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Abstract: Energy extraction from subsurface reservoirs is important for addressing the 21 

increasing energy demand and environmental concerns such as global warming. However, 22 

the characterization of subsurface reservoirs, particularly reservoirs dominated by fracture 23 

networks remains a challenge due to the lack of means to directly observe subsurface 24 

processes. This study explores the feasibility and efficacy of characterizing fracture flow and 25 

transport processes in an enhanced geothermal system (EGS) testbed through stochastic 26 

tracer modeling. There are two enabling factors that allow application of stochastic modeling 27 

to characterize a subsurface reservoir. First, an abundance of geological and geophysical 28 

measurements enables the development of a high-fidelity and well-constrained fracture 29 

network model. Second, high-performance computing (HPC) allows running massive 30 

realizations efficiently. Six conservative tracer tests were stochastically modeled and 31 

produced satisfactory realizations that successfully reproduce field tracer recovery data from 32 

each tracer test. The evolution of flow and transport processes in the fracture network was 33 

then analyzed from these satisfactory realizations. The present study demonstrates that 34 

stochastic tracer modeling on a high-fidelity fracture network model is feasible and can 35 

provide important insights regarding flow and transport characteristics in subsurface fractured 36 

reservoirs. 37 

 38 

Keywords: Fractured reservoirs, characterization, enhanced geothermal system, tracer 39 

testing, stochastic modeling. 40 

 41 

42 
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1. Introduction 43 

Subsurface reservoirs are widely exploited around the world for energy recovery and 44 

geological storage of industrial wastes including CO2. The successful exploitation of a 45 

subsurface reservoir requires a comprehensive understanding of flow and transport 46 

characteristics in the reservoir, particularly in the context of unconventional oil/gas extraction 47 

(Middleton et al., 2015), geothermal heat recovery (Brown et al., 2012; Fu et al., 2016; 48 

McClure & Horne, 2014; U.S. Department of Energy, 2019), CO2 storage (Fu et al., 2017; 49 

Sun & Tong, 2017), as well as radioactive and toxic industrial wastes containment (Cuss et 50 

al., 2015; Sudicky & Frind, 1984; Sun & Buscheck, 2003; Tang et al., 1981; Tsang et al., 51 

2015). Quantitative characterization of flow and transport processes in subsurface reservoirs 52 

is commonly based on flow (or pressure) and tracer tests in conjunction with various 53 

geological and geophysical investigations such as core logging, outcrop analysis, and seismic 54 

and electrical imaging (Berkowitz, 2002; Goovaerts, 1997; Juliusson & Horne, 2013; 55 

Karmakar et al., 2016; Neuman, 2005; Vandenbohede and Lebbe, 2003). The inference of 56 

spatially variable hydraulic and transport properties can be achieved by matching the 57 

measured flow and tracer data with results from either analytical or numerical models 58 

constrained by geophysical investigations (Bullivant & O’Sullivan, 1989; Cacas et al., 1990b; 59 

Castagna et al., 2011; Hawkins et al., 2017a, 2017b, 2018; Radilla et al., 2012). 60 

 61 

A major difficulty in flow and tracer data interpretation is that the available geological and 62 

geophysical data are generally insufficient to eliminate the many uncertainties pertaining to 63 
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characterizing subsurface reservoirs, especially the complex fracture networks which provide 64 

principal pathways for flow and transport processes in many subsurface reservoirs. A 65 

common method to accommodate these uncertainties in subsurface analysis is stochastic 66 

modeling (Cacas et al., 1990a; Geier et al., 2019; Moreno et al., 1988; Ptak et al., 2004; 67 

Tsang et al., 1996), which aims to reproduce flow and tracer measurements from massive 68 

randomly generated realizations.  69 

 70 

The efficacy of stochastic modeling is often undermined by two major challenges. The first 71 

one is the difficulty in developing a high-fidelity and well-constrained model with 72 

appropriate reduction in model complexity based on geological and geophysical observations 73 

and measurements. An over-simplified stochastic model may not be able to capture the 74 

necessary complexity of the field, while a complex stochastic model with a high-dimensional 75 

parameter space is prone to overfitting. The second challenge is that numerous realizations 76 

are required to sufficiently cover the parameter space of a stochastic model because each 77 

parameter pertaining to a subsurface reservoir can vary in a wide range. Most previous efforts 78 

either use analytical solutions or simplified numerical models to make stochastic modeling 79 

computationally tractable (Bullivant and O’Sullivan, 1989; Hawkins et al., 2017b, 2018; 80 

Radilla et al., 2012), or empirically estimate the values of some parameters to reduce the 81 

parameter space so that fewer realizations are required (Vogt et al., 2012). For example, to 82 

characterize fracture flow in the Soultz-sous-Forêts EGS site, Vogt et al (2012) performed 83 

stochastic modeling of field tracer experiments with 10,000 realizations generated from a 84 
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Monte Carlo approach, each with a different 3D permeability distribution. However, none of 85 

these realizations could match the two measured tracer breakthrough curves (BTCs) 86 

simultaneously, indicating that some other complexities relevant to the tracer transport 87 

process, such as dispersivity and porosity, may not have been properly accommodated in the 88 

stochastic model. Vogt et al. (2012) also suggested that a better fitting quality might have 89 

been possible if the realization number had been some orders of magnitude larger. 90 

 91 

In the past several decades, increasing subsurface activities and the demand for high-fidelity 92 

predictions of subsurface processes have greatly accelerated the development of 93 

comprehensive geological/geophysical monitoring techniques and high-performance 94 

computing (HPC) capabilities, which provide new opportunities to improve the methodology 95 

for subsurface reservoir characterization. With these techniques and capabilities, it is now 96 

possible to use the following strategy to address the aforementioned challenges. First, high-97 

quality geological and geophysical data are utilized to improve the understanding of 98 

subsurface fracture networks and thereby to rationally define the parameter space for 99 

stochastic modeling. For certain data-rich environments, high-fidelity models can be 100 

constrained by honoring available field observations and measurements in a holistic manner. 101 

Second, HPC capabilities allow a massive number of realizations and enable a thorough 102 

sweeping of the parameter space of the developed high-fidelity model. 103 

 104 
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Following this strategy, the present study explores using stochastic tracer modeling to 105 

characterize flow and transport processes in a subsurface fracture network in a data-rich 106 

environment with HPC-enhanced modeling power. We use the ongoing EGS Collab project 107 

(Kneafsey et al., 2019; Kneafsey et al., 2020) as an example to illustrate the development of a 108 

high-fidelity fracture network model from comprehensive geological and geophysical data 109 

and use a stochastic approach with massive realizations to simulate the tracer transport 110 

process in the fracture network. For this specific site, a stochastic approach is appropriate and 111 

necessary for the following reasons: 1) The developed high-fidelity fracture network model 112 

has a high-dimensional parameter space and uses randomly-distributed fields (spatial 113 

distribution of aperture), which cannot be described using continuous function forms. 114 

Deterministic methods such as Bayesian inversion may not be applicable. 2) Even in this 115 

data-rich environment, it is still likely that the viable solutions are not unique. Stochastic 116 

modeling allows multiple viable solutions to be retrieved, and we can gain insights into the 117 

flow and transport characteristics from the commonalities among these solutions.  118 

