Title
Early predictors of treatment outcome in a partial hospital program for adolescent anorexia nervosa.

Permalink
https://escholarship.org/uc/item/2vt5114r

Journal
The International journal of eating disorders, 53(9)

ISSN
0276-3478

Authors
Brown, Tiffany A
Murray, Stuart B
Anderson, Leslie K
et al.

Publication Date
2020-09-01

DOI
10.1002/eat.23343

Peer reviewed
Early Predictors of Treatment Outcome in
a Partial Hospital Program for Adolescent Anorexia Nervosa

Tiffany A. Brown a, Stuart B. Murray b, Leslie Anderson a, Walter H. Kaye a

a Department of Psychiatry, University of California, San Diego,
La Jolla, San Diego, CA, USA
b Department of Psychiatry & Behavioral Sciences, University of Southern
California, Los Angeles, CA, USA

Correspondence: Dr. Tiffany A. Brown, Department of Psychiatry,
University of California, San Diego, La Jolla, San Diego, CA, 92037, United
States.
Email: tiffanybrown@ucsd.edu

Funding: This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Data Sharing Statement: The data that support the findings of this
study are available from the corresponding author upon request.

Manuscript word count: 2005/2000
Abstract word count: 194/200
Abstract

Objective: Previous research supports the relevance of early symptom change in eating disorder (ED) treatment; however, few studies have distinguished early weight change from early change in ED psychopathology, particularly in higher levels of care. Thus, the present study examined whether early change in weight and ED psychopathology predicted outcome for adolescents with anorexia nervosa (AN) in a partial hospitalization program. Method: Adolescents with AN (n = 99) completed assessments at admission, one-month after treatment admission, discharge, and 6-month follow-up. Results: Higher admission percent expected body weight (%EBW), greater early change in %EBW, longer duration of treatment, shorter length of illness, and earlier age of onset predicted greater change in %EBW at discharge, but not follow-up. Greater ED psychopathology at admission and greater early change in ED psychopathology predicted later change in ED symptoms at discharge, but not follow-up. Neither early change in %EBW nor ED psychopathology predicted likelihood of remission at discharge and follow-up. Discussion: Results support the importance of early change in predicting later change in the same ED outcome variables and suggest that early change in both %EBW and ED psychopathology in adolescents may be an important area for future research.

Keywords: eating disorders, anorexia nervosa, partial hospital program, early change, adolescent
Introduction

While 22-49% of adolescents with anorexia nervosa (AN) remit following outpatient treatment (Lock & Le Grange, 2019), a substantial proportion remain ill. Thus, a better understanding of treatment mechanisms and prognostic factors is critical in improving outcomes during and beyond treatment. This is particularly true in higher levels of care, such as day treatment or partial hospital programs (PHPs), where treatments are often adapted and less is known about predictors of outcome (Friedman et al., 2016).

In outpatient settings, early treatment response is an important prognostic indicator for eating disorder (ED) outcomes. Indeed, a recent meta-analysis in adolescents and adults demonstrated that patients who responded more quickly early in treatment exhibited large effect size improvements at end-of-treatment ($r = 0.51$) and moderate improvements at follow-up ($r = 0.35$; Vall & Wade, 2015). Several studies in adolescents have demonstrated that early weight gain (e.g., first four weeks) predict improvements in ED psychopathology through 1-year follow-up (Accurso, Ciao, Fitzsimmons-Craft, Lock, & Le Grange, 2014) and greater likelihood of remission at discharge (Doyle et al., 2010; Le Grange et al., 2014; Madden et al., 2015; Martin-Wagar, Holmes, & Bhatnagar, 2019; Van Huysse et al., in press) and 1-year follow-up (Lock, Couturier, Bryson, & Agras, 2006; Madden et al., 2015), However, other studies have failed to find this effect, particularly through follow-up (Le Grange et al., 2014; Le Grange, Lock, et al., 2012).
To our knowledge, no studies have examined the impact of early changes in ED psychopathology in adolescents with AN in non-outpatient settings. The limited focus on early ED psychopathology change may reflect that cognitive symptom remission is posited to occur secondary to weight restoration (Accurso et al., 2014). However, understanding how early change in ED psychopathology impacts outcome has implications for helping improve treatments. For adults with EDs, early change in ED psychopathology during treatment predicts improvements in ED psychopathology (Danielsen & Rø, 2012) and remission (Thompson-Brenner, Shingleton, Sauer-Zavala, Richards, & Pratt, 2015), but not improvements in weight (Danielsen & Rø, 2012) at treatment discharge.

