states as long as the perturbation is small [GEC13].

In MATLAB, the numerical diagonalization of the unperturbed Hamiltonian takes less

than a second, but calculating the matrix elements of H1 in the unperturbed state space

takes much longer. This is exacerbated by the absence of unperturbed z eigenstates that are

solutions when the quantum well is one atomic layer thinner, which is the situation when

x0 → ∞. Many z eigenstates are needed to get a good approximation for the narrower

quantum well, which severely increases the computation time. A solution with less than

10% error required an expansion truncated to nx = 6, ny = 1, and nz = 20, taking about a

half an hour to calculate. Despite the computation time, the disorder-expansion technique

is a useful tool that can in principle address any perturbation potential, not just the single
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Figure 8.5: Valley state wavefunctions in the presence of a single interface step. Left: the

ground state wavefunction is not noticeably affected by the perturbation. Right: the excited

valley wavefunction is shifted to the right due to valley-orbit coupling. This leads to valley-

dependent tunneling.

interface step.

The results of the calculation with valley-orbit coupling are shown in Figure 8.5. When

the interface step terminates at x0 =
√
h̄/mtω0, the excited valley state wavefunction is

shifted noticeably to the right with respect to the ground state wavefunction. The ratio

of tunneling rates is then given by the relative integrated probability distributions in the

classically forbidden region:

Γv+

Γv−
=

∫∞
−∞ dz

∫∞
xc
dx|ψv+(x, z)|2∫∞

−∞ dz
∫∞
xc
dx|ψv−(x, z)|2

. (8.14)

In (8.14), the y component of the full solution is still separable and normalized, so it is

unnecessary to include y dependence in the calculation. With xc > 0 set to the classical

turning point of the harmonic potential, we get a ratio of Γv+/Γv− = 6.4, close to the inferred

value from the rate equation fit. It is important to note that valley-dependent tunneling

under these conditions will be largely dependent on the position of the quantum dot relative

to the interface step. In fact, the valley tunneling peak would likely vanish when the dot
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potential is shifted to the right of the step termination, where the ratio is less than one and

the read-out window is reduced. This may help to explain why we were unable to reliably

see a valley tunneling peak in the left dot, as some luck involving the exact quantum dot

position is required.

8.5 Conclusions, Chapters 7 and 8

We demonstrated a real-time valley-to-charge conversion technique based on energy-selective

tunneling in a single quantum dot. As this method is adapted directly from the widely-used

single-electron spin read-out pulse sequence, it is easily implemented in any lab setting

familiar with spin qubits. Additionally, it allows for measurements of both spin and valley

occupation within the same measurement by adjusting the dot energy. With this read-out

scheme, we obtained the first direct measurement of the intervalley relaxation T1 = 12 ms in

the right dot, a surprisingly large value that can be attributed to the small valley splitting.

Although different devices may have vastly different valley relaxation, our result does serve

as a cautionary note for silicon spin qubit implementations: valley dynamics can’t always

be treated as negligibly fast compared to spin dynamics. Beyond that, our measurement

provides a much-needed benchmark for the silicon quantum dot community. In the context

of valley qubits such as the one we demonstrated in Chapter 6, this type of measurement could

prove valuable for understanding qubit coherence and, separately, as a read-out mechanism

that doesn’t have the same strict constraints that charge-based read-out has.

We were also able to verify an indirect measurement of the valley T1 using spin dynamics

by recognizing that spin-valley coupling leads to spin relaxation on the order of pure valley

relaxation in the vicinity of the spin-valley anti-crossing. The indirect method through spin

relaxation is robust against small valley splittings and prohibitively fast valley relaxation as

long as the fit to the data is sufficiently precise, which makes it a powerful tool. Additionally,

the magnetic field dependence of spin relaxation provides valuable insight into the noise
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sources experienced by the valley states. We found from fitting that intervalley relaxation

was dominated by Johnson noise, as opposed to phonon noise.