 119 

The paper is organized as follows. Section 2 briefly introduces the EGS Collab experiment 120 

testbed, including well configuration, geological and geophysical investigations, hydraulic 121 

stimulation activities, and the tracer tests modeled by the current work. In Section 3, based on 122 

various geophysical measurements and observations, we develop a fracture network model 123 

involving both natural and hydraulic fractures for subsequent stochastic modeling of the 124 

tracer tests. We also present the numerical methods for flow and tracer simulation, as well as 125 
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the details of the stochastic framework. Sections 4 and 5 present modeling results and the 126 

corresponding interpretations regarding flow and transport characteristics in the fracture 127 

network model. Section 6 demonstrates the consistency between modeling results and 128 

additional field observations, analyzes the evolution of flow and transport processes in the 129 

fracture network model, and discusses the effect of tracer data quality and quantity on 130 

stochastic modeling. 131 

 132 

2. The EGS Collab project, Experiment 1 133 

The EGS Collab project is an ongoing in situ experiment designed to investigate the 134 

stimulation of fractures in rock and the circulation of fluids in the stimulated fracture network 135 

at an intermediate scale (tens of meters, intermediate between lab and field scales) for EGS 136 

applications (Kneafsey et al., 2019; White et al., 2019). The project is planned to have three 137 

phases of experiments, and the Experiment 1 testbed is located in a predominately phyllite 138 

rock mass, approximately 1478 m below ground surface, on the western side of the West 139 

Access Drift on the 4850 level within the Sanford Underground Research Facility (SURF) in 140 

South Dakota, USA. In this section, we briefly describe the components of this experiment 141 

that are relevant to the present study. 142 

 143 

2.1 Well configuration 144 

Eight wells were drilled from the drift wall into the testbed, including an injection well, a 145 

production well and six monitoring wells (Fig. 1(a) and (b)). The injection well (E1-I) was 146 

drilled nominally in the direction of the minimum horizontal principal stress, so as to 147 



8 
 

generate hydraulic fractures largely perpendicular to the wellbore according to geomechanics 148 

principles (Hubbert and Willis, 1957). Note that the local in situ stress orientation had been 149 

determined in an earlier experiment (Oldenburg, et al., 2017) and was verified by Experiment 150 

1 results (Kneafsey et al., 2020). The production well (E1-P) was parallel to E1-I and 151 

approximately 10 m to the east of E1-I. Four monitoring wells (E1-PDT, E1-PDB, E1-PST 152 

and E1-PSB) were drilled parallel to the expected hydraulic fracture plane, and the other two 153 

monitoring wells (E1-OT and E1-OB) were largely orthogonal to the expected hydraulic 154 

fracture.  155 

 156 

2.2 Geological and geophysical investigations 157 

The temperature conditions in the testbed was investigated through several temperature 158 

surveys in 2009 and 2017 as well as a numerical simulation (Dobson and Salve, 2009; White 159 

et al., 2018). Apart from of the native geothermal gradient, the many decades of mining and 160 

research operations have created a largely radial temperature gradient around the West 161 

Access Drift into the testbed. Wellbore televiewer and acoustic logs were acquired, and cores 162 

were retrieved throughout the eight wells (approximately 467 m in total length) to map the 163 

natural fracture network in the testbed. Multiple geophysical techniques, including cross-hole 164 

seismic survey, continuous active-source seismic monitoring (CASSM), microseismic, 165 

electrical resistivity tomography (ERT) and distributed temperature sensing (DTS), were used 166 

to characterize the experiment site, and to monitor the evolution of the testbed, particularly 167 

the evolution of the fluid-conducting fracture. Sensors for these geophysical monitoring 168 

techniques were deployed in the six monitoring wells to obtain high-resolution measurements 169 

continuously before, during, and after fracture stimulation to obtain high-resolution 170 

measurements. A sewer camera was deployed in E1-P during one of the stimulations to 171 
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directly observe fluid flow into the production well and identify possible intersection(s) of 172 

hydraulic fracture(s) with E1-P.  173 

 174 

Fig. 1 The EGS Collab experiment testbed and key observations during hydraulic stimulation 175 

and water circulation. (a) Configuration of the eight wellbores. Five natural fracture traces 176 

identified from wellbore images of E1-P, E1-OT, E1-PDT, E1-PDB and E1-PST are shown 177 

as small disks. The images of core segments corresponding to the five fracture traces are also 178 
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shown. A fitted plane (gray ellipse) representing the natural fracture, named the “OT-P 179 

Connector” is constructed. (b) Spatial distribution of microseismic events from May to June 180 

and October to November, 2018. Locations of the observed fluid jetting in E1-P and DTS 181 

anomalies along E1-OT and E1-PDT are annotated. Based on these and other observations, a 182 

plane (light blue ellipse) representing the induced hydraulic fracture is constructed. (c) Fluid 183 

jetting observed in E1-P at 39.0 and 39.5 m on 25 May, 2018. The black circles annotate 184 

jetting points on the wellbore wall. (d) Injection parameters and temperature profile along E1-185 

OT from 23 May to 25 May 2018. The red circles in the upper graph annotate the seismic 186 

events during the stimulation. The dashed black circles in the lower graph annotate the 187 

observed temperature anomaly along E1-OT. (e) Injection parameters and temperature 188 

profiles along E1-PDT during a water circulation test from 24 October to 20 November 2018. 189 

 190 

2.3 Hydraulic stimulations and tracer tests 191 

Multiple hydraulic stimulations have been performed at three depths in well E1-I, 39 m (128 192 

ft), 43 m (142 ft) and 50 m (164 ft) in 2018. There was no indication of strong hydraulic 193 

interference between the fractures stimulated from these three depths. This work focuses on 194 

the fracture system stimulated at the 50 m interval in E1-I.  195 

 196 

A water circulation test was conducted between 24 October and 20 November, 2018 by 197 

injecting into an interval between a set of straddle packers set at the 50 m depth of E1-I to 198 

characterize the stimulated fracture network. The time histories of injection rate, injection 199 

pressure and observed microseismic events are presented in a condensed form in Fig. 1(e). In 200 

general, an injection rate of 400 ml/min was used for the majority of the test window, with a 201 

few exceptions as shown in Fig. 1(e). According to the aforementioned temperature surveys 202 

and simulations, rock temperature at the 50 m interval in E1-I is approximately 30 °C, and the 203 
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injection temperature during the water circulation test was mostly maintained at 30 °C, 204 

achieving a nearly isothermal condition. Note that the microseismic events, observed between 205 

26 and 31 October and between 2 and 6 November, indicate that the stimulated fracture 206 

network may have changed during the circulation test. It was observed in the field that the 207 

stimulation activities between 3 November and 8 November caused the break of grouting/seal 208 

in E1-OT, leading to a significant increase in the outflow rate at E1-OT. 209 

 210 

During the water circulation test, a series of tracer tests were conducted using different 211 

tracers, including conservative tracer (C-Dots and chlorine), reactive tracer (cesium, lithium, 212 

rhodamine-b, and fluorescein) as well as DNA tracer (Mattson et al., 2019a, 2019b; Zhang et 213 

al., 2019). C-Dots is a nanoparticle tracer consisting of a carbon core decorated with a highly 214 

fluorescent polymer (Hawkins et al., 2017b). For each test, tracers were first mixed with 215 

water and then injected into the fracture network through the 50 m depth interval. Serial 216 

water samples were collected for approximately 8 to 24 hours from the production and 217 

monitoring wells. The measurements and analysis of tracer concentrations in these water 218 

samples are detailed in Mattson et al. (2019a). In our stochastic modeling, we analyze the six 219 

