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NOMENCLATURE

DSV = Dynamic Stall Vortex

LSB = Laminar Separation Bubble

LEV = Leading-Edge Vortex

TEV = Trailing-Edge Vortex

TKE = Turbulent Kinetic Energy

LES = Large Eddy Simulation

DNS = Direct Numerical Simulation

DDES = Delayed Detached Eddy Simulation

CGT = Chimera Grid Tools

AFT = Amplification Factor Transport

α = Dynamic Stall Vortex

Cp, Cf = Pressure and Skin Friction Coefficient

Re = Reynolds Number

M = Mach Number

u, v, w = Velocity Components

ωx, ωy, ωz = Vorticity Components

x,y,z = Cartesian Coordinates

CL, CD, CM = Lift. Drag, and Pitching Moment Coefficients

SST = Shear Stress Transport

SA = Spalart Allmarras

t = Time (s)

t∗ = Non-dimensional Time

∆t∗ = Non-dimensional Time Step

Ψ = Pitch Rate (rad/s)

Ψ+
◦ = Non-dimensional Pitch Rate
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ABSTRACT

This thesis examines the feasibility of Delayed Detached Eddy Simulations (DDES) in terms

of predicting aerodynamic loads and capturing complex flow physics relating to the dynamic

stall process at a transitional Reynolds number of 200, 000 and Mach number of 0.10, using

NASA’s OVERFLOW 2.3 code. This investigation tests the performance and capabilities of

state-of-the-art transition models in terms of their ability to capture the underlying viscous

mechanisms from which dynamic stall is onset. This work focuses on the events leading up

to stall, rather than the analysis of the stalled flow itself, hence the focus will be on the

upstroke region. This is due to the modern-day modeling tools being more so calibrated for

pre-stall. Furthermore, an accurate prediction of the pre-stall regime could have a significant

impact in employing flow control technologies in the future. All grids generated are based on

current best practices of Chimera Grid Tools (CGT). While current Large Eddy Simulations

(LES) standards recommend a low y+ value in the boundary layer, a conservative value of 0.4

is used. Deeper investigations into the flow physics are performed on the 2nd finest grid out

of 3 configurations. While by nature it would be expected that the finest mesh would yield

the most accurate results, another motivation for this study is to test capabilities performed

on a scale parallel with current industry standards, using coarser meshes, and lower fidelity

models, resulting in quicker turnaround times. It is found that the overall flow physics is

captured in detail even with a mesh composed of roughly 16 million grid points. A leading-

edge separation region and formation of a dynamic stall vortex is examined in detail, and

results suggest that the role of a laminar separation bubble is significant in the dynamic

stall process, which has otherwise been a controversial point in the past regarding this flow

phenomenon. Furthermore, it is found that DDES matches up accurately with respect to

benchmark LES results for the same case, but with coarser spatial and temporal resolutions.

James Coder’s SA Amplification Factor Transport (AFT) transition model yielded the most

accurate results when compared with LES results and shows promising results for future

ix



use in more high-fidelity case studies. Langtry and Menter’s SST correlation-based tran-

sition (γ − R̃eθt) model and its SA counterpart developed by Medida and Baeder are also

investigated in detail.

x



Chapter 1

Introduction

1.1 Motivation

Dynamic stall is a complex flow phenomenon that occurs in the realm of rapid maneuvering

fixed and rotary-wing aircraft, turbomachinery, and wind turbines. It is characterized by a

delay in the onset of boundary layer separation on a blade subject to transient alterations in

angle of attack beyond the static stall angle, which increases aerodynamic loads considerably

larger than those associated with static stall. When stall itself is onset, there is a massive

flow separation on the upper surface that results in a gradual or abrupt loss of lift, an increase

in drag, and a large nose down pitching moment, severely impeding the performance of the

aircraft. Focusing on the realm of rotorcraft, it is a direct result due to the cyclic pitch

applied to the rotor blades for maintaining a balanced thrust force across the entire rotor

disk. The unsteady loading and vibrations encountered during dynamic stall severely hinder

the performance, as it restricts forward flight limits and compromises the structural integrity

of the rotor blades. Due to the chaotic nature of this flow phenomenon, it remains a very

difficult task to accurately capture and predict through experimental and computational
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methods [1]. In rotorcraft, DDES has been widely used to predict dynamic stall, however,

the focus was more geared towards the aerodynamic performance rather than the in-depth

flow physics. The predictive capabilities of DDES in terms of capturing the complex flow

features, such as the onset of the dynamic stall vortex (DSV) has not yet been reported in

detail. Smith [2] provided a comprehensive discussion on the current state of knowledge

regarding this flow phenomenon. Despite the tremendous progress that has been made in this

field of study, further knowledge is still required. Some of the conclusions/recommendations

from [2] are listed:

� Two-dimensional dynamic stall must be solved in three-dimensional space to capture

the separation region. Purely two-dimensional computations exhibit stronger, non-

physical responses that impact the ability to capture the onset of dynamic stall.

