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ABSTRACT OF THE DISSERTATION

An Investigation of the Koch Snowflake Fractal Billiard:
Experimental and Theoretical Results

by

Robert Garrett Niemeyer

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2012

Dr. Michel L. Lapidus, Chairperson

In this dissertation, we will focus our attention on the limiting behavior of a sequence of

compatible orbits of Koch snowflake prefractal billiards. We give a number of theoretical

results. In one instance, we construct a well-defined billiard orbit of the Koch snowflake

fractal billiard. In another instance, we construct what we call a nontrivial polygonal

path. Such a path is constructed from a sequence of basepoints from orbits of prefractal

billiards that converges to what we call an elusive limit point of the Koch snowflake.

Many other results are concerned with particular properties of particular types of se-

quences of compatible orbits. One major result is a topological dichotomy for sequences

of compatible orbits. A number of figures are used to illustrate the various definitions

and concepts. We discuss experimental results indicating the possible existence of a well-

defined law of reflection (or some appropriate analogue) for the Koch snowflake fractal

billiard. Future directions for research are discussed and a number of conjectures and

open questions are given.
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Chapter 1

Introduction

This thesis constitutes the culmination of our research on the Koch snowflake

fractal billiard ([LapNie1, LapNie2]). Specifically, we expand upon the content of [LapNie2]

by further investigating what constitutes a billiard orbit of the Koch snowflake fractal

billiard Ω(KS); see Figure 1.1. The Koch snowflake KS is everywhere nondifferentiable.

The absence of a well-defined tangent at any point of KS is what, a priori, prevents one

from determining a billiard flow on Ω(KS). While the focus of [LapNie1] was to provide

experimental evidence of such an appropriately defined fractal law of reflection, we do

not propose to determine a “fractal law of reflection” in this thesis. A more complete

discussion of and conjectures on such such a law of reflection and the Koch snowflake

billiard can be found in Chapter 6 and [LapNie2, §6]. However, we do determine a

number of properties of what we are calling sequences of compatible orbits, and a family

of sequences of compatible orbits whose suitable limits constitute likely candidates for

orbits of the Koch snowflake fractal billiard Ω(KS).

The unique nature of the subject of fractal billiards requires that we provide

certain background material so that those familiar with only some of the subjects find

1



Figure 1.1: The Koch snowflake curve KS and its prefractal approximations KSn, for
n = 0, 1, 2, ..., 6.

immediately accessible the others. Moreover, we make an attempt at catering to the

advanced undergraduate student who might find this material of interest. To such end,

we provide a brief treatment of measure theory, key definitions and theorems from ergodic

theory (e.g., Birkhoff and Maximal ergodic theorems), a detailed discussion of the subject

of flat surfaces and the necessary concepts from fractal geometry. In addition to this,

we touch on the notion of an inverse limit and a few necessary facts for establishing

the fractality of the inverse limit of what we call footprints of piecewise Fagnano orbits.

The interested reader will find references to [Ma] for further details on covering spaces,

[McL] for category theory, [Bo] for general topology and [HoYo] for the specialized topic

of inverse and direct limits in the context of the category of topological spaces.

The Koch snowflake curve, as depicted in Figure 1.1, is a fractal. In particular,

it is the union of three self-similar Koch curves, with the Koch curve being a continuous,

nowhere differentiable curve with infinite length (see Figures 1.2 and 1.3). Consequently,

any attempt to construct a line tangent to the Koch snowflake curve may seem like an

exercise in futility. This poses a unique problem for defining the trajectory of a billiard

ball (i.e., a pointmass traversing the interior of the planar region bounded by the Koch

snowflake KS). Specifically, when this pointmass collides with the boundary KS with

unit speed, the absence of a well-defined tangent results in multiple choices for the angle

of reflection, meaning there is, a priori, no well-defined angle of reflection.
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We give a thorough description of the billiard flow associated with a billiard

table Ω(B) with (piecewise) smooth boundary B. We also recall the notion of a flat

surface and how one can construct a flat surface from a rational polygonal billiard table

(that is, a planar billiard table whose boundary is a polygon with interior angles that

are rational multiples of π); see Definitions 64 and 69. In this context, a flat surface is

a mathematical device used to rigorously describe the billiard flow on Ω(B) in terms of

the geodesic flow on the surface.

We explain how the Cantor set C can be viewed as the inverse limit of an inverse

limit sequence of its prefractal approximations, denoted by Cn, with the index n corre-

sponding to the approximation with 2n many points. Similarly, the snowflake curve KS

can be viewed as the inverse limit of its prefractal approximations KSn given in terms of

finite addresses. Here, KSn is the nth (inner) polygonal approximation to KS, and hence

defines a rational polygonal billiard table Ω(KSn); see Definition 64 for the definition

of rational billiard. Since the theory of rational polygonal billiards is very well devel-

oped (see, e.g., [GaStVo,Gtk1,GtkJu1–2,HuSc,HaKa,KaZe,Mas,MasTa,Ve1–3,Vo,Zo]), it

is then natural to define the dynamics on the fractal “billiard table” Ω(KS) in terms of

the dynamics on its prefractal approximations Ω(KSn). As a result, much of the fo-

cus of this thesis will be to first obtain a solid understanding of the periodic orbits of

Ω(KSn), and then discuss theoretical and experimental results indicating the existences

of well-defined orbits of the Koch snowflake fractal billiard Ω(KS).

The main results of the thesis are presented throughout Chapters 3–5. Chapter

3 contains results on the prefractal flat surface S(KSn) and consequences for the fact

that such a surface can be tiled by hexagons of a particular scale. Primarily, we show

that S(KSn) is a branched cover of the hexagonal torus S(KS0). Such a result is tanta-

mount to the billiard flow on Ω(KS0) being dynamically equivalent to the billiard flow

3



on Ω(KSn), for all n ≥ 0. This fact is used extensively in Chapter 4.

Using the main results of Chapter 3, we show in Chapter 4 how to form what

we call sequences of compatible orbits. We show that directions for which an orbit

On(x
0
n, θ

0
n) of Ω(KSn) is periodic are exactly the same for which an orbit O0(x

0
0, θ

0
0) of

Ω(KS0) is periodic. This aides us in constructing what we call a sequence of compatible

periodic orbits. We initially focus our investigation on orbits with an initial direction

of π/3. As such, we describe what we call a sequence of compatible piecewise Fagnano

orbits, a sequence of compatible Cantor orbits and sequence of compatible approximate

piecewise Fagnano orbits. The period and length of piecewise Fagnano orbits, Cantor

orbits and approximate piecewise Fagnano orbits of Ω(KSn) are given in terms of the

ternary representation of the initial basepoint of the initial orbit of the respective se-

quence of compatible periodic orbits.1 In directions not π/3, we define what we are

calling hybrid orbits of Ω(KSn) and provide a set of sufficient conditions for which a se-

quence of compatible orbits is a sequence of compatible hybrid orbits. Such orbits (and

sequences of compatible orbits) have particular properties that indicate that suitable

limits of sequences of hybrid orbits may indeed be orbits of the Koch snowflake fractal

billiard Ω(KS). In general, it is our intention to insinuate that such sequences should

have suitable limits that constitute orbits of the Koch snowflake billiard.

As we describe in Chapter 5, the only family of well-defined orbits of the Koch

1The initial direction of π/3 is special, but much can be said about orbits of prefractal approximations

with such an initial direction. As such, much of [LapNie2] was devoted to understanding the nature

of orbits of prefractal approximations with an initial direction of π/3 and specific properties of such

orbits. Such properties include, but are not limited to, the period and length of orbits of prefractal

approximations with an initial direction of π/3 and the fractality of an inverse limit of footprints of

piecewise Fagnano orbits. We elaborate on such topics, this being the focus of a sizable portion of

Chapter 4.
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Figure 1.2: The Koch curve KC and its prefractal approximations KCn, for n =
0, 1, 2, ..., 6. The Koch curve is self-similar, meaning that there are scaled (and ro-
tated/reflected) copies of the Koch curve found as subsets of KC. In this figure, we
circle four copies of KC scaled by 1/3. In general, one can find 4n copies of the Koch
curve scaled by 1/3n as subsets of KC such that the disjoint union (disjoint except at
the endpoints of each copy) comprises the whole Koch curve. This is, in fact, the essence
of self-similarity. By abuse of language, we say that the Koch snowflake curve itself is
“self-similar”; see Figure 1.3.

snowflake billiard Ω(KS) is the family consisting of what we call finitely stabilizing peri-

odic orbits. A footprint Fn(x
0
n, π/3) of an orbit On(x

0
n, π/3) of a prefractal approximation

Ω(KSn) amounts to the points of the Poincaré section constituting the collision points of

the orbit. That which we propose to be a piecewise Fagnano orbit of Ω(KS) has a foot-

print F(x0, π/3) that is the inverse limit of footprints of piecewise Fagnano orbits of the

prefractal approximations. While we say “piecewise Fagnano orbit,” we are making an

abuse of language in that we do not mean to imply that such an orbit of Ω(KS) actually

exists, but that whatever the orbit truly is, it has a footprint F(x0, π/3). Furthermore,

even less is known about what we have called the approximate piecewise Fagnano orbits.

Again, there really is no orbit to speak of, nor is there, a priori, any footprint to speak

of.

In general, we show that different notions of limit applied to different types of

sets yield sets of interest that are analogous with similar sets found in the classical case.

We show that 1) the inverse limit of a particular inverse limit sequence of footprints exists

and 2) the standard notion of limit involving the Euclidean metric yields a particular

collection of basepoints coming from a sequence of compatible orbits that converges to

what we call an elusive limit point of KS.
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Figure 1.3: The self-similarity of the Koch snowflake curve KS. Shown here is the Koch
snowflake curve KS, viewed as the union of three isometric, abutting copies of the Koch
curve.

The more experienced reader may notice that we do not need much of the back-

ground material presented in order to understand the main results. Such an effort was

made to make the thesis accessible to everyone ranging from the uninitiated undergrad-

uate to the experienced billiards expert. On the other hand, presenting the background

material in such a way is meant to indicate the direction in which we intend to go in the

long-term. While we do not make any specific claims about the ergodicity of the billiard

flow in “irrational” directions, we do make use of these concepts and discuss a number

of open questions in Chapter 6 that draw upon the ideas from ergodic theory. Such a

discussion will largely focus on the possible ergodic properties of the proposed flow on

the conjectured fractal flat surface S(KS). In particular, we lead up to the conjecture on

the existence of a meaningful group of affine automorphisms of the conjectured fractal

flat surface S(KS).

Considering the fact that the field of “fractal billiards” is still in its infancy,

we provide many open questions and conjectures in Chapter 6. We stress that Ω(KS)

does not constitute a well-defined mathematical billiard, in the sense that we have not

provided a well-defined phase space, let alone a geodesic flow on such a phase space. Such

a mathematical object has yet to be precisely defined, but the work we have completed in

Chapter 5 and the remarks made in Chapter 6 indicate a possible path for constructing

6



such a phase space and geodesic flow.

In addition to determining the nature of such a geodesic flow and whether it

could be dynamically equivalent to the billiard flow, we ask questions regarding the

ergodic nature of the conjectured geodesic and billiard flows on the hypothesized ‘fractal

flat surface’ and the corresponding fractal billiard, respectively.

In the long-term, we hope that the present (preliminary) study of the Koch

snowflake billiard will help lay the foundations for a general theory of fractal billiards.

Other work in this direction has already begun in the form of a joint paper with Joe

P. Chen in which we are attempting to understand the nature of periodic orbits of self-

similar and non-self-similar Sierpinski carpets. An immediately relevant project consists

of investigating the relationship between the Veech group Γ(KSn) and Γ(KSn+1) and

whether or not one can determine lim←−Γ(KSn).
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Chapter 2

Background

2.1 Basic Measure theory

A set is a collection of elements satisfying particular properties. We know that

additional structure can be placed on a set in the form of what is called a topology. Such

structure determined the definition of open and closed. In this section, we will place

additional structure on a set and describe a general notion of volume.

2.1.1 Measures from outer measures

Throughout single variable calculus, many students shed the idea that every

function is differentiable and every function is integrable. The first example of this is

given by the function

χA(x) =















0 if x ∈ Q ∩A

1 if x ∈ Qc ∩A.
(2.1)

One can show that such a function is not Riemann integrable. However, a generalization

of the Riemann integral called the Lebesgue integral is defined in such a way so as to

ignore sets like the rational numbers and examine the elements of a set A ⊆ R that make
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the bulk of the contribution to the total volume of A.

It is not until a student reaches upper-division mathematics or even graduate-

level mathematics, that he or she learns that there are different notions of “differentiable”

and “integrable.” This same fact is encountered at the same time he or she sees behind

the curtain and learns that an interval is a very nice example of a set. A basic fact

taught to upper-division students is that the rationals are dense in the real line. A more

surprising fact is that no interval in the real line contains only rational numbers. We

will show later that this implies that the rational numbers have length zero, and explain

exactly what we mean by length.

We now describe the notion of the Lebesgue outer measure defined on R, this

being the generalization of length that we have alluded to above. Consider a closed,

connected interval A ⊂ R. We know that the length of A = [a, b] is b − a. What if we

want to describe the length of two sets A and B, both subsets of R? In general, two such

sets may intersect. So, how does one logically describe the length of A∪B? What if one

considers a different collection of subsets of the real line in which not every element is

an interval? We will show that the Lebesgue measure is a generalization of the notion

of length that provides a framework in which to answer all of these questions.

Let A be a set. For the sake of simplicity, let us suppose A ⊂ R. We first

consider what is called a cover of A. Consider a collection of intervals U := {Uj}∞j=1

where A ⊂ ⋃∞
j=1 Uj. Then U is a cover of A. Now, let us suppose we wanted to then

shrink the cover U so that it constricts and tightens around the set A. Doing so results

in a new cover of A. One can continue this process until it is impossible to constrict any

further. In the limit, we have determined what is called the outer measure of the set

A. It is called outer, because one starts with covers that encapsulate A and then shrink

down to fit exactly to A. It is called outer measure, because the word measure is a more
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general notion of length, and we are using the lengths of the intervals Uj to determine

the overall measure of the set A. We now give the formal definition of Lebesgue outer

measure.

Definition 1 (Lebesgue outer measure). The Lebesgue outer measure of a subset

A ⊆ R is given as

λ∗(A) := inf







∞
∑

j=1

|Uj | : A ⊆
∞
⋃

j=1

Uj , where Uj are bounded intervals in R







.

Definition 2 (Set function). Let X be a set and B a collection of subsets of X.

Then µ : B → R∗ is a (extended, real-valued) set function defined on B. Typically, B

is taken to be the powerset P(X) or a σ-algebra determined from X.

Definition 3 (Outer measure). Let µ∗ : P(X) → R∗ be a set function defined on

the powerset of X. Then µ∗ is an outer measure if it satisfies the following properties.

1. µ∗(∅) = 0.

2. µ∗(U) ≤ µ∗(V ) for every U, V ∈P(X) and U ⊆ V .

3. µ∗(∪∞j=0Uj) ≤
∑∞

j=0 µ
∗(Uj).

Definition 4 (An algebra). Consider a set X. An algebra A of subsets of X is a

collection of subsets of X with the following properties:

1. ∅ ∈ A, X ∈ A.

2. A is closed under finite unions, intersections and complements.

Definition 5 (σ-algebra). Let X be a set. A σ-Algebra A of subsets of X is a

collection of subsets of a set X with the following properties:

1. ∅ ∈ A, X ∈ A.
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2. A is closed under countable unions, intersections and complements.

Definition 6 (Additive and countably additive set function). Let X be a set and µ

a set function defined on a collection of subsets B of X containing at least the empty set.

If µ(∅) = 0, then we say µ is additive. If µ(∪∞j=1Bj) =
∑∞

j=1 µ(Bj) whenever {Bj}∞j=1 is

a collection of pairwise disjoint sets in B, then we say µ is countably additive. (Note,

some authors may refer to countably additive as completely additive. We do not do so

in this thesis.)

Definition 7 (Measure). A measure µ is a nonnegative, completely additive set

function defined on a σ-algebra A.

In practice, one constructs a measure from an outer measure by examining a

particular collection of subsets of a set X.

Definition 8 (Measurable set). Let µ∗ be an outer measure defined on R. Let

E ⊆ R. We say that E is measurable if, for any subset A ⊆ R, we have that

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec). (2.2)

Then, the collection of subsets satisfying Equation (2.2) in Definition 8 is a

σ-algebra A. Moreover, µ∗ restricted to A is a set function that satisfies the criteria for

being a measure. Hence, µ∗ can be made into a measure when restricting to the proper

σ-algebra.

Definition 9 (Lebesgue Measure). Consider the Lebesgue outer measure λ∗. Then

λ∗ restricted to the σ-algebra of measurable sets is called the Lebesgue measure on R.

Definition 10 (Measure space). Let X be a set and B a σ-algebra on X. If µ : X →

R is a measure, then a measure space is a triple (X,B, µ). When there is no ambiguity

in what σ-algebra we are considering or what measure µ we are specifying, we will refer

to the measure space (X,B, µ) simply as X.
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Definition 11 (Measurable function). Let (X,B, µ) be a measure space. A function

f : X → X is measurable if for every B ∈ B, f−1(B) ∈ B. That is, if the preimage of

a measurable set is measurable, then f is called a measurable function.

Definition 12 (Measure-preserving transformations). Let (X,B, µ) be a measure

space. Let σ : X → X is a measurable transformation. Then f is a measure-preserving

transformation if for every B ∈ B, µ(f−1B) = µ(B). That is, the measure of the

preimage of a measurable set is the measure of that set.

Remark 13. When f is a measure-preserving transformation of a measure space X

and is also 1-1, we say f is invertible.

Example 14. Let z be a complex number such that |z| = 1. The transformation

f : S1 → S1 given by f(z) = z2 is not measure-preserving. This follows from the fact

that the arc length of an interval of S1 doubles with each iteration of the transformation.

Note, we were implicitly assuming the measure was the arc length measure.

Example 15. The transformation f given by f(x) = x + 1 is a measure-preserving

transformation of the real line when we take our measure to be the Lebesgue measure

on R.

2.1.2 Integration

We now proceed to construct the Lebesgue integral. In order to do so we need

to first consider a few preliminary ideas.

Definition 16 (Characteristic function). Let E be a measurable set. Then

χE(x) :=















1 if x ∈ E

0 if x 6∈ E
(2.3)

is called the characteristic function of E. Note, some authors may refer to such a function

as the indicator function and use the notation IE or IE. We will not use this convention
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in this thesis.

Definition 17 (Simple function). A function f is called simple if f is expressed as

the finite linear combination of characteristic functions. That is, if E1, E2, ..., Ek are

measurable sets and

f(x) :=

k
∑

j=1

aiχE(x), (2.4)

where aj are real numbers, then f is called a simple function.

When attempting to integrate a simple function f with respect to the Lebesgue

measure λ, we suppose f is expressed as a linear combination of characteristic function

χEj
(x) where {Ej}kj=1 is a pairwise disjoint collection of closed sets, perhaps only over-

lapping at the endpoints.

Definition 18 (The integral of a simple function). If f is a simple function, then

we define the integral of f to be

∫

fdλ :=

k
∑

j=1

ajλ(Ej). (2.5)

This is certainly inline with our intuition. Moreover, when Ej is an interval, this is

nothing more than the sum of the area of rectangles.

We now proceeed to construct the integral for more general functions.

Definition 19 (The integral of a nonnegative function). Let f be a nonnegative,

measurable function. It can be show that f is the pointwise limit of an increasing

sequence of simple functions fj. Define the integral of f to be

∫

fdλ := lim
j→∞

∫

fjdλ. (2.6)

When f is an arbitrary measurable function, we can decompose f into its

positive, negative and zero parts. Since there is no need to write the zero portion, we

can write f = f+ − f−.
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Definition 20. Let f be a measurable function. If f+ and f− are integrable (that

is, the integrals of each are finite), then we write the integral of f as

∫

fdλ :=

∫

f+dλ−
∫

f−dλ. (2.7)

Theorem 21 (Lebesgue Dominated Convergence). Let {fj}∞j=1 be a collection of

measurable functions defined on a set E of finite, positive measure. Suppose that there

is a constant M > 0 such that |fj(x)| ≤M for all j ≥ 1. If lim∞
j=1 fj(x) exists for almost

every x, then

lim
j→∞

∫

fjdλ =

∫ ∞
lim
j=1

fjdλ. (2.8)

Theorem 22 (Lebesgue Monotone Convergence Theorem). Let {fj}∞j=1 be a sequence

of measurable functions such that 0 ≤ f1 ≤ f2 ≤ .... Then

lim
j→∞

∫

fjdλ =

∫

lim
j→∞

fjdλ. (2.9)

Theorem 23 (Fatou’s Lemma). Let {fj}∞j=1 be a collection of nonnegative, measur-

able functions on R. Then

∫

lim inf
j→∞

fjdλ ≤ lim inf
j→∞

∫

fjdλ. (2.10)

2.2 Basic group theory

Definition 24 (Equivalence relation). Let X be a nonempty set. If R is a relation

on X, then R is an equivalence relation if the following are satisfied.

1. (Reflexive) x ∈ X implies xRx. That is, every element x ∈ X is related to itself.

2. (Symmetric) xRy implies yRx. That is, x related to an element y implies y is

related to x.
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3. (Transitive) xRy and yRz, then xRz. That is, if x is related to y and y is related

to z, then it must be the case that x is related to z.

Remark 25. When R is an equivalence relation on a set X, we often denote it by ∼.

Definition 26 (A group). A group G is a collection of elements equipped with an

operation denoted by + such that

1. (closure) for every g, h ∈ G, g + h ∈ G.