C-Dots tracer tests as summarized in Table 1. Outflow rates at different wells during the six 220 

tracer tests are also shown in Table 1. Note that Table 1 only includes the volumetric flow 221 

rates from E1-P, E1-OT, E1-PDT, E1-PST and E1-PDB. Water also leaked into the mine drift 222 

from other locations, including wells not monitored for flow rates and natural fractures 223 

intersecting the drift. While fluid flowed out from five monitoring wells, C-Dots were only 224 

detected at E1-P and E1-OT (Fig. 2) within the measurement windows. Note that water and 225 

C-Dots flowed out of E1-P from two locations separated from each other using a straddle-226 

packer assembly. One is the location at approximately 39.5 m deep, where fluid jetting was 227 

observed during the stimulation activities in May (Fig. 1(c)), and the other location is 228 
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approximately 2.2 m shallower. We denote these two locations as E1-PHF and E1-PNF 229 

(HF=hydraulic fracture(s), NF=natural fracture(s), as will be explained in section 3.1) 230 

respectively (Fig. 1(b)). Corresponding to the changes of fracture flow field due to the 231 

aforementioned stimulation activities and the leakage of E1-OT, tracer breakthrough curves 232 

in Fig. 2 changed remarkably from 26 October to 31 October, and also from 1 November to 7 233 

November. 234 

 235 

Table 1 Six C-Dots tracer tests between 31 October and 14 November 2018. Outflow rates at 236 

different wells are also listed. 237 

Date (in 

2018) 

Tracer inj. 

duration 

(min) 

Tracer inj. 

concentration 

C0 (ppm) 

Outflow rate (mL/min) 

E1-

PHF 

E1-

PNF 

E1-OT E1-

PDT 

E1-

PDB 

E1-

PST 

26 Oct.  7.60 610 123.0 120.0 26.0 2.1 2.5 66.0 

31 Oct.  5.00 305 82.0 75.0 9.0 78.0 5.9 40.0 

1 Nov.  5.05 546 85.0 70.0 10.0 78.0 4.4 40.0 

7 Nov.  5.12 623 40.0 35.0 118.0 10.0 2.5 15.0 

8 Nov.  5.23 217 40.0 30.0 113.0 5.0 0.0 11.6 

14 Nov.  5.08 160 54.0 26.0 190.0 4.0 1.0 11.0 

 238 

 239 
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Fig. 2 Relative tracer concentration at E1-PHF, E1-PNF and E1-OT for the six C-Dots tracer 240 

tests. 241 

 242 

3. Model and methodology 243 

In this section, we first develop a fracture network model based on the comprehensive field 244 

observations and measurements, and then describe the methodology for forward modeling of 245 

fluid flow and tracer transport processes in the fracture network model, including the fracture 246 

coupling strategy, model parameterization, and numerical implementation. The last part 247 

further details the framework of the stochastic tracer modeling. Fig. 3 provides a summary of 248 

the model and methodology in the present study. 249 

 250 

Fig. 3 Summary of the model and methodology in the present study. 251 

 252 

3.1 Fracture network model 253 

We first analyze the natural and hydraulic fractures relevant to the current study according to 254 

geological, geophysical and geochemical data, including core logs, wellbore images, 255 
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microseismic events during hydraulic stimulations and the water circulation test, DTS 256 

measurements in the monitoring wells, microbial/geochemical data of reservoir indigenous 257 

fluids, and a sewer camera survey of E1-P. 258 

 259 

Natural fractures. From core logs and wellbore images, 206 natural fracture traces were 260 

identified, and their properties and states are quite different: 130 of them are cemented 261 

fractures without apparent opening, 71 of them are partially open with limited aperture, and 262 

five of them are naturally flowing fractures with relatively large aperture. Considering the 263 

commonly recognized cubic relationship between aperture and fracture permeability, the flow 264 

and transport processes in the fracture network are dominated by the five naturally flow 265 

fractures, and most of the identified natural fractures actually do not or only slightly 266 

participate in the fluid flow and tracer transport processes. A major natural fracture 267 

connecting E1-OT and E1-P (also called OT-P connector) was inferred from three naturally 268 

flowing fracture traces and two partially open fracture traces (Fig. 1(a)). The five natural 269 

fracture traces were found in E1-P, E1-OT, E1-PDT, E1-PDB and E1-PST respectively, and 270 

they seem to conform to the same planar structure, not only in terms of locations but also in 271 

terms of local orientations (Fig. 1(a)). Additionally, a subset of the five wells had significant 272 

natural flows bearing microbial community signatures highly similar with each other, 273 

corroborating natural fracture connectivity (Zhang et al., 2019). Due to the much higher 274 

permeabilities of the five natural fracture traces compared with that of the other natural 275 

fracture traces, we believe the OT-P connector was the predominant natural fracture that 276 

participated in the flow and transport processes during the water circulation and tracer tests 277 

(Kneafsey et al., 2019). 278 

 279 
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Hydraulic fracture. Multiple hydraulic stimulations were performed on the E1-I 50 m 280 

interval between 22 May and 25 June, 2018. Each stimulation lasted up to 80 minutes and 281 

used injection rates up to 5.5 L/min.  The stimulated hydraulic fracture can be delineated 282 

through DTS measurements, microseismic events and a sewer camera survey of E1-P on 25 283 

May 2018. DTS-measured temperature anomalies in E1-OT (first observed on 24 May, 2018) 284 

and E1-PDT (first observed on 30 October, 2018), as well as fluid jetting in E1-P (observed 285 

on 25 May, 2018) conform to a plane that is roughly perpendicular to the in situ minimum 286 

principal stress orientation and also aligns with the microseismic cloud (Fig. 1(b)). 287 

Consequently, we believe this plane describes a stimulated hydraulic fracture. 288 

 289 

A fracture network model involving a hydraulic fracture and a natural fracture (Fig. 4(a)) is 290 

then developed according to the above analysis. To account for the influence of other natural 291 

fractures, we included two “sinks” on the periphery of the developed fracture network model 292 

(as will be illustrated in section 3.2.2). Note that the two outflow locations in E1-P, denoted 293 

as E1-PHF and E1-PNF in section 2.3, are intersections between E1-P and the hydraulic 294 

fracture and the natural fracture respectively (Fig. 4(b)). We acknowledge that matrix 295 

diffusion is not represented due to the absence of matrix in the fracture network model. 296 

Nevertheless, considering the low matrix porosity (0.01), matrix permeability (5 × 10-18 m2), 297 

and the short tracer injection durations (5 ~ 7.6 minutes) of the C-Dots tracer tests in Table 1, 298 

matrix diffusion is unlikely to have a significant effect on the tracer transport process (Becker 299 

and Shapiro, 2003; White et al., 2018; Zhou et al., 2018).  300 

 301 

3.2 Modeling of fluid flow and tracer transport 302 

3.2.1 Coupling of the hydraulic and natural fractures 303 



16 
 

We couple the hydraulic and natural fractures by treating a segment of the intersection line 304 

between the two fractures as the connection (i.e. a leakage interface) between them. Fluid 305 

carrying tracer flows from the hydraulic fracture to the natural fracture through this leakage 306 

interface. Instead of modeling the two fractures simultaneously, we model them separately in 307 

a sequential manner (Fig. 4(b)). The location, length, and leakage rate of this leakage 308 

interface are treated as parameters to be determined for the hydraulic fracture. The 309 

determined leakage parameters that fit the tracer breakthrough curves at E1-PHF and E1-OT, 310 

as well as the corresponding tracer concentration in the leaked fluid are then imposed as 311 

known boundary conditions for the natural fracture. 312 

 313 

3.2.2 Parameter spaces for hydraulic and natural fractures 314 

The uncertainties to be constrained in the stochastic modeling include fracture extents, the 315 

locations and sizes of sinks on the periphery of the two fractures, the aperture distributions of 316 

the two fractures, longitudinal and transverse dispersivities, as well as the location, length, 317 

and flow rate of the leakage interface between the two fractures. The parameterization of 318 

these uncertainties is explained below, with the ranges of corresponding parameters listed in 319 