Finally, we found compelling evidence of valley-dependent tunneling that leads to an

enhanced window for observing the valley tunneling peak. This is likely due to valley-

orbit coupling, which we address with a hybrid tight-binding and effective mass formalism

to calculate the valley wavefunctions. From the good agreement between our calculated

valley-dependent tunneling and our experimental observations, orbital coupling is a likely

candidate for the tunneling behavior. This result implies that the fidelity of the single-dot

valley read-out will depend on the exact position of the quantum dot within the interface

disorder landscape, leading to random variations in the tunneling peak amplitude from dot

to dot.
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CHAPTER 9

Discussion

9.1 Conclusions

If only one thing may be concluded from the work detailed here, it is that the silicon band

structure asserts itself in almost every aspect of electron dynamics and interactions in the

quantum regime. A quantum dot in silicon cannot be treated truthfully as a simple potential

well, nor is there a perfect analogy between quantum dots and two-dimensional atoms, all

because of the lattice-specific valley states that provide an extra degree of freedom. It is

a testament to the great potential of silicon quantum computing that researchers haven’t

simply abandoned the platform when faced with these complications. A great deal of work

has been devoted to understanding the valley states in the past ten years since quantum

computing in silicon began attracting interest, and I hope that our research in this area

will help progress understanding. We developed new ways of probing the valley states with

charge sensing measurements, either coherently through inter-dot valley-orbit coupling or

incoherently in a single quantum dot with real-time tunneling read-out. These techniques

may be of general interest for investigating valley physics beyond what we demonstrated

here, especially in exploring ways to avoid the valleys or mitigate their effects. On the other

hand, the valleys can themselves be leveraged as a viable qubit basis, perhaps with the help

of interface engineering to manufacture valley-orbit coupling or to create a dephasing-free

subspace. In that sense, our demonstration of a valley qubit may provide a starting point

for future improvements.
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As a way of unifying the key findings of this dissertation, we can make some conclusions

about the coherence of valley states using insights gained from Chapters 5 through 8. From

our valley qubit work, we established an inhomogeneous dephasing time of T ∗2 ≈ 7 ns. This

value is limited by low-frequency charge noise, which seeps into the system through a small

detuning dependence of the valley splitting. Additionally, according to our investigation of

spin-valley dynamics, the intervalley relaxation time was found to be T1 = 12 ms. From

spin relaxation measurements we established that relaxation in our particular device was

determined by Johnson noise rather than phonon noise. Both decoherence effects are a

direct result of valley-orbit coupling, which creates an electric dipole moment and makes

electric field-dependent modifications to the valley states.

9.2 Future directions

There are a number of fascinating possibilities for further research with the tools and findings

enumerated in this work. With a reliable and sensitive method of valley-orbit spectroscopy,

it becomes possible to measure small changes in valley splitting in response to quantum dot

position, applied magnetic field, and number of electrons. All of these effects can provide

valuable insight into the nature of the heterostructure interface that gives rise to the slight

lifting of valley degeneracy. In realistic applications, our coherent spectroscopy can be used

to characterize qubits independent of the charge configuration. In an extreme ideal case, it

could even be possible to map out the interface topology using valley splitting experienced

by a quantum dot as it moves laterally, almost like the cantilever element in an atomic force

microscope.

Much is still not understood about valley relaxation processes. Since 2013 [YRR13], the

only experimental work involving valley decay has focused on its effects on spin relaxation.

With a way of directly addressing valley state occupation in real time, it now becomes feasible

to measure intervalley relaxation as it depends on key parameters like valley splitting. In
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that sense, we have provided only a single T1 data point that may be one of many with future

experiments. Electron temperature will play a critical role in how well the valley read-out

can be accomplished, and there are some well-studied measures that we can take to improve

the temperature such as cryogenic amplification and DC signal filtering.

Our valley qubit and the control methods associated with it have a more defined future.

Now that we have demonstrated that full quantum control is possible, it is important to

improve single-qubit operation and read-out fidelities. A large component of this will be in

solving the high-frequency transmission loss issues that prevent abrupt pulses from reaching

the sample. Since we have good evidence that wire-bonds are the main source of loss, a

re-design of the circuit board sample holder that minimizes wire length is critical. An ad-

ditional step that can be taken is to modify the on-chip lithography to include grounding

planes in a properly impedance-matched coplanar waveguide design. With these adjust-

ments, the rotation errors observed in the qubit operations can be substantially reduced.

Qubit measurement fidelity is also an issue, which is greatly affected by the valley splitting

near the initialization and read-out location. In lieu of robust control of valley splitting, it

may help to experiment with different numbers of electrons in the read-out configuration.

With three electrons in one dot, for instance, the “valence” electron occupies the excited

valley [VRY15] which may lift the strict constraints on initialization and read-out.

