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Abstract: The focus of this research is on the estimation of traffic density from data obtained from
Connected and Autonomous Probes (CAPs). CAPs pose an advantage over expensive and invasive
infrastructure such as loop detectors. CAPs maneuver their driving trajectories, sensing the presence
of adjacent vehicles and distances to them by means of several electronic sensors, whose data can
be used for more sophisticated traffic density estimation techniques. Traffic density has a highly
nonlinear nature during on-congestion and queue-clearing conditions. Closed-mathematical forms of
the traditional density estimation techniques are incapable of dealing with complex nonlinearities,
which opens the door for data-driven approaches such as machine learning techniques. Deep learning
algorithms excel in data-rich contexts, which recognize nonlinear and highly situation-dependent
patterns. Our research is based on an LSTM (Long short-term memory) neural network for the
nonlinearity associated with time dynamics of traffic flow. The proposed method is designed to learn
the input-output relation of Edie’s definition. At the same time, the method recognizes a temporally
nonlinear pattern of traffic. We evaluate our algorithm by using a microscopic simulation program
(PARAMICS) and demonstrate that our model accurately estimates traffic density in Free-flow,
Transition, and Congested conditions.

Keywords: traffic density estimation; connected and autonomous probes; radar sensors; deep neural
network; long-short term neural network

1. Introduction

Estimating traffic density is of critical importance in understanding current traffic conditions.
Accurate estimation of traffic condition is also important for road congestion mitigation technologies
such as ramp metering, variable message signs, and signal control, since congested traffic takes time
to recover, so it is necessary to manage traffic before the onset of congestion. Traffic density plays a
pivotal role in predicting the onset of traffic congestion. Developing vehicle sensing technologies and
the concept of “Internet of things” give many opportunities to measure traffic density more accurately.
Traffic density estimation using sensor-equipped probes is emerging as a valuable tool in research and
practice [1–6]. This is apparent when we consider the fact that modern cars are now being equipped
with advanced on-vehicle sensors. These sensors can be camera-vision, lidar and radar, which were
originally installed for Advanced Driver Assistance Systems (ADAS). The number of vehicles equipped
with these advanced functionalities will significantly increase in the near future, specifically with the
emergence of Connected and Autonomous Vehicles (CAVs). A side benefit of these technological
advancements is that we can now have a sufficient number of vehicles traveling on the road at any
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given time to obtain a large amount of sensor data, which can then be harnessed to get much-improved
estimates of traffic densities.

The basic functionality of CAPs (Connected and Autonomous Probes) involves various sensing
equipment (GPS, radars, and cameras) and computing units that collect and process trajectories of
detected vehicles. The following data sets can be obtained from CAPs: (1) the number of vehicles on
their sensing area, (2) distance to the leading vehicle, and (3) vehicle miles/hours traveled of detected
vehicles. Using only the first data set, one can postulate a naïve approach that linearly approximates
the number of sensed vehicles to traffic density. This approach leads to large estimation errors because
the unit of the output density (vehicles per square meter) is not easily translated to traffic density,
which is measured in vehicles per meter and is a more appropriate unit for transportation applications.
A second possible approach can be attributed to the work of [7], in which a probe observes the spacing
between a probe and a leading vehicle. Based on Edie’s generalized definition, [7] estimate traffic
density from vehicle traveled hours of probes (seconds) and the time-spacing information (sensing
domain, spacing × travel time (meter× second)). If a probe is able to sense multiple leading vehicles
and two or more probes are connected, counting the number of vehicles between two probes can help
estimate traffic density [7]. When we extend the functionality of a probe, as in the case with CAPs, it is
easy to infer that a probe can capture all the data required for Edie’s definition to be applied.

Edie’s definition calculates traffic density from the relationship between vehicle hours traveled
and time-space domain [8]. Traditional applications of Edie’s generalized definition limits their domain
to have a canonical shape such as a rectangle. For instance, the time-space domain of a point-based
density estimation appears with a rectangle shape (e.g., 15 sec× 1 m). A snapshot-based estimation
has an approximately zero-time interval. However, theoretically, it allows for the space-time domain to
be any shape such as rectangular, circle, or a polygon. A moving probe shapes its time-space domain
from the sensing distance and trajectory. CAPs also capture total vehicle traveled hours of detected
vehicles, measuring how many vehicles are sensed in each time step.

