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Modeling Loop Flexibility via Conformational Ensembles

by

Sergio E. Wong

Abstract

The field of loop modeling almost exclusively focuses on finding a single loop

conformation given a loop sequence and its protein environment. Here, I propose

to move beyond this limitation and model loops as a conformational ensemble.

This is a better description of loop structures given their flexibility and the

biological role this flexibility plays. First this approach was used, in combination

with the conformational selection hypothesis, to predict loop-latching motions

that occur upon ligand binding. That effort yielded structures remarkably close

to the known holo coordinates and docking into these structures produced results

superior to the corresponding apo calculations. Second, I examined flexibility

loss in antibody CDR loops during affinity maturation which is hypothesized to

help pre-organize CDR loops and lower the entropic cost of binding. Molecular

dynamics simulations of 4 antibodies captured the flexibility loss and analysis of

their trajectories shed light into how individual mutations, particularly serine to

asparagines, restrict CDR loops. A conformational selection binding mechanism,

for germline antibody 7G12g, was evident from equilibrium between the bound

and unbound H3 loop conformations in the absence of ligand.

Phosphorylation was studied at length because it shifts the conformational



ensemble population distribution. Since simulations of phosphorylated residues

remain largely unexplored, I explored the suitability of current solvation models

to properly react to a phosphate moiety. Hydrogen bonding of phosphorylated

residues explained phosphorylation induced shifts in 'JNich coupling constants

for short tetrapeptides; this underscored the need for the solvation model to

modulate hydrogen bond strength. A distance dependent dielectric performed

consistently poorly in our simulations while a Generalized Born treatment and the

explicit water models TIP3P, TIP4P and SPC/E provided satisfactory results.

In addition, the role of polarizability in interactions of phosphorylated residues

was explored. Ab initio calculations made it clear polarizability contributes to

phosphorylated residues’ preference for argenine over lysine as salt-bridge

partners. It was also found the protonated phosphate moiety (-1) and the

carboxylate ion have similar interaction energies with argenine and lysine, which

may explain why carboxylic acids can sometimes substitute for phosphorylation.

Prof. Matthew P. Jacobson

Thesis Advisor
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Introduction

The topic of this thesis is modeling loop flexibility using conformational

ensembles. In this section I explain the motivation for this project and the topics

of the chapters that follow. First, however, I discuss the motivation to perform

loop modeling; it starts with a discussion of the availability of genome-wide

sequence data and is followed by an introduction to comparative modeling.

The post-genomic era

Genomic sequencing efforts yielded thousands of protein sequences-nearly

25,000 in the human genome alone(Venter et al., 2001). There is great promise in

understanding the biological function of these proteins and identifying drug

targets to treat human disease. The next challenge is to annotate their function(s).

Sequence similarity to other proteins provides some information, however, their

structures are necessary to further elucidate their functional role(s). Structural

genomics(Stevens et al., 2001) efforts aim to ameliorate the situation, however, it

is not their goal to yield a set of coordinates for every protein sequence in

existence. Instead the objective is to determine representative structures of each

protein family so these can be used as templates in comparative modeling.

Comparative modeling and the motivation for loop modeling

_
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Comparative modeling is based on the observation that proteins with similar º
sequences have similar structures. This is used to build models given similar

º
t

º,
protein sequences whose structures are known. A sequence identity above 40% is

usually sufficient to yield areasonable model (Marti-Renom et al., 2000).

Briefly, the sequence of the unknown (target) protein is aligned against a similar

sequence whose structure is known (template). The alignment is then used to

build the unknown sequence’s structure. In places where the alignment agrees,

the coordinates are typically copied, while insertions and deletions need to be

modeled in. These insertions often involve loops, the segments connecting

secondary structure, and predicting their conformation is termed loop modeling.

Since in a given protein family the overall fold is shared among its members,

functional differences must arise from mutations in the protein scaffold and

insertions or deletions between them. Thus, it is critical to accurately model these

differences for the final structures to be useful. In the case of immunoglobulins,

these loop differences are crucial. Here, 6 complementary determining region

(CDR) loops form the binding site for antigens. The rest of the protein is largely

conserved, both in sequence and structure. However, by changing the length and

composition of these loops, immunoglobulins can bind essentially any chemical

species with high affinity and specificity. Most of the CDR loops can be

described using the canonical conformations of Lesk and Chothia (Chothia &

Lesk, 1987). However, the H3 loop, which has the largest variation in length and

sequence, remains elusive to this type of approach. Antibodies can be a model
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system for understanding loop conformational preferences in general, since the

protein framework is largely constant. Once CDR conformations can be reliably

predicted, loop modeling can be key in engineering antibodies that bind a given

target. The latter would also improve our understanding of ligand binding in

general. A similar example, that is less well understood, are G-coupled protein

receptors (GCPR)(Gether, 2000). They are transmembrane proteins that span the

cell membrane. Their loops on the extracellular side bind signaling molecules

which trigger a response, coupled to a G-protein, in the GCPR's cytosolic

domain. The transmembrane helical bundle is common among members of this

family, so it is the extracellular loops’ composition and conformation that control

which molecule will elicit their response. The loops on the cytosolic side control

the nature of the response. Once these insertions can be correctly modeled, one

can imagine being able to: 1) start searching for possible ligands that bind these

loops and 2) once such predictive power is achieved, mutate these loops to induce

a given response for a new molecule, for example.

To further complicate matters loops are more flexible than other secondary

structure and can easily adapt multiple conformations. Surveys of the

PDB(Berman et al., 2000) verify that a given a particular loop sequence can adapt

several conformations. The latter include loops involved in ligand binding;

proteins with this type of loops include triosephosphate isomerase(Williams &

Mcdermott, 1995) and protein tyrosine phosphatases (Juszczak et al., 1997;

Williams & Mcdermott, 1995), members of the enolase superfamily(Babbitt et al.,



1995), and kinases(Johnson & Lewis, 2001). Thus, in order to fully uncover the

function of proteins, as initially discussed in this introduction, loop flexibility

must be included in the description of loops. However, loop modeling

techniques typically seek a single conformation for a given loop.

How is loop modeling currently performed?

Loop modeling methods fall into 2 main categories: ab initio and database-based.

Ab initio methods search for possible loop conformations and then select, using an

energy function, the most stable conformation. Ideally, an exhaustive

conformational search coupled to an accurate energy function would identify the

correct loop conformation. However, the systematic search for a 12 residue loop

with 2 backbone and 2 viable side chain conformations, per residue, would

involve 2" (~16.8 million) structures, which makes this approach impractical. In

addition to sampling issues, the energy function appears to be the leading cause of

error in some approaches (Fiser et al., 2000). Techniques for loop modeling

include simulated annealing (Zhang et al., 1997), systematic backbone dihedral

search guided by empirical distribution(Moulton & James, 1986), random

backbone dihedral perturbations with loop closure restraints(Shenkin et al., 1987),

uniform conformational sampling(Bruccoleri & Karplus, 1986), high temperature

molecular dynamics (Bruccoleri & Karplus, 1986), a global energy optimization

approach (Dudecket al., 1998), biased monte carlo sampling(Abagyan & Totrov,

1994) and modeling of segments within the loop to make the problem more

º



manageable(Tosatto et al., 2002). The energy function depends on the

representation chosen, such as an atomistic description versus a united atom

description, for example. It was found, however, that a full atomic resolution

force field with an implicit solvent model outperforms a statistical potential (de

Bakker et al., 2003).

Database based methods search the PDB for putative loop conformations; the

selections are typically based on sequence similarity. These segments are then º
inserted into the target structure and refined using an energy function which may º–
be statistical in nature (Deane & Blundell, 2000; Debnath, 1997; Leve■ elt & º
Lundh, 2006; Mandal et al., 1996; Martin & Thorton, 1996; Oliva et al., 1997; º º, ■ º-
Pellequer & Chen, 1997; Rohl et al., 2004; Rufino et al., 1997; Shepherd et al.,

1999; Wintjens & Rooman, 1996).

These approaches to loop modeling, however, seek a single, unambiguous - - D
-> º

structure. Loops, however, can exist in more than a single conformation. A more -- Jºº.

realistic representation should include conformational sub-states of the loop. j
Here the methodology is pushed beyond the search of a single structure and into D

º
-

modeling loop conformational ensembles. º
s

*E
Modeling loop flexibility using conformational ensembles *T.
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-

- B

* [.
º



One can imagine two ways of describing flexibility. In the kinetic sense one may

consider a loop flexible if has low energy barriers between conformational sub

states; that is, if it is floppy. In the thermodynamic sense flexibility may be

assessed by the number of accessible conformational sub-states i.e. entropy in

statistical mechanics; it is intuitive to think a flexible loop has a high

conformational entropy. Clearly a kinetically flexible loop that accesses many

conformational states will also be thermodynamically flexible, however, the

converse is not true. One can imagine numerous but deep and narrow free energy

basins that would not permit frequent interchange among them. Here, the focus

will be on the thermodynamic definition of flexibility and, thus, on identification

of conformational sub-states as well as factors that modulate their relative

populations.

The conformational sub-states in question make up the canonical ensemble at 300

K. This is the most natural definition since it is the simplest ensemble that

approximates experimental conditions in the laboratory (constant temperature and

nearly constant volume with a fixed number of molecules).

In chapter 1, an ensemble representation is applied to a set of proteins where a

loop occludes the active site upon ligand binding. In some of these cases, it is

experimentally known that, in the absence of ligand, the loop exists in equilibrium

between the apo and holo conformations. Thus, by identifying their

conformational sub-states it was possible to find holo-like conformations.

É=
23

-
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º
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Docking calculations, which are particularly sensitive to receptor geometry,

against the structures found were able to select the holo-like loop conformations.

Thus, the conformational selection process was reproduced in silico.

During the calculations of chapter 1, methodological issues surfaced and involved

the efficacy of the replica exchange method (REM)(Sugita & Okamoto, 1999)

given largely entropic barriers. In chapter 2, model systems were used to evaluate

the performance of REM given these types of barriers. REM takes advantage of

higher kinetic energy at higher temperatures to overcome barriers in molecular

dynamics simulations (or a higher acceptance probability at higher temperature in

monte carlo simulations). Limitations of this approach become evident when the

free energy barriers in question are largely entropic rather than enthalpic.

In chapter 3 the flexibility of antibody CDR loops is examined via molecular

dynamics simulations. CDR loop regions undergo mutations during an immune

response to improve their affinity and specificity for a particular antigen. There is

evidence suggesting these mutations rigidify the binding site and pre-arrange it

for binding(Foote, 2003; Manivel et al., 2000; Sagawa et al., 2003; Yin et al.,

2003). In chapter 3 the results of an exploratory study on well-characterized

systems are discussed. Interestingly, the predicted differences were captured in

the simulations and the reasons behind the changes in flexibility became evident,

in some cases.



- --
IC
Tan

Among factors that modulate loop sub-state populations, interactions involving º
phosphorylated residues were chosen for study. Phosphorylation is a prevalent

º º,
cellular signaling mechanism(Johnson & Lewis, 2001); among its many

functions, it plays a role in extra-cellular signal transduction via modulation of

mitogen-associated protein (MAP) kinases(Chen et al., 2001), cell cycle

regulation via cyclindependent kinases(Johnson & Lewis, 2001; Vermeulen et

al., 2003), insulin receptor response(Johnson & Lewis, 2001), growth signaling

pathways via Src family kinases(Johnson & Lewis, 2001) and regulation of --

--
ligand-gated ion channels(Swope et al., 1999) as well as voltage-gated sodium º-

-
and potassium channels(Catterall, 2000; Martens et al., 1999). Phosphorylation --

--
often occurs on loop segments and drastically shifts its conformational ---

--- - - - - - -
-

equilibrium. Despite the importance of this problem, simulation of –
-

phosphorylated peptides remains largely unexplored. This motivated the focus on

phosphorylation for two chapters of the present work. The calculation of º
-

adequate atomic charges for atomistic simulation of phosphorylated residues and –
-

-
the suitability of solvation models for this application are considered in chapter 4. -

The latter are explored in the context of local hydrogen bond interactions.

Chapter 5 focuses on interactions that occur largely with residues distant in

sequence. Arginine and lysine are the two most frequent salt-bridge partners for

phosphorylated residues with arginine occurring -3 times as often as lysine (see

PDB survey in chapter 5). The difference in charge distribution between the



amino and guanido group prompted an inquiry about the role of polarizability in

the bias towards arginine.
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Conformational selection in silico: Loop latching motions and ligand binding in
enzymes

Abstract

Ligand binding frequently induces significant conformational changes in a protein

receptor. Understanding and predicting such conformational changes represents an

important challenge for computational biology, including applications to structure

based drug design. Previous methods usually search, to some extent, the receptor

conformational space for many putative ligand conformations. We describe an

alternative approach based on the assumption that the holo state is at least transiently

populated in the absence of a ligand; this hypothesis has been referred to as

“conformational selection”. Here we apply a method that tests this hypothesis on a

challenging class of ligand-induced conformational changes, which we refer to as

loop-latching: the closing of a loop around an active site that sequesters the ligand

from solvent. The method uses a combination of replica exchange molecular

dynamics and a loop prediction algorithm to generate low energy loop structures, and

docking to select the conformation appropriate for binding a particular ligand. On a

test set of 6 proteins, it yields loop structures including holo-like conformations,

generally below 2A RMSD from the liganded structure, for loops that span up to 15

residues. Docking served as a stringent test of the predictions and verified their ability

to improve docking results and yield correct poses, in most cases.
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Introduction

Conformational changes that occur upon ligand binding have been described using

two different models generally referred to as “induced fit” and “conformational

selection”. Induced fit, as originally formulated by Koshland.(Koshland, 1958),

postulated that conformational changes in the macromolecular receptor would follow

initial binding. It should be noted however that the term is often used colloquially to

refer to any conformational change accompanying ligand binding. Conformational

selection(Freire, 1998; Ma et al., 1999; Tsai et al., 1999; Tsai et al., 2001) refers to an

alternate hypothesis that postulates: 1) the free enzyme exists in equilibrium among

several conformational sub-states and 2) the ligand preferentially binds to one or more

sub-states, shifting the equilibrium in that direction. The two models can be

distinguished in some cases by kinetic measurements(Berger et al., 1999; Foote &

Milstein, 1994; James & Tawfik, 2005) where the binding constants behave

differently with varying ligand concentrations. From a thermodynamic perspective,

however, induced fit and conformational selection can be viewed as two extremes of a

continuum, with most systems displaying some combination of both. The key

thermodynamic factor is the free energy difference between the free and bound forms

of the macromolecule, which determines whether a state similar to the bound form

will be populated significantly at thermal equilibrium and whetherit will play a major

role in binding.

Predicting ligand-induced conformational changes is relevant both for understanding

sequence-structure-function relationships in enzymes (e.g., the well-studied

triosephosphate isomerase system(Alvarez et al., 1998; Aparicio et al., 2003; Mande

18



et al., 1994; Williams & Mcdermott, 1995)) and for structure-based drug design. A

number of computational methods have been developed to address this

problem(Carlson, 2002a: Teague, 2003; Wong & McCammon, 2003), which usually

involve sampling possible conformations of both the receptor and the ligand

simultaneously (as in some docking algorithms, such as FlexE(Claussen et al., 2001)

and others(R. Taylor et al., 2003; Totrov & Abagyan, 1997)) or iteratively(Sherman

et al., 2006). Such strategies have been successful in a number of cases, particularly

when the conformational changes in the receptor are relatively small, e.g., side chain

rotamer flips.

The conformational selection hypothesis is attractive from a computational standpoint

because it implies that ligand-induced conformational changes can be studied, in part,

by simulations of the free macromolecule; for example, MD simulations of Pitici et

al(Pitici et al., 2002) suggest the holo conformation of protein U1A is stable in the

absence of ligand and flexibility measurements by Jimenez et al(Jimenez et al., 2003)

are inconsistent with a lock-and-key binding mechanism in antibodies. Another

approach correlated dynamic fluctuations to ligand induced changes(Ikeguchi et al.,

2005) and motivated the use of “relevant” normal modes to predict loop re

arrangements in kinase ligand binding(Cavasotto et al., 2005). The latter study

showed examination of the free enzyme dynamics can be useful in predicting receptor

rearrangements in ligand binding. This is particularly attractive for studying large

conformational changes, since it would greatly restrict the number of conformations

relevant to binding. In general, the number of “states” in experimentally

characterized systems is relatively few i.e. usually less than five(Cao et al., 1998;

Juszczak et al., 1997; Williams & Mcdermott, 1995). A general approach proposed

19



here is to 1) sample the free enzyme thermodynamic ensemble, 2) identify

conformational sub-states and 3) dock into the structures found. From the

computational standpoint, it is not necessarily critical for the bound form to be well

populated at ambient temperatures, only that the bound form represents a quasi-stable

state that can be populated in a simulation, which could in principle be performed at

higher temperatures or, as in this work, performed subject to restraints that prevent

sampling of irrelevant conformations. That is, as long as the bound conformation of

the macromolecule is not too much higher in energy than the ground state, and

represents a local minimum or basin on the energy surface, it should be possible to

locate it, along with other conformations which may or may not be relevant to ligand

binding. Docking simulations can then identify the conformations relevant to binding

a given ligand, if one is known.

In this manuscript we propose and evaluate a method of this type to predict protein

“loop-latching” movements upon ligand binding. “Loop-latching” refers to the case

where a loop covers the ligand in the holo structure and adopts an “open”

conformation in the apo form. Predicting a large structural change of this type is

challenging but important because it is observed in many enzymes, including many

members of the enolase superfamily(Babbitt et al., 1995) (Gulicket al., 2001;

Klenchin et al., 2004; Wedekind et al., 1994), triosephosphate isomerase(Williams &

Mcdermott, 1995), Yersinia protein tyrosine phosphatase(Juszczak et al., 1997),

Inosine 5'-monophosphate dehydrogenase(McMillan et al., 2000) (IMD), lactate

dehydrogenase(Gerstein & Chothia, 1991), beta-lactoglobulin(Wu & Deem, 1999),

S-adenosylmethionine synthatase(J. C. Taylor & Markham, 2003),

pepsin(Okoniewska et al., 2000), 1,4-galactosesyl transferase,

20



phosphoribosylglycinamide formyltransferase(Dahms et al., 2005; Gunasekaran et al.,

2003) (GART), tryptophan synthase(Rhee et al., 1997) and Ribulose 1,5-biphosphate

carbosylase/oxygenase(T. C. Taylor & Andersson, 1997). Protein tyrosine

phosphatase family members, such as PTP 1B(Tonks, 2003; Zhang, 2001),

IMD(Franklin et al., 1999; Pankiewicz et al., 2002), and spermidine synthase(Haider

et al., 2005; Thomas & Thomas, 2003), all of which undergo this loop-latching

motion, are targets for drug design.

Our own interest in loop latching is motivated in part by our ongoing efforts to

investigate and predict enzyme function by metabolite docking(Kalyanaraman et al.,

2005; Tricot et al., 1989). In previous work, Kalyanaraman et al(Kalyanaraman et al.,

2005) demonstrated that the known substrates of alpha-beta barrel proteins were

ranked highly when docking a large library of possible metabolites against the

enzyme active sites. However, the method worked best when applied to holoenzyme

structures; apo structures gave more variable results, due to large conformational

changes in loops covering the active site, i.e., loop latching. Structural genomics

efforts are now generating structures for many enzymes with uncertain function or

specificity, and virtually all of these are apo structures. Tools for predicting how

these enzymes may interact with potential substrates, including associated

conformational changes such as loop latching, may aid in leveraging the huge

increase in structural data.

This case of protein loop latching motions is a particularly challenging subset of the

general induced fit problem. The lengths of the loops, 6-15 residues in this study, and

their inherent flexibility, permit a vast number of possible rearrangements. Energy

21



filters or other heuristics could filter putative structures, but a large fraction would

remain. To trim this number, some approaches only explore pre-selected degrees of

freedom(Cavasotto et al., 2005; Kovacs et al., 2005; Sandak et al., 1998). But given

the flexibility of these loops, it would not be a priori clear that only a few degrees of

freedom would capture most of the possible rearrangements. Therefore, it is

necessary to restrict the conformational space search differently.

In this manuscript, we investigate whether we can predict the holo-like closed form of

flexible “latch” loops starting from the apo structures. We assess success in several

ways, including very challenging applications where we evaluate the suitability of the

predicted holo-like structures for docking calculations, which are notoriously

sensitive to fine details of the binding site geometry. The resulting loop structures

were remarkably similar, mostly below 2A RMSD, to the known holo coordinates.

Known ligands ‘select the best loop conformation, as assessed by RMSD to the holo

structure, by yielding the lowest (best) docking score. Thus, in this sense, the

computational method mimics the conformational selection process in silico.

We do not claim, however, that these results constitute a rigorous test of the induced

fit hypothesis, or that this method is completely general. The method contains a

number of heuristics, the most important of which are restraints during REMD that

prevent the loop from sampling irrelevant “open” conformations. This itself does not

greatly reduce generality, because the restraints rely only in knowledge of the binding

site location. The loops sample several different basins in these simulations i.e. the

restraints are not so restrictive that only holo-like conformations are sampled.

Altogether we consider these results to represent an encouraging approach to a rather
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challenging type of ligand-induced conformational change.

Methodology

Overview

The approach proposed in the introduction consists of three parts: 1) sampling of the

unbound state, 2) identification of the conformational sub-states and 3) docking

against structural representatives of each sub-state.

º

In the first stage it is imperative to sample efficiently to include most of the loop

conformational sub-states in the analysis. Replica exchange molecular dynamics

(REMD) accelerates sampling by overcoming barriers in its high temperature replicas.

However, in early tests, our unrestricted high temperature loop simulations drifted

away from the protein and, explored conformations in bulk solvent and did not

sample “holo”-like conformations within several nanoseconds of simulation time.

This is because the favorable entropy of “open” loop conformations dominates at

higher temperatures. As described in more detail below, a harmonic restraint on the

loop was applied to focus the sampling on the relevant space, in which the loop forms

contacts with the protein. The use of the restraint only requires knowledge of where

the active site is located, and thus does not significantly reduce the applicability of the

method.

Clustering identified conformational sub-states. Since centroids are average

structures, bond lengths and angles can be distorted and there can be significant steric

clashes. A loop prediction calculation, with Co. atoms restrained to the Cartesian
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vicinity of the centroid, yielded low energy structures that were used for docking.

This ensured that the final structure is chemically sound and not highly strained. The

accuracy of the prediction was measured via backbone RMSD to the known holo

structure and by the success of docking applications using the models.

Test cases

The cases considered here are: L-Ala-D-Glu epimerase(Klenchin et al., 2004) (AEE),

Yersinia protein tyrosine phosphatase(Juszczak et al., 1997; Stuckey et al., 1994),

enolase, triosephosphate isomerase(Aparicio et al., 2003; Mande et al., 1994),

phosphoribosylglycinamide formyltransferase (GART)(Almassy et al., 1992; Dahms

et al., 2005) and spermidine synthase(Haider et al., 2005; Kobayashi et al., 2005;

Korolev et al., 2002; Thomas & Thomas, 2003) (Table 1). They were selected based

on the following criteria: 1) one and only one loop latches over active site upon ligand

binding, 2) crystal structures of the apo and holo forms are available from the PDB, 3)

the biologically relevant ligand is known and 4) the ligand-gated backbone

conformational change involves only loop residues. In addition, preference was given

to cases where experimental evidence suggested the “closed” structure is partially

populated in the absence of ligand e.g. Yersinia protein tyrosine phosphatase and

TIM. The number was restricted to six due to the high computational expense of the

replica exchange simulations.

In the following sections, the preparation of the systems for the simulations is

explained and details of the replica exchange simulation, clustering and docking

calculations follow.
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System Preparation

This section describes the steps taken to prepare the protein structures for the REMD

simulations. X-ray crystal structures for the apo and holo forms of all the systems

examined were taken from the Brookhaven Protein Database (PDB)(Berman et al.,

2000). The proteins used in this study and their PDB structure codes are listed in

Table 1. To minimize the number of atoms simulated, only portions of the protein

near the mobile loop were included. Pymol(Delano, 2002) was used to visualize the

apo structures, select the loop residues, expand the selection to residues surrounding

the loop in question and write out the coordinates. All residues with any atom inside

the distance cutoff were included in their entirety. The selection radius used varied

because of variations in loop length and structure and is specified in Table 1.