Demonstrating single-qubit operations is not sufficient evidence for a well-defined qubit,

however. Referring back to the first DiVincenzo criterion, we must have a scalable system

with well-characterized qubits. This requires the capability of coupling two or more qubits

with multi-qubit gates. Coupling two valley qubits together is an open problem, one that is

actively being pursued in our lab. With the charge qubit-like qualities of the valley qubit

read-out, it is possible to use simple capacitive coupling, equivalent to the operating principle

of a charge sensor. However, this requires coupling operations to occur in detuning regions

that are susceptible to charge noise. The best method of valley qubit coupling would be

some form of exchange interaction when both qubits are in the valley basis, reminiscent of
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electron spin exchange. This effect has in fact been predicted to occur when mediated by

spin exchange of a singlet-triplet system [RRB14], which would require two double quantum

dots and a static magnetic field. Regardless of the ultimate implementation, valley qubit

superposition is an exciting prospect that could reveal new valley physics.

Compared to other qubit encoding schemes, the silicon spin qubit is a relatively mature

technology. Although we and other groups have shown that spin coherence is harmed by

nondegenerate valleys, there is also a unique opportunity to exploit spin-valley coupling as

a novel form of electric control. In silicon MOS, where the abrupt surface potential allows

for precise tuning of the valley splitting through gate voltages [GHJ16], it becomes possible

to induce electron spin resonance mediated by electrical control of the valleys [CBM18].

In Si/SiGe quantum dots, where the valley splitting is largely determined by spatial non-

uniformity of the interface, a similar effect may be obtained by perturbing the position of

the quantum dot to create electron dipole spin resonance [HVZ17]. This method could have

several advantages over existing forms of spin control: the dot can be moved to a location

with high valley-orbit coupling to allow for fast control and measurement, and then the

dot can be moved to a slightly different location that doesn’t contain interface disorder for

high-coherence precession. This is in contrast to traditional electron dipole spin resonance

in the presence of a micromagnet, where extrinsic spin-orbit coupling uniformly increases

susceptibility to charge noise. Valley-controlled spin qubits may achieve the middle ground

between coherence and electrical control.

9.3 Something completely different: magnetic skyrmions

It may come as a surprise to members of my dissertation committee that this work focuses

exclusively on silicon quantum dots. In fact, my initial research (and the original subject of

my thesis proposal) was on a topic with virtually no conceptual overlap with the topics pre-

sented here. Within magnetic tunnel junctions provided to us through a collaboration with
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Avalanche Technology, we were able to electrically create and detect a non-uniform mag-

netic configuration that we identify as a skyrmion through magnetic resonance measurements

and micromagnetic simulations [PHW19]. Possible applications of our findings include low-

energy non-volatile magnetic RAM and neuromorphic computing. Eventually, this project

may be taken further by introducing an anti-symmetric exchange through interface engi-

neering to stabilize skyrmions at room temperature. This research involved interesting and

novel physics; despite that, I felt that it shouldn’t be included in the main text for the sake

of narrative cohesion and coherence — no pun intended.

9.4 Final thoughts

Despite the challenges we as a research community still face, quantum computing in silicon

has the unique potential to grow beyond other leading architectures. In Si/SiGe systems,

small valley splitting is a leading issue; however, recent work utilizing improvements in

wafer growth technology has shown a valley splitting in excess of 200 µeV [HSL20], a larger

value than some reports in Si/SiO2. Together with unparalleled quantum dot tunability and

the reduction of magnetic noise with the use of isotopically enriched 28Si, quantum dots in

Si/SiGe afford greater flexibility in qubit implementation than other host materials. Silicon

MOS systems, on the other hand, allow the formation of incredibly small quantum dots

with deep potentials. This is important primarily because the potential well depth becomes

larger than the spurious potentials formed by interfacial charge traps in Si/SiO2, reducing

a major problem with that material system. In addition, a deep potential well allows for

higher-temperature operation. Very recently, multiple groups have reported coupled spin

qubit operations above 1 Kelvin [YLH20] [PER20], which goes a long way in solving one

main scalability concern related to the heat load of many qubits and their control circuitry.

