
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Advancing Synthesizable Verilog/SystemVerilog Education with Open-Source Tools and
Autograders

Permalink
https://escholarship.org/uc/item/2vq295zf

Author
Sifferman, Ethan Joseph

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2vq295zf
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Advancing Synthesizable Verilog/SystemVerilog

Education with Open-Source Tools and Autograders

A Thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in

Electrical and Computer Engineering

by

Ethan Sifferman

Committee in charge:

Professor Jonathan Balkind, Chair
Professor Dmitri Strukov
Dr. Yogananda Isukapalli, Lecturer

December 2023

The Thesis of Ethan Sifferman is approved.

Professor Dmitri Strukov

Dr. Yogananda Isukapalli, Lecturer

Professor Jonathan Balkind, Committee Chair

September 2023

Advancing Synthesizable Verilog/SystemVerilog Education with Open-Source Tools and

Autograders

Copyright © 2023

by

Ethan Sifferman

iii

Curriculum Vitæ
Ethan Sifferman

Education

Sep 23 (expected) M.S. in Computer Engineering, University of California, Santa Bar-
bara

June 22 B.S. in Computer Engineering, University of California, Santa Bar-
bara

Professional Experience

June 22 – Dec 22 Intel Corporation SoC Design Engineer Graduate Intern

Teaching Experience

Sep 22 – June 23 UCSB Electrical and Computer Engineering Department Teaching
Assistant

Sep 20 – June 22 UCSB Computer Science Department Learning Assistant

HDL Courses Assisted

Spring 22 UCSB CS 154 — Computer Architecture

Fall 22 UCSB ECE 154A — Introduction to Computer Architecture

Winter 23 UCSB ECE 154B — Advanced Computer Architecture

Spring 23 UCSB ECE 152A — Digital Design Principles

HDL Courses Instructed

Spring 22 UCSB IEEE “FPGA Screensaver Project”

Miscellaneous

May 23 UCSB College of Engineering Outstanding ECE TA Award, $2,600

Mar 23 FOSSi Foundation Latch-Up Presentation, “Using CVA6 in Archi-
tecture Education”

iv

Abstract

Advancing Synthesizable Verilog/SystemVerilog Education with Open-Source Tools and

Autograders

by

Ethan Sifferman

In the rapidly expanding semiconductor industry, there is an increasing demand for

skilled chip developers. Yet, the steep learning curve associated with Hardware Descrip-

tion Languages (HDLs) often acts as a significant barrier for students hoping to pursue a

career in digital design. Drawing upon my experience as a HDL educator, which includes

teaching Verilog to UCSB’s IEEE student chapter and serving as a Teaching Assistant

for UCSB’s Verilog courses, I have meticulously developed and refined a comprehen-

sive set of methods and resources for Verilog education. My objective encompassed two

key facets: equipping students with quality industry-preparation and kindling passion

for exploring hardware design. Through a strategic blend of approaches consisting of

the integration of accessible open-source tools, the enforcement of popular coding style

guides, the implementation of autograders for personalized feedback, and the incorpora-

tion of open-source IP blocks into lessons, students can attain proficiency in designing

RTL (Register Transfer Level) for rigorously verified hardware systems. These strategies

help reduce Verilog’s steep learning curve while also expediting the introduction of more

advanced topics in digital design and computer architecture. The methods and resources

detailed in this thesis will prepare students for the expectations of the semiconductor

industry, enhance their coding skills, and promote an accessible and engaging learning

environment, ultimately meeting the growing demand for chip developers.

v

Table of Contents

Curriculum Vitae iv

Abstract v

List of Figures viii

1 Introduction 1

2 Advantages of Open-Source Tools in Education 5
2.1 Proprietary tool prices deter students. 6
2.2 Open-source tools are easy to install. 6
2.3 Unique benefits and features of open-source tools. 7
2.4 Avoid graphical user interfaces. 8

3 Using SystemVerilog for Digital Design Education 10
3.1 Netlist graph viewers teach Verilog inference intuition. 11
3.2 Enabling optimizations in netlist graph viewers creates complexity. . . . 12
3.3 Teaching features that rely on inference is difficult but important. 15
3.4 HDLs can be abstractions for complex hardware concepts. 18

4 Best Resources for Learning Synthesizable SystemVerilog 19
4.1 Stuart Sutherland’s synthesis guide is most valuable. 19
4.2 Style guides and linters record synthesizable features and best practices. . 20
4.3 Verilog tutorial websites should be treated cautiously. 21
4.4 ChipDev.io can be used to practice Verilog (if used effectively). 24

5 Teaching Code Scalability and Development Practices 26
5.1 SystemVerilog offers many features to aid in code organization. 26
5.2 Version control should be used in Verilog designs. 27
5.3 SystemVerilog assertions and in-module verification are important. 28

vi

6 Autograders 29
6.1 Autograders offer instant, high-quality feedback. 29
6.2 Autograders can run remotely without complex local-setup. 30
6.3 “For-fun” leaderboards can excite and inspire students. 31
6.4 Autograders can foster community and collaboration. 33

7 Labs with CVA6 Project 34
7.1 These labs provide hands-on exploration of architectural concepts. 35
7.2 There is high demand for hands-on learning experiences. 40

8 Potential Applications in Other Classes 41
8.1 “Verification with UVM and SVA” . 41
8.2 “Embedded Systems and SoC Design” 42
8.3 “ASIC and VLSI Projects” . 42

9 Conclusion 43

Appendix A Open-source Contributions 46
A.1 Open-source issues and contributions created by me 46
A.2 Open-source issues created by my students for my classes 46

Appendix B Style Guide Survey 47
B.1 lowRISC Verilog Coding Style Guide . 47
B.2 BSG System Verilog Coding Standards 48
B.3 Company-Provided Style Guides . 48
B.4 Miscellaneous Style Guides . 48

References 49

vii

List of Figures

1.1 Abbreviated diagram of ASIC design flow 2

3.1 DigitalJS Online Example . 11
3.2 Comparison of synthesis optimizations 14
3.3 Inconsistencies in SystemVerilog Support in synthesis tools 16
3.4 Structural vs. C-like Verilog . 17

4.1 Examples of bug-prone always_ff blocks 22
4.2 ASIC World bad example . 23
4.3 ChipDev’s website . 25
4.4 Error in ChipDev’s verification flow . 25

5.1 package included in introductory SystemVerilog course 27

6.1 Gradescope Leaderboard . 32
6.2 Code optimized at expense of readability 33

7.1 CVA6 Block Diagram . 35
7.2 Branch Predictor Design for “Labs with CVA6” 36
7.3 Caching Lab starter code snippet . 37
7.4 Out-of-Order Demonstration with CVA6 38
7.5 Virtual Memory Lab . 39

viii

Chapter 1

Introduction

At the end of Dennard scaling, it may be tempting to think that VLSI and digital design

are becoming less-important engineering fields. However, the United States government

wouldn’t agree, considering they are investing $280 billion over the next ten years into

the CHIPS Act [1]. Similarly, TSMC, the world’s leading semiconductor manufacturer,

is expecting to open three new advanced-node fabs in 2024 [2]. In addition, in 2020,

Google started a partnership with GlobalFoundries, SkyWater Technology, and Efabless

to provide fully open-source Process Design Kits (PDKs) and tool-chains to lower the

barrier of entry for new Silicon engineers [3, 4]. Investments like these have created a

never-ending demand for chip developers, and Universities should be working to meet

this demand.

In the semiconductor industry, the process of designing an application-specific inte-

grated circuit (ASIC) follows a well-defined sequence, where each step requires extensive

training and practice [6, 7, 5]. The following presents an abbreviated flow tailored for

students and open-source tool usage, as illustrated in Figure 1.1. This process begins

with the design phase, where engineers specify the functionality and requirements of the

finished integrated circuit (IC). Then, they use hardware description languages (HDLs)

like SystemVerilog to detail the circuit’s operations and verify its correctness through

simulation. After the HDL implementation passes a series of behavioral simulations, it is

1

Introduction Chapter 1

Figure 1.1: Abbreviated diagram of ASIC design flow published by Kynix [5].

synthesized for the target’s standard cell library and paired with additional digital and

mixed-signal IP blocks. Further testing can include running logical equivalence checks

(LECs) to ensure the synthesized netlist is correct, rerunning the behavioral simulations

on the synthesized netlist to check for reset behavior, or by running intensive simulations

on a Field Programmable Gate Array (FPGA). Once these circuit-level tests pass, layout

is completed according to timing constraints and design rule checks (DRC). If timing

cannot be met, the layout or HDL implementation may need to be adjusted. Finally,

after the layout and simulations checks pass, the design is converted into a Graphic Data

Stream (GDS) file which is sent to a semiconductor foundry for mass-production.

Because of the multitude of skills are required to create an ASIC design, it is crucial

for Universities to offer a strong foundation in writing and working with HDLs to design

hardware. Nevertheless, HDLs come with a formidable learning curve, partly due to the

difficulties of distinguishing between what code is synthesizable (able to be converted into

2

Introduction Chapter 1

hardware) and what should be used solely for verification purposes. Additionally, the

prevalence of bugs in common HDL tools, the extraordinary inaccessibility of proprietary

tools, and the lack of reliable online educational resources can be a major deterrent for

students and hobbyists who wish to experiment with digital design on their own. An-

other factor contributing to the complexity is the interdisciplinary nature of ASIC design.

For many students, especially those with a software background, this may be their first

experience with hardware design, while hardware students may also be transitioning into

a more software-centric environment. Bridging the gap between hardware and software

is vital in today’s world due to the prevalence of computer-aided design (CAD) soft-

ware. Universities must recognize the formidable learning curve associated with HDLs

and provide comprehensive educational resources, practical hands-on experiences, and

interdisciplinary exposure to prepare students for the intricate realm of ASIC design.

To aid educators in combating the intrinsic difficulty in teaching digital design, this

thesis presents a collection of methods and resources for Verilog education that will

adequately prepare students for writing synthesizable Verilog in industry.

• Chapter 2 delves into the accessibility of open-source tools, highlighting how they

provide a cost-effective alternative for students, unlike proprietary tools burdened

with high licensing fees. It also discusses the ease of installation and the unique

features offered by open-source tools, emphasizing their ability to foster a more

exciting and accessible learning environment.

• Chapter 3 shifts the focus to teaching SystemVerilog from a synthesis perspective,

and how SystemVerilog can be effectively used for digital design education. It

argues that a synthesis-oriented approach to teaching SystemVerilog can bridge

the gap between abstract syntax and tangible hardware implementations, providing

students with a deeper understanding of digital circuits.

3

Introduction Chapter 1

• Chapter 4 explores the best resources for learning synthesizable SystemVerilog. It

argues the significance of SystemVerilog style guides in ensuring code quality and

adherence to industry standards while warning against relying solely on popular

yet misleading Verilog tutorial websites.

• Chapter 5 emphasizes the importance of teaching students how to efficiently work

on large-scale Verilog projects, discussing features in SystemVerilog that aid in code

organization, and the significance of version control and in-module verification.