� Integration of computational studies with coordinated experimental studies will pro-

vide results that are valuable for code validation. Combined use of validated compu-

tational results and high-quality experimental results are likely to yield the greatest

advancement in understanding.

� A better understanding of the timing and impact of dynamic stall flow features under

different conditions and combinations of conditions, such as unsteady inflow, aeroelas-

ticity, wake interactions, boundary layer transition, and airfoil shape, is needed.

Currently, LES [1] has proven to be the most effective in capturing important flow features

during the dynamic stall process, however the required computational resources make it

impractical for industry use. This thesis aims to focus on the point of understanding the

viscous mechanisms from which dynamic stall is onset using DDES, which provides much

faster solutions than LES. This work will investigate the feasibility of using DDES for cap-

turing the distinct flow features that are associated with the dynamic stall process for a low

Reynolds number case (M = 0.10, Re = 200,000). Having the ability to understand the
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process from which this flow phenomenon occurs at a reasonable computational cost has

massive implications for the practical study of flow control technologies which could in turn

increase forward flight limits of rotorcraft in the future. Moreover, this thesis will test the

capabilities of state-of-the-art turbulence and transition models in terms of capturing the

complex flow physics associated with dynamic stall.

3



1.2 Rotorcraft Aerodynamics

What sets helicopters apart is the capability to perform vertical takeoff and landing (VTOL),

which allows for a wide array of possibilities in terms of destinations they can travel [3].

Their operation is much more complex than conventional fixed wing aircraft. These aircraft

generate lift through the rotation of the blades which generates complex flow features due

to the asymmetric aerodynamic loading distribution in forward flight. A general perspective

of the rotorcraft can be seen in Fig. 1. There exists an advancing side and retreating side

of the rotor. It can be seen from the schematic that there is a relative velocity difference on

both ends of the rotor disk. This requires the retreating side to operate at a higher angle of

attack to offset the difference in flow velocity, and thereby maintain a uniform thrust across

the rotor.

Figure 1: Overview of rotor disk [4].
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1.3 Dynamic Stall

1.3.1 Characteristics

As previously discussed, when there exist transient changes in angle of attack due to the

cyclic pitch in rotorcraft or rapid maneuvering fixed wing flight, the maximum lift exceeds

well beyond the static stall angle. McCroskey [5] classified dynamic stall into two main

categories based on the angle of attack.

� Light Stall: Encountered when the angle of attack is only slightly greater than the

static stall angle of attack. In this realm the separated flow region is relatively small.

� Deep Stall: Encountered when the angle of attack is much greater than the static stall

angle. In this regime, there is a formation of a leading-edge vortex (LEV), which causes

large overshoots in the aerodynamics loads until the point where the vortex sheds off

the blade surface, and the blade is in a fully stalled state.

Not only are the physical elements of the aircraft compromised when dynamic stall is onset,

but this phenomenon also has a large effect on the aircraft control systems. The large

fluctuations in the aerodynamic loads can cause excessive inputs into the control system,

compromising the vehicle dynamics to a point where the vehicle can go into a dangerous

spin state. There are two distinct physical processes that trigger the onset of dynamic stall:

� Leading Edge Stall: In leading-edge stall, McCroskey et al. [6] identifies two different

processes from which the stall is initiated. The first is through a formation of a laminar

separation bubble (LSB) at the leading edge that contracts with increasing angle of

incidence, to a point at which it is no longer able to facilitate reattachment due to the

large adverse pressure gradient. This results in a sudden separation of the boundary
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layer due to the bursting of the LSB, otherwise known as “pressure-gradient bubble

bursting” stall. The second form occurs due to the rapid propagation of the separated

flow upstream, with the presence of a LSB at the leading edge. Here, the separated

flow meets the LSB causing abrupt breakdown of suction at the leading edge. This is

known as “turbulent leading-edge stall”. Both types of leading-edge stall are associated

with abrupt lift and moment stalls as well as a hysteresis between pitching directions.