Thus, the present study sought to examine whether early change in weight and ED psychopathology in AN predict treatment outcome in PHP, both at discharge and at 6-month follow-up. We hypothesized that early improvements in body weight and ED psychopathology would predict improvements in weight, ED psychopathology, and remission at discharge and follow-up.

Methods

Participants and Procedure

Participants were 99 adolescents (n = 96 females, n = 3 males) with DSM-5 diagnoses of AN and an estimated body weight (EBW) of 85% or less, who underwent PHP treatment for at least one month between October 2012-September 2019. Diagnoses were determined by four licensed child and adolescent psychiatrists using an unstandardized semi-structured interview at admission. Participants were approximately 15.82
years old ($SD = 1.56; \text{ range} = 11-19\text{ years})$. Most participants self-
identified as White (67.7%), with a minority of participants identify as
Asian (9.1%) or “Other” (19.2%). 16.2% of participants identified as
Hispanic.

Participants completed surveys within 14 days of treatment admission, one-month post-admission (month 1), treatment discharge, and 6-month follow-up. 25.3% ($n = 25/99$) of participants were missing data at discharge and 58.6% ($n = 58/99$) of participants were missing data at follow-up. Treatment discharge was typically recommended when participants reached their expected body weight (EBW) and ED behaviors were markedly reduced or eliminated. Consistent with an intent-to-treat approach, participants were included in analyses if they provided data at any time point. All study procedures were approved by the Institutional Review Board.

Program Description

The PHP uses a blend of family-based treatment (FBT) and dialectical behavior therapy (DBT) adapted for intensive treatment settings (Anderson et al., 2015). Patients received treatment 6-10 hours/day, 6 days/week, including individual, family, group, and multi-family therapy, nutritional counseling, psychiatric care, and medical monitoring. Nutritional counseling is provided to parents on an as-needed basis. Average duration of treatment was 92.89 days ($SD = 45.44; \text{ range} = 29-281$).

Measures
Percent EBW (%EBW). EBW was calculated using the BMI percentile method (%EBW = BMI/50th percentile BMI for age and height x 100; Le Grange et al., 2012). Objective measurements were used at admission and discharge and self-report at month 1 and follow-up. While the use of self-reported weight is a limitation, self-reported and objective weight were significantly correlated at admission, $r(83) = .69$, $p < .001$, and discharge, $r(73) = .84$, $p < .001$.

Eating Disorder Examination - Questionnaire (EDE-Q; Fairburn & Beglin, 1994). The EDE-Q is a 28-item self-report questionnaire used to evaluate the severity of ED psychopathology during the previous 28 days. Behavioral frequencies of objective binge eating, fasting, and purging were used to determine remission status. The EDE-Q has demonstrated good internal consistency, construct validity, and 2-week test-retest reliability (Berg, Peterson, Frazier, & Crow, 2011). Internal consistency in the present study was strong ($\alpha = .97 - .98$).

Remission Criteria. Criteria for full remission used a stringent definition employed in past adolescent treatment trials (Le Grange et al., 2014; Lock et al., 2010). Full remission was defined as achieving 95% EBW, no fasting or binge eating/purging within the past month, and EDE-Q global scores within one standard deviation of adolescent norms (Carter, Stewart, & Fairburn, 2001).

Statistical procedure
Data were examined and conformed to assumptions of normality. Little’s MCAR test was significant, $X^2(78) = 99.70$, $p = .049$, suggesting that data were not missing completely at random (i.e., not MCAR).
Participants with missing data did not differ from participants without missing data on age, race, ethnicity, diagnosis, gender, duration of treatment, length of illness, age of onset, admission weight or admission eating pathology at discharge (all ps > .17) or follow-up (ps > .08; see Supplement). As data were not MCAR and there was no evidence of biased attrition, this suggests that data were missing at random (MAR). Recent research suggests that multiple imputation (MI) produces unbiased estimates for analyzing data MAR (Graham, 2009; Enders, 2011; Madley-Dowd et al., 2019). Thus, MI was conducted in SPSS 25.0, using 20 imputed datasets. Within-subjects repeated measures ANOVA evaluated changes in outcomes over time.