It is still unclear what the greatest demand will be for a universal quantum computer

if or when it is demonstrated. Cryptography is often cited as an application in order to
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secure government funding, but many more possibilities lie with quantum simulation. Once

the physics of many-body quantum systems can be solved exactly, new emergent behavior

is likely to be discovered and new frontiers in the fields of condensed matter and quantum

chemistry can be reached. While many more years of research are needed until this technol-

ogy can compete with modern supercomputers, it is my fervent hope that our work here can

contribute in some way toward that ultimate goal.
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APPENDIX A

GPU-accelerated numerical simulations

Simulating a single time step in a qubit experiment with 200× 200-point resolution requires

40,000 back-to-back calculations with a CPU. To accurately calculate the dynamics of co-

herent precession at frequencies of order 10 GHz, we need a time resolution of around 10

ps. All told, for a 5 ns process it takes roughly 40000 × 500 = 20 million computations,

a number that scales quadratically with the resolution. For this reason, numerical simula-

tions can often take hours to complete with standard CPUs. Fortunately, we can exploit

the natural parallelism of the problem. Each data point represents a separate realization of

the same experiment, except with slightly different parameters. The qubit is initialized in

the same way, an operation is performed, and then identical projective measurements are

made. For the data in Figure 6.2, everything is held equal at each point with the exception

of the operation times tθ and tφ. Critically, each grid point is uncorrelated with all others.

This means we can assign individual time evolution problems to smaller, dedicated cores in

a GPU. As long as the simulation grid contains a smaller number of points than the number

of GPU cores, simulations can be performed in constant time (with respect to grid size).

In the rough calculation given above, using a GPU will reduce the number of computations

from 20 million to 500, now limited by the time step.

GPU-accelerated simulations were implemented in MATLAB with the parallel comput-

ing toolbox. The number of mathematical operations and data structures that can be con-

structed with GPU compatibility is limited to a very small subset of all MATLAB opera-

tions, which makes an otherwise simple set of differential equations challenging to construct.
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GPUArray objects can only interact through simple addition, subtraction and multiplica-

tion, so the goal is to convert discrete-time differentiation into a functional algebraic form.

Consider the arbitrary example:

∂Y

∂x
= Ax2Y † −BY, (A.1)

where y is some matrix. This can be well-approximated by the expression

δY = (Ax2Y † −BY )δx, (A.2)

provided the discrete step δx is small enough. We must now generate a function that takes

the constants A and B as well as the elements in Y as inputs and produces the elements of

matrix Y + δY . This function f(A,B, Yij) is guaranteed to include only simple arithmetic

expressions allowing it to be computed on GPU cores. This method is also used to handle

matrix operations, such as the trace function in projection measurements. In Algorithm 1,

there are multiple variable assignments with “functional(inputs,outputs)” that describe this

mapping.

Again using the example of Figure 6.2, each GPU core (or cores, depending on how

MATLAB distributes computations) is given a set of identical parameters describing the

initialization detuning, valley splitting, and inter-dot couplings. Each core is also given a

unique combination tθ, tφ that is used to generate a unique pulse. Then the cores will si-

multaneously solve the Lindblad equation (in an algebraic form) for their assigned pulse

shape. At the end of the simulation, the individual solutions are “gathered” into the CPU

for plotting and saving to data files. Former graduate students Blake Freeman and Joshua

Schoenfield both developed GPU scripts for simulations with varying degrees of specificity,

but it was important for my spectroscopy data to have exact detuning-dependent deco-

herence processes included in the calculations. Algorithm 1 below, written in pseudocode,

describes this process in a language-invariant manner. All simulations shown in this work
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were performed on an EVGA GeForce GTX 1060 GPU with 1152 CUDA cores and a base

clock of 1607 MHz.

Algorithm 1 accepts an initial pure state p0 and two variables xvar and yvar to scan over.

These variables can be elements of the Hamiltonian or pulse parameters. Vectors x and y

describe the ranges over which the variables are scanned. H0 describes the time-independent

Hamiltonian of the system (obtained from spectroscopy). The time dependence comes from

some function pulse(t), which may be a matrix of parameters. Decoherence is encapsulated

in vector γ, elements of which take the form 1/Tx and are associated with individual jump

operators. The number of time steps is given by nsteps, and must be large compared to f0tmax

where f0 is the natural qubit frequency.
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Algorithm 1 Simulating quantum evolution with GPU acceleration