In addition, a point in the active site and “tip” residues were identified. This

information was used to impose a harmonic distance restraint between Co. atoms of

“tip” residues and the active site point. The tip residues were visually chosen to be at

the turn of the loop, that is, approximately where the loop reverses direction. Table 1

details, for each protein, PDB codes for the structures used, the loop residues,

selection radius, tip residues, reference active site point and the restraint radius. The

apo structures were structurally aligned to the holo structure via their Co. atoms using

the “align” command. In some occasions, points on ligands were used as the active

site reference point. In those cases, an artificial atom took the place of the ligand

atom in the REMD simulations. This artificial atom is a neutralion with a mass of

12 au.

The tleap module in AMBER 8(D.A Case, 2004) processed the partial structures to
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produce a topology and structure file. The parm.99.dat force field with modified

backbone dihedral parameters(Simmerling et al., 2002) was used. Atomic radii were

modified, per instructions in the AMBER 8 manual, using the command “set default

PBradii mbondiz".

Distance restraint files, between the “tip” residues and a point on the active site, were

produced using the makeDIST program (part of the AMBER8 program suite). The 7

column file input was prepared; that is, only a maximum distance was specified. The

restraint potential is a flat potential until it reaches the specified maximum distance.

At that point, it becomes a harmonic potential with a harmonic constant of 20

kcal/mol/A* that drives the particle back towards the flat portion. The restraints

permit the loop only to sample relevant conformations where the loop is relatively

near the active site and not pointing out into solution.

Replica exchange-molecular dynamics

The AMBER 8 simulation package was used to perform all of the molecular

dynamics simulations in this study. All of them were carried out using a Generalized

Born model with a surface area correction term (GB/SA)(Onufriev et al., 2004)

(igb=5 and gbsa=1). Berendsen’s thermostat(Berendsen et al., 1984) (ntt=1) with a

1.0 ps relaxation time was used for the temperature equilibration stage (discussed

below). Langevin dynamics(Pastor et al., 1988) mimicked solvent collisions and

regulated the temperature during the replica exchange simulations. A gamma value of

2 ps' was used for the Langevin dynamics because a low value improves barrier

crossing(Loncharich et al., 1992). For further efficiency, forces involving

interactions beyond 8 A were only evaluated every 4 time steps(Tuckerman et al.,
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1991) (nrespa-4). A time step of 1.fs and distance cutoff of 12A was used for the

equilibration and production runs.

Co. atoms were harmonically restrained to their crystallographic coordinates unless

they were part of the loop. The restraint force constant was 0.3 kcal/mol/A’. This is a

relatively mild restraint in the sense that it allows for some departure from the

equilibrium position. Each system underwent a 2000 step steepest descent

minimization (with Co. restraints) before any equilibration.

We employed replica exchange-molecular dynamics to improve loop sampling. In this

method, N replicas of the system at N temperatures run simultaneously. Periodically,

every 0.5 psin this study, an exchange attempt is made between replicas of adjacent

temperatures. The exchange is accepted according to the Metropolis

criterion(Metropolis, 1953; Sugita & Okamoto, 1999). If an exchange attempt is

successful, the momenta are rescaled such that:

T
(1) p" - new p”

Tºu

The temperatures employed in this study were 300, 308, 316, 325, 333, 342, 351,361,

370 and 380 K. Rather than equilibrating each of these individually, simulations were

equilibrated at 300, 325, 350 and 375K. The latter were heated up to the target

temperature, from 0 K, over 5ps and a subsequent equilibration of 45 ps; the timestep

was 1 fs. Then the restart files were copied over as initial positions and velocities for

the replica exchange runs. Specifically, the 300 Krestart file was used for the 300

and 308 Kreplicas, the 325 Krestart file was used for the 316, 325 and the 333 K

replicas, the 350 K restart file was used for the 342, 351 and 361 Kreplicas and the
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375 K restart file was used for the 370 and 380 K replicas. A replica exchange

simulation for 100 ps, for further equilibration of each individual temperature,

followed. During this stage: 1) exchange between replicas were attempted every 0.5

ps, and 2) a harmonic restraint was imposed between Co. atoms of “tip” loop residues

and a point in the active site; the specifics are found in Table 1. The latter were in

addition to the restraints on the Co. atoms not in the loop. A 5 ns production run,

using the same Co. and loop restraints, followed.

Clustering

To identify conformational sub-states, the trajectories at 300 and 325 K were

clustered using the MMTSB(Michael Feig, 2001) tools set. The metric for

hierarchical clustering was the RMSD between all atoms (-jclust option in cluster.pl.).

This software tool chooses an optimized number of clusters based on the criterion by

Xu and co-workders(Xu et al., 1993). A total of 5000 structures were subjected to

clustering from each trajectory (snapshots were taken at 1 psintervals). The centroids

of each cluster were refined as described below.

Loop prediction refinement of cluster centroids

The purpose of this step is to identify low-energy conformations that are as similar as

possible to the cluster centroids, which may be quite strained because they are average

structures. The loop region of each centroid was grafted onto the corresponding apo

structure. A loop prediction calculation followed. These calculations were performed

using the protein loop optimization program (PLOP)(Jacobson et al., 2004). PLOP

uses a hierarchical algorithm to search loop conformational space. Briefly, the first

step is to build a set of putative backbone conformations from each termini to the
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center residue. Those pairs that form a closed loop are further screened against steric

clashes with the protein body and poor junction geometry. Loops that pass this filter

are clustered and a representative for each cluster is refined. In the refinement stage,

side chains are added and optimized and the entire loop is minimized. The resulting

loops are ranked by energy. The energy function consists of the all-atom OPLS force

field(Jorgensen & Tiradorives, 1988) and a Generalized Born(Feig et al., 2004)

solvation model with a solvent accessible surface area correction (GB/SA)(Gallicchio

et al., 2002).

During the loop refinement stage, Co. carbons were kept within 2A of their

corresponding centroid coordinates, so that the predicted loops were quite similar to

the centroid. In the absence of restraints, the loop prediction algorithm should find

the apo structure. Tighter restraints usually failed to produce any solutions, i.e. loops

that satisfied the restraints and were free from steric clashes or high internal strain.

Side-chains within 3A of the loop were optimized for the L-Ala-D-Glu epimerase,

triosephosphate isomerase and tyrosine phosphatase cases while a 4A cutoff was

used for the others. Expanding the side-chain cutoff to 4 Å for AEE, triosephosphate

isomerase and the tyrosine phosphatase cases included only a few more residues,

distant from the active site, which changed little after the optimization (~10-15

degrees of rotation in methyl groups, for example), but deteriorated the loop

prediction. Except for the cases of L-Ala-D-Glu epimerase and Yersinia tyrosine

protein phosphatase, the loop prediction calculation included an extra residue on each

loop termini. This was useful when the superposition was slightly offset and caused

an awkward juncture geometry.

. . .



In some cases the loop prediction failed to generate low energy loops similar to the

cluster centroids (i.e., subject to the Co. constraints). It was possible in these cases to

generate low energy loops by relaxing the constraints to 3.5 Å. However, these

problematic centroids were not close to the holo conformation, i.e., they are not likely

to be relevant to ligand binding.

Docking into representative structures of each cluster

The docking calculations against the resulting low-energy loops were performed

using GLIDE 3.5(Schrodinger Inc., 2004). Docking calculations were also performed

against the apo and holo structures for comparison. The visualization and structure

preparation were performed using Maestro 6.5. For every target, hydrogens were

added, if missing, and ions were assigned the correct Macromodel atom type. Active

sites were identified by either listing active site residues or identifying a bound ligand.

The active site residues of L-Ala-D-Glu epimerase are Lys160, Lys162, Asp191,

Glu219, Asp244, Lys268, Asp321 and the magnesium ion. For the epimerase,

histidines 223 and 309 were protonated. The enolase active site consists of Lys396,

Glu168, Asp246, Asp320, Lys345, Ser372 and both magnesium ions. In the other

cases, either a ligand existed in the crystal structure or its coordinates were copied

from the holo structure in order to mark the active site. In the case of spermidine

synthase, the ligand coordinates were copied, after structural superposition, from the

structure in the PDB file 1.JQ3.pdb. For triosephosphate isomerase, the ligand

coordinates were copied from PDB file 1R2R.pdb. A nitrate ion was bound in the

active site of Yersinia protein-tyrosine phosphatase (PDB code 1 YTN). Note that the

correct stereochemical geometry and bond order were assigned to the crystallographic

ligand that indicated the active site.
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In the cases of AEE, Yersinia tyrosine protein phosphatase, spermidine synthase and

triosephosphate isomerase the output of the loop prediction calculation was used in

the docking calculation directly. In the other cases complications outside the scope of

this work arose. In the case of GART, a cofactor, taken from the holo structure, was

included in the docking calculations. This entailed superimposing the Co. atoms of

the apo and holo proteins and copying the coordinates of the co-factor. The same

procedure was performed in the case of enolase, where a second magnesium ion had

to be included.

10,004 compounds from the Kyoto Encyclopedia of Genes and Genomics

(KEGG)(Kanehisa & Goto, 2000; Kanehisa M, 2006) were obtained to generate a

database for the docking calculations. The database preparation was described

before(Kalyanaraman et al., 2005); briefly, polymers and monoatomic ions were

removed and different chiral forms were explicitly enumerated using the Daylight

software package("Daylight"). A total of 19007 entries made up the final database.

In the case of the epimerase, all 400 possible dipeptides were added to the database.

The substrates and co-factors for each system are listed in Table 2.

Ligand pose RMSD calculations excluded hydrogens. In cases where the

crystallographic ligand and the known metabolic ligand differed, the calculation

involved the intersection between the two structures as long as it appeared sensible.

For the GART ligand, only the ring system was included in the RMSD calculation

because it is the segment that fits in the pocket made by the loop in question. Yersinia

tyrosine protein phosphatase was not included because the holo crystallographic
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ligand is only a nitrate ion.

Hydrogen bonding statistics

Hydrogen bondings statistics were calculated using the ptrajmodule of Amber 8. The

hbond command with the option “distance 3.5” calculated the hydrogen bond

probabilities reported here.

Results and Discussion

Replica exchange simulation diagnostics

The exchange probabilities for the REMD simulations ranged from 31 to 41%. There

was a significant amount of overlap in the potential energy probability distributions

between replicas at adjacent temperatures. Figure 1 shows these distributions for the

L-Ala-D-Glu Epimerase and is representative of the other cases. The corresponding

plots for the other systems are included in supplementary materials.

Does the method produce holo-like loop conformations?

The proposed method involved sampling loop conformations via replica exchange

molecular dynamics, clustering the resulting trajectories and subsequently refining the

cluster centroids, via restrained loop prediction, to produce a representative structure

per cluster (see Methods section for details). A set of representative structures

resulted per case. Within each set the member closest to the holo form differed from

it, with one exception, by less than a 2 Á RMSD from the holo coordinates (Table 3).

The exception, the spermidine synthase case, appears to stem from insufficient

sampling; a control calculation starting from the closed conformation yielded much
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lower RMSD's (1.9 vs 2.9 Å) from the bound coordinates; several other

representative structures from the control simulation spanned the 1.9-2.5 A RMSD

range. A more efficient loop sampling algorithm, such as those based on a robotics

approach(Coutsias et al., 2004; Lee et al., 2005), may resolve this issue.

The cluster centroids (Figure 2) provide a qualitative sense of the extent of sampling,

but must not be over interpreted since the conformational space spanned by each

cluster varies.

Conserved contacts between the apo and holo structures likely contributed to the

success of the method by reducing the effective number of degrees of freedom during

the simulations. For example, beta-sheet type hydrogen bonds in the AEE loop (2

involving Val26 and Phel0 and another between the carbonyl group of Arg24 and the

amide proton of Thr21) were present for 77-87% of the 326K replica trajectory.

Similarly backbone hydrogen bonds that form a helical turn in the triosephosphate

isomerase loop were present 89-94% of the simulation time (326K replica). The

dynamics predict which contacts remain fixed, so they need not be selected a priori.

Control loop prediction calculations, with the loop midpoint restrained to the vicinity

of its holo coordinates, did not yield the closed conformation which is consistent with

the the need to restrain a subset of the hydrogen bond contacts during the

conformational search.

Do docking scores “select” a holo-like conformer among the representative

structures?

In theory, any of the representative structures could be the “correct” one and even that
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structure could undergo some rearrangement after binding, so docking, being

particularly sensitive to active site geometry, poses a highly stringent test for the

predicted structures. Docking known ligands against the representative structures

yielded lowest (best) docking scores for loops with lowest RMSD from the holo

structure (Table 3), essentially mimicking the conformational selection mechanism in

silico. Spermidine synthase and GART were omitted because of the poor sampling in

the former and poor docking poses for both.

Do the predicted structures improve docking results with respect to the apo structure?

We docked a metabolite library, prepared as described in the methods section, to dock

against the predicted structures and evaluate their performance in the context of a

virtual screening calculation. The aim of this type of calculation, where a metabolite

library is used, is to identify substrate candidates for enzymes whose biological

substrates are unknown, under the assumption that a high binding affinity correlates

with the likelihood of being the actual substrate. Our method differed from other

studies that docked into MD(Frembgen-Kesner & Elcock, 2006; K.M.Masukawa,

2000; Lin et al., 2003; Wong et al., 2005) snapshots in that it: 1) focuses on database

screening and 2) examines large backbone rearrangements.

Docking into the selected structure resulted in improvement, sometimes significant,

over the corresponding apo calculation. Table 3 lists the ranks, expressed as

percentage out of the database, of the known substrate in the KEGG database when

docked against the apo, holo and “selected” structures. Ranks for the holo structure

are largely within 1% of the database, while the corresponding apo structure ranks are

largely over the 8% mark. In 5 of the 6 cases the predicted structure results



outperform the corresponding apo calculations and the ranks were mostly below 2%

of the database; the exception, spermidine synthase, is due to poor docking poses in

both, the predicted and apo calculations (see poses section below). These results are

clearly of practical importance for computer aided drug design, where receptor

flexibility can pose a significant obstacle(Carlson, 2002b).

Are the docked poses correct?

Evaluating docked ligand poses is an even more stringent test because favorable dock

rankings do not necessarily correspond to correct ligand poses. For example, docking

against the GART apo structure yielded an excellent ligand rank (0.2%) but an

incorrect pose (13.2 Å RMSD).

We evaluated ligand poses from docking calculations against the predicted structures

(Figure 4) and compared them to the corresponding apo and holo results. Docking

into apo structures yielded very poor poses for the enolase, GART and spermidine

synthase cases (Figure 4) while the corresponding holo results yielded a poor pose

only for the spermidine synthase case. The predicted structure poses are comparable

to the corresponding apo results except for the enolase case where it performed

significantly better than the apo structure (1.4 vs 3.6 Å RMSD).

For GART and spermidine synthase the resulting poses were consistently poor using

the predicted and apo structures (6.8 and 3.5 Å RMSD for GART and 12.5 and 13.2 Á

RMSD for spermidine synthase). If the holo loop structure was grafted on the apo

protein body and used as a docking target, the GART ligand remained outside the

binding pocket while the spermidine synthase ligand docked correctly (almost perfect
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overlap with the holo structure result within the binding site). So, in the GART case

factors other than the loop structure contribute significantly to the poor docking pose

and could not be rescued regardless of the quality of the loop prediction. Spermidine

synthase is the only case where a poor loop prediction causes a poor pose, but that is

not surprising given the high backbone RMSD (Table 3). The spermidine synthase

simulation sampling was inadequate, as discussed above.

Interestingly, the resulting pose when docking into the predicted triosephosphate

isomerase structure performs better than the corresponding holo result (2.3 vs 1.7 Á

RMSD). Poses for the tyrosine protein phosphatase case were not examined because

the holo structure had a nitrate ion as a ligand; however, the phosphate group binds in

the pocket occupied by the nitrate ion.

Would the perfect loop structure yield holo-like docking results?

The results in Table 3 show differences between the predicted and holo structure

docking results that may be partially due to structural variations outside the loop

region. In order to isolate the effect of the predicted loop, docking was performed

against the following two structures: 1) the predicted loop grafted on the holo protein

structure (test case 1) and 2) the holo loop grafted on the apo protein structure (test

case 2). In combination with the other docking runs, the first case isolates the effect

of the loop geometry while the second one highlights the effect of other differences in

the active sites.

Together, the results indicate subtle differences in the active site between the apo and

holo form, in addition to the loop conformation, affect the docking calculations (Table
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5). This is clear from the AEE case results where using the holo loop coordinates,

grafted on the apo protein structure, did not improve the docking results relative to the

predicted loop. The holo protein active site, in addition to the correct loop

conformation, was required to improve the results further. Docking calculations on

triosephosphate isomerase and enolase yielded similar results.

Conclusion

This work evaluates an approach that mimics certain aspects of conformational

Selection process, to account for ligand-induced loop latching in docking calculations.

While there are limitations in our sampling methodology, the data suggests the

approach is viable. The methodology proposed here was able to 1) produce holo-like

loop structures 2) improve docking results in comparison to apo results and 3) yield

accurate docking poses in 4 of the 6 cases. Except for 1 case all predicted loops are

below 2 Å backbone RMSD from the crystallographic holo coordinates. In addition,

the known ligand docking score was able to “select” the holo-like conformation from

among the several conformational sub-states identified.

In the absence of a known ligand to select among cluster representatives, one can

imagine: 1) combining the results from each cluster weighting according to the cluster

population or 2) perform the virtual screening and empirical testing for all clusters

since only a few are produced. A complementary approach would be to filter dubious

structures; for example, loops with side-chains contacting catalytic residues could be

discarded.
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Sampling limited the accuracy of the spermidine synthase loop structural prediction

and resulted in a poor docking pose. More efficient sampling methodology may

ameliorate that limitation. Structural factors, other than the loop conformation,

thwarted the predicted docking pose for GART. Thus, these cases do not undermine

the viability of the general scheme proposed, but rather motivate work on these

particular areas.

More broadly, this general approach may be applicable to other types of large receptor

rearrangements. The important feature here is that it avoids an exhaustive receptor

conformational search for every ligand pose; the flexibility is examined a priori and

without information about putative ligands.
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Protein PDB Loop Selection Tip Active site | Restrai
structure | Residues Radius (A) | residues reference nt

codes point radius
(A)

Yersinia 1YPT 351-360 12 Gln257 Co. Ala405 || 13
Tyrosine chain A,
protein 1YTN
phosphatase
L-Ala-D-Glu 1.JPM 14-28 8 Leu23, Position of | 12
Epimerase chain B, Arg24, Mg ion in

1TKK Ala■ 22 active site

Triosephosphate | 1R2T 166-177 12 Ile170, Patom in 8
isomerase chains A Gly171 PGA ligand

and B from pdb
Structure
2YPI

Enolase 1EBH, 35-45 12 Ser39, Mg ion in 12
1EBG Thr40, active site

Gly41
GART 1CDE 141-146 12 Gly142, Co. of 12

and Leu143, Leu32
1GCR Asp144
chain B

Spermidine 1 INL 171-180 8 Gly176, C1* atom 10
Synthase chain A Gly177, in AAT

and C Gly178 ligand in
pdb
Stucture

1JQ3

Table 1. Summary of parameters used to prepare protein systems for simulation.
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e (CO1137)

System Substrate Co-factors or ions
Yersinia Protein Capped phosphotyrosine
Tyrosine
Phosphatase
L-Ala-D-Glu L-Ala-L-Glu
Epimerase
Triosephosphate D-Glyceraldehyde 3
Isomerase phosphate (C00118)
Enolase D-Glycerate 2-phosphate | Mg” ions. The ion co

(C00631) crystallized with ligand
was included for all
Enolase docking
calculations

GART 10- 5'-
Formyltetrahydrofolate Phosphoribosylglycinami
(C00234) (tautomer) de (GAR) (C03838)

Spermidine S
Synthase Adenosylmethioninamin

Table 2. List of ligands designated substrate and co-factor for each system. In parenthesis is the

KEGG database entry. In some cases, the ligands were not part of the database and had to be

newly prepared.
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Holo vs Predicted Docking ranks in
Apo loop | Backbone percentages from the

RMSD (A) | RMSD (■ ) database
Apo Holo | Predicted

L-ala-D-Glu 6.7 1.3 17.7 0.9 3.1
Epimerase

Yersinia Tyrosine 3.3 1.4 14.0 1.1 1.2
Protein

Phosphatase
Enolase 5.6 1.8 6.0 0.04 2.3

Triosephosphate 4.3 1.9 8.9 0.8 4.5
Isomerase

phosphoribosylgly 4.3 1.6 7.9% 0.06% 4.9%
cinamide

formyltransferase
(GART)

Spirmidine 5.6 2.9 0.2% 0.03 2.0%
Synthase

Table 3. Summary of docking results into apo, holo and predicted structures. The

rankings are expressed in percentages from the database (19000 total). An asterisk

indicates the docking calculation produced an incorrect pose.



Cluster Backbone RMSD Docking (Glide)
ID/Description (A) Score

L-Ala-D-Glu Epimerase
Apo 6.72 –9.88
Pred-1 3.11 (No reasonable

poses found)
Pred-2 1.3 -10.0
(SELECTED)
Holo 0.0 -13.3

Enolase

Apo 5.6 - 13.6
Pred-1 1.8 -14.1

(SELECTED)
Holo 0.0 -19.6

TIM

Apo 4.3 –6.8
Pred-1 3.1 -6.1
Pred-2 1.9 –6.6

(SELECTED)
Holo 0.0 –9.0

Yersinia protein tyrosine phosphatase
Apo 3.3 -6.3
Pred-1 1.4 -5.1
Pred-2 1.8 -5.2
Pred-3 1.5 -5.8
Pred-4 1.6 -6.6
Pred-5 1.4 –7.2
(SELECTED)
Holo 0.0 –9.4

Table 4. Lowest (best) docking score corresponds identifies lowest RMSD cluster

centroid. The GART and spermidine synthase results are skewed because the docking

poses are incorrect. The latter introduces other variables, in addition to the loop

conformation, that affect the docking score.
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L-Ala-D- || Yersinia Enolase | Triosephosphate GART | Spermidine
Glu Protein Isomerase Synthase
Epimerase | Tyrosine

Phosphatase
Apo 9.3 14 6.0 8.9 7.9% 0.16%
Holo 0.1 1.1 0.04 0.06 0.06 || 0.03
Predicted | 3.1 1.2 2.3 4.5 4.9% 2.0%
Structure

Predicted | 1.3 x *k 0.5 4.5 15.6* | 0.9%
Loop on
holo
Structure

Holo 3.3 23 0.6 4.9 12.5% 0.1%
loop on
apo
Structure

Table 5. Docking results against apo, holo, predicted and limiting cases. 1) Grafting

the holo loop on to the apo structure and 2) grafting the predicted loop onto the holo

protein structure produced the two limiting case structures. The results are expressed

in percentages of the 19,000 compound database. An asterisk indicates the docking

calculation produced an incorrect pose. A double asterisk indicates no poses were

found during the docking calculation.



Xtal vs. Holo Holo vs. Apo pose | Holo vs. Predicted
pose RMSD (A) RMSD (Å) pose RMSD (Å)

L-Ala-D- 1.7 1.8 1.6
Glu

Epimerase
Enolase 1.9 3.6 1.4
GART 1.8 3.5 6.8

TIM 2.5 2.4 2.4 (1.7)
Spermidine 1.0 13.2 12.5

Synthase

Table 5. RMSD between the crystallographic pose and resulting docked pose into the

holo structure, between the resulting poses docking between the holo and apo

structures and between the resulting poses of docking into the predicted and holo

structure. In parenthesis is the comparison against the crystallographic pose rather

than pose predicted by docking into the holo structure.
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Figure 1. Probability density distributions for replicas during the replica exchange

molecular dynamics simulation of L-Ala-D-Glu epimerase.
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Cluster centroids Refined cluster
centroid

L-Ala-D-Glu
Epimerase

Enolase

GART

TIM

Yersinia protein
tyrosine

phosphatase

Spermidine
Synthase
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Figure 2. Cluster centroids. All centroid structures are colored yellow, the holo

structure is colored wheat and the refined cluster centroid is colored green. The

second column includes the refined cluster centroid closest (per backbone RMSD) to

the holo coordinates and its corresponding raw centroid structure. The holo structure

is shown in both columns for reference. Only non-redundant figures clusters are

shown; if two clusters overlapped in backbone conformations, only one of them was

shown. The clusters of spermidine synthase were separated into three groups for

clarity.
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_ __
Epimerase \ Enolase

Tyrosine
phosphatase

Figure 3. Predicted structure loops for all of the systems examined. In white is the

apo structure, in green the predicted structure and in “wheat” the holo structure.
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Holo Apo Predicted
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Enolase

GART
-

\

TIM
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Spermidine ** 2 F. '-
Synthase

-
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Figure 4. Poses of docked ligands. In each set the ligand with magenta carbon atoms

is the crystallographic ligand pose, figures with yellow carbon atoms correspond to

the docked ligand into the holo crystal structure and figures with the green carbon

atoms correspond to either the docking pose into the apo or predicted structures.