• Chapter 6 argues for the incorporation of autograders in Verilog/SystemVerilog

education, demonstrating their value in providing instant, high-quality feedback to

students. It also discusses how autograders can facilitate remote testing of Verilog

designs and foster a sense of community and collaboration among students.

• Chapter 7 culminates the thesis by showcasing a series of assignments I created

that provide hands-on experience with advanced computer architecture concepts

using the open-source CVA6 RISC-V core.

• Finally, Chapter 8 explores how ideas presented in this thesis could enhance ad-

ditional advanced Verilog courses such as verification with Universal Verification

Methodology (UVM) and SystemVerilog Assertions (SVA) for verification, embed-

ded system and System-on-Chip (SoC) design, and ASIC and VLSI projects.

4

Chapter 2

Advantages of Open-Source Tools in
Education

Although proprietary Verilog tools are predominant in industry and often boast a wide

assortment of features, I argue that they can be one of the biggest deterrents for those

first learning digital design. Whether students become aghast at the preposterous li-

censing fees or become hung up on the steep learning curve of the interfaces, the most

popular Verilog tools often have trouble exciting students into furthering their Verilog

education. Fortunately, there are several open-source Verilog tools that are praised

for their accessibility and ease-of-use. A valuable resource for open-source hardware

tools, generators, and reusable designs can be found in the curated list provided here:

https://github.com/aolofsson/awesome-opensource-hardware [8]. For example, a

common collection of tools include the simulators Icarus [9] and Verilator [10], the wave-

form viewer GTKWave [11], the synthesis tool Yosys [12], the FPGA place and route tools

Nextpnr [13] and VTR [14], the ASIC flow OpenLane [15], and the hardware package

manager and build system FuseSoC [16, 17]. In this chapter, I explain why open-source

tools excel over proprietary tools in introducing Verilog and digital design to students.

5

https://github.com/aolofsson/awesome-opensource-hardware

Advantages of Open-Source Tools in Education Chapter 2

2.1 Proprietary tool prices deter students.

Many students choose to pursue a degree in computer engineering due to the plethora of

creative outlets that it introduces them to. Consider the hands-on process of purchasing

affordable circuit components for breadboards. Likewise, platforms like Arduinos and

Raspberry Pis are often explored alongside the utilization of programming languages

such as C++, Python, and JavaScript. The accessibility and low cost of these mediums

often foster self-directed learning. Similarly, introductory Verilog courses can serve as

yet another avenue for creative expression, particularly when orchestrated using free

and open-source tools. However, a significant obstruction emerges when proprietary

alternatives such as Questa, VCS, and Xcelium, coupled with licensing fees over $5,000

[18, 19], become the focal point of a student’s introduction to Verilog. Such financial

barriers can easily deter enthusiasm for self-guided learning, particularly when students

anticipate losing access to the software upon graduation. This is likely the reason why

several students in UC Santa Barbara’s Verilog courses choose to disobey the requirement

of using ModelSim, and instead use Icarus and GTKWave. Students do not want to feel

like their time is wasted learning a tool if they lose access to it upon graduation.

2.2 Open-source tools are easy to install.

Even if students do not want to expand their arsenal of tools for expressing their creativ-

ity, it is still important to keep Verilog tools accessible by improving students’ first-time

user experience. For example, Vivado is infamous for its tedious and complex installa-

tion process while taking up over 16-60GB when installed. This is contrasted with the

overall positive first-time user experience that open-source tools offer. For example, with

the “OSS CAD Suite” project [20], you can download all the latest binaries of the most

popular open-source Verilog tools in under a minute. This beats Vivado’s complicated

6

Advantages of Open-Source Tools in Education Chapter 2

installation process by a mile and is more-likely to remain on student’s computers after

the course is over since all the tools only take up half a gigabyte, as opposed to the

16-60GB that Vivado requires.

2.3 Unique benefits and features of open-source tools.

Undoubtedly, proprietary tools offer a multitude of functionalities for advanced users that

open-source tools cannot offer. However, open-source tools offer many unique features

that are often better for beginners. For example, Icarus runs short simulations much

faster than proprietary simulators, making it perfect for receiving instant feedback as

students are still learning the language syntax. Similarly, Yosys and Nextpnr perform

synthesis and layout significantly faster than tools such as Vivado and Design Compiler,

allowing for more rapid prototyping. Also, while ModelSim may happily parse and

simulate unsynthesizable code, Verilator will give much more strict warnings, helping

to demonstrate the syntax and features that should be allowed in synthesizable designs.

(This is further discussed in Section 4.2).

But possibly the most important attribute of open-source tools is that they get up-

dates every day, and offer full transparency when reporting bugs and requesting new

features. Depending on the difficulty of the request, the tool maintainers may complete

the request within a few weeks. Instructors may even decide they want to do a pull-

request themselves; I personally have made several contributions to multiple tools (see

Appendix A). This is contrasted with the fact that many universities are not always run-

ning the most up-to-date proprietary software. For example, as of 9/10/23, UC Santa

Barbara’s Engineering Computing Infrastructure’s latest version of ModelSim is 10.7d

from April 2019, which does not support width-casting from parameters. This negatively

affected one of the UCSB Spring 2023 ECE 152A labs. Bugs in tools will undoubtedly

7

Advantages of Open-Source Tools in Education Chapter 2

happen, but the only solution Siemens offers is to pay for an updated version with the

bug fixed. Contrast this with submitting a GitHub issue with Verilator, and having the

bug fixed by the next time the course is offered. Open-source tools are often simply the

better choice for instructors and students alike.

2.4 Avoid graphical user interfaces.

One of the most important ways to make Verilog more accessible is by guiding students

to use command line interfaces (CLIs). Nearly all large-scale Verilog designs are paired

with user-friendly build scripts and Makefiles for running simulation and synthesis. This

is contrasted with complex graphical user interfaces in tools like Vivado, ModelSim, VCS,

and Quartus, which can feel daunting for beginners due to the number of options that

users have direct access to. UC Santa Cruz Professor Dustin Richmond compares learning

Vivado to being stuck in a “point-and-click adventure game” in his talk “So, you want

to be an open sourcerer?” [21]. By using CLIs, you can abstract away and decouple

tool-specifics from digital design concepts.

To aid in the usually lengthy crafting of TCL scripts and Makefiles, an extremely pow-

erful pair of open-source tools named FuseSoC and Edalize [16, 17] attempt to standardize

build files for all Verilog tools with a central .core file. The .core file, interpretable by

FuseSoC, contains the “run” specifications, which are then seamlessly communicated to

Edalize for automated generation and execution of build scripts. FuseSoC is compatible

with nearly every Verilog tool, so switching simulators is often as easy as changing one

line of code in the .core file. While TAing for UCSB’s ECE 152A, 154A, and 154B, I

capitalized on the utility of FuseSoC and Edalize to substantially accelerate assignment

setup time. I could provide students with the Makefile automatically generated by Edal-

ize, or I could provide the .core file for students to run themselves with FuseSoC. Either

8

Advantages of Open-Source Tools in Education Chapter 2

option was effective in simplifying the build process so students could better focus on the

learning-goals of the assignments.

9

Chapter 3

Using SystemVerilog for Digital
Design Education

Navigating the realm of Verilog/SystemVerilog education presents a distinctive challenge:

effectively bridging the gap between abstract Verilog syntax and tangible hardware imple-

mentations. Teaching this intuition is of paramount importance, as it can equip aspiring

electrical engineers with a deep comprehension of digital circuits, while giving them the

hard-skills in computer-aided circuit creation. While it may feel there is a trade-off be-

tween teaching Verilog design strategies and teaching circuit design strategies, I argue

that teaching inference and synthesis of Verilog will actually augment student understand-

ing of more advanced digital circuit concepts. I would compare this to a programming

course using C++ to teach algorithms. For many computer science students, algorithms

are synonymous with code, not with logic proofs. For computer engineering students,

as long as Verilog is taught with a synthesis-oriented approach, the connection between

theoretical circuit concepts and tangible hardware construction becomes seamless, facil-

itating a more rapid and all-encompassing digital design education.

10

Using SystemVerilog for Digital Design Education Chapter 3

Setup I/O piso.sv

Synthesize and simulate!

��� ��� ��� → ⇥ �������� 13274 ���� ������� ���

×����

module piso #(

parameter [7:0] DATA_WIDTH = 16

) (

input logic clk,

input logic rst_n,

input logic load_i,

input logic [DATA_WIDTH-1:0] loaddata_i,

output logic serial_o

);

logic [DATA_WIDTH-1:0] data_d, data_q;

always_comb begin

if (load_i)

data_d = loaddata_i;

else

data_d = (data_q >> 1);

end

always_ff @(posedge clk or negedge rst_n) begin

if (!rst_n) begin

data_q <= '0;

end else begin

data_q <= data_d;

end

end

assign serial_o = data_q[0];

endmodule

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

clk

rst_n

load_i

loaddata_i
serial_o

data_d

data_q

data_q

clk

rst_n

load_i

loaddata_i

xxxx
16

serial_o

$dff

16 D 16Q
clk
arst

$mux

16
16

16

zero-extend15 16

16 0

16 151-15

Figure 3.1: Schematic for a Parallel-in Serial-out shift register generated by the netlist
graph viewer DigitalJS Online [22].

3.1 Netlist graph viewers teach Verilog inference intuition.

By using netlist graph viewers to provide a visual representation of the synthesis process,

students can gain a deeper insight into how their high-level descriptions are transformed

into hardware components. DigitalJS Online [22] stands as a notable example of such

netlist graph viewers (see Figure 3.1). Through its zero-setup, interactive web interface,

students can witness instant translation of their Verilog code into synthesized hardware,

which encourages experimentation and rapid prototyping. Additionally, its text editor

runs automatic linting with Verilator, which gives incredibly helpful feedback if a syntax-

related bad-practice is detected. During a volunteer lecture for UCSB’s IEEE student

chapter, I taught Verilog concepts from DigitalJS Online’s text editor, which seamlessly

11

Using SystemVerilog for Digital Design Education Chapter 3

visualized the logic I was describing in my examples. Also, as a TA for ECE 152A and

154B, I curated several assignments that challenged students to use DigitalJS Online to

transform for loops and if statements into comprehensive, hand-drawn circuit diagrams.

Similarly, UC Santa Cruz Professor Dustin Richmond uses netlist graph viewers to teach

best practices concerning case and if statements [21]. Plus, after enough exploration

with netlist graph viewers, students can gain the ability to convert Verilog to schematics

by hand. By assigning homework and in-lecture exercises that prompt students to deduce

hardware constructs from abstract Verilog syntax, their aptitude to understand both

Verilog and synthesis will be significantly enhanced.

