
UC Irvine
ICS Technical Reports

Title
Pipelined FFT example

Permalink
https://escholarship.org/uc/item/2vq4x8x9

Authors
Grun, Peter
Pan, Wenwei
Bakshi, Smita
et al.

Publication Date
1996-10-04

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2vq4x8x9
https://escholarship.org/uc/item/2vq4x8x9#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Matedil
may be protected
by Copyright Law
(Title 17 U.S.C.)

Pipelined FFT Example

Peter Grun

Wenwei Pan

Smita Bakshi

Daniel D. Gajski

Technical Report #96-45
October 4, 1996

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425
(714) 824-7063

pgrun@ics.uci.edu
wpan@ics.uci.edu

sbakshi@ics.uci.edu

gajski@ics.uci.edu

Abstract

Fourier transform techniques are very popular and practical for DSP applications.
Among them, Discrete Fourier Transform (DFT) and its fast algorithm (FFT) are best
known and most important. In this report, we define two general communication models
and a corresponding handshaking protocol for the FFT chip. We explore multiple design
alternatives using efficient pipelining techniques, and show what algorithm transforma
tions are needed. From this example we derive a methodology for applying the pi|>elining
techniques in a time-constrained formulation. Parameterization for a more general ITT
chip is also discussed.

a
o

^
:g

C
T

3
*

C
5

C
D

I—
in

t-4
-

0_
^

c
:

CT
S

«i
T

,-
->

1
—

•
^•

1
r?

ri
.

SJ
L

S
o

jH
^

c
:::

3
—

d
.

z
i

o

Contents

1 Introduction 3

2 Example Description 3
3 Communication Models 5

3.1 Model 1. Distributed In Distributed Out 5

3.2 Model 2. Burst In Burst Out 5

4 Components Library. 6
5 Pipelining Techniques 6

5.1 Process Pipelining 6
5.2 Loop Body Pipelining 7
5.3 Functional Unit Pipelining 9

6 Datapath and Controller. 11
6.1 Datapath and Controller of FFT Computation 11
6.2 Interface Between the FFT Chip and the Environement 12

7 Parametrization 14

8 Methodology 15
9 Lessons Learned 16

10 Conclusions 16

11 References 17

List of Figures

1 Butterfly operation for FFT. 4
2 Decimation in time FFTflow graph 4
3 FFT dataflow 4
4 Communication models 5

5 Block diagram for FFT chip 5
6 Process pipelining 7
7 Timing diagram for process pipelining 7
8 Loop body pipelining 8
9 Timing diagram for loop body pipelining 9
10 Functional unit pipelining 10
11 Timing diagram for functional unit pipelining 11
12 FFT computation datapath 12
13 Interface between sender and the FFT chip 13
14 Interface between the FFT chip and the receiver 13
15 Timing diagram for receive protocol 14
16 Stage diagram for FFT chip write controller. 14
17 Design methodology 15

List of Tables

1 Components library 6
2 Pipelining exploration for variable length FFT computation 15
3 Pipelining exploration for the 64 point FFTcomputation 16

Pipelined FFT Example

Peter Grun, Wenwei Pan, Smita Bakshi, Daniel D. Gajski
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

Abstract

Fourier transform techniques are very pop
ular and practical for DSP applications.
Among them. Discrete Fourier Transform
(DFT) and its fast algorithm (FFT) are best
known and most important. In this report, we
define two general communication models and
a corresponding handshaking protocol for the
FFT chip. We explore multiple design alterna
tives using efficient pipelining techniques, and
show what algorithm transformations are
needed. From this example we derive a meth
odology for applying the pipelining techniques
in a time-constrained formulation. Parameter

ization for a more general FFT chip is also dis
cussed.

1 Introduction

In most Digital Signal Processing (DSP) appli
cations, performance is a very important char
acteristic. Pipelining is one of the techniques
which can decrease the execution time of a

chip without a significant impact on the cost.

In this report, we give a detailed example
showing how to design pipelined digital sys
tems from behavioral description. The exam
ple is a custom ASIC for Fast Fourier
Transform (FFT), which is used in the many
DSP applications.

Section 2 describes the FFT example, section 3
shows two different communication patterns
and their design implications. In section 4 we
give the components library used throughout

the report. Section 5 discusses different pipe
lining techniques, and section 6 shows the
details of the implementation. Section 7 shows
the advantages and disadvantages of a parame
trized approach. We summarize the design
methodology derived from this example in
section 8, and finally we present the conclu
sions.

