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SUMMARY

The mammary epithelial cell (MEC) system is a bilayered ductal epithelium of luminal and basal 

cells, maintained by a lineage of stem and progenitor populations. Here, we used integrated single-

cell transcriptomics and chromatin accessibility analysis to reconstruct the cell types of the mouse 

MEC system and their underlying gene regulatory features in an unbiased manner. We define 

differentiation states within the secretory type of luminal cells, which forms a continuous spectrum 

of general luminal progenitor and lactation-committed progenitor cells. By integrating single-cell 

transcriptomics and chromatin accessibility landscapes, we identify cis- and trans-regulatory 

elements that are differentially activated in the specific epithelial cell types and our newly defined 

luminal differentiation states. Our work provides a resource to reveal cis/trans-regulatory elements 

associated with MEC identity and differentiation that will serve as a reference to determine how 

the chromatin accessibility landscape changes during breast cancer.

In Brief

Pervolarakis et al. use integrated analysis of single-cell transcriptomics and chromatin accessibility 

data to reveal the spectrum of heterogeneity of mouse mammary epithelial cell types and states, 
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along with regulatory elements that contribute to these differences. Analysis of secretory luminal 

cells defines their differentiation trajectory and underlying regulatory factors.

Graphical Abstract

INTRODUCTION

Breast cancer is a heterogeneous disease of at least six intrinsic subtypes, namely, the 

luminal A, luminal B, HER2-enriched, basal-like, normal breast, and claudin-low subtypes 

(Perou et al., 2000). Breast cancer arises from the breast epithelium, which forms a ductal 

epithelial network consisting of an inner layer of luminal cells and an outer layer of basal/

myoepithelial cells (Visvader, 2009), with additional heterogeneity existing within these two 

cell layers. For example, a functionally distinct subpopulation of mammary stem cells may 

comprise a small subset of basal cells (Shackleton et al., 2006; Stingl et al., 2006), as well as 

subpopulations of progenitors and mature, hormone-responsive cells defined within the 

luminal compartment (Shehata et al., 2012).

Technological advances enable us to explore cellular heterogeneity without bias using 

single-cell RNA sequencing (scRNA-seq) (Pollen et al., 2014). This approach was used to 

describe the cell types and states within the human (Nguyen et al., 2018) and mouse 

mammary epithelium (Bach et al., 2017; Giraddi et al., 2018; Pal et al., 2017) and generally 

yielded three main cell types, namely, basal cells (marked by Krt14); secretory luminal (L-

Sec) cells, also called luminal progenitors (marked by Elf5); and mature, hormone-

responsive luminal (L-HR) cells (marked by Prlr). Although it is known that these cell types 
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change their transcriptional programs during pregnancy (Bach et al., 2017), it remains 

elusive whether additional cellular diversity exists under normal, adult homeostasis.

Cellular identity is strongly influenced by the epigenetic wiring of the cell, which is not 

measurable by scRNA-seq. Instead, these features can interrogated by the assay for 

transposase-accessible chromatin using sequencing (ATAC-seq) to reconstruct cis/trans-

regulatory elements associated with cellular identity in bulk assays (Buenrostro et al., 2015a) 

and at the level of single-cell ATAC-seq (scATAC-seq) (Buenrostro et al., 2015b). This 

approach provided insights into the differentiation trajectories of the hematopoietic system 

(Buenrostro et al., 2018; Satpathy et al., 2019) and has elucidated transcriptional regulators 

of developmental lineages of the fetal mammary gland both using bulk ATAC-seq (Dravis et 

al., 2018) and scATAC-seq (Chung et al., 2019).

The goal of the present study is to elucidate the molecular underpinnings mediating cellular 

identity within the mouse mammary epithelium by integrating single-cell transcriptomics 

(scRNA-seq) and chromatin accessibility (scATAC-seq) profiling of mammary epithelial 

cells (MECs). Our combined scRNA-seq/scATAC-seq analysis revealed luminal progenitor 

and lactation- committed cell states within the L-Sec cell type and identified cis/trans-

regulatory elements associated with cellular identity and luminal differentiation states. Our 

work provides important insights into the spectrum of MEC identity under normal 

homeostasis and will serve as a resource to understand how the system changes in cancer.

RESULTS AND DISCUSSION

Single-Cell Chromatin Accessibility Reveals Luminal Epithelial Cell States in the Mouse 
Mammary Epithelium

Recent single-cell transcriptomics analyses revealed that the MEC system consists of three 

main cell types—namely, basal (marked by Krt14), L-Sec (marked by Elf5), and mature L-

HR (marked by Prlr) — in both human and mammary glands (Bach et al., 2017; Giraddi et 

al., 2018; Nguyen et al., 2018; Pal et al., 2017). To determine whether additional cell states 

exist on an epigenetic level, we used massively parallel, droplet-enabled scATAC-seq 

analysis (10X Genomics Chromium) on MECs sorted from post-pubertal mice using flow 

cytometry. We subjected MECs to scATAC-seq analysis in three separate samples, profiling 

in total 23,338 individual cells (Figure 1A). After data processing using the Cell Ranger 

pipeline (10X Genomics), we performed unbiased clustering on all peaks using Seurat 

(Macosko et al., 2015), which revealed 4 main clusters (0–3) of MECs and minor 

populations of contaminating stromal cells (Figure 1B; Figures S1A and S1B). To identify 

the genes accessible in each cell type, we generated a gene activity matrix to serve as 

pseudoexpression data (Stuart et al., 2019). This enabled us to identify basal cells (cluster 0; 

marked by Krt14), L-Sec (clusters 2 and 3; marked by Kit), and L-HR (cluster 1; marked by 

FoxA1)(Figure 1C; Figure S1C). We also generated pseudobulk profiles to visualize 

differentially accessible genomic regions. Wnt10a was found to be specifically accessible in 

basal cells (Figure 1D), whereas Cldn3 displayed one major peak of high accessibility in all 

three clusters of luminal cells, which was essentially absent from the basal pseudobulk 

analysis (Figure 1E).
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Interestingly, we observed two distinct clusters within the L-Sec cell type (Figure 1C): 

cluster 2 (marked by Tm4sf1, encoding a tetraspanin transmembrane molecule involved in 

breast cancer metastasis through regulation of the phosphatidylinositol 3-kinase [PI3K] 

pathway [Sun et al., 2015]), and cluster 3 (marked by Rspo1, encoding a regulator of Wnt 

signaling, R-Spondin 1, that can mediate mammary stem cell renewal [Cai et al., 2014]). 