3.2 Enabling optimizations in netlist graph viewers creates complexity.

While synthesis tools may run their own specific optimizations [23], learning these

intricacies are not critical, given the overall proficiency of available tools and the limited

need for target-specific code optimization. Instead, the primary focus should be on teach-

ing students to write clear and transferable code, adhering to best practices covered in

the class. (This focus is also described in Section 6.3). While it is acceptable to encourage

students to explore various tool and language features as illustrated in Figure 3.2, it is

crucial to maintain a balance. Experimentation can stimulate curiosity and self-directed

learning, but there may be instances where netlist graph viewers create confusion rather

than facilitate understanding. For example, as students start working with larger designs,

the chances are increased that a quietly-applied, tool-specific synthesis optimization will

result in a netlist that, while valid, would take too much time to decipher and under-

stand. This may turn instructors away entirely from using netlist graph viewers due to

the additional complexity that they cause. However, I argue that they are still an essen-

tial resource for introducing Verilog, helping students transition from gate schematics to

12

Using SystemVerilog for Digital Design Education Chapter 3

HDLs. These tools serve as a foundation for students to build their intuition for synthesis,

ultimately empowering them to undertake the more advanced design challenges. Even

if netlist graph viewers lose their effectiveness as designs get complex, they illustrate to

students the vital connection between digital design concepts and Verilog concepts.

A similar example is providing simplified schematics of transistor implementations of

digital gates to relate electrical engineering students to their prior knowledge of analog

design. Because transistor implementation specifics are largely unimportant due to the

low demand for PDK designers, it is fine to simply introduce basic technologies such as

pass-transistor logic instead of analyzing modern multi-finger FinFET CMOS designs.

But only after receiving some connection to their prior experience with transistors will

electrical engineering students feel comfortable working with gates. Similarly, when in-

troducing Verilog, netlist graph viewers can connect prior knowledge of digital elements

to code syntax. Much like electrical engineers need some familiarity with transistor-level

gate implementations prior to diving into digital design, Verilog students greatly benefit

from a basic understanding of the behavior of synthesis tools.

13

Using SystemVerilog for Digital Design Education Chapter 3

wire [2:0] a;

always_comb begin

out = 0;

for (integer i = 0; i < 3; i++)

if (a[i])

out = 1;

end

(a) Superfluous implementation of assign out = |a;

a[2:0]

a_IBUF[0]_inst

IBUF

OI

a_IBUF[1]_inst

IBUF

OI

a_IBUF[2]_inst

IBUF

OI

out_OBUF_inst_i_1

LUT3

O

I0

I1

I2

out_OBUF_inst

OBUF

OI
out

0

1

2

(b) Vivado correctly infers the code into one parallel LUT.

a

aa

out

a

2 3

out
$mux

$mux
$mux

0

1

3 0

3 2

3 1

1
1

(c) Yosys without optimizations inefficiently infers the code as a series of
2:1 MUXes.

a

a

a

out

a

2 3 out

3 2

3 0

3 1 $or

(d) Yosys with optimizations corrects the inference into one parallel OR
gate.

Figure 3.2: Comparison of synthesis optimizations.

14

Using SystemVerilog for Digital Design Education Chapter 3

3.3 Teaching features that rely on inference is difficult but important.

To promote uniformity among tools, IEEE standardized synthesis of Verilog 1364 features

under the label “1364.1”. However, there has been no official “1800.1” SystemVerilog

synthesis standard to discuss the many new features that were added with SystemVerilog.

Many SystemVerilog IEEE 1800 features are not consistently synthesizable by popular

synthesis tools, such as classes, interfaces, and dynamic arrays [25, 24]. This may result

from a SystemVerilog feature being subjectively similar to a prohibited feature in the

IEEE 1364.1 standard, or may be due to insufficient tool development time. For these

reasons, support for many features is inconsistent across different open-source tools [26],

and Figure 3.3 shows Synopsys’ own tools have inconsistencies across each-other. Since

there is no official synthesis standard, style guides and linters have filled the role of unof-

ficial documentation of SystemVerilog’s synthesizable features to help engineers navigate

the inconsistencies across different tools. This is further discussed in Section 4.2 and

Chapter 6.

A reaction to the inconsistency and ambiguity in SystemVerilog synthesis may be to

teach only obviously-synthesizable constructs such as continuous assignment (assign)

and standard cell initialization, but that would neglect important language features that

have become popular in industry designs. Modern-day RTL engineers regularly use con-

structs such as procedural blocks, for loops, and if statements from Verilog; and struct,

union, and enum constructs from SystemVerilog. Similarly, in computer programming

courses, once students understand the underlying mechanisms, it is common to allow use

of standard library functions and data structures. This philosophy should extend to the

realm of SystemVerilog. As long as the code adheres to linters and well-verified style

guides, and students understand the resulting synthesis, higher-level syntax should be

prioritized when it improves code clarity and structure, such as in Figure 3.4.

15

Using SystemVerilog for Digital Design Education Chapter 3

SystemVerilog Language Construct
Design

Compiler
Synplify-Pro

‘begin_keyword, ‘end_keyword compatibility directives yes no

Package import before module port list yes no

Parameterized tasks and functions, using parameterized static classes yes no

Enumerated type methods (.next, .prev, etc.) yes no

‘__FILE__ and ‘__LINE__ debug macros yes no

priority and unique modifier to if...else yes ignored

Cross module references (XMRs)1 no yes

real data type no yes

Increment or decrement operator on right-hand side of assignment statement no yes

Nets declared from typedef struct definitions no yes

Extern module declarations no yes

$onehot, $onehot0, $countones no yes

Interface modport expressions no yes

Immediate assertions ignored yes

let macros ignored yes

Checkers no ignored

expect statements no ignored

1 The HDL Compiler (DC) reference manual says that cross-module references are supported “if the hierarchical
name remains inside the module that contains the name, and each item on the hierarchical path is part of the module
containing the reference.” This restriction means that references to interface port contents are legal, but references to
the contents of some other module are illegal.

Figure 3.3: Differences in SystemVerilog Support in Synopsys Design Compiler vs.
Synopsys Synplify-Pro from “Synthesizing SystemVerilog: Busting the Myth that
SystemVerilog is only for Verification” [24].

16

Using SystemVerilog for Digital Design Education Chapter 3

assign out =

in[31] ? 31 : in[30] ? 30 :

in[29] ? 29 : in[28] ? 28 :

in[27] ? 27 : in[26] ? 26 :

in[25] ? 25 : in[24] ? 24 :

in[23] ? 23 : in[22] ? 22 :

in[21] ? 21 : in[20] ? 20 :

in[19] ? 19 : in[18] ? 18 :

in[17] ? 17 : in[16] ? 16 :

in[15] ? 15 : in[14] ? 14 :

in[13] ? 13 : in[12] ? 12 :

in[11] ? 11 : in[10] ? 10 :

in[9] ? 9 : in[8] ? 8 :

in[7] ? 7 : in[6] ? 6 :

in[5] ? 5 : in[4] ? 4 :

in[3] ? 3 : in[2] ? 2 :

in[1] ? 1 : 0;

(a) Using purely structural constructs to create MUXes can provide overly verbose
code.

function automatic logic [4:0] find_first_set32(logic [31:0] in);

logic [4:0] out = 0;

for (integer i = 1; i < 32; i++)

if (in[i])

out = i;

return out;

endfunction

assign out = find_first_set32(in);

(b) Using C-like constructs such as function, if, and for can provide much cleaner
code.

Figure 3.4: Provided is an example of when C-like constructs can be used to write
cleaner code compared to purely structural constructs. Sub-figures 3.4a and 3.4b both
implement the Find First Set operation, but 3.4b is better.

17

Using SystemVerilog for Digital Design Education Chapter 3

3.4 HDLs can be abstractions for complex hardware concepts.

With the full set of synthesizable features being utilized, Verilog can be a useful abstrac-

tion layer to better explain complex design concepts such as state machines, pipelining,

and handshakes. This parallels the use of abstraction in programming courses, where

students often draft pseudocode to conceptualize algorithms before delving into detailed

implementation. Transferring this approach to digital design can promote a more rapid

and comprehensive learning experience. As long as students demonstrate a strong un-

derstanding of how Verilog can be synthesized, they will also have an understanding of

the circuits needed to implement the complex design concepts. An example of this in

practice was when UCSB ECE 154B students were assigned my “Labs with CVA6” Cache

Lab, where students were expected to implement a doubly-linked-list to execute a least-

recently-used (LRU) replacement policy. With the helpful abstraction layer of structs,

for loops, and if statements, (as seen in Figure 7.3), students were able to demonstrate

a high-level understanding of the LRU algorithm while also understanding the low-level

hardware that was generated.

18

Chapter 4

Best Resources for Learning
Synthesizable SystemVerilog

When writing synthesizable SystemVerilog, not all features present in the IEEE 1800

specification can be utilized, as synthesis tools support only a subset of these features.

Unfortunately, many educational resources for Verilog and SystemVerilog fail to docu-

ment which features are synthesizable and which are for verification only. To combat

this ambiguity, provided to students should be a curated set of resources dedicated to

synthesis as additional materials for outside the classroom.

4.1 Stuart Sutherland’s synthesis guide is most valuable.

“Synthesizing SystemVerilog: Busting the Myth that SystemVerilog is only for Verifica-

tion” by Stuart Sutherland and Don Mills acts as a comprehensive list of synthesizable

SystemVerilog features. Despite the absence of an official SystemVerilog synthesis stan-

dard, this paper gives valuable insight into synthesizable language features, emphasizing

their practical application into modern hardware designs. Sutherland and Mills surveyed

the Synopsys tools, Design Compiler and Synplify-Pro, to trace the evolution of Verilog-

1984 though SystemVerilog-2009 as a comprehensive hardware design and verification

language. To assist those working on “Labs with CVA6”, I composed and included a

19

Best Resources for Learning Synthesizable SystemVerilog Chapter 4

summary of Sutherland’s synthesis guide [27]. Since then, I have shared this summary

with dozens of students looking to improve their understanding of synthesizable Verilog.

Sutherland’s guide (or my summary) should be provided to students to ensure a strong

introduction to synthesizable Verilog syntax and best practices.

4.2 Style guides and linters record synthesizable features and best practices.

Even while avoiding commonly unsynthesizable SystemVerilog features, design tools are

infamous for misinterpreting syntax and often providing little or misleading information

on errors. Therefore, using linters and well-verified style guides is crucial in ensuring that

an RTL implementation will work on an assortment of tools. As mentioned in Section 3.3,

style guides and linters help direct engineers away from ambiguous or poorly-supported

language features, and towards syntax and features that are verified to tape-out chips

successfully. By introducing Verilog alongside an exhaustive style guide, and providing

test flows with linting, students can feel much more confident exploring new language

features.

The lowRISC Style Guide discusses many best practices of language features such

as the alias statement, automatic scopes, package imports, and floating begin-end

blocks [28]. The Bespoke Silicon Group Style Guide is also strong due to its discussion of

structures, enumerations, and memories [29]. There are also style guides published by tool

manufacturers that show how what syntax works best using their flows [30, 31, 32]. There

are many style guides available; see Appendix B for a(n incomplete) list. Personally, I

teach the lowRISC style guide because of its thorough explanations, because of the clarity

in _d and _q as suffixes for register inputs and outputs, and to match the “Labs with

CVA6” project (as described in Chapter 7).