2. Example Description.

The mathematical definition for DFT [5] is:
N~\

x(k) =
n = 0

where x(n) represents input discrete sequence
in the time domain, X(k) represents its trans
formation in the frequency domain. Generally,
both the x(n) and X(k) are complex numbers.
N is the transform length, and the DFT coeffi
cients used in the DFT kernel, W, are:

W = e "

Knowing that the W factor in DFT is periodic
and symmetric if N is a power of 2, the FFT
algorithm reduces the complexity for comput
ing the same kernel. The direct DFT takes
complex operations. The radix-2 FFT com
putes the discrete fourier transform in N *
log2N complex operations.

In the following, We use the Decimation in
Time FFT algorithms as an example for our
work. If not explicitly stated, the FFT example
in the report will be a 64-point complex num
ber FFT.

Knowing that the W factor in DFT is periodic
and symmetric if N is a power of 2, the FFT
algorithm reduces the complexity for comput
ing the same kernel. The direct DFT takes
complex operations. The radix-2 FFT com
putes the discrete fourier transform in N *
log2N complex operations.

(zl, wl)

(c,df \ (z2, w2)

Figure 1 : Butterfly operation for FFT

The basic operation in the FFT algorithm is
called butterfly. In Figure 1, we show the but
terfly operation for the Decimation-in-time
FFT.

In the butterfly operation in Figure 1, (a,b) and
(c,d) are 2 input complex numbers. (zl,wl)
and (z2,w2) are two output numbers. In the in-
place FFT algorithm, the output of the butter
fly can be stored in the positions where the
input were. W (0 <= i <= N/2 -1) are the coef
ficients. The relationship between the input
and output of the butterfly operation is:

tr = wr * c - wi * d;
ti = wr * d + wi * c;
zl = a - tr, wl = b - ti;

z2 = a + tr, w2 = b + ti;

j Pass I Pass2 Pass3 I

Figure 2: Decimation-in-time(DFT) flowgraph

Knowing the basic FFT operation, the easiest
way to understand the FFT algorithm is to look
at the flow graph. The flow graph for Decima-
tion-in-time 8-point FFT algorithm is shown in
Figure 2. For N-point hh l, generally, there are
N passes. In each pass, there are N/2 butterfly
operations to be executed. In Figure 2, first, the
8-point input sequence is bit-reversed. Then,
after each pass, a new 8-point sequence is
derived and stored in the same place with the
old sequence. After pass 3, the new sequence
is already the transformed sequence in the fre
quency domain.

It is also noted that for N-pointFFT. only N/2 -
1 W coefficients are needed. Knowing this rule
can simplify the ROM design for the FFT chip.

FFT Chip I Output

Rgure 3: FFT Dataflow.

In Figure 3, a FFT chip is defined. It has 2 data
ports: data input port and data output port. It
consists of 3 stages: Read in, FFT computation
and Write out. For decimation-in-time FFT

algorithm, the input data sequence is shuffled
while being read in from the input data bus
under certain protocol. Then, after the in-place
computation, the output data sequence can be

written to the output data bus.

3. Communication Models.

The FFT chip we defined in Section 2 has no
knowledge how the data is sending to or
receiving from the chip. We consider two com
munication models.

3.1. Model 1: Distributed In Distributed

Out

In this model, the FFT chip is considered as 3
stage pipelined including input sample, com
pute sample and output sample. New sample
sequence arrives while the FFT chip is pro
cessing the old sequence. Data is arriving and
leaving at certain rate in burst mode.

Input sample I

Compute ample 11 Compute sample 2|
I I 2 3 64 n 2 3

Output sample I Output sample 2

(a). Model 1

123 64||23 64

(b). Model 2

Figure 4: Communication models.

3.2. Model 2: Burst In Burst Out

In this model, the FFT chip still consists of 3
stages but they are not pipelined. It starts to
compute new sample sequence only when the
old sample sequence has been received.

Figure 5 shows the difference of the FFT chip
using these two different models. In the model

1 block diagram, there are 2 RAMs between
stage 1 and stage 2. One RAM is reading the
data while the other is being read. After every
amount of delay of a FFT block level pipelin
ing stage, the roles of these 2 RAMs are
swapped. The same situation exists between
stage 2 and stage 3.