Further gene activity analysis revealed numerous specific marker loci that are specifically 

accessible in the respective clusters (Figure S1C; Table S1). Cluster 3 also showed moderate 

accessibility of the basal marker gene Krt14 (Figure 1C), suggesting that this cell state 

within L-Sec shows similarity to basal cells, which could indicate a bipotent progenitor cell 

state that can differentiate into both basal and luminal lineages or a transitory luminal 

progenitor that is directly derived from a basal mammary stem cells (Shackleton et al., 2006; 

Stingl et al., 2006). These initial analyses showed that our scATAC-seq dataset represents a 

resource to explore the chromatin accessibility landscape in individual mouse MECs.

Defining the Distinct Gene Expression Signatures within Mammary Cell Types and States 
Using Single-Cell Transcriptomics

To further explore the distinct gene expression signatures underlying the cell states revealed 

by scATAC-seq, we performed scRNA-seq on fluorescence-activated cell sorting (FACS)-

isolated MECs from age- and background-matched, 10-week-old, female FVB/NJ mice, 

yielding a dataset of 26,859 single-cell transcriptome libraries (Figure 2A; Figures S2A and 

S2B). Using clustering through Seurat, we detected three main clusters of MECs and their 

distinct marker genes (Figure 2B; Figure S2C; Table S2) that correspond to basal (Krt14+), 

L-Sec (Kit/Elf5+), and L-HR (Prlr+), in line with previous single-cell transcriptomics 

analyses (Bach et al., 2017; Pal et al., 2017). All clusters were evenly composed of cells 

from all three individual experiments (Figure S2B). We detected a small cluster of 

contaminating stromal cells, minor clusters of proliferating (P) cells (Mki67+), and small 

clusters expressing both luminal and basal keratins that displayed high levels of genes per 

cell, suggesting that these represent doublets (D) (Figure S2B). We detected two distinct cell 

states within the L-Sec cluster (Figure 2B; Figure S2D), which emerged as one 

homogeneous cluster in previous scRNA-seq studies (Bach et al., 2017; Pal et al., 2017). 

Differential gene expression analysis revealed that one of these clusters was marked by 

genes associated with milk production, such as Lipa, Csn2, and Lalba, and thus labeled the 

lactation progenitor, whereas the second cluster expressed high levels of genes associated 

with general luminal progenitor cell capacity, including Aldh1a3 (Eirew et al., 2012) and 

Rspo1, and therefore labeled the luminal progenitor (Figure 2C). Mature alveolar luminal 

cells arise during pregnancy and lactation (Visvader, 2009). Because our dataset was 

generated from nulliparous mice, we hypothesized that lactation progenitors represent a 

subset of lactation-precursor cells even before pregnancy. To corroborate this, we explored 

an scRNA-seq analysis of mouse MECs from nulliparous, pregnant, and lactating mice 

(Figure S2E) (Bach et al., 2017). We performed gene scoring analysis using our luminal 

progenitor and lactation progenitor gene signatures, which revealed that alveolar and luminal 

progenitors correspond to our luminal progenitor cluster, whereas differentiated alveolar 

cells from pregnant mice are highly comparable to our lactation progenitor cell state.
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Because Aldh1a3 marks a subset of luminal-restricted progenitor cells (Eirew et al., 2012), 

we next used Aldh1a3 as a marker for in situ validation of this cell state. Using a specific 

RNA-based probe (RNAscope) for Aldh1a3, in combination with anti-KRT14 antibody 

staining to label the basal cell compartment, we detected a subset of luminal epithelial cells 

(KRT14-negative) with pronounced expression of Aldh1a3 located in both ductal and lobular 

regions of the mammary gland (Figure 2D). Quantification of cells with more than 5 

transcripts per cell revealed ~15% of Aldh1a3+ in the luminal compartment detected by 

RNAscope (Figure 2E), which was in line with our scRNA-seq results showing ~13% of 

Aldh1a3+ luminal cells. We also found that the cell surface marker CD61 (Itgb3), which is 

known to mark luminal progenitors (Asselin-Labat et al., 2007), is increased in lactation 

progenitor cells (Figure 2F). Using flow cytometry, we isolated cKit+/CD61+ and cKit+/

CD61− MECs for further validation by qPCR of lactation progenitor genes (Figure 2G; 

Figure S2F). In line with our scRNA-seq data, we found that cKit+/CD61+ cells express 

higher levels of the lactation-associated genes Lalba, Spp1, and Csn2, whereas cKit+/ 

CD61− cells showed expression of Rspol and Aldh1a3, as detected in luminal progenitor 

cells (Figure 2H).

To functionally test for luminal progenitor capacity, we subjected cKit+/CD61− and cKit+/

CD61+ cells to the mammosphere formation assay as recently described (Kessenbrock et al., 

2013). This showed that cKit+/CD61− cells formed larger mammospheres compared with 

cKit+/CD61+ cells, which is in line with the notion of higher progenitor capacity (Figure 

S2G). However, cKit+/CD61+ cells still possess considerable growth potential similar to 

basal cells. Altogether, these findings confirmed the existence of two distinct states within 

the L-Sec cell type as predicted by scATAC-seq and allowed us to integrate these results 

with the previously proposed functional designations as luminal progenitor and lactation 

progenitor L-Sec cells.