Table 2. 320 

• Fracture extents. There are no direct measurements to constrain the extents and 321 

shapes of the two fractures. The microseismic cloud (Fig. 1(b)) implies certain shape 322 

of the hydraulic fracture but events around the inferred perimeter of the fracture tend 323 

to be sparse and suffer from poor location certainty. Therefore, we mathematically 324 

represent each fracture using an ellipse within the determined fracture plane in Fig. 1. 325 

For the hydraulic fracture, the fracture center is estimated to be the center of the 326 

microseismic cloud, and the in-plane orientation of the ellipse is the overall 327 

propagation direction implied by the microseismic cloud. The extents of the 328 
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hydraulic fracture are described by two parameters, i.e., the semi-axis lengths A1 and 329 

A2 as shown in Fig. 4(c). The ranges of A1 and A2 are characterized by microseismic 330 

events, DTS signals at E1-OT/E1-PDT and fluid jetting in E1-P. First, the hydraulic 331 

fracture extent should intersect with E1-I, E1-P and E1-OT (Fig. 1(b)) but also 332 

should not extend too far beyond the area indicated by seismic events. Second, 333 

because the hydraulic fracture was extended and intersected E1-PDT on 30 October 334 

(Fig. 1(b)), the value of the hydraulic fracture extent for tracer tests between 31 335 

October and 14 November must be increased to account for this intersection. 336 

Therefore, the uncertainties of A1 and A2 for tracer tests between 31 October and 14 337 

November are greater than those for the tracer test on 26 October (Table 2). The 338 

natural fracture’s extent should at least cover the pentagon defined by the five 339 

intersections with wells in Fig. 1(a). Because the active flow area involving the HF-340 

NF leakage interface and E1-PNF is at the center of the pentagon, the fracture area 341 

beyond the pentagon is expected to have little effect on the flow field. We fix the two 342 

semi-axis lengths of the natural fracture at 16.4 m and 15.2 m respectively. 343 

• Sinks. Because injected fluid and tracer were not fully recovered in the six C-Dots 344 

tracer tests (Table 1), we assume a sink on the periphery of each fracture to account 345 

for fluid/tracer leakage to other natural fractures that are not explicitly described in 346 

the model (Fig. 4(c)).We use two parameters, angular orientation and length along 347 

the perimeter (θ and L for the hydraulic fracture, θ' and L' for the natural fracture), to 348 

describe the location and size of the sinks respectively (Fig. 4(c)). 349 

• Aperture distribution. Fracture aperture has been widely studied in the literature 350 

(Moreno et al., 1988; Pyrak-Nolte and Morris, 2000; Tsang and Tsang, 1989). 351 

According to the measurements of core samples and observations of well logs, 352 

fracture aperture is generally spatially-autocorrelated and typically follows a gamma 353 
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distribution or a log-normal distribution (Bianchi and Snow, 1968; Gale, 1987). In 354 

the present study, we consider a relatively simple uniform aperture scenario as well 355 

as a spatially-autocorrelated heterogeneous aperture scenario. For the uniform 356 

aperture scenario, the aperture distribution is described by a single parameter (w and 357 

w' for the hydraulic and natural fractures, respectively), whereas for the 358 

heterogeneous aperture scenario, the aperture distribution is described by three 359 

parameters, including average aperture, standard deviation and correlation length (𝑤" , 360 

σ and CL for the hydraulic fracture, 𝑤" ′, σ' and CL' for the natural fracture). We use 361 

the spherical variogram model to generate such a random heterogeneous aperture 362 

field following a log-normal distribution (Guo et al. (2016)). The ranges of 363 

parameters relevant to the aperture field are determined based on the following 364 

rationales. Wellbore images suggest that the aperture of the natural fracture (OT-P 365 

connector) may be up to several millimeters. A simple calculation using closed-form 366 

solutions for hydraulic fracture growth (Mack and Warpinski, 2000) finds that for the 367 

rock properties and injection rates during stimulations, the aperture of the hydraulic 368 

fracture would not exceed several hundred microns. For the numerical models used 369 

herein, the meaningful range of the correlation length is constrained by the extents of 370 

the fractures and the mesh resolution.   371 

• Dispersivity. The transverse dispersivity αT is generally smaller than the longitudinal 372 

dispersivity αL, and some previous studies assume that αT = 0.1αL (Hecht-Méndez et 373 

al., 2013; Hermans et al., 2018; Juliusson and Horne, 2013). In our stochastic 374 

modeling, we adopt the same assumption and therefore only include αL in the 375 

parameter space. In addition, since molecular diffusion coefficient (Dm) is much 376 

smaller than dispersion coefficient for tracer transport in fractures, we assume a 377 
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constant Dm = 3 × 10-9 m2/s in the model. The range of αL is assumed to be 0.001 ~ 4 378 

m based on previous studies (Novakowski et al., 1985; Vogt et al., 2012).  379 

• Leakage interface. In the stochastic modeling, the geometrical intersection between 380 

the two fractures is fixed with a length of 9 m. The leakage interface is a segment of 381 

the intersection and is parameterized by three numbers, two describing the location 382 

and length (PL and LL) of the leakage interface, and one for leakage rate (qL) from the 383 

hydraulic fracture to the natural fracture. We denote the start and end points of the 384 

fracture intersection as S and S' (Fig. 4(c)), and PL is the distance between the 385 

leakage interface center and S. The following rule applies to LL to prevent the leakage 386 

interface from extending out of the geometrical intersection: if (PL – LL/2) < 0, LL = 387 

2PL; if (PL + LL/2) > 9, LL = 18 – 2PL. Note that the leakage rate is uniformly 388 

distributed along the leakage interface. The range of the leakage rate depends on the 389 

measured outflow rates, in that the leakage rate should be larger than the total 390 

outflow rates from the natural fracture (sum of flow rates from E1-PNF, E1-PST and 391 

E1-PSB), and smaller than the difference between the injection rate and the total 392 

outflow rates from the hydraulic fracture (sum of flow rates from E1-OT, E1-PHF, 393 

E1-PDT and E1-PDB).  394 

 395 

Table 2 Ranges of parameters for the hydraulic and natural fractures. 396 

Parameters Range 

Hydraulic fracture 

Major axis length A1 (m) 8.0 ~ 11.5 for 26 Oct. test, 14.5 ~ 17.5 for other tests 

Minor axis length A2 (m) 7.5 ~ 11.5 for 26 Oct. test, 8.5 ~ 13.5 for other tests 

Uniform aperture w (mm) 0.01 ~ 1 

Average aperture 𝑤"  (mm) 0.05 ~ 1 

Standard deviation σ (mm) 0.05 ~ 1 

Correlation length CL (m) 4 ~ 15 
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Longitudinal dispersivity αL (m) 0.001 ~ 4 

Sink location θ (°) 0 ~ 360 

Sink length L (m) 3 ~ 15 

 Leakage interface center PL (m) 0.2 ~ 9.0  

Leakage interface length LL (m) 0.2 ~ 9.0 (depends on PL) 

Leakage rate qL (ml/min) 
26 Oct. 31 Oct. 1 Nov. 7 Nov. 8 Nov. 14 Nov. 

