Lawrence Berkeley National Laboratory

 Recent WorkTitle
EVIDENCE FOR THE A I = I/2 RULE

Permalink

https://escholarship.org/uc/item/2vr3m2zx

Authors

Crawford, Frank S.
Cresti, Marcello
Douglass, Roger L.
et al.

Publication Date

1959-02-01

UNIVERSITY OF CALIFORNIA

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALITOORNIA

Lavrence Dadiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

EVIDENCE FOR THE $\triangle I=\frac{1}{2}$ RULE
Frank S. Crawiord, Jr., Marcello Cresti, Roger L. Douglasa, Myron L. Gaod, George R. Kalbfleisch, M. Lynn Stevencon, and Harold K. Ticho ${ }^{3}$ February 1959

EVIDENCE FOR THE $\triangle I=\frac{1}{8}$ RULE *
Frank S. Crawiord, Jr., Marcello Croati! Roger L. Doughasa, Myron L. Cood, George R. Kalbfleisch, M. Lynn Stevenson, and Harold K. Ticho

Lawrence Radiation Laboratory
University of California
Berkeley, California

February 1959

It hat been clear for some time that the experimeatal data relating to strange-particle decays are auggestively close to the values predicted by the $\Delta I=\frac{1}{2}$ selection rule. ${ }^{1,2}$ The largest diecrepancy has been between the limits ${ }^{3,2}$]. $\quad 0.28 \leqslant \mathrm{~B} \leqslant 0.38$.
 $\left.P\left(K_{1}{ }^{0} \rightarrow \pi^{+}+\pi^{-}\right)\right]$, and the values $B=0.14 \neq 0.06$ found in the Columbia propane bubble-chamber experiment, ${ }^{4}$ and $B=0.06$ (one event) in the MIT lead-plate cloud-chamber experiment. ${ }^{5}$ The Prediction (1) if obtained, instead of the prediction $B=1 / 3$ of the "pure" $\Delta I=\frac{1}{8}$ rule, if one assumes enough $\Delta I=3 / 2$ to account for the decay $\mathrm{K}^{+} \rightarrow 2 \pi$.

The particle-mixture theory of Cell-Mann and Pais predicte, for the fraction f of short-lived ($\mathrm{K}_{1}{ }^{0}$) decays.

$$
\begin{equation*}
\varepsilon=K_{1}^{0} /\left(\operatorname{sh} K^{0}\right)=\frac{1}{2} \tag{2}
\end{equation*}
$$

This tresult is expected from CPT invariance alone, 1.e., CP invariance is not needed. ${ }^{6}$ If, as seemg likely, the 2π modes constitute practically all the shortLived decays, ${ }^{4}$ and $K_{2}^{8} \rightarrow 2 \pi$ is aegligible, ${ }^{7}$ Eqs. (1) and (2) can be combined to predict, fior $\Delta I=\frac{1}{2}$.

$$
\begin{equation*}
0.31 \leqslant \mathbf{R}_{\mathrm{K}} \leqslant 0.36 \tag{3}
\end{equation*}
$$

where $R_{K}=P\left(\mathbf{K}_{\mathbf{1}}{ }^{0} \rightarrow \pi^{+}+\pi\right) / /\left(\right.$ all $\left.K^{0}.\right)$.

[^0]The correaponding experimental results (previous to the present experiment) are $R_{X}=0.42 \pm 0.05$ (Columbia), ${ }^{4}$ and $R_{K}=0.46 \pm 0.08$ (Michigan propane chamber). These are only ta fair agreement with the prediction (3), but when combined with Columbia'e $B / 2=0.07$ give $f=0.49 \pm 0.08$, in good agreemeat with the particle-mixture prediction (2).

At the time of the CERN comerence, we presented preliminary regulta, based on 450 decay events observed in our hydrogen bubble chamber, for $\mathbf{R}_{\mathbf{K}}$, and for the Λ branching ratio $R_{\Lambda}{ }^{8}$ The $\Delta I=\frac{1}{2}$ rule predicte ${ }^{9}$ the value

$$
\begin{equation*}
R_{\Lambda} P\left(\Lambda \rightarrow p+w^{-}\right) /(\operatorname{all} \Lambda)=2 / 3 \tag{4}
\end{equation*}
$$

Our preliminary values were in good agreement with the predictions (4) and (3). We reported no reaults on the $K_{1}^{0} \rightarrow \pi^{0}+n^{0}$ mode at that time and thus could not check the prediction (1) and (2).