2. (associativity) for every g, h, k ∈ G, (g + h) + k = g + (h+ k).

3. (identity) there exists e ∈ G such that for every g ∈ G, g + e = e+ g = g.

4. (inverse) for every g ∈ G there exists h ∈ G such that g + h = h+ g = e.

Example 27 (The integers). The integers constitute a group under the usual notion

of addition. The (additive) identity e is indeed 0. The fact that Z contains negative

numbers indicates that Z contains an additive inverse −z for each z.

Example 28 (The integers mod n). Let n be a positive integer. Consider the

equivalence relation ∼n on Z given by x ∼n y if and only if x = y mod n. Then,

Zn := {[0], [1], ...[n − 1]} is referred to as the integers mod n where the operation + is

defined as [a] + [b] = [a+ b].

Example 29 (General linear group). Consider the space of n× n matrices with real

entries with nonzero determinant (it is not necessary for the entries to be real. They

could be complex numbers or quarternions). This collection constitutes what is called

the general linear group with real entries and is denoted by GLn(R).

Example 30 (Special linear group). The elements A ∈ GLn(R) that have determi-

nant detA = 1 constitute a subgroup of GLn(R) called the special linear group and
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is denoted by SLn(R). Elements of SLn(R) preserve the volume and orientation of

n-dimension subsets of Rn.

Example 31 (Orthogonal group). The elements of A ∈ GLn(R) that preserve the

length of vectors in Rn constitute a subgroup of GLn(R) called the orthogonal group.

Example 32 (Special orthogonal group). The elements A ∈ GLn(R) that have de-

terminant detA = 1 and preserve the length of vectors in Rn constitute a subgroup of

GLn(R) called the special orthogonal group and it is denoted as SOn(R).

Example 33 (Dihedral group). Let Pn be a regular polygon with n sides. Then

the collection of symmetries generated by reflection and rotation of Pn about the origin

constitute a group. This group has 2n many elements.

Remark 34. We will later see in §2.4, §2.5.1 and Chapter 3 that the dihedral group

plays a major role in our analysis of billiard trajectories. We will be using a heuristic

device1 referred to as unfolding the billiard orbit so as to determine an equivalent geodesic

line on an associated flat surface (see Definition 68 and 69). For further discussion of

how one unfolds an orbit, see §2.4.1, [HuSc] and [MasTa].

If G is a group and X is a set, then the map given by ϕ : G×X → X is called

a (left) group action on the set X.

Definition 35 (An orbit Gx). Let X be a set and G a group acting on X. Consider

Gx := {gx : g ∈ G}. This set is called the orbit of an element x ∈ X.

An orbit constitutes an equivalence class of elements. That is, the condition

relating elements of an orbit constitutes and equivalence relation on X.

Definition 36 (Transitive group action). Let X be a set and G a group acting on X.

1Such a device is actually quite rigorous and is an example of what is called a developing map; see

[Thur] for a discussion of such an abstract concept. We will not need the full power of such a concept

and refer the reader for any and all explanation of developing maps to [Thur]

16



If for every x, y ∈ X there exists g ∈ G such that x = gy, then we say G acts transitively

on X or the group action σ : G×X → X is a transitive group action.

Proposition 37. Let σ : G ×X → X be a transitive group action. Then, for any

x ∈ X, the orbit Gx is exactly X.

2.3 Basic dynamics and ergodic theory

2.3.1 Definitions and terminology in dynamical systems

We initially assume the spaces we are considering are only topological spaces.

As such, this section is primarily concerned with defining concepts in topological dy-

namics. In a way, the subject of ergodic theory can be thought of as measure theoretic

dynamics, since the primary assumption is that one is dealing with a probability measure

space (that is, a space X with µ(X) = 1).

Definition 38 (Continuous dynamical system). Consider a topological space X, a

rule ϕ describing the evolution of the elements of X and t a real variable. Then (X,ϕ, t)

is called a continuous dynamical system. The flow is then denoted by ϕt.

In the sections and chapters that follow, we will be primarily concerned with

the situation in which the time-variable is a discrete variable.

Definition 39 (Discrete dynamical system). Let X be a topological space, f : X →

X a map describing the evolution of the system with respect to the discrete time variable

n. Then (X, f, n) is called a discrete dynamical system.

There is a relationship between a continuous dynamical system and a particular

discrete dynamical system. If the flow ϕt in a space M ⊂ Rm is continuous, then there

is a way to reduce this continuous flow to a discrete flow fn that still encodes enough

information to discern certain properties of the flow ϕt on M . This is what is referred to
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as the Poincaré section (or, simply the section). The discrete flow fn then determines a

discrete set, when ϕt happened to be closed.

Definition 40 (Poincaré section). Let M ⊆ Rm be an m-dimensional subspace of

Rm. Let ϕt be a flow on M . Then a Poincaré section S of M is an (m− 1)-dimensional

subspace of M that is transversal to the flow.

Definition 41 (Return time). If S is a Poincaré section of M ⊆ Rm and ϕt is a flow

on M and x ∈ S, then the time t0 for ϕt(x) to return to the Poincaré section S of the

flow is referred to as the return time.

Definition 42 (Poincaré map or first return map). Let (X,ϕ, t) be a continuous

dynamical system and S a section of X. If the return time t0 of the flow ϕt(x) is finite,

then there is a map f such that f(x) = x′ ∈ S. Such a map is called the Poincaré map

or the first return map.

Definition 43 (Periodic orbit). Consider a flow ϕt(x). If there exists some time

t0 > 0 such that ϕt0(x) = x, then we say the orbit {ϕt(x)}t∈R is a periodic orbit. The

least positive value t0 > 0 for which ϕt0(x) = x is called the period of the orbit. If f is

a Poincaré map, then there exists a least positive integer n such that fn(x) = x. This

is then the period of the orbit given by {f j(x)}∞j=0. We note that the notation f j is to

indicate j compositions of f with itself.

Definition 44 (Fixed point of a map). Let (X, f, n) be a discrete dynamical system.

A fixed point for the map f is a point x such that f(x) = x.

Example 45. If {f j(x)}∞j=0 is a periodic orbit with period n, then the initial condition

x for the orbit is a fixed point of the map fn.

Definition 46 (Transitive orbit). Let (X, f, n) be a discrete dynamical system where

f is a homeomorphism. Then the orbit {f j(x)}j≥0 is a transitive orbit if it is dense in

X.
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Remark 47. The notion of topological transitivity is heuristically linked with the

notion of transitive orbit found in the subject of group theory (see Definition 36). By

Proposition 37, the orbit Gx of a point x ∈ X, where G is a group, has an orbit that was

all of X. Here, the orbit of the point is “nearly” all of X, where “nearly” means dense.

hence, this is why the notion of transitivity defined in Definition 46 is of a topological

nature.

2.3.2 Definitions and terminology in ergodic theory

The word ‘ergodic’ is an amalgamation of two Greek words ergon (work) and

odos (path). Boltzmann was the first to coin the term ‘ergodic’ as it related to his

ergodic hypothesis, which stated that each surface of constant energy consists of a single

trajectory. Unfortunately, as discussed by Mark Policott and Yuri Michinko [PoYu],

Boltzmann’s Greek language skills may have not been as sharp as one initially believed.

The more appropriate mashing together of two Greek words would be something along

the lines of ergoidic or erchodic, all relating to ‘work along a path’. The term ergodic is

defined as follows.

Definition 48 (Ergodic measure). Let (X,β, µ) be a probability measure space and

T a measure-preserving transformation defined on X. Then µ is an ergodic measure if

for every measurable A ⊂ X such that µ(T−1(A) ∩ A) = 0, we have that µ(A) = 0 or

µ(A) = 1.

Remark 49. If µ is an ergodic measure, then we can equivalently refer to the measure-

preserving transformation T as an ergodic transformation. Formally, the discrete dynam-

ical system (X,β, µ, T, n) is referred to as an ergodic dynamical system when µ is an

ergodic measure.

Definition 50 (Uniquely ergodic). Let (X,β, µ, T ) be an ergodic dynamical system.
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If for any other ergodic dynamical system (X,β, ν, T ) we have that ν(A) = µ(A) for every

A ∈ β, then (X,β, µ, T ) is called a uniquely ergodic dynamical system. Equivalently,

T is a uniquely ergodic measure-preserving transformation and µ is the unique ergodic

measure.

An ergodic average is, in a way, an average of some dynamical phenomenon

modeled by a measure-preserving transformation T .

Definition 51 (Ergodic average). Let (X,B, µ) be a measure space. Let T : X → X

be a measure-preserving transformation and f : X → R be a continuous function. Then

sn(x) :=
1

n

n−1
∑

j=0

f(T jx)

is called an ergodic average.

Before we state the Birkhoff Ergodic Theorem or the Maximal Ergodic Theo-

rem, we give the Poincaré Recurrence Theorem. While the notion of an ergodic average

was not known at the time of Poincaré (especially when Poincaré proved the theorem

in 1899), such a result historically marks the genesis of the subject. In order to prop-

erly state the Poincaré Recurrence theorem, we first present a number of definitions and

lemmas.

Definition 52 (Recurrent). Let (X,B, µ) be a measure space. If T : X → X is a

measure-preserving transformation, then we say T is recurrent if for every measurable

set A ∈ B with 0 < µ(A) <∞, there exists a null set N ⊂ A such that for all x ∈ A\N ,

there exists n > 0 such that T n(x) ∈ A.

We would like to point out that nothing about the definition of recurrent re-

quires that T n(x) not be in N . We will see that there is a way of guaranteeing that

T n(x) not be in some null set N . The definition of recurrent says in a rigorous fashion

that a point should, more often than not, come back to the set it started in. This is
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intuitively clear if X is a finite measure space. We will see that this is the content of the

Poincaré Recurrence Theorem.

Definition 53 (Conservative). Let (X,B, µ) be a measure space. A measure pre-

serving transformation is said to be conservative if for any set A of positive measure,

there exists an integer n > 0 such that µ(A ∩ T−n(A)) > 0.

Remark 54. T n(x) ∈ N or T n(x) 6∈ N does not make a difference when discussing

the iterates of T . That is, N does not have to (and, in general, will not) be the same

null set each time the notion of recurrent or conservative is being applied.

Lemma 55. Let (X,B, µ) be a measure space and T : X → X a recurrent, measure-

preserving transformation. By definition, this implies that there exists a null set N1

such that for every x ∈ A \ N1 there exists n > 0 such that T n(x) ∈ A. Define

N :=
⋃∞

k=0 T
−k(N1). Then, for every x ∈ A \N we have that T n(x) ∈ A \N .

Proof. Let x ∈ A \ N . Then x 6∈ N . Therefore, T n(x) 6∈ N . Otherwise,

T n(x) ∈ N implies that T n(x) ∈ T−k(N1) for some k > 0. Hence, x ∈ T−k−nN1, which

is impossible.

Lemma 56. Let (X,B, µ) be a measure space and T : X → X a recurrent measure-

preserving transformation. Then for all sets A of positive measure, there exists a null set

N such that for all x ∈ A\N , there is an increasing sequence mi > 0 with Tmi(x) ∈ A\N

for all i ≥ 1.

Proof. Let n and N be as they were in Lemma 55. Letting z = T n(x), there

exists n1 = n(z) > 0 such that T n1(z) ∈ A \N . Let m2 = n+ n1. Then

Tm2(x) = T n+n1(x)

= T n1(z), (2.11)

and T n1(z) 6∈ N . Therefore, Tm2(x) 6∈ N . Let m1 := n. Continuing in this fashion, we

21



can construct a monotonically increasing sequence {mi}∞i=1 such that Tmi(x) ∈ A \ N

for every i ≥ 1.

Lemma 57 (Characterization of recurrence). Let (X,B, µ) be a measure space. A

measure-preserving transformation T is recurrent if and only if T is conservative.

Theorem 58 (Poincaré Recurrence Theorem). Let (X,B, µ) be a finite measure

space. If T : X → X is a measure-preserving transformation, then f is recurrent.

Proof. By Lemma 57, it suffices to show that for any set A of positive mea-

sure, there is an intenger n > 0 such that µ(A ∩ T−n(A)) > 0. Suppose, by way of

contradiction, that µ(A∩T−n(A)) = 0 for every n > 0. Then, for every k and l := n+k,

we have that

µ(T−l(A) ∩ T−k(A)) = µ(T−n−k(A) ∩ T−k(A))

= µ(T−k(T−n(A) ∩A)) (2.12)

= µ(T−n(A) ∩A)

= 0.

Hence, {T−n(A)}∞n=0 is an almost everywhere pairwise disjoint collection of sets. How-

ever, µ(T−n(A)) = µ(A) for every n ≥ 0. So,

µ(X) ≥ µ(
∞
⋃

n=0

T−n(A))

=
∞
∑

n=0

µ(T−n(A)) (2.13)

=

∞
∑

n=0

µ(A) =∞.

Generally speaking, ergodic theorems are concerned with relating a time-average

to a volume average. In the context of the current setting, time is discrete and the notion

of volume is dictated by a probability measure µ.
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The Maximal Ergodic Theorem can be used to prove the Birkhoff Ergodic

Theorem. Recall that the ergodic average sn(x) was defined in Definition 51.

Theorem 59 (Maximal Ergodic Theorem). Let T be a measure-preserving trans-

formation of the measure space (X,B, µ) and let f be integrable. Let A = {x :

supn≥0 sn(x) > 0}. Then
∫

A
f(x)dm ≥ 0.

Sketch of the proof (see [Si] for the complete proof). Let p ≥ 1 and

define Ap := {x ∈ X| supn≥0 sn(x) > 0 for some n, 1 ≤ n ≤ p}. It can be shown that

n

∫

f+dµ ≤ n
∫

Ap

fdµ+

n−1
∑

i=n−p

∫

|f |dµ. (2.14)

Then, dividing by n and letting n→∞,

0 ≤
∫

Ap

fdµ. (2.15)

We observe that A =
⋃∞

p=0Ap. By the Dominated Convergence Theorem, it follows that

∫

A
fdµ ≥ 0.

Theorem 60 (Birkhoff Ergodic Theorem). Let T be a measure preserving transfor-

mation of the measure space (X,B, µ) and let f be an integrable function. Then the

ergodic averages sn(x) converge for almost every x to a limit function f∗(x) which is

again an integrable function. The function f∗ is constant on orbits, i.e., f∗(T kx) = f∗(x)

a.e. In the case µ(X) <∞, we also have
∫

X
fdm =

∫

X
f∗dµ.

Sketch of the proof. We consider two cases: when T is an ergodic transfor-

mation and when T is not necessarily an ergodic transformation. The first case will not

require the Maximal Ergodic Theorem, but the second case will.

We then let T be an ergodic, measure-preserving transformation of the proba-

bility measure space X. We will show that for every integrable function f ,

lim sup
n→∞

sn(x) ≤
∫

fdµ ≤ lim inf
n→∞

sn(x) (2.16)
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to establish the result. To such end, we define A := {x : lim infn→∞ sn(x) <
∫

fdµ}. If

µ(A) = 0, then we have established one of the inequalities in Equation (2.16). We can

write A as follows.

A :=
⋃

r∈Q
{x : lim inf

n→∞
sn(x) < r <

∫

fdµ}. (2.17)

Then, define Cr := {x : lim infn→∞ sn(x) < r <
∫

fdµ}. Suppose µ(A) > 0. Then there

exists r ∈ Q such that µ(CR) > 0. We claim that Cr is T -invariant mod µ. Since T is

an ergodic transformation, µ(Cr) = 1.

Consider the set Er
p := {x : sn(x) ≥ r, for all 1 ≤ n ≤ p}. The fact that

µ(Cr) = 1, we have that µ(
⋂∞

p=1E
r
p) = 0. Since {Er

p}∞p=1 is a decreasing, nested sequence

of measurable sets, we have that limp→∞ contradiction of our choice of r. Therefore,

µ(A) = 0. Replacing f by −f , the left-hand inequality in Equation (2.16)

We refer the reader to [Si, Chapter 5] for the proof of the Birkhoff Ergodic

Theorem in the case when µ is not an ergodic measure. We only point out here that the

Maximal Ergodic Theorem, the Dominated Convergence Theorem and a few key lemmas

are used to prove the theorem when µ is not an ergodic measure.

We end this discussion of ergodic theory with an important application: uni-

formly distributed sequences.

Definition 61 (Uniform distribution). Let A be a closed interval in R and λ the

Lebesgue measure on R. A sequence of points {ai}∞i=0 in A is said to be uniformly

distributed in A if for every subinterval I ⊂ A we have that

lim
n→∞

1

n

n−1
∑

i=0

#{i : 0 ≤ i < n, ai ∈ I} = λ(I), (2.18)

where # denotes the cardinality of a set.
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Remark 62. The left-hand side of Equation (2.18) can be written as

lim
n→∞

1

n

n−1
∑

i=0

χI(ai), (2.19)

where χI is the characteristic function of I; see Definition 16.

Proposition 63. Let A be a closed interval in R. If (A, β, λ, T, n) is an ergodic

dynamical system (i.e., T is an ergodic transformation), where λ is the Lebesgue measure,

then, for almost every x ∈ A, {T i(x)}∞i=0 is a uniformly distributed sequence in A.

Proof. Let I ⊂ A. Since χI is a measurable function and T is an ergodic

transformation, by Theorem 60, it follows that the ergodic averages converge to the

integral of the characteristic function defined on I. Since we know that such an integral

is in fact the measure of the set I, it follows that the ergodic averages converge to λ(I).

Since I was arbitrary, the sequence of points {T i(x)}∞i=0 is uniformly distributed in A

for almost every x ∈ A.

2.4 Mathematical Billiards

Under ideal conditions, we know that a point mass making a perfectly elastic

collision with a C1 surface (or curve) will reflect at an angle which is equal to the incoming

angle, both measured relative to the normal at the point of collision. That is, the angle

of reflection is equal to the angle of incidence. Such a law is referred to as the Law of

Reflection.

Consider a compact region Ω(B) in the plane with connected boundary B.

Then, Ω(B) is called a planar billiard when B is smooth enough to allow the Law of

Reflection to hold, off of a set of measure zero (where the measure is taken to be the

Hausdorff measure or the arc length measure). Though the Law of Reflection implicitly

states that the angles of incidence and reflection be determined with respect to the
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normal to the line tangent at the basepoint, we adhere to the equivalent convention in

the field of mathematical billiards that the vector describing the position and velocity of

the billiard ball (which amounts to the position and angle, since we are assuming unit

speed) be reflected in the tangent to the point of incidence. That is, employing such a

law so as to determine the path on which the billiard ball departs after impact essentially

amounts to identifying certain vectors.

Then we can rigorously reformulate the Law of Reflection as follows: the vector

describing the motion is the reflection of the incoming vector through the tangent at

the point of collision. One may express the Law of Reflection in terms of equivalence

classes of vectors. Hence, identifying these two vectors to form an equivalence class of

vectors in the unit tangent bundle corresponding to the billiard table Ω(B) (see Figure

2.1). (See [Sm] for a detailed discussion of this equivalence relation on the unit tangent

bundle Ω(B)× S1.) When B is a nontrivial, connected polygon in R2, Ω(B) is called a

polygonal billiard. The collection of vertices of Ω(B) forms a set of zero measure (when

we take our measure to be the Hausdorff measure or simply, the arc-length measure on

B), since there are finitely many vertices. A rational billiard is defined below.

For the remainder of this thesis, we will almost exclusively be dealing with

either rational billiard tables or billiard tables with self-similar fractal boundary. This

is to imply that we do not at all discuss the current research on irrational billiard tables

and their associated flat surfaces and extensions to Teichmüller theory. For a detailed

discussion of such topics, as well as a source for additional references discussing flows on

moduli spaces, see [Hoop].

To clearly understand how one forms equivalence classes from elements of B ×

S1, we let (x, θ), (y, γ) ∈ B×S1 and say that (x, θ) ∼ (y, γ) if and only if x = y and one

of the following is true:
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Figure 2.1: A billiard ball traverses the interior of a billiard and collides with the bound-
ary. The velocity vector is pointed outward at the point of collision. The presence of a
well-defined tangent at this point provides for the existence of a normal to the tangent
and the recovery of the Law of Reflection (i.e., Snell’s Law). The resulting direction
of flow is found by either reflecting the vector through the tangent or by reflecting the
incidence vector through the normal and reversing the direction of the vector. We use
the former method throughout this paper. A rigorous discussion of the Law of Reflection
in this context is given in [Sm].

1. x = y is not a vertex of the boundary B and θ = γ,

2. x = y is not a vertex of the boundary B, but x = y is a point on a segment si of

the polygon B and θ = ri(γ), where ri denotes reflection in the segment si,

3. If x = y is a vertex of B, then we identify (x, θ) with (y, g(γ)) for every g in

the group generated by reflections in the two adjacent sides having x (or y) as a

common vertex.

Definition 64 (Rational polygon and rational billiard). If B is a nontrivial con-

nected polygon such that for each interior angle θj of B there are relatively prime inte-

gers pj > 0 and qj > 0 such that θj =
pj
qj
π, then we call B a rational polygon and Ω(B)

a rational billiard.

Denote by S1 the unit circle, which we let represent all the possible directions

(or angles) in which a billiard ball may initially move. The phase space for the billiard
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dynamics is (Ω(B)×S1)/ ∼. In practice, one restricts his or her attention to (B×S1)/ ∼

when discussing the phase space of the billiard Ω(B).