Although this novel approach can capture the traffic density of a section, our simulation
experiments show that the CAPs-based traffic density tends to over-estimate or under-estimate
in certain situations. In the following section, we describe this limitation in detail and introduce our
proposed LSTM neural network that is designed to overcome this limitation.

2. Preliminary

2.1. Specification of a Radar Sensor-Equipped Probe

One of our preliminary assumptions is that Connected and Autonomous Vehicles (CAVs) are
equipped radar sensors to efficiently observe surrounding traffic conditions. Nam et al. [9] proposed
a traffic density estimation method by utilizing a radar sensor equipped probe developed by Korea
Institute of Civil Engineering and Building Technology (KICT). The probe vehicle has multiple sensors,
including a GPS unit, high resolution radars working with 77-gigahertz microchips, and computing
processors. Applications in the main processor manipulate incoming data from sensors and then
compute local traffic density. The radar system of the probe vehicle is capable of observing multiple
surrounding vehicles on a real-time basis and then tracing their trajectories, which are then used to
calculate Vehicle Miles Traveled (VMT) and Vehicle Hours Traveled (VHT). VMT is defined as the
product of traffic volume on a link and the length of the link. Similarly, VHT is defined as the total time
traveled by all vehicles on a specific link during a specific period. Currently, the probe, called TRADOS
(TRAffic Density Observation System), has an onboard real-time traffic monitoring tool, which can
sense traffic conditions in its vicinity (e.g., local density).

Figure 1 shows a conceptual diagram of how the sensor-equipped vehicle detects adjacent vehicles.
Radars are located at front and rear bumpers that detect vehicles in four regions surrounding the probe
vehicle: front-end, rear-end center, left and right side. In the front, there are two radars: a forward
long-range radar, and a mid-range radar, both of which are widely used for ACC applications. In our
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study, the long-range radar performs the role of detecting vehicles on the same lane, and the mid-range
radar is adapted to detect vehicles on the left/right side lanes. The probe has three radars in the rear.
Two side backward sensors designed for Blind Spot Detection (BSD) can detect vehicles driving in the
left/right lanes. Finally, the backward long-range sensor is used to detect vehicles following the probe
vehicle in the same lane.
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Figure 1. Sensing vehicle and its sensing range specifications.

Applications in the computing processors synchronize different sensor data on a time basis and
store each detected vehicles’ relative position data, which is then converted into second-by-second
vehicle trajectory data. By differentiating the trajectories with respect to time, we can infer the travel
speed of detected vehicles. Similarly, the probe can also infer acceleration/deceleration of the detected
vehicles, if required.

For this study, the following radar configuration is assumed as shown in Table 1.

Table 1. Radar configuration of Connected and Autonomous Probes.

Sensor Code Name Target Angle (◦) Sensing Range (◦) Sensing Distance (m)

1 Forward Long 0 10 30
2 Forward Wide 0 60 10
3 Backward Left 160 40 10
4 Backward Right 200 40 10
5 Backward Long 180 20 20

2.2. Traffic Density Estimation and Its Limitations on the CAPs Application

Traffic density defined by Edie (1963) is as follows:

K̂([xa, xb] × [ta, tb]) =
t([xa, xb] × [ta, tb])

[xa, xb] × [ta, tb]
(1)

where t([xa, xb] × [ta, tb]) is the total vehicle hours travelled of all vehicles in the time-space domain
([xa, xb] × [ta, tb]).

This definition can be reformulated for CAPs as Equation (2). We assume that a CAP observes
adjacent vehicles at every time step j. J is the total travel time of a CAPs on a link. The space domain
([xa, xb]) is simplified by the sensing performance of a CAP. The advantage of this method is that
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it does not calculate the local density every time step. Only a section density can be estimated by
combining detected and current vehicles’ travel time until a sensor vehicle passes a domain.

k̂([xa, xb] × [ta, tb]) ; k(ds[xa, xb] × [ta, tb]) =

∑J
j=1 VHTs

j

dS·J
=

VHTS

dS·J
(2)

Although a CAP can capture traffic states during stationary traffic conditions such as
non-congested and fully congested conditions, it is vulnerable during flow transition periods.
Specifically, the performance deteriorates during the onset of congestion and queue-clearing conditions,
in comparison with its performance in other states.