Pseudotemporal Analysis Reveals Continuous Trajectory from Luminal Progenitor to 
Lactation Progenitor Cells

We next used pseudotemporal ordering using Monocle 3 pseudotemporal analyses (Trapnell 

et al., 2014) to reconstruct the lineage dynamics between luminal progenitors and lactation 

progenitors. In particular, we wanted to answer whether these are distinct cell states resulting 

in a loosely connected trajectory or whether they form a continuum with progenitor and 

lactation-precursor cell states at both ends of the spectrum. First, focusing on our scRNA-

seq data, we generated a graph trajectory through the L-Sec cluster in uniform manifold 

approximation and projection (UMAP) space, which revealed one main trajectory 

connecting luminal progenitor and lactation progenitor cells with minor paths branching off 

to each side (Figure 3A). To learn more about the different regions in pseudotime, we 

divided the cells into 10 bins based on their position along the trajectory for further 

interrogation (Figure 3A). Using gene signatures from the Bach et al. (2017) dataset for 

luminal progenitor scores (LP scores) from nulliparous mice and alveolar differentiated 

scores (Avd scores) from pregnant mice (Table S3), we found that L-Sec cells form a 

continuous gradient from luminal progenitors with high LP scores and low Avd scores to 

lactation progenitors with low LP scores and high Avd scores (Figures 3B and 3C), 
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indicating that these cells exist on a continuum rather than in distinct states of progenitor and 

lactation-precursor L-Sec cells.

Focusing on our scATAC-seq data, we used Cicero (Pliner et al., 2018) to generate a subset 

L-Sec UMAP reduction for subsequent pseudotemporal analysis and binning as described 

earlier. This revealed a main trajectory connecting luminal and lactation progenitor cells 

similar to our scRNA-seq analysis (Figure S3A). To identify modules of genomic peak 

regions in the scATAC-seq that are coaccessible and vary through pseudotime (Table S3), we 

employed the CisTopic pipeline to calculate topics of coaccessibility (Bravo Gonzalez-Blas 

et al., 2019). We found several topics to be dynamically correlated with pseudotime; for 

example, topic 5 showed accessibility early in pseudotime, whereas topic 1 represented 

features that were accessible late in pseudotime (Figure S3B; Table S3). To link 

transcriptional and chromatin accessibility dynamics, we next analyzed these specific topics 

using HOMER (Heinz et al., 2010) to test for significant representation of the transcription 

factor (TF) binding motifs contained within (Table S3). We then used our scRNA-seq dataset 

to generate expression modules that are differentially expressed along the major trajectory in 

pseudotime and performed Gene Ontology (GO) term analysis for TF signaling outputs 

using Enrichr (Kuleshov et al., 2016) to compare these with the TF motifs identified by 

HOMER on the scATAC-seq level. Interestingly, we found that Smad2 motif accessibility 

and Smad2 downstream gene expression were high early and gradually decreased in 

pseudotime, whereas TF motif accessibility and downstream gene expression associated 

with GATA1 started low early and then increased later in pseudotime (Figure 3D and 3E; 

Figure S3). Smad family TF motifs are key mediators of transforming growth factor β (TGF-

β) signaling (Sundqvist et al., 2012), indicating that this pathway is active in luminal 

progenitor cells. However, GATA signaling is generally associated with luminal 

differentiation (Kouros-Mehr et al., 2008). Altogether, our findings support a continuous 

transition between L-Sec progenitor and lactation progenitor cells and highlight several 

chromatin accessibility changes and potential transcriptional regulators associated with this 

transition.

Integration of scRNA-Seq and scATAC-Seq Reveals Cell-Type-Specific Transcriptional 
Regulators and cis and trans-Regulatory Elements

We next sought to integrate our scRNA-seq and scATAC-seq datasets to gain deeper 

biological understanding about the link between chromatin accessibility and gene expression 

within MECs. To this end, we used an approach to anchor diverse datasets together for 

comprehensive integration of single-cell modalities (Stuart et al., 2019). This integrated 

object yielded consistent overlap between modalities within each of the main cell types and 

recapitulated the two clusters of luminal and lactation progenitor cells within the L-Sec cell 

type (Figures 4A and 4B; Figure S4A). Known hallmark genes for mammary cell types (e.g., 

Krt5, Krt8, Kit, and Foxa1) showed strong correspondence between chromatin accessibility 

and gene expression in this integrated analysis (Figure S4B). We observed overall high 

correlation between ATAC-seq and RNA-seq data (Figure S4C). In particular, we observed 

striking consistency for Rspo1 in progenitor cells and Lalba in mature L-Sec cells in terms 

of chromatin accessibility paired with gene expression (Figure 4B).
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We sought to use this integrated analysis to identify TFs that may be critical for regulating 

cell-type identity. We used the ChromVar analysis pipeline (Schep et al., 2017) to analyze 

accessibility of cell-type-specific TF motifs in our scATAC-seq dataset (Table S4). Using 

Seurat’s marker gene test on the resultant TF motif deviation matrix, we uncovered sets of 

cell-type- specific TF motif enrichments (Figure 4A). We then performed cocorrelation 

analysis to pinpoint TF modules in the MEC system (Figure S4D), which revealed three 

major modules. Module 1 contained predominantly Jun and Fos-related TF motifs, 

indicating that this feature is related to a subset of cells showing stress response, most likely 

because of tissue dissociation and FACS isolation. Module 2 contained numerous TFs 

previously associated with basal epithelial biology, such as Tp63 (Forster et al., 2014), but 

Gata3 and other Gata family TFs were also observed, which have been linked with 

regulation of luminal cell fate decisions (Kouros-Mehr et al., 2006). Finally, module 3 

contained mostly TFs associated with luminal epithelial biology, such as Foxa1 (Liu et al., 

2016) and Elf5 (Zhou et al., 2005), but also included a cluster of epithelial-to-mesenchymal 

transition (EMT)-related TFs, such as Tcf4, Snai2, and ID4 (Stemmler etal., 2019).

Next, we devised cell-type-specific TFs displaying both motif accessibility and active 

downstream target gene expression as determined by Enrichr analysis (Table S4). 

