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Ajijola, MD PhD1

1UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, 
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2Division of General Internal Medicine and Health Services Research, University of California, 
Los Angeles, CA

Abstract

BACKGROUND—The efficacy of percutaneous stellate ganglion block (SGB) for managing 

electrical storm (ES) is not well understood.

OBJECTIVE—To characterize the efficacy of SGB as a treatment for ES.

METHODS—We conducted literature searches using PubMed/Medline and Google Scholar, for 

mixed combinations of terms including “stellate ganglion block”, *ganglion block (ade)”, 

“sympathetic block (ade)” and “arrhythmia”, “ventricular arrhythmia (VA)” or “tachycardia" (VT), 

"ventricular fibrillation" (VF), "electrical storm”. Inclusion criteria were presentation with 

guideline-defined ES and treatment with SGB. Exclusion criteria: presentation with any 

supraventricular arrhythmia, VA without ES, or surgical sympathectomy. Studies lacking basic 

demographic data, arrhythmia description, and outcomes were excluded.

RESULTS—Of 3,374 publications reviewed, 38 patients from 23 studies met study criteria (52 

± 19.1 years, 11 F, 17 with ischemic cardiomyopathy). Anti-arrhythmics were used in all patients. 

Mean Left ventricular ejection fraction was 31 ± 10%. ES was triggered by acute myocardial 

infarction in 15 patients and QT prolongation in 7 patients. The most common local anesthetic 

used for SGB was bupivacaine (0.25–0.5%). SGB resulted in a significant decrease in VA burden 

(12.4±8.8 vs. 1.04±2.12 episodes/day, p< 0.001) and number of external and ICD shocks 

(10.0±9.1 vs. 0.05±0.22 shocks/day, p< 0.01). Following SGB, 80.6% of patients survived to 

discharge.

CONCLUSION—SGB is an effective acute treatment for ES. However, larger prospective 

randomized studies are needed to better understand the role of SGB in ES and other VAs.
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INTRODUCTION

Electrical storm (ES) is commonly defined as the occurrence of three or more episodes of 

sustained ventricular arrhythmia (VA) over 24 hours (1,2). Antiarrhythmic medications and 

catheter ablation remain the standard of care in patients with ES or other refractory VA (3). 

The role of the autonomic nervous system in ventricular arrhythmogenesis is well 

recognized (4), and neural modulation via a number of avenues is increasingly gaining 

traction (5). Cardiac sympathetic denervation (CSD), the surgical resection of the lower half 

of the stellate (cervicothoracic) ganglion and T2–4 sympathetic ganglia, has been shown to 

be effective in the setting of ES or other refractory VA (6–14). Other forms of 

neuromodulation include pharmacologic beta-adrenergic receptor blockade, thoracic 

epidural anesthesia (TEA) spinal cord stimulation (SCS), and stellate ganglion block (SGB) 

(5). Stellate ganglion block (SGB) is performed by injecting local anesthetic agents 

percutaneously to stellate ganglion, which is less invasive than CSD and can be performed at 

bedside in emergent setting in patients with hemodynamic instability Currently, besides case 

reports and small series, limited evidence is available regarding the role of SGB in ES (15–

37). To better understand the role of SGB in ES (particularly to address patient 

characteristics, techniques, and overall efficacy of SGB), we performed dedicated literature 

searches and performed this systemic review.

METHODS

Literature search, and criteria for inclusion or exclusion

Using PubMed/Medline and Google Scholar, we performed varying combinations of 

searches using the following terms, “left stellate ganglion block”, “ganglion block (ade)”, 

“sympathetic block (ade)”, “arrhythmia”, “ventricular arrhythmia (VA)” "ventricular 

tachycardia" (VT), "ventricular fibrillation" (VF), "electrical storm (ES)”. ES was defined as 

three or more episodes of sustained VT or VF within a 24-hour period (1). The search was 

limited to human subjects only. The search strategy was neither restricted by the language, 

nor the date of publication. Inclusion criteria were patients presenting with ES who 

underwent SGB. Bilateral SGB was also included. Exclusion criteria included patients 

presenting with any supraventricular tachycardia, ventricular arrhythmia without ES (for 

example, premature ventricular contractions), or patients treated only with surgical 

sympathectomy. The articles were carefully reviewed for inclusion and exclusion criteria. A 

lack of basic patient demographics, arrhythmia description, or outcomes, which are critical 

for this study, was also a reason for exclusion.