1: function simulate(p0, xvar, yvar, x, y, H0, pulse(t), γ, nsteps, directory)
2: dim← size(H0)
3: ncomps ← length(x) · length(y) . number of GPU cores needed
4: tmax defined by maximum time required in pulse(t)
5: t← linspace(0, tmax, nsteps)
6: X ← map[x 7→ array(length(y), 1)] . x is repeated length(y) times in a matrix
7: Y ← map[y 7→ array(length(x), 1)T ] . X and Y have same dimensions

8: for j ← unique variables in {H0, pulse(t),Γ}, j 6= xvar, yvar do
9: {j}GPU ← map[j 7→ GPUarray(1, ncomps)]

. each constant parameter is repeated in a 1× ncomps GPU array
10: end for
11: XGPU ← map[X 7→ GPUarray(1, ncomps)]
12: YGPU ← map[Y 7→ GPUarray(1, ncomps)]

13: ρ0 ← diag(p0) . square diagonal matrix
14: for j in upper triangle(ρ0) do . upper triangular elements of ρ0

15: ρj,GPU ← map[j 7→ GPUarray(1, ncomps)]
. Initial unique ρ elements stored in each GPU cell

16: end for
17: dtGPU ← map[tmax/nsteps 7→ GPUarray(1, ncomps)]

18: define H̃0, symbolic matrix with dimensions of H0

19: Hin ← {h}, set of unique variables in H0 . function inputs
20: Hout ← upper triangle(H̃0) . function outputs
21: Hfnc ← functional(Hin, Hout)

. functional form of symbolic expression H0 = f(var1, var2, · · · )

22: define ρ̃, symbolic matrix with dimensions of H0.
23: ρin ← upper triangle(ρ̃)
24: for m← 1, dim do
25: pfnc,m ← functional(ρin,Tr[B†mBmρin])

. functional forms of all projections with basis states B
26: end for
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Simulating quantum evolution, continued

27: for j ← 1, length(t) do
. Compute each cell in {x,y} simultaneously at a given time step tj

28: tj ← map[tj 7→ GPUarray(1, ncomps)]
29: elements of Hj ← Hfnc({h}GPU) + pulse(t = tj)
30: ρfnc ← time evolver(dim,Lk) . See Algorithm 2 for details
31: elements of ρGPU ← ρfnc(Hj, γ, ρGPU , dtGPU)
32: end for

33: for m← 1, dim do . calculate final probabilities
34: pm,GPU ← pfnc,m(ρGPU)
35: pm ← gather(pm,GPU) . transfer data from GPU to CPU
36: end for

37: return p
38: end function

Algorithm 2 Converting Lindblad expression into a scalar functional form for use with
GPU programming

1: function time evolver(N , Lj)
2: ensure length(L) = N2 − 2 . jump operators, each with dimensions N ×N
3: define H̃, ρ̃, N ×N symbolic matrices
4: define γ̃, symbolic vector of length N2 − 1
5: H̃ ← upper triangle(H̃) + lower triangle(H̃†) . enforce Hermicity
6: ρ̃← upper triangle(ρ̃) + lower triangle(ρ̃†)

7: Ẽ← eigenvalues(H̃)
8: Ṽ ← eigenstates(H̃) . each column of V is an eigenstate
9: ρ̃′ ← Ṽ †ρ̃Ṽ . density matrix in state space
10: H̃ ′ ← diag(Ẽ) . square diagonal matrix with eigenenergies on main diagonal
11: R← zeros(N,N)
12: for j ← 0, N2 − 2 do

13: R← R + γ̃j

(
Lj ρ̃

′L†j − 1
2
{L†jLj, ρ̃′}

)
. populate decoherence matrix

14: end for
15: δ̃ρ← δ̃tṼ

(
− i
h̄
[H̃ ′, ρ̃′] +R

)
Ṽ †

16: ρ̃t+δt ← ρ̃+ δ̃ρ . valid for small δ̃t relative to dynamics

17: return functional({H̃,ρ̃,γ̃},ρ̃t+δt)
. functional form of symbolic expression f(Hij, ρij,γi, δt)

18: end function
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APPENDIX B

Fabrication recipes

B.1 Standard fabrication steps for Si/SiGe

1. Active solvent clean

(a) 1 minute each of acetone, isopropyl alcohol (IPA) and de-ionized (DI) water baths