Let x0 be an initial basepoint on the boundary B of a billiard table Ω(B) and

θ0 an initial direction. The billiard map is determined from the continuous flow. Let

ϕt(x
0, θ0) be a flow line in the phase space (Ω(B)×S1)/ ∼. We consider a section of the

phase space given by (B × S1)/ ∼. The values tj for which ϕtj (x
0, θ0) ∈ (B × S1)/ ∼

constitute the return times (i.e., times for which ϕt(x
0, θ0) returns to the section, or

intersects it in a non-tangential way). Then, the discrete map f tj(x0, θ0) constitutes the

section map. In terms of the configuration space, f tj(x0, θ0) constitutes the point and

angle of incidence in the boundary B. Since Ω(B) is the billiard and it is the collision

points in which we are interested, it is only fitting that such a map be called the billiard

map. More generally, f tj is denoted by f j and is called the Poincaré map and the

section is called the Poincaré section2. Furthermore, the obvious benefit of having a

visual representation of f j(x0, θ0) in the configuration space is exactly why one restricts

their attention to the section (B × S1)/ ∼. Specifically, all one really cares about in the

end, from the perspective of one examining a planar billiard, are the collision points,

which are clearly determined by the Poincaré map.

Remark 65. In the sequel, we will simply refer to an element [(xk, θk)] by (xk, θk),

since the vector corresponding to θk is inward pointing at the basepoint xk. So as not

to introduce cumbersome notation, when we begin discussing the billiard map fKSn

corresponding to the nth prefractal billiard Ω(KSn), we will simply write fKSn as fn.

When discussing the discrete billiard flow on (Ω(KSn) × S1)/ ∼, the kth point in an

orbit (xk, θk) ∈ (Ω(KSn)×S1)/ ∼ will instead be denoted by (xknn , θknn ), so as to be clear

as to which space such a point belongs. Specifically, kn refers to the number of iterates

2In the context of mathematical billiards, the billiard map is the Poincaré map.
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of the billiard map fn necessary to produce the pair (xknn , θknn ). An initial condition of

an orbit of Ω(KSn) will always be referred to as (x0n, θ
0
n).

In the event that a basepoint xj of f jB(x
0, θ0) is a corner of Ω(B) (that is, a

vertex of the polygonal boundary B) and θ0 was a direction for which the billiard flow

would be periodic, then the resulting closed orbit is said to be singular. In addition, since

θ0 is a direction for which the resulting orbit is periodic, there exists a positive integer k

such that the basepoint x−k of f−k
B (x0, θ0) is a corner of Ω(B). (Here, f−k

B denotes the

kth inverse iterate of fB.) The path then traced out by the billiard ball connecting xj

and x−k is called a saddle connection.

Definition 66 (Footprint of an orbit). Let On(x
0
n, θ

0
n) be an orbit of Ω(KSn). Then

Fn(x
0
n, θ

0
n) := On(x

0
n, θ

0
n) ∩KSn (2.20)

is called the footprint of the orbit Ω(KSn).

Remark 67. Within the subject of mathematical billiards, there appears to be a

slight abuse of language. One may refer to the orbit of a billiard as the path traced

out by the billiard ball or as the collection of incidence points in the boundary. In the

latter case, such a set of points is referred to as the images of iterates of the billiard map

fB. When we want to be clear as to which concept we are referring, we will specifically

write ‘the path corresponding to the orbit’ or ‘the footprint of the corresponding orbit,’

respectively. When no ambiguity shall arise, we simply refer to the orbit as either the

“path” or the “footprint” of the corresponding orbit.

2.4.1 Unfolding a billiard orbit

Consider a rational polygonal billiard Ω(B) and an orbit O(x0, θ0). Reflecting

the billiard Ω(B) and the orbit in a side of the billiard containing a basepoint of the
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Figure 2.2: Unfolding an orbit of the equilateral triangle billiard Ω(KS0).

orbit (or an element of the footprint of the orbit) partially unfolds the orbit O(x0, θ0);

see Figure 2.2. Reflection in the side constitutes an affine transformation of Ω(B). The

linear portion of the affine transformation is an element of the group of symmetries of

B. Continuing this process until the orbit is a straight line produces as many copies of

the billiard table as there are elements of the footprint. That is, if the period of an orbit

O(x0, θ0) is some positive integer p, then the number of copies of the billiard table in

the unfolding is also p. Therefore, we refer to such a straight line as the unfolding of the

billiard orbit.

2.5 Flat surfaces and properties of the flow

2.5.1 A flat surface

In this section, we deal only with flat surfaces constructed from rational bil-

liards; see Definition 64 in §2.4 above. Heuristically, a flat structure on a connected

surface M is an atlas (Uα, ϕα)α∈A with a finite number of singularities such that, away
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from these singularities, each coordinate changing map

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ) (2.21)

is a translation in R2. Specifically, a flat structure satisfies the following definition.

Definition 68 (Flat structure). Let M be a compact, connected, orientable surface.

A flat structure on M is an atlas ω, consisting of charts of the form (Uα, ϕα)α∈A , where

Uα is a domain (i.e., a connected open set) in M and ϕα is a homeomorphism from Uα

to a domain in R2, such that the following conditions hold:

1. the collection {Uα}α∈A cover the whole surface M except for finitely many points

z1, z2, ..., zk , called singular points;

2. all coordinate changing functions are translations in R2;

3. the atlas ω is maximal with respect to properties (1) and (2);

4. for each singular point zj, there is a positive integer mj , a punctured neighborhood

U̇j not containing other singular points, and a map ψj from this neighborhood to a

punctured neighborhood V̇j of a point in R2 that is a shift in the local coordinates

from ω, and is such that each point in V̇j has exactly mj preimages under ψj .

Definition 69 (Flat surface). We say that a connected, compact surface equipped

with a flat structure is a flat surface.

Calling a connected, compact (2-dimensional) manifold with flat structure a flat

surface is somewhat of an abuse of language, but it enables us to be brief and refer to

related notions with greater ease. Note that in the literature on billiards and dynamical

systems, the terminology and definitions pertaining to this topic are not completely

uniform; see, for example, [GaStVo, Gtk1, GtkJu1, GtkJu2, HaKa, HuSc, Mas, MasTa,
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Ve1, Ve2, Ve3, Vo, Zo]. We have adopted the above definition for clarity and the reader’s

convenience.

The singular points of a flat surface S are called singularities of the flow. There

are two types of singularities in a flat surface: removable and nonremovable. They are

called such, because it may or may not be possible to define the flow at these points.

We now turn to a discussion of why these singularities can be termed “removable” or

“nonremovable” and how to discern between the two types. Consider zj in the set of

singularities of a flat structure. A neighborhood of this point is homeomorphic to a

cone. Recall that the measure (in radians) of an angle is the length of the arc in the unit

circle intersected by the two rays forming the angle. Consequently, a unit circle with a

circumference of 4π is not a circle (with radius r = 1) living in the plane; see Figures

2.3 and 2.4 and Example 72. A conic angle is the number of radians required to form a

closed circle about the cone point zj .

We state the following definitions for completeness.

Definition 70 (Removable conic singularity). A singularity of a flat structure given

by (Uα, ϕα)α∈A is a removable singularity of the flow if the conic angle about such a

point is 2π.

Definition 71 (Nonremovable conic singularity). A singularity of a flat structure

given by (Uα, ϕα)α∈A is a nonremovable singularity of the flow if the conic angle about

such a point is 2πc, for some integer c > 1.

With regards to the geodesic flow on a flat surface S, removable singularities

pose no problem for the flow and the flow lines through such points can continue unim-

peded. However, when a singularity is nonremovable, the flow cannot continue unim-

peded. Moreover, when zj is a removable singularity of a flat structure ω, there exists a

flat structure ω̃ on S such that zj is not a singular point of ω̃. Technically speaking, when
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Figure 2.3: Two coordinate planes properly identified share the origin.

zj is a removable singularity of the flow on a surface with a flat structure, there exist

neighborhoods Uβ and Uγ of zj and maps ϕβ and ϕγ such that the associated transition

map ϕβ ◦ ϕ−1
γ is a shift in the local coordinates at zj, where the number of preimages

of a point x ∈ V̇j is mj = 1. As previously mentioned, the geodesic flow may then be

continuously extended at removable singularities of the flat surface.

Example 72. Consider two coordinate planes as shown in Figure 2.3. If we identify

the underside of the nonnegative x-axis in the left coordinate plane with the upperside of

the nonnegative x-axis in the right coordinate plane and then identify the upperside of

the nonnegative x-axis in the left coordinate plane with the underside of the nonnegative

x-axis in the right coordinate plane, then one point these two planes will have in common

is the origin. The origins are identified and any attempt to form a closed circle about

this new point in the new space results in a cone point with a conic angle of 4π; see

Figure 2.4.

We now discuss how to construct a flat surface from a rational billiard. Consider

a rational polygon billiard Ω(P ) with k sides and interior angles
pj
qj
π at each vertex
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Figure 2.4: In this figure, we see that the origin has a conic angle of 4π.

zj , for 1 ≤ j ≤ k. Here, pj and qj are relatively prime positive integers. Then, a

(laborious) calculation shows that for some j ≤ k, qj = lcm(qi)
k
i=1,i 6=j. Consequently,

the linear portions of the planar symmetries generated by reflection in the sides of the

polygonal billiard Ω(P ) generate the dihedral group DN , where N := lcm{qj}kj=1. Here,

by definition, the dihedral group DN denotes the group of symmetries of the regular N -

gon. So as to be clear, we mention that the notation DN does not refer to the (wrong)

fact that such a finite group has N elements.3 We next consider Ω(P )×DN (equipped

with the product topology). We want to glue ‘sides’ of Ω(P )×DN together and construct

a natural atlas on the resulting surface M so that M becomes a flat surface.

To such end, let p1 = p2 be a point on a side sa of Ω(P ), ra be the linear portion

of the reflection determined by reflecting Ω(P ) in the side a, and (p1, r1), (p2, r2) ∈

P ×DN . Then, by definition, (p1, r1) ∼ (p2, r2) if and only if

1. (p1, r1) = (p2, r2), or

3Actually, DN has 2N elements, and the standard group theory notation for the dihedral group is

then D2N , since the cardinality of the group is often given more importance, from the perspective of

group theory.
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2. ra = r−1
1 r2, or

3. p1 and p2 are the same vertex of Ω(P ) having adjacent sides sa and sb, with r−1
1 r2

belonging to the subgroup generated by ra and rb.

It is not difficult to check that ∼ is an equivalence relation on Ω(P ) × DN .

More work is required to show that M := (Ω(P ) × DN )/ ∼ is a compact, connected,

orientable surface. As a result of the identification, the points of M that correspond to

the vertices of Ω(P ) constitute (removable or nonremovable) conic singularities of this

surface. Heuristically, Ω(P ) ×DN can be represented as {rjΩ(P )}2Nj=1, in which case it

is easy to see what points are made equivalent under the action of ∼.

Denote by Ω(P )◦ the interior of the billiard Ω(P ). To construct a flat structure

on M , let Uj = Ω(P )◦×{rj}. Then {Uj , ϕj}2Nj=1 can be naturally extended to constitute

a flat structure on M , in the sense of Definition 68. Hence, M is a flat surface, in the

sense of Definition 69. The map ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩Uj) is a translation in

the local coordinates of a point z ∈ Ui ∩Uj ; i.e., ϕi ◦ϕ−1
j (z) = z+ d, where the constant

d is independent of the choice of i and j.4

Example 73. Consider the following example of a triangle with interior angles

(π/6, π/6, 2π/3). (2.22)

If we fix the vertex corresponding to the angle 2π/3 and make successive reflections in

one of the adjacent sides to generate the picture in Figure 2.5, then we see that this

vertex must have conic angle 2πc, with c > 1. The reason for this is that after the three

4A priori, the choice of d describing the translation in the local coordinates does depend on i and j.

However, given the fact that one constructs the flat surface by identifying parallel and opposite sides of

the polygon B, for a fixed direction θ, one can describe a parallel line field in the direction θ := arctan δ
γ
,

with d =: γ +
√
−1δ.
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Figure 2.5: Successive reflections in the sides adjacent to the vertex and gluing such sides
together produces a space for which the origin (the common point in all the triangles)
has a conic angle of 4π.

reflections, the reflected copy of the triangle will not have the proper orientation. A

total of six reflections will produce a copy of the triangle with the proper orientation

and 4π radians are required to form a closed circle about this vertex, a point that all the

triangles have in common.

Example 74 (The equilateral triangle billiard Ω(KS0)). We consider the equilateral

triangle ∆ := KS0, an important example in the literature (see, e.g., [BaUm]) and an

even more important example when considering the Koch snowflake prefractal billiard.

Since the interior angles πpi/qi are all the same and equal to π/3, we have

N = lcm{qi}3i=1 = lcm{3, 3, 3} = 3. (2.23)

Consequently, the associated surface is given by S(KS0) := (∆ × D3)/ ∼. Moreover,

there is a flat structure on this surface and since all the singularities are removable

conic singularities, such a structure can be extended to include the singular points and

the resulting surface is topologically equivalent to a torus. (Really, the associated flat

surface S(KS0) is the hexagonal torus, which is topologically equivalent to the torus

determined from identifying the four sides of the unit square appropriately; see Figure

3.3 in §3.)
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Figure 2.6: The associated flat surface for the triangle (π/2, π/5, 3π/10).

Example 75. Consider the triangle given by (π/5, π/2, 3π/10). If we fix the vertex

with angle measuring π/5 and make successive reflections in one of the sides, the result is

a pentagon with 10 copies of the triangle. However, a quick calculation shows that there

should be 20 copies of the triangle. The group of symmetries generated by the linear

portions of the planar symmetries given by the sides of the triangle corresponds to D10.

While 10 reflections produced a triangle with the appropriate orientation (meaning the

conic angle about the point coming from the vertex with angle π/5 in the surface is 2π),

it follows that the collection of ten triangles is not the whole surface (once we identify

sides appropriately).

If one wanted to generate the surface by reflecting successively in an adjacent

side of a fixed vertex, that vertex would have to be the corner with an angle measuring

3π/10. However, the conic angle of that point is 6π and the successive reflections would

not live in the plane, rather would have to lift out of the plane.

We close this discussion by recalling an important fact about the geodesic flow

on a flat surface S(B) constructed from a rational billiard Ω(B) and the billiard flow on

that rational billiard. These two flows can be shown to be (dynamically) equivalent under

the action of the group DN associated with the construction of the corresponding flat

surface. Heuristically, one may view the corresponding equivalence as follows: a billiard
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flow line may be straightened (i.e., unfolded) to a geodesic flow line and additionally,

a geodesic flow line may be collapsed into a billiard flow line. In order to be more

technically correct, we further explain the details of the equivalence of these two flows.

If we consider the geodesic flow on the surface, the quotient of the flat surface by the

group of symmetries associated with the construction of S(B) has the effect of collapsing

the space to a space with a quotient flow that is isomorphic to the billiard flow. On the

other hand, any given billiard orbit may be straightened by making successive reflections,

via the action of DN , in the identified sides of the flat surface, therefore producing a

straight-line flow line on the flat surface S(B).

2.5.2 The Veech group and the Veech Dichotomy

Consider a flat surface S(B), where B is a rational polygon. The geodesic flow

is dynamically equivalent to the billiard flow, as discussed at the end of §2.5.1. The

stabilizer of the flat surface, when it has a particular structure, will be able to provide

information about the nature of the geodesic flow on S(B).

Definition 76 (Affine automorphism). Suppose S(B) is a flat surface (and B is a

rational polygon). An affine automorphism of S(B) is a homeomorphism ϕ : S(B) →

S(B) such that the following hold:

1. ϕ permutes the nonremovable conic singularities of S(B).

2. Every point p ∈ S(B) for which the cone angle is 2π, there is a neighborhood Up

and a neighborhood ϕ(Up) = Uq, q = ϕ(p), in which ϕ(Up) is isometric (via a map

fp) with a neighborhood of R2 and fq ◦ ϕ ◦ f−1
p : fp(Up) → fq(Uq) is an affine

transformation.

Definition 77 (The Veech group Γ(B)). Let B be a connected rational polygon and
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S(B) be a flat surface. The collection Γ(B) of affine automorphisms of S(B) is called

the Veech group of the flat surface.

Statement 78. The Veech dichotomy says that the flow is either closed or uniquely

ergodic.

We appeal to the fact that G has a representation in PSL2(R) to state the

following theorem, due to A. Veech ([Ve4]).

Theorem 79 (Veech). If the Veech group Γ(B) is co-compact in PSL2(R), then the

Veech dichotomy holds for the flat surface S(B).

Example 80 (The Veech group of the flat torus (R/Z)2). Consider the flat surface

given by properly identifying sides of the square. Since the flat surface has no nonre-

movable singularities and is locally isometric with R2, it follows that the corresponding

Veech group is the collection of affine automorphisms Ax+By, A,B ∈ R.

2.6 Concepts in fractal geometry

We present here the concepts in the field of fractal geometry necessary for

understanding the content of this thesis. For a more developed treatment of fractal

geometry, see [Fc].

2.6.1 Iterated function systems

Definition 81 (Contraction mapping). Let D be a closed subset of Rm. A map

ψ : D → D is called a contraction map on D if there is a constant c with 0 < c < 1 such

that |ψ(x)− ψ(y)| ≤ c|x− y| for every x, y ∈ D.

Definition 82 (Similarity map). Let D be a closed subset of Rm. A map ψ : D → D

is called a contracting similarity map on D if there is a constant c with 0 < c < 1 such
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that |ψ(x)− ψ(y)| = c|x− y| for every x, y ∈ D.

Remark 83. In the context of this thesis, every contracting similarity map will be

referred to as a similarity map, for the sake of brevity. If we should be discussing a more

general similarity map (i.e., c > 0), we will be very clear to point this out. One case of

this occurs in Theorem 95.

Definition 84 (Iterated function system (or IFS)). Let D be a nonempty, compact

subset of Rm. For every j ≤ k, let ψj : D → D be a contraction map. Then {ψj}kj=1 is

called an iterated function system (or IFS) and is denoted by Ψ.

Definition 85 (Fixed-point attractor). Let {ϕj}kj=1 be an IFS. A nonempty subset

F ⊂ D is called an attractor of the IFS if

F =

k
⋃

j=1

ψj(F ) (2.24)

This same set F is also a fixed-point of the map ΛΨ(·) :=
⋃k

j=1 ψj(·) defined on the space

of compact subsets of D. That is, ΛΨ(F ) = F .

As we will see, the fact that F is called an attractor of an IFS is motivated by

how we show there exists such a set. Moreover, the procedure we go through to do so

will end up validating another statement and that is that such an attractor is unique.

Theorem 86 (Contraction Mapping Principle). Let X be a nonempty, complete

metric space. Let ψ : D → D be a contraction mapping on a closed subset D ⊆ X.

Then the map ψ admits one and only one fixed-point x∗ in D.

Theorem 87. Let ϕ = {ϕj}kj=1 be an IFS defined on a closed subset D ⊆ Rm

and ΛΨ(·) :=
⋃k

j=1 ψj(·). Then there exists a unique, nonempty, compact, fixed-point

attractor F such that for any compact subset A ⊆ D such that ψj(A) ⊆ A for every
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j ≤ k, we have that

F =

∞
⋂

i=0

⋃

α∈Ji

ψα(A) (2.25)

where Ji = {α = (α1, α2, ..., αi)|αt ≤ k, t ≤ i} and ψα(A) := ψαi
◦ ... ◦ ψα1

(A).

Finally, we close this section with the notion of self-similarity and the similarity

dimension.

Definition 88 (Self-similar set). Let F be the unique, nonempty, fixed-point attrac-

tor of an IFS Ψ. If every contraction map ψj is also a similarity map, then we say F is

a self-similar set.

Remark 89. Throughout the thesis, we will be referring to certain sets as self-similar

even when it is clear they are not. Really, in these particular situations, we mean that

either some obvious subset (which we would clearly indicate) of the set is self-similar or

the set is the finite union of non-overlapping (or, rather, abutting) copies of a self-similar

set.

Theorem 90 (The Moran Equation). Let Ψ be an IFS and cj the corresponding

scaling ratio of the contraction mapping ψj. Then the following equation (known as the

Moran Equation) has a unique, nontrivial (and nonnegative) solution.

k
∑

j=1

csj = 1 (2.26)

That is, there exists a unique real value s0 such that the Moran Equation (2.26) is

satisfied.

Definition 91 (Open set condition). Let Ψ be an iterated function system. Then,

for each 1 ≤ j ≤ k, the contraction mapping ψj is said to satisfy the open set condition

if there exists a non-empty bounded open set V such that

k
⋃

j=1

ψj(V ) ⊆ V. (2.27)

41



2.6.2 Hausdorff dimension and measure

Definition 92 (Diameter of a set). Let U ⊆ Rm be a nonempty subset. The diameter

of the set U is given as follows.

|U | := sup{|x− y| : x, y ∈ U}, (2.28)

where |x− y| is the n-dimensional Euclidean distance from x to y.

Definition 93 (δ-cover of a set A). Let δ > 0 and {Uj}∞j=1 be a countable collection

of sets covering a set A with |Uj| < δ for all j ≥ 1. Then {Uj}∞j=1 is called a δ-cover of

the set A.

Let A ⊆ Rm and s ≥ 0. For any δ > 0, we define the following.

H
σ
δ (X) := inf







∞
∑

j=1

|Uj |σ | {Uj}∞j=1 is a δ-cover of X







. (2.29)

We want to note that H σ
δ is not an outer measure. Unrelated to this note, but worth

remarking on is the fact that as δ → 0, the collection of permissible covers is reduced.

Therefore, H σ
δ (A) increases as δ → 0.

Definition 94 (σ-dimensional Hausdorff measure of A). Let A be a subset of Rn.

Then the σ-dimensional Hausdorff measure H σ(A) is defined as follows.