Chapter 2: Limitations of the replica exchange method

Introduction

The simulation of flexible loops requires efficient sampling because the motions

of interest can involve backbone rearrangements that are difficult to sample

exhaustively. The replica exchange method (Mitsutake et al., 2003a, 2003b)

(REM) was developed to ameliorate some of these difficulties by overcoming

energy barriers more easily. However, loop simulations using REM failed to

explore known conformational sub-states. In this chapter I explore how a strong

entropy temperature dependence may in fact diminish efficiency in REM

simulations when higher temperature replicas are added.

In the rest of the introduction I discuss the basics of statistical mechanics, Monte

Carlo integration, the force field description of bio-molecules and REM. The

functional form of the force field description for bio-molecules motivates the need

for efficient sampling methodology such as REM.

Formalism of statistical mechanics

Statistical mechanics provides a procedure to calculate bulk properties of

materials from their molecular properties. It successfully predicts the equation of

state for ideal gases and other ideal cases(Dill & Bromberg, 2002). Given a set of
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external conditions (pressure, temperature, ionic strength, etc.) and the resulting

quantum states (eigenfunctions and eigenvalues of the Hamiltonian operator) of

the molecule in question, thermodynamic properties of an ensemble of these

molecules are attainable. This requires the calculation of a so-called partition

function. If the external temperature and volume are constant, the partition

function, q, can be calculated as follows:

-El

(1) q-Xe"

Where the index (i) delineates each individual quantum energy level of the

molecule, Ei represents the energy of the ith state, T corresponds to the absolute

temperature and k is Boltzmann constant (1.38 x 10° J/K). The sum is carried

out over all of the quantum states of the molecule. For other conditions, e.g.

constant pressure and temperature, similar expressions are used(Hill, 1986). For a

property m, the bulk value can be calculated by:

-El
X m(i)e ºf

m) = —2
(2) ( q

Where m(i) indicates the value of the ith state of the molecule. This is a weighted

average over all of the quantum states.
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If the system in question is described classically, i.e. the energy is not quantized,

the partition function can be calculated by the following integral:

–E

(3) q = Joecºde

In equation (3) Q(E) represents the density of states, that is the number of states

with an energy between E and E-FdE. This is essentially the same as equation 1,

except that the “sum” is carried out over the energy not the quantum states.

Evaluating equations 1 and 2 can be challenging unless the quantum states and,

subsequently, the sums can be calculated analytically. Otherwise, this problem

poses the challenge of enumerating every quantum state. A partial sum may

approximate q by ignoring states with high energy, such that they contribute little

to the sum. However, this requires the identification of such states a priori. The

same is true of equation (3).

Monte Carlo integration

Monte Carlo integration is an efficient method to calculate averages of functions

of random variables(Kalos & Whitlock, 1986). It is particularly efficient when

only a relatively small portion of the range in question contributes significantly to

the integral in question. An example illustrates this clearly. Suppose the aim is to

evaluate the integral:
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(4) Je"f(x).dx

Where “a” is a large number and f(x) is bound so that the integrand quickly

converges to zero. Naïve standard quadrature methods would include

contributions at very large values of x. The latter would be inefficient since only

a small interval near the origin actually contributes significantly to the integral.

Clearly, inspection of the integrand would suggest the numerical sum should be

truncated near the origin, however, more complicated cases, especially those

involving many variables, would not be as simple. Monte Carlo integration is a

way to focus on the relevant regions of space. Using Monte Carlo integration, the

integral in equation (4) would be calculated by computing the average of f(x)

given that x is a random variable and has a probability density function:

(5) p(x)= e(“

So, the procedure would be to gather a sample of x-coordinates from the

distribution (5) and compute their average f(x) value.

Sampling involves generating a set of x-coordinates that obey the target

distribution i.e. equation (5) in the example. In a typical calculation, a set of x

coordinates are generated sequentially, making transitions from a previous

position to the next one. Each transition is achieved by: 1) postulating a new x
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coordinate and 2) rejecting or accepting it based on a criterion that will reproduce

the correct probability distribution. The initial position should not affect, in

principle, the final outcome, so it could be selected at random. If the new position

is rejected then the previous x-coordinate is repeated in the sequence of

coordinates, otherwise the new position is the next coordinate in the sequence.

The overall probability of making the transition equals the product of: 1) the

probability of proposing that particular transition and 2) the probability of

accepting it. The process of sequentially taking these Monte Carlo steps is

sometimes called a Monte Carlo simulation.

Coordinate transitions are postulated via a Monte-Carlo “move-set”, that is, an

algorithm that explores the coordinate space without bias. A bias must be avoided

because it would skew the resulting distribution obtained from the calculation.

One approach is to make “moves” to nearby points. An example is moving +1 or

-1 units. If the x-interval for integration was finite and small (rather than the

infinite limits of equation (4)) one could choose random numbers from that

interval. If those conditions are not met the simulation will likely be inefficient

because, since the probability density is nearly zero far from the origin, most of

the proposed moves will be rejected.

The acceptance criterion serves as a restraint to yield the target distribution for x.

In order to do so, it must maintain detailed balance. That is, given two x positions

q and r.
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(6) P(q → r). P(q)- P( → q). P(r)

This means the probability of transition from q to r times the probability of being

in q must equal the probability of transition from r to q times the probability of

being in r. Essentially (6) ensures a microscopic equilibrium between pairs of

coordinates. One can insert the probabilities of p(r) and p(q) from the desired

probability distribution (from equation (5), for example) and calculate the ratio of

the transition probability from q to r versus the transition probability from r to q.

So, by maintaining this ratio of transition probabilities the correct distribution is

guaranteed. The Metropolis criterion(Metropolis et al., 1953) satisfies detailed

balance and maximizes the possible transition probabilities. It can be stated as

follows:

1 B > 1

(7) 20-0-■ , B & 1

Where:

p(q)
8 B = +

(8) p(r)

That is, if B is greater than or equal to one, accept the move, otherwise accept it

with the probability equal to B. For the present work, the canonical distribution,

that is the distribution for a thermodynamic ensemble at constant temperature,

volume and number of particles (NVT) is the most relevant. In that case, B can

be expressed as:
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(E (a)- E(r))
(9) B = e RT

Where R equals the universal gas constant (8.314 J/K), T represents the absolute

temperature and E the energy of the given coordinate (q or r).

Thus, to calculate the mean of a function f(x), where x is a random variable that

obeys a given probability distribution, one can use the Metropolis criterion to

generate a series of x coordinates that obey the distribution and subsequently

average them. This can be applied in calculating molecular averages described by

equation (2).

The advantage of this approach is that it focuses on the most important regions

without user intervention. This is critical as the probability functions become

more complex and involve many variables.

Applying statistical mechanics to biomolecules

Bio-molecules, such as proteins or nucleic acids, are unbranched

heteropolymers(Alberts et al., 2002). The three-dimensional arrangement, or

conformation, of these molecules is critical for their function. In principle one

could study them by calculating their quantum states, calculating their partition

function and computing their bulk properties as described above. However bio
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molecules do not lend themselves to quantum calculations, in practice, because:

1) they often involve thousands of atoms and 2) can adopt many 3-D orientations

or conformations. In the case of a protein of one hundred residues, assuming two

backbone states per residue, the backbone conformational space is of the order of

2". Performing quantum calculations on all of these conformations is not

practical, so they are often described using approximate models.

One approach is to use a so-called force field of atomistic resolution i.e., each

atom is explicitly included. Each atom is assigned a charge and van der Waals

parameters. Atomic bonds and angles are harmonically restrained to their

equilibrium positions while a trigonometric function describes a dihedral

potential. A potential energy can be calculated based on these interactions and its

negative potential yields the force on each atom. This representation tries to

reproduce the potential energy surface that govern the nuclei dynamics(Frenkel &

Smit, 2001), as per the Born-Oppenheimer approximation. One common

implementation has the following form(Schlick, 2002):

(10a) E E. From + Pawl. + Ero, + EL, + Fou

(10b) E.-XS,(r, -(r))
i,j

(10c) Eans. * XK,(cos(0.) -cos((9))”
i,j,k

(10d) Elon = X X% (
+ cos(nt, )

ijkl n
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(10e) EL = x: -}P" if

Qiqi
(10f) Fou -X #

Where, the subscripts bond, Angle, tor, LJ and coul represent bond, angle, torsion,

Lennard Jones and coulombic respectively. In the expressions for bond, angle

and torsion potentials the indices run over the adjacent atoms that make the bond,

angle or torsion, respectively. In the case of the Lennard-Jones and Coulombic

portions the indices run over the non-bonded atoms.

Given the description from equation (6a), a probability for a given structure, or set

of Cartesian coordinates, is given by:

—E(x)

e RT
(11) P(x) =

Where the vector x denotes the set of Cartesian coordinates of the molecule, T

represents the absolute temperature and q the partition function. Monte-Carlo

integration could be particularly useful here given that: 1) there are thousands of

degrees of freedom in these systems and 2) only a miniscule fraction of the

coordinate space significantly contributes to the partition function.

Problems applying Monte Carlo methods to biomolecular systems
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The application of Monte-Carlo integration to biomolecules proved difficult due

to the rugged nature of the energy function (Equation 10a). The simulations

rarely overcome the high energy barriers between the energy minima and the

resulting calculation is incorrect. The key problem is devising a move-set that can

efficiently interchange among the many energy minima.

Replica Exchange Method

In order to circumvent the short-comings of regular Monte Carlo calculations,

Okamoto et al(Mitsutake et al., 2003a) proposed to simulate instead a generalized

ensemble that spans several temperatures. Several copies of the same system are

concurrently simulated at different temperatures. Periodically, exchanges between

them are proposed i.e., they are part of the move-set. High temperature

simulations can more easily overcome energy barriers and, by virtue of these

exchanges, they allow lower temperature simulations to do so as well. Typically

1,...,n replicas with temperatures corresponding T1,..., Tn are simulated.

Exchanges are accepted based on this criterion:

T1 T2 1 if B > 0

(12a) P(x," ~ x,”) - lº. B) if B > 0

Where,

1 1
-

(12b) p-(#-#) •(E(x,”)-E(x"))
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Where the function P represents the probability of exchange, the indices (i) and (j)

label the particular copy of the system and their temperatures have the subscripts

1 and 2. E(x) denotes the potential energy of the system.

The number of replicas and temperature spacing can be optimized to achieve the

highest exchange probabilities. However, it is not clear that increasing the

number of replicas, and thus the highest temperature, necessarily improves

convergence of the simulation. Furthermore, given limited computing resources,

the possible benefits of including higher temperatures must be weighed against

having shorter individual trajectories. Here, these issues are explored using a

model system and the role of entropy in barrier crossing is explicitly considered.

Methods

Description of the 2-D model

In order to assess the efficacy of the replica exchange method for overcoming

entropic barriers, a two-state model system was used (Figure 1). I am particularly

interested in cases where, given two macroscopic states, the number of accessible

microscopic states within one of them grows significantly more rapidly than in the

other. Replica exchange, using high temperature replicas, assumes the higher

temperature replicas will improve sampling by avoiding kinetic trapping.

However, higher temperatures favor more entropic states, which can trap the
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simulations in highly entropic basins and not transition to the states of interest,

those with fewer accessible sub-states.

In the model system, there are two states, A and B. Each state consists of a square

2-D grid and they are connected by a line of 10 grid points. The grid spacing is 1

unit and the dimensions of the 2-D regions are temperature dependent. All the

grid points in state A have a potential energy of -3 kcal/mol, while all those in

state B have -2 kcal/mol. The potential energy of the grid points connecting the

two states is 0 kcal/mol. The entropy at a given temperature Tf can be calculated

by:

16 S(T, ) — S(T fºur k, 1 Q(T,)
(16) on-sº-■ ; **"la■ t)

Where S(T) denotes the entropy as a function of temperature, Q(T) denotes the

number of accessible states at temperature T, and Cp represents the heat capacity

of the system. Using equation 16 one can calculate the number of accessible

states for a given temperature if Cp is given. For this purpose I approximated Cp

using the following truncated Taylor expansion:

(17) C, - A+ BT4 CT?
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Where A=2.0, B=0.08 and C=0.001. The dimensions of states A and B at 300 K

were 5x5 units in both cases. Using equations 16 and 17, the state at 300 K was

used to calculate the dimensions of each state for each different temperature.

Monte Carlo replica exchange simulations using this system were performed 10

times. They involved 64 replicas, spanning the temperatures 300-2367 K. The

move set simply involved a single unit displacement in one of the axes. That is,

+/-1 in the x or y direction. 100 exchange attempts were performed, where every

pair of adjacent temperatures attempted a switch of coordinates. 10° Monte Carlo

steps separated the exchange attempts. Barrier crossing was defined as, during

these 10° steps, starting in one state and sampling at least once a point in the other

State.

Description of the 1-D system.

A 1-D potential was devised to study convergence in replica exchange

simulations given a fixed amount of CPU time. Here we fix the total number of

Monte Carlo steps (number of replicas * total number of steps at each

temperature). The 1-D potential is represented by a parabola on the negative x

axis and a “V” shaped potential on the positive x-axis. The “V” shape potential is

described by a line, with slope m, from the point (0,0) to some minimum (x_min,

y_min) on the fourth quadrant of the coordinate system on the interval [0, x_min).

On the interval (x_min, infinity), a line with slope —m describes the potential

energy. So, the coordinates of the minimum on the positive x-axis, x_min and
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y_min, specify the potential energy function on that side of the y-axis. A similar

situation occurs on the negative x-axis, where the minimum of the parabola, and

the fact that it must cross the origin, fix its analytical form. Here the Monte Carlo

steps were +/- 0.5 units and randomly chosen.

For the current calculation the potential minimum on the positive x-axis was

(90.0, -9.2), while on the negative x-axis it was (-2.0, -13.1). These bounds yield,

going from the positive to the negative axis basin, an enthalpy difference of -11.0

kcal/mol and an entropic contribution of 9.38 kcal/mol. The overall free energy

difference is -1.62 kcal/mol.

The total number of Monte Carlo steps, summed over all replicas, is 10°. Each

replica underwent 10,000 steps between exchange attempts. 1, 10, 20, 50, 80, 100

and 200 replicas were used. The number of exchanges was adjusted so to keep

constant the total number of Monte Carlo steps.

The population on the positive x-axis basin, for the 300 K replica, was monitored

as a metric of convergence. The calculations were performed 10 times and

standard deviations were calculated; error bars spanned 2 times the standard

deviation.

Results and discussion
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Monte Carlo simulations of biomolecules, explore a particularly rugged energy

landscape, as described by equations 10a–10f. It is crucial to overcome free

energy barriers between nearby minima in order to obtain the adequate

distribution. There will be an average number of Monte Carlo moves between

crossings and this quantity determines how long the simulation needs to be in

order to converge. Since replica exchange relies on high temperature replicas to

overcome barriers, this motivates the question of how the transition frequency, the

inverse of the average number of steps between crossings, changes with

temperature.

Conceptually, it is useful to draw parallels to transition-state theory and kinetics.

In that framework one can imagine two states, A and B, with a free energy barrier

between them. Crossing from A to B occurs in two steps. Step 1 involves

reaching a “transition-state” or excited state that is apt for barrier crossing. Step 2

involves going from this transition state to state B. Thus the overall barrier

crossing probability is the product of the probability of reaching the transition

state and the transition probability of going to B.

(13) P(A->B) = P(A->ABts)*P(ABts->B)

Where P(A->B) symbolizes the transition probability from A to B, P(A->ABts)

corresponds to the probability of reaching the transition state, from A, and

P(ABts->B) represents the probability of going from the transition state to B. The
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transition state is in thermodynamic equilibrium with A, and therefore entropy

and enthalpy affect the transition state population. The kinetic rate is expressed

by(Dill & Bromberg, 2002):

h )
AS* AH"(14) k(T) = (; Te RTRT

Where k(T) denotes the kinetic rate constant, kb, h, R, AS", AH", Tande represent

the Boltzmann constant (1.380 E-23 J/K), Planck’s constant (6.64 E-34 J-s), the

universal gas constant, entropy change of reaching the transition state, enthalpy

cost of reaching the transition state, temperature and the natural logarithm base

(2.718), respectively. Equation 14 describes the dependence of the rate constant

as a function of temperature. However, the entropy and enthalpy changes also

vary with temperature. The entropy change dependence on temperature can be

expressed by a truncated Taylor expansion:

(15) AS(T) = AS(300K) + a(T-300)

If the first order coefficient, a, is negative and large, it can dominate the rate

constant and diminish it at high temperature. Physically, that corresponds to the

case where the number of accessible states in “B” increases with temperature

significantly faster than those in the transition state. The latter is not an

unreasonable situation given the high dimensionality of the space in question. To

illustrate this, consider the volume of a hypercube with n dimensions and sides of
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length L, L". The effect of a change in L is accentuated by the exponent n and,

since biomolecules involve thousands of atoms, the effective n is also of that

order of magnitude in these simulations. Figure 1 clearly depicts a maximum in

the rate vs temperature plots for values of “a” that are large enough. This analysis

does not include the enthalpic temperature dependence and the Taylor expansion

may not be valid over this wide temperature range. For this reason I employ

model systems to further explore this issue.

While Monte Carlo simulations do not reproduce kinetics and clearly do not have

to obey transition-state theory, some of the concepts discussed are certainly useful

in examining the temperature dependence of transition probabilities in Monte

Carlo simulations. The accessible conformational space will increase at higher

temperatures and the probability of barrier crossing will change accordingly. The

rate reduction with temperature will be most pronounced if the free energy barrier

is mostly entropic.

In high temperature simulations involving long loops (those involving at least 10

residues) it appears such barriers are prevalent. They explore disordered

conformational space while extending into solvent and lack intraloop contacts

present in the native structure. Performing simulations at higher temperatures did

not stimulate the formation of the intraloop contacts, so it appears this strategy of

increasing the temperature may be futile in these cases. Since a number of

specific contacts must be made to sample native-like structures, it appears this
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barrier could possibly be largely entropic. This motivated this inquiry on the

limitations of the replica exchange method for cases involving a significant

entropic barrier. The latter was assessed in terms of the number of barrier

crossings as a function of temperature in a replica exchange simulation, using a 2

D model, and the convergence of the simulation given a fixed amount of

computational power (CPU time), was assessed using a 1-D model. Both of these

calculations are described in the Methods section.

At this point it may be worth noting that the replica exchange method is not

limited to exchanges between replicas at different temperatures. Hamiltonian

exchange, of which temperature exchange is one type, involves replica exchanges

between systems with slightly different potential energy functions. The

advantage of Hamiltonian exchange is that it permits focused modulation of the

potential energy function, so that only the relevant barriers are lowered. Using

kinetic energy, via temperature regulation, essentially lowers all of the enthalpic

barriers simultaneously which opens up a huge conformational space that needs

exploration. Here, however, I will continue to only consider replica exchange

between systems at different temperatures.

Replica exchange simulations of the 1-D model, with a varying number of

replicas, were performed. The simulations using 80 or 100 replicas clearly yield

results, within margin of error, that coincide with the theoretical value, as

indicated in Figure 2. However, as the number of replicas is increased to 200, the
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calculated population of state A drifts away from the correct result by slightly

more than 2 standard deviations. This deterioration could stem from: 1) the

shortening of the simulations at each temperature or 2) a decrease in barrier

crossing at higher temperatures. The latter was explored using the 2-D model.

Barrier crossings counted during the 2-D model simulation, as a function of

temperature, are shown in figure 3. The simulations were repeated 10 times and

their results nearly overlap; the relative error is very small. Clearly the

probability of barrier crossing diminishes with temperature. As the temperature

increases, more states become available and that reduces the probability of being

at the entrance of the “corridor” connecting the two states.

While this model may appear somewhat artificial, kinetic temperature dependence

of this sort occurs in real systems. Arrhenius plots of protein folding rates often

have a downward concavity.(Chan & Dill, 1998) while endothermic chemical

reactions also slow down with increased temperature. While the reasons behind

these other cases are different, the same problem, of optimizing the number of

replicas to maximize efficiency, applies.

Conclusion

The results in this chapter highlight a particular limitation of the replica-exchange

method when used to overcome significant entropic barriers. At higher
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temperatures more states become available and enthalpic barriers are less

hindering. However, the number of states growth, with temperature, can, in

extreme cases, have a negative effect on the barrier crossing rate. This can render

using higher temperature replicas detrimental. In some cases, such as protein

folding, there is a maximum in the rate versus temperature plot, and care must be

taken to avoid using temperatures above that extremum.
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Figure 1. Schematic representation of the 2-D model.
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Results obtained using a constant amount of computer time
comparison of REM results as a function of the number of replicas
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Figure 2. Accuracy of REM calculations deteriorates with increasing replica

number.
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Number of barrier crossings in replica exchange simulation
2-D two state potential

C_p coefficients:
A = 2.0, B=0.08, C=0.001

100 exchange attempts
10^6 MC steps between exchange attempts
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Figure 3. The number of barrier crossings dwindles at higher temperatures for the

2-D model.
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Chapter 3: How Do Somatic Mutations Rigidify CDR Loops During Affinity

Maturation?

Abstract

While some measurements suggest CDR flexibility is lost during affinity

maturation, the physical basis for it remains elusive. Here, molecular dynamics

simulations captured CDR flexibility differences between 4 mature antibodies

(7G12, AZ28, 28B4, 48G7) and their germline predecessors. Analysis of their

trajectories: 1) rationalized how mutations during affinity maturation restrict

CDR motility, 2) captured the unliganded equilibrium between bound and

unbound conformations for the H3 loop of 7G12g, and 3) predicted a set of new

mutations that, according to our simulations, should affect binding.

Introduction

The immune system is able to produce highly specific and strongly binding

antibodies for essentially any target molecule, or antigen. Germline antibodies,

the set initially available at birth, weakly bind suspect molecules and evolve

through cycles of mutation and selection, for the strongest binders, to yield

“affinity-mature” antibodies. The mutations during affinity maturation are
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focused on the 6 complementarity determining region (CDR) loops that make up

the binding site(Alberts et al., 2002).

Because antibodies can bind essentially any antigen, they are an excellent model

system to study molecular recognition and binding. Understanding how and why

somatic mutations modulate binding affinity may permit the design or disruption

of protein-protein interactions, protein-ligand interactions and enable the design

of antibodies de novo. These would be useful tools in combating disease as well

as developing new applications in biotechnology i.e. biosensors, etc.

One hypothesis suggests germline antibodies are inherently flexible, easily

rearrange to accommodate binding and that mutations during maturation restrict

CDR loops to their bound conformation. Binding site pre-organization

eliminates the free energy cost of rearrangement upon binding and contributes to

affinity maturation. Experimental data that supports this position includes: 1)

crystallographic and kinetic studies of mature immunoglobulins and their

germline predecessors(Berger et al., 1999; Foote, 2003; James & Tawfik, 2005)”

, 2) the entropic cost of binding is lower after maturation(Foote & Milstein,

1994; Manivel et al., 2000), 3) polyreactivity(Notkins, 2004), the ability to bind

distinctly different antigens, diminishes as antibodies mature. If this hypothesis

is correct, how do mutations modulate flexibility?
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Studying the factors that drive flexibility can be experimentally challenging. B

factors from crystallographic studies and NMR order parameters can provide

indications of flexibility; however, deciphering the mechanism by which a given

mutation modulates flexibility can be difficult. This motivates a theoretical

approach to examine these effects to identify atomic-resolution interactions that

limit flexibility.

This is an exploratory study where we report the identification of mutations that,

in our molecular dynamics simulations, modulate CDR flexibility. Molecular

dynamics and loop prediction calculations were performed on 4 mature

antibodies and their germline precursors (7G12, AZ28, 28B4 and 48G7). In all

four cases, the calculations capture greater flexibility, assessed by calculated B

factors, in germline H3 CDR loop than their mature counterparts. Via analysis

of the simulations it was possible to: 1) identify single mutations that, even far

from the paratope, can significantly restrict CDR mobility, 2) identify putative

new mutations that could affect binding, 3) observe 7G12 visit its bound H3

conformation even in absence of antigen i.e. binds through a conformational

selection mechanism, and 4) observe that 48G7g CDR flexibility loss does not

drive its affinity maturation. While anecdotal, the finding that single mutations

can independently modulate flexibility, and affect the binding affinity, could be

particularly useful in the design and optimization of binding sites.