STAGE 3

FFT Chip

FFT

Conmutation

2X128X8

Write

Out.

a) Model 1.

Compul^o^ RAM 1

FFT Chip

iSS
S39IS

b) Model 2.

Figure 5: Block diagram for FFT chip.

In the model 2 block diagram, only one RAM
is needed. The reason is because decimation-

in-time algorithm is in-place, and the 3 stages
in this FFT chip is non-pipelined.

4. Components Library.

The components used in our design are from
[3]. Due to technology improvement [6], the
delay of an inverter is 0.1 ns which is 10% of
the nominal delay of 1 ns of the inverter from
[3]. Therefore, we scaled down the delays for
all the components by a factor of 10. Table 1
shows the delay and cost of the components in
terms of ns and number of transistors respec
tively.

No Component

1 SbitCLA

adder

2 16 bit CLA

adder

3 8 bit booth

multiplier

4 8 bit booth

multiplier
(2 stage pipe)

5 8 bit booth

multiplier
(4 stage pipe)

6 8 bit register

7 128X8 RAM

8 32X16 ROM

Delay
(ns)

Cost

(trans.)

4210

6144

Table 1: Components library.

For the pipelined components, the delay repre
sents the delay of the longest stage. For the

storage components it represents the average
between the reading and writing lime.

In column four we show the cost of each com
ponent. We use 1 literal/2 transistors estima
tion for the basic gates {nand, nor, inverter),
which we use subsequently in the computation
of the cost of the rest of components, in a bot
tom-up fashion.

5. Pipelining Techniques.

For most DSP applications, pipelining
improves the performance of the computation
without significantly affecting the cost of the
chip. If two or more operations are performed
repeatedly on different data samples, they can
be pipelined by inserting latches between the
operations. The cost increase is represented
only by the additional lathes, whereas the
number of functional units remains the same.
The pipelining can be performed at different
levels of the behavioral description. We show
thepipelining techniques using theFFTdesign
as an example.

5.1 Process Pipelining.

The first level of pipelining is the process pipe
lining. In a behavioral description, each pro
cess is comprised of a set of HDL instructions
(as shown in Figure 6, in the FFT example
these instructions are: the call to Readin, some
assignments, the while loop, and the call to
WriteOut). Based on the estimated execution
time of the instructions we partition them into
pipe stages, so that each stage has approxi
mately the same delay. Figure 6 shows that in
the case of FFT we obtain 3 process level pipe
stages. The first one reads the input, the second
one computes the FFT, and the third one writes
the output to the output port.

— Read data

RcadlnO:

- FFT Computation
nn := 64; n:= 128;
nimax:=:2;
while (mii]ax<n)
loop

end loop:

" Write data

WriteOutO;

FFT Chip

STAGE 1

STAGE 2

STAGE 3

I Figure 6: Process pipelining. |

In Figure 7 we show the timing diagram for the
process pipelining. After the start-up period,
the three stages are executing in parallel for
consecutive samples of data.

SatBplel Sttudei Sample 3

CompuieFFr(siage2) Sample 11 Sample 2l Saii^ile3|

Wnte Out {stage 3) Sanple11 Sample 2l Sam^ 31

Figure 7: Time diagram for process pipelining

5.2 Loop Body Pipelining.

The loops from a behavioral description can be
also pipelined. If the loop body consists of
more than one instruction, and we know the

time each of these instructions takes to exe

cute, we can divide the body of the loop into
equal delay stages which will form the pipe
line. These pipe stages will execute in parallel,
on consecutive iterations of the loop.

Any of the instructions forming the body of the
loop can be a loop at it's turn. In case that the
number of iterations this inner loop executes is
variable, we cannot determine the total execu-

tion time of this loop. Therefore we do not
have enough information to divide the body of
the outer loop into equal pipe stages. Thus
the body of a loop cannot always be pipelined.

The initial FFT specification did not satisfy
these conditions. We transformed the algo
rithm so that the execution time of the instruc

tions composing the body of the loops is
known and constant. Due to the loop transfor
mations, we have to recompute the loop
indexes. The transformed algorithm is shown
in Figure 8.