H
σ(X) := lim

δ→0
H

σ
δ (X). (2.30)

One can show that H σ is, indeed, a measure in the sense defined in Definition

7. In fact, when σ = m ≥ 1, the measure H σ and Lebesgue measure λ on Rm agree on

the σ-algebra of Lebesgue measurable sets, up to a constant. When σ = 1, then the two

measures agree exactly on the space of Lebesgue measurable sets.

Theorem 95 (Scaling property of Hausdorf measure). Let ϕ be a similarity trans-

formation of scaling ratio c > 0. If X ⊂ Rd, then

H
σ(ϕ(X)) = cσH

σ(X). (2.31)
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Proposition 96. If t > σ and {Uj}∞j=1 is a δ-cover of a set X, then we have

∞
∑

j=1

|Uj |t ≤
∞
∑

j=1

|Uj|t−σ |Uj |σ (2.32)

≤ δt−σ
∞
∑

j=1

|Uj |σ. (2.33)

Therefore, H t
δ (X) ≤ δt−σH σ

δ (X).

Proposition 97. If H σ(X) <∞, then H t(X) = 0 for every t > σ.

Proposition 98. If H σ(X) > 0, then H t(X) =∞ for every t < σ.

Theorem 99. Let Ψ be an IFS with each contraction map ψj satisfying the open set

condition. If F is the attractor of the IFS, then the Hausdorff dimension σ is the unique

value s0 satisfying the Moran Equation. Moreover, for this value s0, the s0-dimensional

Hausdorff measure is nonzero and finite.

2.7 The ternary Cantor set

The ternary Cantor set C (hereafter referred to as the Cantor set) is usually

the first fractal one learns about and is the canonical example of a topological Cantor

set, if not the canonical example of a self-similar fractal set.

2.7.1 Geometric construction

One may construct the Cantor set by starting with the unit interval I := [0, 1]

and removing the open middle third (1/3, 2/3). Subsequent middle thirds are then re-

moved from each remaining closed interval. The surprising fact is that one removes

enough intervals so that none remain, but there are still uncountably many points re-

maining; see Figure 2.7.

The Cantor set is the unique, nonempty, compact, fixed-point attractor of a

particular IFS. The particular contraction maps comprising the iterated function system
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Figure 2.7: The construction of the ternary Cantor set.

Ψ are as follows.

ψ1(x) =
1

3
x (2.34)

ψ2(x) =
1

3
x+

2

3
.

As one can see from Figure 2.7, the result of each iteration of the map ΛΨ :=
⋃2

j=1 ψj

is a collection of intervals that effectively amounts to removing middle thirds from the

previous approximation. As one can (or, perhaps, cannot) deduce from the geometric

construction, there are no intervals remaining in the limit. As we will discuss in §2.7.3,

the ternary Cantor set is an example of a topological Cantor set.

2.7.2 Symbolic construction

The geometric construction given above in §2.7.1 can be described symbolically.

Consider the alphabet {l, c, r}. What we are about to show amounts to describing a

ternary representation of elements of the Cantor set. Let us begin by first describing a

few interesting elements of C . The rational value 1/3 has a ternary expansion given by

0.1 or, equivalently, 0.02. The rational value 1/4 has a ternary expansion given by 0.02.

In terms of our alphabet, we say 1/3 has a ternary representation given by lr and 1/4

has a ternary representation given by lr. We want to stress that a ternary representation

will always consist of infinitely many characters, while a ternary expansion of an element
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of the unit interval I can be finite, which is illustrated by the example of the rational

value 1/3.

We want to be careful and note that a ternary representation of an element does

not translate into a ternary expansion of the same value perfectly. That is, an l does not

translate into a 0, a c does not translate into a 1 and an r does not translate into a 2;

again, x = 1/3 serves as an example of this. Also, it may be possible for an elements of

the Cantor set C to have a ternary representation consisting of infinitely many l’s and

finitely many c’s and r’s or infinitely many r’s and finitely many l’s and c’s. For example,

1/3 has a representation given by lr and, equivalently, cl. For the sake of simplicity, we

take every element of C to have a ternary representation that contains no c’s.5 The

symbolic description of elements of C can be tied to the geometric construction via the

IFS described in Equation (2.34). To see this, note that each subscript in a composition

of length j, ψkj ◦ · · · ◦ ψk1 , constitutes a character in a word αx entirely comprised of

either l’s and r’s. This is not really entirely unexpected, especially since the labels for

the characters of the alphabet A were chosen to represent the choices of left, center and

right.

In the sequel, the type of ternary representation will provide us with important

information. Particular qualities of the representation will, in part, dictate the type of

orbit that results and the nature of the sequence of compatible orbits. For example,

1/4 = lr, but we are more interested in the fact that such a representation consists of

infinitely many l’s and r’s and no c′s.

Notation 100. The type of ternary representation can be summarized as follows.

If x ∈ I, then the first coordinate of [·, ·] describes the characters that occur infinitely

5What we want to prevent is a point of C having a representation determined by approaching it

from the complement of C . In this way, every point of C has a unique ternary representation.
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often and the second coordinate of [·, ·] describes the characters that occur finitely often.

If we want to discuss many different types of ternary representations, then we use the

exclusive or. That is, the notation [·, ·] ⊕ [·, ·]... ⊕ [·, ·] is to be read as [·, ·] or [·, ·]... or

[·, ·]. If the collection of characters occurring finitely often is empty, then we write the

type of ternary representation as [·, ∅].

Example 101. If an element x ∈ I has a ternary representation consisting of infinitely

many c’s and l’s but finitely many r’s, then we write this type of ternary representation

as [lc, r]. If we have a collection of points in I such that each point has a ternary

representation consisting of infinitely many c’s and l’s or infinitely many l’s and r’s

then we write the types of ternary representations as [lc, r] ⊕ [lr, c]. Concretely, the

element 1/4 ∈ C has an explicit ternary representation given by lr and the type of

ternary representation is described as [lr, ∅]. Even though the ternary representation of

1/10 ∈ C is not the same as 1/4, both have the same type of ternary representation.

2.7.3 Properties

The Cantor set C is an example of a topological Cantor set, meaning C is a

perfect set that contains no segments of positive length. In the context of a subset of a

measure space equipped with the Lebesgue measure, C is a set of measure zero. However,

the Cantor set is an uncountable set (in fact, it has the cardinality of the continuum).

The fact that it is uncountable is proven by using Cantor’s diagonalization argument.

Constructing the bijection f : C → [0, 1] is slightly more involved.

As alluded to in §2.7.1, the Cantor set C has no volume. One can see this by

summing up the lengths of the open intervals removed as each stage of the geometric

construction. At the first stage, one interval of length 1/3 has been removed. At the

second stage, two intervals of length 1/9 have been removed. At the nth stage, 2n−1
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Figure 2.8: The Koch curve construction.

intervals of length 1/3n have been removed. Summing up these lengths, we find that the

total length removed is 1, which was the whole length of the unit interval I.

The Cantor set has a similarity dimension of log3 2. That is, the solution s0 to

the Moran Equation is s0 = log3 2. Since it can be shown the ternary Cantor set satisfies

the open set condition, the Hausdorff dimension σ of C is s0.

2.8 The Koch snowflake

The Koch snowflake KS, the main fractal used throughout this dissertation, is

intimately tied to C .

2.8.1 Geometric construction

We first describe the construction of the Koch curve, and from that, construct

the Koch snowflake KS.

The Koch curve is constructed as shown in Figure 2.8. One begins with the

unit interval, removing the open middle third and placing at the endpoints 1/3 and 2/3

two uprights that would have formed the sides of an equilateral triangle. Heuristically,

one can say that they are replacing open middle thirds of length 1/3n, for some positive

integer n, with an equilateral triangle of the same scale but with no base.

One may also show that the Koch curve is the unique, nonempty, compact,

fixed-point attractor of a particular IFS. The IFS is comprised of the contraction maps
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Figure 2.9: The Koch snowflake fractal.

given as:

ϕ1(x) =
1

3
x

ϕ2(x) =
1

3
x+

(

2

3
, 0

)

ϕ3(x) =
1

3
ρx+

(

1

3
, 0

)

(2.35)

ϕ4(x) =
1

3
Rρx+

(

2

3
, 0

)

,

where R is reflection through the vertical axis and ρ is rotation by π/3. The generating

set, however, in this case is not the unit interval, but a rectangle with unit length base

and height measuring h =
√
3/6.

Then, the Koch snowflake KS is constructed by appending three copies of the

Koch curve in such a way that the result is a closed and connected curve; see Figure

2.9. Alternately, one could view the Koch snowflake fractal KS as the limit of particular

polygonal approximations. By starting with the equilateral triangle and replacing middle

thirds of each successive side with a smaller triangle missing its base, the set that results

in the limit is also the Koch snowflake; see Figure 2.10.
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Figure 2.10: The Koch snowflake fractal as a limit of polygonal approximations.

Figure 2.11: An illustration of Definition 102 in terms of KS0 = ∆ and KS1.

2.8.2 Symbolic construction

The symbolic description of points of the Koch snowflake is motivated—as one

would expect—by the geometric construction described in §2.8.1. In order to describe

how one goes about assigning addresses to points of the snowflake KS, we first define

what a cell of the Koch snowflake billiard is.

Definition 102 (A cell Cn,k of Ω(KSn)). Consider (the ‘set-theoretic difference’)

Ω(KSn) \ Ω(KSn−1). Each resulting triangular region is then called a cell of Ω(KSn).

We denote a cell of Ω(KSn) by Cn,k, where k ≤ 3 · 4n−1 refers to the side sn−1,k of

Ω(KSn−1) to which the cell was glued; see Figure 2.11.6
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13

5

Figure 2.12: The only occurrence of a 5 in an address of a point of KS will be at the
very beginning of the address. Essentially, this labeling indicates, heuristically speaking,
in which copy of the Koch curve is the point being addressed contained.

Figure 2.13: A directional in Ω(KS1) indicating six possible directions of travel. It is
this directional that will essentially provide a ‘path’ to any point on the snowflake.

It is here that we want to describe an addressing system for the Koch snowflake

KS. We note that such an addressing system was first introduced in [LapPa] and used

again in [LapNie2]. Consider the alphabet given by A = {0, 1, 2, 3, 4, 5}. We first

suppose that the sides of the equilateral triangle are labeled as shown in Figure 2.12. A

directional indicating six possible directions is shown in Figure 2.13.

Notation 103. If αx is an address of an element x ∈ KS, then αx|n is the first n

characters of the address, and (αx)n is the nth character of the word.

6Hence, there are 3 · 4n−1 cells Cn,k of Ω(KSn) and so 1 ≤ k ≤ 3 · 4n−1, in Definition 102.
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Let x ∈ KS have an address given by the infinite word αx given in terms of

the characters of A . Then, the characters 0, 1, 2, 3 and 4 have the following geometric

meaning. We first deal with the case where (αx)1 = 1, 3. Suppose a segment of KSn has

a finite address αx|n+1 ending in:

• the character 1. If (αx)n+2 is:

– the character 2, then this indicates one chooses the left third of the side.

– the character 0, then this indicates one chooses the right third of the side.

– the character 1, then this indicates a rotation of the directional by −π/3, to

move forward into a new cell and choose the right side of the cell.

– the character 3, then this indicates a rotation of the directional by π/3, to

move forward into a new cell and choose the left side of the cell.

• the character 3. If (αx)n+2 is

– the character 4, then this indicates one chooses the left third of the side.

– the character 2, then this indicates one chooses the right third of the side.

– the character 1, then this indicates a rotation of the directional by −π/3, to

move forward into a new cell and choose the right side of the cell.

– the character 3, then this indicates a rotation of the directional by π/3, to

move forward into a new cell and choose the left side of the cell.

Suppose the address begins with a 5. Until a 1 or 3 appear in the address, the

characters 0 and 4 indicate to choose the right and left third of the base of Ω(KS0) =

Ω(∆), respectively. Then,

51



• the character 1 occurs in the word beginning with a 5 indicates a rotation of the

directional by π, to move forward into a new cell and choose the right side of the

cell.

• the character 3 occurs in the word beginning with a 5 indicates a rotation of the

directional by π, to move forward into a new cell and choose the left side of the

cell.

The rules previously described in the case of when (αx)1 = 1, 3 then apply

once a 1 or 3 has occurred in the address αx. Examples of addresses of sides of an

approximation of the Koch snowflake are given in Figure 2.14.

Notation 104. We may use the same notation given in Notation 100 when describing

types of addresses of points of the snowflake KS.

2.8.2.1 Representing elements of KSn

The addressing system used to identify points of KS will become particularly

useful in Chapter 5. In Chapter 4, we will be more interested in the information provided

by the ternary representation of an element x0n of a side sn,k, k ≤ 3 · 4n, of Ω(KSn). In

order to make that material more palatable, we discuss how exactly we will represent

elements of KSn below.

We have already seen how to represent elements of the unit interval (in particu-

lar, elements of C ) and elements of the fractal KS. We want to use those two addressing

systems to represent elements of the sides of a prefractal KSn. Consider a side sn,k of

KSn. This side can be identified using the addressing system discussed in §2.8.2. Since

the addressing system implicitly codes for a notion of ‘left, ‘center’ and ‘right,’ we can

give the ternary representation of an element x0n of the side sn,k. Based on this method,
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Figure 2.14: Examples of exactly how the rules for addressing points are implemented
with the use of the directional. In the context of a finite approximation KSn, the address-
ing system serves to label sides of the prefractal approximation KSn. Points A, B and D
then lie on sides which are labeled by the addresses 134, 131, 511, respectively. The point
C, however, does not lie exactly on a side, but at a vertex. Hence, one could say that C
lies on the side with address 504 or 534. Moreover, in the limit, C may be represented
by the equivalent addresses 504 and 534, where (as before) the overbar indicates that
4 is repeated ad infinitum. Since a billiard orbit is a collection of dynamically ordered
points, it follows that each basepoint of an element of an orbit can be given an address
in terms of this addressing system and still be distinguished from other basepoints of
elements of the orbit with the same address.
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we can see that even though two points on two different sides may have the same ternary

representation, we can distinguish between the two points by associating with each point

the finite address of the sides on which each point lies.

For example, the representation lr may be used to represent 1/4 in the unit-

interval base of the equilateral triangle or 1/12 on the side s1,k corresponding to the left

third of the unit interval I. Moreover, in Ω(KS1), the ternary representation of 1/4 is rl

and not lr as it was in Ω(KS0). One can see, however, that the representation of 1/4 in

Ω(KS1) is the left shift of the representation of Ω(KS0), which is true in general.

2.8.3 Properties

The Koch snowflake is a compact, connected and infinitely long curve in the

plane. At no point of the snowflake KS can one form a well-defined tangent. This last

property is what makes the Koch snowflake billiard so impenetrable. In terms of the

so-called fractal properties, KS has a Hausdorff dimension of log3 4. Since it is the union

of three self-similar curves, each of which satisfies the open set condition, the similarity

dimension and Minkowski dimension are both equal to the Hausdorff dimension.

2.8.4 The geography of the Koch snowflake

At first glance, the title of this section may seem a bit out of place. However,

the Koch snowflake is a terribly difficult set to deal with. Having some language in which

to describe where it is one may be could be useful. Hence, we describe various points

and regions of the Koch snowflake and its prefractal approximations.

We have already defined a cell of Ω(KSn). We have shown how to describe the

addresses of points of the snowflake and the fact that a finite address can be used to

address a side of a prefractal approximation Ω(KSn). In fact, the addresses of sides of a

54



prefractal approximation Ω(KSn) will always consist of n+ 1 many characters.

In the Koch snowflake KS, there are three types of points: corners, Cantor-

points and elusive limit points. We first describe these points in terms of their qualities

and then describe them in terms of their addresses.

A corner of the Koch snowflake KS is an element that is a corner of a finite

approximation KSn, for some n ≥ 0. A Cantor-point of KS is an element that is an

element of a finite approximation KSn, for some n ≥ 0, such that the ternary repre-

sentation of this point (with respect to the side on which it lies) consists of infinitely

many l’s and r’s. Therefore, a Cantor-point is an element of KS that is not a corner,

but definitely a tangible point. An elusive limit point of KS is an element of KS that

is never an element of any finite approximation KSn. This may seem like a quick way

of brushing most of the elements of KS under the carpet, to be forgotten or ignored,

but we will see when we discuss the addresses of these types of points that they have a

clearly defined representation. Moreover, it is the Cantor-points and elusive limit points

that will be of the greatest interest in the later chapters.

In terms of a ternary representation, a corner of KS has a ternary representation

[l, cr]⊕[r, lc]. As one would then expect, the address of a point consists of infinitely many

of some character, but never infinitely many of more than one character. For example,

consider the address αx = 132. This is an element of a side with address 13 that

corresponds with a point having a ternary representation given by (relative to the side

13) r. We then define a corner of KS in the following way.

Definition 105 (A corner of KS). If x ∈ KS has an address αx [2, 01345] ⊕

[0, 12345] ⊕ [4, 01235], then x is a corner of KS.

In terms of a ternary representation, a Cantor-point of KS has a ternary rep-

resentation [lr, c]. As one would then expect, the address of such a point consists of
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infinitely many of exactly two characters. For example, αx = 1342 is an element of

KS with a ternary representation [lr, c]. In fact, relative to the side 13 of Ω(KS1), the

ternary representation of x is lr. We then define a Cantor-point of KS in the following

way.

Definition 106 (A Cantor-point of KS). If x ∈ KS has an address αx [02, 1345] ⊕

[24, 0135] ⊕ [04, 1235], then we say x is a Cantor-point of KS.

Remark 107. The name Cantor-point is slightly misleading. It is true that every

corner of KS is in the Cantor set of some side of some approximation. However, we make

the distinction between corners and so-called Cantor-points even though both types of

points are certainly points of a Cantor set.

Remark 108. We note that the method for identifying Cantor-points of a side sn,k

described in §2.8.2.1 produces a representation that is equivalent to the representation

given in terms of the addressing system.

An elusive limit point of KS is quite elusive. As previously mentioned, it is a

point that is never an element in any finite approximation KSn of KS. We have seen

that the effect of a 1, 3 or 5 in an address is to ‘move forward’ into a cell of a finer

approximation. It is this quality that makes an elusive limit point so elusive. We define

an elusive limit point in terms of the type of address as follows.

Definition 109 (Elusive limit point). Let x ∈ KS have an address αx [1, 02345] ⊕

[3, 01245] ⊕ [13, 0245] ⊕ [12, 0345] ⊕ [01, 2345] ⊕ [012, 345] ⊕ [23, 0145] ⊕ [34, 0125] ⊕

[234, 015] ⊕ [013, 245] ⊕ [134, 025] ⊕ [0123, 45] ⊕ [0134, 25] ⊕ [01234, 5]. Then we say

x is an elusive limit point of the Koch snowflake KS.

When we begin discussing billiard orbits of Ω(KSn), we will find it more conve-

nient to measure angles of incidence and reflection relative to a fixed coordinate system.

As such, we suppose the left corner of the equilateral triangle with side length measuring
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l = 1 constitutes the origin. However, on occasion, we will find it useful to refer to the

angle of reflection measured relative to a particular side. So that no confusion arises,

when we are discussing such a situation, if ̟ is an angle measured relative to a side of

Ω(KSn), then θ(̟) is the same angle measured relative to the fixed coordinate system.

2.8.4.1 Straightening addresses of the Koch snowflake

Let x be an elusive limit point of the Koch snowflake. Then x has an address

as described in Definition 109. Without loss of generality, we may assume the address

begins with a 1. Since the only characters that can follow a 1 before encountering the

next 3 (should there be a 3 in the address) are 0 and 2, there is a least n1 such that the n1

character of the word is a 1 or 3 and not a 0 nor a 2. If it is a 3, we continue on to the next

character of the address. If it is a 1, then we may switch this 1 for a 3 and until the next

1 or 3 (occurring at the n2 position of the word), switch every 4 for a 0 while keeping the

2’s unchanged. Continuing this process, making sure that every subsequent 1 is followed

eventually by a 3 and not a 1, we end up with what we call the straightening of x, which

we denote by s(x). Since s(x) has an address consisting of 1’s and 3’s interspersed with

0’s and 2’s and/or 2’s and 4’s such that the 1’s and 3’s alternate, we see that this point

is collinear with a point of I along the base of the equilateral triangle and such a line

connecting them contains no other points of the snowflake.

Example 110. Let n and k be positive integers. Consider the address of a side

sn,k of Ω(KSn) given by α = 13123232113133100324. The straightening of this address

is 13123212313131344120. Next, suppose the address of a particular point is given by

α = 13123232113133100324. Then s(x) = 13123212313131344120.

Remark 111. Many of the elusive limit points of the Koch snowflake may be reached

via a piecewise linear logarithmic spiral. As the name suggests, such spirals may be
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straightened to straight line segments that begin in the interior of the snowflake and end

on the boundary of the snowflake, thus identifying an initial basepoint x00 of an orbit of

the billiard Ω(KS0) and the basepoint x10 of f0(x
0
0, π/3).

2.9 Additional topics

2.9.1 Covering spaces

Definition 112 (Covering map). Let E and B be topological spaces. A covering

map p : E → B is a continuous surjective map such that each point b ∈ B admits an

open neighborhood U of b for which the preimage p−1(U) is a disjoint collection of open

sets in E, each of which is mapped homeomorphically onto U via p. One then says that

U is evenly covered by p, and that E is a covering space for B; see, for example, [Ma,

Chap. 5].

Definition 113 (Branched (or ramified) cover). Let E and B be topological spaces.

A continuous map p : E → B is a branched cover of B if for all but a finite number of

points of B, p is a covering map of E onto B. The set of points of B that are not evenly

covered by p is called the branch locus (or set of ramification points).

Example 114 (The map p : C → C). The map p : C → C, given by p(z) = z2, is a

branched covering of C, with branch locus {0}. Hence, it is certainly not a covering map.