190 ~ 249 120 ~ 220 112 ~ 219 52 ~ 227 42 ~ 239 40 ~ 149 

Natural fracture 

Uniform aperture w' (mm) 0.01 ~ 30 

Average aperture 𝑤"′ (mm) 0.1 ~ 10 

Standard deviation σ' (mm) 0.1 ~ 10 

Correlation length CL' (m) 4 ~ 25 

Sink location θ' (°) 0 ~ 360 

Sink length L' (m) 3 ~ 20 

 397 

3.2.3 Fluid flow and tracer transport simulation  398 

Fluid flow and tracer transport process in the hydraulic and natural fractures are simulated 399 

using a multi-physics simulation environment GEOS (Settgast et al., 2017), a massively-400 

parallel multi-physics simulation platform developed at the Lawrence Livermore National 401 

Laboratory. GEOS provides a thermal-hydro-mechanical-chemical framework to simulate 402 

various physical processes occurring during reservoir stimulation and energy recovery. 403 

Applications include the simulation of immiscible fluid flow in fractures and rocks (Walsh 404 

and Carroll, 2013), heat recovery from geothermal reservoirs (Guo et al., 2016), geochemical 405 

transport and reaction (Walsh et al., 2013), hydraulic fracturing (Settgast et al., 2017), and so 406 

on. Guo et al. (2016) and Wu et al. (2019) described and verified the fluid flow and tracer 407 

transport modules in GEOS. In this study, fractures are represented by thin layers (4 mm and 408 

20 cm thick in the mesh for the hydraulic and natural fractures, respectively) of porous media 409 

with the equivalent porosity ϕ = w/H and the equivalent permeability k = w3/12H according to 410 

the cubic law (Guo et al., 2016), where w is the aperture and H is the thickness of the fracture 411 

grid elements.  412 
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 413 

Both the hydraulic and natural fractures are discretized into hexahedral elements with an in-414 

plane resolution of 0.2 m ´ 0.2 m. The finite volume method (FVM) is used to solve 415 

equations (1) and (2), and we use the upwind difference scheme to discretize equation (2) for 416 

tracer modeling. This scheme is known to cause numerical diffusion (Brasseur and Jacob, 417 

2017; Leonard, 1979), but its effects on simulated tracer transport are observed to be 418 

negligible compared with the effects of advection and physical dispersion as simulated. The 419 

flow field is first solved from equation (1), and then used in equation (2) to solve for tracer 420 

concentration. For fluid flow simulation, the injection rate (400 mL/min) and the measured 421 

outflow rates listed in Table 1 are used as boundary conditions. For tracer transport 422 

simulations, the tracer injection parameters (injection concentration and duration) in Table 1 423 

are also used as boundary conditions. Except for two sinks on the periphery of the two 424 

fractures, the boundaries along the perimeters of the hydraulic and natural fractures are 425 

assumed to be impermeable to both fluid and tracer. Note that the effect of temperature on 426 

fluid flow and tracer transport is not considered in the simulation due to the nearly isothermal 427 

injection condition and the temperature-insensitive nature of C-Dots. 428 

 429 

3.3 Stochastic tracer modeling framework 430 

For each tracer test, we first generate an ensemble of parameter sets using the Latin-431 

hypercube sampling approach with each individual parameter following a uniform 432 

distribution (A1, A2, CL, CL', θ, θ', L, L', PL, LL and qL) or a log-uniform distribution (w, w', 433 

𝑤# , 𝑤#′, σ, σ' and αL) in its corresponding range in Table 2. Each parameter set corresponds to a 434 

stochastic realization of the flow system, for which the following workflow applies. 1) Based 435 

on the aperture parameters, a uniform or a spatially-autocorrelated heterogeneous aperture 436 

field is generated and applied to the fracture. 2) The steady-state flow field in the fracture is 437 
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calculated based on the aperture field and boundary conditions mentioned in section 3.2.3. 3), 438 

The tracer transport process in the fracture is simulated with the flow field at steady state. 439 

The resultant residence time distribution is subsequently evaluated against measured tracer 440 

BTCs. GEOS itself is a massively parallelized code but in the current study, parallelization is 441 

only employed to simulate the many stochastic realization, with each realization simulated 442 

using one CPU core. Step (2) in the workflow costs a few seconds on a single core of Xeon 443 

E5-2695 v4. Step (3) needs to resolve the transient tracer transport process and costs between 444 

14 seconds and 3.5 hours depending on the flow characteristics for the realization. A fracture 445 

flow model involving 50,000 realizations costs more than 40,000 core-hours, necessitating 446 

HPC power for a comprehensive study involving many models. 447 

 448 

We then use a rejection sampling method to analyze the stochastic tracer modeling results in 449 

terms of the 90% confidence intervals of the simulated tracer breakthrough curves and the 450 

uncertainty quantification of model parameters. The procedure of the rejection sampling is 451 

described in Sun and Durlofsky (2017). The main steps are: (1) Generate a random variable p 452 

from a uniform distribution within the range [0, 1]. (2) Accept m as a posterior realization if 453 

p ≤ L(m)/SL, where m is a parameter set, L(m) is the likelihood function and SL is the 454 

maximum of the likelihood function. The likelihood function L(m) is defined as  455 

𝐿(𝐦) = 𝑐 ⋅ exp(− !
"
𝑅(𝐦))     (1) 456 

where c is a normalization constant. R(m) is a function evaluating the fitness between the 457 

simulated and measured tracer breakthrough curves. Sun and Durlofsky (2017) used the sum 458 

of the square error as R(m) in their analysis. However, in the present study, we found the 459 

following function captures the most essential characteristics of the tracer BTCs and therefore 460 

is used as R(m) in our analysis 461 
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where σe is the standard deviation of measurement errors. Note that we assume the 463 

measurement errors to be independent, identically distributed Gaussian random variables. For 464 

subsequent analysis, σe is assumed to be 0.3. The two superscripts “sim.” and “mea.” denote 465 

the results from simulation and measurement respectively. CP and t are the magnitude of the 466 

peak concentration and the corresponding arrival time; tl and tr are the two times, before (left 467 

of) and after (right of) the peak, respectively, of the half-peak magnitude. This equation 468 

compares four parameters controlling the shape of a tracer breakthrough curve. To find peaks 469 

from a simulated tracer BTC, we adopt the find_peak function of the SciPy signal processing 470 

toolbox in Python (scipy.signal.find_peak), which can screen out non-prominent peaks (Jones 471 

et al., 2001).  As shown in Fig. 2, each measured tracer BTC has only one peak. However, a 472 

simulated tracer BTC may have multiple peaks. We directly extend the misfit calculation 473 

method to a simulated BTC with multiple peak concentrations by applying equation (4) to 474 

every peak on the simulated tracer BTC, and then summing the calculated misfit values 475 

together. This leads to high misfit values for those realizations, naturally penalizing the 476 

realizations with multiple concentration peaks. Also note that for the hydraulic fracture, both 477 

the tracer BTCs at E1-PHF and E1-OT need to be quantified, and we sum the misfits for E1-478 