As mentioned above, we know the execution
time for all the instruction from the body of
LOOP 2, since none of them is a loop. There
fore the body of LOOP 2 can be pipelined. We
divide it into 5 pipe stages of approximately
equal delay, and we obtain the pipelining as
shown by the light dividing lines in Figure 8.

On the other hand, the body of LOOP 1 is
composed of 4 assignments plus the LOOP 2.
The execution time of the LOOP 2 is much

higher than the execution time of the assign
ments. Since we cannot divide these instruc

tions into equal delay stages, it doesn't make
sense to pipeline the body of this loop.

nn := 64; n:s 128;

inmax:s2;

while (mmax<n) —•••'
loop

istep:s2*ininax;
m:asO: m.rom :s 0;
i:sO;

for k:sOto nn/2-1 loop
L»ave:=i;

j_8ave:=i+inniax;

L00P1

wr=ROM_real(m_rofn):
wi:=ROM_imag(m_rom+1);
c :b data(j_save); d :s daia(j_8ave+l):

e :b wr • c; f := wi • d;

g :a wr • d; h := wi • c;

1:si + isiep;

tr :a e - f; ti :s g + h;
a :a data(i_save); b ;s datafi.aavofi);

if (i>sn) then

LOOP 2

- MEMORY READ

- MULTIPLICATIONS

•• ADD/SUB

m_rom:=7n_ronH-nn/mmax; tn := m + 2;
end if;

zl tr wl ;ab - ti;

z2 :s a tn w2 := b + ti;

if (i>-n} and (iii>sminax) then m:=0; m_rom :=0;
end if;

data(i_save} :sz2; daia(Lsave+I):s w2;
data(j_save) :s zl; dau(j_save+'I) ;s wi;

end loop;

FFT Chip

Figure 8: Loop body pipelining.

STAGE 1

STAGE 2

STAGE 3

In Figure 9 we show the timing diagram for
loopbody pipelining for the FFTexample. The The LOOP 1 and LOOP 2 control structures
second stage of the process level pipelining induce the repetitive execution of the stages 1
comprises the 5 loop body pipe stages. While through 5 of loop body pipelining. Therefore
the process level pipe stages perform on differ- the execution time for the stage 2from process
ent samples of data, the loop body pipe stages pipelining isgiven by the total execution time
execute on different iterations of the loop, for
the same input sample.

Read In (stage 1) sample!

Compute
iMjieTl

(Stage 2)

Write Out (stage 3)

Lood 2

Loop 1

Sample 3

Sample 2

Sample I

Figure9: Uming diagramfor loop body pipelining

for all the iterations of LOOP 1 and LOOP 2.
Since LOOP 1 and LOOP 2 are nested loops,
the total number of iterations is equal to the
product of the iterations of the two loops.

Between consecutive iterations of the inner
loop (LOOP 1), there are no loop carried
dependences, because they operate on different
elements of the array data. On the other hand
consecutive iterations of the outer loop (LOOP
2) execute on the same array data, therefore
there may be dependences. The access pattem
of the array data is not constant, therefore, to
avoid memory conflicts we do not allow over
lappingof different iterations of the outer loop.
The approach is a conservative, but the
decrease in speed is not significant. Thus, as
shown in Figure 9, a stall is needed between
different iterations of the body of LOOP 2.

Since at every new iteration of LOOP 1 we
spend the time for a new start up the pipeline,
the speed loss due to this stall is proportional
to the ratio between the number of pipe stages
- 1, and the number of iterations of LOOP 2.

5.3 Functional Unit Pipelining.

The functional units implementing the opera
tions from the HDL description can also be
pipelined. During functional unit allocation, a
pipelined multiplier from the components
library can be chosen. For example for the
multiplication from the FFT algorithm we can
use a 4 pipe-stage multiplier, as shown in Fig
ure 10. The lightest dividing lines show the
pipe stages of the multiplier. In this case the
number of stages of the body of LOOP 2
increases from 5 to 8. The FFT computation
presented here is pipelined at all the three lev
els; process, loop body and functional unit.

Figure 11 shows the timing diagram for the
functional unit pipelining. Besides the process
and loop body pipelining, the stage which con
tains the multiplier is divided into four pipe
stages, which execute in parallel on different
data. The multiplier is fed with consecutive
iterations of the inner loop, therefore the pipe
stages of the multiplier will execute in parallel
on different iterations of the loop. Thus, the
functional unit pipelining operates on the same
data granularity as the loop body pipelining.