(b) Sonication during each solvent bath

(c) Blow dry with nitrogen

(d) 4 minute de-scum in an oxygen plasma

2. Global alignment markers

(a) Single layer of AZ5214-EIR photoresist

i. Spin HMDS: 5 seconds at 600 RPM, 50 seconds at 4500 RPM

ii. Spin AZ5214: 5 seconds at 600 RPM, 50 seconds at 4500 RPM

iii. Bake: 2 minutes at 95 ◦C

(b) Expose: ∼ 10 seconds in UV mask aligner

(c) Develop: 30-50 seconds in dilute solution (1 part AZ-400K developer to 3 parts

DI water)

i. Immediately transfer to DI water stop bath for 1 minute, then blow dry with

nitrogen

ii. 30 second de-scum in oxygen plasma

178



(d) Evaporate: 50 nm chrome (thermal evaporation is acceptable)

(e) Lift-off: 5 minutes in acetone bath, last minute with sonication

(f) Rinse in IPA, then submerge in IPA in Petri dish and check lift-off results under

a microscope

(g) Clean: 5 minutes in IPA, 5 minutes in DI water, blow dry with nitrogen

3. Ion-implanted regions

(a) Active solvent clean (1), if needed

(b) Double layer of AZ5214-EIR photoresist

i. Spin HMDS: 5 seconds at 600 RPM, 50 seconds at 4500 RPM

ii. Spin AZ5214: 5 seconds at 600 RPM, 50 seconds at 4500 RPM

iii. Bake: 1 minute at 95 ◦C

iv. Spin AZ5214: 5 seconds at 600 RPM, 50 seconds at 4500 RPM

v. Bake: 2 minutes at 95 ◦C

(c) Expose: ∼ 12 seconds in UV mask aligner

(d) Develop: 1 minute in dilute AZ-400K (see step 2c)

(e) Send out for ion implantation: 2× 1015 cm−2 dosage at 25-30 keV

(f) Remove photoresist: heat bath of AZ-400T to 80 ◦C, submerge for 10-20 minutes,

then rinse with IPA

(g) Active solvent clean (see step 1)

(h) Rapid thermal anneal: 30 seconds at 750 ◦C

4. Outer depletion gates

(a) Single layer of AZ5214-EIR photoresist (see step 2a)

(b) Expose:∼ 10 seconds in UV mask aligner
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(c) Develop: 30-50 seconds in dilute AZ-400K (see step 2c)

(d) Evaporate: 5 nm titanium + 45 nm gold without breaking vacuum

i. E-beam evaporation recommended: 1 Å/s for Ti, 2 Å/s for Au

(e) Lift-off: 5 minutes in acetone bath, last minute with sonication

(f) Transfer to a Petri dish with IPA and examine under a microscope

(g) Clean: 5 minutes in IPA, 5 minutes in DI water, blow dry with nitrogen

5. Inner depletion gates

(a) Active solvent clean, if needed (see step 1)

(b) Double layer of E-beam resist

i. Spin PMMA 950 A4: 5 seconds at 600 RPM, 50 seconds at 5000 rpm

ii. Bake: 90 seconds at 180 ◦C

iii. Spin PMMA 950 A2: 5 seconds at 600 RPM, 50 seconds at 5000 rpm

iv. Bake: 90 seconds at 180 ◦C

(c) Dab gold colloid solution with toothpick near the e-beam write area on each device

pattern for beam focusing (only necessary for our Hitachi + NPGS setup)

(d) Expose: 30 keV beam energy, 10 pA current

i. Calibrate beam dosage at Faraday cup

ii. Focus on a gold particle from the colloid solution at maximum magnification

iii. Move to the writing area, use outer gate features as alignment markers

iv. Dosage for innermost features: ∼ 750 µC/cm2

v. Dosage for intermediate features: 600 µC/cm2

vi. Dosage for largest features: 500 µC/cm2

(e) Develop: 45 seconds in pre-mixed 1:3 MIBK:IPA
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i. Immediately transfer to IPA stop bath for 1 minute, then rinse with DI water

and blow dry with nitrogen

(f) Evaporate: 5 nm titanium + 45 nm gold with E-beam evaporation

i. 0.5 Å/s for Ti, 1 Å/s for Au

(g) Lift-off: 10-20 minutes in acetone bath with gentle agitation

(h) Transfer to a Petri dish with IPA to examine under microscope, replace in acetone

as needed

(i) Rinse in IPA, then DI water, then blow dry with nitrogen

6. Aluminum oxide

(a) Passive solvent clean

i. 5 minutes each of acetone, IPA and DI water baths

ii. Blow dry with nitrogen

iii. 4 minute de-scum in an oxygen plasma

(b) Deposit 910 cycles (100 nm) of AL2O3 via atomic layer deposition

i. Set chamber temperature to 200 ◦C

ii. 5 seconds between TMA and H2O pulses

iii. 20 sccm nitrogen flow

7. Global top gate

(a) Passive solvent clean (see step 6a)