PHF and E1-OT together as the total misfit. For the natural fracture, we only calculate the 479 

misfit for the tracer BTC at E1-PNF.  480 

 481 

We first perform stochastic modeling for the hydraulic fracture according to the 482 

aforementioned workflow. The realization that yields the smallest total misfit is selected to 483 

attain the time-concentration curves along the leakage interface, with which we then perform 484 

the stochastic modeling for the natural fracture using the same workflow.  485 
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 486 

Fig. 4 The developed fracture network model and the modeling of tracer transport processes 487 

in the model. (a) Diagram of the fracture network model. The hydraulic (green) and natural 488 

fractures (yellow) are coupled by a conductive segment on their intersection. (b) Sequential 489 

modeling of tracer transport processes in the fracture network model. (c) Parameterization of 490 

the hydraulic and natural fractures. θ and θ' denotes the angles between the major semi-axis 491 

and the sink center for the hydraulic and natural fractures respectively. 492 

 493 

4. Results of the stochastic modeling for the hydraulic fracture 494 

4.1 Relationship between the total misfit and individual parameters 495 

We start the analysis with the relatively simple uniform aperture scenario with nine 496 

parameters for the hydraulic fracture. Approximately 50,000 realizations were performed for 497 

each tracer test and the scatter plots between individual parameters and the total misfit are 498 

shown in Fig. 5. Note that only the scatter plots for w, θ, αL and PL are shown in Fig. 5, and 499 

those for the other parameters can be found in Fig. S1 in Supplementary Material. The total 500 

misfit R varies in a wide range and Fig. 5 only shows the realizations with a total misfit 501 
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smaller than 104. According to equation (4), if the differences of the four variables (CP, t, tl 502 

and tr) between simulation and measurement all equal 15%, then the calculated misfit is 0.09, 503 

and the base 10 logarithm of the total misfit for the two tracer BTCs (E1-PHF and E1-OT) is 504 

-0.74. As shown in Fig. 5, most of the performed realizations show a total misfit much larger 505 

than -0.74 and fail to reasonably match the measured tracer BTCs at E1-PHF and E1-OT 506 

simultaneously. 507 

 508 

The nine parameters show different effects on the total misfit. We observe a strong 509 

dependence of the total misfit on aperture (w), sink location (θ), longitudinal dispersivity 510 

(αL), and leakage interface location (PL). For these parameters, we are able to identify 511 

concentrated value ranges (as shown by the 90% confidence intervals in the scatter plots in 512 

Fig. 5) according to the accepted parameter sets from the rejection sampling procedure, while 513 

for the other parameters, such a concentrated value range cannot be obtained. From the 514 

satisfactory realizations accepted by the rejection sampling procedure, we calculate the 90% 515 

confidence intervals for tracer breakthrough curves at E1-PHF and E1-OT (shadings in Fig. 516 

5) to compare with the field tracer measurements (red and blue dots in Fig. 5). The results of 517 

the realization with the smallest total misfit (solid lines in Fig. 5) are also shown. The 518 

comparison indicates that the measured tracer breakthrough curves at E1-PHF and E1-OT are 519 

successfully reproduced simultaneously. We use the parameter values from the realization 520 

with the smallest total misfit as the best estimates for these parameters (Table 3).  521 
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Fig. 5 Stochastic modeling of tracer transport in the hydraulic fracture under the uniform 528 

aperture scenario. (a) ~ (f) show the results for tracer tests on 26 and 31 October, 1, 7, 8 and 529 

14 November respectively. In each subfigure, the scatter plots in the first two columns show 530 

the variation of the total misfit as a function of aperture (w), sink location (θ), longitudinal 531 

dispersivity (αL), and leakage interface location (PL), respectively. Each point represents a 532 

realization. The red line segments in these scatter plots denote the 90 % confidence interval 533 

of parameters. The figure to the right compares the measured and simulated tracer 534 

breakthrough curves at E1-PHF and E1-OT. The red and blue shadings are the 90% 535 

confidence intervals for tracer breakthrough curves at E1-PHF and E1-OT respectively. 536 

Results of the realizations with the smallest total misfit are also shown, including the 537 

simulated tracer breakthrough curves (solid lines), parameter values, as well as the locations 538 

of the sink and leakage interface. 539 

 540 

4.2 Sensitivities of individual parameters 541 

The Sobol' total sensitivity index is a measurement of the contribution of each parameter to 542 

the variance of the total misfit (Sobol', 1993), and can be used to identify critical parameters 543 

that dominate the tracer transport process. As shown in Fig. 6, the Sobol' total sensitivity 544 

indices show similar patterns for the six tracer tests. The tracer transport process in the 545 

hydraulic fracture is dominated by the aperture (w) and sink location (θ), while fracture 546 

extents (described by A1 and A2), leakage rate (qL) and the length of the leakage interface 547 

(described by LL) actually show little effects, especially for the tracer tests on 26 October, 1, 548 

7, 8 and 14 November. As a result, the uncertainties in w and θ are appropriately constrained 549 

from the stochastic tracer modeling, while the uncertainties in A1, A2, qL, and LL cannot be 550 

further constrained. The result of Sobol' sensitivity analysis is consistent with the scatter plots 551 
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in Fig. 5 in that the more sensitive the parameter, the easier it is to identify an optimal value 552 

for the parameter.  553 

 554 

Fig. 6 Sobol' total sensitivity indices of the nine parameters pertaining to the hydraulic 555 

fracture under the uniform aperture scenario. 556 

 557 

Table 3 Estimates of aperture (w), sink location (θ), longitudinal dispersivity (αL), and 558 

leakage interface location (PL) for the hydraulic fracture under the uniform aperture scenario. 559 

Date of 

tracer test 

(2018) 

Estimates of parameters 

Aperture w 

(mm) 

Longitudinal 

dispersivity αL (m) 

Sink location 

θ (°) 

Leakage interface 

center location PL (m) 

26 October  0.648 2.92 246 5.2 

31 October  0.167 0.14 240 6.2 

1 November  0.150 0.02 239 6.2 

7 November  0.163 0.45 229 3.6 

8 November  0.305 1.18 254 6.2 

14 November  0.124 0.34 260 5.2 

 560 
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4.3 Heterogeneous aperture scenario 561 

Previous experimental observations and theoretical studies indicate that flow channeling is a 562 

common phenomenon in fracture networks (Becker & Shapiro, 2000; Fu et al., 2016; Guo et 563 

al., 2016; Moreno et al., 1988; Hawkins et al., 2017b). Although the uniform aperture 564 

scenario is able to match the measured tracer breakthrough curves at E1-PHF and E1-OT 565 

simultaneously, it could be illuminating to further model the tracer tests under the 566 

heterogeneous aperture scenario where flow channeling is generally much stronger than that 567 

in the uniform aperture scenario. Here we take the tracer test on 31 October as an example, 568 

for which 400,000 realizations were modeled (Fig. 7). Similarly, we only show the scatter 569 

plots for aperture parameters (𝑤" , σ and CL), longitudinal dispersivity (αL), sink location (θ) 570 

and leakage interface location (PL) in Fig. 7(a), and scatter plots for other parameters are 571 

provided in Fig. S2 in Supplementary Material. Compared with the uniform aperture 572 

scenario, the heterogeneous aperture scenario involves more parameters, and a larger number 573 

of satisfactory realizations obtained from the rejection sampling procedure can match the 574 

tracer breakthrough curves at E1-PHF and E1-OT simultaneously (as shown in Fig. 7(b)). 575 