We have now completed our analysis, and report on a total of 1091 eventa. Our data show no contradictions with the prediction of the $\Delta I=\frac{1}{2}$ rule. On the contrary they are in remarkable agreement with them.

We have observed 227 double evente $\{0=227$) in which both the A and the K^{0} decay within the prescribed "fiducial volume" inaide the chamber via their charged modes $A \rightarrow p+\pi^{-}$and $K_{1}^{0} \rightarrow \pi^{+}+\pi^{*}$. There are 594 events in which only the Λ ie observed to decay via ite charged mode $(\Lambda=594)$, and 270 eventa in which only the $X_{1}{ }^{0}$ is observed to decay via its charged mode ($K=270$). For each of the 864 single V 's, the production and decay dynamice of the observed particle cheties with the hypothesis of associated production via either $\pi^{-}+p \rightarrow A+K^{0}$ (A production) or $\pi^{-}+p \rightarrow 2^{0}+K^{0}\left(x^{0}\right.$ production).

The branching ratios R_{K} and $R_{N} \mathbf{N}^{\prime}$ and the 'true" uanber of associated productions, $\mathrm{a}(\mathrm{true})$, are given by

$$
\begin{aligned}
& R_{K}=[D /(A+D)] \eta_{K} . \\
& R_{\Lambda}=[D /(K+D)] \eta_{\Lambda} .
\end{aligned}
$$

and

$$
n(\text { true })=[(\Lambda+D)(K+D) / D] \eta_{0}
$$

where η_{X}, η_{A}, and η_{0} are escape corrections which would be unity for an infinite chamber. The η 's are calculated by averaging over amoothed "true" distributions fa the production pooftion and angle. We require that for a Λ or K^{0} to be "detectable" ita chargat decay mast occur beyond 0.3 cm from the production point and muat lie within the fiducial volume. The fiducial volume is defined by the requirement that all decay tracks be at least 2 cm in leagth. In the gmall fraction of aingle V's in which the production and decay dyamics of Λ and K^{0} overlap when curvature and angle measurements alone are used, we meature ionization on the positive decay fragment, to distinguish protons $(A$ decay $)$ from $H^{+}\left(\mathrm{K}_{1}^{0}\right.$ decay).

The calculated averagea of the n's vary only a few perceat over the entire incident-pion momentum range, and difier by only a few percent between the Λ and $\boldsymbol{\Sigma}^{0}$ production modes. Therefore we quote here only the "grand average" over all the "true" distributions, which yielde the calculated values "K $=1.249$, $\eta_{\Lambda}=1.398$, and $\eta_{0}=1.097$. In performing the averagen we use our lifetime values $\tau_{K}=0.94 \pm 0.05 \times 10^{-10} \sec$ and $\tau_{\Lambda}=2.72 \pm 0.16 \times 10^{-10}$ sec. We also calculate the derivatives with respect to Hfetimes, with the reaults $\Delta \ln _{K}=+0.193 \Delta \operatorname{lar}{ }_{\Lambda}$ add $\Delta \ln R_{\Lambda}=+0.149 \Delta l n T_{K}$. The contributions of uncertainties in lifetimes to the uncertainties in $\mathbb{R}_{\mathbb{K}}$ and $\log _{i}$ are negligible.

The observed counta, D, A, and K must be replaced by $D / \epsilon_{2}, \Lambda /{ }_{1}$, and
 V's. By rescanning 30% of the film we find for "detectable" decays, $c_{2}=0.995 \pm 0.005$, and $1=0.976 \neq 0.008$.