� Trailing Edge Stall: Trailing-edge stall, by contrast, occurs in a situation of no LSB

or a stable LSB and describes the relatively slow upstream propagation of turbulent

boundary-layer separation from the airfoil trailing edge up to the leading edge, resulting

in gradual lift and moment stall with little hysteresis [6].

The stall development process is quite different when compared static and dynamically pitch-

ing airfoils. The detailed flow features that have proven to be common for most airfoils

pitched dynamically will be discussed. The different stages of the dynamic stall process as-

sociated with classical trailing-edge stall can be seen in Fig. 2. This was from an experiment

performed by McCroskey et al. [6] on a NACA 0012 airfoil section. Point (a) signifies the

blade passing the static stall angle. At this point, there are no detectable changes in the flow

over the blade as the boundary layer remains thin with no signs of flow reversal. Point (b) is

when flow reversal is identified towards the trailing edge, and the boundary layer begins to

thicken. At point (d) the flow reversal propagates upstream from the trailing edge, causing a

region of disturbed boundary layer flow. At this point there is still not significant alterations

in the predicted aerodynamic loads. Point (e) signifies flow separation at the leading edge,

where suction is lost, and the process of the dynamic stall vortex formation begins. As the

vortex forms and propagates downstream the pitching moment starts to diverge from its

static values. At point (f) the lift-curve slope increases, showing a behavior different from its

static counterpart, and the lift keeps increasing with increasing angle of incidence, exceeding

the value of the static lift curve slope of 2π/radian. Point (g) indicates the onset of moment
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stall, where a large nose down pitching moment is induced. Lastly, point (h) signifies the

onset of lift stall, where the maximum lift coefficient is reached, followed by a sharp decrease.

At this point the DSV is at approximately mid-chord [6].

Figure 2: Different stages of dynamic stall [6].

1.3.2 Literature Review

Dynamic stall has been an active research topic for more than half a century. This research

came about when classical unsteady aerodynamic theory had been developed by researchers

such as Wagner (1925), Glauert (1929), Theodorsen (1935), and many others. During this

time, studies were launched where researchers developed analytical solutions to incompress-

7



ible flow over thin airfoils undergoing time-dependent motion. Unsteady aerodynamics had

to first be realized by researchers since conventional aerodynamics at that time could not

sufficiently explain why helicopters were experiencing higher magnitudes of lift than expected

with a conventional, or steady aerodynamics approach. Kramer (1932) was one of the first to

experimentally document the augmented lift associated with dynamic stall [7] but couldn’t

pinpoint the exact reason for which it occurred. Ham and Garelick [8] observed that extra lift

could be generated through rapid pitching of airfoils, and that this overshoot was associated

with a vortex formed on the airfoil during the unsteady motion. The analysis of dynamic

stall events on an oscillating airfoil by Carr [7] revealed that the prominent features within

a full cycle of oscillation are consecutively the emergence and spreading of flow reversal on

the airfoil’s suction side, the formation and convection of a large-scale leading-edge vortex,

massive flow separation, and flow reattachment. During this time (1977), a pivotal study in

this field was conducted by McCroskey et al. [6] where the analysis of the onset of dynamic

stall for a variety of different Reynolds numbers, and airfoil configurations was conducted.

This was following a time period where a handful of researchers were observing both lead-

ing edge and trailing edge stall for a variety of flow conditions and geometries. One of the

most important takeaways from this study was the fact that they were experimentally able

to identify two forms of leading-edge stall: one of which consisted of the pressure-gradient

induced bursting of a LSB formed at the leading edge, and the second being the rapid prop-

agation of the trailing edge separation upstream, to the point where it caused the collapse

of a LSB that developed on the leading-edge. This rapid propagation of the reversed flow

upstream was classified under leading-edge stall since trailing-edge stall is a more gradual

propagation of the separated flow upstream. This was after many researchers were associ-

ating leading-edge stall solely due to pressure-gradient bursting of the LSB, classifying this

observation as a new type of leading-edge stall. Moreover, they identified the large influ-

ence of Reynolds number on the overall flow physics and different types of stall noted from