Methodology
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Molecular dynamics

Molecular dynamics of 7G12, 28B4, AZ28 and 748G7 were performed using the

Amber 8 simulation package(D.A Case, 2004). Simulations were carried out at

300 and 400 K. In order to avoid distortions at 400 K and make RMSD

comparisons easier, Co. atoms not on CDR loops were restrained harmonically

(force constant =0.3 kcal/mol/A") to their crystallographic coordinates. Solvent

effects were incorporated by: 1) using langevin dynamics(Pastor et al., 1988) and

2) a Generalized Born(Onufriev et al., 2004) (igb=5) model with a surface area

correction for non-polar effects. The collision frequency parameter was set equal

to 2 to maximize barrier crossing(Loncharich et al., 1992). The parm.99 force

field with Simmerling’s backbone corrections(Simmerling et al., 2002) were

used. For computational efficiency, long range forces were only updated every 4

time-steps (nrespa-4). The inner timestep was 1 fs. The production run spanned

15 ns of simulation time.

The PDB structure files, specific chain segments used, and the residues not

restrained during the simulations are listed in Table 1. Note that no ligands were

included in the simulations. The starting structures underwent 2000 steps of

steepest descent minimization; an equilibration run followed. The temperature

was gradually increased from 0 K to 300 K over 10,000 time-steps. The

temperature was kept at 300 K for the rest of the 100 ps equilibration run. If the
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system target temperature was 400 K, it was heated from 300 to 400 K over the

10 ps period following the initial heating (over picoseconds 10-20 of the

equilibration run). During this time, the harmonic restraints mentioned above

were enforced.

The trajectories were subsequently visualized using VMD(Humphrey et al.,

1996). The mutated residues were observed for differences in interactions

between the germline and mature species.

Generation of local minima using Protein Local Optimization Program

In order to view differences in the energy landscape of possible H3 loop

conformations in the 7G12 antibodies, sampled local minima were generated

using the loop prediction algorithm in our Protein Local Optimization Program.

We used a hierarchical approach to iteratively optimize loop conformations as

described previously(Jacobson et al., 2004) with increased sampling. In order to

avoid decreased sampling due to nearby residues blocking alternative loop

conformations, side chains with a heavy atom 7.5 Angstroms from the loop were

removed during the backbone buildup stage of the loop prediction. This protocol

was applied to an additional third initialization stage as well as the two

refinement stages. In addition, to better match the loop definition used in the

MD work in this paper, two extra residues (one on each side) were included in

the prediction beyond the standard H3 loop definition. Residues B:97B:103
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were predicted in both the mature (PDB code 1NGY) and germline (PDB code

1NGZ) structures.

Hydrogen bonds analysis

The ptrajmodule in Amber was used to hydrogen bond partner distances. The

distance cut-off heavy-atom to hydrogen distance cut-off was 2.5 A. In cases

where equivalent atoms existed i.e. a carboxylic acid, the lowest distance to either

atom was taken.

Results and discussion

Molecular dynamics simulations of AZ28 (REFs), 7G12(Romesberg et al., 1998;

Yin et al., 2003a; Yin et al., 2003b), 28B4(Hsieh Wilson et al., 1996; Yin et al.,

2001) and 48G7(Patten et al., 1996; Priscilla & Schultz, 1999; Wedemayer &

Stevens, 1997) and their corresponding germline predecessors were performed to

identify mutations that modulate CDR flexibility and took place during affinity

maturation. H3 is the most diverse CDR loop in sequence and length(Davis et

al., 1998), is believed to play a central role in specificity during

maturation(Arden, 1998; Davis et al., 1998; Xu & Davis, 2000), and, its

conformation is far more variable than the CDRS(Chothia et al., 1989; Morea et

al., 1998). So, as a first order measure of flexibility we focused on CDR Co. B

factors of H3 and found larger deviations for the germline H3 loop than its
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mature counterpart (figure 1). Visualization of the trajectories made it possible to

identify contacts made in the mature species, that appear to restrict CDR

mobility, but are absent in their germline predecessors.

7G12

The two key observations from simulations of 7G12 and its germline predecessor

are: 1) the Ser76"Asn mutation anchors the H1 loop and 2) the H3 loop visits its

bound conformation in absence of ligand.

While, Yin et al (Yin et al., 2003a) ignore the Ser76"Asn mutation in their

analysis, it substantially hinders the motion of the H1 loop, in our calculations, as

measured by calculated B-factors and inter-residue distances to H1. Asn'76" in

the mature species simultaneously forms hydrogen bonds with the alcohol group

of Thr28" and the backbone carbonyl of Tyr27" (figure 3), which does not

happen in the germline case where a serine occupies that position. Germline H1

Co. B-factors (up to ~440) were roughly 3 times the magnitude of its mature

counterpart (~130); figure 4 shows regular interval snapshots of the H1 loop

which clearly show the level of restriction. In addition, the probability density of

the distance between the residue centroids at positions 76" and 28"clearly

depicts a peak around 6.5 A for the mature simulation which is absent in the

germline result; the probability density in the 6-8A interval is roughly twice for

the germline trajectory than the mature (figure 5). If this model is correct: 1) a
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significant difference in H1 flexibility should be observed between the 7G12

antibody and its germline predecessor and 2) a Thr28"Ala mutation would

increase flexibility the mature species and make no difference in the germline

antibody.

While effect of the Ser76"Asn mutation on binding is unknown, it may play a

role since H1, in the germline simulation, Swings to the binding pocket vicinity

and interacts with nearby residues. This will have to be experimentally verified.

The simulation of the mature antibody are consistent with the interpretation, of

Yin et al(Yin et al., 2003a), that the Ser97"Met mutation anchors the H3 loop to

its holo conformation, since the methionine contacts are firmly kept throughout

the simulation. So, it appears this mutation in fact reduces the flexibility of H3,

as predicted. The noteworthy and unexpected observation was the transition

from the apo to holo conformation of the H3 loop in the germline simulation, in

the absence of ligand. Figure 6 shows the Co. RMSD to the bound and unbound

conformations. The corresponding simulation of the mature species fails to

display this behavior. This observation is striking because it suggests 7G12g

binds through a conformational selection mechanism and the Ser97"Met shifts

the equilibrium towards the conformation most auspicious for binding.

Conformational selection in antibodies has been proposed(Berger et al., 1999;

Bosshard, 2001; Foote & Milstein, 1994; James & Tawfik, 2003, 2005) and, in

some cases, experimentally verified(Foote, 2003; James & Tawfik, 2005), but, to
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our knowledge, it had not been observed in this type of simulation. Simulating

these changes would be useful in predicting putative induced fit effects in

antibodies.

The absence of flexibility in the mature H3 could potentially be due to frustration

in the MD simulation. To eliminate this possibility, loop prediction calculations,

which sample space without overcoming energy barriers, were performed on the

H3 loop of 7G12. The results show a large diversity of conformations for the

germline species in contrast with a small number of solutions found in the

mature species (figure 7). Thus it appears the available H3 CDR conformations

are more limited in the mature case.

28B4

The maturation of 28B4 involves the Asp95"Trp mutation which, when reversed,

lowers binding affinity by 3.7 kcal/mol(Yin et al., 2001) (more than half of the

total binding free energy gained during maturation). Trp95" is located at the

base of the H3 loop and makes pi-pi interactions with the bound ligand, however,

our simulations suggest it my also restrict H3. H3, in the germline simulation,

drifts into the space occupied the Trp95H side-chain in the mature structure and

onto the binding pocket (figure 7). The corresponding mature simulation does

not display this behavior.
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It is tempting to suggest the bulk of the Trp side-chain restricts the H3 loop

mobility, but perhaps the mature antibody H3 loop could adopt that conformation

given enough simulation time. In order to eliminate this possibility the loop

conformation from the germline simulation was grafted onto the mature antibody

crystal structure, the residue at H95 mutated manually in the pdb file, and a loop

prediction calculations, where loop Co. atoms were kept within 2 A of these

coordinates was carried out. The latter failed to find a set of loop coordinates

that satisfied these restraints because the Trp sidechain could not be

accommodated (even if nearby side-chains were removed). Therefore, it is

unlikely the mature antibody H3 loop adopts this conformation or, at the very

least, it clearly has fewer accessible states than its germline counterpart, which

shifts the equilibrium toward the “bound” structure in the mature case.

The energy contribution to binding of this prearrangement effect versus the pi-pi

stacking interaction of the Trp side-chain and ligand are difficult to deconvolute.

But it is clear that this bulky non-polar group is able to very specifically shift the

conformational equilibrium of H3.

AZ28

During AZ28 maturation, only one mutation occurs at a binding site residue

(Ser34"Asn)(Mundorff et al., 2000), however, no structural changes are apparent

from the crystallographic structures. In both cases the residue at position 34 L
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hydrogen bonds with the hydroxyl group of Tyr100"a(Mundorff et al., 2000),

which sits at the base of the H3 loop. Yet, it does cause a binding affinity

difference of 0.9 kcal/mol(Mundorff et al., 2000; Ulrich et al., 1997). One

notable difference is that a crystallographic water molecule mediates this

interaction in the germline antibody, which may indicate a weaker interaction in

this case.

The differences in dynamics are far more evident. The hydrogen bond to

Tyr100"a is quickly lost in the simulation germline simulation (3% occupancy

through the simulation), while, in the simulation of the mature species, Asn24"

interacts with Asp101" (90% occupancy) and maintains its hydrogen bond with

Tyr100" (74% occupancy) (figure 8). The hydrogen bond between Asp101" and

Tyr100" is absent in the germline simulation (0.4% occupancy), while, in the

mature simulation, it creates an electrostatically auspicious environment for the

tyrosine hydroxyl group where it can make two hydrogen bonds simultaneously.

This interaction is important because Tyr100"a sits at the base of the H3 loop

and it is the mutation most likely to affect the H3 conformation(Ulrich et al.,

1997). In the germline simulation the H3 loop folds over onto the space that

would be occupied by the ligand upon binding as Tyr100"a makes contacts with

other residues which permits this shift (figure 8). Thus, this mutation likely

contributes significantly to the flexibility differences in figure 1. It also suggests
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a mutation of Asp101H to alanine would have an effect on the binding affinity of

the mature antibody and have no effect on binding for its germline predecessor.

748G7

48G7 is an outlier in this analysis. It appears to mature differently than the other

cases because: 1) it undergoes 9 mutations (Ser30"Asn, Ser34"Gly, Asp55"His,

Glu42"Lys, Gly55"Val, Asnä6"Asp, Gly65"asp, Asn'76"Lys and

Ala'78"Thr)(Wedemayer & Stevens, 1997) rather than 6 or less in the other cases

and 2) the ligand bound conformation differs between the mature and germline

species. Also interesting is that none of the mutations directly interact with the

ligand, most of them only weakly affect the binding affinity(Patten et al., 1996)

and there is cooperativity between pairs of mutations(Priscilla & Schultz, 1999),

that is, combinations of mutations have a larger effect on binding than the sum of

their individual contributions. Priscilla et al(Patten et al., 1996; Priscilla &

Schultz, 1999) suggest that initial mutations may change the ligand binding-pose

and subsequently introduce new contacts. Thus, mutations that optimize those

new contacts are only relevant if the previous mutations are present. Because of

the latter observation, the analysis of the simulations performed here focused on

those mutations that, alone, most affected the binding affinity.

H3 Co B-factors from the mature simulation are only slightly lower values than

the corresponding germline data (Figure 1). Except for H2, the other CDR loops,
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L1, L2, L3 and H1, show the reverse trend; the simulation trajectory of the

mature species yields higher B-factors than its germline counterpart (see

supplementary data). Most of the mutations induced no new contacts; many of

their side-chains simply diffused through solvent during the simulation. The

higher rigidity of the mature H3 appears to be due to the Asp55"His mutation

which causes the loss of a salt bridge between 55" and Arg46"; the latter is then

free to interact with the backbone of H3. The Asn'76HLys mutation actually

increases the flexibility of H1. This flexibility, as discussed by Wedemeyer et

al(Wedemayer & Stevens, 1997), permits the rearrangements necessary to

optimize contacts with the ligand. Interestingly, this is consistent with the effect

of Ser76"Asn in the maturation of 7G12 and Ser34"Asn in AZ28. That is,

asparagine appears to be able to restrict motion by making two electrostatic

interactions simultaneously. In the case of 48G7, its removal causes precisely

the expected effect and increases flexibility.

A previous molecular dynamics study on the germline and mature species of this

antibody concluded the germline complex is more flexible than its mature

counterpart(Chong et al., 1999). In that study the simulation included the ligand

and was much shorter (less than a nanosecond). At shorter simulation times (< 2

ns), we find a larger gap between the germline and mature H3 flexibility, so it is

unclear if their conclusion would hold at longer simulation times and in the

absence of ligand.
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Conclusion

While the set of cases is too small to make any generalizations, it was possible to

rationalize how mutations, sometimes not at the active site (Ser76"Asn in 7G12),

restrict CDR mobility. An unexpected and interesting result was the equilibrium

between bound and unbound H3 conformations in the absence of ligand (7G12

germline), which is consistent with a conformational selection mechanism for

binding. Together these observations are consistent with structurally diverse and

polyreactive germline antibodies that become specific during maturation by

restricting their CDR conformations to the most auspicious binding geometry.

The fewer unbound accessible states lower the entropic cost of binding and

improves the overall binding affinity.

Mutations to asparagine appear to have a restricting effect, especially since

reverse mutations caused an increase in flexibility (48G7). Restrictions due to

bulky side chains (Asp95"Trp, 28B4) can also play a role.

Here we focused on rigidification of CDR loops during maturation, however,

other mechanisms for affinity maturations exist; 48G7 appears to mature via an

alternative route and experiments identified others. Sethi et al(Sethi et al., 2006)

found a germline antibody that 1) bound several peptides, but in different

conformations and 2) its maturation involved disruption of binding contacts

except for those involving the target antigen.
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Antibody Germline Structure
PDB code

Mature Structure
PDB code

CDR region
residues

7G12 1NGZ
(L1-110, H1-110)

1NGY
(L1-110, H1-110)

L1: L23-34
L2: L50-56
L3: L88-97
H1: H26–33
H2: H50-58
H3: H99-103

28B4 1FL5
(L1-112, H1-113)

1KEM
(L1-112, H1-117)

L1: L24-40
L2: L54-61
L3: L94-102
H1: H26-35
H2: H52-56
H3: H101-108

AZ28 1D5I
(L1-110, H1-110)

1D5B
(L1-110, H1-110)

L1: L24-34
L2: L50-56
L3: L89-97
H1: H26-35
H2: H52–58
H3: H95-102

48G7 2RCS
(L1-110, H1-110)

1HKL

(L1-110, H1-110)
L1: L24–33
L2: L48-55
L3: L89-97
H1: H26-35
H2: H51-56
H3: 95-103

Table 1. Structural information for simulations setup. PDB structure codes and

specific chain segments used in the simulation for germline and mature

antibodies are listed. In addition, the assignment of CDR residues is explicitly

shown.

101



r

1-4) F.
l

- `--> |- Germline;
-

A. - Germline$ -- \---~~~ tº Mºre $ is \ tº Mature5 \
-

§ \ 7cu ■ l / \ AZ28
* al- \ ch / \! - -# \--~~ | # * / \
5. 4.) Hº- | § tº Hº- y - \º

G | .....---------"º----.... Q /
-#. & H. Z \

7 *H | # Z--> "-- N
O | C 20 F ,” `--—

r ~
l I l I j I I L l l I ! | t I l

Yºs rty- ina, , , ■ us. hive hintº -14 trº live troº riºs trº littºo tirtºa intº titoºk turn tiru
Residue Number Residue Number

xt

sai- A TT2:…I. --~~
-

- AW F Germline! - * N - Germline

s f \ L. Mature s / N ... Mature.— *>#~! / \ 28B4 # f N 48G7
-º- / ºf f ,"- -

co r º / ... ',

# * / \ # " / -
`---,

#2. / *. > # "...”
-

Tº ." Nº. #
O /

..** - O

I ! l I L l I d 1. i - l l I f
thitti hits: hioi nitrº titºry hitº, illery nius trº- irºn stag Irºn hito lupi lutc litty;

Residue Number Residue Number

Figure 1. H3 loop Ca B-factors calculated from molecular dynamics trajectories.

The germline species consistently yields higher, sometimes by a large margin, B

factors than the mature simulation.
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Figure 2. CDR loops for bound and unbound germline and mature antibodies.

The bound germline and mature structures are colored yellow and magenta while

the free germline and mature structures are colored green and cyan, respectively.

It is most clear in the H3 loops that the unbound germline structure (green) is

significantly different than the others.
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Figure 3. Probability density function of distances between residue centroid at

positions 28H and 76H of the germline and mature 7G12 antibody.
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Asn'76H

Figure 4. 7G12 H1 loop flexibility is diminished by Ser76"Asn mutation in

ways not obvious from crystallographic structures. A. H1 loop snapshots from

7G12 germline predecessor antibody simulation. B. H1 loop snapshots from

7G12 mature antibody simulation. C. H1 crystal structures of the 7G12 mature

antibody and its germline predecessor. The crystallographic structures are nearly

identical. D. Asn'76H hydrogen bonds H1 and restricts its motion in the mature

species.
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Figure 5. 7G12 germline H3 loop visits bound and unbound conformations

during simulation. A. H3 loop RMSD from the germline holo structure as a

function of simulation time. B. H3 loop RMSD from the germline apo structure

as a function of simulation time. The dotted line marks a 1.5 RMSD.
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Figure 6. Plots of energy (kcal/mol) versus backbone RMSD for local minima

identified during optimization of the H3 loop in both the apo mature 7G12

antibody (top) and the apo germline 7G12 antibody (bottom.) All samples from

each prediction stage (see Methods) were combined in these plots. RMSD is

measured against all heavy atoms in the loop backbone between the predicted

and native structures with all atoms in the unperturbed chains aligned (excluding

the loop.)
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Trp95H
.

I

Figure 7. Simulation of the H3 loop in the germline antibody (green) explores

conformational spaces occupied by a bulky Trp95H sidechain in the mature

species (green). The latter is the result of a somatic mutation during maturation.

The bulky Trp sidechain restricts the available conformational space of H3.
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Mature AZ28 Germline

Figure 8. Simulation dynamics differences between AZ28 and its germline

predecessor. A. Simulation snapshot showing the hydrogen bond contacts of

Asn24L of the mature AZ28 antibody. Asn24L makes contacts with Asp101H

and His 100aH. B. Simulation snapshot showing the lack of a hydrogen bond

between Ser34L and His100aH in the germline species simulation. These

snapshots are representative of the entire simulation.
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Chapter 4: Competition Between Intramolecular Hydrogen Bonds and Solvation in

Phosphorylated Peptides: Simulations with Explicit and Implicit Solvent

Abstract

In this work we simulate a capped phosphorylated peptide, Ace-Gly-Ser-pSer-Ser-Nme,

using a variety of solvent models, and compare the results to each other and to

experimental observables from an NMR experiment. The overall goal is to compare the

performance of water models (explicit and implicit) in treating the phosphate moiety.

Three explicit water models (TIP3P, TIP4P and SPC/E), the Generalized Born-surface

area (GB/SA) treatment, and a distance dependent dielectric (DDD) (with dielectric

constants of r and 4r) were employed in molecular dynamics simulations. The phosphate

group can have a net charge of -2 (unprotonated) or -1 (singly protonated) near

physiological pH, and we investigated both protonation states. Atomic charges for the

phosphorylated residue were calculated using several methods including high-level

quantum mechanics with approximate treatment of correlation and solvent, and several

charge sets were tested in this analysis. The key conclusion of this study is that the

explicit solvent models and GB/SA implicit solvent model both give good agreement

with experiment given appropriate partial charges, while the DDD simulations do not.

The dynamics are dominated by transitions between a state in which the phosphate group

forms no intramolecular hydrogen bonds, and one in which it forms multiple hydrogen

bonds with backbone NH groups N-terminal to the phosphate group. Thus, the strength

of the P-O/H-N hydrogen bond, which depends on both the partial charges and solvent

model used, is a key parameter controlling the accuracy of the simulations. The singly
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and doubly charged phosphopeptide simulations show similar ensemble averages, with

the overall hydrogen bonding propensity being slightly higher for the -1 species. The

similarity of the strength of hydrogen bonds, despite the change in net charge, is due to

near cancellation between changes in the favorable Coulomb interactions and the free

energy cost of desolvation incurred upon forming a hydrogen bond.

Introduction

Solvation of a phosphorylated species can potentially pose a significant challenge for

current water/solvation models. Since simulation of phospho-proteins is a relatively

unexplored area (compared to biomolecular simulation in general), the adequacy of

current solvation models, for this purpose, is not yet well-established. In this work we

compare the ability of some explicit (TIP3P, TIP4P and SPC/E) and implicit

(Generalized Born-Surface Area and a distance dependent dielectric) models to solvate

the phosphate moiety. In addition, we go beyond simply gauging the quality of results

and seek insight into the reasons behind poor performance. The latter effort led us to

consider hydrogen bonds between the phosphate moiety and backbone amides. As

explained later, we choose to study a relatively small system because 1) NMR

measurements were made on this system and 2) it is computationally tractable and 3) it

isolates the local effects of phosphorylation.

Post-translational phosphorylation serves as a control mechanism in a myriad of cellular

processes including metabolic pathway regulation(Audette et al., 2000), extracellular
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signal transduction(Chen et al., 2001), ion channel regulation(Martens et al., 1999; Patel

& Honore, 2001) and cell cycle progression(Vermeulen et al., 2003) (Feng et al., 1996;

Johnson & Lewis, 2001). The hydroxyl groups of tyrosine, serine and threonine are

targeted for phosphorylation in eukaryotic cells while histidine and aspartic acid are the

most frequent targets in prokaryotes(Johnson & Lewis, 2001; Johnson & O'Reilly, 1996).

The introduction of the phosphate ion, which predominantly carries a negative two

charge at neutral pH, perturbs the electrostatic potential and quite often the conformation

of the modified protein(Johnson & Lewis, 2001). Even in absence of rearrangement, the

change in electric field and the steric hindrance from a phosphate group can have

biologically significant consequences, e.g., promoting or opposing protein-protein

interactions(Audette et al., 2000).

Theoretical studies can in principle be used to 1) gain insight into the physical

phenomena that drive the effects of phosphorylation, and 2) predict the effects of

phosphorylation on proteins where the phosphorylated structure remains unsolved. To

date, there have been relatively few studies of this type, and force field parameters for

phosphorylated residues are not well established. Prior studies using phosphorylated

residues have obtained partial charges and other parameters from nucleotide parameter

sets(Smart & McCammon, 1999; Stultz et al., 2002), quantum mechanical

calculations(Feng et al., 1996) or alternative methods(Shen et al., 2001).

Performing molecular mechanics simulations of phosphorylated species requires careful

consideration of solvation effects. The standard 20 amino acids have net charges
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between +1 and –1. The effect of the solvent on the behavior of the -2 phosphate group

is likely to be different than for the standard amino acid side chains, and is likely to pose

a stringent test for both explicit and implicit solvent models. The role of the solvent in

stabilizing or destabilizing polar interactions, especially hydrogen bonding and salt

bridges, will be critical in establishing the correct balance between potential interactions.

There is no guarantee that the appropriate balance will be achieved with currently

employed water models, either explicit or implicit.

Some recent simulations of nucleic acids provide reason for optimism about the ability of

widely used solvent models to treat highly charged systems. Molecular dynamics

simulations of the dodecamer d(CGCGAATTCGCG) have explored several issues in

nucleic acid dynamics(Beveridge & McConnell, 2000; Norberg & Nilsson, 2002).

Success in reproducing the 2D NMR specturum(Arthanari et al., 2003) of this oligomer

suggests that fixed charge water models are able to adequately reproduce the behavior of

the solvent. Hydration around nucleic acids is more ordered than around

proteins(Makarov et al., 2002) and, hence, can potentially pose a challenge for implicit

solvent treatments. However, using the Generalized Born model, Tsui et al(Tsui & Case,

2000a) were able to mimic the results obtained in explicit water simulations. With a

slight modification of atomic radii of hydrogens bonded to oxygen or nitrogen, their

implicit solvent results compares well with an explicit solvent simulation of

d(CCAACGTTGG).
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Previously, Brownian dynamics simulations were performed on the phosphorylated

peptide, Ace-Gly-Ser-pSer-Ser-Nme, but only a distance dependent dielectric (DDD) was

used to incorporate solvent effects(Shen et al., 2001). Both the phosphorylated and

unphosphorylated peptides were simulated and 'JNH-ch constants for all residues in both

molecules were calculated. The calculated coupling constants agreed with experiment,

within 0.1 Hz, for the unphosphorylated peptide simulations, but the agreement was

poorer for the phosphorylated peptide. The use of a distance dependent dielectric was

cited as a possible reason for disagreement with experiment.