Figure 2 shows a simplified illustration of overestimated traffic density during the onset of
congestion, when a simple local density estimation algorithm is applied. The number of cars on the
road section can be suitably thought of as a proxy for road density. The purple vehicles indicate CAPs,
each having a sensing area shown in blue. Faster-moving and slower-moving vehicles are depicted in
green and red, respectively. Depending on the sensor positions, the congestion build-up or clearing
conditions can move through the sensing zone and cause a time-lag effect. A simple algorithm will
naturally capture travel hours and travel distances of all vehicles in the sensing area of the CAPs to
calculate densities, but during times of congestion there is a greater proportion of slower vehicles in the
sensing area in each time step, which can cause oversampling. This oversampling of slower-moving
vehicles from time step to time step can lead to overestimation of traffic density. To correct for this bias,
the algorithm needs a certain time-step to time-step memory. Moreover, sensing areas from different
CAPs tend to overlap in these conditions, which further add to the overestimation. The limitations
of the algorithm outlined previously motivate us to incorporate innovative approaches to make our
method more accurate.
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Estimating traffic density using multivariable data from CAPs is quite challenging since traffic
conditions are dependent on complex temporal and spatial factors. Traffic density at the current time
step is highly correlated with traffic conditions in the previous time steps, which motivates us to apply
an estimation method that considers temporal dynamics of a series of input and outputs. The time
dependency of traffic density varies by situation and entails stochastic characteristics. There are various
domain specific algorithms for these conditions. Kalman filter [10], which is also known as linear
quadratic estimation, is the representative method for real-time traffic state estimation [11–16].

Traffic density in transitional periods is too stochastic to estimate accurately using linear
programing, resulting in overestimation during transitional periods. As previously indicated,
traffic density tends to be overestimated since probe vehicles arriving at a congested part of a
road section myopically classify the current link density as heavily congested even though the rest of
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the road section is not congested, which leads to estimation inaccuracies. Experimental results using
simulation show that the traffic dynamics of congestion and queue clearing have recurrent patterns.
The combination of highly recurrent patterns, nonlinearity, and a large amount of data to be analyzed
leads us to propose Machine Learning (ML) algorithms as appropriate tools to identify these patterns.
ML algorithms excel in extracting relationships between different variables in large datasets. In this
research study, the data to be analyzed are a fusion of CAPs data and road geometry data. This fusion
is not trivial, as we need to formulate innovative ways to combine these disparate sources of data.

The capabilities of Deep Learning algorithms are increasingly being recognized in the fields of
traffic estimation and prediction [17–21]. One common conclusion that has emerged in the field of traffic
flow prediction is that deep learning methods are successfully able to identify nonlinearity of traffic
flow according to time and time-lag characteristicsz and that deep learning algorithms can accurately
predict traffic fundamentals. Recurrent Neural Networks [22] (RNN) have been utilized by [21,23–25] to
predict traffic flows from prior traffic condition. RNN models, however, have a well-known limitation
known as the “Vanishing Gradient Problem”. Due to this property, the effect of the prior steps’ traffic
conditions tends to drastically weaken over time, thus deterring the implementation of time-lag
properties of traffic dynamics; [17,18,21,26] point out this property and recommend Long-Short Term
Memory Neural Networks [27], a scheme within the broad category of deep learning methods, as an
effective tool to counteract this problem. They report that this LSTM approach could result in better
estimation of traffic conditions and can better capture the time-lag properties of traffic dynamics.

Most recent LSTM applications in transportation research, however, focus on a traffic condition
prediction where ground truth values at a certain location in prior timesteps are given and the model
predicts the traffic condition of the next time step. In other words, the scope of contemporary research
has been the prediction of traffic density at pre-defined fixed-point detectors. However, our scope of
traffic density estimation is potentially network-level since our source of data are CAPs that travel
throughout the network. With an assumption that we do not have a sectional level of ground truth
traffic densities at every timestep, the proposed model estimates the ground truth traffic density by
utilizing data from vehicles sensor and geo-spatial information. Thus, our traffic estimation process
does not include previous step’s ground truth traffic densities as input variables. We propose a
multivariate input variable-based LSTM neural network model that is explained in detail in the
following section.