researchers prior to this study. In decades following, many researchers validated the early
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findings of McCroskey et al. [6], Carr [7], and Ham and Garelick [8], such as Shih et al. [9],

who classified the unsteady flow development over an airfoil pitching up at constant rate

into four successive stages: a vortex formation stage, a vortex convection stage, stall onset,

and a stalled stage. These findings show that the flow over either a constantly pitching

or oscillating airfoil is qualitatively described by the same characteristic features, being the

initiation, growth and shedding of a leading-edge vortex and the associated lift overshoot. In

the time period following the publication of many groundbreaking discoveries related to dy-

namic stall, many experimental techniques were applied, including flow visualizations, force

measurements, surface pressure, hot-film measurements, planar whole field velocity and den-

sity surveys employing particle image velocimetry (PIV), and interferometric techniques [1].

These techniques were all employed for trying to capture the well-known features associated

with dynamic stall, and more specifically the complex flow behavior at the leading edge.

In a more recent study, Pruski and Bowersox [10] studied the behavior of the leading-edge

vortex using planar PIV and noted the growth of the vortex and its interaction with sur-

rounding vorticity during the dynamic stall process. Their observations led to a modified

physical description of the classical dynamic stall process, noting that the DSV appears as a

coalescence of shear-layer vortices rather than a distinct singular vortex [10], a finding that

prior researchers were unable to detect. Numerous computational studies since then have

also appeared in the literature, attempting to capture the distinct flow features that have

been documented within various experiments. Over a large range of flow conditions, many

characteristics of deep dynamic stall have been established [1]. Namely, the formation of

a DSV near the leading edge that convects along the airfoil, resulting in an overshoot of

aerodynamic loads have been noted for a wide range of Reynolds numbers (104 ≤ Re ≤ 106).

Although various distinct flow features have been realized and validated by many researchers

both experimentally and computationally, the main question that remained open was the

underlying viscous mechanisms from which these flow features develop [1], specifically re-

garding the physical process under which the DSV is formed, and the influence of the LSB
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during the DSV formation. Although many studies noted the formation of a LSB, due to

its small size, many experiments had been inconclusive on the role it plays in the develop-

ment and behavior of the DSV, especially in its influence during the dynamic stall process.

Although the behavior of the LSB in static stall has been well documented [11], Visbal and

Garmann [1] were among the first to make a breakthrough with this question on the role of

the LSB in dynamic stall. They studied the underlying mechanisms from which the DSV

forms on a NACA 0012 blade section at a Reynolds number of 200,000 subject to a constant

pitch rate motion. Using LES computations, they identified the effect of the LSB and its

behavior during the dynamic stall process, finding that it was the initial trigger in the start

of the dynamic stall process. Although its presence had been documented in previous stud-

ies, this LES case provided a detailed description of the unsteady boundary layer physics,

which could not be identified through experimental methods. At a higher Reynolds number

(106), Benton and Visbal [12] studied the turbulent separation induced leading-edge stall

described by McCroskey et al. [6], concluding that the bursting of the LSB due to turbulent

separation propagating upstream resulted in the development of a small leading edge vortex

structure which rolled up the turbulent separated flow to develop the combined DSV. This

was a mixed-type stall process that had not yet been visualized in literature but directly

explained the origination of a DSV near the leading edge [12]. The behavior of the LSB doc-

umented by Visbal and Garmann [1] was similar to static analysis on a leading-edge LSB in

2D, by Pauley et al. [11]. As mentioned previously, despite extensive analytical, numerical,

and experimental efforts, dynamic stall is not yet fully understood and characterized. This

is due to its sensitivity to an array of factors, with the most important being the Reynolds

number, wing geometry, and pitch rate, however the results of [1] and [12] have proven LES

to be effective in studying the flow features that were elusive in experimental approaches.

This particular study aims to determine the feasibility of high fidelity DDES to study relevant

flow physics with a much coarser spatial and temporal resolution in comparison with high

fidelity LES. Not only will predictions of aerodynamic loads be discussed, but physics of
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the dynamic stall vortex (DSV) will be studied to provide a concrete answer to whether

complicated flow features can be realized from an industry oriented CFD approach and

assess the computational and experimental findings researchers have observed regarding the

flow features associated with dynamic stall. The emphasis will be to study the different

stages during the dynamics stall process as a whole before diving into a deeper investigation

of the leading-edge flow features.