Linters such as Verible [33], Verilator [10], and svlint [34] are all popular in design

20

Best Resources for Learning Synthesizable SystemVerilog Chapter 4

flows. Each are configurable to warn on or forbid specific language features, and many

open-source projects choose to lint with more than one of these tools. For example,

Verible is known for its auto-formatting capabilities; Verilator is powerful enough to

warn on multi-driven signals and accidental latches in always_comb blocks; and Svlint is

unique for its ability to verify complex whitespace layouts and enforce custom net naming

styles. Each has their purpose and should be used on student submissions to ensure best

practices are enforced (see Chapter 6).

4.3 Verilog tutorial websites should be treated cautiously.

It is important to stress to students the importance of following the provided style guides

and linters for Verilog syntax over some of the most popular Verilog tutorial websites

such as ASIC World, Chipverify, and Nandland. Despite the user-friendly appearance

adopted by these websites, which mirror renowned programming tutorial platforms such

as GeekforGeeks, many Verilog tutorial websites often propagate misguided advice for

novice hardware developers. While style-guides and linters can act as a reference to well-

verified practices for beginners and professionals alike, tutorial websites do not always

teach current-day, synthesizable design syntax that is compatible with a multitude of

tools. Only if students maintain adherence to the instructor-specified style-guides and the

course’s subset of synthesizable features, then tutorial websites can be used as resources.

For example, while a TA for ECE 152A, 154A, and 154B, the most prevalent mis-

information I saw them encourage in students was to put combinational logic inside of

always_ff blocks (see Figure 4.2). The lowRISC Style Guide, the BSG SystemVerilog

Coding Standards, and the IEEE 1364.1-2005 Verilog Synthesis Standard all recommend

only putting reset, set, and enable logic in always_ff blocks [28, 29, 23]. Unnecessarily

large always_ff blocks are prone to bugs because always_ff blocks do not offer warn-

21

Best Resources for Learning Synthesizable SystemVerilog Chapter 4

// not cumulative

always_ff @(posedge clk) begin

data1_q <= data1_q + 1;

data1_q <= data1_q + 1;

data1_q <= data1_q + 1;

data1_q <= data1_q + 1;

end

// doesn't warn that there is no default case

always_ff @(posedge clk) begin

if (rst)

data2_q <= '0;

end

// unclear whether this is a DFF or DFFE

always_ff @(posedge clk) begin

if (pkg::func(data3_i))

data3_q <= data3_d;

end

Figure 4.1: Potentially confusing behaviors of always_ff blocks.

ings on unhandled code paths, blocking and non-blocking assignment mismatches can

lead to undefined behavior, and synthesis tools may incorrectly infer the incorrect type

of flip-flop (see Figure 4.1). In my experience teaching SystemVerilog, whenever a stu-

dent asked for help solving a bug, but followed this design practice, I immediately asked

them to separate the block into an always_comb and always_ff. Over half the time,

that simple refactor incidentally fixed the student’s bug.

22

Best Resources for Learning Synthesizable SystemVerilog Chapter 4

Serial CRC
Feb-9-2014

 Serial CRC

Below code is 16-bit CRC-CCITT implementation, with following
features

Width = 16 bits
Truncated polynomial = 0x1021
Initial value = 0xFFFF
Input data is NOT reflected
Output CRC is NOT reflected
No XOR is performed on the output CRC

 1 //---
 2 // Design Name : serial_crc_ccitt
 3 // File Name : serial_crc.v
 4 // Function : CCITT Serial CRC
 5 // Coder : Deepak Kumar Tala
 6 //---
 7 module serial_crc_ccitt (
 8 clk ,
 9 reset ,
 10 enable ,
 11 init ,
 12 data_in ,
 13 crc_out
 14);
 15 //-----------Input Ports---------------
 16 input clk ;
 17 input reset ;
 18 input enable ;
 19 input init ;
 20 input data_in ;
 21 //-----------Output Ports---------------
 22 output [15:0] crc_out;
 23 //------------Internal Variables--------
 24 reg [15:0] lfsr;
 25 //-------------Code Start-----------------
 26 assign crc_out = lfsr;
 27 // Logic to CRC Calculation
 28 always @ (posedge clk)
 29 if (reset) begin
 30 lfsr <= 16'hFFFF;
 31 end else if (enable) begin
 32 if (init) begin
 33 lfsr <= 16'hFFFF;
 34 end else begin
 35 lfsr[0] <= data_in ^ lfsr[15];
 36 lfsr[1] <= lfsr[0];
 37 lfsr[2] <= lfsr[1];
 38 lfsr[3] <= lfsr[2];
 39 lfsr[4] <= lfsr[3];
 40 lfsr[5] <= lfsr[4] ^ data_in ^ lfsr[15];
 41 lfsr[6] <= lfsr[5];
 42 lfsr[7] <= lfsr[6];
 43 lfsr[8] <= lfsr[7];
 44 lfsr[9] <= lfsr[8];
 45 lfsr[10] <= lfsr[9];
 46 lfsr[11] <= lfsr[10];
 47 lfsr[12] <= lfsr[11] ^ data_in ^ lfsr[15];
 48 lfsr[13] <= lfsr[12];
 49 lfsr[14] <= lfsr[13];
 50 lfsr[15] <= lfsr[14];
 51 end
 52 end
 53
 54 endmodule

Figure 4.2: This is an example provided by ASIC World that encourages putting
combinational logic inside always_ff blocks. [35] I explain why this is a bad design
practice in Section 4.3.

23

Best Resources for Learning Synthesizable SystemVerilog Chapter 4

4.4 ChipDev.io can be used to practice Verilog (if used effectively).

The final resource I like to share with students is ChipDev.io, which offers an online

collection of popular Verilog questions, paired with an online IDE and testbench. The

30+ questions range from implementing a shift register to designing an ALU; (see Fig-

ure 4.3). If students are looking for lots of practice questions as job interview preparation

or for general practice, I always recommend ChipDev. However, ChipDev does not run

gate-level simulation or logical equivalence checks, so bad submissions may be incorrectly

rewarded (see Figure 4.4). Plus, after speaking with the ChipDev team, they notified me

that synthesis was not on their priority list. Therefore, I strongly urge students to verify

their answers with DigitalJS Online or other synthesis tools before feeling they have a

mastery over any question.

24

Best Resources for Learning Synthesizable SystemVerilog Chapter 4

Figure 4.3: An example of questions that ChipDev offers [36].

Reset Run Submit

1. Simple Router

Discussion Solution

Easy

Prompt

Build a router circuit which forwards data from the input (din) to one of four
outputs (dout0, dout1, dout2, or dout3), specified by the address input (addr).

The address is a two bit value whose decimal representation determines
which output value to use. Append to dout the decimal representation of addr
to get the output signal name dout{address decimal value}. For example, if
addr=b11 then the decimal representation of addr is 3, so the output signal
name is dout3.

The input has an enable signal (din_en), which allows the input to be
forwarded to an output when enabled. If an output is not currently being
driven to, then it should be set to 0.

I t d O t t Si l

Description

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

module model #(parameter

DATA_WIDTH = 32

) (

input [DATA_WIDTH-1:0] din,

input din_en,

input [1:0] addr,

output logic [DATA_WIDTH-1:0] dout0,

output logic [DATA_WIDTH-1:0] dout1,

output logic [DATA_WIDTH-1:0] dout2,

output logic [DATA_WIDTH-1:0] dout3

);

assign dout0 = (din_en && addr == 2'h0) ? din : '0;

assign dout1 = (din_en && addr == 2'h1) ? din : '0;

assign dout2 = (din_en && addr == 2'h2) ? din : '0;

assign dout3 = (din_en && addr == 2'h3) ? din : '0;

always_comb begin

dout0 = DATA_WIDTH'(32'hdeadbeef);

dout1 = DATA_WIDTH'(32'hdeadbeef);

dout2 = DATA_WIDTH'(32'hdeadbeef);

dout3 = DATA_WIDTH'(32'hdeadbeef);

end

endmodule

Testcase

Success: 101 of 101 passed.

Simulation

Figure 4.4: This example shows ChipDev [36] incorrectly accepting this submission
despite a potential mismatch between simulation and synthesis. For example, Verilator
will override the always_comb with the assign, but Yosys will override the assign

with the always_comb. This could be corrected if ChipDev chooses in the future to
incorporate a similar verification flow to what is outlined in Section 6.2.

25

Chapter 5

Teaching Code Scalability and
Development Practices

Aside from ensuring that student code follows best practices and correctly synthesizes,

an equally important skill to teach students is how to efficiently work on large-scale

projects. As the number of transistors on an integrated circuit has increased, the scale

of Verilog designs has also drastically increased. At Intel, the SoC that my team was

verifying had over 500 Verilog source files in the design. Similarly, one of the most

popular RISC-V cores, CVA6, is written in nearly 17,000 lines of code [37]. Ensuring

seamless development and limiting the number of bugs within these colossal codebases

requires strong project management skills. This is achieved by automatic regression,

consistent coding styles, and employing version control. For advanced Verilog courses

such as Computer Architecture or SoC design, I argue that teaching code scalability is

often just as important as teaching microarchitecture implementation methods.

5.1 SystemVerilog offers many features to aid in code organization.

Features such as packages, structs, and parameters are incredibly popular in large-

scale SystemVerilog projects. And although IEEE 1364 Verilog does not support packages

and structs, many RTL designers have found workarounds with `include files and func-

26

Teaching Code Scalability and Development Practices Chapter 5

/*

* Copyright (c) 2023, University of California; Santa Barbara

* Distribution prohibited. All rights reserved.

*

* File: taillights_pkg.sv

* Description: Taillights SystemVerilog package.

* Includes the enum for the FSM module

*/

package taillights_pkg;

typedef enum logic [2:0] {

S000_000,

S000_100,

S000_110,

S000_111,

S001_000,

S011_000,

S111_000,

S111_111

} state_t;

endpackage

Figure 5.1: This is a SystemVerilog package that was provided to ECE 152A students
to aid in their implementation of a 1965 Ford Thunderbird taillight state-machine.

tions. [28, 38] These features may not be required to implement hardware algorithms

such as instruction decoding and serial interfaces, but are still extremely prevalent in

well-organized, large-scale Verilog designs. In ECE 152A, ECE 154A, and ECE 154B, we

were sure to teach students to apply these code organization strategies (see Figure 5.1).

5.2 Version control should be used in Verilog designs.

Aside from code structure, a cornerstone of modern software development is version con-

trol. Intel, numerous other companies, and most RISC-V projects extensively rely on

Git and GitHub for version management (see Appendix A and Appendix B). Moreover,

Git submodules and subtrees provide an elegant and popular solution for integrating IP

blocks into designs seamlessly, enhancing reusability and collaboration. Plus, allowing

27

Teaching Code Scalability and Development Practices Chapter 5

students to post code they have written themselves to GitHub is a great way to aid them

in creating an online portfolio for themselves. In ECE 154B, students practiced using

Git and GitHub to explore open-source projects, collaborate with peers, add open-source

cores as submodules, and more. While software might not be the core focus for some

students, being able to work with it efficiently and professionally is still extremely valu-

able. Because of the invaluable aid Git offers in code quality, and its extreme prevalence

in all software development, it is an essential hard-skill for all engineers.