In this work, we follow the same approach to compare several explicit (TIP3P(Jorgensen

et al., 1983), SPC/E(Berendsen et al., 1987) and TIP4P(Jorgensen et al., 1983)) and

implicit water models (Generalized Born(Dominy & Brooks, 1999; Tsui & Case, 2000b)

and DDD). The simulations focus mainly on the unprotonated state (-2) but the

protonated species (-1) is also considered. As in the previous study, we employ 'JNH-ch

coupling constants for validation. Simulation results of Ace-Gly-Ser-pSer-Ser-Nme,

using the models mentioned are compared to each other and to experimental data(Tholey

et al., 1999). While NMR measurements exist for phosphotyrosine and

phosphothreonine in the same short peptide model, we focused on the phosphoserine

peptide because ensemble averages converge more rapidly. The 'JNH-ch ensemble

average as a function of simulation time was monitored to make this determination.

The DDD treatment yielded poor results before, yet we test it here because 1) comparison

with the previous work(Shen et al., 2001) is desirable, 2) it is commonly used in docking
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studies (particularly relevant to docking into active sites with a phosphate moiety or

nucleic acids) and 3) we go beyond noting a poor performance and gain insight into the

failings of the model. Because force field partial charges for phosphorylated residues are

not well established and can be expected to strongly impact the accuracy of the

simulations, we also invest considerable effort in determining appropriate phosphate

moiety partial charges by a combination of quantum chemistry and empirical testing.

Note that we expect the phosphate group partial charges to drive the phosphorylation

effects; this is discussed further in the results section. The key conclusion is that, given

appropriate partial charges, the explicit solvent models and, perhaps more surprisingly,

GB/SA implicit solvent model both produce good agreement with experiment. The DDD

simulations do not give good agreement, over the range of partial charges we tested.

Finally, observations made during the analysis of the MD trajectories motivated an

analysis of the phosphate moiety hydrogen bonding propensities. We sought to

understand the balance of hydrogen bonding of the phosphate group to backbone amide

and hydroxyl hydrogens. Backbone amides and hydroxyl hydrogens are two of the three

most common hydrogen bond partners of phosphorylated amino acids in the protein data

bank (PDB)(Berman et al., 2000). Both of these groups are present in the

phosphopeptide under study. In our simulations, the dynamics are dominated by two

states: one in which the phosphate forms no intramolecular hydrogen bonds, and one in

which it forms multiple hydrogen bonds with backbone NH groups N-terminal to the

phosphate group. The strength of the P-O/H-N hydrogen bond, which depends on both

the partial charges and solvent model, is the critical determinant of agreement with
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experiment. The singly and doubly charged phosphopeptide simulations show similar

ensemble averages, with the overall hydrogen bonding propensity being slightly higher

for the -l species.

Methods

Molecular Dynamics Simulations

All molecular dynamics simulations in this study were performed using the Amber 7

package(D.A. Case, 2002) with the parm29 parameter file. The peptides were capped

with an acetyl group (Ace) at the N-terminus and N-methyl amine (Nme) at the C

terminus, i.e., the sequence was Ace-Gly-Ser-pSer-Ser-Nme. Atom types for the

phosphate moiety are already present in the parameter file (for the nucleic acids),

therefore no new atom types were needed. The ff09 force field was the best all-around

biomolecular force field in the Amber 7 simulation package, however, it overstabilizes

helical conformations(Okur et al., 2003). This may affect the coupling constant

calculations by imposing a 1-4 contact, however, this was not a prevalent conformation in

the simulation trajectories. In all simulations, a weak-coupling algorithm(Berendsen et

al., 1984) kept the temperature and/or pressure constant. The temperature coupling

constant, tcoup, for all production phase runs was 2 ps. During equilibration of the

implicit solvent simulations, the temperature coupling constant was 1 ps. It was

temperature coupling constant 2 ps during equilibration runs that included explicit
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solvent. For all constant pressure simulations, the pressure coupling constant was 2 ps as

well. Trajectory snapshots were saved every picosecond.

Explicit solvent simulations were prepared by immersing the solute in a rectangular water

box with a 10 A clearance from the box walls in every axis. In the case of TIP3P, a pre

equilibrated water box (WATBOX216) was employed as solvent. For TIP4P and SPC/E,

the solvent molecules were placed in the box using the “solvatebox” command in teap

(Amber module for system preparation). The initial box volume was 49968 A'(37.40 A

x 42.62 A x 31.35 A) for all explicit solvent simulations. Sodium counterions were used

to maintain electroneutrality. Periodic boundary conditions were imposed, and

electrostatics were treated using the particle mesh Ewald method(Darden et al., 1993;

Essmann et al., 1995; Toukmaji et al., 2000). Default parameters, in Amber 7, for the

particle mesh Ewald method were used. The charge grid dimensions were 36, 40 and 27

A and the nonbonded interation cut-off in real space was 8 A. A fourth order B-spline

interpolation was employed. Before equilibration, 2000 steps of steepest descent

minimization helped relax the system. The equilibration protocol was as follows: the

system was heated to 300 K in 25 ps; a constant pressure and temperature equilibration

phase of 100 ps followed; subsequently, the system underwent a further NVT

equilibration period of 50 ps. Following these equilibration phases, a production run of at

least 15 ns was performed. The production run was performed at constant temperature

and volume; the integration step was 1 fs and bonds involving hydrogen were constrained

using the SHAKE algorithm(J.-P. Ryckart, 1977).
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Implicit solvent simulations were performed using the Generalized Born-Surface Area

(GB/SA) model using the radii by Tsui et al(Tsui & Case, 2000b). GB/SA simulations

were equilibrated for 100 ps. The system was heated to 300K over 5000, 1 fs, time-steps

and maintained at that temperature for the remainder of the equilibration. A production

run of 40 ns followed. The integration time step was 1 fs. The simulations were run at a

constant temperature of 300K.

The simulations using distance-dependent dielectric (DDD) were performed using a

replica exchange method(Mitsutake et al., 2003a, 2003b; Sugita & Okamoto, 1999). Due

to the poor shielding of electrostatics in this type of simulation and the large charge on

the phosphate ion, strong salt bridges form, and thermal energy (at 300K) is insufficient

to break them on the timescale of the simulation. As a result, the trajectories can become

trapped in local minima at room temperature. The replica exchange method was used to

sample more efficiently the conformational space of the peptide. In this method, N

replicas of the system at N temperatures are run simultaneously. Periodically, every 50

ps in this study, an attempt to exchange the Cartesian coordinates among the replicas

occurs, based on the Metropolis criterion(Sugita & Okamoto, 1999). If an exchange

attempt is successful, the momenta are rescaled such that:

T
(3) p new = +p oldTu

The temperatures employed in this study were 300, 321, 348, 380, 418, 465,524, 600 and

680 K. These were chosen to maintain a ~50% exchange probability between replicas.
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An equilibration run of 200 ps in which no exchanges were attempted was followed by 1

ns of exchange equilibration, and finally a 20 ns production run. Only the replica at 300

K was employed for the trajectory analysis.

Statistical analysis of the trajectories was performed following the procedure outlined by

Janke(Janke, 2002). The analysis consists of calculating an autocorrelation function for

the observable, determining a correlation time from the correlation function, and then

using the correlation time to estimate the error of the mean. The correlation function

calculated is given by

(OO.)-(O)
(4) C(t) = (o)-(oy

where O represents the value of the observable O at the "trajectory time point. The

integrated autocorrelation time is

(5) t = } + ■ co■ -4)

where N is the total number of points in the trajectory. As t gets larger, the statistical

sampling for the calculation of C(t) deteriorates and the sum diverges. In order to avoid

this problem, the sum in equation 5 is truncated once N-6t. Finally, error of the

estimator of the expectation (mean) of the observable O is
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where of represents the variance of the observable O and N equals 6t.

uantum Chemistry/Partial Charge Calculations

All quantum mechanical calculations were performed on ethyl phosphate with the Jaguar

package(Jaguar 5.0, 1991-2003) (Schrödinger, Inc.). The initial geometry employed had

a P-O bond distance of 1.55 Å for the ester bond and 1.46 Å for the acidic oxygens.

Geometry optimization of the phosphate ion was carried out at the HF/6-31G** level,

incorporating a condensed phase environment via a self-consistent reaction field (SCRF)

algorithm(Marten et al., 1996; Tannor et al., 1994). Single point calculations were also

performed at the LMP2/cc-pvtz(-f) level, in vacuo and with a SCRF.

Calculation of Experimental Observables

NMR vicinal coupling constants were calculated using the Karplus equation(Karplus,

1959)

(7) J(6) - Acos’(6)+ B cos(6)+C

with A = 6.51, B = -1.3 and C = 1.5(Vuister & Bax, 1993). The angle 6 is the dihedral

angle between the amide hydrogen and the alpha carbon hydrogen in the backbone of
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each residue. The average coupling constant over the trajectory was calculated for

comparison with experiment. We note that coupling constant data for glycine is usually

not included in the fitting of the Karplus equation parameters.

Hydrogen bonds were identified using a distance cutoff of 2.5 Å between a polar

hydrogen and the hydrogen bond acceptor, and no angular cutoff. The hydrogen bond

probabilities were calculated by counting the number of trajectory frames where a given

hydrogen bond was formed and dividing by the total number of frames.

Strictly speaking, a dipole moment is defined for a neutral species by the following

expression,

(8) i-XR6,
t

where u is the dipole moment, R, is the position vector for the "atomic charge and

ö, is the charge at that position. In order to capture the changes in both, the phosphorous

and acidic oxygen atoms, we choose to define the bond dipole moment of the phosphate

P-O bond by equation 8 and set the origin at the bond midpoint. The total bond length

used was 1.46 Å, and hence the value of R in equation 8 was 0.73 A.

Clustering of Traiectories
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To gain insight into the structural states visited during the simulations, the trajectories

were clustered using the MMTSB tools set(Michael Feig, 2001). The metric for

hierarchical clustering was the RMSD between heavy atoms (-jclust option in cluster.pl.).

This software tool chooses an optimized number of clusters based on the criterion by Xu

and co-workders(Xu et al., 1993). In this approach a function, E, of the minimum of

between-cluster distances (MBCD) and sum-of-square error (SSE) is evaluated at every

hierarchical level; the optimal level corresponds to a maximum in E. E is defined by:

;Y M(i)-M(i+1)
(9) E(i) = WJ(i)-WJ(i+1)

where ‘i’ is the partition level, M(i) and J(i) corresponds to the MBCD and SSE at the

partition level ‘i’, correspondingly. The MBCD, denoted M(i), is defined by:

(10) M(i) = min[d,] isj i,j = 1,2,...,n

Where dº is defined by:

(11) dº = |*-m-n j,k=1,2,.....i
-

n) + n,

where nj and my denote the number of members in cluster jand its mean, respectively.

SSE (J), denoted J(i), is defined by:
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(12) J(i) = X'.
where

(13) J.-X |x-m,

In equation 13 mk corresponds to the mean of cluster k, as previously defined.

A total of 2000-4000 structures were subjected to clustering from each trajectory

(Snapshots were taken at 10 ps intervals). A representative structure for each cluster was

identified as the member closest to the cluster centroid.

GB/SA single point energy calculations

To study the energetics of hydrogen bonding between a phosphate group and an amide

hydrogen, single point energy calculations, using GB/SA as a solvent model, were

performed. The calculations were carried out along a collinear P-O – H-N coordinate,

and used ethylphosphate and N-methyl ethanamide (CH3C(=O)NHCH3) as a model

system for the hydrogen bonding. In the case where the protonated phosphate moiety

was examined, ethyl biphosphate was employed. The energy calculations were

performed at 0.125 Å intervals for O—H distances between 1.5 and 11 Å.

Results and Discussion
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In this section, results from simulations of the capped Gly-Ser-pSer-Ser peptide using

several solvent models are compared with each other and with experimental backbone

3 JNH-CH coupling constants. We first consider the choice of atomic charges of the

phosphate ion and their effect on the computed observable. This analysis is performed

using the TIP3P water model, the Generalized Born–Surface Area (GB/SA) implicit

solvent model, and a distance dependent dielectric treatment. We focus primarily on the

-2 pSer residue, but present some results for the protonated, -1 pSer peptide for

comparison.

Calculation of atomic charges for phosphate ion

We have invested considerable effort in determining atomic partial charges for the

phosphate ion, because interactions with the surrounding solvent and intramolecular

hydrogen bonding partners depend sensitively on the particular charges assigned. Here

we carry out quantum mechanical calculations at Several levels of theory, ranging from

semi-empirical to ab initio calculations with approximate treatment of configuration

interaction and solvent effects. We provide recommendations for partial charges that we

believe to be most accurate. We also aim to deconvolute, insofar as possible, the effects

of different solvent models from the choice of partial charges. Therefore, in much of the

rest of the paper, we employ several different sets of partial charges for molecular

dynamics simulations.

130



It is important to note that the electrostatic potential fitting and subsequent test of several

charge sets is a means to evaluate the different solvation models. This, however, is not a

full parameterization effort of the phosphoserine residue. Modifying a single parameter

at a time, allows us to correlate the parameter to changes in the calculated observable.

Many methodologies have been described for computing atomic charges for use in a

force field description of a chemical group. The ff09AMBER force field atomic charges

were originally computed using a restricted electrostatic potential (RESP)(Cieplak et al.,

1995) fitting protocol, with HF/6-31G* quantum calculations. This level of theory

overestimates the dipole moment relative to experimental gas phase results, but

frequently provides a good estimate of dipole moments in water. Quantum calculations

that use larger basis sets and implicitly account for a condensed phase environment are

now computationally tractable, and we have chosen to explore the charges produced by

some of these more sophisticated ab initio calculations as well.

Atomic charges were obtained by electrostatic potential fitting(Chirlian & Francl, 1987;

Woods et al., 1990). The structure of the ethyl phosphate ion was taken from the work of

Feng et al(Feng et al., 1996). We performed calculations using this geometry as well as a

minimized structure, using the 6-31G** basis set and a self consistent reaction field

(SCRF)(Marten et al., 1996; Tannor et al., 1994) representation of aqueous solvation.

The highest level of theory used for obtaining partial charges was cc-pVTZ(-

f)/LMP2/SCRF (i.e., correlation treated at the level of “local” Moller-Plesset second

order perturbation theory(Saebo & Pulay, 1993), and an SCRF treatment of solvent
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effects). For comparison, we calculated a set of charges using the semi-empirical AM1

BCC method as implemented in the Antechamber module in AMBER 7. Furthermore,

we also compared our results with the charges from the OPLS force field(Jorgensen &

Tiradorives, 1988). The results are shown in Table 1.

The results in Table 1 vary significantly and are dependent on the geometry and

methodology. However, several conclusions can be drawn. First the OPLS force field

parameters are clearly outliers and should not be used. Second, the ester oxygen charge

is consistent over the set, —0.66+0.03. Third, contrary to expectations, the polarization of

the P-O bond is not larger for the 6-31G* results than for results with larger basis sets.

Finally, among the different calculations, the relative variation in bond dipole is greater

than the relative variation of charges on the individual atoms, especially the phosphorus.

Specifically, the larger partial charges for the P on the non-optimized structure seem to

partially compensate for the longer bond length. We use the bond-dipole as the x-axis in

Figure 1, which summarizes many of the key results discussed below.

Since the different methods in Table 1 yield disparate results for the phosphate atomic

charges, we tested the effect of varying the atomic charges on our simulation results. In

an effort to explore systematically the range of possible atomic partial charges, we chose

not to test every charge set in Table 1, but to test a representative group of charge sets

that spans these results, as shown in Table 2. While not all of these charges were

obtained from the quantum mechanical calculations, they are quite reasonable. One of

the charge sets was directly taken from Table 1 (AM1-BCC charges) while another one is
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nearly equal to the results from the HF/cc-pvtz(-f)/LMP2/SCRF calculation (phosphorous

charge of 1.495 versus 1.50). The charge set with a phosphorous charge of 1.8 has the

same dipole moment that the OPLS charges while the charge set with a phosphorous

charge of 1.65 serves as an intermediate between the latter two. Once the phosphorous

and acidic oxygen charges were chosen, the ester oxygen was adjusted slightly to

maintain an integral charge value for the entire molecule. We note that the ester oxygen

only rarely forms any hydrogen bonds in any of our simulations; we do not consider it

further.

Dependence of results on atomic charges and solvent model

Molecular dynamics simulations were performed utilizing all charge sets listed in Table 2

with the TIP3P explicit water model, the Generalized Born-Surface Area (GB/SA)

implicit solvent model, and distance dependent dielectric (with e=r and e=4r). Figure la

and 1d show the calculated coupling constants as a function of P-O bond dipole moment.

The Gly1' and Ser4 coupling constants are insensitive to the charge set and are not

shown. For the central two residues, Ser2 and pSer3, the results are dramatically

sensitive to the charges employed; however, the changes are systematic. The results are

'The coupling constant for Gly1 is consistently miscalculated for all the water models.
This may reflect an inherent problem in the force field, problems in the interpretation of
the experimental data, or the use of Karplus equation constants not explicitly
parameterized for Gly.
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reassuring in the sense that agreement with experiment, within statistical error, is

attainable in the range of charges tested for both explicit solvent and GB/SA.

Comparing the solvation models, it is clear that the distance dependent dielectric (DDD)

simulation results are consistently inferior to those of the explicit solvent and GB/SA

simulations (Figures 1a and 1d). Since this is true for all charge sets, it is not due to a

poor electrostatic representation of the phosphate ion and indicates a fundamental

deficiency of DDD for treating highly charged species. We note that our results, using an

e=r distance dependent dielectric, differ from previous results obtained using Brownian

dynamics(Shen et al., 2001). The differences probably arises from a combination of the

following three factors: 1) we did not include a non-polar surface area term in the DDD

simulations, 2) the Gasteiger charges employed in the previous study are outside the

range studied here (much smaller), and 3) the force fields used are different (AMBER vs.

CHARMM). While the specific results are not comparable, both studies agree the DDD

treatment yields poor results for the phosphopeptide with the -2 charge (much more so in

our results than in the previous study). The inadequate performance of the DDD models

is not surprising, given the very crude treatment of solvation afforded by DDD models.

More surprising is the similarity of the results obtained from simulations using TIP3P

water and using the GB/SA model. While the absolute coupling constants do not agree

precisely, the trend as a function of P-O bond dipole is strikingly similar. This result

suggests that a version of GB/SA may be appropriate for the simulation of

phosphorylated systems, which would permit greatly improved computational efficiency
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in the case of large proteins. The best overall agreement with experiment, for TIP3P and

GB/SA, occurs with P-O bond dipole of roughly 8.2—8.8. The partial charges obtained

with HF/6-31G* lie in this range, and the higher level HF/cc-pvtz(-f)/LMP2/SCRF partial

charges lie at the upper end of this range. On this basis, we suggest that the following

partial charges for the -2 pSer/pThr group should be appropriate for most molecular

mechanics simulations: +1.45 to +1.50 for the P, -0.99 to -1.05 for the acidic oxygens,

and approximately -0.66 for the ester oxygen.

While the focus of this work is a phosphorylated peptide, we performed simulations of

the corresponding unphosphorylated peptide. The results were deposited in the

supplementary materials. Also in the supplementary materials, are typical graphs of the

backbone dihedral angle 6 (the relevant angle for the coupling constant calculation) as a

function of time. The latter are included to show that sampling was adequate.

In the remainder of this section, we explore the ensembles obtained by the various

simulations in more detail, emphasizing the strengths of internal hydrogen bonds, which

provide a compact explanation for all of the key trends we observe.

Intramolecular hydrogen bonding interactions

Upon visualizing the simulations(Humphrey et al., 1996), we observed that the phosphate

group hydrogen bonds most commonly to the backbone amide NH groups. This type of

interaction has biological relevance. In a survey of the Protein Data Bank (PDB), we
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have found that backbone amides are the second most frequent hydrogen bond partner,

after Arg, for the phosphate groups in phosphorylated proteins (results not shown). In

one common motif, the phosphate group forms multiple hydrogen bonds with amide

groups at the N-terminus of a helix. To explore the role of hydrogen bonding in the

dynamics, we calculated the probability of observing phosphate group hydrogen bonds in

the MD trajectory. Table 4 shows the probability, for all models tested, of hydrogen

bond formation between the phosphate ion and each of the backbone amide groups.

In general, explicit solvent simulations generate significantly lower (below 10%)

hydrogen bond probabilities than the implicit treatments (mostly above 50%). The

distance dependent dielectric model, E=r, grossly overestimates the hydrogen bonding

probability (essentially 100%). The other DDD treatment, e=4r, suffers from the same

problem, however, it is slightly less pronounced.

Since intramolecular hydrogen bonding appears to play an important role in these

simulations, we studied the hydrogen bonding probability as a function of the P-O dipole

(Figures 1b and 1e). The results in Figures 1b and le may appear counterintuitive since

they show that a larger dipole moment reduces the hydrogen bond probability to an amide

NH group. However, this simply indicates that a larger dipole is more stable when

solvated in bulk water than when forming a hydrogen bond to a backbone amide. A well

organized hydration shell and bulk dielectric response stabilize the ion in water. Since

hydrogen bonding disrupts both of these, it is not unreasonable that increasing the P-O

dipole may destabilize hydrogen bonds. The experimental observable seems to be
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dominated by the equilibrium between hydrogen bonding of the phosphate ion to water

versus hydrogen bonding to amide hydrogens. As the equilibrium shifts, so does the

corresponding coupling constant (Figures lc and 1f). Hydrogen bonding imposes a

geometrical constraint on the backbone angular distribution, which is reflected in the

backbone 'JNich coupling constants. Therefore, there is a clear physical connection

between the hydrogen bond probability and the angular distribution for the coupling

constant calculation.

We also investigated the correlation of hydrogen bond formation between the phosphate

group and the various backbone amide groups, and found evidence of a cooperative

transition involving the formation of multiple hydrogen bonds. Specifically, we

calculated the shortest distance between the acidic phosphate oxygens and backbone

amides of residues 1 and 2. These distances are plotted against each other in Figure 2.

For clarity, only every tenth trajectory frame was used for this analysis. The red dots

represent the subset of the structures in which the phosphate group formed a hydrogen

bond to the third backbone amide. Similar graphs were obtained for both GB/SA and

explicit solvent and we show only the GB/SA results. It is clear that phosphate hydrogen

bonding to the amide group on pSer3 strongly increases the probability of hydrogen

bonding to both the first and second residue. The hydrogen bonding probability for

amides 1 and 2 once the hydrogen bond to amide 3 is formed ranges from 50-70% (much

above the product of individual probabilities). The probability of forming a hydrogen

bond increases by up to 10-fold when a hydrogen bond to an adjacent NH group is already

present (data not shown). Thus, we find that the dynamics can be understood, to a first
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approximation, in terms of a cooperative transition between a state in which the

phosphate group is well solvated, and one in which it forms multiple (generally 3)

hydrogen bonds with amide groups N-terminal to it. This is not surprising since the

entropic cost of hydrogen bonding to an adjacent amide hydrogen is effectively lowered.

Clustering of the GB/SA simulation trajectories yielded two clusters. The representative

structures (Figure 3a) are consistent with a cooperative transition; the representative

structure of cluster 1 shows 3 hydrogen bonds between the phosphate moiety and

backbone amides, while the representative structure for cluster 2 shows none. None of

the clustering results for the GB/SA and the TIP3P simulation trajectories produced

representative structures involving only 1 or 2 hydrogen bonds to backbone amides; Such

intermediate states would be necessary if no cooperativity existed. The relative

population between cluster 1 and cluster 2 was approximately 3:1.

The other possible hydrogen bond donors on the phosphopeptide, beyond the backbone

NH groups, are the hydroxyl groups on the Ser2 and Ser4 side chains. However, for both

the explicit solvent and GB/SA simulations, the hydrogen bonding probability to the OH

groups was less than one percent. This result is somewhat surprising, given that hydroxyl

groups are almost as common hydrogen bonding partners to phosphate ions as amide

hydrogens, in our survey of phosphorylated proteins in the PDB. The minor role for the

hydroxyl hydrogens in our simulations may be due to the structure of this peptide. Six

covalent bonds separate any of the phosphate acidic oxygens and the amide hydrogen on

pSer3; the closest hydroxyl hydrogen is ten bonds away. Thus, there is likely a higher
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entropic loss incurred upon forming a hydrogen bond between the phosphate ion and a

hydroxyl hydrogen than the corresponding hydrogen bond with a backbone amide

hydrogen. This argument also suggests that hydrogen bonds involving the phosphate and

hydroxyl groups would not show cooperativity as discussed above for the amide NH

groups; in fact, our data indicates that the hydrogen bonds involving the hydroxyl groups

form independently. These entropy arguments, combined with the 5:2 amide to hydroxyl

hydrogen ratio, provide a qualitative rationalization for the low hydrogen bonding

probability to the hydroxyl groups in the GB/SA simulations.