(b) Single layer of AZ5214-EIR photoresist (see step 2a)

(c) Expose: ∼10 seconds in UV mask aligner

(d) Develop: 30-50 seconds in dilute EZ-400K (see step 2c)

(e) Evaporate: 100 nm aluminum (thermal evaporation acceptable)
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(f) Lift-off: 5 minutes in acetone bath

(g) Transfer to Petri dish with IPA to verify lift-off

(h) Clean: 5 minutes in IPA, 5 minutes in DI water, blow dry with nitrogen

8. Etch windows

(a) Passive solvent clean, if necessary (see step 6a)

(b) Single layer of AZ5214-EIR photoresist (see step 2a)

(c) Expose: ∼ 10 seconds in UV mask aligner

(d) Develop: 30-50 seconds in dilute EZ-400K (see step 2c)

(e) Etch: 5 seconds in Transene Transetch-N at 150 ◦C

(f) Immediately move to a DI water stop bath with agitation for ∼ 30 seconds

(g) Move to a second DI water bath for 5 minutes

B.2 Nano-imprint lithography for Si/SiO2

1. Prepare target wafer

(a) Modified solvent clean

i. 1 minute each of acetone, IPA and DI water baths with sonication

ii. Blow dry with nitrogen

iii. 4 minute de-scum in matrix asher

(b) Global alignment markers

i. Bake wafer at 120 ◦C

ii. Single layer of AZ5214-EIR photoresist

iii. Expose: ∼ 10 seconds in UV mask aligner
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iv. Develop: 30-50 seconds in dilute AZ-400K:H2O 1:3, then 1 minute in DI water

stop bath

v. 30 second de-scum in matrix asher

vi. Evaporate: 30 nm chrome

vii. Lift-off: 5 minutes in acetone bath, last minute with sonication

viii. Check lift-off in Petri dish with IPA

(c) Ion-implanted regions

i. Modified solvent clean (see step 1a)

ii. Double layer of AZ5214-EIR photoresist

iii. Expose: ∼ 12 seconds in UV mask aligner

iv. Develop: 1 minute in dilute AZ-400K:H2O 1:3, then 1 minute in DI water

stop bath

v. Send out for ion implantation: 2× 1015 cm−2 dosage at 25 keV

vi. Remove photoresist: heat bath of AZ-400T to 80 ◦C, submerge for 10-20

minutes, then rinse with IPA

vii. Modified solvent clean (see step 1a)

viii. Rapid thermal anneal: 1 minute at 920 ◦C

2. Prepare mold for inner depletion gates

(a) Solvent clean: 1 minute each of acetone, IPA, and DI water with sonication

followed by a 4 minute de-scum in oxygen plasma

(b) Inner gate alignment markers

i. Single layer of AZ5214-EIR photoresist

ii. Expose: ∼ 10 seconds in UV mask aligner

iii. Develop: 30-50 seconds in dilute AZ-400K:H2O 1:3, then 1 minute DI water

stop bath
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iv. 4 minute de-scum in oxygen plasma