Reassuringly, the master regulator of basal cell biology, Tp63 (Forster et al., 2014), emerged 

as one of the top TF motifs that was specifically accessible in basal cells and showed distinct 

gene expression as calculated using the gene score for a set of TP63 target genes (Figure 

4C). Several SMAD TFs yielded top motif scores within basal cells; however, SMAD3 

showed the highest target gene expression scores in basal cells, indicating that SMAD3 

represents a key TF in the regulation of basal cell identity. SMAD family TFs are critical 

mediators of transforming growth factor β1 (TGF-β1), which has wide implications in 

regulating mammary biology and cancer (Moses and Barcellos-Hoff, 2011). SMAD TFs 

also showed increased activity in L-Sec progenitors (Figure 3E; Figure S3B), which 

highlights the connection between basal and L-Sec progenitor cells. ELF1 showed the 

highest motif accessibility in both luminal clusters (L-Sec and L-HR); however, expression 

of ELF1 target genes is most predominantly detected in L-Sec cells. Finally, we explored 

FOXA1 as a known regulator of luminal differentiation, which showed strong 

correspondence between high TF motif accessibility and elevated target gene expression 

scores specifically in L-HR cells, corroborating the notion that FOXA1 is a master regulator 

of the L-HR cell type (Bernardo et al., 2010).

To identify cis-regulatory elements that may contribute to cell-type distinction, we used the 

Cicero pipeline for coaccessibility analysis to determine cell-type-specific genomic 

connections (Pliner et al., 2018). The resulting connections were subset to those in which 

one peak of each pair corresponded to an enhancer region from Enhancer Atlas’s mouse 

mammary putative enhancer list (Gao et al., 2016). Directly comparing L-Sec cell states, we 

found enhancer-specific connections near the Folr1 locus that were specific to lactation 

progenitors, but not luminal progenitors (Figure 4D). Further interrogation of gene 

expression and chromatin accessibility revealed the specific signal for Folr1 in L-Sec 

lactation progenitors (Figure 4E). Folr1 has been identified as a putative regulator of milk 

protein synthesis in cow mammary glands (Menzieset al., 2009), which is in line with the 

notion that this cluster is a lactation-committed precursor (Figure 2C). Altogether, this 
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suggests that this enhancer region on chromosome 7 represents a key regulatory element that 

becomes active during lactation-precursor differentiation.

Altogether, our integrated single-cell transcriptomics and chromatin accessibility analysis of 

the MEC system revealed a cell-state hierarchy within the luminal epithelial compartment 

and defined transcriptional and epigenetic underpinnings regulating cellular identity in the 

mammary epithelium. In particular, we define distinct maturation states within L-Sec cells, 

which exist on a continuum ranging from general luminal progenitor cells (Rspo1 and 

Aldh1a3) to potentially lactation-committed progenitor cells (Lalba and Csn2). By directly 

integrating transcriptomics and chromatin accessibility datasets, we provide a framework to 

devise putative key TFs by combining motif accessibility with positive downstream target 

gene expression. We also identified enhancer regions that are systematically associated with 

gene accessibility and expression of effector genes associated with L-Sec differentiation 

(Folr1). Our findings lay the groundwork for future studies to functionally address the 

biological significance of these cis/trans-regulatory elements in mediating mammary stem 

and progenitor cell function and to determine how the chromatin accessibility landscape 

changes during breast cancer.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Kai Kessenbrock 

(kai.kessenbrock@uci.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The accession number for the scATACseq and scRNaseq 

data reported in this study is GEO: GSE157890. All code will be made available upon 

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—For sequencing, FVB/NJ mice are from Jackson Laboratory (Stock Number: 

001800) were employed. In both scRNaseq and scATACseq experiment, 10 weeks old 

female mice were used for tissue collection. For RNAscope experiments, 10-week old 

C57BL/6 mice from Jackson Laboratory (Stock Number: 000664) were used. All 

experiments have been approved and abide by regulatory guidelines of the International 

Animal Care and Use Committee (IACUC) of the University of California, Irvine.

METHOD DETAILS

Cell Isolation and single-cell RNA and ATAC sequencing library generation—
Mammary glands number 4 were collected and pooled from a total of four 10-week old, 

female FVB/NJ mice. Glands were minced into pieces ~1mm in diameter and processed as 

previously described (Kessenbrock et al., 2013). In brief, minced glands were incubated with 

a 2mg/ml collagenase type IV solution at 37C while shaking for 1 hour. Digested organoids 
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were collected by differential centrifugation. Collected organoids were further dissociated 

with trypsin into single cells. Cells were stained for flow cytometry using fluorescently 

labeled antibodies for CD49f, EpCAM, CD31, CD45, Ter119, and SytoxBlue. For 

scRNAseq, live epithelial cells were collected for sequencing. For scATACseq, basal and 

luminal cells were collected separately.

Library generation for 10× Genomics v2 chemistry was performed following the Chromium 

Single Cell 3’ Reagents Kits v2 User Guide: CG00052 Rev B. Library generation for single 

cell ATACseq were performed following the Chromium Single Cell ATAC Reagent Kits 

User Guide: CG000168 Rev B. Single cell RNaseq and ATACseq libraries were sequenced 

on the Illumina HiSeq4000 platform targeting approximately 50,000 reads per cells.

Validation by qPCR—Mammary Glands number 2,3,4, and 5 were collected and 

combined from a total of four 13-week old, female FVB/NJ mice. Mammary glands were 

processed with the same procedure as those isolated for scRNAseq. Cells were stained for 

flow cytometry using fluorescently labeled antibodies for CD49f, EpCAM, cKit, CD61, 

CD31, CD45, Ter119, and SytoxBlue. Gates were set to sort out and collect CD61-, CD61lo, 

and CD61 + cells from the cKit+ luminal epithelial population. Directly after sorting, RNA 

was collected using a Quick-RNA Microprep RNA isolation kit (Zymo Research: R1054). 

The extracted RNA was immediately processed into cDNA using an iScript cDNA Synthesis 

Kit (Biorad: 1708891). qPCR reactions were performed using PowerUp SYBR Green 

Master Mix (Applied Biosystems: A25742) and Ct values were normalized to Gapdh Ct 

values.