On the other hand, p : C − {0} → C − {0}, given by the same expression p(z) = z2, is

a covering map, since it is locally trivial : indeed, each nonzero complex number z in the

target space has an open neighborhood U such that p, restricted to p−1(U), is equivalent

to the projection onto U × {+,−}.
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2.9.2 Inverse limit sequence and inverse limit

Inverse limits of various topological (algebraic, or geometric) objects will play

an important role in this paper. Hence, since such a notion may not be familiar to all

readers, it may be helpful to recall some basic facts pertaining to this subject. Further

information can be found, for example, in [HoYo] and, in a more general context, in

[Bo, McL].

We discuss the inverse limit in the context of the category Set. The objects are

sets and the morphisms are set maps.7 Consider a partially ordered collection of sets

{Xj}∞j=1, with each Xj equipped (for each integer n ≥ 1) with a map Fn :
∏∞

j=1Xj → Xn

defined by Fn((xj)
∞
j=1) = xn. If for every n and every m ≤ n, where m,n ∈ N∗ :=

{1, 2, ...}, we define the map Fnm : Xn → Xm by Fnm(xn) = xm, then the set

lim←−Xj :=







(xj)
∞
j=1 ∈

∞
∏

j=1

Xj |Fnm(xn) = xm, for all m ≤ n







(2.36)

exists and is unique; it is called the inverse limit of the inverse limit sequence {Xj , Fj}∞j=1.

Furthermore, the maps Fnm are called the transition maps of the inverse limit system.

Naturally, if we work instead within the category of Topological Spaces, then

all the maps involved should be morphisms of that same category (and hence, here,

continuous maps).

We next give an example of the inverse limit of a particular collection of sets

(or rather, of topological spaces).

Example 115 (The ternary Cantor set C ). Recall that a ternary number is a number

expressed in terms of a base-3 number system, say, in terms of the characters (or symbols)

7Discussing the inverse limit in the context of Set is purely a formality that allows us to speak in

more concrete terms and utilize important existences and uniqueness properties of the inverse limit in

the category Set. See [Bo, McL] for a general discussion.
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{0, 1, 2}.8 For example, 1102 in base-3 is actually the number 38 in the base-10 number

system. When one constructs the Cantor set C , one may do so by removing middle thirds

(open intervals) of successive approximations.9 Let n ≥ 1. In removing the middle third

from an interval of length 1/3n−1, we are essentially producing a left third and a right

third interval of length 1/3n. As such, we can label the left third as 0 and the right third

as 2. One quickly sees that the Cantor set C is a collection of infinite words written

entirely in terms of 0’s and 2’s. There are no ternary numbers in C whose address

contains 1, because that would mean that we did not remove a middle third from some

interval in the construction process.10 More importantly, our labeling system described

above enables us to determine particular ternary numbers.

Let Cn be the nth prefractal approximation of the Cantor set. In the context

of the inverse limit construction and addressing system above, Cn is the collection of 2n

points, each having an address given by a finite ternary expansion of length n and each

never containing the character 1. On the other hand, in the context of the geometric

construction detailed in the previous paragraph, Cn consists of 2n compact intervals of

8Any three symbols suffice. One can, and we do so in §2.7.2, represent elements of the Cantor set

in terms of the characters {l, c, r}, where such characters stand for left, center and right, respectively.

In general, any element in the unit interval I can be represented by a finite or an infinite sequence

expressed in terms of an alphabet consisting of the characters l, c, r.
9This is not the only way to construct the ternary Cantor set, but most, if not all, methods amount

essentially to the same process.
10For the endpoints of the deleted intervals (also called ‘ternary points’ and necessarily of the form

p/3q , for p, q nonnegative integers with p ≤ 3q and p not divisible by 3, when we restrict our attention

to the unit interval I), the resulting address is not unique and may contain 1’s, although only finitely

many 1’s. For example, one may represent 1/3 by the finite ternary expansion 0.1 or by the infinite

ternary expansion 0.02, where the overbar indicates that 2 is repeated ad infinitum. We adhere to the

convention that such ternary numbers are always represented by infinite expansions given in terms of

only 0’s and 2’s.

60



length 1/3n (i.e., of ‘scale n’). Furthermore, each address in Cn may be thought of as an

address of a particular segment that remains after removing 2n−1 segments from the unit

interval I; see Figure 2.7.11 We take the more geometric interpretation as the definition

of Cn; in that case, the sequence {Cn}∞n=1 of prefractal approximations converges to the

Cantor set C . That is, Cn → C as n→∞, in the sense of the Hausdorff metric. (Also,

more simply, Cn is monotonically decreasing and C =
⋂∞

n=1 Cn.) We will next discuss

another way in which C can be viewed as the ‘limit’ of {Cn}∞n=1.

If for positive integers m ≤ n, we now define the transition map τnm : Cn → Cm

as the truncation map that truncates addresses of segments in the prefractal approxima-

tions Cn to addresses of segments in the prefractal approximation Cm by simply removing

the last n−m characters from the address, then we form an inverse limit of the prefractal

approximations Cn that is exactly the Cantor set C :

C = lim←−Cj =







(cj)
∞
j=1 ∈

∞
∏

j=1

Cj|τnm(cn) = cm for all m ≤ n







. (2.37)

More background information about inverse limits is provided, for example,

in [HoYo, §2–14 and §2–15], where the following well-known theorems can be found;

see [HoYo], Theorems 2–95 and 2–97, along with Corollaries 2–98 and 2–99. (All the

topological spaces considered in Theorems 116, 117 and 118 below are implicitly assumed

to be metrizable. Moreover, by the “Cantor set”, we mean the classic ternary Cantor set

discussed in Example 115 just above.)

Theorem 116. The inverse limit of finite sets is a compact and totally disconnected

set. Conversely, any such topological space is homeomorhpic to an inverse limit of finite

sets.
11Such a construction is called construction by tremas, where one removes segments ad infinitum,

thereby producing the fractal set. At each stage, middle thirds are removed from the remaining segments,

thereby producing the Cantor set in the limit.
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Theorem 117. Any compact and totally disconnected space is homeomorphic to a

(closed) subset of the Cantor set.

Theorem 118. Any two totally disconnected and perfect12 compact spaces are home-

omorphic to one another (and hence also to the Cantor set).

Remark 119. In the literature on dynamical systems, it is common to use the term

topological Cantor set to refer to a totally disconnected and perfect compact space (i.e.,

to a metrizable space that is homeomorphic to the Cantor set).

Remark 120. In §5, we will show that what we will be referring to as the footprints

of the primary piecewise Fagnano orbit and, in general, piecewise Fagnano orbits of the

Koch snowflake billiard Ω(KS) are, in fact, topological Cantor sets (see Theorem 181).

Moreover, the footprint of the primary piecewise Fagnano orbit will be the analog of the

classic ternary Cantor set, and as a subset of the Koch snowflake KS, the union of the

footprints of every piecewise Fagnano orbit will constitute a subset of what we will call

the elusive limit points of the Koch snowflake KS.

12Recall that a subset of a topological space is called perfect if it is closed and contains no isolated

points. Hence, a compact space is perfect if it has no isolated points or equivalently, if each of its points

is a limit point.
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Chapter 3

The Koch snowflake prefractal flat

surface S(KSn)

We denote the flat surface M as constructed from a particular rational billiard

Ω(P ) by S(P ). In particular, S(KSn) is the flat surface associated with the prefractal

billiard Ω(KSn). The flat surfaces S(KSn), n = 1, 2, 3, are given in Figure 3.1. For

each billiard Ω(KSn), the group of symmetries DN , where N = lcm{qj}3·4
n

j=1 (that is,

the second component in the product Ω(KSn) × DN ) is the dihedral group D3, and

thus is independent of n. From this, we deduce that for any n ≥ 0, there are six copies

of the prefractal billiard table Ω(KSn) (with sides appropriately identified) used in the

construction of the associated flat surface S(KSn) := (Ω(KSn) × D3)/ ∼; see Figure

3.1. We refer the reader back to §2.5.1 for a general discussion of flat surfaces and the

associated conical singularities.

Remark 121. For the remainder of the paper, when we say that a regular polygon

is of scale n, we mean that the side length of the regular polygon is 1/3n. For example,

an equilateral triangle of scale n is one for which the side length is 1/3n.
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Figure 3.1: The flat surfaces S(KSi), i = 1, 2, 3. Note that the proper identification is
not shown in the figures above. Given the arrangement of the six copies of KSn, one
then identifies opposite and parallel sides to make the proper identification that results
in a geodesic flow that is dynamically equivalent with the billiard flow on the associated
billiards Ω(KS1),Ω(KS2),Ω(KS3).

3.1 The geometry and topology of S(KSn)

The flat surface S(KSn) is a surface with both types of conic singularities:

removable and nonremovable. In constructing the flat surface S(KSn) via Ω(KSn), we

see that the nonremovable conic singularities correspond to corners with obtuse angles

of Ω(KSn) and removable singularities correspond to corners with acute angles (both

measured relative to the interior of Ω(KSn)). Since for every n ≥ 1, the measure of

every obtuse corner is the same (specifically, 4π/3 radians), it follows that the conic

angle of a nonremovable singularity is 8π. For the same reason, every corner with an

acute angle gives rise to a removable singularity with conic angle 2π (which, in fact, is a

defining characteristic of a removable singularity).

The genus of the surface S(KSn) can be calculated using the standard formula

for the Euler characteristic of polyhedra, namely

χ = V − E + F, (3.1)

where V is the number of vertices, E is the number of edges and F the number of faces
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of the polyhedra. Such a formula holds for planar graphs.

Let B be a regular k-gon and Ω(B) be the rational billiard. If the measure of

the angle formed by vertex Vj is pj/qjπ and N = lcm{qj}, then the characteristic of a

flat surface constructed from the rational billiard Ω(B) is

χ = N

k
∑

j=1

1

qj
−Nk + 2N. (3.2)

Since the χ = 2− 2g, g being the genus of the surface S(B), we see that the genus g of

the flat surface S(B) is1

g = 1 +
N

2



k − 2−
k

∑

j=1

1

qj



 . (3.3)

The prefractal billiard Ω(KSn) has 3 · 4n many sides and as many vertices. Therefore,

the genus gn of S(KSn) is given by

gn = 3 · 4n − 2. (3.4)

One easily sees that the sequence of genuses {gn}∞n=0 increases without bound.

3.2 S(KSn) is a branched cover of S(KS0)

Taking as inspiration the results and methods of Gutkin and Judge in [GtkJu1]

and [GtkJu2], we now show that for each n ≥ 1, the flat surface S(KSn) is a branched

cover of the hexagonal torus S(KS0); see Figure 3.3. To such end, we establish several

results culminating in this fact.

Lemma 122. Let n ∈ N. Then, for any positive integer k ≥ n, S(KSn) can be tiled

by equilateral triangles of scale k.

1See [HuSc] for a detailed description of how to calculate the genus of a surface that arises from a

rational billiard table.
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Proof. This follows from the construction of the Koch snowflake. We note

that each triangle of scale n, denoted ∆n, can be tiled by 9k−n triangles of scale k ≥ n;

see Figure 3.2 for the case when k = n + 1. Note that S(KSn) = (Ω(KSn) × D3)/ ∼

and that Ω(KSn) is constructed from Ω(KSn−1) by gluing a copy of ∆n to every side

sn−1,k at the middle third of sn−1,k. Since every triangle ∆n−1 tiling Ω(KSn−1) can

also be tiled by ∆n, it follows that Ω(KSn) is tiled by ∆n. So, S(KSn) can be tiled by

equilateral triangles of scale k, for every k ≥ n.

In the sequel, given a bounded set A ⊆ R2, we will write that “A can be tiled

by Hn” in order to indicate that A can be tiled by finitely many copies of hexagonal tiles

Hn of scale n.

Proposition 123. Let n ∈ N. Then the flat surface S(KSn) can be tiled by Hk, for

all k ≥ n+ 1, in such a way that each conic singularity is at the center of some tile Hk.

Proof. We see in Figure 3.4 that S(KS1) can be tiled by H2 such that each

conic singularity is at the center of some tile H2. Each H2 is tiled by six equilateral

triangles ∆2. As seen in the proof of Lemma 122, each ∆2 is tiled by nine ∆3 such that

six of these triangles form a hexagonal tile H3; see Figure 3.2. At the center of H2 is

a copy of H3. Hence, each conic singularity remains at the center of some tile H3; see

Figure 3.5. Continuing in this fashion, we see that for each k ≥ 2, Hk tiles S(KS2) in

such a way that each conic singularity is at the center of some Hk.

Suppose there exists N ∈ N such that, for every n ≤ N , S(KSn) can be tiled by

Hk, for every k ≥ n+1. In particular, S(KSN ) can be tiled by Hk, for every k ≥ N +1.

We then have that, for every k ≥ N + 2, S(KSN ) can be tiled by Hk. By Lemma

122, ∆N+1 tiles S(KSN+1). Each triangular region ∆N+1 in S(KSN+1) not in S(KSN )

is tiled by nine triangles ∆N+2 in such a way that six ∆N+2 comprise a tile HN+2.

Continuing in this fashion, we see that each ∆k contributes to a hexagonal tile Hk (as
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part of the embedded tiling) in such a way that each conic singularity is at the center of

some hexagonal tile Hk.

Figure 3.2: We see that ∆n is tiled by nine copies of ∆n+1, six of which form a hexagonal
tile Hn+1 in the center.

Figure 3.3: The hexagonal torus S(KS0). (As usual, similarly marked sides are identi-
fied.) It should be noted that S(KS0) is topologically (but not metrically) equivalent to
the flat square torus.

Theorem 124. For every n ∈ N, the prefractal Koch snowflake flat surface S(KSn)

is a branched cover of the prefractal Koch snowflake flat surface S(KS0), which is the

hexagonal torus. Such a covering map pn : S(KSn) → S(KS0) is given by suitably

defined translations on S(KSn).

Proof. The center point x0 of the flat hexagonal torus S(KS0) is a branched

locus of the cover S(KSn) when S(KSn) is tiled by Hn+1 as described in Proposition

123. This follows from the fact that every nonremovable conic singularity of S(KSn) is

at the center of four hexagonal tiles. Specifically, this means that this center point x0 is
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Figure 3.4: Tiling the flat surface S(KS1) by hexagonal tiles H2. We note that the conic
singularities (both removable and nonremovable) are at the center of hexagonal tiles.

Figure 3.5: Six triangles ∆n tile Hn. The hexagonal tile Hn is tiled by seven tiles Hn+1

with six rhombic tiles.
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Figure 3.6: We see that three hexagonal tiles Hn tiled as in Figure 3.5 can be arranged
so that a rhombic tile from each all combine to form another hexagonal tile Hn+1.

Figure 3.7: Six equilateral triangles glued together correctly constitute a hexagonal torus.
We show the surface in an exploded view so as to emphasize the fact that there are six
copies of the equilateral triangle embedded in the surface. Prior to identifying properly,
this figure constitutes Ω(KS0)×D3.

not evenly covered by the covering map pn : S(KSn)→ S(KS0) determined by suitable

translations of hexagonal tiles Hn+1 on S(KSn). Any other point in S(KS0) is evenly

covered since every element in the fiber p−1
n (z), z 6= x0, has a conic angle of 2π.

3.3 The Veech group Γ(KSn)

We now discuss the Veech group Γ(KSn) of the flat surface S(KSn). The Veech

group Γ(KS0) corresponding to the flat hexagonal torus is isomorphic with the Veech

group for the flat square torus described in Example 80. The following result, due to E.
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Gutkin and C. Judge ([GtkJu2]), is used in showing the Veech dichotomy holds for the

prefractal flat surfaces S(KSn).

Definition 125 (Arithmetic). A flat surface S(B) is called arithmetic if it is the

cover of a singly punctured torus.

Theorem 126 (E. Gutkin and C. Judge). Let B be a rational polygon. The Veech

dichotomy holds for the flat surface S(B) if and only if the flat surface is arithmetic.

We have shown that, for every n ≥ 0, the flat surface S(KSn) is indeed a

branched cover of the torus (or a cover of the singly punctured torus). Therefore, the

Veech dichotomy holds for S(KSn), for every n ≥ 0. Therefore, we have that the

footprint Fn(x
0
n, θ

0
n) is either finite or uniformly distributed in the boundary KSn; or,

we have that the path traversed by the billiard is closed or uniformly distributed in the

billiard Ω(KSn).

A result quoted in [Swz] and originally due to W. Veech [Ve4] states that a flat

surface S(B), where B is a rational polygon, has a Veech group that is at most countably

infinite if it contains at least one nonremovable singularity. We state the result below

and sketch a proof of it for completeness.

Proposition 127. Let B be a rational polygon. If the corresponding flat surface

S(B) has at least one (non-removable) conic singularity, then the corresponding Veech

group is a discrete group.

Sketch of the proof of Proposition 127. Consider a rational polygon B

and the associated flat surface S(B). We suppose S(B) has at least one non-removable

conic singularity. Each singularity is contained in a neighborhood not containing any

other singularities (there are finitely many nonremovable conic singularities, so it is

possible to find a smallest ǫ-neighborhood that works for every cone point). Consider a

saddle connection PP ′ connecting cone points P and P ′ (which may be the same point
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Figure 3.8: An illustration of what constitutes a saddle connection of a flat surface with
at least one nonremovable conic singularity.

if there is only one singularity); Figure 3.8 illustrates a few saddle connections of the flat

surface previously seen in Figure 2.6. We claim that there is a δ-tubular neighborhood

about PP ′ not containing any other saddle connections. If this were not the case, then

there would be arbitrarily close saddle connections. This would then imply that there

are infinitely many singularities accumulating about P ′, which is a contradiction of our

assumption.

For every n ≥ 1, the flat surface S(KSn) contains at least one nonremovable

singularity. Hence, the following result.

Proposition 128. For every n ≥ 1, The Veech group Γ(KSn) is at most countably

infinite.

71



Chapter 4

The Koch snowflake prefractal

billiard Ω(KSn)

4.1 Equivalence of geodesic flow and billiard flow

An orbit O0(x
0
0, θ

0
0) is closed if and only if the vector determined from the

initial angle θ00 is rational with respect to the basis {(1, 0), (1/2,
√
3/2)}. In §3.2, we

saw that S(KSn) is a branched cover of S(KS0). This implies that for every n ∈ N,

a closed geodesic on S(KSn) will project down to a closed geodesic on the hexagonal

torus S(KS0) under the action of the covering map pn defined in the proof of Theorem

124. Also, a closed geodesic γ on S(KS0) lifts to a segment on S(KSn) (that is not

necessarily closed). However, according to the discussion in §3.2, there exists a positive

integer k such that the lift of γk is a closed geodesic on S(KSn).1 Since the geodesic

flow on S(KSn) is dynamically equivalent2 to the billiard flow on (Ω(KSn) × S1)/ ∼,

1Recall that the notation γk is meant to represent k − 1 many concatenations of γ with itself:

γ ∗ γ ∗ ... ∗ γ = γk

2The dynamical equivalence is due to the fact that S(KSn) is a branched cover of S(KS0), as stated

in Theorem 124.
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it follows that a direction giving rise to a closed orbit in Ω(KS0) is a direction giving

rise to a closed orbit in Ω(KSn) for every n ≥ 0, and vice-versa. We may put this

more succinctly as periodic directions in S(KS0) are exactly the periodic directions in

S(KSn), and vice-versa. We summarize the above discussion in the following theorem.

Theorem 129. The geodesic flow on S(KS0) is closed if and only if for every n ≥ 0,

the geodesic flow on S(KSn) is closed. Equivalently, the set of directions for which the

discrete billiard flow fn on Ω(KSn) is closed3 (i.e., regardless of the initial basepoint, a

direction for which a geodesic will be closed) is exactly the set of directions for which

the billiard flow f0 is closed on Ω(KS0).

Remark 130. If {e1, e2} is a basis for R2, then a vector z ∈ R2 is called rational with

respect to {e1, e2} if z = ne1 +me2, n/m ∈ Q (that is, n,m ∈ Z, m 6= 0). The plane

can be tiled by Ω(KS0). A more general result appearing in [Gtk2] can be used to show

that the collection of directions that give rise to closed orbits of the equilateral triangle

billiard Ω(KS0) is exactly the set of directions that are rational with respect to the basis

{e1, e2} = {(1, 0), (1/2,
√
3/2)}. By Theorem 129, for every n ≥ 0, the same collection

of rational directions (with respect to {e1, e2}) describes the directions for which the

billiard flow on Ω(KSn) is closed. Likewise, a vector that is irrational with respect to

this basis will determine an angle that gives rise to a non-periodic orbit. In the case of

Ω(KSn), this will be a dense orbit.

Theorem 131. The geodesic flow on S(KS0) in a fixed direction is uniquely ergodic if

and only if for every n ≥ 0, the geodesic flow in the same direction on S(KSn) is uniquely

ergodic. Moreover, the footprint Fn(x
0
n, θ

0
n) corresponding to an orbit On(x

0
n, θ

0
n) is uni-

3It should be noted that we are making a slight abuse of notation and language. The flow φt on the

phase space (Ω(KSn)×S1)/ ∼ is reduced to the billiard flow fn on the Poincaré section. Iterates of the

billiard map then yield elements of the Poincaré section.
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formly distributed4 in the boundary KSn if and only if F0(x
0
0, θ

0
0) is uniformly distributed

in KS0.

Proof. Again, S(KSn) is a branched cover of S(KS0). We can clearly see that

the projection of a uniquely ergodic flow on S(KSn) will be a uniquely ergodic flow in

S(KS0), since the Veech dichotomy holds for every prefractal flat surface. If for the

same direction θ, the geodesic φt(x, θ) on S(KS0) is dense, then lifting this path to the

covering space results in a (not necessarily closed) path. If the lifting of the path results

in a saddle connection on S(KSn) (by possibly having to continue the lifted path), then

the projection of the lift must also be a saddle connection of S(KS0), which was not the

case to begin with.