Pooled multiple linear regression models were run to determine whether early change in weight (e.g., change score in %EBW, admission to month 1) and ED psychopathology (e.g., change score in EDE-Q, admission to month 1) predicted outcomes at discharge and follow-up (%EBW, EDE-Q). All analyses controlled for admission %EBW and EDE-Q scores to account for pre-treatment differences when using change scores (Hayes & Rockwood, 2017). Analyses also controlled for duration of treatment, length of illness, and age of onset. Admission outcomes were included at Step 1, covariates at Step 2, and early change variables at Step 3 (see Table 2). Logistic regression analyses were run for remission status. Tolerance values were acceptable (> .50), minimizing concerns regarding multicollinearity.

Results
Table 1 describes means and correlations between variables over time. Early change in %EBW was associated with %EBW at month 1. Early change in EDE-Q scores was associated with EDE-Q scores from admit through discharge. Duration of treatment was associated with higher EDE-Q scores at admit and month 1 and with %EBW at discharge. Older age of onset was associated with lower %EBW at discharge and shorter length of illness. Global scores significantly decreased from treatment admission through 6-month follow-up ($F[1.81, 177.73] =55.77$, $p <.001$, partial $\eta^2 =.36$). The same pattern was observed for %EBW ($F[2.04, 199.45] =246.59$, $p <.001$, partial $\eta^2 =.72$).

Table 2 presents pooled results from regression analyses examining early change in weight and ED psychopathology as predictors of outcome at discharge and 6-month follow-up. Regarding weight outcomes, higher %EBW at treatment admission, longer duration of treatment, shorter length of illness, and younger age of onset predicted higher %EBW at discharge. Greater early change in %EBW was associated with higher %EBW at discharge, above and beyond EDE-Q scores. There were no significant predictors of weight at 6-month follow-up.

Regarding ED psychopathology, higher EDE-Q scores at treatment admission predicted higher EDE-Q scores at discharge. Greater early change in EDE-Q scores was associated with lower EDE-Q scores at discharge, above and beyond changes in %EBW. At 6-month follow-up, there were no significant predictors of EDE-Q scores.

Regarding remission, at discharge, 25.3% of patients met criteria for remission ($n=22/87$) and 17.8% of patients met criteria for remission at 6-
Discussion

The present study examined whether early changes in body weight and ED psychopathology predicted treatment outcomes for adolescents with AN in PHP treatment. Overall, we found support for early change predicting later change in the same outcome variables. Specifically, for weight change over time, higher admission weight, longer duration of treatment, shorter length of illness, younger age of onset, and greater early change in weight were associated with higher weight at discharge, but not at 6-month follow-up. Regarding ED psychopathology, lower admission ED psychopathology and greater early change in ED symptoms predicted lower ED psychopathology at discharge, while no significant predictors were found for symptoms at follow-up. No predictors of remission at discharge or 6-month follow-up were found.

Consistent with previous findings in outpatient and higher levels of care (Doyle et al., 2010; Le Grange et al., 2014; Madden et al., 2015; Martin-Wagar, Holmes, & Bhatnagar, 2019; Van Huysse et al., in press), greater early weight gain predicted higher weight at discharge, although this did not impact change in ED psychopathology or remission status at any time point. While several studies support the prognostic utility of early weight change, other studies have failed to find support in predicting remission (Le Grange et al., 2014). Although no studies in adolescents have examined early change in ED psychopathology as a predictor, our findings are consistent with previous research in adults in predicting
change in ED psychopathology, but not weight (Danielsen & Rø, 2012).

Given that cognitive ED symptoms are often less responsive to treatment (Murray et al., 2019), early ED psychopathology response may indicate a subset of patients that may be more likely to improve later. Indeed, early change in ED psychopathology and weight were not significantly correlated, suggesting that these may reflect distinct early change groups. Future research should explore concordance between early weight and ED psychopathology change. Replication is needed before forming definitive conclusions.