ReadInO;

nn :=64: n:= 128;

inniax;=2;

while (nunax<n) —

loop
tstep;=2*niinax;
m:=0; m_rora := 0;
i:=0;

for lc:=0 to nn/2-1 loop
i_save;ad;

j_save:=i+niinax;

LOOP 1

wr=ROM_real{ni_rom);
wi:=ROM_iniag(in_rom+ 1);
c := data(j_savc); d :=data(j_save+l):

- MEMORY READ

e := wr * c; f := wi • d; g ;= wr • d; h ;= wi • c;

i i -f istep;

tr ;= e • f; ti := g + h;
a := da:a{i_save); b ;= daia(i_save+I);

- ADD/SUB

if (i>en) then

'o:=in+2; m_rora ;= m_rom + nn/mmax;
end if;

zl :=a-tr;wi :=b-ti;

z2 ;=a +tr; w2 :=b + ti;
- ADD/SUB

if (i>=o) and (m>=mmax) then in:=0; m_roni := 0;
end if;

data(i_save) := z2; dt«a(i_save+l):= w2; - MEMORY WRITE
<tata(j_save) := z i; data(j_save+1) := w I;

if (l>=n) then

i:=m • 2;

send if;

end loop;
n)max:=istep;

end loop;

WriieOutO;

EKl Ghjp

Figure 10; Functional unit pipelining.

stage 1

stage 2

stage 3"
staged

Stages

stage 6

STAGE 1

STAGE 2

STAGE 3

Functional unit, loop body and process pipe
lining can be combined in any way. Forbrevity
we only presented three design options. The
design in Figure 6 shows onlyprocess pipelin
ing, the one in Figure 8 shows process and
loop body pipelining, whereas the description

in Figure 10 presents process, loop body and
functional unit pipelining.

Read in (stage 1) Sample 1 Sample 2 Sample 3

Compute Multiply —'iBKil
(stage 2) -Hg£l

lEECCCECE
IEE]]]3]]
IIQESSaSil
IIIEEEDSa
IIIIDEOaS
IIIIISGGQ
llllllitt
IIIIIIICE

IIIIIIIIIDEECEEEEE
I3IIIIIIIICE333]]]
iS33llllll|[]E3a33a
EESEiiiiiiiiEEcaga
ErLS3iiiiiiiia333a
iliJailllllllQBBS

3S2SS;6;3IIIIIIICe

niiiiiii
I3EIIIIII
tzsaiiiii

ErESIllll

iiiiUtU

DEECCEECE
ICE3313]]
iiQEsaaaa
iiiDEEasa
111183333
IIIIIDGGC
llllllUE
IIIIIIIGE

Illllllt
lailllll
iE33llll
IIEDllll
EEZEIlll
2i!i£3ai

Sample 2

Write Out (stage 3) Sample 1

Loop 2

LOOD 1

Figure 11: Timing diagram for nmctional umt pipelining

6. Datapath and Controller.

In section 3 we presented two different com
munication models. On the other hand, any
communication model can be combined with

any pipelining alternative. For brevity, we only
show the detailed implementation of the com
munication model 1 using process and loop
body pipelining.

At process level the algorithm is divided into 3
pipe stages. These stages execute in parallel on
consecutive data samples. To store the sample
computed by stage 1 for subsequent use of
stage 2, we need a memory unit. We denote it
as RAMl. Since the stage 1 writes in the mem
ory unit while the stage 2 reads it, to avoid
conflict we have to divide the memory unit
into 2 parts: one for reading and one for writ
ing. A swapping mechanism between the two
parts can be implemented. The same consider
ations apply for the memory between stage 2
and stage 3. This memory is denoted RAM2.

6.1 Datapath and Controller of the FFT
Computation.

As shown in section 2, the PTT algorithm con
sists of a set of butterfly computations, where
the input is multiplied with a set of coefficients
and then stored back into the memory. We con
sider the coefficients to be read from a ROM

memory, containing both the real and imagi
nary parts of the values.

At process level, the computation represents
the stage two of the algorithm. It reads the data
from RAMl and writes it to RAM2, and con
sists of two nested loops, with the innermost
computing one butterfly of the FFT. We con
sider the body of the inner loop pipelined, as
shown in section 5.2.