3. Deep Learning-Based Traffic Density Estimation

Figure 3 shows the conceptual framework of the proposed methodology. Hereinafter,
we will call the proposed model as STREAM-LSTM (Simulation-based TRaffic density Estimation
AlgorithM-Long-Short Term Memory). A traffic management center collects various pieces of
information from CAPs passing a road section every 0.5 s and stores the data in a moving time
horizon window vector of n time steps. In our study, we set the moving horizon to be five time
steps. Traffic density is highly affected by prior traffic conditions. The time-horizon window has a
pattern that is captured by CAPs during the moving horizon. We call this pattern a “Sensor Signature”.
The LSTM network [18] recognizes the current signature (input layer) and previous time step’s layer
pattern (LSTM layer). The advantage of employing LSTM networks in this context is that they do not
suffer from the well-known “vanishing gradient” problem [17–19]. Simply stated, this means that
they can consider not only quite recent prior conditions but also relatively longer prior conditions,
as the phrase “Long Short-Term memory” implies. Our proposed framework takes the advantage of
the memory layers that automatically determine the time lag between input and output. In traffic
estimation domain, traffic conditions collected from CAPs might be locally biased since CAPs only
capture adjacent traffic conditions. In other words, there exists a time lag between a CAP and actual
traffic density when traffic is in a transitional period. Furthermore, some CAPs approaching congestion
can be used as an indicator of increasing density. LSTM recognizes those time-lag conditions using
temporally-varying Sensor Signatures.
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This model can take multiple features as input variables from CAPs as shown in Figure 3.
The model input vector at t is denoted as xt = (x1,t, x2,t, x3,t, · · · , xτ,t). A neuron (it) in the input layer at
time t (Equation (3)) consists of an input (xi, t), a hidden vector of previous time step (ht−1), weights for
the two vectors (Wi, Ui), and bias bi. To reflect time-relevant characteristics in the data, this model uses
a “forget gate layer” (Equation (4)) and a “cell state layer” (Equation (5)) to store temporal information,
which is the output of neuron states in the previous time step. Forget layer f is called a transfer
function that is determined to be either forgotten or alive from the previous states by cell state layer.
For example, the forget layer in our method determines the time period of considering time lags
between sensor input and traffic density. If the sensor data of past time periods does not affect the
density of the current time step, the cell state layer decides to not use the forget layer. The function can
take any form such as linear, sigmoid, tanh, or ReLU. From each neuron state, density is estimated by
Equation (6)

it = σg(Wix i,t + Uiht−1 + bi) (3)

ft = σg
(
W f xt + U f ht−1 + b f

)
(4)

ct = ft◦ct−1 + ii◦ σc(WCxt + Ucht−1 + bc) (5)

ŷ(t) = f (
∑I

i
wini(t) + bo) (6)

where

xt : Input vector at t
ht−1: a hidden vector of previous time step
it : Input layer at t
ct : Cell state layer at t
ft : Forget gate layer at t
ŷt : Estimated output at t
σh, σy: Activation function
Wh, Uh: Weights of a layer h (it plays a role in connecting perceptrons among layers)
bh, bc, bo: Bias vector

After multiple experiments, we select various input variables that are known to have an effect on
traffic density, as shown in Figure 4. First, we consider the travel speed of a sensor vehicle. We refer
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to the well-known Edie’s definition that traffic density is a function of vehicle travel time over a
time-space domain. The traffic pattern in non-congested conditions is significantly different from that
in congested conditions, as can be seen in Figure 5. With this insight, we categorize the traffic condition
into two regimes and calculate the variables (VHT, VMT, Sensor time-space domain) in each traffic
regime. We set the congestion criterion of the expressway in this study to 80 km/hour.Sensors 2020, 20, x FOR PEER REVIEW 7 of 13 
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4. Microscopic Simulation Based Evaluation

4.1. Simulation Environment

This research evaluates the proposed method by using a microscopic simulation program
(PARAMICS). The testbed for our evaluation is a simple traffic network shown in Figure 6,
hereafter called the hypothetical network. This network contains one single stretch of freeway,
with three lanes, and one origin-destination pair. The entire simulation period is set to be 1.5 h,
out of which the first 0.25 h and the last 0.25 h are discarded due to the peculiarities of the simulation
software where we have previously observed erratic vehicle behavior around the boundary conditions
(beginning and end of the simulation). The period of evaluation is set to be the middle 1 h.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 13 

 

have previously observed erratic vehicle behavior around the boundary conditions (beginning and 
end of the simulation). The period of evaluation is set to be the middle 1 h. 