5.3 SystemVerilog assertions and in-module verification are important.

The final design strategy for promoting code scalability is to promote in-module verifi-

cation. Waveform viewers are incredibly powerful and useful tools, but work best when

supplemented with $display statements that have already identified where and when a

simulation error occurred. Most SystemVerilog in industry designs is full of self-verifying

modules by use of SystemVerilog assertions (SVA) and Universal Verification Method-

ology (UVM). Note that as of 9/10/23, since there is poor SVA and UVM support in

open-source tools, projects may need to use `ifdef macros to disable UVM and SVA

calls on a per-tool basis, may need to limit themselves to the subset of supported fea-

tures, or may need to resort to a basic always blocks instead. Verilator has limited

support for UVM and SVA, but is getting closer to full support every day [39, 40, 41].

But no matter the specific implementation, in-module verification is a valuable design

practice to teach students. In ECE 152A, ECE 154A, and ECE 154B, students were

often required to design modules that incorporated simulation-only logic to test basic

functionality. By adopting these universal standards, Verilog education becomes better

aligned with real-world methodologies for enhanced scalability and proficiency.

28

Chapter 6

Autograders

The incorporation of autograders within Verilog/SystemVerilog education is arguably the

most valuable aspect of RTL education. These tools, particularly exemplified by plat-

forms like Gradescope, can introduce a dynamic and interactive dimension to the learning

process, revolutionizing the way students engage with Verilog concepts. Leveraging cus-

tom docker containers and custom Bash scripts, Gradescope’s autograders easily facilitate

Verilog testbench simulations, strict linting, synthesis, gate-level simulation, and more,

yielding insights and feedback on various aspects of student submissions. However, man-

aging software licenses on autograder servers can be a hassle, so all these functionalities

are often best deployed with open-source tools. In the context of UCSB’s ECE 152A,

154A, and 154B courses, students responded extremely positively to autograders, visibly

enhancing their mastery over synthesizable Verilog.

6.1 Autograders offer instant, high-quality feedback.

Students are empowered to submit their code multiple times, enabling them to refine

their solutions and learn from their mistakes in real time. This back-and-forth approach

ensures that students can practice a Verilog concept and receive as much help as they

need until they pass all the instructor-defined tests. In the autograders that I set up, it

29

Autograders Chapter 6

is worth noting that a significant majority of students eventually achieve a 100% score

by the assignment deadline. Therefore, autograders fall under the educational approach

known as “Ungrading,” where the emphasis shifts strongly toward providing valuable

feedback over assigning traditional grades. This phenomenon essentially transforms the

grading system into a confidence-building mechanism rather than a competitive ranking

system. Ungrading has been shown to help students by reducing stress, inspiring creativ-

ity, and encouraging healthy risk taking. [42, 43] However, arguably Ungrading’s largest

downside is that the instructor may not have time to provide personalized feedback to all

students. Fortunately, an intrinsic attribute of software, (such as HDL implementations),

is that code quality and correctness can be run with automatic, subjective computer al-

gorithms. Therefore, by implementing autograders, Verilog educators can easily tap into

this pedagogical insight, offering students a more effective way to grasp digital design

principles.

6.2 Autograders can run remotely without complex local-setup.

When instructing students on crafting Verilog code that maintains accurate synthesiz-

ability across various platforms, it is essential to follow the industry standard of verifying

a design with a wide selection of tools. Autograders streamline this process, making it ac-

cessible and efficient for students to perform comprehensive testing without the need for

local installation. For example, the autograders that I created for ECE 152A, 154A, and

154B would consistently use anywhere from 6 to 10 different tools, sometimes requiring

complex installation and setup procedures. Expecting students to complete these setup

procedures is often tedious and counterproductive. Therefore, simply giving students

access to a fully prepared autograder can remove the setup barrier completely.

As mentioned, an autograder test suite that closely mirrors industry quality should

30

Autograders Chapter 6

follow all the verification steps demonstrated in Figure 1.1. First, it is important to run

behavioral simulations with multiple tools such as Icarus, which supports propagation

of unknown (x) values, and simulation with Verilator, which has stronger restrictions on

bad syntax. Only by passing simulations with both tools should the autograder grant full

points. Furthermore, code linters such as Verilator and Verible can ensure adherence to

essential coding standards and practices, checking for issues like latches in always_comb

blocks, correct use of blocking and non-blocking assignments, net-width discrepancies,

and more. Considering that the frontends of tools do not always offer helpful warnings,

this detailed syntax checking from Verilator and Verible is invaluable for students when

fixing otherwise cryptic issues. Then, to deploy SystemVerilog synthesis with open-source

tools, Yosys and Nextpnr must be paired with a frontend such as Surelog or zachjs/sv2v.

The Yosys synthesis and Nextpnr layout process can verify if students are using too

many logic cells, if their design is too slow, or if their design infers prohibited logic cells.

As a final post-synthesis step, Icarus can be run one final time on the Yosys output to

initiate a gate-level simulation (GLS) with unknown value propagation, and Yosys EQY

can be run to perform logical equivalence checking (LEC). All of these features1 have

been successfully implemented in autograders for ECE 152A, 154A, and 154B.

6.3 “For-fun” leaderboards can excite and inspire students.

Aside from a grade assigned by the autograder, another form of feedback can be

provided through a class leaderboard. Students can see how their submission compares

to the rest of the class on statistics such as logic cell usage, max clock frequency, or

branch predictor hit percentage (see Figure 6.1). Since the leaderboards in ECE 152A

and 154B did not count towards any points, students really enjoyed seeing how each of

1Inclusion of LEC with EQY into an autograder remains outstanding due to time constraints during
the project’s development.

31

Autograders Chapter 6

Leaderboard Search

 Rank  Submission Name  Logic Cell Count  CLK Frequency (MHz)

1 Student A 13 626.57

2 Instructor 14 474.38

2 Student B 14 474.38

4 Student C 18 318.17

4 Student D 18 318.17

4 Student E 18 318.17

4 Student F 18 318.17

1 Next



Figure 6.1: Example of a Gradescope leaderboard for a counter lab (same lab as in
Figure 6.2). Student designs were ranked on cell usage and maximum frequency as
calculated by Yosys and Nextpnr-ice40. (Student names have been obfuscated for
privacy reasons).

their designs compared to their peers’ designs, then would try to beat their friends for

bragging rights. Because of this, I added leaderboards to every assignment that I could.

However, it is important to clarify to students that code readability should be prioritized

over moving up in the leaderboard by saving 1-2 logic cells. However, because autograders

running purely open-source tools must only rely on Yosys and ABC for synthesis, students

may be incorrectly rewarded for submissions that are not well-optimized for other more

prevalent synthesis tools such as Design Compiler or Vivado (similar to Section 3.2). This

was a rare edge case that only visibly affected 1 submission (Figure 6.2) across the 600+

leaderboard submissions I saw, but it is still important to monitor in students. Overall,

creating assignment leaderboards was a great way to increase student enthusiasm without

bringing additional stress or responsibilities.

32

Autograders Chapter 6

// Assignment: Create a counter with a direction flag

// student submission (13 logic cells)

always_comb begin

for (int i = 0; i<WIDTH; i++) begin

// logic here is to toggle if counting up and lowerbits = max

// or counting down and lowerbits = 0

lower_mask = (1<<i) - 1;

count_d[i] =

count_q[i] ^ (~dir_i & (count_q & lower_mask) == lower_mask |

dir_i & (count_q & lower_mask) == 0);

end

end

// teacher solution (14 logic cells)

always_comb begin

count_d = count_q + ((dir_i) ? -1 : 1);

end

Figure 6.2: A ECE 152A student drastically reduced their code’s readability and
transferability in order to save 1 logic cell over the teacher solution (same assignment
as in Figure 6.1).

6.4 Autograders can foster community and collaboration.

In ECE 152A, students discussed their challenges, insights, and strategies with peers,

creating a collective learning environment. Since each student had a clear goal of “pass-

ing all the tests”, we saw students combine strategies and knowledge with confidence.

Plus, ungraded leaderboards offered a fun but optional way for students to collaborate

in friendly competitions. Communal engagement not only strengthens individual under-

standing, but also enriches the overall learning ecosystem. By integrating autograders,

students experience a much more positive learning environment while still being provided

critical skills and insights for their future engineering endeavors.

33

Chapter 7

Labs with CVA6 Project

Standing as a culmination of all the Verilog education philosophies described in this thesis

is a set of assignments I designed under the project label “Labs with CVA6”. By drawing

on my experiences from my time at Intel, my contributions to open-source projects, and

interactions with industry contacts, I wrote four labs that aimed to give students practical

experience with advanced computer architecture concepts. Each lab is centered around

the fully featured RISC-V core CVA6 [37], which is perfect for advanced architecture

education due to its 6-stage pipeline, dynamic branch predictor, L1 cache, scoreboard

unit, and virtual memory support (see Figure 7.1). The labs presented students with a

unique chance to engage with a fully-featured and transparent RISC-V core. This hands-

on interaction facilitated a deeper comprehension of important architectural principles

while also enhancing their ability to work with large and complex SystemVerilog designs.

These labs are available for free under the BSD-3-Clause license [27].

34

Labs with CVA6 Project Chapter 7

ID EX

Decoder

Compressed
Decoder

Is
su

e

Reg�le
Read

LSU

Multiplier

CSR
Write

Reg�le
Write

Sc
or

eb
oa

rd

commit

Commit

DTLB

PTW

EP
C

CA
U

SE
V

Instruction Queue

Mispredict

to
 c

ac
he

 c
on

tr
ol

le
r

tim
er

ex
te

rn
al

 in
te

rr
up

t u
ni

t

Branch

Controller

In-order
Architechtural
Commit

in
te

rr
up

t

Backend

In-order Issue OoO WB

fr
om

 D
ec

od
er

Issue

Scoreboard

EP
C

CA
U

SE
V

Re-
aligner

Privilege Check

Exception

ALU

CSR Bu�er

Branch Unit

Frontend

PC
Select

4

npc

epc
mtvec

epc

Speculative Regime

Frontend

fr
om

 M
M

U

I$

In
st

r S
ca

n

instr

32

branch?

call/ret?

taken?

imm

PC

ITLB

CSR
Write

BHT

BTB

RAS

D$

Figure 7.1: CVA6 Block Diagram provided by the core documentation [37]. Students
spend the Branch Prediction and Out-of-Order labs studying each of the 6 stages:
“PC Generation”, “Instruction Fetch”, “Instruction Decode”, “Issue”, “Execute”,
“Commit.”

7.1 These labs provide hands-on exploration of architectural concepts.

“Labs with CVA6” consists of four labs covering branch prediction, caching, out-of-

order, and virtual memory. The Branch Prediction Lab guides students in modifying

the CVA6 testbench to display hit rate results and in adapting the CVA6 branch pre-

diction unit RTL into a global predictor (see Figure 7.2). Similarly, the Caching Lab

asks students to write RTL for a victim-cache module, then requests the creation of as-

sembly scripts that demonstrate CVA6’s cache hierarchies and memory management (see

Figure 7.3). Then moving away from custom RTL, in the Out-of-Order Lab, students

further practice writing assembly to test their comprehension of out-of-order execution

35

Labs with CVA6 Project Chapter 7

BHT

Gshare
or

Gselect

Predict index

Prediction

Update index

Resolution

Update PC GHR Predict PC

Figure 7.2: Block diagram of the Global Two-Level Branch Predictor Design featured
in “Labs with CVA6”. Participants are tasked with transforming CVA6’s branch
predictor into a more-sophisticated global predictor, enhancing the processor’s per-
formance by improving branch hit-rate for specifically designed benchmarks [27].