In contrast to the explicit solvent and GB/SA results, hydrogen bonding between the

phosphate ion and hydroxyl groups is observed in the simulations using a distance

dependent dielectric. The percentage is almost invariant as a function of charge and is

nearly 100% for e=r, and 25-30% for e=4r. The simulations using a e=r distance

dependent dielectric were typified by the conformation displayed in Figure 4. The

peptide is arranged so that every possible hydrogen bond donor interacts with the

phosphate group.

Comparison of explicit solvent models

We have performed simulations of the -2 phosphopeptide with 3 explicit water models—

TIP3P, TIP4P and SPC/E—for a single set of partial charges (those with the phosphorous

charge of 1.5). The calculated coupling constants are displayed in Table 3. The TIP4P
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and SPC/E water models generate results that are quantitatively but not qualitatively

different than the TIP3P results. In particular, both TIP4P and SPC/E show less

hydrogen bonding to the amide NH groups than TIP3P. These results seem reasonable

based on known properties of these solvent models. In particular, TIP4P water is known

to be more structured than TIP3P(Guillot, 2002; Jorgensen et al., 1983). A recent

study(Mark & Nilsson, 2001) has also shown SPC/E water to be more structured than

TIP3P. We hypothesize that a larger degree of structure around the phosphate ion

increases the desolvation cost for the formation of a hydrogen bond.

Despite these minor differences among the results, all of the explicit solvent models

evaluated here appear to be largely successful in modeling the condensed phase

environment for a phosphorylated species. This is encouraging since these models lack

polarizability.

Simulations of the protonated phosphopeptide

In addition to the doubly negative phosphopeptide, we also simulate the singly charged (-

1), protonated species. Except for the extra proton and the partial charges on the

phosphate group, the phosphopeptide parameters were unchanged. For computational

efficiency, this system was only simulated using the GB/SA model. To obtain atomic

charges, methyl biphosphate was subjected to: 1) a gas phase HF/6-31G** geometry

optimization followed by 2) a single point electronic structure calculation

140



HF/LMP2/SCRF/cc-pvtz(-f) and finally 3) electrostatic potential fitting. The partial

charges for the phosphorous atom and the acidic oxygens were 1.5 and —0.98

respectively, while the hydroxyl oxygen and hydrogen were —0.7 and 0.5 respectively.

These results seem reasonable since the phosphorous and acidic oxygen partial charges

are similar to the set with a bond dipole moment of 8.75 D in Table 2. The coupling

constant results are reported in Table 5, where they are compared with the experimental

results at low pH. The results are in agreement with experiment to within 0.4 Hz (except

for Gly1, as discussed above). Moreover, the relatively large shifts in the coupling

constants for pSer3 and Ser4 between the singly and doubly charged species are

quantitatively reproduced by the simulations, to within 0.2 Hz.

The shifts in the coupling constants with protonation state of the phosphate appear to be

caused by quantitative but not qualitative differences in hydrogen bonding propensity.

Table 6 shows that the overall P-O/N-H hydrogen bonding probability is slightly larger

(up to 12% higher) for the -1 species, consistent with our expectation that a lower overall

charge reduces the free energy cost of hydrogen bonding to backbone amides. Unlike the

unprotonated phosphate, where all 3 acidic oxygens are equivalent, the hydrogen bonding

propensities of the 3 oxygens of the protonated phosphate group are dramatically

different. The protonated oxygen, which can acts as either a donor or acceptor, shows

little hydrogen bonding; the asymmetry in hydrogen bonding of the other two oxygens is

likely due to their stereochemical difference. The unprotonated oxygens compensate for

the limited hydrogen bonding of the protonated oxygen and produce a small net increase

in the overall hydrogen bonding probability.
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The change in overall hydrogen bonding propensity and other ensemble properties is

remarkably small between the two protonation states, given the large change in the partial

charges on the phosphate group. In Figure 5, we explore the strengths of the P-O/N-H

hydrogen bonds in more detail by plotting the energy of interaction (force field + GB/SA)

for a model system consisting of ethylphosphate and N-methyl ethanamide. Specifically,

we performed single point calculations for a series of conformations in which the

molecules were constrained such that the P-O and H-N vectors were collinear, for both

unprotonated (-2) and singly protonated (-1) phosphate. (For the -l species, the P-O

group involved in forming the hydrogen bond is unprotonated.) For both protonation

states, the hydrogen bond is weakly favorable, but the singly protonated phosphate has a

somewhat (~2 kT) deeper well. The individual components of the energy are plotted in

Figure 6. The stronger electrostatic interaction of the -2 species is slightly exceeded by

the larger desolvation penalty yielding the small overall energy difference.

The ensemble of structures for the singly charged phosphopeptide, like the doubly

charged phosphopeptide, shows an equilibrium between two states (no hydrogen bonds

and multiple backbone hydrogen bonds), as shown in Figure 3. The representative

structures from the two clusters are very similar for the two charge states. As in the case

of the doubly charged phosphopeptide, only 2 clusters were found.
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Conclusion

In this work we have simulated a capped phosphorylated peptide, Ace-Gly-Ser-pSer-Ser

Nme, using a variety of solvent models, and compared the results to each other and to

experimental observables from an NMR experiment. The major conclusions are

1. The quality of agreement to experiment depends sensitively on both the choice of

partial charges for the phosphorylated side chain and the solvent model.

The explicit solvent models (TIP3P, TIP4P, SPC/E) and a Generalized Born implicit

solvent model (GB/SA(Tsui & Case, 2000a)) both gave good agreement with

experiment given appropriate partial charges. The “optimal” partial charges are

slightly different for each solvent model. The apparently good performance of the

GB/SA solvent model is encouraging, because it provides a much more efficient

means of simulating phosphorylated proteins than the explicit solvent models.

Nonetheless, we do not wish to overstate the significance of this result; more work is

clearly needed. First, in other work, one of us (MPJ) has elucidated specific

deficiencies of implicit solvent models related to the inability to represent first-shell

solvation effects(Yu et al., 2004), and these same deficiencies likely apply to

phosphorylated residues as well. Second, in simulations on the unphosphorylated

Gly-Ser-Ser-Ser peptide, we have found that explicit solvent simulations give

significantly better agreement with experiment than GB/SA (results in supplementary

materials).

Distance dependent dielectric solvent models were unable to properly simulate the

condensed phase environment for the phosphorylated peptide, over the range of
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partial charges tested here, due to gross overstabilization of hydrogen bonds involving

the phosphate group.

. We observed a strong correlation between the calculated NMR coupling constants

and the propensity to form hydrogen bonds between the phosphate group and

backbone amide NH groups. This is reasonable, because hydrogen bonding imposes

a restraint on the molecule that it would otherwise not have. To a reasonable

approximation, the simulations with explicit solvent and GB/SA show transitions

between two states of the phosphopeptide: one in which the phosphate forms no

hydrogen bonds to the peptide and is thus fully solvated, and one in which it forms

multiple hydrogen bonds to NH groups, especially the NH group on the

phosphorylated residue itself and the residues N-terminal to it. Hydrogen bonds to

the OH groups on the Ser side chains appear to be unimportant in these simulations.

. The strengths of hydrogen bonds involving the phosphate group involve a subtle

trade-off between the direct Coulomb’s law electrostatic attraction and the free

energy cost of partially desolvating the phosphate group. Although this conclusion is

not new or unique to this study, this trade-off is particularly striking in the case of the

phosphate group with the -2 charge. The inability of the distance dependem dielectric

simulations to reproduce the experimental results is simply due to the lack of any

treatment of desolvation. The strengths of the P-O/N-H hydrogen bonds decrease

with increasing dipole on the P-O bond, because the desolvation penalty increases

more rapidly than the favorable dipole/dipole interaction.

. The ensemble averages obtained for the phosphopeptide in the -1 (singly protonated

phosphate) and -2 (fully deprotonated phosphate) charge states are surprisingly
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similar. The results with the singly protonated phosphate show slightly higher

propensities for hydrogen bonding to the backbone amide NH groups. Upon

increasing the charge on the phosphate from -1 to -2, the strength of the electrostatic

attraction of course increases significantly, but this effect is very nearly cancelled by

the increase in the free energy cost of desolvation upon forming a hydrogen bond.

This interpretation is slightly complicated by the fact that the protonated oxygen on

the -1 phosphate can act as either a donor or acceptor.

In this work, we have examined only a subset of intriguing questions regarding solvation

of the 2-phosphorylated residues. In ongoing work, we are performing additional

explicit solvent simulations to study in more detail the solvent structures around the

phosphate group in solution and when it forms hydrogen bonds, the possible role of

dielectric saturation(Jayaram et al., 1989), and the role of solvent polarizability; these

results will be reported elsewhere.
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Geometry | Method Phosphorous || Acidic Ester P-O bond
Optimized Charge Oxygen | Oxygen dipole

charge Charge | (D)
NO AM1-BCC 1.371 -0.969 -0.655 8.193
Yes HF/6-31 G* 1.449 -0.992 -0.665 8.546

Yes HF/cc-pvtz(-f) | 1.568 -1.025 -0.669 9,079
Yes HF/cc-pvtz(- 1.495 - 1.050 -0.657

f)/LMP2/SCRF 8.911
No HF/6-31 G* 1.767 -1.077 -0.686 9.957

No HF/cc-pvtz(-f) | 1.778 -1.082 -0.687 10.013
No HF/cc-pvtz(- 1.719 -1.114 -0.687

f)/LMP2/SCRF 9.919
N/A OPLS 1.920 -1.120 –0.700 10.644

Table 1. Several charge sets proposed for a phosphate group. Abbreviations are defined

in the text.
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Phosphorous Acidic P-O bond
Charge Oxygen dipole (D)

Charge
1.371 –0.969 8. 193

1.400 -0.900 8.053

1.500 -1.000 8.753

1.650 -1.100 9.628

1.800 -1.200 10.504

Table 2. Charge sets used in this study. All charges are in a.u.
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TIP3P TIP4P SPC/E GB/SA DDD (e=r) DDD Experiment
Gly1 4.47 (0.03) 4.71 (0.04) 4.55 (0.03) 4.12 (0.03) 2.95 (0.01) 3.92 (0.02) 5.63 (0.12)
Ser2 6.28 (0.23) 5.99 (0.18) 6.35 (0.22) 6.62 (0.11) 9.04 (0.10) 8.33 (0.01) 6.65 (0.12)

pSer3 6.24 (0.23) 6.51 (0.28) 6.02 (0.20) 5.73 (0.10) 9.58 (0.40) 8.68 (0.02) 5.48 (0.12)
Será 7.72 (0.10) 7.72 (0.06) 7.84 (0.07) 7.37 (0.03) 9.26 (0.04) 8.05 (0.01) 6.93 (0.12)

Table 3. Comparison of calculated J coupling constants with the experimental result.

The error of the mean for each result is in parenthesis. For the experimental

measurements, the reported error is also in parenthesis.
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TIP3P TIP4P SPC/E GB/SA DDD (e=r) DDD

Gly1 6.4% (3%) 0.0% (0%) 0.7% (0.7%) 56.3% (4%) 100.0% (0.01%) 80.2%

Ser2 7.6% (3%) 0.2% (0.2%) 1.5% (0.7%) 50.8% (4%) 99.9% (0.02%) 78.5%

pSer3 8.4% (3%) 0.5% (0.3%) 2.6% (0.9%) 60.4% (4%) 100.0% (0.0005%) 95.6%

Será 0.1% (0.05%) 0.0% (0%) 0.1% (0.05%) 7.8% (2%) 100.0% (0.01%) 81.0%

Table 4. Phosphate group hydrogen bonding probability to peptide backbone amides.

Each backbone amide is labeled by its residue name and number. The standard error of

the mean is in parenthesis.
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Doubly charged phosphate Singly charged phosphate * -

GB/SA Experiment GB/SA Experiment * º
Gly1 4.12 (0.03) | 5.63 (0.12) 3.89 (0.04) 5.66 (0.11)

-

Ser2 6.62 (0.11) 6.65 (0.12) 6.89 (0.34) 6.52 (0.11)
pSer3 5.73 (0.10) || 5.48 (0.12) 6.69 (0.14) 6.52 (0.11)
Ser4 7.37 (0.03) | 6.93 (0.12) 7.70 (0.03) 7.47 (0.11)

Table 5. Effect of phosphate ionization state on calculated coupling constants.

Experimental results are listed for comparison. In parenthesis is standard deviation of

calculated results or reported experimental error, in the case of the experimental result.
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Doubly charged phosphate Singly charged phosphate
Overall O1 O2 O3 Overall OH | O2 || O3

Gly1
56.3%|19.0%|18.5%|18.9%
(4%) I (3%) I (3%) | (4%)

57.8%
(7%) |0.0% 44.0%|13.0%

(0%) | (8%) || (5%)

Ser2
50.8% |17.0%|17.3%|16.9%
(4%) I (3%) I (3%) (4%)

5. %|0.0% (40.0%|11.1%(6%) | (0%) (7%)|(4%)

Ser3
60.4%|20.3%|19.9%20.7%
(4%), I (3%) I (3%) I (4%)

7.3%|182%|47.2%|14.2%
(8%) (1%)|(8%)|(5%)

Será
7.8% 2.3% | 1.6% 3.8% 17.1%|3.1% 15.8%| 4.0%
(2%) (0.6%)(0.5%) (1%) (4%) (0.6%) (4%) (0.2%)

Table 6. Effect of phosphate ionization state on hydrogen bonding probability. The

hydrogen bonding probabilities were computed for each phosphor-oxygen. In the case of

the singly charged phosphate, the hydroxyl oxygen is labeled OH. All calculations

performed using GB/SA solvent. The standard error of the mean is in parenthesis.

151 | -
2



-

|A B C
9 # _____*-* 9

- + --> a-TIPAP
s – Tipsp 3. - GB 8 -**

º - chºsa É. Int º

E – ". #oslº *-* 1/4+ : __-----"

; : º
---------

| Expºmºu■ #03+\------ : 'i ºr .… - r z ~ 2- *-TIPAP

~ 6 T-I- É. -
º

- - GBrSA--- -
lir

5 º # *
- 5 -* ** 14: .

-: -: º -- º - Experiment
* ------____

4- T t 0- I I F= l 4
s 8.5 9 9.5 10 10.5 11 8 8.5 9 9.5 10 10.5 11

P-Q Dipole (Debye, P-O dipole (Debye)

10 l º 10-*---
- -D 2. E F

9. - + 0. -

--- # | -* TIP3P .*
8 c º * GB/SA -

■ 5. -- lºr E. 8
- * || || ----- + 1/41 -

= 7 _- #0s. F - F--
# _- --" É T º # 7 * -

~ 6 ºf _º - Ilºr - | * -* y Tº
--~~i=- Gºsa 3. ` *~ º

ºf º- . E ~
º --- --- |

5 f bºrdinal 3. \ .
--------

*~~~
------------ ----*-----~~~

-- 5
4+

- T 0 T- T I -

s 9.5 iu 10.5 11 8 8.5 9. 9.5 10 10.5 11 l
P-O Dipole (Debye) P-O dipole (Debye) Hydrogenbond probability

Figure 1. Phosphopeptide backbone coupling constants depend on degree of hydrogen

bonding between the phosphate group and backbone amide NH groups. The P-O dipole

modulates hydrogen bonding allowing a clear isolation of its effects. (A) Dependence of

calculated J coupling constant on P-O dipole moment for Ser2. (B) Dependence of

phosphate hydrogen bonding to Ser2 backbone amide on the P-O dipole moment. The

larger dipole is better stabilized by solvent rather than by hydrogen bonding. (C)

Calculated Ser2 J coupling constant as a function of hydrogen bonding probability to its

backbone amide. The dependence observed in this graph links hydrogen bonding to

changes in backbone conformational population differences. (D)-(F) are the

corresponding graphs for pSer3.
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Figure 2. Cooperativity of formation of hydrogen bonds to the backbone NH groups.

The axes represent the shortest distance between the phosphate acidic oxygens and the

NH groups on Gly1 (x) and Ser2 (y). The points in black were calculated for all

structures clustered (every 10 ps). The points in red correspond to a subset of the

structures in which the phosphate group forms a hydrogen bond to the pSer3 amide

group. The data shown are from the GB/SA simulation. The results for explicit solvent

(TIP3P) are similar, but the density of points in the lower left corner is smaller.
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Figure 3. Representative structures from GB/SA simulation of doubly charged (A) and

singly charged (B) phosphopeptides. The backbone and phosphoserine side chain is

shown in sticks. A.1 and B.1 are similar conformations in which the phosphate forms

multiple hydrogen bonds with backbone amide NH groups N-terminal to it. A.2 and B.2

are conformations in which the phosphate does not form internal hydrogen bonds and is

well solvated.
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Figure 4. Snapshot from simulation of the phosphopeptide using a distance dependent

dielectric (e =r). The phosphate groups forms hydrogen bonds with all possible hydrogen

bond donors.
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Chapter 5: Polarizability contributes to salt-bridge partner preferences of

phosphorylated residues

Introduction

In chapter 4, I considered hydrogen bonding of phosphorylated residues in the

context of local contacts. Here, I examine interactions involving residues

typically distant, in sequence, from the phosphorylated residues, that form after

phosphorylation and which involve a conformational change. These contacts are

important since their accompanying conformational changes are important for the

biological function of the proteins in question(Johnson & Lewis, 2001).

Arginine and lysine are the most common salt-bridge partners for phosphorylated

residues(Johnson & Lewis, 2001) and a preliminary survey of salt-bridge contacts

in the Brookhaven protein databank (PDB)(Berman et al., 2000) shows a

preference for arginine over lysine. The reason for the preference is unclear, but

it would be helpful to determine if the survey reflects a stronger interaction

energy between the phosphate moiety and arginine than with lysine. If this is the

case, this information would be helpful in protein engineering efforts to mimic

structural control by phosphorylation. While arginine and lysine bear the same

overall charge, it is distributed markedly differently; thus one could imagine the
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guanidino group's delocalized charge may be more malleable and could more

easily polarize in response to the phosphate moiety. To test this hypothesis ab

initio calculations, including a self-consistent reaction field, followed by

electrostatic potential charge fitting, were performed; shifts in fitted charges were

used as an indication of charge rearrangement. Since the singly charged (-1),

biphosphate, species may also be present at physiological pH, it was also included

in the analysis.

Occasionally, it is possible to mimic phosphorylation by mutation of the target

residue to aspartic or glutamic acid; why this only happens part of the time is

unkown. One possibility is that the smaller charge of the carboxylate ion makes

less stable salt bridges relative to the corresponding phosphate interactions. This

hypothesis is tested here by carrying out the same type of ab initio calculations on

an aspartic acid analog.

In terms of electron density distributions, the case of phosphor-aspartate is

particular because of the possible conjugation with the carbonyl group. This case

was also examined to capture any differences in polarizability due to its unique

Structure.

Methods
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Survey of phosphorylated residues salt-bridge partners in the PDB

Salt bridge interactions, involving phospohrylated residues, were surveyed from

structures available in the PDB. The PDB codes for the structures employed in

this survey are:

14ps 1b.4g 1b.4i 1bkx 1bx6 14ps 1b.4g 1b4i 1bkx 1bx61c8! 1f.341f8a 1fa91fu0

1gkk 1h4x ih4z 1hjk li■ w 1jdy 1k35 1kdx 1khx 1kkm 11Wn 11 woldia 1djb 1stc

1vkliygp2pil 1cm.8 le9h 1f.5d 1fot 1■ q1 196g 1gxc li&g ligh lib1 1j41 1j4p 1j4q

1j4x 1k2n 1k3n 1k3q 2erk 1a()71a1b lalc 1a1e 1a21 1a81 lads laot laou lbfs

1bg1 1bm2 1bmb 1crx 1csy 1csz 1.d4w 1een leec 1 flw 1fbv 1■ hr 1fmk 1 fpr 1fu5

1fyr 191f 1g1g 1glh 1gag 1.h9o lirs 1j4k 1jyq 1jyr 1k2m 1ka61kc2 1ksw 1m0V

1pic 19pa 1pty 14cf 14g1 14pc.1qpd lapj 1shc 1tce 1tze 1zfp 2cbl 2hck 2nmb

2src 1vr2 1phz 4icq 14mp 1.d5w 1djm 1d4w 1.f4v 1dc83ezb 1fuo

The structures were found by searching for structures that had the residues TPO,

SEP or PTR. Only one protein structure per sequence was allowed. Then, salt

bridges to arginine, lysine and histidine side chains were investigated, where the

heavy atom distance cut-off was 4.5 A. For reference, the number of these

residues within 15 A was also reported. A python script was used to search

through the structures, identify the phosphorylated residues, measure their

distance to potential salt-bridge partners and report the findings.
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The molecules and interactions considered º }
*~~

º ■ º ■ º
The following model molecules, which correspond to the side-chain fragments of I º |-
their target residues, were used: phospho-acetate (singly and doubly charged),

methyl phosphate, methylbiphosphate, acetate, 1-aminobutane, and 1

guanidopropane. Their geometries were obtained from the OPLS (Jorgensen &

Tiradorives, 1988) force field.

Potential of mean force (PMF) calculations were performed between pairs of

these molecules in collinear and planar geometries. A collinear geometry refers

to a salt bridge where the chemical bonds involving the electron donor and

acceptor align (see figure 1). A planar approach involves two simultaneous

hydrogen bonds where the two pairs of atoms and their chemical bonds lie in the

same plane. A typical planar approach occurs between two hydrogens from a

guanidino group and two acidic oxygens of a phosphate moiety (see figure 1).

Similar geometries can be constructed for an amine by using two of its hydrogens

to interact with two acidic oxygens.
* * * . . . .Cº.; • *

º
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QM/SCRF calculations * -
%. ■ º

TC) º
Quantum mechanical calculations coupled to a self consistent reaction field º

-

sº “r--

(SCRF)(Marten et al., 1996) were performed using the Jaguar software package > Lº
c-,

(Jaguar 5.0, 1991-2003). For both, planar and collinear approaches, point energy - * *
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calculations were carried out at 0.25 A intervals between 3.0 and 12.25 A. The

atoms used to measure these distances are listed in Table 2, while the atom names

for each molecule studied are evident from figure 2. The Hartree-Fock

calculations used a cc-pVTZ(-f) basis set and a subsequent electron correlation

correction was included. The electron correlation correction was performed at the

level of the local Moller-Plesset second order perturbation theory (LMP2)(Saebo

& Pulay, 1993). After an initial gas-phase calculation, atomic charges were

derived via ESP fitting(Cieplak et al., 1995). The reaction field response for the

latter charges was evaluated using a Poisson-Boltzmann solver and surface

charges were derived. The quantum calculation was then repeated with the

surface charges from the reaction field and new atomic charges were calculated.

This procedure was iterated until the overall energy converged.

For each pair, the interaction energy was defined as the difference between the

minimum in the PMF and the energy at 12.25 A. Charges at these two distances

were also compared in search of evidence of polarizability.

Results and discussion

PDB survey

Table 1 shows the number of salt-bridge contacts found between phoshorylated

residues and arginine, lysine and histidine side-chains. The data shows a clear

preference for arginine (60 vs 13) while their relative abundance is far less
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disparate (150 vs 100). This observation motivated the following calculations

that capture the differences in polarizability between the arginine and lysine side

chains.

Arginine versus lysine polarizability

The differences in interaction energy between hydrogen bonding involving lysine

versus arginine depend on the geometry of approach (Table 3). In the linear

approach, lysine has the strongest interactions by ~1-2 kcal/mol in most cases.

That trend is reversed in the co-planar case, where arginine has interactions 4-6

kcal/mol more stable. This behavior is reflected in the charge shift data. In the

collinear geometry data, the amino nitrogen charge shifts by ~0.1e or causes

polarization of its interaction partner (Table 4). In contrast, that charge shift is

absent in the collinear arginine case where only one of the arginine nitrogens is

involved in the interaction and little polarization is propagated through the rest of

the guanido group.

In the coplanar case, the guanido group is better able to react to the phosphate

moiety. This is most clear in the doubly charged species where both hydrogens

and nitrogens involved experience a charge shift of roughtly 0.1e and 0.18e

respectively. In addition, the central carbon also experiences a shift of ~ 0.07e.