 

 
Figure 6. The overview of the hypothetical network. 

The demand on this O-D pair is set to be 5000 vehicles for the simulation period. For our study, 
congestion is artificially induced in the network by dropping the number of lanes abruptly from three 
lanes on link 13 to two lanes on its immediate downstream link 11. The network was simulated for 
different market penetration of sensor vehicles, and for various sensor-vehicle characteristics, such 
as sensing distance, target angle, etc. Tables 2 and 3 indicate the sensor configuration in the simulation 
and evaluation configuration, respectively. 

Table 2. Sensor configuration. 

Sensor Code Name Target Angle Range Distance 
1 Front Long 0 10 30 
2 Front Short 0 60 10 
3 Rear Left 160 40 10 
4 Rear Right 200 40 10 
5 Rear Center 180 20 20 

Table 3. Configuration for performance evaluations. 

Type Name Configuration 

Simulation 

Simulation time 1.5 h 
Warm up time First 0.25 h 
Analysis time 1 h 

Updating time step of simulation 0.1 s 
Demand profile 5000 vehicles/1.5 h 

Vehicle compositions -Sensor vehicle (1% to 10%) 
-Regular vehicle 

Generated samples 100 days of morning peaks 

Density Estimation 

Updating time step 30 s 
Congestion criteria 80 km/hour 

Size of the moving horizon 
5-time step 

(2 min 30 sec) 
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The demand on this O-D pair is set to be 5000 vehicles for the simulation period. For our study,
congestion is artificially induced in the network by dropping the number of lanes abruptly from three
lanes on link 13 to two lanes on its immediate downstream link 11. The network was simulated for
different market penetration of sensor vehicles, and for various sensor-vehicle characteristics, such as
sensing distance, target angle, etc. Tables 2 and 3 indicate the sensor configuration in the simulation
and evaluation configuration, respectively.

Table 2. Sensor configuration.

Sensor Code Name Target Angle Range Distance

1 Front Long 0 10 30
2 Front Short 0 60 10
3 Rear Left 160 40 10
4 Rear Right 200 40 10
5 Rear Center 180 20 20
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Table 3. Configuration for performance evaluations.

Type Name Configuration

Simulation

Simulation time 1.5 h
Warm up time First 0.25 h
Analysis time 1 h

Updating time step of simulation 0.1 s
Demand profile 5000 vehicles/1.5 h

Vehicle compositions -Sensor vehicle (1% to 10%)
-Regular vehicle

Generated samples 100 days of morning peaks

Density Estimation

Updating time step 30 s
Congestion criteria 80 km/hour

Size of the moving horizon 5-time step
(2 min 30 sec)

Dataset composition Training: 70 days
Test: 30 days

4.2. Results

The complete dataset is segregated into two parts: training data and test data. These datasets
contain information collected by the CAPs and have both static (link geometry) and dynamic (vehicle
sensed, link flow, etc.) information. The training dataset is used by the model to build relationships
between link density and data from CAPs. The trained model is then deployed on the test data to
evaluate its accuracy. This procedure is repeated for different market penetration ratios.

Figure 7 shows how the model is trained on data obtained from a specific link (link# 13) on
a simple hypothetical network, when the sensor vehicles have a market share of 25%. The x-axis
and y-axis represent learning time and estimated densities, respectively. Note that the data here are
simulated, which means data from different training runs could conceivably be thought of as traffic
data from different days. Real density is shown in the black line, while the estimated density is shown
in blue in Figure 7a,b), and green in Figure 7c. Specifically, Figure 7a shows the training over the first
10 days. We can see that in the first few runs, the algorithm is not very accurate in estimating density,
but that is to be expected, as it needs more data to correct itself. The degree of accuracy is significantly
improved from repeated learning (Figure 7b), as is evident from noting the difference between Run# 1
and, say, Run# 6 onwards.

Figure 8 indicates the estimated densities averaged over the test runs of our proposed method
in comparison with STREAM, which uses Edie’s generalized definition detailed in Equation (1).
The performance of the STREAM-LSTM is compared with that of a density estimation method
of STREAM. The proposed methodology shows an improvement over Edie’s method (STREAM).
The simulation period of 1 hour is characterized by various flow regimes and it would be instructive to
observe the performance of our algorithm in different traffic conditions.