4.2 Orbits with an initial direction π/3

The equilateral triangle billiard Ω(∆) is an especially nice rational polygonal

billiard. In the direction of π/3, there are exactly two types of orbits: the Fagnano

orbit and everything else. The orbit O0(c, π/3) is called the Fagnano orbit of Ω(KS0).

Fagnano polygons are the shortest inscribed polygons for a given polygon. In the case of

the equilateral triangle, the shortest inscribed polygon is a billiard orbit.5 Deviating to

the left or the right of x00 = c results in an orbit of the equilateral triangle billiard that is

twice the length of the Fagnano orbit. (See [BaUm] for a detailed classification of periodic

orbits of Ω(KS0), along with Remark 130 above for a more conceptual characterization

of those orbits.)

In the context of the Koch snowflake prefractal billiard Ω(KSn), we determine

4Recall that the definition of uniformly distributed sequences was given in Definition 61.
5In fact, given any triangle billiard, the Fagnano polygon is a billiard orbit of that particular triangle

billiard. See [Ta2] for a more detailed discussion of this fact.
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three types of periodic orbits, each with an initial direction of π/3: piecewise Fagnano

orbits, Cantor orbits and approximate piecewise Fagnano orbits. Each are so named for

the nature of the ternary representation of their respective initial basepoints x0n.

We can show that every orbit On(y
0
n, θ(π/3)) passes through the interior of

Ω(KS0). By means of the local and global symmetry of the prefractal billiard table

Ω(KSn), as shown in Figure 4.3 and discussed in the corresponding caption, one can

deduce that there must be a basepoint yknn of the orbit On(y
0
n, θ(π/3)) that, after colliding

with the boundary KSn at yknn , the billiard ball next traverses the interior of Ω(KSn) ∩

Ω(KS0) in the direction of π/3. Then, if we define x0n by x0n := yknn , the orbit On(x
0
n, π/3)

contains (y0n, θ(π/3)) and On(x
0
n, π/3) = On(y

0
n, θ(π/3)).

Remark 132. Much of what follows relies heavily on the fact that an initial direction

of θ(π/3) is one of the global axes of symmetry. This is particularly true in Propositions

133 and 163.

These facts and Remark 132 are used in the following proposition and through-

out the remainder of this chapter.

Proposition 133. Let n ≥ 0 and On(y
0
n, θ(π/3)) a periodic orbit. Then there exists

x0n such that

On(y
0
n, θ(π/3)) = On(x

0
n, π/3) (4.1)

and a segment joining x0n and x1n intersects the unit interval I at a point we label as x00.

Proof. A billiard ball with an orbit On(y
0
n, θ(π/3)) will make at most two

collisions in a cell Cn,k before exiting that cell; see Figure 4.5. Then, the billiard ball

traverses the interior of some previous approximation before entering into another cell

Cn,k′. For every cell Cm,k visited by the billiard ball, at most two cells Cn,k and Cn,k′ ,
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Figure 4.1: Depicted in this figure is a classical tool for analyzing billiard orbits: unfolding

the orbit. We consider a billiard orbit’s trajectory entering a cell Cn,k at an angle of π/3.
As expected, the billiard ball must exit the cell after two reflections and at an angle of
−π/3. We verify this by considering the unfolded trajectory in the plane and noticing
that the trajectory continues on unimpeded as it passes through a reflected copy of the
opening. (See Figure 4.2 for a generalization of this discussion to the case of two collisions
with the boundary.)

Figure 4.2: This figure generalizes what we have seen in Figure 4.1. An orbit’s trajectory
that enters a cell Cn,k parallel to a side of Cn,k will exit after two collisions.
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Figure 4.3: For n ≥ 1, the symmetry group of KSn is the dihedral group D6 (see §2.5.1).
Local symmetry is seen at the level of a cell Cn,k of Ω(KSn). The symmetry of interest
is symmetry with respect to the angle bisector of the acute angle of the cell Cn,k.

n ≥ m, can be visited by the billiard ball; see Figure 4.1. Exhausting all possibilities, a

global symmetry is used to determine the next position of the billiard ball in the boundary

KSn. As such, the billiard ball must pass through the interior of Ω(KSn) ∩ Ω(KS0) to

reach the point (which is the mirror image of some point through the global symmetry

used in emulating the Law of Reflection).

4.2.1 Piecewise Fagnano orbits

We now discuss a generalization of the Fagnano orbit for Ω(KSn).

Definition 134 (Piecewise Fagnano orbit). Let Cn,k be a cell of Ω(KSn). Let x0n

be an element of one of the sides of Cn,k. If x0n has a ternary representation consisting

solely of infinitely many c’s (i.e., a ternary representation [c, ∅]), then we call the orbit

On(x
0
n, θ(π/3)) a piecewise Fagnano orbit of Ω(KSn).

A piecewise Fagnano orbit On(x
0
n, θ(π/3)), where x0n = c relative to the side

sn,k containing x0n, is named as such for the fact that one can view this orbit as the

result of appending scaled copies of the Fagnano orbit of Ω(KS0) to every basepoint of

an orbit On−1(y
0
n−1, θ(π/3)), where y0n−1 is the midpoint of a side sn−1,k of Ω(KSn−1);
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Figure 4.4: The first orbit is the Fagnano orbit of the equilateral triangle billiard Ω(KS0).
The second orbit is s piecewise Fagnano orbit of Ω(KS1) and the third orbit is a piecewise
Fagnano orbit of Ω(KS2).

Figure 4.5: Other examples of orbits in the direction π/3.

see Figure 4.4.

By Proposition 133, we know that for every piecewise Fagnano orbit On(y
0
n, θ(π/3))

of Ω(KSn), there exists x0n such that On(x
0
n, π/3) = On(y

0
n, θ(π/3)). Later, we will see

that for every orbit On(y
0
n, θ(π/3)), there exists a unique element x00 ∈ I (the unit inter-

val [0, 1] viewed as the base of ∆ = KS0) that effectively determines a special sequence

of orbits to which On(y
0
n, θ(π/3)) belongs. This is the same value x00 determined by

Proposition 133. The relationship between the orbit On(y
0
n, θ(π/3)) and a particular

orbit O0(x
0
0, π/3) will be referred to as compatibility. We defer a full treatment of this

concept until §4.4.
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4.2.2 Cantor orbits

It is possible that an orbit On(x
0
n, π/3) of Ω(KSn), after a finite amount of time

(that is, finitely many iterates of the prefractal construction of KS), will cease to be an

orbit of subsequent approximations. The particular prefractal approximation at which

an orbit On(x
0
n, π/3) ceases to be an orbit of Ω(KSm), m ≥ n, is determined from the

ternary representation of the point x0n. Indeed, if the next occurrence of the character c

in the ternary representation is in the (k + n)th position, then On(x
0
n, π/3) ceases to be

an orbit of Ω(KSk+n).

A Cantor orbit is an orbit with exactly the opposite behavior; it is always an

orbit of every subsequent prefractal approximation.

Definition 135 (Cantor orbit). Let sn,k be a side of Ω(KSn). Let x0n be an element

of sn,k. If x0n has a ternary representation [lr, ∅] (i.e., x0n is a Cantor-point of some side

sn,k of Ω(KSn)), then we call the orbit On(x
0
n, θ(π/3)) a Cantor orbit of Ω(KSn).

In terms of the addressing system on KS, the elements of the footprint of a

Cantor orbit have a particular representation. As discussed in §2.8.4, a Cantor-point of

a side sn,k is a point with an address [02, 1345]⊕ [24, 0135]⊕ [04, 1235], where each type

of address is determined by examining the character that preceded the infinite string

of characters not containing 1, 3 or 5. More importantly, a Cantor orbit of Ω(KSn) is

a Cantor orbit for every subsequent prefractal approximation. That is, such an orbit

remains fixed and well defined for every subsequent approximation. This follows from

the fact that for every side sn,k of Ω(KSn) and for every Cantor-point x of sn,k there

exists an open, connected, 1-dimensional neighborhood about x. That is, the Law of

Reflection holds at x for every subsequent finite approximation; see Figure 4.6.

We close this section by remarking on the fact that for every Cantor orbit
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Figure 4.6: While the first orbit is not a Cantor orbit, the second orbit is. We note that
each orbit is related to the next in a very particular way that will be further elaborated
upon in the subsequent sections. However, we only mention that after the first level
approximation, an orbit remains fixed for every subsequent prefractal approximation.

On(y
0
n, θ(π/3)) there exists x00 ∈ I such that On(y

0
n, θ(π/3)) is in a particular sequence of

Cantor orbits determined by (x00, π/3). Such a sequence is discussed in §4.4. In addition,

there exists yknn =: x0n such that On(x
0
n, π/3) = On(y

0
n, θ(π/3)).

4.2.3 Approximate piecewise Fagnano orbits

Definition 136. Let sn,k be a side of Ω(KSn). Let y0n be an element of sn,k. If y0n

has a ternary representation [lc, r]⊕ [cr, l]⊕ [lcr, ∅], then we call the orbit On(y
0
n, θ(π/3))

an approximate piecewise Fagnano orbit or Ω(KSn).

Remark 137. We will later see that an approximate piecewise Fagnano orbit is an

example of what we will call a periodic hybrid orbit.

Such an orbit is so named for the fact that it is approximately a piecewise

Fagnano orbit. The nature of the ternary representation of the elements of the corre-

sponding footprint would indicate that such points do not correspond to a midpoint of

any side of any future approximation, but also never correspond to any point that would

be considered a Cantor-point nor a corner of any future finite approximation. Hence,

such an orbit would not remain fixed and no longer remain a valid orbit for some future

approximation. Moreover, one would not be able to construct some orbit of some future

approximation by simply appending scaled copies of a Fagnano orbit to each element of
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the corresponding footprint as we did in the case of a piecewise Fagnano orbit. Although,

visually, it would appear that scaled copies of Fagnano orbits are being appended to the

elements of the footprint of the orbit in some previous approximation.

Finally, if On(y
0
n, θ(π/3)) is an approximate piecewise Fagnano orbit, we remark

that there exists x00 ∈ I such that (x00, π/3) determines a particular sequence of approxi-

mate piecewise Fagnano orbits to which On(y
0
n, θ(π/3)) belongs. In addition, there exists

yknn =: x0n such that On(x
0
n, π/3) = On(y

0
n, θ(π/3)).

4.3 Orbits with an initial direction not π/3

4.3.1 Hybrid orbits

The particular description of orbits with an initial direction of π/3 relied heavily

on the fact that the ternary representations of the basepoints were all of the same type.

The fact that every element xknn of the footprint of an orbit On(x
0
n, π/3) had a ternary

representation of the same nature as the initial basepoint x0n was largely due to the fact

that π/3 was one of the axes of symmetry of the prefractal billiard.

A hybrid orbit of a prefractal billiard is an orbit of Ω(KSn) for which the ternary

representation of the elements of the corresponding footprint do not have to all be of the

same type. For example, elements of the footprint of a periodic hybrid orbit do not all

have to consist of just infinitely many c’s, but perhaps a mixture of types of points. We

formally define a hybrid orbit below.

Definition 138 (Hybrid orbit). Let On(x
0
n, θ

0
n) be an orbit of Ω(KSn). If all but

at most two basepoints xknn ∈ Fn(x
0
n, θ

0
n) have ternary representations (determined with

respect to the side sn,k on which each point resides) [c, lr]⊕ [cl, r]⊕ [cr, l]⊕ [lcr, ∅]⊕ [lr, ∅],

then we call On(x
0
n, θ

0
n) a hybrid orbit of Ω(KSn).

81



Remark 139. It is clear from the definition of hybrid orbit that a Cantor orbit is

a hybrid orbit. However, we focus our attention on the case where the basepoints of a

hybrid orbit have at least two of the types of representations listed in Definition 138

Definition 140 (Closed hybrid orbit). If On(x
0
n, θ

0
n) is a hybrid orbit with ex-

actly two basepoints or no basepoints corresponding to corners of Ω(KSn), then we

call On(x
0
n, θ

0
n) a closed hybrid orbit.

Definition 141 (Periodic hybrid orbit). If On(x
0
n, θ

0
n) is a hybrid orbit with no

basepoints corresponding to corners of Ω(KSn), then we call On(x
0
n, θ

0
n) a periodic hybrid

orbit.

Definition 142 (Dense hybrid orbit). A hybrid orbit On(x
0
n, θ

0
n) that is dense in

Ω(KSn) is called a dense hybrid orbit.

Proposition 143. If On(x
0
n, θ

0
n) is a hybrid orbit with at most one basepoint corre-

sponding to a corner of Ω(KSn) and On(x
0
n, θ

0
n) is not closed, then On(x

0
n, θ

0
n) is a dense

hybrid orbit.

Proof. Let On(x
0
n, θ

0
n) be a hybrid orbit with at most one basepoint corre-

sponding to a corner of Ω(KSn) that is also not closed. By the Veech dichotomy (see

§2.5.2), such an orbit must then be dense in the billiard table Ω(KSn).

Theorem 144. If On(x
0
n, θ

0
n) is a dense orbit of Ω(KSn), then On(x

0
n, θ

0
n) is a dense

hybrid orbit.

Proof. Suppose there were two basepoints xknn and x
k′n
n of a dense orbit

On(x
0
n, θ

0
n) with ternary representations [l, cr] ⊕ [r, lc]. Then, there exists N ≥ n such

that the orbit connects two vertices of two equilateral triangles of scale N tiling Ω(KSn).

Since this orbit can be unfolded into the corresponding flat surface and then projected

down onto the hexagonal torus, such an orbit (or flow line on the flat surface) must be at

least a saddle connection of the equilateral triangle billiard. However, such a direction
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θ0n should yield a dense billiard flow in Ω(KS0), which is not the case. Hence, xknn and

x
k′n
n do not both have a ternary representation [l, cr]⊕ [r, lc]. Moreover, if any basepoint

of On(x
0
n, θ

0
n) already corresponds to a corner of Ω(KSn), then a similar argument shows

that no other basepoint may have a ternary representation [l, cr] ⊕ [r, lc]. Therefore,

On(x
0
n, θ

0
n) is a dense hybrid orbit.

Example 145 (Approximate piecewise Fagnano orbits). By definition, an approxi-

mate piecewise Fagnano orbit On(x
0
n, π/3) of Ω(KSn) is a periodic hybrid orbit. In fact,

every periodic orbit of Ω(KSn) with an initial direction of π/3 is an example of a periodic

hybrid orbit.

Example 146 (Hook orbits). Consider an orbit O0(x
0
0, θ

0
0) where θ00 = π/6. This

orbit, by itself, is not terribly interesting. However, let us consider an orbit On(x
0
n, θ

0
n)

where, for every n ≥ 0, x0n = x00 and θ00 = θ0n, as shown in Figure 4.7. Then, the resulting

degenerate6 orbit On(x
0
n, θ

0
n) appears to be hooking into the snowflake. Hence, the name

hook for this orbit. As we will discuss later, O0(x
0
0, π/3) and On(x

0
n, π/3) are related in a

sense and such a sequence of related orbits will converge to what we will call a nontrivial

polygonal path that has as “end points” two elusive limit points of KS. The element x0n

is a Cantor-point and every element of the corresponding footprint has either a ternary

representation [lr, ∅] ⊕ [c, lr]. In particular, only the endpoints of segments of this orbit

that form right angles with the boundary have ternary representations [c, lr].

Example 147. In Figure 4.8, three periodic hybrid orbits are displayed. What is

significant about these three orbits is that they are related in such a way that the initial

basepoints of each orbit (with x00 being c in the unit interval base of Ω(KS0)) are collinear

in the same initial direction relative to the fixed coordinate system, but each orbit looks

drastically different from the next. We will later see in §5.2.1 that there may be reason

6A degenerate orbit is one that doubles back on itself.
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Figure 4.7: An example of a hook orbit.

Figure 4.8: Examples of periodic hybrid orbits.

to believe that such orbits converge to a set that we may be able to call a periodic orbit

of the Koch snowflake.

Example 148 (A dense hybrid orbit). Consider an orbit of Ω(KS0) with an initial

condition (x00, θ
0
0) where x00 = c and tan θ00 = 1/9. Then the resulting orbit O0(x

0
0, θ

0
0)

is dense in Ω(KS0). Figure 4.9 shows an orbit O2(x
0
2, θ

0
2) with θ02 = θ00 and x02 collinear

with x00; the first orbit in the figure consists of 100 iterates, the second orbit consists

of 500 iterates, the third orbit consists of 1,000 iterates and the fourth orbit consists of

2,000 iterates. We see in this figure that the orbit will most likely be dense, which is

exactly what we expect since the slope of the initial segment is irrational with respect

84



Figure 4.9: The first orbit consists of 100 iterates, the second consists of 500 iterates,
the third consists of 1,000 iterates and the fourth consists of 2,000 iterates. It is clear
from the figures that the billiard table becomes ever more filled as the number of iterates
increases.

to the basis {u1,u2} = {(1, 0), (1/2,
√
3/2)}.

4.4 Sequences of compatible orbits

We now discuss the notion of ‘related’ or ‘compatible’ that we have been refer-

ring to in the previous sections. It is intuitively clear that many of the examples of orbits

we have been discussing are related by their initial conditions. We define a sequence of

compatible initial conditions below.

Definition 149 (Compatible initial conditions). Without loss of generality, suppose

n and m are nonnegative integers such that n > m. Let (x0n, θ
0
n) ∈ (KSn × S1)/ ∼ and

(x0m, θ
0
m) ∈ (KSm×S1)/ ∼ be two initial conditions of orbits On(x

0
n, θ

0
n) and Om(x0m, θ

0
m),

respectively, where we are assuming θ0n and θ0m are both inward pointing. If θ0n = θ0m

and if x0n and x0m lie on a segment determined from θ0n (or θ0m) that intersects KSn only

at x0n, then we say (x0n, θ
0
n) and (x0m, θ

0
m) are compatible initial conditions.
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Remark 150. When two initial conditions (x0n, θ
0
n) and (x0m, θ

0
m) are compatible, then

we simply write each as (x0n, θ
0) and (x0m, θ

0).

In §4.2, we discussed how it was that a π/3 orbit, regardless of where it begins

on the boundary KSn, must pass through the region of Ω(KSn) corresponding to the

interior of Ω(KS0) in the way described by Proposition 133. Not every orbit must pass

through the interior in this way, let alone pass through the interior of Ω(KSm), for any

m < n. Because of this, it may be the case that an initial condition (x0n, θ
0) is not

compatible with (x0m, θ
0), for any m < n.

Definition 151 (Sequence of compatible initial conditions). Let {(x0i , θ0i )}∞i=N be a

sequence of initial conditions, for some integer N ≥ 0. We say that this sequence is a

sequence of compatible initial conditions if for every m ≥ N and for every n > m, we

have that (x0n, θ
0
n) and (x0m, θ

0
m) are compatible initial conditions. In such a case, we

then write the sequence as {(x0i , θ0)}∞i=N .

Definition 152 (Sequence of compatible orbits). Consider a sequence of compatible

initial conditions {(x0n, θ0)}∞n=N . Then the corresponding sequence of orbits {On(x
0
n, θ

0)}∞n=N

is called a sequence of compatible orbits.

Building upon Proposition 133, we see that an orbit On(x
0
n, θ

0
n) determines a

sequence of compatible orbits, and, thus determines a first orbit Om(x0m, θ
0
m), m ≤ n, of

that sequence, and vice-versa.

Proposition 153. If Om(y0m, θ(̟
0
m)) is an orbit of Ω(KSm), then Om(y0m, θ(̟

0
m)) is

a member of a sequence of compatible orbits {On(x
0
n,̟

n
0 )}∞n=N for some N ≥ 0.

Definition 154 (A sequence of compatible closed orbits). If at least one orbit in a

sequence of compatible orbits is a closed orbit, then we call such a sequence a sequence

of compatible closed orbits

Definition 155 (A sequence of compatible periodic orbits). If each orbit in a se-
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quence of compatible closed orbits is a periodic orbit (that is, closed and nonsingular),

then we call such a sequence a sequence of compatible periodic orbits.

It is clear from the definition of a sequence of compatible orbits that such a

sequence is determined by the first orbit ON (x0N , θ
0), N ≥ 0. Since the initial condition

of an orbit determines the orbit, we can say without any ambiguity that a sequence of

compatible orbits is determined by an initial condition (x0N , θ
0).

Definition 156 (A sequence of compatible dense orbits). If at least one orbit in a

sequence of compatible orbits is dense in its respective billiard table, then we call such

a sequence a sequence of compatible dense orbits.

We know that for each fixed billiard table Ω(KSn) and fixed direction θ0n, an

orbit is either closed or dense, regardless of the initial basepoint x0n. Applying various

results, we have the following.

Theorem 157 (A topological dichotomy for sequences of compatible orbits). Let

{On(x
0
n, θ

0)}∞n=N be a sequence of compatible orbits. Then {On(x
0
n, θ

0)}∞n=N is entirely

comprised of either closed orbits or dense hybrid orbits.

Proof. This follows from Theorems 129 and 131. Indeed, since we have estab-

lished that, for every n ≥ 1, S(KSn) is a branched cover of S(KS0) and the fact that each

orbit in a sequence of compatible orbits has the same initial direction, the qualitative

behavior of each orbit must be the same, independently of n.

Corollary 158. A sequence of compatible orbits is either a sequence of compatible

closed orbits or a sequence of compatible uniformly distributed orbits.