1.3.3 Computational Fluid Dynamics

Recent progress in computational methods and the tremendous increase in computing power

has made it possible to solve the full fluid governing equations for dynamic stall investi-

gation and prediction in the design process. Although there did exist numerical methods

for solving the unsteady Navier-Stokes equations, researchers in the late 20th century lacked

the accuracy and flow visualization tools that are equipped with many solvers today. Along

with gathering accurate data on the dynamic stall process, researchers can get an accurate

physical representation of the results generated from numerically solving the Navier-Stokes

equations. Computational Fluid Dynamics (CFD) involves discretizing the non-linear Navier

Stokes equations into a set of algebraic equations. Researchers highlighted the need for highly

resolved simulations to capture the small scales associated with the laminar separation bub-

ble and wall-bounded turbulence, making the LES approach very effective in the study of

dynamic stall [12], since it ignores very small length scales and resolves those beyond a cer-

tain threshold. With this method still being computationally expensive, there are currently

many researchers gravitating towards the use of computationally inexpensive models such as

Reynolds Averages Navier-Stokes (RANS) and DDES. However, there still exists uncertainty

in these CFD solvers since the Navier-Stokes equations are closed by assuming a turbulence

model. The choice of the turbulence model has a significant effect on the final solution of

computed pressure and velocity fields, bringing in an element of uncertainty.
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1.3.4 Transition Modeling

Laminar-turbulent transition is a complex phenomenon that has a massive impact in the

analysis of dynamic stall. There has been a tremendous amount of improvements in the

past few decades with regards to an accurate prediction of transition and its addition to

widely used CFD codes. These efforts have resulted in a wide variety of turbulence models

that can be used for many applications, with reasonable accuracy and efficiency from a

computational cost standpoint. Although there is a significant number of publications on

this topic, there are several reasons to why this remains a loosely defined topic. This is related

to the fact that transition occurs in different ways depending on the flow conditions. With

flows relating to fixed-wing aircraft flight, transition is a direct result of flow instability,

where the exponential growth of 2D disturbance waves leads to a nonlinear breakdown

to turbulence [13]. Transition occurring due to Tollmein-Schlicting (TS) waves is referred

to natural transition. For turbomachinery applications, bypass transition is the primary

transition mechanism, where the transition process goes from the formation of TS waves

directly to the development of turbulent spots prior to the breakdown to fully turbulent

flow. Figure 3 gives a visual representation of the various transition mechanisms. The last,

and most common mechanism is separation induced transition, which is caused through the

laminar boundary layer separating under the influence of a large adverse pressure gradient.

While all these different mechanisms have been widely studied, it remains a difficult task to

include all the effects into a simple, yet versatile model.
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Figure 3: Different methods of laminar-turbulent transition [14].

13



Chapter 2

Problem Specification

2.1 Problem Description

In this paper a NACA 0012 airfoil section with a blunt trailing-edge is studied in detail.

The three mesh resolutions studied are reported in Table 1. To prevent a sudden ramp-up

motion, the pitch rate, α̇, is given by

α̇(t∗) = ψ+
◦ (1− e−4.6t∗/t◦) (2.1)

where t∗ = tU∞/c denotes the non-dimensional time, t◦ = 0.5, and ψ+
◦ is 0.05. This allows

the pitch rate to reach 99% of its asymptotic value, or ψ+
◦ , fairly quickly (t◦ = 0.5). Figure 4

shows a general schematic of the pitching motion applied. Although a constant pitch motion

is more relevant to fixed-wing fighter aircraft and wind turbine blades, the underlying viscous

flow physics is still applicable to rotorcraft environment. Based on studies done by Visbal

and Garmann [1], a span of 10% chord was found to be a viable option for capturing 3

dimensional effects at a reasonable computational cost. Prior to the initial pitch up motion, a
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well resolved static solution is first found. The boundary conditions are prescribed as follows:

no-slip adiabatic condition on the airfoil surface, grid periodicity imposed in the chordwise

direction at the trailing edge, and for keeping a nominal 2D configuration, spanwise periodic

conditions are imposed. This essentially removes finite 3-dimensional effects such as the

influence of tip vortices in this case study, but also allows for the study of spanwise features

and effects within the flow. In regards to the temporal resolution, A small non-dimensional

time step ∆t∗ = 0.000256 is utilized in this study. This correlates to 35,000 steps during the

upstroke motion, and 1300 steps per angular degree of rotation. This small time step not

only ensures numerical accuracy, but provides an adequate temporal resolution for capturing

complex flow features. Furthermore, 30 sub-iterations are used for numerical convergence

based on studies conducted by Liggett and Smith [15] on sufficient temporal resolutions of

separated flows.
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Figure 4: a) Prescribed pitching motion, and b) general schematic.
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2.2 Grid Generation

The airfoil section is comprised of a single near-body curvilinear O-mesh. The NACA 0012

airfoil coordinates are imported into OVERGRID [16]. The modules HYPGEN, GRIDED,

and SRAP, within the Chimera Grid Tools (CGT) package were used to generate the grids.