All clinical variables were extracted from the selected studies including number of patients, 

age, gender, type of VA, episodes of VA and shocks before and immediately after SGB, 

presence of underlying cardiomyopathy, left ventricular ejection fraction (LVEF), trigger of 
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ES, antiarrhythmic medications used, other procedures or treatment received prior to or after 

SGB, anesthetic administration techniques (i.e. laterality, bolus injection vs. continuous 

pump infusion, use of imaging guidance), type and volume of local anesthetic agent used, 

inpatient survival to discharge. Relative reduction of VA and defibrillator shocks are 

calculated as the difference in episodes per day pre-vs. post-SGB, divided by the number of 

episodes per day pre-SGB.

Statistical analysis

Continuous variables were summarized as mean ± SD. Comparison of VA episodes and 

number of external or ICD shocks before and after SGB was performed using Wilcoxon 

signed-rank test, given the non-normal distribution of the data. Change in VA burden or 

defibrillator shocks was expressed as relative reduction (i.e. post-SGB/pre-SGB). The 

relationship between arrhythmia reduction and LV EF was examined by linear regression. 

Comparison of cardiomyopathy subtypes was performed using Analysis of Variance 

(ANOVA), and arrhythmia subtypes were compared using the Kruskall-Wallis test, as these 

data were non-normally distributed. A p-value < 0.05 was considered significant.

RESULTS

Patient characteristics

A total of 3374 publications were reviewed and 38 patients from 23 studies published 

between 1976 and 2016 were included based on inclusion and exclusion criteria. The mean 

age of the patient population was 52 ± 19.1 years. Twenty-seven (71%) patients were male. 

Cardiomyopathy (CMY) was present in 24 (63.2%) patients (ischemic CMY (ICMY) in 17 

patients, and non-ischemic CMY (NICMY) in 7 patients, Table 1). The mean LVEF was 

31±10 %. Acute myocardial infarction (AMI) was the most common trigger of ES (15 

patients), followed by prolonged QT (7 patients). Interestingly, intracranial hemorrhage was 

the etiology in 2 patients. In 37% patients, the trigger of ES was unspecified. Of the 

arrhythmia types, mixed VT/VF was the most common type encountered (n=15), followed 

by polymorphic VT (n=12). Four patients had monomorphic VT and 7 patients had primary 

VF without VT (Table 1). Almost all patients were treated with beta-blocker therapy (33/38). 

All patients except one received antiarrhythmic medications prior to SGB (Table 2) and the 

most common agents were amiodarone (82%) and lidocaine (68%). On average, 1.82±0.82 

anti-arrhythmic drugs were used, along with beta-blockers and/or calcium channel blockers 

prior to SGB. Regarding other interventions prior to SGB, 36.8% patients were intubated 

and deeply sedated, while15.8% patients were treated with catheter-based ablation (Table 3).

Approach to SGB

SGB was achieved by administering local anesthetic percutaneously to the SG. We 

examined the delivery method, the type and amount of local anesthetic, as well as the utility 

of imaging guidance with SGB. 34 patients received only left SGB whereas in 4 patients, 

both left and right SGB were performed. As noted in Table 4, local anesthetic agents were 

administered as bolus injections in 28 patients (73.7%), whereas continuous infusion with 

pump system was used in nine (one patient had both bolus and continuous infusion). Among 

patients receiving bolus injections, bupivacaine was the most commonly used anesthetic in 
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patients with SGB (n=16), while ropivacaine was the next most commonly used. The mean 

volume of bupivacaine used was 9 ± 5.6 ml with concentration ranging from 0.25% to 0.5%. 

We also examined the utility of imaging when performing SGB. Ultrasound guidance was 

utilized in 21 patients, and fluoroscopy in 4 patients (Table 4). In the remaining13 patients, 

SGB was performed with anatomic landmarks only without imaging guidance.

Efficacy of SGB in immediate reduction of VA burden and shocks

To determine the efficacy of SGB, we quantified ES burden as the episodes of VA per day 

and number of external or ICD shocks per day. As shown in Figure 1, there was a significant 

reduction in both the episodes of VA, and number of shocks in patients with ES after SGB. 

SGB decreased VA burden from 12.4±8.8 episodes/day to 1.04±2.12 episodes/day (p< 

0.001). The number of external or ICD shocks was decreased from 10.0±9.1/day to 

0.05±0.22/day (p< 0.01).

In this cohort, 24 of the 38 patients demonstrated complete arrhythmia suppression 

following SGB during the immediate follow up period, while the remaining 14 showed 

partial success. The impact of SGB did not depend on the subtype of VA causing ES. 