Proof. Since the Veech dichotomy holds for every prefractal billiard Ω(KSn),

n ≥ 0, it follows that a sequence of compatible dense orbits must be a sequence of

compatible orbits for which every orbit in the sequence is in fact uniformly distributed

in the respective prefractal billiard Ω(KSn).
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4.4.1 Sequences of compatible piecewise Fagnano orbits

We have defined what it means for an orbit with an initial direction of π/3 to

be a piecewise Fagnano orbit in Definition 134. We now define a sequence of compatible

piecewise Fagnano orbits.

Definition 159. Let x00 ∈ [0, 1] have a ternary representation [c, lr] and O0(x
0
0, π/3)

be an orbit of Ω(KS0). The sequence of compatible orbits determined by (x00, π/3) is

called a sequence of compatible piecewise Fagnano orbits.

Remark 160. It is clear that finitely many orbits of a sequence of compatible piece-

wise Fagnano orbits are not piecewise Fagnano orbits of their respective approximations.

Proposition 163 provides a criterion for determining (from the ternary representation)

exactly when a sequence of compatible piecewise Fagnano orbits consists solely of piece-

wise Fagnano orbits.

Lemma 161. If (x00, π/3) and (x0n, π/3) are compatible initial conditions, then the

ternary representation of x0n is the left shift of the ternary representation of x00 by n

characters.

Proof. Consider a sequence of compatible initial conditions {(x0n, π/3)}∞n=0.

The ternary representation of x01 is the same as the left shift of the ternary representation

of x00. Let N ≥ 0 and suppose for all m ≤ N , the ternary representation of x0m is the m

left-shift of the ternary representation of x00. Consider the compatible initial condition

(x0N+1, π/3). Suppose first that x0N+1 = x0N . Then x0N lies on either the left or right

third of a side sN,k of Ω(KSN ). The ternary representation of x0N+1 is then the same

as the single left shift of the ternary representation of x0N . Now suppose x0N 6= x0N+1.

Then the segment connecting x0N and x0N+1 is parallel to the side of a cell CN+1,k′ . The

ternary representation of x0N , when described with respect to the deleted middle third
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of the side sN,k, is the left shift of the ternary representation of x0N given with respect to

the side sN,k. Hence, the ternary representation of x0N+1 is the left shift of the ternary

representation of x0N . Therefore, the ternary representation of x0N+1 is the N + 1 left

shift of the ternary representation of x00.

Notation 162. Let i ≥ 0. Then (x00)i denotes the ith character in the ternary

representation of x00 (in terms of l, c, r).

Proposition 163. Let {On(x
0
n, π/3)}∞n=0 be a sequence of compatible piecewise Fag-

nano orbits. Let N be the least value such that (x00)m = c for every m ≥ N . Then the

first piecewise Fagnano orbit in {On(x
0
n, π/3)}∞n=0 is ON (x0N , π/3).

Proof. Using Lemma 161 and the definition of piecewise Fagnano orbit, the

result follows. In other words, the nth character such that the ternary representation

consists of only the character c for every character thereafter is exactly when one ap-

pends a scaled copy of the Fagnano orbit to every basepoint of the preceding compatible

piecewise Fagnano orbit, as dictated by the Definition 134

4.4.2 Sequences of compatible Cantor orbits

Let ON (x0N , θ
0
N ) be a Cantor orbit of Ω(KSN ). Then, the sequence of compati-

ble orbits {On(x
0
n, θ

0)}∞n=N is a constant sequence of compatible Cantor orbits. Since the

corresponding path of the orbit ON (x0N , θ
0
N ) traced out by the billiard ball in Ω(KSN )

must pass through the interior of Ω(KS0), there must exist an orbit O0(x
0
0, θ

0
0) that is

compatible with ON (x0N , θ
0
N ). Therefore, we refer to the sequence of compatible orbits

given by {On(x
0
n, θ

0)}∞n=0 as a sequence of compatible Cantor orbits. That is, we include

in the sequence of compatible Cantor orbits those orbits which are compatible, but that

are not, strictly speaking, Cantor orbits.

Definition 164 (Sequence of compatible Cantor orbits). Let x00 have a ternary rep-
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resentation [lr, c]. Then, the sequence of compatible periodic orbits {On(x
0
n, π/3)}∞n=0 is

a sequence of compatible Cantor orbits.

Proposition 165. Let {On(x
0
n, π/3)}∞n=0 be a sequence of compatible Cantor orbits.

Let N be the least value such that (x00)m 6= c for every m ≥ N . Then the first Cantor

orbit in {On(x
0
n, π/3)}∞n=0 is ON−1(x

0
N−1, π/3).

Proof. The result follows from the same exact reasoning as that found in the

proof of Proposition 163. That is, there exists N ≥ 1 such that (x00)N 6= c and for every

n ≥ N , (x00)n 6= c. Since we have determined that x0N has a representation determined

from N left- shifts of the representation of x00, it follows that for every m ≥ N − 1,

Om(x0m, π/3) is a Cantor orbit.

4.4.3 Sequences of compatible approximate piecewise Fagnano orbits

Definition 166 (Sequence of compatible approximate piecewise Fagnano orbits).

Let x00 ∈ I have a ternary representation [lc, r] ⊕ [cr, l] ⊕ [lcr, ∅]. Then the sequence

of compatible periodic orbits determined from (x00, π/3) is called a sequence of compati-

ble approximate piecewise Fagnano orbits.

Proposition 167. Let {On(x
0
n, π/3)}∞n=0 be a sequence of approximate piecewise

Fagnano orbits. Then N = 0 is the least value for which ON (x0N , π/3) is an approximate

piecewise Fagnano orbit.

Proof. The result follows from the same exact reasoning as that found in the

proof of Proposition 163 and immediately from the definition of an approximate piecewise

Fagnano orbit. An approximate piecewise Fagnano orbit is defined in such a way that

the first orbit of a sequence of compatible approximate piecewise Fagnano orbits is an

approximate piecewise Fagnano orbit.
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4.4.4 Properties of sequences of compatible π/3 orbits

By Proposition 133 and Proposition 153, we can deduce the following.

Proposition 168. Let On(y
0
n, θ(π/3)) be an orbit. Then there exists x00 ∈ I such

that On(y
0
n, θ(π/3)) ∈ {On(x

0
n, π/3)}∞n=0 and On(x

0
n, θ

0
n) = On(y

0
n, θ(π/3)). In other

words, there exists x00 ∈ I such that (x00, π/3) determines the sequence of compatible

orbits to which On(y
0
n, θ(π/3)) belongs.

Notation 169. Let n ≥ 1. We define ωn(x
0
0) to be the cardinality of the set

{(x00)i | (x00)i = 1, 1 ≤ i ≤ n}, (4.2)

where, for each 1 ≤ i ≤ n, (x00)i is as defined in Notation 162.

We recall that a corner has a ternary representation [l, r] ⊕ [r, l]. If x00 has

a ternary representation [l, cr] ⊕ [r, cl], then there exists n ≥ 1 such that (x0n, π/3) is

compatible with (x00, π/3) and x0n is a corner of Ω(KSn). Hence, the following.

Theorem 170 (Computation of the period of On(x
0
n, π/3)). Let x00 ∈ I be an initial

basepoint of an orbit O0(x
0
0, π/3) of Ω(KS0) such that x00 does not have a ternary rep-

resentation [l, cr]⊕ [r, lc] and On(x
0
n, π/3) is an orbit of Ω(KSn) that is compatible with

O0(x
0
0, π/3). Then the period of On(x

0
n, π/3) (denoted by #On(x

0
n, θ

0
n)) is given by

#On(x
0
n, π/3) = 3 · 2ωn(x0

0). (4.3)

Proof. Let {On(x
0
n, π/3)}∞n=0 be a sequence of compatible periodic orbits.

Without loss of generality, we may assume x00 ∈ (1/3, 2/3). For the purpose of readibility,

we consider the following three cases:

1. {On(x
0
n, π/3)}∞n=0 is a sequence of compatible piecewise Fagnano orbits.

2. {On(x
0
n, π/3)}∞n=0 is a sequence of compatible Cantor orbits.
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3. {On(x
0
n, π/3)}∞n=0 is a sequence of compatible approximate piecewise Fagnano or-

bits.

Case 1: Suppose {On(x
0
n, π/3)}∞n=0 is a sequence of compatible piecewise Fagnano

orbits. Recall from Proposition 163 that there exists N ≥ 0 such that for every

m ≥ N , Om(x0m, π/3) is a piecewise Fagnano orbit and for every m < N , Om(x0m, π/3)

is not a piecewise Fagnano orbit. We first consider the orbit O0(x
0
0, π/3): the period is

#O0(x
0
0, π/3) = 3 if the orbit is the Fagnano orbit of Ω(KS0), and #O0(x

0
0, π/3) = 6

otherwise.

Now consider the orbit O1(x
0
1, π/3). By assumption, ω1(x

0
0) = 1, and we have

that #O1(x
0
1, π/3) = 6 = 3 · 2ω1(x0

0
).

Next, we proceed by induction. Let M ≥ 0. Suppose that for every n ≤ M ,

we have #On(x
0
n, π/3) = 3 · 2ωn(x0

0). We may as well assume that N < M . Therefore,

OM (x0M , π/3) is a piecewise Fagnano orbit of Ω(KSM ). By definition, OM+1(x
0
M+1, π/3)

is constructed from OM (x0M , π/3) by appending 3 · 2ωM (x0
0
) many scale n copies of

O0(c, π/3) (the Fagnano orbit of the equilateral triangle billiard Ω(KS0)) to each base-

point of OM (x0M , π/3). Hence, we have that

#OM+1(x
0
M+1, π/3) = 2 ·#OM (x0M , π/3) = 2 · 3 · 2ωM (x0

0
) = 3 · 2ωM (x0

0
)+1. (4.4)

Since (x00)n = 1 for every n ≥ N , we deduce that ωM+1(x
0
0) = ωM(x00)+1, and the result

follows for a sequence of compatible piecewise Fagnano orbits.

Case 2: Suppose {On(x
0
n, π/3)}∞n=0 is a sequence of compatible Cantor orbits. Re-

call that there exists N ≥ 0 such that for every n ≥ N , On(x
0
n, π/3) is identical to

ON (x0N , π/3). Moreover, ωn(x
0
0) = ωN (x00) for every n ≥ N . Suppose N = 0. Then

#ON (x0N , π/3) = 6. Suppose N > 0. Examining the ternary representation of x0N , we

can find y00 ∈ I such that, for some M ≤ N , OM (y0M , π/3) forms a piecewise Fag-
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nano orbit of Ω(KSM ) that is compatible with O0(y
0
0, π/3), ωN (x00) = ωM (y00) and

#ON (x0N , π/3) = #OM (y0M , π/3). In Case 1, we saw that the period of a piecewise

Fagnano orbit was determined by the formula #OM (y0M , π/3) = 3 · 2ωM (y0
0
). Therefore,

#ON (x0N , π/3) = #OM (y0M , π/3) = 3 · 2ωM (y00) = 3 · 2ωN (x0
0). (4.5)

Since, for every n ≥ N , On(x
0
n, π/3) is identical to ON (x0N , π/3), the result follows for a

sequence of compatible Cantor orbits.

Case 3: Suppose {On(x
0
n, π/3)}∞n=0 is a sequence of compatible approximate piecewise

Fagnano orbits. For each n ≥ 1, there exists y00 ∈ I and M ≤ n such that OM (y0M , π/3) is

a piecewise Fagnano orbit of Ω(KSM ) that is compatible with O0(y
0
0, π/3) and ωn(x

0
0) =

ωM (y00).

Let N ≥ 1 and suppose that for every n ≤ N , #On(x
0
n, π/3) = 3 · 2ωn(x0

0).

Then, there exist y00 ∈ I and M ≤ N +1 such that OM (y0M , π/3) is a piecewise Fagnano

orbit of Ω(KSM ) and ωN+1(x
0
0) = ωM(y00). Therefore,

#ON+1(x
0
N+1, π/3) = #OM(y0M , π/3) = 3 · 2ωM (y0

0
) = 3 · 2ωN+1(x

0
0
). (4.6)

This concludes the proof of Theorem 170.

Notation 171. We now explain the notation that is about to be used in the following

theorem and proof. The characteristic function χ is defined on the space of characters

{l, c, r} and is given by

χ[α] :=















0 if α = l, r

1 if α = c.

(4.7)

In other words, it is the characteristic function of {c}.

Theorem 172 (Computation of the length of On(x
0
n, π/3)). Let x00 ∈ I be an initial

basepoint of an orbit O0(x
0
0, π/3) of Ω(KS0) such that x00 does not have a finite ternary
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representation and On(x
0
n, π/3) an orbit that is compatible with O0(x

0
0, π/3). Then the

length of the orbit (denoted by |On(x
0
n, θ

0
n)|) is given by

|On(x
0
n, π/3)| = 2L +

n
∑

i=2

χ
[

(x00)i
]

#Oi−1(x
0
i−1, π/3)

L

3i
, (4.8)

where L is the length of the Fagnano orbit O0(c, π/3) of Ω(KS0).

Proof. Let n = 0. If c is the ternary representation (in terms of the characters

l, c, r) of an element x00 ∈ I, where I is viewed as the base of Ω(KS0), then O0(x
0
0, π/3)

is the Fagnano orbit of Ω(KS0) and has length |O0(x
0
0, π/3)| = L . If x00 has a ternary

representation different from c, but beginning in the character c, then |O0(x
0
0, π/3)| =

2L . In either case, if x01 is collinear with x00, then |O1(x
0
1, π/3)| = 2L .

Consider the basic case n = 2. Let x02 ∈ KS2 be collinear with x00 ∈ I (viewed

as the base of the equilateral triangle KS0). Then, x12 is the basepoint in the compatible

orbit O2(x
0
2, π/3). As before, let (x00)i be the ith character in the ternary expansion of

x00. We want to show that

|O2(x
0
2, π/3)| = 2L +

2
∑

i=2

χ[(x00)i]#Oi−1(x
0
i−1, π/3)

L

3i
. (4.9)

If (x00)2 = c, then, examining the ternary representation of (x00)2, we see that there exists

y00 ∈ I such that |O2(x
0
2, π/3)| = |O2(y

0
2 , π/3)| and (x00)i = (y00)i for every i ≤ n = 2; y00

will have infinitely many c’s and finitely many l’s and r’s. There exists y01 ∈ KS1 that

is collinear with y00 and such that |O2(y
0
2, π/3)| = |O1(y

0
1 , π/3)| +#O1(y

0
1 , π/3)

L

32
, since

O2(y
0
2, π/3) is a piecewise Fagnano orbit of KS2. Since y00 and x00 have the same first

two characters in their respective ternary expansions, we have that

|O1(y
0
1 , π/3)| = |O1(x

0
1, π/3)|

and

#O1(y
0
1, π/3) = #O1(x

0
1, π/3).
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Since O1(y
0
1 , π/3) = 2L (which is independent of the choice of basepoint, so long as such

a choice is not a corner of the billiard table Ω(KS1)), it follows that

|O2(x
0
2, π/3)| = 2L +

2
∑

i=2

#Oi−1(x
0
i−1, π/3)

L

3i
. (4.10)

If (x00)2 6= c, then χ[(x00)2] = 0 and

|O2(x
0
2, π/3)| = |O1(x

0
1, π/3)| = 2L . (4.11)

In either case, we have shown that Equation (4.9) holds.

Let us now proceed by induction and fix N ≥ 2. Suppose that for every n ≤ N ,

|On(x
0
n, π/3)| = 2L +

n
∑

i=2

χ[(x00)i]#Oi−1(x
0
i−1, π/3)

L

3i
. (4.12)

Then there exists y00 ∈ I with a ternary representation [c, lr], M ≤ N + 1 such that for

all i ≤M , (x00)i = (y00)i and

|ON+1(x
0
N+1, π/3)| = |OM (y0M , π/3)|. (4.13)

If M = N + 1, then the nature of ON (y0M , π/3) dictates that

|ON+1(y
0
N+1, π/3)| = |ON (y0N , π/3)| +#ON (y0N , π/3)

L

3N+1
. (4.14)

Applying this fact, along with the induction hypothesis (4.12), we have that

|ON+1(x
0
N+1, π/3)| = |ON+1(y

0
N+1, π/3)|

= |ON (y0N , π/3)| +#ON (y0N , π/3)
L

3N+1

= |ON (x0N , π/3)| +#ON (x0N , π/3)
L

3N+1

= 2L +

N
∑

i=2

χ[(x00)i]#Oi−1(x
0
i−1, π/3)

L

3i
+ (4.15)

#ON (x0N , π/3)
L

3N+1

= 2L +

N+1
∑

i=2

χ[(x00)i]#Oi−1(x
0
i−1, π/3)

L

3i
.
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If M < N + 1, then, again applying the previously mentioned fact, the induction hy-

pothesis, we deduce that

|ON+1(x
0
N+1, π/3)| = |OM (y0M , π/3)|

= |OM−1(y
0
M−1, π/3)| +#OM−1(y

0
M−1, π/3)

L

3M

= |OM−1(x
0
M−1, π/3)| +#OM−1(x

0
M−1, π/3)

L

3M

= 2L +

M−1
∑

i=2

χ[(x00)i]#Oi−1(x
0
i−1, π/3)

L

3i
+ (4.16)

#OM−1(x
0
M−1, π/3)

L

3M

= 2L +

M
∑

i=2

χ[(x00)i]#Oi−1(x
0
i−1, π/3)

L

3i

= 2L +
N+1
∑

i=2

χ[(x00)i]#Oi−1(x
0
i−1, π/3)

L

3i
,

where the last lines of the calculation in Equation (4.16) follow from the fact that the

characters (x00)i, with M < i ≤ N + 1, are necessarily never equal to c, meaning that

χ(x00)i = 0 for M < i ≤ N + 1.

4.4.5 Sequences of compatible hybrid orbits

Definition 173 (Sequence of compatible hybrid orbits). Let {On(x
0
n, θ

0)}∞n=N be a

sequence of compatible orbits. If every orbit is a hybrid orbit, then we call the sequence

of compatible orbits a sequence of compatible hybrid orbits.

Definition 174 (Sequence of compatible closed hybrid orbits). Let {On(x
0
n, θ

0)}∞n=N

be a sequence of compatible hybrid orbits. If at least one orbit is a closed hybrid orbit,

then we call the sequence of compatible hybrid orbits a sequence of compatible closed

hybrid orbits.

Definition 175 (Sequence of compatible periodic hybrid orbits). Let {On(x
0
n, θ

0)}∞n=N

be a sequence of compatible hybrid orbits. If every orbit is a periodic orbit, then we call
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the sequence of compatible hybrid orbits a sequence of compatible periodic hybrid orbits.

Definition 176 (Sequence of compatible dense hybrid orbits). Let {On(x
0
n, θ

0)}∞n=N

be a sequence of compatible hybrid orbits. If at least one orbit is a dense hybrid orbit,

then we call the sequence of compatible hybrid orbits a sequence of compatible dense

hybrid orbits.

Example 177. The orbits discussed in Example 148 constitute the first three elements

of a sequence of compatible dense hybrid orbits.

Theorem 178. Consider a vector (a, b) that is rational with respect to the basis

{u1, u2} := {(1, 0), (
√
3, 2)}. Let x00 = r

4s , r, s ∈ Z with s ≥ 1 and r < 4s being an odd

integer. If b is an odd integer and θ = arctan b
√
3

2a+b
, then the sequence of compatible

closed orbits {On(x
0
n, θ

0)}∞n=0 is a sequence of compatible periodic hybrid orbits.

Proof. Let r, s ∈ Z, s ≥ 1 and r ≤ 4s. Suppose a line segment starting at

(r/4s, 0) with slope b
√
3

2a+b
intersects a point in R2 that would correspond to a lattice point

of a lattice comprised of equilateral triangles at scale k. If m,n, p, q, k ∈ Z, with k ≥ 1

and q ≤ 3k, then such a point has the form (m + p/3k)u1 + (n + q/3k)u2. Then, using

the equation for a line in the plane, we find that

(

n+
q

3k

)

√
3

2
=

b
√
3

2a+ b

(

m+
p

3k
+
n

2
+

q

2 · 3k −
r

4s

)

(4.17)

(

3kn+ q

3k

)

1

2
=

b

2a+ b

(

4s3km+ 4sp+ 2 · 4s−13kn+ 2 · 4s−1q − 3kr

3k4s

)

(4.18)

2 · 4s−1(3kn+ q)(2a+ b) = b(4s3km+ 4sp+ 2 · 4s−13kn+ 2 · 4s−1q − 3kr). (4.19)

If b is odd, then the right-hand side of Equation (4.19) is not even, but the left-hand side

is. Therefore, our assumption that such a point laid on the line with b
√
3

2a+b
was incorrect.

It follows that such a line emanating from x = q/4s, q and odd integer and s ≥ 1 avoids

all corners of all approximations Ω(KSn), n ≥ 0, giving us a sequence of compatible

periodic hybrid orbits.
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Theorem 179. Consider a vector (a, 1) that is rational with respect to the basis

{u1,u2} = {(1, 0), (
√
3, 2)}. Let x00 =

r
2s , r, s ∈ Z with s ≥ 1 and r < 2s being an odd in-

teger. If θ = arctan
√
3

2a+1 , then the sequence of compatible closed orbits {On(x
0
n, θ

0)}∞n=0

is a sequence of compatible periodic hybrid orbits.

Proof. The proof follows the same exact line of reasoning as the proof of

Theorem 178.

Example 180 (A sequence of compatible hook orbits). Let x00 ∈ I have a ternary

representation given by rl. Such a point has a value of 3/4. Considering an orbit of

Ω(KS0) with an initial direction of π/6, the ternary representation of the basepoints at

which the billiard ball path forms right angles with the sides of Ω(KS0) [c, lr]. This

hook orbit (see Example 146) is in fact a periodic hybrid orbit. The next orbit in

the sequence of compatible hook orbits has the initial condition (x01, π/6) = (x00, π/6).