v. Oxide etch: submerge in buffered oxide etch (BOE) solution for 4.5 minutes,

then two subsequent DI water stop baths for 30 seconds each

vi. Solvent clean: 5 minutes each of acetone, IPA, and DI water

(c) Inner gate pattern

i. Spin PMMA 950 A4: 5 seconds at 600 RPM, 50 seconds at 5000 RPM

ii. Bake: 90 seconds at 180 ◦C

iii. Spin PMMA 950 A2: 5 seconds at 600 RPM, 50 seconds at 5000 RPM

iv. Bake: 90 seconds at 180 ◦C

v. Expose: 30 keV E-beam energy, 10 pA current

A. Design should be mirror image of final pattern

B. Align to etched markers

C. Dosage for smallest features: 480 µC/cm2

vi. Develop: 45 seconds in pre-mixed 1:3 MIBK:IPA, then 1 minute DI water

stop bath

vii. Evaporate: 50 nm aluminum with E-beam evaporation at 1 Å/s

viii. Lift-off: 10 minutes in acetone bath with gentle agitation

ix. 5 minutes each in IPA, then DI water, then blow dry with nitrogen

x. Reactive ion etch (RIE): slow etch rate with CHF3

xi. Remove aluminum with 5 seconds in Transene Transetch-N heated to 150 ◦C

followed by two DI water stop baths with agitation

(d) FDTS deposition

i. Clean with 5 minutes each of acetone, then IPA, then DI water baths

ii. Place mold in Petri dish with one drop of FDTS within a dry nitrogen envi-

ronment
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iii. Allow FDTS to evaporate at room temperature (overnight)

iv. Bake for 20 minutes at 150 ◦C

3. Imprint

(a) Clean target wafer as in step 1a

(b) Spin single layer of PMMA 950 A2 on target wafer: 5 seconds at 500 RPM, 50

seconds at 2300 RPM

(c) Bake target wafer for 2 minutes at 180 ◦C

(d) Pre-imprint wafer clean: 5 minutes each in IPA and DI water with sonication

(e) Bring mold and target wafer together

(f) Imprint: 44 bar at 130 ◦C for 20 minutes

(g) Carefully de-laminate the mold and wafer, set mold aside

(h) Reactive ion etch: 3 seconds with oxygen at low power

(i) Evaporate: 5 nm titanium and 30 nm gold at 0.5 Å/s / 0.7 Å/s

(j) Lift-off: 30 minutes in acetone bath with agitation

(k) Check lift-off with wafer in IPA in a Petri dish

(l) Clean: 5 minutes in IPA, 5 minutes in DI water, blow dry with nitrogen

4. Outer depletion gates

(a) Spin single layer of AZ5214-EIR photoresist

(b) Align to inner gate pattern, NOT the chrome alignment markers

(c) Expose: ∼ 10 seconds in UV mask aligner

(d) Develop: 30-50 seconds in dilute AZ-400K:H2O 1:3, then 1 minute in DI water

stop bath

(e) 30 second de-scum in matrix asher
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(f) Evaporate: 5 nm titanium and 45 nm gold at 1 Å/s / 2 Å/s

(g) Lift-off: 20 minutes in acetone bath with agitation

(h) Rinse in IPA and DI water, blow dry with nitrogen

5. Aluminum oxide

(a) Solvent clean: 5 minutes each in acetone, IPA, and DI water baths

(b) 4 minute de-scum in matrix asher

(c) Deposit 910 cycles (100 nm) of Al2O3 via atomic layer deposition at 200 ◦C, 20

sccm nitrogen flow

6. Global top gate

(a) Solvent clean: 5 minutes each in aceton, IPA, and DI water baths

(b) Single layer of AZ5214-EIR photoresist

(c) Expose: ∼ 10 seconds in UV mask aligner

(d) Develop: 30-50 seconds in dilute AZ-400K:H2O 1:3, then 1 minute in DI water

stop bath

(e) Evaporate: 100 nm aluminum with thermal evaporation

(f) Lift-off: 5 minutes in acetone bath

(g) Clean: 5 minutes in IPA, 5 minutes in DI water, blow dry with nitrogen

7. Etch windows

(a) Pre-bake wafer for 2 minutes at 120 ◦C

(b) Spin single layer of AZ5214-EIR photoresist

(c) Expose: ∼ 10 seconds in UV mask aligner

(d) Develop: 30-50 seconds in dilute AZ-400K:H2O 1:3, then 1 minute in DI water

stop bath
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(e) 30 second de-scum in oxygen plasma

(f) Aluminum oxide etch: 5 seconds in Transene Transetch-N heated to 150 ◦C fol-

lowed by two DI water stop baths with agitation

(g) Silicon oxide etch: 30 seconds in BOE solution followed by two DI water stop

baths

(h) Solvent clean: 5 minutes each of acetone, IPA and DI water

8. Forming gas anneal

(a) Evacuate sample space

(b) Introduce 15 mT vacuum pressure of 15% H2, 85% N2 mixture

(c) Heat sample space to 400 ◦C, hold there for 20 minutes

(d) Cool back to room temperature and vent sample space
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