The values of $\mathbf{R}_{\mathbf{K}}$ and $\mathbf{R}_{\mathbf{A}}$ obtained at the varioue beam momenta, 0.95 and $1.03 \mathrm{Bev} / \mathrm{c}$ (below m^{0} threghold), and $1.09,1.12$, and $1.23 \mathrm{Bev} / \mathrm{c}$ (above z^{0} threshold) agree within the errore. Simalarly the momentum-averaged A-production resulte agree within one-third standard deviation with the Σ^{0}-production resulte. We therefore lpresent only the grand avarage results, for the fractions of charged decays, and total number of associated productions,

$$
\begin{align*}
R_{X} & =0.339 \approx 0.020 \tag{5}\\
R_{\Lambda} & =0.627 \tag{6}\\
n(t r u e) & =20.031 \tag{7}\\
n & \approx 100 .
\end{align*}
$$

We turn now to the decay $K_{1}^{0} \rightarrow \pi^{0}+\pi^{0}$. We have eeen three events consistent with this decay mode; in each case there in an associated charged A decay. In one case a 0^{0} undorgoes a "Dalita decay" Into $e^{+}+e^{-}+Y$. In the other two cases one of the $\pi^{0}-\gamma$ rays produces an electron pair in the liquid hydrogen. From our experimental X^{0} momentum distribution we find the $\boldsymbol{n}^{0}-\gamma$-ray epectrum by asauming asotropy in the K^{0} and T^{0} decay. Combining this with the known pair-production crose section per hydrogen atom, and including a probability for Dalftz-decay of 2.5×10^{-2} per $K_{i}{ }^{0}$. we find a total detection efficiency per K_{1}^{0} of 3.5×10^{-2}. Our three events thus correspond to $3 / 3.5 \times 10^{-2}=$ 86 未 50 decays. The number of accidental counts due to chance coincidences from unassociated electron pairn is estimated from the frequency of pairs, and the chance of fitting the decay dynamics. The result is that less than 0.2 accidental count is expected. (No correction was made.) There were 227 decays $K_{1}^{0} \rightarrow \pi^{+}+\pi^{*}$. associated with charged A decays. Therefore, independent of aasumptions as to the value of $f=K_{1}{ }^{\theta} /\left(\right.$ all $\left.K^{0}\right)$, and independent of escape corrections, we find for the fraction B of neutral K_{1}^{0} decays

$$
\begin{equation*}
B=86 /(86+227)=0.27 \pm 0.11 \tag{8}
\end{equation*}
$$

which is consiatent with Prediction (1). We combine the charged and neutral
results (5) and (8) to obtain

$$
\begin{equation*}
A=0.47 \leq 0.080 \tag{9}
\end{equation*}
$$

In good agreement with the particle-mixture-theory prediction (2).
The disogrcement between our results (5) rixa (8), and (9) and those of other groups may be expressed as follows (Both Eisler et al. ${ }^{4}$ and we find the "expected" $\mathrm{f}=\frac{1}{8}$, but disagree on the admixtures of charged and neutral $\mathrm{K}_{1}{ }^{0}$ decays. However, if we combine all experiments without imposing the contraint $f=\frac{1}{2}$ then our charged X_{1}^{0} decays dominate atatiatically, whereas in the aeutral decay the Columbia and MIT results prevail $7+1=8$ evente to our 3 evente). The internal consiatency is furthermore not bad--2 x^{2} probability of 18% for the charged decays, and 20% for the neutral. The reaultiag charged and neatral world avereges are $R_{K}\left(U . C ., C o l .{ }^{4}, M i c h .{ }^{8}\right)=0.354 \pm 0.018$, and $\mathrm{B}\left(\mathrm{U}, \mathrm{C} ., \mathrm{Col} . \mathrm{S}^{4} \mathrm{MIT}^{5}\right)=0.141 \pm 0.037$. (The error on reflects only the counting statistics.) la the absence of other decay modes of the (skort lived) $\mathrm{K}_{1}{ }^{0}$ these combine to give $\mathrm{I}=0.424$: 0.026, in disagreement with Prediction (2). Lf, instead, $f=\frac{1}{5} 16$ assumed, then $18 * 6 \%$ of the F_{1}^{0} decays would have to occur by an a yet unknown mode. We believe it is instead more reasomable not to combine the experiments, and to attribute the disagreement to statistical bad luck or aystematic error. The six probability that our charged fraction is consistent with the Columbia-MIT meutral fraction is then about 10^{-3}.