The simulation period can be roughly divided into four flow regimes: free-flow conditions,
transition from free flow to congested conditions, congested condition, and queue-clearing condition
at the very end (Figure 8). As expected, STREAM (red line) tends to estimate traffic density poorly at
the onset of congestion and during queue-clearing conditions. Our model accurately estimates traffic
density in Free-flow, Transition, and Congested conditions (Figure 9). Although overestimation still
remains a problem in the Queue clearing condition, the STREAM-LSTM method converges to the
actual density faster than STREAM.
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10 (link 13); (b) Training process for day 61 to 70 (link 13); (c) Test results for day 91 to 100 (link 13).
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Our evaluation results confirm that the proposed method performs better than previous methods.
This is because our proposed method fully utilizes the signature of multiple forms of information
gathered from multiple CAPs. Additionally, LSTM Neural Networks can efficiently memorize the
relationship between the signature and time-lag characteristics of traffic densities.

By means of comparison, we also calculated the estimated densities on link 13 over the same test
dataset using Edie’s definition. The numerical values for Root Mean Squared Error and Relative Error
using both methods at different penetration rates are shown in Table 4. The performance gets better as
the penetration rate increases, with an almost 45% improvement in RMSE and 66% improvement in
Relate Error in the 25% market penetration scenario.

Table 4. Evaluation results for the proposed method (link 13).

Penetration Rate
RMSE Relative Error

STREAM-LSTM STREAM Improve (%) STREAM-LSTM STREAM Improve (%)

1% 32.69 49.15 33.50 0.36 0.50 27.80
5% 14.08 16.29 13.54 0.18 0.30 40.14
10% 12.12 15.69 22.74 0.15 0.30 49.68
25% 8.88 15.97 44.36 0.11 0.34 66.11

5. Conclusions

In this research study, we proposed an LSTM approach, which is a non-parametric method
to estimate traffic density. This research was partially motivated by CAPs technology and current
research literature on probe-based traffic density estimation methods. Our simulation analysis shows
that a mathematical algorithm (STREAM) tends to overestimate density in certain traffic conditions.
This study proposes a method to estimate the traffic density for a single link using a STREAM-LSTM
model. The performance of the STREAM-LSTM method is compared with that of a density estimation
method of STREAM.
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Our model accurately estimates traffic density in Free-flow, Transition, and Congested conditions.
Although overestimation still remains a problem in the queue-clearing condition, the STREAM-LSTM
method converges to the actual density faster than STREAM. This is because our proposed method
fully utilizes the signature of multiple forms of information gathered from CAPs. The other reason
is that LSTM Neural Network can efficiently memorize the relationship between the signature and
time-lag characteristics of traffic densities. Our research focuses on the accuracy of traffic density
estimation in the domain of CAPs and evaluates the proposed method by multiple simulation runs.
Statistically reliable information is also an important aspect in traffic management and advanced
traffic information systems. There are reasonable methods to capture reliability such as Monte-Carlo
simulations, which is a direction for our future research. Factors affecting traffic conditions such
as geometry and heterogeneity of vehicles have not been considered in this study, but are under
consideration in our current and future research.

It is evident that the traffic characteristics of traffic flow on one link have an impact on those
nearby links. Therefore, it stands to reason that if we formulate these relationships between links and
present those as additional input data to our LTSM model, its accuracy can be expected to improve.

In addition, because traffic density has a close relationship with other fundamental traffic flow
variables such as flow and speed, a high degree in the estimation of density brings us one step closer
to more accurately estimating these other performance indicators as well. Our results show that the
proposed model outperforms existing methods. However, there is still variation in its performance
under different traffic conditions. There are some traffic conditions, such as queue clearing, where the
proposed model’s performance is better than mathematical models, but not by a significant amount.
Our model can also be extended, without significant computational overhead, to a multiple link
scenario. However, it may be necessary to design an evolution type LSTM using input data of
three-dimensional tensor-type data. Lastly, the proposed method can be used in the real-time lane-wise
queue-length estimation and prediction in urban road networks, which should be one of the crucial
messages for the safety and efficiency of the connected and automated vehicles in the near future.
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