(see Figure 7.4). Finally, the Virtual Memory Lab enables students to configure privilege

modes and add page-table entries by modifying a provided bootloader and OS (see Fig-

ure 7.5). Based on ECE 154B student responses and post-lab discussions, it was evident

that the practical insights offered by these labs substantially deepen understanding of

the concepts. The openness of CVA6’s source code was pivotal to the labs’ success, as it

granted students the opportunity to interact with every implementation detail and fea-

ture of the core. By studying open-source hardware designs, students can gain valuable

and distinctive insights that traditional textbooks simply cannot provide.

36

Labs with CVA6 Project Chapter 7

// DLL Structure //

// MRU - ... - way.mru - way - way.lru - ... - LRU //

typedef logic [$clog2(NR_ENTRIES)-1:0] way_index_t;

struct packed {

logic [TAG_SIZE-1:0] tag;

way_index_t lru; // less recently used

way_index_t mru; // more recently used

logic valid;

} dll_d[NR_ENTRIES], dll_q[NR_ENTRIES];

// lru register

way_index_t lru_d, lru_q, mru_d, mru_q;

// index to bump

way_index_t read_index, write_index;

// separate the data from the dll help with optimization

logic [LINE_WIDTH-1:0] data_d[NR_ENTRIES], data_q[NR_ENTRIES];

Figure 7.3: Snippet of “Labs with CVA6”’s Cache Lab starter code [27]. This lab
focuses on implementing a victim cache with LRU replacement policy to improve hit
rate when CVA6 is configured with a direct-mapped cache. Participants are expected
to use modern SystemVerilog typedef and struct constructs.

37

Labs with CVA6 Project Chapter 7

No data hazards

div t2, t0, t1; # Takes 25 cycles

fsqrt.s f1, f1; # Takes 1 cycle

lw t5, 0(s1); # Takes 1 cycle
(a) RISC-V assembly that demonstrates out-of-order execution.

(b) Screenshot of WaveForm. (Note: this figure omits redundant cycles to improve readability).

Figure 7.4: Out-of-Order Demonstration with CVA6: FPU and LSU finish before
MULT [44]. In the Out-of-Order lab, participants are asked to write an assembly
program to demonstrate code with and without different data-hazards.

38

Labs with CVA6 Project Chapter 7

(a) Diagram provided to students to illustrate transitioning between privilege modes (from
“RISC-V Bytes: Privilege Levels” by Daniel Mangum [45])

(b) Page table diagram of provided OS (student submission)

Figure 7.5: The Virtual Memory Lab aids students in understanding concepts such as
physical vs. virtual memory, page tables, privilege levels, and trap handling in RISC-V
architecture.

39

Labs with CVA6 Project Chapter 7

7.2 There is high demand for hands-on learning experiences.

Because “Labs with CVA6” is available under the BSD-3-Clause license, it has attracted

attention from many non-ECE 154B audiences including instructors seeking to enrich

their own architecture courses, researchers aiming to familiarize themselves with the

specifics of CVA6, and SystemVerilog beginners eager to learn best practices. In addition,

I gave a well-appreciated talk about “Labs with CVA6” at “Latch-Up”, a conference

hosted by The Free and Open Source Silicon Foundation [44]. During my presentation,

I expressed the practical and unique skills that students acquire through studying the

code of well-verified, open-source designs. This resonated deeply with several attendees,

notably Rick O’Connor, the President and CEO at OpenHW Group, who notified me of

the new OpenHW Group RISC-V core, CV-Wally [46], that is designed as a supplemental

codebase for the upcoming textbook, “RISC-V System-on-Chip Design”. The popularity

that “Labs with CVA6” has seen, and the recent creation of CV-Wally shows that there

is strong demand for curriculums that offer transparency on implementation methods of

real-world designs.

40

Chapter 8

Potential Applications in Other
Classes

So far, this thesis has described approaches that could significantly benefit courses in

introductory Verilog, digital design, and computer architecture. However, Verilog edu-

cation stands to gain much more from open-source and publicly available resources. In

this short section, I will summarize potential ways that open-source resources could be

used in other advanced courses.

8.1 “Verification with UVM and SVA”

Verification is an enormous aspect of chip design, so teaching students the principles

of Universal Verification Methodology (UVM) and SystemVerilog Assertions (SVA) can

be of paramount value in industry preparation. Courses like North Carolina State Uni-

versity’s ECE 748: “Advanced Verification with UVM” have seen large popularity as

companies are in constant demand for well-trained verification engineers. As of 9/17/23,

Verilator has limited compatibility with UVM and SVA, but is getting closer to full sup-

port every day [39, 40, 41]. If full UVM and SVA functionality is required, the open-source

build-manager FuseSoC can provide an accessible CLI for proprietary tools, lowering the

learning curve. Additionally, adopting a comprehensive Design Verification (DV) style

41

Potential Applications in Other Classes Chapter 8

guide and testbench linter can ensure that students continue following best practices

when working on verification tasks. Notably, lowRISC has a popular and thorough UVM

and SystemVerilog DV feature style-guide [28], and PySlint was advertised as a testbench

linter at ORConf 2023 [47].

8.2 “Embedded Systems and SoC Design”

Embedded systems and SoC design courses can leverage a plethora of open-source, high-

speed IP blocks that are commonly used in FPGA designs. There are many popular

open-source designs for HDMI [48, 49, 50], Ethernet [51], PCIe [52, 53], AXI [54, 55],

and more. An educator could provide a similar experience to my “Labs with CVA6”

project by teaching students the inner-workings of advanced serial communication mod-

ules. Proficiency in high-speed interfaces is highly sought after in industry positions, so

a course of this style could be highly beneficial for students.

8.3 “ASIC and VLSI Projects”

For courses focusing on Application-Specific Integrated Circuits (ASICs), open-source

resources become critical. Licensing and signing Non-Disclosure Agreements for pro-

prietary PDKs are often impractical or time-consuming for instructors, limiting course

opportunities. Fortunately, initiatives like the OpenROAD Project and the SkyWater

PDK (SKY130) offer students access to fully-featured ASIC flows. UC Berkeley’s EE

194: “The Tapeout Class” utilized Hammer and OpenROAD to offer students the op-

portunity to tape out an SoC in a semester [56]. Moreover, affordable SKY130 fabrication

opportunities like Tinytapeout (160 µm × 100 µm for $100) [57] and Google MPW lottery

(2920 µm × 3520 µm for free) [58] enable students to take their designs from simulation

to real-world fabrication, providing a hands-on experience of the ASIC design process.

42

Chapter 9

Conclusion

Universities should be working to lower the barrier of entry into SystemVerilog design.

Throughout this thesis, several critical challenges in Verilog/SystemVerilog education

have been addressed and resolved, contributing to the enhancement of the learning ex-

perience for students. These issues encompassed a range of areas, and the solutions put

forward have had a significant impact.

• Synthesizable vs. Verification Features: A critical issue in Verilog education

lies in distinguishing between synthesizable and verification features. This thesis

has addressed this concern through multiple avenues. Using netlist graph viewers

like DigitalJS Online, which enables students to visualize the synthesis process,

helps visually demonstrate what constructs lead to valid netlists. Additionally,

style guides like from the lowRISC Organization and linters such as Verilator docu-

ment best practices for writing synthesizable code. Finally, autograders can provide

immediate, personalized feedback to students on whether their code is both behav-

iorally correct and synthesizable.

• Prevalence of Bugs in Common HDL Tools: Common Verilog and SystemVer-

ilog tools often suffer from bugs when using lesser-used features. To mitigate this,

style guides and linters should be used to teach students the best syntax and strate-

43

Conclusion Chapter 9

gies for avoiding common pitfalls. Autograders can also play a pivotal role by seam-

lessly testing student code across a multitude of tools. If a submission passes tests

for several tools, it is much more likely that it will work properly for all tools.

• Inaccessibility of Proprietary Tools: The reliance on proprietary tools in Ver-

ilog education has been a barrier to accessibility for many beginners. Open-source

tools highlighted in this work present a solution by being cost-free, easier to in-

stall, and more user-friendly. This shift towards open-source tools enhances equity

in education and industry and enables a broader spectrum of engineers to engage

effectively with Verilog.

• The Lack of Reliable Educational Resources: There is a shortage of reliable

educational resources in Verilog/SystemVerilog. In this thesis, a comprehensive list

of resources has been provided in Chapter 4, serving as a valuable reference for

both instructors and students. These resources cover a range of use-cases and are

designed to support a deeper understanding of synthesizable Verilog.

• Interdisciplinary Nature of Chip Design: Verilog and SystemVerilog educa-

tion must acknowledge the interdisciplinary nature of chip design, involving both

software and hardware components. This thesis emphasizes the importance of ded-

icating time to teaching software essential skills like Git version control and code

scalability. Furthermore, I have described that DigitalJS Online should be used to

create a stronger connection between Verilog code and hardware circuits, helping

bridge the gap between hardware and software.

In light of the rapidly evolving landscape of open-source hardware, there is a pressing

need for more universities and educators to modernize their digital design and computer

architecture curriculums. Students deserve a curriculum that not only imparts technical

44

Conclusion Chapter 9

knowledge but also inspires them to explore the field further. By incorporating elements

like open-source tools, hands-on projects, and interactive platforms, educators can make

Verilog education more engaging and appealing to a broader range of students. Further-

more, as demonstrated by the inclusion of “for-fun” leaderboards and “Ungrading” with

autograders, fostering a collaborative and vibrant environment can help create a more

valuable and enthusiastic learning experience. Institutions should be urged to reevaluate

and revamp their Verilog courses to provide students with a more exciting and fulfilling

educational experience, ultimately preparing them for the challenges and opportunities

in the ever-evolving world of digital design and computer architecture.

45

Appendix A

Open-source Contributions

This appendix identifies several open-source issues and contributions I have made. Most

of the contributions in this appendix are related to my efforts as an HDL educator.