Relative reduction in VA episodes for the four subtypes studied, monomorphic VT, 

polymorphic VT, mixed VT/VF, and primary VF were 0.94±0.1; 0.76±0.25; 1±0; and 

0.97±0.05, respectively (p=0.124). The duration of clinical suppressive effect after bolus 

injection was 6–24 hours for ropivacaine, 8–18 hours for lidocaine, 6 hours to 1 week for 

bupivacaine, 11 hours to 4 weeks for mepivacaine.

We examined whether the anti-arrhythmic benefit of SGB was influenced by the presence 

and degree of LV dysfunction. As shown in figure 2A, there was no correlation between the 

LV EF, and arrhythmia reduction (r2=0.05, p=0.384). Patients with normal LV function, 

mild, moderate, or severe LV dysfunction, equally benefitted from SGB. Similarly, the 

presence and etiology of CMY did not influence the ability of SGB to exert anti-arrhythmic 

benefits (figure 2B). Relative reduction in VA burden was 0.95±0.07, 0.85±0.19, and 

0.83±0.29 respectively for no CMY, ICMY, and NICMY, respectively (p=0.78). Using 

relative VA reduction < 50% as a cut off for poor response to SGB, 10% of patients were 

labeled as poor responders to SGB. The rest of the patients were considered to have good 

response. Characteristics of good and poor responders were are summarized in Table 5. All 

poor responders were male and presented with PMVT. Mean LVEF in this group was 27 

± 13%.

Following SGB, 80.6% of patients survived to discharge (hospital day 6–28), and terminal 

sympathectomy via surgical CSD was performed in 11 patients. One patient underwent 

orthotopic heart transplantation.

DISCUSSION

The major findings of the present study on the efficacy of SGB for ES are 1) SGB is 

effective in reducing the number episodes and therapies for VA, and 2) this efficacy was 

independent of the subtype of ventricular arrhythmia, the presence or absence of 

cardiomyopathy, and the degree of LV dysfunction in the patients studied. To our 
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knowledge, this is the first systemic review of the efficacy of the SGB in patients with ES, 

and strongly supports the use of SGB in patients with ES.

There is a strong link between cardiac sympathetic activity and ventricular arrhythmogenesis 

(38,39). In a rabbit myocardial infarction model, left stellate ganglion blockade (LSGB) 

prolonged the action potential duration (measured as MAPD90) in all layers of the 

myocardial wall, reducing transmural repolarization heterogeneity, increased the effective 

refractory period (ERP), and reduced ventricular fibrillation threshold (40). SGB, by 

mitigating catecholamine release, likely reverses the findings in a canine post-infarct model 

of shortened ERP in abnormal ventricular myocardium, and increased inducibility of 

arrhythmias in the presence of catecholamines (41). SGB may also be particularly useful for 

attenuating burst discharge activity in left stellate ganglion, which has been shown to 

precede most VT and sudden cardiac death in a canine model of ischemic cardiomyopathy 

(42–43). Sympathoexcitation increases repolarization heterogeneity (44–46), increases risk 

of delayed after depolarizations (47,48), and increases arrhythmia inducibility (49). It also 

modulates peri-infarct tissues harboring circuits capable of facilitating MMVT (50). The 

efficacy of beta-adrenergic receptor antagonism in patients with cardiomyopathy (51), is 

related to minimizing the adverse effects of adrenergic activation signaling. However, 

despite use of beta-adrenergic receptor blockers, anti-arrhtyhmic medications (some of 

which further antagonize beta-adrenergic receptors), and catheter ablation, some patients 

continue to have arrhythmias. In this study, we examine the efficacy of SGB in this 

population.

A number of mechanisms may explain the therapeutic benefits imparted by SGB. The bulk 

of efferent sympathetic outflow to the heart travels through the SG. Preganglionic fibers 

mediating neurotransmission to the heart synapse on postganglionic neurons within the SG 

(and adjacent ganglia within the sympathetic chain) (Figure 3). In addition, postganglionic 

fibers from other ganglia may also travel through the SG to middle cervical ganglia and 

cardiac nerves (52). This represents an effective site to target cardiac adrenergic activation 

while limiting systemic effects. Further, post-ganglionic axons release a variety of 

neurotransmitters, of which noradrenaline, targeted by beta blockers, is only one. Additional 

neurotransmitters such as neuropeptide Y and galanin modulate adrenergic signaling at the 

myocardial level (53,54. However, in some cases, as evidenced by the patients examined in 

this study, beta-adrenergic blockade, antiarrhythmic drugs, and catheter ablation do not 

mitigate these other mechanisms. Interventions targeting the SG however, would attenuate 

not only noradrenaline signaling, but these additional signaling pathways.