Mammosphere assay—Mammary Glands number 2, 3, 4, and 5 were collected and 

combined from a total of four female FVB/NJ mice in triplicate (10–13 weeks in age). 

Mammary glands were processed with the same procedure as those isolated for scRNAseq. 

Cells were stained with the same panel as for the qPCR validation, and gates were set to sort 

and collect basal cells, CD61- and CD61+ cells from the cKit+ luminal population, as well 

as cKit- luminal cells. Each cell type was then individually resuspended in complete Epicult- 

B Mouse Medium (Stemcell: 05610) medium and mixed 1:1 with Matrigel (Corning: 

354230). Cells were plated in the center of individual wells on a 24-well cell culture plate 

(Genesee: 25–107) at a density of 10,000 cells/well, in a final cell-containing Matrigel 

solution volume of 40uL/well. The cell-containing Matrigel was solidified for 15 mins in a 

humidified 37°C cell culture incubator with 5% CO2. Each well then had 1mL of Epicult 

media added to it. Mammospheres were cultured in a humidified 37°C cell culture incubator 

with 5% CO2 for a total of 7 days.

Mammosphere image analysis—Brightfield 2× magnification z stack images of the 

mammosphere cultures were taken using a Keyence Microscope on day 4 and day 7 of 

culture. The full focus z stack images were then analyzed using ImageJ v1.52p software. 

Each image was converted to binary with the “Make Binary” function, then underwent “Fill 

Holes” and “Watershed” processing. To count the number and average area of spheres in 

each image we then used the “Analyze Particles” feature. A lower sphere area threshold was 

set to 0.005 inch2 (smallest size that still appears to be a real sphere in the image) for every 

image, and the upper sphere area threshold was determined by measuring the area of the 
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largest sphere in each image. Circularity was set to 0.50–1.00. Each condition in every 

experiment is represented by four images (quadruplicate), each from an individual well.

Sequence alignment and data processing—Alignment of scRNAseq analyses was 

completed utilizing 10x Genomics Cell Ranger pipeline (version 2.1.0). Alignment of 

scATAC seq analyses was completed utilizing 10x Genomics Cell Ranger ATAC pipeline 

(version 1.1.0). Each library was aligned to an indexed mm10 genome using Cell Ranger 

Count and Cell Ranger ATAC Count. “Cell Ranger Aggr” function was used to normalize 

the number of confidently mapped reads per cells across the libraries from different libraries 

for scRNAseq and scATACseq separately.

Cell-type clustering analysis and marker identification using Seurat—The 

aggregated peak-by-cell data matrix was read into R (R version 3.6.0) and processed using 

the Seurat single cell analysis package version 3.0.2 (Macosko et al., 2015). Along with the 

peak matrix, the Cicero-generated gene activity matrix (see below) and ChromVar deviations 

score matrix (see below) were added as assays to the Seurat object. A quality control cutoff 

of a minimum of 2500 fragments per cell was applied to trim the dataset of low-quality cells. 

Next, variable features of the peak matrix were set to peak regions of > 100 across the 

matrix. These variable features were used to perform Latent Semantic Indexing (LSI), and 

the first 50 components were calculated. These components were then used to generate a 

Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction. Post 

UMAP, a Shared-Nearest-Neighbor graph was generated from the first 14 LSI components 

chosen via the elbow plot method and was used to cluster the cells via Seurat’s Louvain 

algorithm.

Marker genes for peak-based clustering were generated using Seurat’s default 

FindAllMarkers() function on the gene activity matrix. Pseudobulk profiles by cluster 

highlighting fragment stack ups at particular genomic regions were generated using Signac 

(version 0.1.0).

Post label transfer, cell type-specific transcription factor motifs were calculated using the 

logistic regression method option implemented in Seurat’s FindAllMarkers() function. 

Those TF motifs that had an average log fold change greater than one were used to generate 

the correlation heatmap to find co-correlated modules of transcription factor motif 

enrichment.

Single-cell RNAseq analysis—Each of the scRNAseq data libraries were independently 

read into R version 3.6.0 and processed using the Seurat pipeline version 3.0.2. Genes had to 

be expressed in at least three cells to be considered for analysis. Cells were trimmed to those 

that had at least 200 minimum unique genes expressed, no more than 6000 unique genes, 

and less than 30% of counts aligning to the mitochondrial genome. Libraries were anchored 

and integrated using the top 2000 variable features per library calculated via the “vst” 

method in Seurat. Canonical correlation analysis (CCA) on these 2000 features between the 

libraries was calculated, and the first 20 dimensions used as input for anchoring. Post 

anchoring, PCA was performed and the first 10 PC’s were used for UMAP dimensionality 

reduction and subsequent clustering using the default Louvain implementation. Marker 
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genes per cluster were calculated using Seurat’s FindAllMarkers() function and the “wilcox” 

test option. GO term enrichment was performed using Enrichr (Kuleshov et al., 2016).

Gene activity matrix generation—The aggregated peak-by-cell data matrix was read 

into R version 3.6.0, binarized, and processed with the Cicero analysis package version 1.2.0 

and the monocle 3 alpha version 2.99.3 to generate a gene activity matrix for all cells 

sequenced in the study. The generation of the matrix took into account not only fragments 

that aligned to regions proximal to the promoter site of each protein coding gene in the 

genome took into account peak co-accessibility scores also generated through Cicero for all 

cells to factor in distal genomic relationships to the promoter site of each gene.

Single-cell ATACseq analysis using cisTopic—After cell filtration, the binarized 

matrix was inputted in an R package, cisTopic(v.0.2.2), to cluster the ATAC-seq data and 

analyze the chromatin accessibility difference among cell groups. It generated probabilities 

of a region-topic distribution and topic-cell distribution which were calculated using a latent 

Dirichlet allocation model with a collapsed Gibbs sampler. Regions were identified as 

associated with certain topics by automatically selecting a probability threshold based on a 

fit of the region scores to a gamma distribution.