We divided the FFT computation datapath into
two parts: the address generation, and the but
terfly computation. The address generation
part comprises the calculation of the indexes of
the loops, along with the computation of the
final addresses for the RAM and ROM memo-

•'jj.iii.i/jj

ADDRESS GENERATION

FFT COMPUTATION

FFT Chip

W

ROM

32X16

RAM

2 X 128X8

RAM 2

2X128X8

Figure 12: FFT computation datapath.

STAGE 1

STAGE 2

STAGE 3

The butterfly computation consists of the mul
tiplications and additions performed in a 5-
stage pipeline.

putation.

6.2 Interface between FFT chip and its envi
ronment

Figure 12 shows the datapath of the FFT com- In this section, we show schematic diagram for

the interface between the FFT chip and its data
sender and receiver.

data sender

send.ieq T send.ack

read

controller

I ^ computation
start controller

rd.addr in

rd RAM 1

FFT

.ComputatiOD

FFT Chip

Figure 13: Interface between Sender and ETT Chip

6.2.1 Input Interface

Figure 13 shows the interface between the FFT
chip and its data sender. For simplicity, only
the stage 1 and stage 2 of the FFT chip are
shown in the diagram, the data bus consists
only of 16-bit input data which is a complex
word for input sample sequence. The control
bus consists of 3 wires: the start signal starts
the FFT chip, while the send_req and send_ack
signals work for 2-wire handshaking protocol.
The FFT computation starts only when its con
troller sees a start signal event, which is the
done signal of the first stage.

6.2.2 Output Interface

We now give a detailed description for the data
receiving protocol and the design for the write
controller for writing the data to the output

data bus.

Figure 14 shows the output interface between
the FFT chip and its receiver.

compuiaiion
controller

STAGE 2^

STAGE 3

wnte

controller

send_ack I I send_req

FFT Chip

FFT

Computation

2 X 128X8
wr_addr out

data receiver

Figure 14: Interface between FFT chip and receiver

Figure 15 shows the timing diagram of the
handshaking protocol between the FFT chip
and its data receiver. First, the FFT chip sends
a start signal which is the done signal of the
third stage. Then, after a start-up time (start-up
= n cycles), it sends a send_req signal pulse to
its receiver to show it is ready to send data.
Only when there is a pulse in the send_ack
wire, the FFT begins to send data. It put a 16-
bit complex word to the output data bus at a
certain rate. Here, rate = m cycles. The counter
1 works as the address register for the data
RAM.

Hguie IS:Umingdigram forreceive protocol

Figure 16shows the state diagramfor the write
controller.

SI } reset! = 1

count! <D-I ^ { 52

seod.acksO (S3

seod.ack = 1 I

counils63(34

count2 = m-1

count2<m-I C 1 S6

count 1 = count I -f I

send_req = I

reset2 = I
c<wntl scountl +1
rd.ram s I
rani_addr scountl

count2scount2+ 1

Figure 16:Statediagram forFFTchipwrite controller

7 Parametrization.

The FFT implementation shown in the previ
ous sections assumed that the length of the
input and output data are fixed (to a power of
2). The algorithm can be implemented also for
a variable length of data. In this section we
present the advantages and disadvantages of
such an approach.

The length of the data can be read from the
input every time the FFT is executed, and it
can be stored into a register. Using the value
from this register, the number of iterations for
the loops, as well as the addressing of the
memories can be determined during execution.
Therefore, the number of iterations of the
loops is also variable.

The FFT coefficients stored in the ROM are
different for different length of the data. There
fore, for a variable length we have to store in
the ROM the coefficients for all the possible
lengths. The addressing of the ROM has to be
modified also correspondingly, by adding an
offset depending on the current length of the
data.

The RAM memories have to correspond to the
biggest length of the data allowed.

The execution time of the computation will be
variable, depending on the length of the data.
The relationship between them is shown in
Table 2. Intuitively, for a higher number of ele
ments in the input data, the computation will
take longer.

In Table 2 we show thecost and throughput of
the FFT computation for variable length data.
The value nn in the throughput represents the
current length of the FFT input.