However, the heterogeneous aperture fields for these satisfactory realizations are quite 576 

different from each other (Fig. 7(c)). Although the Sobol' total sensitivity analysis shows that 577 

the average aperture (𝑤#) and sink location (θ) are dominant parameters under the 578 

heterogeneous aperture scenario (Fig. 8), the values of the aperture parameters (𝑤" , σ and CL) 579 

cannot be constrained as under the uniform aperture scenario. However, a concentrated value 580 

range for θ can still be identified from the obtained satisfactory realizations, which is 581 

consistent with the results under the uniform aperture scenario (Table 3). The stochastic 582 

model seems to be overfitted under the heterogeneous aperture scenario for the available 583 

tracer measurements.  584 
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 585 

Fig. 7 Stochastic modeling of tracer transport in the hydraulic fracture under the 586 

heterogeneous aperture scenario for the tracer test on 31 October. (a) Scatter plots of the total 587 

misfit as a function of individual parameters. The red line segments annotate the 90% 588 

confidence interval of parameters. (b) Comparison of the tracer BTCs at E1-PHF and E1-OT 589 

from measurement and satisfactory realizations. The red and blue shadings are the 90% 590 

confidence intervals for tracer breakthrough curves at E1-PHF and E1-OT respectively. (c) 591 
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Aperture distribution, location of the sink and leakage interface for three satisfactory 592 

realizations. The three realizations are also annotated by red circles in (a).  593 

 594 

Fig. 8 Sobol' total sensitivity indices of the 11 parameters pertaining to the hydraulic fracture 595 

for the modeling of the tracer test on 31 October under the heterogeneous aperture scenario. 596 

 597 

5. Results of the stochastic modeling for the natural fracture 598 

For each tracer test, we select the realization with the smallest total misfit under the uniform 599 

aperture scenario (parameters listed in Fig. 5) to attain the necessary “upper-stream” 600 

information to perform stochastic modeling of flow and transport processes in the natural 601 

fracture. The information includes the leakage rate qL, leakage interface location and length 602 

(PL and LL), as well as the time-concentration curves for each leakage element. 603 

 604 

5.1 Uniform aperture scenario 605 

Similar to the modeling of the hydraulic fracture, we start the analysis of the natural fracture 606 

with the uniform aperture scenario. Since only three parameters are involved (w', θ' and L'), 607 

we performed around 15,000 realizations for each tracer test. The scatter plots of the total 608 
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misfit as a function of the three parameters are shown in Fig. S3 in Supplementary Material. 609 

Fig. 9 compares the tracer breakthrough curve at E1-PNF from measurement and the 610 

realization with the smallest total misfit. Although the misfit results clearly favor a specific 611 

range for w', the tracer breakthrough curves at E1-PNF cannot be matched to a reasonable 612 

level. The modeling results for 26 October tracer test in Fig. 9 indicate an average aperture of 613 

0.1 mm, while the core logs retrieved from E1-P indicate that the aperture in the natural 614 

fracture is several millimeters. Therefore, the uniform aperture scenario is unlikely to 615 

correctly simulate the tracer transport process in the natural fracture. 616 

 617 

Fig. 9 Fitness of the tracer breakthrough curve at E1-PNF under the uniform aperture 618 

scenario for the six tracer tests.  619 

 620 

5.2 Heterogeneous aperture scenario 621 

We then assume a spatially-autocorrelated heterogeneous aperture distribution in the natural 622 

fracture. Around 50,000 realizations were performed for each tracer test (Fig. 10). Many 623 

satisfactory realizations that match the tracer breakthrough curve at E1-PNF almost equally 624 
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well are obtained from the rejection sampling procedure, and the corresponding parameters in 625 

these satisfactory realizations span relatively large ranges in the parameter space as shown by 626 

the red circles in the scatter plots in Fig. 10 (scatter plots for other parameters are provided in 627 

Fig. S4 in Supplementary Material). We also show the aperture distribution in the natural 628 

fracture from one of the satisfactory realizations, and more results can be found in Fig. S5 in 629 

Supplementary Material. For tracer tests between 26 October and 8 November, the 90% 630 

confidence interval of the tracer breakthrough curve at E1-PNF agree well with the measured 631 

tracer data. However, for the tracer test on 14 November, due to the lack of tracer 632 

concentration measurements beyond 12 hours (due to field operational constraints), the fitting 633 

of the tracer breakthrough curve is difficult and the corresponding 90% confidence interval 634 

indicates a large uncertainty. 635 
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 636 

Fig. 10 Stochastic modeling of tracer transport in the natural fracture under the heterogeneous 637 

aperture scenario. (a) ~ (f) show the results for tracer tests on 26 and 31 October, 1, 7, 8 and 638 

14 November respectively. In each subfigure, we show the scatter plot of the total misfit as 639 
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well as results from the obtained satisfactory realization. The red circles in the scatter plots 640 

annotate satisfactory realizations. The green shadings are the 90% confidence intervals for 641 

the tracer breakthrough curve at E1-PNF. The aperture distribution from one of the 642 

satisfactory realizations is also shown.  643 

 644 

6. Discussions 645 

6.1 Consistency of stochastic modeling results with other field observations  646 

The following field observations were not used to constrain the stochastic models. However, 647 

the agreement between the modeling results and these observations serves as additional 648 

validation of the modeling work. 649 

 650 

Aperture of the natural fracture. Although the aperture of the natural fracture cannot be 651 

constrained from the stochastic modeling results, a rough estimate of its value can be 652 

obtained from the aperture distributions in Fig. 10. According to the satisfactory realizations 653 

for tracer tests between 31 October and 14 November, the average aperture is approximately 654 

1 ~ 3 millimeters, which is in agreement with the value (several millimeters) estimated from 655 

core segments corresponding to the five fracture intersections in Fig. 1(a). The fact that no 656 

uniform aperture distribution in the natural fracture could fit the tracer data indicates that 657 

flow in the natural fracture is highly heterogeneous.  This is consistent with the observation 658 

from the five core segments in Fig. 1(a), which show very different forms in terms of 659 

kinematic aperture and the mineral fillings.  660 

 661 

Location of the sink on the hydraulic fracture. An interesting finding from the stochastic 662 

modeling is that fluid and tracer leaked out of the hydraulic fracture from its west boundary, 663 
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meaning that another natural fracture that is not explicitly included in our fracture network 664 

model was likely to intersect the west boundary of the hydraulic fracture. The existence of 665 

this natural fracture was confirmed in a later stimulation activity at the 43 m interval in E1-I 666 

on 20 December 2018, during which seismic events showed an apparent tendency to 667 

propagate northward and intersected the west boundary of the hydraulic fracture stimulated at 668 

the 50 m interval. 669 

 670 

6.2 Inferring the evolution of fracture flow characteristics during the circulation tests 671 

Direct observations of the measured outflow rates (Table 1) and tracer breakthrough curves 672 