These results have important clinical implications. Admittedly, patients with better long-term prognosis may achieve early weight gain and cognitive change independently of intervention type. However, in the interest of refining treatment efforts, these results validate many clinicians’ efforts to prioritize early weight gain and underscore the potential importance of attending to change in ED psychopathology early on. This may also help treatment providers make decisions about treatment course when early change does not occur.

Although early change has been a robust predictor of treatment outcome in outpatient settings, the current study is the first in the literature to show the predictive role of early improvement in both weight and ED psychopathology for underweight adolescents with AN in PHP. This investigation has several strengths, including a relatively large sample and the inclusion of follow-up data. Several limitations are noteworthy. The overall amount of variance explained by the models was rather small. Given the multiple treatment strategies used, results obtained may not
replicate in treatment centers using other approaches. Alongside many PHP outcome studies, there was a lack of systematic data collection on treatment received following discharge from PHP; thus, outcomes at follow-up may be influenced by other treatments. Additionally, the amount of missing data was substantial (up to 58.6%). While data imputation was used, this does not ensure that results would replicate with complete data. Missing data is a common, but unsolved confound that frequently plagues naturalistic outcome studies at higher levels of care (Friedman et al., 2016).

While early change is a robust predictor of treatment outcome in outpatient settings, this study extended these results for both weight and ED psychopathology, but not remission, for adolescents with AN in PHP. Data support that early change in symptoms predicts later change in the same symptoms and underscore the importance of continuing to examine and target early symptom change across treatment settings.
References

Madley-Dowd, P., Hughes, R., Tilling, K., & Heron, J. (2019). The proportion of missing data should not be used to guide decisions on multiple imputation. *Journal of Clinical Epidemiology, 110*, 63-73.

Pooled Means and Correlations between Body Weight and Eating Disorder Psychopathology over Time

<table>
<thead>
<tr>
<th>Pooled Correlations</th>
<th>%EWB Admit</th>
<th>%EWB Month 1</th>
<th>%EWB Discharge</th>
<th>%EWB Follow-up</th>
<th>∆ %EWB Admit to Month</th>
<th>EDE-Q Global Admit</th>
<th>EDE-Q Month 1</th>
<th>EDE-Q Discharge</th>
<th>EDE-Q Follow-up</th>
<th>∆ EDE-Q Admit to Month</th>
<th>Duration (Days)</th>
<th>Length of Illness (Years)</th>
<th>Age of Onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>%EBW Admit</td>
<td>--</td>
</tr>
<tr>
<td>%EBW Month 1</td>
<td>--</td>
</tr>
<tr>
<td>%EBW Discharge</td>
<td>--</td>
</tr>
<tr>
<td>%EBW Follow-up</td>
<td>--</td>
</tr>
<tr>
<td>∆ %EBW Admit to Month</td>
<td>--</td>
</tr>
<tr>
<td>EDE-Q Global Admit</td>
<td>--</td>
</tr>
<tr>
<td>EDE-Q Month 1</td>
<td>--</td>
</tr>
<tr>
<td>EDE-Q Discharge</td>
<td>--</td>
</tr>
<tr>
<td>EDE-Q Follow-up</td>
<td>--</td>
</tr>
<tr>
<td>∆ EDE-Q Admit to Month</td>
<td>--</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>--</td>
</tr>
<tr>
<td>Length of Illness</td>
<td>--</td>
</tr>
<tr>
<td>Age of Onset</td>
<td>--</td>
</tr>
<tr>
<td>Pooled Means</td>
<td>79.23</td>
<td>86.25</td>
<td>94.18</td>
<td>94.34</td>
<td>7.02</td>
<td>3.13</td>
<td>2.41</td>
<td>1.78</td>
<td>1.66</td>
<td>0.72</td>
<td>92.89</td>
<td>2.17</td>
<td>13.67</td>
</tr>
</tbody>
</table>

Note: table contains correlations and pooled means. The table shows the relationship between body weight (%EWB) and eating disorder psychopathology (EDE-Q) at different time points, including admission (Admit), month 1 (Month 1), discharge (Discharge), and follow-up (Follow-up). The table also includes the duration of treatment, length of illness, and age of onset, with correlations and means provided for each category.
Note. *p < .05, **p < .01, ***p < .001. %EBW = Percent Expected Body Weight; EDE-Q = Eating Disorder Examination Questionnaire – Global Score. For comparison purposes, M(SD) for community samples of female adolescents on the EDE-Q = 1.60 (1.40; Carter, Stewart, & Fairburn, 2001).
Table 2