Since the ternary representation of the basepoint of f0(x
0
0, π/6) is rc, it follows that

the basepoint of f1(x
0
1, π/6) is a Cantor-point. Then the basepoint of f2(x01, π/6) has a

ternary representation [c, lr]. This same pattern is repeated for every subsequent orbit in

the sequence of compatible orbits. As a result, the sequence of compatible orbits forms

a sequence of orbits that appears to be converging to a set that is well-defined. That is,

such a set will be some path with finite length that is effectively determined by the law

of reflection. We elaborate on this idea in §5.1.3.1.
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Chapter 5

The Koch snowflake fractal billiard

Ω(KS)

5.1 Theoretical results

5.1.1 Piecewise Fagnano orbits

From §2.8.2, we now understand how to identify points of the boundary KS.

From §4.2, if θ0 = π/3, then we know that we can determine the type of compatible

sequence of periodic orbits {On(x
0
n, π/3)}∞n=0 by examining the ternary representation

of x00. That is, a sequence of compatible π/3 orbits was either a sequence of compat-

ible piecewise Fagnano orbits, Cantor orbits or approximate piecewise Fagnano orbits,

depending on the nature of the ternary representation of x00.

Let X = {0, 1, 2, 3, 4, 5} and Xn :=
∏n

i=1X = Xn, the space of all words of

length n ≥ 1 with characters (or symbols) in the alphabet X; by default, we let X0 := ∅.

Define X∞ :=
∏∞

i=1X = XN to be the space of infinite words expressed in terms of the

elements of X. Let x ∈ X∞ and n ∈ N. We define τn : X∞ → Xn by τn(x) := x|n,
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where x|n ∈ Xn is the finite word of length n consisting of the first n characters of the

infinite word x. That is, x|n ∈ Xn is the truncation at level n of x ∈ X∞.

Restricting τn to KS results in a map that is well defined on the points of KS

which are not corners of KS. For example, 12 and 32 identify the same point in KS,

but the words of length n given by 12...2 and 32...2 do not identify the same segments

of KSn.

So that we avoid any ambiguity, recall that the orbit On(x
0
n, θ

0
n) is the billiard

ball path and the footprint Fn(x
0
n, θ

0
n) of the orbit On(x

0
n, θ

0
n) is the intersection of the

orbit with the boundary KSn. If {On(x
0
n, π/3)}∞n=0 is a sequence of compatible piecewise

Fagnano orbits, then we show that the inverse limit of the footprints Fn(x
0
n, π/3) exists.

Such a task will require us to define the proper transition maps so that the definition

of inverse limit is satisfied. (See §2.9.2 above for a brief discussion of inverse limits, and

[Bo, HoYo] for further information.) In other words, we recast the sequence of footprints

{Fj(x
0
j , π/3)}∞j=0 corresponding to a compatible sequence of orbits as an inverse limit

sequence of footprints of periodic orbits, where each basepoint is given in terms of its ad-

dress; see §2.8.2 (including Figures 2.14–2.12) for a description of the addressing system.

Once (and if) an appropriate billiard flow can be defined, we will seek in future work

to show that the inverse limit of footprints is a subset of some analogue of a Poincaré

section of the suitably defined billiard flow.

Given m,n ∈ N∗ with m ≤ n, consider the map τmn : Xn → Xm, where

τmn(xn) = xn|m is the truncation of the finite word xn (of length n) by n−m characters

(thereby producing a word of length m). Then τmn|KSn−1
is a map that truncates the

addresses of segments of KSn−1 of length n to produce addresses of the segments of

KSm−1 of length m. Let the map ι = ιmn be the ‘identity map’ acting on the unit circle

S1. The map ι = ιmn will serve to preserve the compatibility of the two initial conditions
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(x0m, θ
0
m) and (x0n, θ

0
n). In actuality, ι(θ0n) = θ0m, meaning that (x0m, θ

0
m) is the same as

writing (x0m, θ
0
n).

1

Consider x00 ∈ I with a ternary representation [c, lr]. Recall from §4.2.1 that

this is a necessary and sufficient condition for {On(x
0
n, θ

0)}∞n=0 forming a sequence of

compatible piecewise Fagnano orbits. Specifically, as stated in Proposition 133, there

exists a greatest integer N ≥ 1 such that ON (x0N , π/3) is a piecewise Fagnano orbit

of Ω(KSN ), yet for every m < N , Om(x0m, π/3) is not. Moreover, for every n ≥ N ,

On(x
0
n, π/3) is a piecewise Fagnano orbit. It follows that the first element x1N in the

footprint of the orbit ON (x0N , θ
0
N ) has a finite address ending in either 13 or 31. Likewise,

for each n ≥ N , x1n has a finite address ending in either 13 or 31. Specifically, for every

i such that N ≤ i ≤ n, (x0n)i 6= 0, 2, 4.

By utilizing the local and global symmetry of the snowflake (see Figure 4.3),

one may determine the footprint of On(x
0
n, π/3) as a dynamically ordered set of points.

One may then consider the inverse limit of the footprints of Fn(x
0
n, π/3), where one forms

the inverse limit by considering as our transition maps τmn (for m ≤ n) the truncation

of finite addresses, as defined above in this section. Letting Fn(x
0
n, θ

0
n) be the footprint

of the orbit On(x
0
n, π/3), we write the inverse limit of the footprints as

lim←−Fn(x
0
n, π/3) =

{

(xkii )∞i=N ∈
∞
∏

i=N

Fn(x
0
n, pi/3)|τmn(x

kn
n ) = xkmm for all N ≤ m ≤ n

}

.

(5.1)

Due to the fact that this set lacks a dynamical ordering, a priori, we cannot say that

it represents the iterates of a first return map defined on Ω(KS) (if it is even possible

to define such a map). Therefore, we next examine how to formulate the inverse limit

lim←−Fn(x
0
n, π/3) using transition maps that recapture the dynamical ordering on each

1The map ι preserves the compatibility of the initial basepoints x0
n and x0

m, by relying on the fact

that angles are measured with respect to a fixed coordinate system.
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prefractal approximation.

Consider ζn, the number of pairs of points preceding xknn in the footprint

Fn(x
0
n, π/3) of the orbit On(x

0
n, π/3). One can easily see that 2ζn + βn = kn, for some

βn ∈ {1, 2}. Then, for (xkii )∞i=N ∈ lim←−Fi(x
0
i , θ

0
i ), we have that there exists kn−1 such

that

x
kn−1

n−1 = τn−1,n(x
kn
n ) = τn−1,n(x

2ζn+βn
n ) = xζn+1

n−1 , (5.2)

where xζn+1
n−1 is the basepoint of f ζn+1

n−1 (x0n−1, π/3). By the definition of a piecewise Fag-

nano orbit (see Definition 134), we see that x
kn−1

n−1 = xζn+1
n−1 , and hence that kn−1 = ζn+1.

Consider the map Fn−1,n given by

Fn−1,n(x
kn
n , θknn ) = f ζn+1

n−1 ◦ τn−1,n × ιn−1,n ◦ f−kn
n (xknn , θknn ). (5.3)

The map Fn−1,n is well defined. In general, if m < n, then the map

Fm,n(x
kn
n , θknn ) = f ζm+1+1

m ◦ τm,n × ιm,n ◦ f−kn
n (xknn , θknn ) (5.4)

constitutes the proper transition map needed to construct the inverse limit of footprints

of a compatible sequence of piecewise Fagnano orbits {Oi(x
0
i , θ

0
i )}∞i=0. We denote the

resulting inverse limit as follows:

F(x0, θ0) := lim←−Fn(x
0
n, θ

0
n) = (5.5)

{

(xkii , θ
ki
i )∞i=N ∈

∞
∏

i=N

Oi(x
0
i , θ

0
i )|Fnm(xknn , θknn ) = (xkmm , θkmm ), for all N ≤ m ≤ n

}

.

We define x0 ∈ KS to be limi→∞ x0i , which is the limit (in the plane) of the compatible

sequence of initial basepoints {x0i }∞i=N .

As will be further discussed later on, we would like to think of F(x0, θ0) as the

‘footprint ’ (or the analog of iterates of the billiard map) of a ‘piecewise Fagnano periodic

orbit ’ of Ω(KS), namely, the piecewise Fagnano periodic orbit with initial basepoint

x0 := limi→∞ x0i in the direction of π/3.
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5.1.1.1 Topological properties of F(x0, θ0)

Theorem 181. If {On(x
0
n, π/3)}∞n=0 is a sequence of compatible piecewise Fagnano

orbits, then the ‘footprint’ F(x0, θ0), given by the inverse limit lim←−Oi(x
0
i , θ

0
i ), is a topo-

logical Cantor set (i.e., a totally disconnected and perfect compact set). Moreover, the

above inverse limit of the footprints is a self-similar Cantor set.

Proof. Let {On(x
0
n, π/3)}∞n=0 be a sequence of compatible piecewise Fagnano

orbits. By Theorem 116, F(x0, θ0) is totally disconnected and compact, being the inverse

limit of finite sets. What remains to be shown is that F(x0, θ0) is a perfect set.

Consider an element (xkii , θ
ki
i )∞i=0 ∈ F(x0, θ0). Fix n ≥ 0. Then there exists

(yjii , φ
ji
i )

∞
i=0 ∈ F(x0, θ0) such that 1) (xkii , θ

ki
i ) = (yjii , φ

ji
i ) for all i ≤ n and 2) x

kn+1

n+1 6=

y
jn+1

n+1 . Concretely, this element (yjii , φ
ji
i )

∞
i=0 is determined from (xkii , θ

ki
i )∞i=0 by way of

the local symmetry. As such, we can continue to construct a sequence of elements in

F(x0, θ0) that converges (with respect to either the Euclidean metric or a metric defined

on the space of addresses) to (xkii , θ
ki
i )∞i=0 ∈ F(x0, θ0).

To see that such a topological Cantor set is a self-similar Cantor set, one simply

recognizes the fact that for every footprint F(x0, θ0), there is a finite collection of IFS’s

{Φx0
0
,i}Ξi=1, each IFS Φx0

0
,i consisting of two contraction mappings, and each giving rise

to a unique fixed point attractor that is a self-similar set in its own right. The union of

these fixed point attractors is then the self-similar footprint.

Proposition 182. If {F(x0, θ0)|x00 has a representation [c, lr]} is the collection of

all footprints of piecewise Fagnano orbits of the Koch snowflake billiard Ω(KS), then

x00 6= y00 if and only if F(x0, θ0) and F(y0, θ0) have no elements in common.

Proof. Suppose F(x0, θ0) 6= F(y0, θ0). Recall from §2.8.4.1 that an address

beginning with 5 of a point can be straightened so as to identify a point x0 ∈ KS that
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is compatible with an element x00 (in the direction of π/3 in the interior of KS) that

is also an element of the unit interval base of KS0, which we have been denoting by I

throughout the paper. This element may then be taken to be limi→∞ x0i , with {x0i }∞i=0

being a compatible sequence of initial basepoints (again, compatible in the direction of

π/3). That is, x0 = limi→∞ x0i and y0 = limi→∞ y0i . Suppose x0 6= y0. Then there exists

ν > 0 such that ||x0 − y0|| > ν (where we have taken || · || to be the Euclidean norm in

R2). Therefore, there exists n ≥ 0 such that

||x0n − y0n|| > ν (5.6)

or

x0n 6= y0n. (5.7)

Since x0n and x00 are compatible in the direction of π/3 and y0n and y00 are compatible in

the direction of π/3, it follows that x00 6= y00. The converse holds since x00 6= y00 implies

x0 6= y0.

5.1.2 Finitely stabilizing periodic orbits

We now are in a position to properly elaborate on the “stabilizing” nature of a

Cantor orbit. We have alluded to the fact that a Cantor orbit is indeed a periodic orbit

of the Koch snowflake, but have not said in what sense. Though we have shown that a

Cantor orbit remains constant for all subsequent approximations, we have not said what

exactly the consequence of this should be.

We say that such a sequence of compatible orbits has stabilized after finite time

if the sequence of compatible orbits is constant after finitely many elements. A sequence

of compatible Cantor orbits is a canonical example of such a phenomenon. As a result,
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we call the trivial limit of a sequence of compatible orbits that has stabilized after finite

time a finitely stabilizing periodic orbit of Ω(KS).

5.1.3 Periodic hybrid orbits

As of now, we cannot say whether or not there exists a ‘periodic hybrid orbit’

of the Koch snowflake fractal billiard. Moreover, the general notion of an orbit of the

Koch snowflake billiard is not well defined. However, we have been able to determine

a particular collection of sequences of compatible periodic hybrid orbits, each having a

particular quality that allows us to determine from each sequence of compatible orbits

a nontrivial polygonal path that is converging to an elusive limit point of the Koch

snowflake fractal.

In Example 146, we gave an example of a hook orbit that was in fact a periodic

hybrid orbit. Such an orbit, when the correct initial basepoint was chosen, was an element

in a sequence of compatible periodic hybrid orbits {On(x
0
n, θ

0)}∞n=N (see Theorem 178.

From each orbit in such a sequence, there exists a basepoint xknn that is an element

of a sequence of basepoints converging to an elusive limit point. Such a sequence of

compatible periodic hybrid orbits is part of a larger collection of sequences of compatible

periodic hybrid orbits with this same quality. A necessary condition for this quality (the

quality that there exists a sequence of basepoints {xknn }∞n=N converging to an elusive

limit point) is that for each n, the basepoint xkn+1
n be on a side sn,k of Ω(KSn), x

kn+1
n

having a ternary representation [c, lr] and that x
kn+1

n+1 and x
kn+1+1
n+1 be points on the sides

of a cell Cn+1,k of Ω(KSn+1) with x
kn+1

n+1 being a Cantor-set point and x
kn+1+1
n+1 having a

ternary representation [c, lr]⊕ [lc, r]⊕ [cr, l]. In addition to hook orbits, the sequence of

compatible orbits shown in Figure 4.8 is another example of a sequence of compatible

periodic hybrid orbits with such a quality.
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5.1.3.1 Nontrival Polygonal Paths

When one can determine a sequence of basepoints from a sequence of compatible

periodic hybrid orbits that is converging to an elusive limit point of KS, then we say that

such a sequence of points can be connected by what we call a nontrivial polygonal path of

Ω(KS). More to the point, such a path is conjectured to be part of what would hopefully

be a periodic orbit of the Koch snowflake. Evidence in support of this conjecture is

provided later in §5.2.1.

5.2 Experimental results

5.2.1 Convergence to an eventually stabilizing periodic orbit

We have demonstrated the existence of a sequence of compatible orbits that

stabilizes after finite time, namely a sequence of compatible Cantor orbits. We conjecture

that a sequence of compatible periodic hybrid orbits will stabilize eventually, that is, after

infinite time. In Figure 5.1 we demonstrate the fact that the compatible periodic hybrid

orbits of the 2nd through 5th prefractal approximations appear to be converging to a

particular path that would then constitute an orbit in the limit.

While there seems to be a trend demonstrated in Figure 5.1, such a sequence of

simulated orbits does not constitute a proof. Though no simulation can provide a proof

of anything (in the current context, that is), we must be careful not to deduce too much

from these experiments. In order to prove that a sequence of compatible periodic hybrid

orbits is indeed converging to some set (i.e., in order to show that the geometric limit of

a sequence of compatible periodic hybrid orbits exists), we must consider the following

question:
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Figure 5.1: Beginning in the top left corner and moving left to right, top to bottom,
we see that the point at which the path of the billiard ball exits the particular cell of
Ω(KS2) is converging to the point at which the particular path crossed into the cell. We
replace the deleted segment in each figure to provide a visual frame of reference.

• Given a sequence of compatible periodic hybrid orbits, does there always exist a

nontrivial polygonal path converging to an elusive limit point?

In the following chapter, we discuss a number of open questions and possible

solutions to some of the questions posed thus far.
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Chapter 6

Concluding remarks and future

research

6.1 A well-defined billiard flow on Ω(KS)

The goal of this thesis was to make progress in answering the question of

whether or not there existed a well-defined billiard flow on the Koch snowflake. As

was discussed in Chapter 5, there is a particular family of sequences of compatible hy-

brid periodic orbits, each of which can be used to determine a sequence of basepoints

converging to an elusive limit point of the Koch snowflake KS. From such a sequence,

one then can construct a nontrivial polygonal path. We ask the question whether or

not such a nontrivial polygonal path does in fact constitute a portion of an orbit of the

snowflake.

The difficulty in answering this question is the problem with determining an

appropriate analog of a Poincaré section. It is intuitively clear that the Poincaré section

of the billiard flow should be the Koch snowflake boundary KS. In the case of an initial

direction of π/3, the appropriate analog of a piecewise Fagnano orbit would then have an

108



uncountable footprint, this then being an uncountable subset of the Poincaré section. As

we have seen, a footprint of an orbit of a rational billiard table (or a mathematical billiard,

in general) is at most countable. The closure of a dense footprint is the whole boundary

B of a billiard table. Taking a literal interpretation of the footprint lim←−Fn(x
0
n, π/3)

of a piecewise Fagnano orbit as a footprint in the classical sense would seem to pose a

problem, given the current framework of mathematical billiards. More concretely, we

must somehow resolve the question of how it is a periodic orbit can have an uncountable

period. One cannot simply consider iterates of some Poincaré map as this will lead to at

most a countably infinite footprint. Instead, we can consider the closure of a set of points

determined from a suitable limit of a sequence of compatible orbits as the appropriate

analogue of the classical footprint. This would be in line with our intuition and provide

the necessary framework for incorporating our results on piecewise Fagnano orbits.

Another viable solution to this problem is to focus on determining finitely sta-

bilizing periodic orbits. That is, can we demonstrate the existence of a finitely stabilizing

periodic orbit with an initial condition (x0, θ0) with θ0 6= θ(π/3)? Determining a fam-

ily of such orbits would certainly provide support for the argument that Ω(KS) can be

treated as a billiard. As of yet, besides the trivial limit of a sequence of compatible

Cantor orbits, no other finitely stabilizing periodic orbits have been found.

6.2 A well-defined fractal flat surface on S(KS)

In §3.1, we calculated the genus gn of S(KSn). It is clear that the genus increases

without bound. It is not clear that a suitable limit of flat surfaces S(KSn) exists. For

the sake of argument, let us suppose such a surface S(KS) := limS(KSn) exists. Then,

the question is whether or not on S(KS) := limS(KSn) there exists a well-defined flow
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in any direction.

The first example (and only example) we have seen of a billiard orbit being

fixed and defined for every subsequent approximation is a Cantor orbit. Moreover, we

then defined the trivial limit of a sequence of compatible Cantor orbits to be a finitely

stabilizing periodic orbit of the Koch snowflake billiard Ω(KS). We then can easily see

how such a flow line in the proposed surface S(KS) remains well-defined and fixed for

every subsequent approximation. We can also see that a nontrivial polygonal path is

determined by utilizing the law of reflection in each approximation and gives us a well-

defined path in the limit. This also serves as an example of a geodesic of the proposed

flat surface that should be well-defined in the limit.

The real problem with trying to force the existence of a flow on some limiting

surface S(KS) is the fact that there are at least infinitely many non-removable conic

singularities. Moreover, the process one goes through to construct S(KSn) (i.e., by

appropriately identifying opposite and parallel sides) certainly does not hold in the limit.

Though it is reasonable to believe that a limiting fractal flat surface S(KS) will consist

of six appropriately identified copies of the Koch snowflake billiard Ω(KS), it is not

apparent how one will deal with the presence of infinitely many nonremovable conic

singularities. In a much simpler (but not at all simple) case of a single convergent

sequence of nonremovable conic singularities, Josh Bowman and Feran Valdez have made

progress in understanding the nature of what they are calling wild singularities of a flat

surface. The case of the Koch snowflake may or may not be dealt with in their current

framework, but their work will most likely serve as a motivation for particular plans of

attack in answering the question of how to define the flow at elusive limit points of the

Koch snowflake fractal flat surface.
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6.3 A Veech-like dichotomy

We know from [GtkJu1, GtkJu2] that for every n ≥ 0, the Veech dichotomy

holds for the prefractal flat surface S(KSn). What we do not know is the explicit struc-

ture of the Veech group Γ(KSn) corresponding to S(KSn). More importantly, we do not

know how (or if) Γ(KSn) is somehow determined from Γ(KS0) or Γ(KS1). Specifically,

Γ(KS0) is uncountable and Γ(KSn) is countable for every n ≥ 1. This prompts the ques-

tion: Does the inverse limit Γ(KS) := lim←−Γ(KSn) exist? If the answer to this question is

yes, then what is this group exactly? Since the inverse limit of an inverse limit sequence

of groups is a group, this question is well-posed, but the answer may not be easily de-

termined. Assuming there is a well-defined flat surface S(KS), we ask whether or not

Γ(KS) acts on S(KS) in a well-defined way. The group Γ(KSn) is the group of affine

automorphisms that preserves the geometric nature of the conical singularities of the flat

surface S(KSn). It has been suggested (in a personal communication) by J. Athreya of

the University of Illinois, Urbana-Champaign, that a relationship between Γ(KSn) and

Γ(KSm), 1 ≤ m ≤ n exists. Since a Veech group has a representation in PSL2(R), it is

reasonable to ask the following question: Does the group Γ(KS) have a representation

in PSL2(R)? If the answer is yes, what structure does this group have? This then begs

the question: is there a Veech dichotomy for the fractal flat surface? That is, can we say

the flow in a particular direction is either closed or uniquely ergodic?
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