We next conslder the decay $\Lambda \rightarrow n+\pi^{0}$. We have found two Dalitu decays and one γ conversion correspending presumably, to this rirode. In each cade there was an associated charged X_{1}^{0} decay. The three eventis correspond to $171 \neq 100$ acutral Δ decay. Combining these with the 227 double V's we find $R_{\Lambda}=227 /(227+171)=0.57 \pm 0.14$. Since we have good reason for bolleviag that the associated-production hypothesis is valid and that there are no prominent A decay modes other than the two considered here, this lest result can be combined with Reault (6) for the charged decays. We thus obtain the weighted average

$$
\begin{equation*}
R_{A}=0.624 * 0.030 \tag{10}
\end{equation*}
$$

Reoult (10) is in excellent agreement with the $\Delta I=\frac{1}{4}$ prediction $2=2 / 3$. and with other determination by groupa at Columbia, ${ }^{4}{ }^{8} 8$ wichigan, ${ }^{8}$ and MIT, 5, 8 as well as with results of the Berkeley $K^{\prime \prime}$-capture experiment. ${ }^{8}$ A leat-squarea weighted average of these resulte given R / C (U.C., Col., Mich., MIT) $=0.637 \pm 0.020$.

Finally, Dalitz ${ }^{1}$ and Pais and Treiman ${ }^{10}$ point out that if the $\Delta I=\frac{1}{3}$ rule is valid one expects $w\left(K_{2}^{0} \rightarrow \pi^{+}+\pi^{-}+\pi^{0}\right)=(2 / 5) w\left(K^{+}-3 \pi\right)$. Furthermore, the decay rate $w\left(X_{1}{ }^{0} \rightarrow \pi^{+}+w^{*}+\pi^{0}\right)$ should be exceedingly small compared with the correaponding $K_{Z}{ }^{0}$ rate, ${ }^{10}$ so that we may attribute any observed $\pi^{+}+\pi^{-}+\pi^{0}$ decay to the $\mathrm{K}_{2}{ }^{0}$.

We have seen one wheh decay. The eveat waz ambociated with a charged A decay. However, we would eandly detect this decay mode if it occurred as a single V. Correaponding to the total number of associated productions, $\mathrm{n}(t \mathrm{rae})=2020$, there should be $1010 \mathrm{~K}_{2}^{0}{ }^{\prime}$. Combining the known K^{+}branchiag ratios ${ }^{11}$ and Lifotimos ${ }^{12}$ and the $\Delta I=\frac{1}{2}$ rale one obtains the prediction
 We 3.5×10^{-10} ace. We thereiore expect to find $2.4 \times 10^{6} \times 3.5 \times 10^{-10} \times 1010=$ $0.85=0.00$ decays $\mathrm{K}_{2}^{0} \rightarrow \mathrm{t}^{+}+\pi^{-}+\pi^{0}$. Our oingle ovent ts the coneintent with the $A I=\frac{1}{2}$ rule. ${ }^{13}$

In aummary, we find that our 1091 aseociated-production and decay events are in remarkably good agreement with the prediction of thei $\Delta I=\frac{1}{2}$ rule.

Thill makes the total experimental evidence for AI = $\frac{1}{2}$ fairly impressive: (a) The decay $\mathbb{x}^{-} \rightarrow n+\boldsymbol{m}^{-}$occurs, if at all, ranch less frequenty than