Lysine’s positive charge appears too densely focused on its single amino group

and can only accommodate changes in the amine nitrogen (~0.1e) and the

adjacent carbon (~ -0.08e). Given that there are 2 pairs of nitrogens and

Aº
*---* * * --- *Cº.,
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hydrogens from the guanido group involved in the co-planar interaction, the shift

in charge density is clearly superior to the corresponding shift in the lysine amino

group. Thus, polarizability appears to play a role in the preference of

phosphorylated residues for arginine over lysine. Determining the exact

contribution will require further research.

Effects of the phosphate protonation state

The energy of interaction data show a pronounced effect due to the protonation

state of the phosphate moiety. The doubly charged phosphate ion interaction

energies appear 2-4 kcal/mol more stable than those of its protonated counterpart.

Polarization, assessed by induced charge differences at the energy minimum, only

reflects this effect for the phospho-aspartate analog; interactions of the

phosphoserine show large charge differences (~0.1e or greater) for both

protonation states. Thus, it is unlikely polarization plays a role in this effect.

Oddly, induced charge shifts sometimes seemed inconsistent. For example, the

phosphate phosphorous atom in the (serine)biphoshpate-arginine collinear

interaction undergoes a 0.17e shift, however, in the phosphoserine-arginine

collinear approach the shift is significantly smaller (0.02e). The induced charge

differences of the arginine involved seem to complement these changes, that is,

they seem to compensate by being smaller in the latter case than in the former

(0.10e vs 0.15e for the guanido nitrogen involved). This may reflect limitations

= 'º'
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of the fitting algorithm rather than qualitative differences in the nature of the

electron densities fitted.

When can a carboxylate ion substitute for phosphorylation??

Some experiments verify a phosphorylation site by introducing a carboxylic acid

group at the suspect residue. This approach does not always work; the present

calculations show the carboxylic acid group interactions are 2-4 kcal/mol less

stable than those of the doubly charged phosphate. However, the preference for

the phosphate group is diminished (below 1 kcal/mol) in the protonated species

and, in some geometries, even reversed (co-planar approach with arginine). The

data suggests a carboxylic acid can mimic the energetics of the biphosphate ion.

This could be useful in determining a priori, by testing for activity of the

phosphorylated protein at lower pH, if mutation to glutamic or aspartic acid will

rescue activity. Alternatively, this test may be used post facto to better interpret a

null result upon mutation to glutamatic or aspartic acid. Clearly more calculations

will be needed to establish the validity of such a “test”.

Conclusion

The quantum calculations performed here explore the role of polarizability in Salt

bridge interactions with phosphorylated residues. They suggest that: 1) the

guanido side chain is better able to adjust its electron density, in the interactions
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examined, than a lysine amino group, 2) the doubly charged phosphate species

makes stronger hydrogen bonds than its protonated counterpart and 3) a carboxyl L

group appears to have interaction stabilities very close to those of biphosphate | *. |-
species. The latter has applications in the interpretation of mutation experiments Sº º
seeking to identify phosphorylation sites. Polarizability, assessed by shifts in C ■

fitted ESP charges, clearly plays an important role in the interactions of ºsa º

phosphorylated residues.
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B

Figure 1. Geometries of interaction for ab initio calculations. Figure A displays

the “linear” approach, while B displays the “planar” approach.
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a) EACT

HA1 HB1 OG2
| | |

HA2—CA – CB – CG – OG1
| |

HA3 HB2

b) Methyl Phosphate

HD2 OP1
| |

HD1 — CD – OD1 – P – OP2
| |
HD3 OP3

c) Methyl biphosphate

HD2 OP1—HO1
| |

HD1 — CD – OD1 – P – OP2
| |
HD3 OP3

d) Acetophosphate

HB1 O1P
| |

HB1—CB – CG – OD1 – P – O2P
| | |

HB3 OD2 O3P
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e) Aceto-biphosphate

HB1 O1P
| |

HB1–CB – CG – OD1 – P – O2P
| | |

HB3 OD2 O3P – HO1

f) 1-amino butane

HZ3 HE1 HD.1 HG1 HB1
| | | | |

HZ2 – NZ – CE – CD – CG – CB – HB2
| | | | |

HZ1 HE2 HD2 HG2 HB3

g) 1-guanido propane

H12
|

H11—NH1 HE HD.1 HG1 HB1
| | | | |

CZ – NE – CD – CG – CB – HB2
| | | |

H22—NH2 HD2 HG2 HB3
|

H21

ºvº
Figure 2. Connectivity diagrams for all of the molecules modeled. Atom names, Cº.

used in the quantum calculation are explicitly listed in this figure. Note that bond

order is not included in this figure.
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Salt bridges, threshold 4.5 A Number found within 15 A

Arg Lys His Arg Lys His
pTyr 27 3 0 64 47 0
pSer 14 4 7 46 35 27
pThr 19 0 50 23 0
Total 60 13 7 160 105 27

Table 1. Phosphorylated residue salt bridge count results from survey of PDB

StructureS.
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Molecules involved Geometry Atoms used to measure
distances

Glu – Lys Collinear CG (Glu), NZ (Lys)
Glu – Lys Planar CG (Glu), NZ (Lys)
Glu – Arg Collinear CG (Glu), NH2 (Arg)
Glu – Arg Planar CG (Glu), CZ (Arg)
pAsp – Lys Collinear P (pAsp), NZ (Lys)
pAsp – Lys Planar P (pasp), NZ (Lys)
pAsp – Arg Collinear P (pAsp), NH2 (Arg)
pAsp – Arg Planar P (pasp), CZ (Arg)
pSer – Lys Collinear P_(pser), NZ (Lys)
pSer–Lys Planar P (pSer), NZ (Lys)
pSer -- Arg Collinear P (pSer), NH2. (Arg)
pSer – Arg Planar P (pSer), CZ (Arg)

Table 2. List of atoms, for each interaction considered, used to measure the

distances in the PMF calculation. Note that the same atoms were used regardless

of protonation state.

Aºvº.
º, : * * * *cº
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Lys Arg Lys Arg

Collinear Collinear Collinear Collinear

Glu -4.5 -3.7 -4.3 -10.2

pSer (-1) -4.4 -4.1 –2.5 -8.1

pSer (-2) -8.6 -6.8 -8.8 -13.6

pAsp (-1) || -3.8 -3.5 -2.4 -8.2

pAsp (-2) -7.8 -6.4 -8.5 -12.6

Table 3. Salt-bridge interaction energies in kcal/mol
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Phosphoaspartate (-1) --Lysine (Colinear)
P OD1 O1P

PMF mimimum 1.6045 -0.5523 -1.0027
12.25 A dist 1.492 -0.5396 -0.954
Difference 0.1125 -0.01.27 -0.0487

Phosphoaspartate (-1) --Lysine (Planar)
P OD1 O1P

PMF mimimum 1.4999 -0.5521 -0.9409
12.25 A dist 1.4909 -0.5393 -0.9521
Difference 0.009 -0.0128 0.01 12

Phospohaspartate (-1) -- Arginine (Colinear)
CB HB1 HB2
-0.4232 0.1618 0.1641
-0.4133 0.159 0.163
-0.0099 0.0028 0.0011

PMF mimimum
12.25 A dist
Difference

Phospohaspartate (-1) -- Arginine (Planar)
P OD1 O1P

PMF mimimum 1.4642 -0.5346 -0.9378
12.25 A dist 1.4497 -0.5383 -0.9312
Difference 0.0145 0.0037 -0.0066

Phosphoaspartate (-2)--Lysine (Colinear)
P OD1 O1P

PMF mimimum 1.4854 -0.592 -0.9647
12.25 A dist 1.4643 -0.5861 -1.0153
Difference 0.0211 -0.0059 0.0506

Phosphoaspartate (-2)--Lysine (Planar)
P OD1 O1P

PMF mimimum 1.4208 -0.5666 -0.974
12.25 A dist 1.4618 -0.5876 -1.0135
Difference -0.041 0.021 0.0395

Phosphoaspartate (-2) -- Arginine (Colinear)
P OD1 O1P

PMF mimimum 1.5024 -0.5938 -1.0025
12.25 A dist 1,4686 -0.5863 -1.0167
Difference 0.0338 -0.0075 0.0142

Phosphoaspartate (-2) -- Arginine (Planar)
CB HB1 HB2

PMF mimimum -0.466 0.1687 0.1789
12.25 A dist -0.4607 0.1714 0.1731
Difference -0.0053 -0.0027 0.0058

O2P
-0.97.18
-0.9503
-0.0215

O2P
-0.9343
-0.9506
0.0163

HB3
0.1217
0.1172
0.0045

O2P
-0.9043

–0.927
0.0227

O2P
-1.0142
-1.0199
0.0057

O2P
-0.9676
-1.0188
0.0512

O2P
-1.0232
-1.0214
-0.0018

HB3
0.0956
0.0896

0.006

O3P
-0.8014
–0.7862
-0.0152

O3P
-0.7887

-0.786
-0.0027

CG
0.8447
0.8564

-0.0117

O3P
–0.7583
-0.7765
0.0182

O3P
-1.0137
-1.0195
0.0058

O3P
-1.0092
-1.0193
0.01.01

O3P
-1.0232
-1.0211
-0.0021

CG
0.932

0.9386
-0.0066

HO1
0.5114

0.509
0.0024

HO1
0.5013
0.5085

-0.0072

OD1
-0.5406
-0.5388
-0.0018

HO1
0.4913
0.4986

–0.0073

CG
0.9496
0.9366

0.013

CG
0.9205
0.9374

-0.0169

CG
0.9432
0.9371
0.0061

OD1
-0.5845
-0.5883
0.0038

A Tº
* * * *- :Cº. ºf -*.
-- -

*** *
a

…'"
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Phosphoaspartate (-1) --Lysine (Colinear)
CG OD2 CB

PMF mimimum 0.8615 -0.6675 -0.4324
12.25 A dist 0.871 -0.6728 -0.4301
Difference -0.0095 0.0053 -0.0023

Phosphoaspartate (-1) --Lysine (Planar)
CG OD2 CB

PMF mimimum 0.8796 -0.6756 -0.4361
12.25 A dist 0.8701 -0.6721 -0.4327
Difference 0.0095 -0.0035 -0.0034

Phospohaspartate (-1) -- Arginine (Colinear)
OD2 P O1P

PMF mimimum -0.6519 1.5258 -0.9614
12.25 A dist -0.6589 1.4522 -0.9321
Difference 0.007 0.0736 -0.0293

Phospohaspartate (-1) -- Arginine (Planar)
CG OD2 CB

PMF mimimum 0.8537 -0.6498 -0.43
12.25 A dist 0.8557 -0.658 -0.4156
Difference –0.002 0.0082 -0.0144

Phosphoaspartate (-2) --Lysine (Colinear)
OD2 CB HB1

PMF mimimum -0.734 -0.4835 0.1776
12.25 A dist -0.7342 -0.4608 0.1722
Difference 0.0002 -0.0227 0.0054

Phosphoaspartate (-2)--Lysine (Planar)
OD2 CB HB1

PMF mimimum -0.7273 -0.447 0.1567
12.25 A dist -0.7335 -0.4627 0.172
Difference 0.0062 0.0157 -0.0153

Phosphoaspartate (-2) -- Arginine (Colinear)
OD2 CB HB1

PMF mimimum -0.7313 -0.4862 0.1794
12.25 A dist -0.7352 -0.4578 0.1713
Difference 0.0039 -0.0284 0.0081

Phosphoaspartate (-2) -- Arginine (Planar)
OD2 P O1P

PMF mimimum -0.7265 1.4708 -1.0152
12.25 A dist -0.7347 1.4658 -1.0153
Difference 0.0082 0.005 1E-04

HB1
0.1668
0.1657
0.0011

HB1
0.1609
0.1662

-0.0053

O2P
-0.9408
-0.9275
-0.01.33

HB1
0.1606
0.1596

0.001

HB2
0.1772
0.1721
0.0051

HB2
0.1753

0.174
0.0013

HB2
0.1792
0.1712

0.008

O2P
-1.0029
-1.0198
0.0169

HB2
0.1667
0.1691

-0.0024

HB2
0.1693
0.1694
-1E-04

O3P
-0.7822
-0.7767
-0.0055

HB2
0.1656
0.1631
0.0025

HB3
0.0987
0.0908
0.0079

HB3
0.093

0.0905
0.0025

HB3
0.0975
0.0895

0.008

O3P
-1.004

-1.0204
0.0164

HB3
0.1289
0.1258
0.0031

HB3
0.1287
0.1271
0.0016

HO1
0.4997
0.4982
0.0015

HB3
0.1278
0.1184
0.0094

NZ
-0.3843
-0.4787
0.0944

NZ
-0.3209
-0.4783
0.1574

NH2
-1,067

-1.0379
-0.0291

CB
-0.3278
-0.3305
0.0027
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Phosphoaspartate (-1) --Lysine (Colinear)
NZ HZ1 HZ2

PMF mimimum -0.4884 0.4313 0.3668
12.25 A dist -0.4781 0.3921 0.3761
Difference -0.01.03 0.0392 -0.0093

Phosphoaspartate (-1) --Lysine (Planar)
NZ HZ1 HZ2

PMF mimimum -0.4993 0.3805 0.3693
12.25 A dist -0.4785 0.3908 0.3755
Difference –0.0208 -0.01.03 -0.0062

Phospohaspartate (-1) -- Arginine (Colinear)
CB HB1 HB2

PMF mimimum -0.3436 0.0912 0.069
12.25 A dist -0.3343 0.09 0.0675
Difference -0.0093 0.0012 0.0015

Phospohaspartate (-1) -- Arginine (Planar)
NH2 H21 H22

PMF mimimum -1.1549 0.57 0.5505
12.25 A dist -1.0344 0.5529 0.4995
Difference -0.1205 0.0171 0.051

Phosphoaspartate (-2) --Lysine (Colinear)
HZ1 HZ2 HZ3

PMF mimimum 0.3656 0.3186 0.3189
12.25 A dist 0.3909 0.3753 0.3757
Difference -0.0253 -0.0567 -0.0568

Phosphoaspartate (-2) --Lysine (Planar)
HZ1 HZ2 HZ3

PMF mimimum 0.3437 0.331 0.3109
12.25 A dist 0.3901 0.3746 0.3761
Difference –0.0464 -0.0436 -0.0652

Phosphoaspartate (-2) -- Arginine (Colinear)
H21 H22 CZ

PMF mimimum 0.5341 0.5443 0.9788
12.25 A dist 0.5437 0.5124 0.9848
Difference -0.0096 0.0319 -0.006

Phosphoaspartate (-2) -- Arginine (Planar)
HB1 HB2 HB3

PMF mimimum 0.0863 0.0638 0.0665
12.25 A dist 0.0902 0.0657 0.0681
Difference -0.0039 -0.0019 -0.0016

HZ3
0.3583

0.376
-0.0177

HZ3
0.3981
0.3774
0.0207

HB3
0.0705

0.069
0.0015

CZ
1.0505
0.9844
0.0661

CE
0.2848

0.248
0.0368

CE
0.1765
0.2496

–0.0731

NH1
-1. 1063
-1.1027
-0.0036

CG
0.2264
0.2169
0.0095

CE
0.2488
0.2421
0.0067

CE
0.2208
0.2431

–0.0223

CG
0.2185
0.2144
0.0041

NH1
-1.2879
-1.0995
-0.1884

HE1
0.0035
0.0265
–0.023

HE1
0.0275
0.0261
0.0014

H11
0.5331
0.5331

HG1
–0.0428
–0.0403
-0.0025

HE1
0.0078
0.0269

-0.0191

HE1
0.0291

0.027
0.0021

HG1
-0.035

-0.0364
0.0014

H11
0.5574
0.5383
0.0191

HE2
0.0039
0.0263

–0.0224

HE2
0.0249

0.026
-0.0011

H12
0.5233
0.5391

-0.0158

HG2
-0.0156
-0.01.26

-0.003
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Phosphoaspartate (-1) --Lysine (Colinear)
HE2 CD HD1

PMF mimimum 0.0237 -0.0859 0.0343
12.25 A dist 0.0271 -0.1127 0.043
Difference -0.0034 0.0268 -0.0087

Phosphoaspartate (-1) --Lysine (Planar)
HE2 CD HD1

PMF mimimum 0.0435 -0.1132 0.0442
12.25 A dist 0.0275 -0.1165 0.0436
Difference 0.016 0.0033 0.0006

Phospohaspartate (-1) -- Arginine (Colinear)
HG2 CD HD 1

PMF mimimum -0.0151 0.2418 0.0718
12.25 A dist -0.013 0.2273 0.0781
Difference -0.0021 0.0145 -0.0063

Phospohaspartate (-1) -- Arginine (Planar)
H12 NE HE

PMF mimimum 0.6723 -0.8354 0.4782
12.25 A dist 0.5356 -0.836 0.4855
Difference 0.1367 0.0006 -0.0073

Phosphoaspartate (-2) --Lysine (Colinear)
CD HD1 HD2
-0.1432 0.0391 0.039
-0.1166 0.0435 0.0434
-0.0266 -0.0044 -0.0044

PMF mimimum
12.25 A dist
Difference

Phosphoaspartate (-2) --Lysine (Planar)
CD HD1 HD2
-0.1232 0.0443 0.0438
-0.1187 0.0433 0.0448
-0.0045 0.001 -0.001

PMF mimimum
12.25 A dist
Difference

Phosphoaspartate (-2) -- Arginine (Colinear)
NE HE CD

PMF mimimum -0.8425 0.485 0.2268
12.25 A dist -0.8433 0.4906 0.2292
Difference 0.0008 -0.0056 -0.0024

Phosphoaspartate (-2) -- Arginine (Planar)
CD HD1 HD2

PMF mimimum 0.1913 0.0803 0.0237
12.25 A dist 0.2139 0.0814 0.023
Difference –0.0226 -0.0011 0.0007

HD2
0.0337
0.0426

-0.0089

HD2
0.0512
0.0443
0.0069

HD2
0.0173
0.0181

-0.0008

CD
0.1804
0.2126

-0.0322

CG
0.2306
0.2071
0.0235

CG
0.2229
0.2076
0.0153

HD1
0.0741
0.0769

-0.0028

NE
–0.8574
-0.8398
-0.0176

CG
0.2043
0.2086

-0.0043

CG
0.1936
0.2078

-0.0142

NE
-0.8616
-0.8429
-0.0187

HD1
0.0856

0.082
0.0036

HG1
-0.0395

-0.032
-0.0075

HG1
-0.0339
-0.0319

-0.002

HD2
0.0175
0.0175

HE
0.4795
0.4866

-0.0071

HG1
-0.0298
-0.0323
0.0025

HG1
–0.0251
-0.0316
0.0065

HE
0.4904
0.4907

-0.0003

HD2
0.0251

0.023
0.0021

HG2
-0.0398
-0.0322
-0.0076

HG2
-0.033

-0.0325
-0.0005

CG
0.2227
0.2151
0.0076

CZ
1,0822
0.9871
0.0951

* Lº --

“I■
~,

cº /.
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Phosphoaspartate (-1) --Lysine (Colinear)
HG2 CB HB1

PMF mimimum -0.0344 -0.2505 0.0604
12.25 A dist -0.0325 -0.2419 0.0585
Difference -0.0019 -0.0086 0.0019

Phosphoaspartate (-1) --Lysine (Planar)
HG2 CB HB1

PMF mimimum -0.0295 -0.2429 0.0605
12.25 A dist -0.032 -0.2443 0.0596
Difference 0.0025 0.0014 0.0009

Phospohaspartate (-1) -- Arginine (Colinear)
CZ NH1 H11

PMF mimimum 0.9953 -1.1037 0.5322
12.25 A dist 0.9865 -1.1045 0.5336
Difference 0.0088 0.0008 -0.0014

Phospohaspartate (-1) -- Arginine (Planar)
CG HG1 HG2

PMF mimimum 0.2212 -0.0403 -0.0128
12.25 A dist 0.2144 -0.0387 -0.01.16
Difference 0.0068 -0.0016 -0.0012

Phosphoaspartate (-2) --Lysine (Colinear)
CB HB1 HB2

PMF mimimum -0.2403 0.0542 0.051
12.25 A dist -0.2398 0.0584 0.0519
Difference -0.0005 -0.0042 -0.0009

Phosphoaspartate (-2) --Lysine (Planar)
CB HB1 HB2

PMF mimimum -0.2648 0.0615 0.0563
12.25 A dist -0.2402 0.0587 0.0521
Difference -0.0246 0.0028 0.0042

Phosphoaspartate (-2) -- Arginine (Colinear)
HG1 HG2 CB

PMF mimimum -0.0376 -0.0169 -0.3375
12.25 A dist -0.0369 -0.01.33 -0.3358
Difference -0.0007 -0.0036 -0.0017

Phosphoaspartate (-2) -- Arginine (Planar)
NH1 H11 H12

PMF mimimum -1.318 0.551 0.695
12.25 A dist -1.1008 0.5357 0.5378
Difference -0.2172 0.0153 0.1572

HB2
0.0544
0.0524

0.002

HB2
0.0547
0.0533
0.0014

H12
0.5232
0.5396

-0.0164

CB
-0.3313
-0.3343

0.003

HB3
0.051

0.0519
-0.0009

HB3
0.0577
0.0521
0.0056

HB1
0.0897
0.0907
-0.001

NH2
-1.2075

-1.032
–0.1755

HB3
0.0532
0.0524
0.0008

HB3
0.0518

0.053
-0.0012

NH2
-1.0747
-1.0398
-0.0349

HB1
0.0879

0.091
-0.0031

HB2
0.0672
0.0678

-0.0006

H21
0.5653

0.549
0.0163

H21
0.5298
0.5442

-0.0144

HB2
0.0663
0.0672

-0.0009

HB3
0.0694
0.0694

H22
0.6106

0.501
0.1096
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Acetate --Lysine (Colinear)
NZ HZ1 HZ2

PMF mimimum -0.5558 0.4883 0.3699
12.25 A dist -0.4849 0.3952 0.3779
Difference –0.0709 0.0931 -0.008

Acetate-Lysine (Planar)
CG OD1 OD2

PMF mimimum 0.9 -0.9494 -0.8591
12.25 A dist 0.84.33 –0.9311 -0.9131
Difference 0.0567 -0.0183 0.054

Acetate--Arginine (Colinear)
H21 H22 NH2

PMF mimimum 0.5327 0.5764 -1.0895
12.25 A dist 0.5577 0.5054 -1.0504
Difference -0.025 0.071 -0.0391

Acetate -- Arginine (Planar)
CG OD1 OD2

PMF mimimum 0.8614 -0.9689 -0.8848
12.25 A dist 0.8064 -0.9265 -0.8854
Difference 0.055 -0.0424 0.0006

Phosphoserine(-1) -- Lysine (Colinear)
P OD1 OP1

PMF mimimum 1.6254 -0.5565 -1.0742
12.25 A dist 1.4531 -0.556 -0.9661
Difference 0.1723 -0.0005 –0.1081

Phosphoserine (-1) --Lysine (Planar)
OD1 OP1

PMF mimimum 1.4437 -0.56 -0.945.1
12.25 A dist 1.4541 -0.5567 -0.9655
Difference -0.01.04 -0.0033 0.0204

Phosphoserine (-1) --Arginine (Colinear)
P OD1 OP1

PMF mimimum 1.535 -0.5421 -1.0.177
12.25 A dist 1.4209 -0.5468 -0.9458
Difference 0.1141 0.0047 -0.0719

Phosphoserine (-1) -- Arginine (Planar)
P OD1 OP1

PMF mimimum 1.4067 -0.5306 -0.9537
12.25 A dist 1.4.184 -0.5465 -0.945.1
Difference -0.0117 0.0159 -0.0086

HZ3
0.3807
0.3778
0.0029

CB
-0.0015
0.1484

-0.1499

CZ
1.0135
0.9916
0.0219

CB
0.1305

0.179
-0.0485

OP2
-0.9826
-0.9525
-0.0301

OP2
–0.9154
-0.9521
0.0367

OP2
-0.9497
–0.9331
-0.0166

OP2
-0.8774
–0.9316
0.0542

CE
0.2314
0.2468

-0.0154

HB1
-0.0048
-0.0509
0.0461

H11
0.5325
0.5369

–0.0044

HB1
-0.0297
-0.0595
0.0298

OP3
–0.785

–0.7466
-0.0384

OP3
–0.7481
–0.7472
-0.0009

OP3
-0.7626
–0.7411
-0.0215

OP3
–0.7412
–0.7415
0.0003

HE1
0.0268
0.0235
0.0033

HB2
0.0069

-0.0365
0.0434

H12
0.5305

0.542
-0.01.15

HB2
–0.0289
-0.0459

0.017

HO1
0.4922

0.479
0.01.32

HO1
0.4726
0.4788

-0.0062

HO1
0.4743
0.4673

0.007

HO1
0.4764

0.468
0.0084

*

*A.Y. vº

> *** ****-- *** * * * *
-
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Acetate --Lysine (Colinear)
HE2 CD HD1