Pooled Regression Analyses of Predictors of Change in Weight, Eating Disorder Psychopathology, and Remission at Treatment Discharge and 6-Month Follow-Up

<table>
<thead>
<tr>
<th>Variable</th>
<th>%EBW at Discharge</th>
<th>%EBW at Follow-Up</th>
<th>EDE-Q at Discharge</th>
<th>EDE-Q at Follow-Up</th>
<th>Remission at Discharge</th>
<th>Remission at Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>p</td>
<td>B</td>
<td>p</td>
<td>B</td>
<td>p</td>
</tr>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admit %EBW</td>
<td>0.67</td>
<td><.00</td>
<td>0.54</td>
<td>.34</td>
<td>0.03</td>
<td>.40</td>
</tr>
<tr>
<td>Admit EDE-Q</td>
<td>0.18</td>
<td>.70</td>
<td>0.70</td>
<td>.63</td>
<td>0.34</td>
<td><.01</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admit %EBW</td>
<td>0.79</td>
<td><.00</td>
<td>0.67</td>
<td>.23</td>
<td>0.04</td>
<td>.37</td>
</tr>
<tr>
<td>Admit EDE-Q</td>
<td>-0.46</td>
<td>.24</td>
<td>-0.13</td>
<td>.93</td>
<td>0.33</td>
<td><.00</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>0.06</td>
<td><.00</td>
<td>0.07</td>
<td>.16</td>
<td>0.00</td>
<td>.42</td>
</tr>
<tr>
<td>Length of Illness</td>
<td>-1.71</td>
<td><.001</td>
<td>-2.53</td>
<td>.18</td>
<td>0.03</td>
<td>.84</td>
</tr>
<tr>
<td>Age of Onset</td>
<td>-1.72</td>
<td><.00</td>
<td>-3.04</td>
<td>.09</td>
<td>0.05</td>
<td>.62</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admit %EBW</td>
<td>0.82</td>
<td><.0</td>
<td>0.76</td>
<td>.17</td>
<td>0.03</td>
<td>.37</td>
</tr>
<tr>
<td>Admit EDE-Q</td>
<td>-0.40</td>
<td>.42</td>
<td>-1.14</td>
<td>.49</td>
<td>0.58</td>
<td><.001</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>0.07</td>
<td><.00</td>
<td>0.10</td>
<td>.13</td>
<td>0.00</td>
<td>.26</td>
</tr>
<tr>
<td>Length of Illness</td>
<td>-1.72</td>
<td><.00</td>
<td>-2.44</td>
<td>.18</td>
<td>0.00</td>
<td>.98</td>
</tr>
<tr>
<td>Age of Onset</td>
<td>-1.51</td>
<td><.00</td>
<td>-2.59</td>
<td>.13</td>
<td>0.02</td>
<td>.84</td>
</tr>
</tbody>
</table>

Note: B = Unstandardized coefficient, p = Probability level, Exp(B) = Exponent of B coefficient.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>0.57</th>
<th>0.39</th>
<th>0.02</th>
<th>0.60</th>
<th>0.12</th>
<th>1.11</th>
<th>1.52</th>
<th>1.02</th>
<th>0.88</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta % \text{EBW}) Admit to Month 1</td>
<td></td>
<td>0.45</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{EDE-Q}) Admit to Month 1</td>
<td></td>
<td>0.20</td>
<td>0.79</td>
<td>2.70</td>
<td>0.30</td>
<td>-0.63</td>
<td><.001</td>
<td></td>
<td>1.02</td>
<td>0.11</td>
</tr>
<tr>
<td>Total Adjusted (R^2)/Total (X^2) Range across</td>
<td>.33 - .53</td>
<td>.19 - .58</td>
<td>.31 - .54</td>
<td>.14 - .39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.90 - 16.17</td>
<td></td>
</tr>
</tbody>
</table>

Note. Bolded values represent significant predictors of outcome at \(p < .05 \). \%EBW = Percent Expected Body Weight; EDE-Q = Eating Disorder Examination Questionnaire – Global Score.