Cis-regulatory regions by cluster—Post label transfer, scATACseq cell libraries were 

subset by their predicted ID label, whereupon the Cicero pipeline was utilized on each 

subset. Co-accessibility networks were generated, with pairs of peak regions and their 

corresponding score in a data frame. This data frame was subset to only those pairs that 

overlapped with regions in the Enhancer Atlas mouse mammary list as the first peak of the 

connection (Gao et al., 2016). This trimmed connection matrix was then thresholded for 

each cell type to those that had a co-accessibility score greater than 0.2. Next, the second 

non-enhancer peak in the pair was annotated to its closest protein coding gene. Conserved 

expression markers between technology (RNA and ATAC in the RNA-imputed matrix) were 

found by cell type and the respective co-accessible gene regions that were both highly 

connected to an enhancer region, and represented a marker for a cell type were selected.

Transcription factor (TF) motif analysis using ChromVar—Motif enrichment 

analysis was performed using an R package ChromVAR version 1.4.1 (Schep et al., 2017). 

Open chromatin peaks and read counts at open chromatin were defined by the Cell Ranger 

pipeline as described above. After correction of GC bias, TF deviation score was calculated 

using a total of 579 TF motif position weight matrices provided with the 10X Genomics Cell 

Ranger package. For TF clustering analysis, only cells corresponding to epithelial clusters 

post label transfer (0,1,2,3) were selected. TF enrichment scores were averaged by cluster 

and hierarchically clustered using hclust( ) and pheatmap( ) in R.

Combined scATACseq and scRNAseq analysis—To generate a coembedding of 

cells from both scATACseq and scRNAseq libraries, cells from the scRNAseq analysis were 

used as a reference dataset to predict cluster labels in the scATACseq dataset and transfer 

them. This prediction used the variable features of the scRNAseq analysis on the RNA assay, 

and the gene activity matrix of the scATACseq analysis as the query data. Transfer anchors 

were learned using Find Transfer Anchors () and the cluster labels were predicted using the 
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Transfer Data () function together with the peak-based scATACseq LSI reduction as the 

weight. reduction function option input. Next, an imputed gene activity matrix was 

generated by using the Transfer Data () function again, with the previously learned transfer 

anchors and a matrix consisting of only the variable features of the scRNAseq analysis and 

its corresponding cells as the reference. This imputed expression matrix was then used to 

merge the two Seurat objects, allowing for co-visualization of cells labeled by the scRNAseq 

cluster labels or their predicted cluster labels for the scRNaseq based or scATACseq 

respectively.

For combined TF motif accessibility and target gene expression analysis, we first identified 

cell type-specific TF motifs in our ChromVar analysis (see above), and then performed 

Enrichr analysis using cell type marker genes from scRNAseq to identify “ENCODE and 

ChEA Consensus TFs from ChIP-X” for each cell type. Transcription factor targets came 

from the Enrichr analysis (Table S4), where marker genes by cluster were analyzed and 

those genes that had pathway hits in the “ENCODE and ChEA Consensus TFs from ChIP-

X” annotation for particular transcription factors were used to score all cells using Seurat’s 

AddModule-Score() function.

Pseudotemporal Analyses—For the scRNAseq analysis, using R version 3.6.3, cells 

pertaining to clusters 1 and 3 (L-sec progenitor and lactation progenitor) were subset into 

their own raw counts data matrix. This matrix was then processed using Monocle 3 version 

0.2.1 functionality. Using the subset UMAP cell positions from the scRNAseq analysis, we 

next employed monocle to learn a graph trajectory through this space. The beginning of 

pseudotime was chosen as the branch node that started within our L-sec progenitor cluster. 

Cells were then binned into 10 groups based on their positions along pseudotime. To further 

explore the branch of the trajectory that traveled from the start of pseudotime toward the 

lactation progenitor population, we manually selected cells along the branch for subset 

analyses. We performed differential expression as a function of pseudotime and clustered the 

genes from the output into expression modules that varied along the trajectory. These 

modules were then each separately entered into Enrichr (Kuleshov et al., 2016) to 

interrogate TF downstream signaling genes, which were then compared to scATACseq 

analysis.

For the scATACseq pseudotemporal analysis, we first used Cicero (version 1.3.4.8, built of 

the aforementioned monocle 3 version), to project clusters 2 and 3 in a subset analysis. 

Contaminating cells were removed, and the resulting peak region matrix was binarized and 

processed using cicero. A UMAP dimensionality reduction was calculated and used as the 

basis for learning the graph trajectory. The beginning of pseudotime was selected as the 

branch point harboring progenitor cells as previously annotated. An identical binning 

approach was then applied to the cells in the analysis as described above for scRNAseq data. 

Seeking an analogous comparison to the gene expression modules generated in the RNA 

analysis, we employed cis Topic to generate topics of peak regions that we could then 

visualize using our binned pseudotime designations to observe which topics had an 

increased probability at different positions along the graph. The regions associated with each 

topic were output as bed files containing the genomic coordinates by getBedFiles function in 

cis Topic. The bed files were used as input into the sfindMotifsGenome command of 
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HOMER(v4.7). The size parameter was set to 200 and the repeat-masked sequence was 

used. Mm10 was used as the reference genome. HOMER screened its library of known 

motifs against the input regions and background for enrichment. These motifs were then 

cross-referenced to the scRNA pseudotime gene module Enrichr output for those TF’s that 

had both a hit on our HOMER analysis and in their downstream signaling outputs among 

modules and topics that exhibited similar patterns (probability or gene module scores) 

through pseudotime.

Comparison with scRNAseq dataset from pregnancy—Single cell gene expression 

matrix from Bach et al. (2017) was downloaded and loaded into R version 3.6.3. Using meta 

data supplied by the authors, cells corresponding to their published analysis of both the 

Nulliparous (NP) and Gestational (G) stages of mouse samples were separated into a single 

matrix and analyzed using Seurat version 3.1.4. No additional trimming was performed to 

maintain consistency with the published analyses. Following standard Seurat workflow 

(Macosko et al., 2015), a UMAP was generated using the top 2,000 variable genes selected 

via the default “vst” method. Cluster/ cell type labels were preserved from the manuscript 

for visualization and downstream analysis. Using Seurat, marker genes were generated for 

the labeled clusters, whereupon the top 100 markers by log fold change for the LP and Avd 

cell types were used for scoring in the scRNAseq pseudotime analysis (see above). Using the 

top 100 marker genes by log fold change derived from our scRNAseq data, cells in the Bach 

et al. (2017) analysis were additionally scored using the Seurat function AddModuleScore() 

using genes corresponding to the L-sec progenitor and lactation progenitor cell designations 

and visualized.