(Fig. 2) indicate that the fracture flow field changed several times during the water circulation 673 

test from 24 October to 20 November, 2018. Two major changes can be identified: one taking 674 

place between tracer tests on 26 and 31 October and the other one between tracer tests on 1 675 

and 7 November. By assuming that fracture flow models that reasonably fit the tracer data 676 

can represent the actual states of the fracture flow system, we could infer the nature of these 677 

changes from the stochastic modeling results.  678 

 679 

Related to the first major change, the fitted aperture for the tracer test on 26 October is 680 

significantly larger than that for the five subsequent tests according to the results in Table 3. 681 

Both microseismic and DTS temperature measurements indicated significant eastward 682 

hydraulic fracture propagation during the 800 ml/min rate injection from 29 to 30 October.  683 

This seems to indicate that prior to this propagation, the hydraulic fracture was dilated to a 684 

larger aperture to accommodate the 400 ml/min circulation rate before 29 October. The 685 

hydraulic fracture propagation between 29 and 30 October enabled stronger hydraulic 686 
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connection between the hydraulic fracture and the natural fracture system, thereby 687 

accommodating the injection rate without requiring much dilation of the fracture. 688 

 689 

The second major change was likely caused by the redistribution of outflows among 690 

production and monitoring wells resulting from stimulation-induced damage to E1-OT 691 

sealing. The aperture of the hydraulic fracture remained almost constant between 1 and 7 692 

November (Table 3). Before the damage to E1-OT, fluid and tracer had a strong tendency to 693 

flow in the direction from E1-I to E1-PHF due to the presence of the leaky interface and high 694 

outflow rate at E1-PHF. Therefore, tracer breakthrough was earlier and peak magnitude was 695 

larger at E1-PHF than that at E1-OT on 1 November. However, after E1-OT was damaged by 696 

stimulation on 6 November, outflow rate increased significantly at E1-OT and decreased at 697 

E1-PHF and E1-PNF, and fluid (and tracer) became easier to flow in the direction from E1-I 698 

to E1-OT. As a result, tracer breakthrough was earlier and peak magnitude was larger at E1-699 

OT than that at E1-PHF on 7 November. 700 

 701 

Although the heterogeneous aperture scenario for the natural fracture tends to over-fit the 702 

tracer data and the fitting results are nonunique, we could still gain critical insights into the 703 

changes in the natural fracture’s flow field from the commonalities among the satisfactory 704 

fitting results. The satisfactory realizations statistically suggest that the average aperture (𝑤"′) 705 

increased from 26 October to 14 November, as shown in Fig. 11. A particularly remarkable 706 

increase took place between 26 October and 31 October, likely a result of the hydraulic 707 

fracture propagation between 29 and 30 October. We could not point to a specific explanation 708 

for the increased aperture; it could be caused by an expansion of the active flow area on the 709 

fracture, thereby engaging more flow channels with larger apertures, or some geochemical 710 

causes, the discussion of which is beyond the scope of this work. 711 
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 712 

Fig. 11 Average aperture of the natural fracture from 15 satisfactory heterogeneous aperture 713 

realizations for each of the tracer tests on 26 and 31 October, 1, 7, 8 and 14 November. Each 714 

circle represents a satisfactory realization. We use both color and size to indicate the total 715 

misfit for the corresponding realization. 716 

 717 

6.3 Effect of tracer data quality and quantity on stochastic modeling 718 

Stochastic tracer modeling is inherently an inversion process to infer 3D flow and transport 719 

characteristics from time-series tracer data. The quality and quantity of available tracer data 720 

are essential for this inversion process. Based on the results of this study, we analyze the 721 

effect of tracer data quality and quantity on stochastic modeling.  722 

 723 

First, any incompleteness in tracer breakthrough curves causes ambiguity in the interpretation 724 

of stochastic modeling results. As shown in Fig. 5(a), due to the lack of the ascending 725 

segment of the tracer breakthrough curve at E1-OT, the peak arrival time and peak magnitude 726 

cannot be used to accurately evaluate the fitness between the measured and simulated tracer 727 

breakthrough curve, which undoubtedly caused ambiguity in the selection of satisfactory 728 
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realizations. On the other hand, as shown in Fig. 10(f), the breakthrough curve at E1-PNF 729 

does not have tail data beyond 12 hours. As a result, the stochastic modeling results show a 730 

large uncertainty in the simulated tracer breakthrough curve. 731 

 732 

Second, sampling tracer concentrations at multiple locations in the flow network is crucial for 733 

resolving the spatial distribution of flow in the fractures. In this study, there are two tracer 734 

breakthrough curves (E1-PHF and E1-OT) available for the hydraulic fracture, and a 735 

satisfactory realization needs to match the two breakthrough curves simultaneously. If the 736 

misfit function had only accounted for one breakthrough curve, then the stochastic modeling 737 

results could no longer constrain model parameters. Take the tracer test on 31 October as an 738 

example. Had only one tracer breakthrough curve been matched (either at E1-PHF or E1-739 

OT), we would have obtained more than 30 satisfactory realizations. Fig. 12 shows the results 740 

from four of these realizations. Among these satisfactory realizations, the values of the four 741 

critical parameters (w, θ, αL and PL) vary in large ranges and cannot be constrained such as in 742 

Fig. 5. 743 

 744 

 745 
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 746 

Fig. 12 Comparison between measured and simulated tracer breakthrough curves from the 747 

modeling of 31 October tracer test under the uniform aperture scenario. Only one tracer 748 

breakthrough curve is used for the modeling. (a) Tracer breakthrough curve at E1-PHF is 749 

used. (b) Tracer breakthrough curve at E1-OT is used. 750 

 751 

It is worth mentioning that although some previous studies treated C-Dots as a conservative 752 

tracer (Hawkins et al., 2017b; Mattson et al., 2019b), sorption isotherm tests from the EGS 753 

Collab project indicated that C-Dots exhibited a Langmuir type sorption to crushed phyllite 754 

rocks, the host rock of the Collab Experiment 1 test bed (Neupane et al., 2020). The sorption 755 

of C-Dots to surrounding rock formations during the six tracer tests modeled in this study 756 

might have been a reason for the discrepancy between the water recovery ratio and the C-757 
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Dots mass recovery ratio (Mattson et al., 2019), causing inevitable uncertainties in our 758 

stochastic modeling results.  759 

 760 

7. Conclusion 761 

In this study, we carried out stochastic modeling for six conservative tracer tests performed 762 

during a series of circulation and fracture stimulation experiments spanning nearly one month 763 

at the EGS Collab Experiment 1 testbed. Numerous realizations were performed to simulate 764 

tracer transport processes in a fracture network model. Realizations that successfully 765 

reproduce the measured tracer breakthrough curves were obtained to gain insight into the 766 

flow system as well as its evolution at the testbed.  767 

 768 

The present study demonstrates the feasibility and efficacy of stochastic tracer modeling for 769 

the characterization of fractured reservoirs in subsurface. The results in this study provide 770 

important insights into the flow and transport characteristics in a hydraulically stimulated 771 

fracture network, including the critical parameters, interaction between hydraulic and natural 772 

fractures, as well as the evolution of flow and transport processes in the fracture network in 773 

response to various experiments. Such knowledge for a real-world reservoir can facilitate 774 

reservoir design and operation, improve reservoir thermal/hydraulic performance and 775 

mitigate potential environmental hazards.  776 
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