Sensory neurotransmission is also mitigated by SGB. Sympatho-excitatory reflexes that 

occur at multiple levels are triggered by sensory afferent nerves that relay information 

intrinsic cardiac, mediastinal, SG, spinal cord and brain stem (38). At these centers, the 

sensory information is processed, and reflex sympathetic activity is generated. The bulk of 

spinal sensory afferents, which have been implicated in the pathogenesis of heart failure 

(55,56), and along the same lines arrhythmogenesis pass through the SG, enroute to the 

dorsal horn of the spinal cord. Infusion of anesthetic agents to block the SG also targets 

these fibers, and therefore attenuates both afferent and efferent neurotransmission at the SG 

Meng et al. Page 5

JACC Clin Electrophysiol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 3). Although SGB does not affect vagal afferents, the reduction of spinal afferents 

likely debulks overall cardiac afferent neurotransmission.

The burden of VAs and defibrillator shocks were significantly reduced after SGB in patients 

with ES. This occurred in patients independent of the etiology of the arrhythmia, triggering 

mechanisms, and LV function. VA suppression varied after bolus of injection of local 

anesthetics (LA), ranging from hours to weeks. The longer duration of efficacy relative to 

the anesthetic half-life is most likely related to short- and long-term adaptations in 

neurotransmission and neural processing. Due to the highly plastic nature of neurons, a 

short-term intervention can produce long-lasting effects, well beyond what is expected for 

the drug along. That said, there is likely to be some variation related to pharmacodynamics 

of the agents used, proximity of the injection of the ganglion, and thickness of the ganglion 

sheath.

We present the most commonly used approaches, anesthetic agents and doses to achieve 

SGB. The patient characteristics and technical data generated by the present study may be 

helpful as a reference for the institution of SGB. These data may also be useful in the design 

and patient selection for randomized prospective studies to improve SGB techniques in 

clinical practice.

LIMITATIONS

This study has a number of limitations, which include the number of studies in the literature 

meeting inclusion/exclusion criteria. As these were predominantly case reports and case 

series, data reported here are retrospective. Further the small sample size limits potentially 

instructive subgroup analyses, as well as the reliability of the analyses made. To improve the 

accuracy of the present study, reports in the literature lacking basic patient demographics 

were excluded, reducing the overall number of patients in the study (59).

CONCLUSION

The findings of the present study support the routine use of SGB as an effective adjunct to 

contemporary therapies in managing ES. SGB is efficacious for a variety of VA subtypes 

and patient demographics. Prospective randomized studies are needed to better understand 

the role of the SGB in ES and other VA.
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CMY cardiomyopathy

ES electrical storm

LA local anesthetics
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LQT long QT syndrome)

LVEF left ventricular ejection fraction

SGB stellate ganglion block

VA ventricular arrhythmias

VF ventricular fibrillation

VT ventricular tachycardia
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Perspectives

Competency in Medical Knowledge 1

The role of neuromodulation in managing electrical storm is gaining traction.

Competency in Medical Knowledge 2

Anesthetic blockade of the stellate ganglion achieved percutaneously represents an 

attractive approach that can be implemented in a variety of settings, including at the 

patient’s bedside.

Competency in Patient Care

The types of anesthetic agents, doses, and methods of dosing are important in applying 

stellate ganglion block. Characteristics of patients, and the arrhythmias controlled by 

stellate ganglion block would guide patient care.

Competency in Interpersonal & Communication Skills

It is important to discuss the available options with patients and the medical team.

Translational Outlook 1

Stellate ganglion block is effective in controlling electrical storm, and is not limited by 

the type of ventricular arrhythmia, or the presence/type of structural heart disease.

Translational Outlook 2

Additional research is needed to understand the safety and efficacy of stellate ganglion 

block in prospective randomized trials to improve is use.
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Figure 1. Impact of stellate ganglion block on ventricular arrhythmia episodes and defibrillator 
shocks
Reduction in the number of ventricular arrhythmia episodes (A.) and number of internal or 

external defibrillator shocks (B.) before and after stellate ganglion block (SGB) are shown. 

Panel A (n=24) and panel B (n=11).
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Figure 2. Relationship between arrhythmia burden reduction and left ventricular dysfunction
A. The relationship between left ventricular ejection fraction (LV EF) and the relative 

reduction in ventricular arrhythmia (VA) episodes (n=18), r2=0.05, p=0.384). B. Reduction 

in arrhythmia episodes was independent of the presence and etiology of cardiomyopathy 

(CMY), n=24, p=0.78).