In situ RNA analysis using RNAscope—Mammary glands were harvested from a 10-

week old C57BL/6 mouse and frozen in O.C.T Compound (4583, Sakura). 10-micron 

sections were fixed with fresh 4% PFA made from 40% PFA (15715-S, Electron Microscopy 

Sciences) diluted in PBS (21–031-CV, Corning) for 1 hour at RT. The RNAscope assay for 

the Aldh1a3 probe (501201, ACDBio) was performed according to the manufacturer’s 

protocol for fresh frozen sections. The images were acquired with a Zeiss LSM 700 confocal 

microscope. Fiji was used to calculate the number of Aldh1a3 foci (RNA molecules) per 

nuclei manually. Nuclei enveloped in Krt14 protein are called basal for this analysis. Nuclei 

adjacent to, but not enveloped, are called luminal. To quantify the percentage of Aldh1a3-

positive cells, we applied a cut-off of n > 5 molecules per nuclei and calculated the 

percentage of all cells in basal or luminal compartment.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data processing, statistical analyses, and figure generation were performed in R unless 

otherwise specified in the Method Details section above. Specific details regarding the tests 

applied to data as well as the corresponding n are delineated above as well both in the main 

text as well as the Method Details. Below, a brief additional summary is provided:

• All marker’s for cell types/ states and clusters were identified using Seurat’s 

implementation of a Wilcoxon Rank Sum test, with a p value of 0.05 as a lower 

bound cutoff, in the exception of the ChromVar TF markers employed in Figure 

4, in which Seurat’s implementation of a logistic regression was used.
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• All output from Enrichr’s Fisher’s exact test was thresholded to only use output 

of a p value less than 0.05.

• Cistopic generated probabilities of a region-topic distribution and topic-cell 

distribution which were calculated using a latent Dirichlet allocation model with 

a collapsed Gibbs sampler.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Generate combined scATAC-seq and scRNA-seq libraries of adult mouse 

MECs

• Uncover luminal cell heterogeneity and molecular underpinning driving cell 

type/state

• Identify the pre-committed lactation progenitor within the luminal progenitor 

compartment

• Regulatory the grammar of MEC types and putative enhancer identification
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Figure 1. Single-Cell Chromatin Accessibility Profiling of MECs from Post-pubertal Mice 
Reveals Luminal Epithelial Cell States
(A) Schematic of the experimental workflow for scATAC-seq analysis.

(B) UMAP visualization of scATAC-seq libraries, colored by Seurat clustering performed on 

an aggregated peak matrix. Cell types are outlined by dotted lines, with basal cells in green, 

hormone-responsive luminal (L-HR) cells in orange, and secretory luminal (L-Sec) cells in 

indigo.

(C) Violin plots of Cicero-generated gene accessibility matrix-based marker genes of each 

cluster, with boxes colored by cell-type-specific accessibility.
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(D and E) UMAP of scATAC-seq analysis on the left, with cells colored by gene 

accessibility expression level of Wnt10a and Cldn3. Pseudobulk profiles of library fragments 

on the right, subset by cluster at genomic regions corresponding to Wnt10a and Cldn3.
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Figure 2. Single-Cell Transcriptomics of MECs Reveal the Lactation-Precursor Cell State
(A) Schematic of the experimental workflow for scRNA-seq analysis of isolated mouse 

MECs.

(B) UMAP visualization of scRNA-seq libraries anchored by sample, with colors 

corresponding to unbiased clustering and annotated by cell type and state. Basal cells are in 

red, L-HR cells are in light green, and L-Sec cells are outlined in dark green. Putative 

doublets are marked by D, and proliferative cells are marked by P. Within the L-Sec cell 
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type, two distinct clusters emerged that were labeled mature or progenitor based on gene 

expression signatures.

(C) Volcano plot showing genes that are differentially expressed between L-Sec luminal 

progenitor and lactation progenitor cells.

(D and E) Fluorescence images from in situ RNA scope analysis for Aldh1a3 in combination 

with immunostaining for basal-specific KRT14 are shown. Luminal and basal compartments 

are outlined in the blown-up image. Quantification of transcript counts per basal and luminal 

cells is shown; data were combined from three independent regions of mouse mammary 

gland sections.

(F-H) Validation of two distinct cell states using flow cytometry. (F) Feature plot showing 

gene expression of Itgb3 encoding CD61. (G) Flow cytometry analysis of primary mouse 

MECs gated on L-Sec cells only showing levels of CD61 ranging from negative (−) to low 

(lo) and high (hi). (H) Gene expression of marker genes from scRNA-seq analysis defining 

luminal progenitors and lactation progenitors measured in CD61−, CD61-lo, and CD61-hi 

cells using qPCR. The error bar indicates inter-assay variability as SEM from n = 3 

experiments.
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Figure 3. Pseudotemporal Analysis Shows a Continuous Differentiation Trajectory within L-Sec 
Cells
(A) UMAP reduction of the scRNA-seq subset on L-Sec cells only colored by Seurat cluster 

with Monocle 3 pseudotemporal trajectory overlay, with the boldface path representing the 

major transitionary graph from luminal to lactation progenitors. UMAP reduction is shown 

(left plot), with cells colored by pseudotime with dark blue corresponding to early and light 

yellow corresponding to late (middle plot). The right plot shows UMAP reduction colored 

by pseudotime bin, with 1 as the earliest and 10 as the latest.
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(B) UMAP reduction colored by the LP score derived from Bach et al. (2017) (left), and a 

feature scatter showing individual cell gene scores colored by the pseudotime bin score, with 

the dotted line indicating the associated Pearson correlation (right).