PMF mimimum 0.0015 -0.0247 0.0204
12.25 A dist 0.0252 –0.1024 0.0379
Difference –0.0237 0.0777 -0.0175

Acetate-Lysine (Planar)
CA HA1 HA2

PMF mimimum -0.0674 0.0202 -0.0044
12.25 A dist -0.0657 -0.0002 -0.0018
Difference -0.0017 0.0204 -0.0026

Acetate-Arginine (Colinear)
NH1 HE NE

PMF mimimum -1. 1087 0.4941 -0.8866
12.25 A dist -1. 1086 0.489 -0.8441
Difference -1E-04 0.0051 -0.0425

Acetate -- Arginine (Planar)
CA HA1 HA2

PMF mimimum –0.1058 0.014 0.01
12.25 A dist -0.0703 -0.0046 -0.0016
Difference -0.0355 0.0186 0.01.16

Phosphoserine(-1) -- Lysine (Colinear)
CD HD1 HD2

PMF mimimum 0.0269 0.0921 0.0753
12.25 A dist 0.1058 0.0685 0.059
Difference –0.0789 0.0236 0.0163

Phosphoserine (-1) --Lysine (Planar)
CD HD1 HD2

PMF mimimum 0.1088 0.0734 0.0483
12.25 A dist 0.1022 0.0706 0.0587
Difference 0.0066 0.0028 -0.0104

Phosphoserine (-1) --Arginine (Colinear)
CD HD1 HD2

PMF mimimum 0.0502 0.0785 0.0658
12.25 A dist 0.1092 0.0612 0.0547
Difference -0.059 0.0173 0.01.11

Phosphoserine (-1) --Arginine (Planar)
CD HD1 HD2

PMF mimimum 0.0822 0.0748 0.0517
12.25 A dist 0.1047 0.0633 0.0555
Difference -0.0225 0.01.15 -0.0038

HD2
0.0197
0.0393

-0.0196

HA3
0.0052

0.008
-0.0028

CD
0.2688
0.2316
0.0372

HA3
0.0142
0.0079
0.0063

HD3
0.0743

0.056
0.0183

HD3
0.0579
0.0574
0.0005

HD3
0.0677
0.0526
0.0151

HD3
0.0657
0.0541
0.01.16

CG
0.1895
0.2085
-0.019

NZ
-0.4631
-0.4734
0.0103

HD1
0.0627
0.0752

-0.0125

H21
0.577
0.553
0.024

NZ
-0.5576
-0.4764
-0.0812

NZ
–0.3589
-0.4719

0.113

H21
0.5353
0.5433
-0.008

H21
0.5556
0.5439
0.0117

HG1
-0.0337
-0.0333
-0.0004

HZ1
0.4291

0.39
0.0391

HD2
0.011

0.0155
-0.0045

H22
0.636

0.5009
0.1351

HZ1
0.4935

0.392
0.1015

HZ1
0.335

0.3883
-0.0533

H22
0.607

0.5133
0.0937

H22
0.5352
0.5103
0.0249
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Acetate --Lysine (Colinear)
HG2 CB HB1

PMF mimimum –0.0257 -0.2578 0.0618
12.25 A dist -0.0337 -0.2358 0.0556
Difference 0.008 -0.022 0.0062

Acetate--Lysine (Planar)
HZ2 HZ3 CE

PMF mimimum 0.341 0.3615 0.1226
12.25 A dist 0.3739 0.3753 0.2444
Difference -0.0329 -0.0138 -0.1218

Acetate-Arginine (Colinear)
CG HG1 HG2

PMF mimimum 0.2286 -0.0357 -0.0221
12.25 A dist 0.2288 -0.04.11 -0.0179
Difference -0.0002 0.0054 -0.0042

Acetate -- Arginine (Planar)
NH2 CZ H11

PMF mimimum -1.2292 1.0895 0.5545
12.25 A dist -1.0394 0.9925 0.5348
Difference -0.1898 0.097 0.0197

Phosphoserine(-1) -- Lysine (Colinear)
HZ2 HZ3 CE

PMF mimimum 0.362 0.3746 0.2969
12.25 A dist 0.3743 0.3754 0.2457
Difference -0.01.23 -0.0008 0.0512

Phosphoserine (-1) --Lysine (Planar)
HZ2 HZ3 CE

PMF mimimum 0.3485 0.3491 0.1638
12.25 A dist 0.3738 0.375 0.2448
Difference –0.0253 -0.0259 -0.081

Phosphoserine (-1) --Arginine (Colinear)
NH2 CZ H11

PMF mimimum -1.1111 1.005 0.5314
12.25 A dist -1.039 0.9854 0.5326
Difference –0.0721 0.0196 -0.0012

Phosphoserine (-1) -- Arginine (Planar)
NH2 CZ H11

PMF mimimum -1.1371 1.0557 0.5501
12.25 A dist -1.0372 0.9861 0.5327
Difference –0.0999 0.0696 0.0174

HB2
0.0547
0.0522
0.0025

HE1
0.0424

0.026
0.0164

CB
-0.3357
-0.3308
–0.0049

H12
0.6291
0.5371

0.092

HE1
0.0051
0.0256

–0.0205

HE1
0.0379

0.026
0.01.19

H12
0.5278
0.5402

-0.01.24

H12
0.6768
0.5385
0.1383

HB3
0.0552
0.0499
0.0053

HE2
0.0416
0.0261
0.0155

HB1
0.0872
0.0875

-0.0003

NH1
-1.2631
-1.0996
–0.1635

HE2
0.0043

0.026
–0.0217

HE2
0.0475
0.0265

0.021

NH1
-1.1101
-1. 1041

-0.006

NH1
-1.2851
-1. 1018
-0.1833

CG
0.9938
0.8393
0.1545

CD
–0.0257
–0.1132
0.0875

HB2
0.0653
0.0659

-0.0006

HE
0.4871
0.4918

-0.0047

CD
–0.0866
-0.1121
0.0255

CD
–0.1331
-0.1156
-0.0175

HE
0.4887
0.4907
-0.002

HE
0.4882
0.4905

-0.0023
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Acetate --Lysine (Colinear)
OD1 OD2 CB

PMF mimimum -1.041.1 -0.9241 0.0507
12.25 A dist –0.9305 -0.9136 0.1621
Difference -0.1 106 -0.01.05 -0.1114

Acetate--Lysine (Planar)
HD1 HD2 CG

PMF mimimum 0.0297 0.0303 0.1864
12.25 A dist 0.042 0.0428 0.2131
Difference -0.01.23 -0.0125 -0.0267

Acetate--Arginine (Colinear)
HB3 CG OD1

PMF mimimum 0.0666 0.9613 -1.0052
12.25 A dist 0.0665 0.8412 -0.9323
Difference 0.0001 0.1201 -0.0729

Acetate -- Arginine (Planar)
NE CD HD1

PMF mimimum -0.8762 0.2501 0.0691
12.25 A dist –0.8583 0.2432 0.0742
Difference -0.0179 0.0069 -0.0051

Phosphoserine(-1) -- Lysine (Colinear)
HD1 HD2 CG

PMF mimimum 0.032 0.0375 0.1878
12.25 A dist 0.042 0.0422 0.2117
Difference -0.01 -0.0047 -0.0239

Phosphoserine (-1) --Lysine (Planar)
HD1 HD2 CG

PMF mimimum 0.0518 0.0473 0.2248
12.25 A dist 0.0429 0.0436 0.2106
Difference 0.0089 0.0037 0.0142

Phosphoserine (-1) --Arginine (Colinear)
NE CD HD1

PMF mimimum -0.8564 0.2339 0.0725
12.25 A dist –0.8422 0.2287 0.0762
Difference -0.0142 0.0052 -0.0037

Phosphoserine (-1) -- Arginine (Planar)
NE CD HD1

PMF mimimum –0.8562 0.2101 0.0793
12.25 A dist -0.8423 0.2244 0.0784
Difference -0.0139 -0.0143 0.0009

HB1
-0.0004
-0.0538
0.0534

HG1
-0.0256
-0.0339
0.0083

OD2
-0.9196
–0.9152
-0.0044

HD2
0.01.27
0.0144

-0.0017

HG1
-0.0302
-0.0338
0.0036

HG1
-0.0315
-0.0329
0.0014

HD2
0.0201
0.0168
0.0033

HD2
0.0142
0.0177

-0.0035

HB2
-0.01.21
–0.0404
0.0283

HG2
-0.0274
-0.0343
0.0069

CB
0.0685
0.1663

–0.0978

CG
0.2033
0.2178

-0.0145

HG2
-0.0304
-0.0342
0.0038

HG2
-0.0342
-0.0333
-0.0009

CG
0.2243
0.2235
0.0008

CG
0.2168
0.2208
-0.004

CA
–0.1549
–0.0728
–0.0821

CB
-0.2664
-0.2376
-0.0288

HB1
-0.0177
-0.0554
0.0377

HG1
–0.0265
-0.0368
0.01.03

CB
-0.2298
-0.2352
0.0054

CB
-0.2533
-0.2387
-0.01.46

HG1
–0.0401
-0.0388
-0.0013

HG1
-0.0338
-0.0378

0.004

º:-- * * * * * *
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Acetate --Lysine (Colinear)
HA1 HA2 HA3

PMF mimimum 0.0321 0.027 0.0265
12.25 A dist 0.0007 -0.0005 0.0097
Difference 0.0314 0.0275 0.0168

Acetate-Lysine (Planar)
HB1 HB2 HB3

PMF mimimum 0.0655 0.0553 0.0568
12.25 A dist 0.0568 0.0508 0.0507
Difference 0.0087 0.0045 0.0061

Acetate--Arginine (Colinear)
HB2 CA HA1

PMF mimimum -0.0197 -0.099 0.017
12.25 A dist –0.0421 -0.0663 -0.0013
Difference 0.0224 -0.0327 0.0183

Acetate -- Arginine (Planar)
HG2 CB HB1

PMF mimimum -0.0131 -0.3345 0.0881
12.25 A dist -0.0142 -0.3368 0.0902
Difference 0.001 1 0.0023 -0.0021

Phosphoserine(-1) -- Lysine (Colinear)
HB1 HB2 HB3

PMF mimimum 0.0558 0.0489 0.0477
12.25 A dist 0.0561 0.0502 0.0501
Difference -0.0003 -0.0013 -0.0024

Phosphoserine (-1) --Lysine (Planar)
HB1 HB2 HB3

PMF mimimum 0.0587 0.0546 0.0555
12.25 A dist 0.0573 0.0512 0.0516
Difference 0.0014 0.0034 0.0039

Phosphoserine (-1) --Arginine (Colinear)
HG2 CB HB1

PMF mimimum -0.0181 -0.3224 0.0856
12.25 A dist -0.0161 -0.3312 0.0879
Difference -0.002 0.0088 -0.0023

Phosphoserine (-1) -- Arginine (Planar)
HG2 CB HB1

PMF mimimum -0.0156 -0.3261 0.0852
12.25 A dist -0.0144 -0.3353 0.0897
Difference -0.0012 0.0092 -0.0045

HA2
0.01.01

-0.0019
0.012

HB2
0.0674
0.067.1
0.0003

HB2
0.0627
0.0664

-0.0037

HB2
0.0652
0.0673

-0.0021

HA3
0.01.23

0.006
0.0063

HB3
0.0664
0.0685

–0.0021

HB3
0.0638

0.067
-0.0032

HB3
0.0666
0.0687

-0.0021

* --

“I■
-

* -tº ■ º.
*~

2, L. R. Rº
C. r* --

- * * .
* *

190



Phosphoserine (-2) -- Arginine (Colinear)
P OD 1 OP1

PMF mimimum 1.5893 -0.5925 -1.0625
12.25 A dist 1.5688 -0.6009 -1.0745
Difference 0.0205 0.0084 0.012

Phosphoserine (-2) -- Arginine (Planar)
P OD 1 OP1

PMF mimimum 1.5758 -0.6003 -1.0742
12.25 A dist 1.5669 -0.5995 -1.0738
Difference 0.0089 -0.0008 -0.0004

Phosphoserine (-2) -- Arginine (Colinear)
NH2 CZ H11

PMF mimimum -1.0823 0.9992 0.5358
12.25 A dist -1.0365 0.9835 0.5324
Difference -0.0458 0.0157 0.0034

Phosphoserine (-2) -- Arginine (Planar)
NH2 CZ H11

PMF mimimum -1.1986 1.0729 0.5447
12.25 A dist -1.0383 0.9858 0.5322
Difference -0.1603 0.0871 0.0125

Phosphoserine (-2) -- Arginine (Colinear)
HG1 HG2 CB

PMF mimimum -0.0406 -0.0201 -0.329
12.25 A dist -0.0382 -0.0157 -0.3316
Difference -0.0024 -0.0044 0.0026

Phosphoserine (-2) -- Arginine (Planar)
HG1 HG2 CB

PMF mimimum -0.0314 -0.0169 -0.3246
12.25 A dist -0.0376 -0.0146 -0.3325
Difference 0.0062 -0,0023 0.0079

OP2
-1.0608
-1.0599
-0.0009

OP2
-1.0446
-1.0592
0.0146

H12
0.5422
0.5397
0.0025

H12
0.6896
0.5387
0.1509

HB1
0.0862
0,0886

-0.0024

HB1
0.0843
0.0893
-0.005

OP3
-1.0592
-1.0601
0.0009

OP3
-1.0439
-1.0598
0.0159

NH1
-1.1307
-1.1026
-0.0281

NH1
-1.3041

-1.101
-0.2031

HB2
0.0641
0.0666

-0.0025

HB2
0.0641
0.0667

-0.0026

CD
0. 1363
O. 1663

-0.03

CD
O. 1573
O. 1615

-0.0042

HE
0.4863
0.4904

-0.0041

HE
0.4858

0.49
-0.0042

HB3
0.0664
0.0674
-0.001

HB3
0.065
0.068

-0.003
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Phosphoserine (-2) -- Arginine (Colinear)
HD1 HD2 HD3

PMF mimimum 0.02 0.0318 0.0323
12.25 A dist 0.013 0.0232 0.0238
Difference 0.007 0.0086 0.0085

Phosphoserine (-2) -- Arginine (Planar)
HD1 HD2 HD3

PMF mimimum 0.0185 0.0259 0.0312
12.25 A dist 0.0143 0.0241 0.0252
Difference 0.0042 0.0018 0.006

Phosphoserine (-2) -- Arginine (Colinear)
NE CD HD1

PMF mimimum -0.85 0.2274 0.0727
12.25 A dist -0.8421 0.2291 0.0761
Difference -0.0079 -0.0017 -0.0034

Phosphoserine (-2) -- Arginine (Planar)
NE CD HD1

PMF mimimum -0.8728 0.231 1 0.07.14
12.25 A dist -0.8421 0.225 0.0779
Difference -0.0307 0.0061 -0.0065

H21
0.5353
0.5426

-0.0073

H21
0.5513
0.5438
0.0075

HD2
0.0166
0.0166

HD2
0.0101
O.O.175

-0.0074

H22
0.5543
0.5126
0,0417

H22
0.6197
O.51 17

0. 108

CG
0.231 1
0.2212
0.0099

CG
0.2122
0.2.194

-0.0072

S
2.
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Phosphoserine (-2) -- Lysine (Colinear)
P OD1

PMF mimimum 1.6231 -0.5935
12.25 A dist 1.5604 -0.5993
Difference 0.0627 0.0058

Phosphoserine (-2) -- Lysine (Planar)
P OD1

PMF mimimum 1.5227 -0.5704
12.25 A dist 1.5629 -0.5983
Difference –0.0402 0.0279

Phosphoserine (-2) -- Lysine (Colinear)
HD1 HD2

PMF mimimum 0.0303 0.0396
12.25 A dist 0.0148 0.0247
Difference 0.0155 0.0149

Phosphoserine (-2) -- Lysine (Planar)
HD1 HD2

PMF mimimum 0.026 0.0322
12.25 A dist 0.0163 0.0255
Difference 0.0097 0.0067

Phosphoserine (-2) -- Lysine (Colinear)
HZ3 CE

PMF minimum 0.3492 0.2615
12.25 A dist 0.3745 0.2502
Difference -0.0253 0.0113

Phosphoserine (-2) -- Lysine (Planar)
HZ3 CE

PMF mimimum 0.3083 0.1773
12.25 A dist 0.3746 0.2499
Difference -0.0663 –0.0726

OP1
-1,0798
-1.0718

-0.008

OP1
-1.0372
-1.0721
0.0349

HD3
0.0367
0.0253
0.0114

HD3
0.0381
0.0263
0.0118

HE1
0.0118
0.0255

-0.0137

HE1
0.0301
0.0256
0.0045

OP2
-1.0665
-1.0577
-0.0088

OP2
-1,017

-1.0582
0.0412

NZ
-0.4426
-0.4764
0.0338

NZ
-0.3214
-0.4747
0.1533

HE2
0.0117
0.0253

-0.01.36

HE2
0.0263
0.0253

0.001

OP3
-1.0631
-1.0574
-0.0057

OP3
-1.0469
-1.0586
0.0117

HZ1
0.3969
0.3905
0.0064

HZ1
0.3458

0.389
–0.0432

CD
–0.0979
-0.1154
0.0175

CD
-0.1461
-0.1168
–0.0293

CD
0.1105
0.1617

-0.0512

CD
0.1.188
0.1567

-0.0379

HZ2
0.3448
0.3744

–0.0296

HZ2
0.3424

0.374
-0.0316

HD1
0.0336
0.0428

-0.0092

HD1
0.0505
0.0428
0.0077

193



Phosphoserine (-2) -- Lysine (Colinear)
HD2 CG HG1 HG2 CB HB1

PMF mimimum 0.035 0.2107 -0.0339 -0.0343 -0.2448 0.0573
12.25 A dist 0.0425 0.2101 -0.0333 -0.0336 -0.2347 0.0564
Difference -0.0075 0.0006 -0.0006 -0.0007 -0.0101 0.0009

Phosphoserine (-2) -- Lysine (Planar)
HD2 CG HG1 HG2 CB HB1

PMF mimimum 0.0464 0.2359 -0.036 -0.036 -0.2596 0.058
12.25 A dist 0.0437 0.2092 -0.0327 -0.0333 -0.2358 0.0569
Difference 0.0027 0.0267 -0.0033 -0.0027 -0.0238 0.0011

Phosphoserine (-2) -- Lysine (Colinear)
HB2 HB3

PMF mimimum 0.0519 0.0514
12.25 A dist 0.0502 0.0502
Difference 0.0017 0.0012

Phosphoserine (-2) -- Lysine (Planar)
HB2 HB3

PMF mimimum 0.0542 0.0571
12.25 A dist 0.0504 0.0509
Difference 0.0038 0.0062

Table 4. Charge differences induced during salt bridge interactions involving

phosphorylated residues and carboxylate ions. The atom names corresponds to

those in figure 1. Highlighted in yellow are atoms that undergo large charge

differences (> 0.1e), while cells highlighted in light blue include smaller, but

significant changes (~0.07e).
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Conclusion

Loop modeling techniques largely focus on finding a single loop conformation

given a segment sequence and its protein environment. Here, methodology was

proposed to go beyond this limitation and model loops as an ensemble of loop

conformations. This is a more appropriate representation of loops given their

high flexibility and this flexibility’s role in their biological function; applications

of this approach verify its usefulness.

In chapter 1 the need to and advantage of modeling loops as conformational

ensembles is clear. There, it was possible to, by making use of the

conformational selection hypothesis to identify holo-like loop conformations

starting from an apo structure. The predictions were remarkably good, usually

below a 2 A RMSD from the known holo coordinates. In addition to a geometric

evaluation, the resulting structures were tested by docking calculations, which are

notoriously sensitive to imperfections in the receptor conformation. Docking into

the predicted structures ranked known ligands better than the corresponding

docking against the apo structure, sometimes by a significant amount. In

addition, the lowest (best) docking scores for known ligands corresponded to

structures with the lowest RMSD from the holo coordinates.

Predicting these loop-latching motions is a subset of the more general induced fit

problem in docking calculations. The approach developed here is clearly an
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efficient alternative to current methods that account for receptor flexibility

explicitly on a per ligand basis. This approach could be used for predicting loop

motions in the several examples listed in chapter 1, and also, coupled with a more

efficient sampling scheme, be generalized to account for other conformational

changes during binding.

Chapter 2 focuses on a methodological challenge encountered in chapter 1,

namely how to adequately sample transitions involving a large entropic barrier. It

became clear, by using 1 and 2 dimensional models, that the replica-exchange

method, based on temperature, has limitations in talking this problem. REM

depends on high temperature replicas to quickly overcome energy barriers;

however, these replicas actually shift towards highly entropic states. Thus, if the

transition barrier is largely entropic exchanging with very high temperature

replica may not increase the barrier crossing probability. In extreme cases, even

exchanging with moderately higher temperatures can be detrimental because the

exchange rates at those temperatures may in fact be lower. The increased

computational cost of adding more replicas further compounds the loss in

efficiency by increasing the largest temperatures used in the replica exchange

simulation, which amounts to increasing the total number of replicas.

Considering these types of barriers during the developing of new sampling

schemes could certainly improve their overall performance in biomolecular

simulations.

198



Chapter 3 dealt with variations of flexibility in antibody CDR loops during

affinity maturation. In short, via analysis of molecular dynamics simulations, it

was possible to rationalize how mutations during affinity maturation can restrict

CDR loops. In several cases mutations of serine to asparagines yielded the

formation of salt-bridge triads, that is, the formation of an electrostatic contact

involving three different groups. In addition, it was possible to observe the

equilibrium between the bound and unbound H3 loop conformation of 7G12g in

the absence of ligand. Such an equilibrium is consistent with a conformational

selection mechanism for binding in the germline antibody. Also clear from the

simulations was that other mechanisms, in addition to CDR rigidification, exist

for affinity maturation; 48G7g maturation involves an alternative mechanism.

The results of chapter 3 are somewhat anecdotal, however, motivate further

research to validate these findings. If found general, they would be helpful in

protein engineering efforts or de novo antibody design where an antibody could

be “matured” via mutations that ridigify its CDRs. Establishing the relation

between these mutations and binding affinity would be critical in the design, or

disruption, of protein-protein interfaces. In addition, capturing holo-like

conformations via sampling of CDR loops could potentially offer new candidate

structures for target interactions.
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In chapter 4 several methodological issues regarding the simulation of

phophorylated peptides were explored. The first issue was the suitability of

implicit and explicit solvent models to adequately stabilize the phosphate moiety

and modulate its hydrogen bonding interactions. The solvent response is coupled

to the atomic charges that represent the phosphate ion in our all-atom force field

model. Thus, in order to control for a possible poor set of charges, a wide range

of charges were tested. The performance of the models was tested via calculation

of J'Nic', coupling constants and comparison with experiment. It is clear from

the results the use of a distance dependent dielectric is a poor approximation

regardless of the charges used. A Generalized Born model with a surface area

non-polar correction performed nearly as well as the explicit solvent simulations

using TIP3P, TIP4P and SPC/E. A fortuitous finding in this study was the

relationship between hydrogen bonding to backbone amides and its effect on the

J-coupling constants. The latter explained why the distance dependent dielectric,

which did not properly modulate the hydrogen bonding interaction, yielded poor

results.

In chapter 5, the role of polarizability in interactions involving phosphorylated

residues was explored. These contacts usually involve residues that were far apart

before phosphorylation and that were made due to comformational changes upon

the introduction of the phosphate moiety. The ab initio calculations, with a self

consistent reaction field, made it possible to reach several conclusions. First, an

argenine's guanido group more easily polarizes and forms a stronger interaction
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with a phosphate moiety than lysines amino group. In terms of modeling these

interactions, it is clear some element of polarizability must be included to yield

the correct energetics. Second, the biphosphate species (-1) makes weaker salt

bridge interactions than its doubly charged counterpart. However, there appears

to be little induced polarization in these cases. Thirdly, the interactions involving

a biphosphate ion had similar interaction energies than those involving a

carboxylate ion. This suggests a carboxylic acid may substitute for a

phosphorylation if, in the relevant interaction, the phosphate ion is protonated.

Clearly, this must be further validated, but, if valid, it could be useful in

interpreting mutational studies.
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