 cero spin and $1=\frac{1}{2}$. (c) The admixture of $\Delta I=3 / 2$ required to admit the observed $K^{+} \rightarrow 2 \pi$ rate is in good agrecment with our $K_{1}^{0} \rightarrow 2 \pi$ branching ratios. (d) The A branching ratio agrees with (but
does not require ${ }^{9}$) $\Delta \mathrm{I}=\frac{1}{2}$. (o) The branching ratio ${ }^{11,2}$ $P\left(X^{+} \rightarrow \pi^{+}+\pi^{-}+\pi^{0}\right) /\left(P\left(X^{+} \rightarrow \mathbb{m}^{+}+2 \pi^{0}\right)\right.$ agrees with (but does not require ${ }^{14}$) $\Delta I=\frac{1}{2}$. (i) The reaults of Cool et al. ${ }^{15}$ on Σ^{*} decay pasymmetry are most easily explained by (but do not require) $\Delta I=\frac{1}{2}$. (g) Our one $K_{2}^{0} \rightarrow \pi^{+}+\pi^{-}+r^{0}$ agrees (as well as one event can) with $\Delta I=\frac{1}{3}{ }^{13}$

We wish to thank Lud: W. Alvarez for his interest and support, and Don Gow and Hugh Bradner for their assistance.

References and 筩ootnotes

1. M. Gell-Mann and A. Pais, Proceeding of the Glasgow Coniorence (1954);
R. Gatto, Nuovo cimento 3, 318 (1956); G. Wentzel, Phys. Rev. 101, 1215 (1956); R. H. Balitz, Prec. Phys. Soc. 69. 527 (1956): G. Takeda, Fhys. Rev. 101, 1547 (1956): S. Oneda, Nuclear Phys. 3, 97 (1957).
2. M. Gell-Mana and A. H. Rosenfeld, Annual Review of Nuclear Science (Annual Review, Inc., Stanford, 1957). Vol. 7.
3. M. Gell-Mann, Nuovo cimento 5. 758 (1957).
4. Eleler, Plano, Samiow, Schwarta, and Steinberger, Wuovo cimento 5, 1700 (1957).
5. Boldt, Bridge, Caldwell, and Pal, Phys. Rev. 112,1746 (1958).
6. Lee, Yang, and Ochme, Fhys. Rev. 106, 340 (1957), Eq. (31).
7. Bardon, Lende, Laderman, and Chinowsky, Annals of Physics 5, 156 (1958).
8. Proceedings of the 1958 Annual International Conference on High Energy Physics at CERN, p. 273 Tables VI and VII.
9. Kowever, Marshak, Okubo, Sudar han, Teutsch and Weinberg, Phys. Rev. (to be published) point out that a gitable combination of final $T=\frac{1}{2}$ and $3 / 2$ state also yields $R_{A}=2 / 3$.
10. A. Pais and S. B. Treiman, Phys. Rev. 106, 1106 (1957).
11. Alexander, Johaston, and O'Ceallaigh, Nuovo cimento 6, 478 (1957); Birge, Perkine, Peterion, Stork, and Whitehead, Nuovo cimento 4, 834 (1956).
12. V. Fitch and R. Motley, Phys. Rev. 109, 496 (1956); Phys. Rev. 105, 265 (1957): Alvarez, Crawford, Good, and Stevenson, Phys. Rev. 101, 503 (1956), and Proceedings of the Seventh Annual Rochester Conference on High Energy Fhysics (Interscience, Publishing Co., New York, 1957).
13. Bardon et al. Ref. 7, find that out of $152 \mathrm{~K}_{2}^{0}$ decays, at most 23 can be Into $\pi^{+}+\pi^{-}+W^{0}$, and also find $T\left(K_{2}^{0}=8.11_{-2.4^{+3.2} \times 10^{-8} \text { sec, so that }}\right.$ $w\left(K_{2}^{0}-\pi^{+}+\pi^{-}+\pi^{0}\right) \leqslant 1.8^{* 0.8}-0.5 \times 30^{6} \mathrm{sec}^{-1}$. Within the errors, this result is consistent with ours, and with $\Delta l=\frac{1}{2}$.

- 14. R.H. Dalitz, Rev. Modera Phys. (to be publiahed).

15. R. Cool, B. Cork, J. Cronin, and W. Wenzel, Phys. Rev. (in press).

[^0]: *Work done under the aumpices of the U.S. Atomic Energy Commiasion.
 ${ }^{\text {4 }}$ Now at Istituto di Fisica, Universita di Padova, Padova, Italy.
 §Now at University of California at Los Angeles.