(C) UMAP reduction colored by the Avd score from cells in pregnant mice (left) derived 

from Bach et al. (2017), and a feature scatter showing individual cell gene scores colored by 

the pseudotime bin score, with the dotted line indicating the associated Pearson correlation 

(right).

(D) UMAP reduction visualizing the Smad2 downstream target gene expression score, in 

which cells colored dark blue have low scoring and cells colored light yellow have high 

scoring, and a feature scatter colored by the pseudotime bin of score versus pseudotime and 

the associated Pearson correlation (right).

(E) UMAP reduction visualizing Gata1 downstream target gene expression score, in which 

cells colored dark blue have low scoring and cells colored light yellow have high scoring, 

and a feature scatter colored by pseudotime bin of score versus pseudotime and associated 

Pearson correlation (right).
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Figure 4. Integration of Single-Cell Chromatin Accessibility and Transcriptomics Datasets
(A) Coembedding of scRNA-seq and scATAC-seq data into a single UMAP visualization, 

with cells colored by Seurat cluster or label-transferred cluster.

(B) Coembedded UMAP faceted by technology type, with cells from scATAC-seq libraries 

on the left and cells from scRNA-seq libraries on the right. Cells are colored based on scaled 

expression, with gray corresponding to low expression and dark red corresponding to high 

expression.
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(C) Faceted UMAP visualization of coembedded analysis, with scATAC-seq cells on the left 

and scRNA-seq cells on the right. scATAC-seq data are colored by scaled deviations of TF 

motif accessibility, and scRNA-seq data are colored by gene scoring of downstream targets 

of TF signaling as annotated through GO terms. Yellow corresponds to high values, and dark 

blue to corresponds low values.

(D) Cicero connection data at enhancer region chr7_101932449_101936345 generated by 

subset analysis by cluster. Connections from lactation progenitor cells are shown in the top 

panel, and connections from the L-Sec progenitor are shown in the bottom panel, with a 

minimum coaccessibility score of 0.2 visualized.

(E) Violin plot of Folr1 expression in the coembedded analysis, split by technology type.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PE-Cyanine7 anti-human/mouse CD49f (integrin alpha 
6)

eBioscience Cat#25-0495-82; RRID: AB_10804881

FITC anti-mouse CD326 (EpCAM) Biolegend Cat#118207; RRID: AB_1134106

eFluor450 anti-mouse CD45 eBioscience Cat#48-0451-82; RRID: AB_1518806

eFluor450 anti-mouse CD31 eBioscience Cat#48-0311-82; RRID: AB_10598807

eFluor450 anti-mouse Ter119 eBioscience Cat#48-5921-82; RRID: AB_1518808

PE anti-mouse CD117 (cKit) Biolegend Cat#105807; RRID: AB_313216

APC anti-mouse/rat CD61 Biolegend Cat#104315; RRID: AB_2561733

APC Anti-Mo CD326 (EpCAM) eBioscience Cat#17-5791-82; RRID: AB_2716944

Sytox Blue Dead Cell Stain Invitrogen Cat#S34857

PE-CD49f Invitrogen Cat#12-0495-83; RRID: AB_891476

Chemicals, Peptides, and Recombinant Proteins

Collagenase Type IV Sigma Aldrich Cat#C5138-1g

Epicult-B Mouse Medium Stemcell Cat#05610

Matrigel GFR Membrane Matrix Corning Cat#354230

Tissue-Tek O.C.T. Compound Sakura Cat#4583

Paraformaldehyde Aqueous Solution Electron Microscopy Sciences Cat#15715-S

Dulbecco’s Phosphate-Buffered Saline (PBS) Corning Cat#21-031-CV

Critical Commercial Assays

RNAscope Probe- Mm-Aldh1a3 ACDbio Cat#501201

Chromium Single Cell 3’ Library &Gel Bead Kit v2 10x Genomics Cat#PN-120237

Chromium Single Cell ATAC Library & Gel Bead Kit 10x Genomics Cat#PN-1000111

Quick-RNA Microprep RNA isolation kit Zymo Research Cat#R1054

iScript cDNA Synthesis Kit Biorad Cat#1708891

PowerUp SYBR Green Master Mix Applied Biosystems Cat#A25742

Deposited Data

scATACseq Data This Paper GSE157888

scRNaseq Data This Paper GSE157889

Mouse NP and Pregnancy scRNaseq data Bach et al., 2017 GSE10627

Experimental Models: Organisms/Strains

Mouse: FVB/NJ Jackson Laboratory Cat#001800

Mouse: C57BL/6J Jackson Laboratory Cat#000664

Software and Algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

R (v3.6.0 or v3.6.2) The R Project for Statistical 
Computing

https://www.r-project.org/

Cell Ranger v2.1.0 10x Genomics https://support.10xgenomics.com/single-cell-
gene-expression/software/pipelines/latest/
installation

Cell Ranger ATAC v1.1.0 10x Genomics https://support.10xgenomics.com/single-cell-
atac/software/pipelines/latest/what-is-cell-
ranger-atac

ImageJ v1.52p ImageJ https://imagej.nih.gov/ij/download.html

Seurat v3.0.2 Stuart et al., 2019 https://cran.r-project.org/web/packages/Seurat/
index.html

Cicero (v1.2.0 or v1.3.4.8) Pliner et al., 2018 http://bioconductor.org/packages/release/bioc/
html/cicero.html

ChromVar v1.4.1 Schep et al., 2017 https://bioconductor.org/packages/release/bioc/
html/chromVAR.html

Monocle 3 (v2.99.3 or v0.2.1) Trapnell et al., 2014 https://cole-trapnell-lab.github.io/cicero-release/
docs/#installing-cicero

cisTopic v0.2.2 Bravo Gonzalez-Blas et al., 2019 https://github.com/aertslab/cisTopic

Signac v0.1.0 Stuart et al., 2019 https://cloud.r-project.org/web/packages/Signac/
index.html

HOMER v4.7 Heinz et al., 2010 http://homer.ucsd.edu/homer/introduction/
install.html
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