Meng et al. Page 13

JACC Clin Electrophysiol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Schematic of cardiac innervation and site of stellate ganglion block
Stellate ganglion block directly impacts both efferent and afferent neurotransmission to the 

heart. The site of action and components are shown. Aff, afferent; β, β-adrenergic receptor; 

C, cervical; DRG, dorsal root ganglion; LCN, local circuit neuron; M, muscarinic receptor, 

Sympath, sympathetic, and T, thoracic.
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Table 1

Patient Characteristics.

Mean age (years) 52±19.1

Male 27 (71%)

Presence of Cardiomyopathy 35 (92%)

  Ischemic CMY 17

  Non-ischemic CMY 7

  Unspecified 11

Arrhythmia Type

  Mixed VT/VF 15

  PMVT 12

  MMVT 4

  VF 7

Left Ventricular Ejection Fraction 31±10%

Acute trigger of ES

  Acute MI 15

  Prolonged QT 7

  Intracranial hemorrhage 2

  Unspecified 14

CMY: cardiomyopathy, MI: myocardial infarction, MMVT: monomorphic ventricular tachycardia, PMVT: polymorphic ventricular tachycardia, 
VF: ventricular fibrillation, VT: ventricular tachycardia.
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Table 2

Medications used before institution of stellate ganglion block.

Amiodarone 23 (82%)

Beta blocker 31 (82%)

  Metoprolol 7 (25%)

  Propranolol 6 (21%)

  Esmolol 4 (14%)

  Carvedilol 1 (4%)

  Unspecified 14 (50%)

Lidocaine 19 (68%)

Sotalol 1 (4%)

Procainamide 8 (29%)

Mexiletine 3 (11%)

Qunidine 2 (7%)

Ajmaline 1 (4%)

Bretylium 1 (4%)

Phenytoin 8 (29%)

Digitalis 1 (4%)

Isoproterenol 1 (4%)

Verapamil 1 (4%)
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Table 3

Procedures/Interventions performed prior to stellate ganglion block.

Intubation and deep sedation 14 (36.8%)

Cardiac catheter ablation 6 (15.8%)

IABP 6 (15.8%)

ECMO 3 (7.9%)

TEA 2 (5.3%)

Tandem heart 1 (2.6%)

ECMO: Extracorporeal membrane oxygenation, IABP: Intra-aortic balloon pump, TEA: thoracic epidural anesthesia.
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Table 4

Approaches to anesthetic use for stellate ganglion block.

Anesthetic Agent Number of
patients

Dose
(Concentration,

%)

Volume
(ml)

Bupivacaine 16 0.25–0.5 9 ± 5.6

Ropivacaine 11 0.2 6 ± 5.7

Lidocaine 9 1–4 8 ± 3.8

Mepivacaine 2 2 4 ± 0.0

Type of administration of anesthetics Number of patients

Bolus injections 28

Continuous infusion 9

Both bolus injections and continuous infusion 1

Utility of imaging guidance Number of patients

Landmark only without imaging 13

Ultrasound 21

Fluoroscopy 4
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Table 5

Comparison of patients with poor response and good response to LSGB.

Poor response Good response

Number of patients 3 35

Mean age (years) 61±9 51±20

Male 3 (100%) 24 (68.6%)

Presence of Cardiomyopathy 3 (100%) 24 (68.6%)

Ischemic CMY 2 (66.7%) 15 (42.9%)

Non-ischemic CMY 1 (33.3%) 6 (17.1%)

Unspecified CMY 0 3 (8.6%)

Arrhythmia Type

Mixed VT/VF 0 12 (34.3%)

PMVT 3 (100%) 12 (34.3%)

MMVT 0 7 (20%)

VF 0 4 (11.4%)

Left Ventricular Ejection Fraction 27±13% 32±14%

Acute trigger of ES

Acute MI 2 (66.7%) 14 (40%)

Prolonged QT 1 (33.3%) 7 (20%)

Intracranial events 0 2 (5.7%)

Unspecified 0 12 (34.3%)

Type of local anesthetics

Bupivacaine 2 (66.7%) 14 (40%)

Ropivacaine 1 (33.3%) 10 (28.6%)

Mepivacaine 0 9 (25.7%)

Lidocaine 0 2 (5.7%)

Method of administration

Bolus injection 2 (66.7%) 27 (77.1%)

Continuous infusion 1 (33.3%) 7 (20%)

Both bolus and continuous infusion 0 1 (2.9%)

Type of imaging guidance

Ultrasound 3 (100%) 18 (51.4%)

Fluoroscopy 0 4 (11.4%)

Inpatient survival

Discharged 1 (33.3%) 30 (85.7%)

Deceased 2 (66.7%) 5 (14.3%)
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