No Pipelining
Clock

Cycle

Pipe
stage

delay

#of 1
pipe

stages

Throughput Multipliers

9 loop 2 body pipelining 5.6 5.6 5 ((nn/2) + 4)»log2(nn)*5.6ns 4 non-pipe

10 loop 2 body + FXI pipelining 3.5 3.5 8 ((nn/2) + 7)*log2(nn)*3.5 ns 4 pipelined

Table 2: Pipelining exploration for variable length FFT computation.

In the parametrized version of the FFT a more
complicated addressing of the coefficients is
necessary, as well as an increase ROM. Also
the total execution time will not be constant. In

the case of process pipelining,, this will create
an uneven distribution of computation between
pipe stages. On the other hand, the parame
trized implementation offers more flexibility
and increases the reusability of the circuit.

8. Methodology.

Figure 17 shows the design methodology.
Starting from an HDL specification of the
algorithm, we generate the pipelined RTL
description of the implementation.

Determining the communication model
depends on the input sample rate and commu
nication requirements of the application.

By pipelining at finer granularity we mean pro
gressively perform process level, loop body
and functional unit pipelining, if necessary.

For the parametrized version we determine the
execution time for the highest data length
allowed.

Algorithm specifiction

Choose the

communication model

Allocate functional units

Find the critical path

Determine execution time

execution time <
"~\constraint^.-^

Schedule Pipeline at

dI^SntlS®ect granularity

RT level description.

Figure 17: Design methodology

Performance Cost

Pipelining Clock

Cycle
(ns)

Pipe Stage
Delay
(ns)

Number

of pipe
stages

Throughput
(ns) Multipliers

Adders +

Subtractors

non-pipelined 5.6 - 8601.6 1 non-pipe 8

loop 2 body
pipelined

5.6 5.6*4 3 4569.6 1 non-pipe 6

loop 2 body + ETJ
pipelining

3.5 3.5*7 3 3855.6 1 pipelined 6

non-pipelined 5.6
- 3225.6 4 non-pipe 8

loop 2 body
pipelined

5.6 5.6 5 1209.6 4 non-pipe 10

loop 2 body + FU
pipelining

3.5 3.5 8 i 819 4 pipelined 10

loop 2 body
pif}elining

5.6 5.6 5 672 8 non-pipe 12

loop 2 body + FU
pipelining

3.5 3.5 8 483 8 pipelined 12

Table3: Pipelining explorationfor the 64 point FTTcomputation.

9. Lessons Learned.

As shown in the design methodology, starting
from a totally non-pipelined design, by pro
gressively performing pipelining at different
granularity levels, we obtain different cost/per
formance trade-offs. Intuitively, the more the
design is pipelined, the higher the performance
and the cost.

On the other hand, by performing more opera
tions in parallel, we can obtain even higher
performance trading off higher cost.

To illustrate this. Table 3 shows the throughput
and area of the FFT design for a fixed input
length of 64. Rows 1, 2 and 3 represent imple
mentation with one multiplier. Rows 4, 5, and
6 represent 4 multiplier implementations,

whereas 7 and 8 use eight multipliers.

10. Conclusions.

We define the FFT chip which can operate in
two communication models. We present differ
ent pipelining techniques and apply them to
the FFT example, showing the algorithm trans
formations needed. Given a components
library we explore multiple design alternatives
and compare their performance and cost. Start
ing from this example, we derive a methodol
ogy to apply the pipelining techniques to get
the cheapest design while still satisfying the
given time constraint.

We also showed the advantages and disadvan
tages of a parametrized design approach. An

increased flexibility and reusability of the chip
is obtained against an increase in cost.

11. References.

[1] D. D, Gajski, "Principles of Digital
Design", Prentice Hall 1996.

[2] D. D. Gajski, N. Dutt, A. Wu, and S. Lin,
"High Level Synthesis: Introduction to
Chip and System Design", Kluwer Aca
demic Publishers, 1992.

[3] W. Pan, P. Grun, D.D. Gajski, "Behavioral
Exploration with RTL Library", Technical
Report, UCI ICS #96-34, July 29, 1996.

[4] D.D. Gajski, P. Grun, W. Pan, "Design
Exploration for Pipelined IDCT', Techni
cal Report, UCI ICS #96-41, September
12, 1996.

[5] PM.Embree, B. Kimble, "C Language
Algorithms for Digital Signal Processing.",
Prentice Hall 1991.

[6] LCB 500K, Preliminary Design Manual,
LSI Logic, June 1995.