A.1 Open-source issues and contributions created by me

olofk/fusesoc#645: Improved inheritance elaboration

verilator/verilator#4409: Check for conflicting options e.g. --binary and --lint-only

olofk/edalize#389: Added support for additional Verilator modes

Rain92/FPGA-Mandelbrot#1: Fixed build issues

lowRISC/style-guides#66: Prohibit functions from using non-local references

steveicarus/iverilog#980: Argumentless functions fix

verilator/verilator#4172: Added NEWERSTD warning

openhwgroup/cva6#1142: Improved Acronym List in Glossary

A.2 Open-source issues created by my students for my classes

YosysHQ/oss-cad-suite-build#28: nextpnr-gowin support requested

46

https://github.com/olofk/fusesoc/pull/645
https://github.com/verilator/verilator/pull/4409
https://github.com/olofk/edalize/pull/389
https://github.com/Rain92/FPGA-Mandelbrot/pull/1
https://github.com/lowRISC/style-guides/pull/66
https://github.com/steveicarus/iverilog/pull/980
https://github.com/verilator/verilator/pull/4172
https://github.com/openhwgroup/cva6/pull/1142
https://github.com/YosysHQ/oss-cad-suite-build/issues/28

Appendix B

Style Guide Survey

This appendix identifies several prominent Verilog and SystemVerilog style guides.

B.1 lowRISC Verilog Coding Style Guide

• https://github.com/lowRISC/style-guides [28]

• Projects that use lowRISC Verilog Coding Style Guide:

– lowRISC: Ibex RISC-V Core [59]

– lowRISC: OpenTitan RISC-V Core [60]

– OpenHW Group: CV32E40P RISC-V Core [61]

– OpenHW Group: CVA6 RISC-V Core [37]

– OpenHW Group: FPnew Floating-Point Unit [62]

– PULP Platform: Ara Vector Unit [63]

– PULP Platform: MemPool Many-Core System [64]

47

https://github.com/lowRISC/style-guides

Style Guide Survey Chapter B

B.2 BSG System Verilog Coding Standards

• https://docs.google.com/document/d/1xA5XUzBtz_D6aSyIBQUwFk_kSUdckrfxa2uzGjMgmCU [29]

• Projects that use BSG System Verilog Coding Standards:

– Bespoke Silicon Group: BlackParrot RISC-V Core [65]

– Bespoke Silicon Group: BaseJump Standard Template Library [66]

B.3 Company-Provided Style Guides

• Xilinx – HDL Coding Techniques [30]

• Intel – Recommended HDL Coding Styles [31]

• Lattice – HDL Coding Guidelines [32]

• Freescale – Verilog HDL Coding [67]

B.4 Miscellaneous Style Guides

• RSD RISC-V Core – Coding conventions [68]

• VeriGPU – Coding guidelines [69]

48

https://docs.google.com/document/d/1xA5XUzBtz_D6aSyIBQUwFk_kSUdckrfxa2uzGjMgmCU

References

[1] J. Badlam, S. Clark, S. Gajendragadkar, A. Kumar, S. O’Rourke, and D. Swartz,
“The CHIPS and Science Act: Here’s what’s in it.”
https://www.mckinsey.com/industries/public-sector/our-insights/the-

chips-and-science-act-heres-whats-in-it, October, 2022. [Accessed
18-09-2023].

[2] L. Wang, “TSMC says three fabs to start production in 2024.”
https://www.taipeitimes.com/News/biz/archives/2022/08/31/2003784445,
August, 2022. [Accessed 18-09-2023].

[3] rocket55, “Google Partners with SkyWater and Efabless to Enable Open Source
Manufacturing of Custom ASICs.”
https://www.skywatertechnology.com/google-partners-with-skywater-

and-efabless-to-enable-open-source-manufacturing-of-custom-asics/,
November, 2020. [Accessed 18-09-2023].

[4] Google for Developers, “Build your own silicon.”
https://developers.google.com/silicon. [Accessed 18-09-2023].

[5] Kynix, “Detailed Explanation of Chip Design Flow.” https:

//www.kynix.com/Blog/Detailed-Explanation-of-Chip-Design-Flow.html,
December, 2017. [Accessed 18-09-2023].

[6] Intel, “Intel® Stratix® 10 Device Design Guidelines.” https://www.intel.com/

content/www/us/en/docs/programmable/683738/current/design-flow.html,
August, 2022. [Accessed 18-09-2023].

[7] Anysilicon, “ASIC Design Flow – The Ultimate Guide.”
https://anysilicon.com/asic-design-flow-ultimate-guide/. [Accessed
18-09-2023].

[8] A. Olofsson, “Awesome Open-Source Hardware: List of awesome open source
hardware tools, generators, and reusable designs.”
https://github.com/aolofsson/awesome-opensource-hardware. [Accessed
18-09-2023].

49

https://www.mckinsey.com/industries/public-sector/our-insights/the-chips-and-science-act-heres-whats-in-it
https://www.mckinsey.com/industries/public-sector/our-insights/the-chips-and-science-act-heres-whats-in-it
https://www.taipeitimes.com/News/biz/archives/2022/08/31/2003784445
https://www.skywatertechnology.com/google-partners-with-skywater-and-efabless-to-enable-open-source-manufacturing-of-custom-asics/
https://www.skywatertechnology.com/google-partners-with-skywater-and-efabless-to-enable-open-source-manufacturing-of-custom-asics/
https://developers.google.com/silicon
https://www.kynix.com/Blog/Detailed-Explanation-of-Chip-Design-Flow.html
https://www.kynix.com/Blog/Detailed-Explanation-of-Chip-Design-Flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683738/current/design-flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683738/current/design-flow.html
https://anysilicon.com/asic-design-flow-ultimate-guide/
https://github.com/aolofsson/awesome-opensource-hardware

[9] S. Williams, “Icarus Verilog.” https://github.com/steveicarus/iverilog.
[Accessed 18-09-2023].

[10] W. Snyder, “Verilator: open-source SystemVerilog simulator and lint system.”
https://github.com/verilator/verilator. [Accessed 18-09-2023].

[11] R. Fuest, “GTKWave is a fully featured GTK+ based wave viewer for Unix and
Win32 which reads LXT, LXT2, VZT, FST, and GHW files as well as standard
Verilog VCD/EVCD files.” https://github.com/gtkwave/gtkwave. [Accessed
18-09-2023].

[12] YosysHQ, “Yosys Open SYnthesis Suite.” https://github.com/YosysHQ/yosys.
[Accessed 18-09-2023].

[13] YosysHQ, “Nextpnr: portable FPGA place and route tool.”
https://github.com/YosysHQ/nextpnr. [Accessed 18-09-2023].

[14] “Verilog to Routing – Open Source CAD Flow for FPGA Research.”
https://github.com/verilog-to-routing/vtr-verilog-to-routing.
[Accessed 18-09-2023].

[15] M. Shalan and T. Edwards, Building OpenLANE: A 130nm OpenROAD-based
Tapeout- Proven flow : Invited paper, in 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pp. 1–6, 2020.
https://github.com/The-OpenROAD-Project/OpenLane.

[16] O. Kindgren, “FuseSoC: Package manager and build abstraction tool for
FPGA/ASIC development.” https://github.com/olofk/fusesoc. [Accessed
18-09-2023].

[17] O. Kindgren, “Edalize: An abstraction library for interfacing EDA tools.”
https://github.com/olofk/edalize. [Accessed 18-09-2023].

[18] A. Olofsson, “Goodbye Make, Hello SiliconCompiler!.”
https://youtu.be/GM9PKAfTlmQ, 2023. Latch-Up.

[19] u/[deleted], “Modelsim and Questa license price: Too expensive?.”
https://www.reddit.com/r/FPGA/comments/c8z1x9/modelsim_and_questa_

license_price_too_expensive/, July, 2019. [Accessed 18-09-2023].

[20] YosysHQ, “OSS CAD Suite: Multi-platform nightly builds of open source digital
design and verification tools.”
https://github.com/YosysHQ/oss-cad-suite-build. [Accessed 18-09-2023].

[21] D. Richmond, “So, you want to be an open sourcerer?.”
https://youtu.be/-rXgQxWRKIg, 2023. Latch-Up.

50

https://github.com/steveicarus/iverilog
https://github.com/verilator/verilator
https://github.com/gtkwave/gtkwave
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/nextpnr
https://github.com/verilog-to-routing/vtr-verilog-to-routing
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/olofk/fusesoc
https://github.com/olofk/edalize
https://youtu.be/GM9PKAfTlmQ
https://www.reddit.com/r/FPGA/comments/c8z1x9/modelsim_and_questa_license_price_too_expensive/
https://www.reddit.com/r/FPGA/comments/c8z1x9/modelsim_and_questa_license_price_too_expensive/
https://github.com/YosysHQ/oss-cad-suite-build
https://youtu.be/-rXgQxWRKIg

[22] M. Materzok, “DigitalJS Online.” https://digitaljs.tilk.eu/. [Accessed
18-09-2023].

[23] IEEE, IEC/IEEE International Standard - Verilog(R) Register Transfer Level
Synthesis, IEC 62142-2005 First edition 2005-06 IEEE Std 1364.1 (2005).
doi:10.1109/IEEESTD.2005.339572.

[24] S. Sutherland and D. Mills, Synthesizing SystemVerilog: Busting the Myth that
SystemVerilog is only for Verification, March, 2013. Synopsys Users Group
(SNUG) Silicon Valley conference, Santa Clara, California.

[25] IEEE, IEEE Standard for Systemverilog–Unified Hardware Design, Specification,
and Verification Language, IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012)
(2018). doi:10.1109/IEEESTD.2018.8299595.

[26] CHIPS Alliance, “SystemVerilog Test Report.”
https://chipsalliance.github.io/sv-tests-results/. [Accessed 19-09-2023].

[27] E. Sifferman, “Labs with CVA6.”
https://github.com/sifferman/labs-with-cva6. [Accessed 18-09-2023].

[28] lowRISC, “lowRISC Style Guides.”
https://github.com/lowRISC/style-guides/tree/master. [Accessed
19-09-2023].

[29] M. Taylor and The Bespoke Silicon Group, “BSG SystemVerilog Coding
Standards.” https://docs.google.com/document/d/1xA5XUzBtz_

D6aSyIBQUwFk_kSUdckrfxa2uzGjMgmCU/. [Accessed 19-09-2023].

[30] Xilinx, “HDL Coding Techniques.” https://docs.xilinx.com/r/en-US/ug901-

vivado-synthesis/HDL-Coding-Techniques. [Accessed 19-09-2023].

[31] Intel, “Intel® Quartus® Prime Pro Edition User Guide: Design
Recommendations.”
https://www.intel.com/content/www/us/en/docs/programmable/683082/23-

1/recommended-hdl-coding-styles.html. [Accessed 19-09-2023].

[32] Lattice, “HDL Coding Guidelines.”
https://www.latticesemi.com/~/media/LatticeSemi/Documents/

UserManuals/EI/HDLcodingguidelines.PDF?document_id=48203. [Accessed
19-09-2023].

[33] CHIPS Alliance, “Verible: SystemVerilog parser, style-linter, formatter and
language server.” https://github.com/chipsalliance/verible. [Accessed
18-09-2023].

51

https://digitaljs.tilk.eu/
https://doi.org/10.1109/IEEESTD.2005.339572
https://doi.org/10.1109/IEEESTD.2018.8299595
https://chipsalliance.github.io/sv-tests-results/
https://github.com/sifferman/labs-with-cva6
https://github.com/lowRISC/style-guides/tree/master
https://docs.google.com/document/d/1xA5XUzBtz_D6aSyIBQUwFk_kSUdckrfxa2uzGjMgmCU/
https://docs.google.com/document/d/1xA5XUzBtz_D6aSyIBQUwFk_kSUdckrfxa2uzGjMgmCU/
https://docs.xilinx.com/r/en-US/ug901-vivado-synthesis/HDL-Coding-Techniques
https://docs.xilinx.com/r/en-US/ug901-vivado-synthesis/HDL-Coding-Techniques
https://www.intel.com/content/www/us/en/docs/programmable/683082/23-1/recommended-hdl-coding-styles.html
https://www.intel.com/content/www/us/en/docs/programmable/683082/23-1/recommended-hdl-coding-styles.html
https://www.latticesemi.com/~/media/LatticeSemi/Documents/UserManuals/EI/HDLcodingguidelines.PDF?document_id=48203
https://www.latticesemi.com/~/media/LatticeSemi/Documents/UserManuals/EI/HDLcodingguidelines.PDF?document_id=48203
https://github.com/chipsalliance/verible

[34] dalance, “dalance/svlint: SystemVerilog linter.”
https://github.com/dalance/svlint. [Accessed 18-09-2023].

[35] D. K. Tala and ASIC World, “Verilog Examples.”
https://www.asic-world.com/examples/verilog/, 2014. [Accessed 19-09-2023].

[36] ChipDev, “ChipDev.” https://chipdev.io/. [Accessed 19-09-2023].

[37] OpenHW Group, “CVA6 is an Application class 6-stage RISC-V CPU capable of
booting Linux.” https://github.com/openhwgroup/cva6. [Accessed 19-09-2023].

[38] Z. Snow, “zachjs/sv2v: SystemVerilog to Verilog conversion.”
https://github.com/zachjs/sv2v. [Accessed 19-09-2023].

[39] W. Snyder, “Support full UVM -cc code generation – Verilator Issue #1538.”
https://github.com/verilator/verilator/issues/1538. [Accessed
19-09-2023].

[40] K. Bieganski, “Open source design testing and verification with UVM and
Verilator.” https://youtu.be/2zOmpArtdH4, 2023. ORConf.

[41] Divya2030 and W. Snyder, “Limited Support for SystemVerilog Assertions (SVA)
– Verilator Issue #4425.”
https://github.com/verilator/verilator/issues/4425. [Accessed
19-09-2023].

[42] A. Kohn and S. D. Blum, Ungrading: Why Rating Students Undermines Learning
(and What to Do Instead) (Teaching and Learning in Higher Education). West
Virginia University Press, 2020.

[43] S. Blum, “The significant learning benefits of getting rid of grades.”
https://www.insidehighered.com/advice/2017/11/14/significant-

learning-benefits-getting-rid-grades-essay, November, 2017.

[44] E. Sifferman, “Using CVA6 in Architecture Education.”
https://youtu.be/6cvJfdh5msQ, 2023. Latch-Up.

[45] D. Mangum, “RISC-V Bytes: Privilege Levels.”
https://danielmangum.com/posts/risc-v-bytes-privilege-levels/,
December, 2021. [Accessed 20-09-2023].

[46] OpenHW Group, “CORE-V Wally is a configurable RISC-V Processor associated
with RISC-V System-on-Chip Design textbook..”
https://github.com/openhwgroup/cvw. [Accessed 18-09-2023].

[47] S. S. Paul, “SystemVerilog Testbench linting with open-source.”
https://youtu.be/ypOh9rCRypI, 2023. ORConf.

52

https://github.com/dalance/svlint
https://www.asic-world.com/examples/verilog/
https://chipdev.io/
https://github.com/openhwgroup/cva6
https://github.com/zachjs/sv2v
https://github.com/verilator/verilator/issues/1538
https://youtu.be/2zOmpArtdH4
https://github.com/verilator/verilator/issues/4425
https://www.insidehighered.com/advice/2017/11/14/significant-learning-benefits-getting-rid-grades-essay
https://www.insidehighered.com/advice/2017/11/14/significant-learning-benefits-getting-rid-grades-essay
https://youtu.be/6cvJfdh5msQ
https://danielmangum.com/posts/risc-v-bytes-privilege-levels/
https://github.com/openhwgroup/cvw
https://youtu.be/ypOh9rCRypI

[48] S. Puri, “Send video/audio over HDMI on an FPGA.”
https://github.com/hdl-util/hdmi. [Accessed 19-09-2023].

[49] W. Green, “FPGA display controller with support for VGA, DVI, and HDMI..”
https://github.com/projf/display_controller. [Accessed 19-09-2023].

[50] C. Wolf, “SimpleVOut: A Simple FPGA Core for Creating
VGA/DVI/HDMI/OpenLDI Signals.”
https://github.com/cliffordwolf/SimpleVOut. [Accessed 19-09-2023].

[51] A. Forencich, “Verilog Ethernet components for FPGA implementation.”
https://github.com/alexforencich/verilog-ethernet. [Accessed 19-09-2023].

[52] A. Forencich, “Verilog PCI express components.”
https://github.com/alexforencich/verilog-pcie. [Accessed 19-09-2023].

[53] enjoy-digital, “Small footprint and configurable PCIe core.”
https://github.com/enjoy-digital/litepcie. [Accessed 19-09-2023].

[54] PULP Platform, “AXI SystemVerilog synthesizable IP modules and verification
infrastructure for high-performance on-chip communication.”
https://github.com/pulp-platform/axi. [Accessed 19-09-2023].

[55] A. Forencich, “Verilog AXI components for FPGA implementation.”
https://github.com/alexforencich/verilog-axi. [Accessed 19-09-2023].

[56] J. Zhao, “Tapeout-in-a-Semester: The Organization of Berkeley’s Tapeout
Course.” https://youtu.be/slIVkBrkgaM, 2023. Latch-Up.

[57] M. Venn, “Tiny Tapeout.” https://tinytapeout.com/. [Accessed 19-09-2023].

[58] Efabless, “Caravel User Project.”
https://platform.efabless.com/design_catalog/asic_platform/174.
[Accessed 19-09-2023].

[59] lowRISC, “Ibex.” https://github.com/lowRISC/ibex. [Accessed 18-09-2023].

[60] lowRISC, “OpenTitan.” https://github.com/lowRISC/opentitan. [Accessed
18-09-2023].

[61] OpenHW Group, “CV32E40P.” https://github.com/openhwgroup/cv32e40p.
[Accessed 18-09-2023].

[62] OpenHW Group, “FPnew Floating-Point Unit.”
https://github.com/openhwgroup/cvfpu. [Accessed 18-09-2023].

53

https://github.com/hdl-util/hdmi
https://github.com/projf/display_controller
https://github.com/cliffordwolf/SimpleVOut
https://github.com/alexforencich/verilog-ethernet
https://github.com/alexforencich/verilog-pcie
https://github.com/enjoy-digital/litepcie
https://github.com/pulp-platform/axi
https://github.com/alexforencich/verilog-axi
https://youtu.be/slIVkBrkgaM
https://tinytapeout.com/
https://platform.efabless.com/design_catalog/asic_platform/174
https://github.com/lowRISC/ibex
https://github.com/lowRISC/opentitan
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cvfpu

[63] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, Ara: A 1-ghz+
scalable and energy-efficient risc-v vector processor with multiprecision
floating-point support in 22-nm fd-soi, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 28 (2020), no. 2 530–543.

[64] M. Cavalcante, S. Riedel, A. Pullini, and L. Benini, MemPool: A shared-L1
memory many-core cluster with a low-latency interconnect, in 2021 Design,
Automation, and Test in Europe Conference and Exhibition (DATE), (Grenoble,
FR), pp. 701–706, March, 2021. doi:10.23919/DATE51398.2021.9474087.

[65] D. Petrisko, F. Gilani, M. Wyse, C. D. Jung, S. Davidson, P. Gao, C. Zhao,
Z. Azad, S. Canakci, B. Veluri, T. Guarino, J. A. Joshi, M. Oskin, and M. B.
Taylor, “BlackParrot: An Agile Open Source RISC-V Multicore for Accelerator
SoCs.” doi:10.1109/MM.2020.2996145. IEEE Micro Special Issue on Agile and
Open-Source Hardware, July/August.

[66] Bespoke Silicon Group, “BaseJump Standard Template Library.”
https://github.com/bespoke-silicon-group/basejump_stl. [Accessed
18-09-2023].

[67] Freescale Semiconductor, “Freescale Verilog HDL Coding.”
https://michaeltaylor.org/edu/papers/FreescaleVerilog.pdf. [Accessed
20-09-2023].

[68] RSD, “RSD Coding conventions.”
https://github.com/rsd-devel/rsd/wiki/en-devel-coding-convention.
[Accessed 20-09-2023].

[69] H. Perkins, “VeriGPU Coding guidelines.” https:

//github.com/hughperkins/VeriGPU/blob/main/docs/coding_guidelines.md.
[Accessed 20-09-2023].

54

https://doi.org/10.23919/DATE51398.2021.9474087
https://doi.org/10.1109/MM.2020.2996145
https://github.com/bespoke-silicon-group/basejump_stl
https://michaeltaylor.org/edu/papers/FreescaleVerilog.pdf
https://github.com/rsd-devel/rsd/wiki/en-devel-coding-convention
https://github.com/hughperkins/VeriGPU/blob/main/docs/coding_guidelines.md
https://github.com/hughperkins/VeriGPU/blob/main/docs/coding_guidelines.md

	Curriculum Vitae
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Advantages of Open-Source Tools in Education
	Proprietary tool prices deter students.
	Open-source tools are easy to install.
	Unique benefits and features of open-source tools.
	Avoid graphical user interfaces.

	Using SystemVerilog for Digital Design Education
	Netlist graph viewers teach Verilog inference intuition.
	Enabling optimizations in netlist graph viewers creates complexity.
	Teaching features that rely on inference is difficult but important.
	HDLs can be abstractions for complex hardware concepts.

	Best Resources for Learning Synthesizable SystemVerilog
	Stuart Sutherland's synthesis guide is most valuable.
	Style guides and linters record synthesizable features and best practices.
	Verilog tutorial websites should be treated cautiously.
	ChipDev.io can be used to practice Verilog (if used effectively).

	Teaching Code Scalability and Development Practices
	SystemVerilog offers many features to aid in code organization.
	Version control should be used in Verilog designs.
	SystemVerilog assertions and in-module verification are important.

	Autograders
	Autograders offer instant, high-quality feedback.
	Autograders can run remotely without complex local-setup.
	"For-fun" leaderboards can excite and inspire students.
	Autograders can foster community and collaboration.

	Labs with CVA6 Project
	These labs provide hands-on exploration of architectural concepts.
	There is high demand for hands-on learning experiences.

	Potential Applications in Other Classes
	"Verification with UVM and SVA"
	"Embedded Systems and SoC Design"
	"ASIC and VLSI Projects"

	Conclusion
	Appendix Open-source Contributions
	Open-source issues and contributions created by me
	Open-source issues created by my students for my classes

	Appendix Style Guide Survey
	lowRISC Verilog Coding Style Guide
	BSG System Verilog Coding Standards
	Company-Provided Style Guides
	Miscellaneous Style Guides

	References