CGT provides a graphical user interface and a unified environment for the visualization,

processing, and diagnosis of the grid. The first 2D volume grid is generated through the

use of HYPGEN, where a field grid is created from the NACA 0012 surface coordinates.

The marching distance, initial and/or end spacings are user specified. The leading and

trailing-edge chordwise spacings are kept at 0.02%c , where c denotes the chord length, to

have a sufficient resolution for capturing the flow physics. Mesh smoothing parameters are

kept at default values, a process that is standard when considering grids that are not overly

complex [16]. After a 2D volume grid is generated, it is duplicated and concatenated in the

spanwise direction to generate the 3D volume grid. The grid stretches 100 chords away from

the surface, in accordance with [1]. It is replicated in the same manner for this study in order

to make a fair comparison with LES results. Moreover, a majority of the grid points are

concentrated within one chord length away from the airfoil surface, and 50 points are used

in the far field, which provides a large grid stretching and dissipation of flow variables at

the far-field boundary. Although the grid is stretched rapidly, the stretching ratio was main-

tained below 1.3 in accordance with OVERGRID best practices [16]. The grid resolutions

represented as normalized wall units are found in Table 2. These represent computational

step sizes calculated from the solution data. For all grids, the average y+ calculated from the

solution data is approximately 0.4 across the upper surface of the blade. This calculation

of y+ is done through an iterative process of adjusting flat plate approximations, and cross

referencing with the solution data. The first grid point is placed within the boundary layer,

approximately 5.19×10−5 meters from the airfoil surface. General schematics of the domain

can be seen in Fig 5.
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Table 1: Mesh Properties

Grid Dimensions Nupper/Nlower ∆z/c

1 511× 100× 50 350/150 0.002
2 811× 200× 100 600/200 0.001
3 1349× 400× 100 900/400 0.001

*Note: Dimensions are reported as (Chordwise × Normal × Spanwise). ∆z/c indicates the

nominal spanwise spacing.

Figure 5: Overview of airfoil section mesh.
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Table 2: Wall Units

Grid ∆x+ ∆y+ ∆z+ ∆x+ ∆y+ ∆z+

1 40.0 0.463 8.93 35.5 0.392 9.49
2 23.1 0.488 9.41 17.6 0.375 7.22
3 15.0 0.526 10.4 11.4 0.399 7.69

*Note: ∆x+,∆y+, and ∆z+ indicate the grid spacing at x/c = 0.8. ∆x+,∆x+,∆x+ indicate the

grid spacings averaged across the airfoil upper surface.
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Figure 6: Streamwise (x) and spanwise (z) grid spacings on Grid 2.
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Chapter 3

Numerical Procedure and Validation

3.1 OVERFLOW 2.3

The numerical integration of the unfiltered fluid transport equations is carried out using

NASA’s OVERFLOW 2.3 CFD code [17]. It is an implicit structured overset grid Navier-

Stokes solver that is capable of computing time-accurate and steady state solutions with

several options for temporal and spatial discretization. OVERFLOW was used to study

2D and 3D dynamic stall, [18–20], and various rotorcraft simulations, [21–23]. This code

has a variety of turbulence and transition models available. The transition models used

in this study are the following: (i) The correlation based two equation Langtry-Menter

transition model [13], which is based on the year 2003 version of Menter’s Shear Stress

Transport (SST) model [24] with modifications to account for crossflow induced transition;

(ii) the correlation based Medida-Baeder transition model [25], which is a reformulation of

the Langtry-Menter Transition model to allow for integration with the Spalart-Allmaras

(SA) Turbulence model, and (iii) Coder’s Amplfication Factor Transport (AFT) model [26].

Furthermore, as previously stated, the fully turbulent SA model [27] is also used.
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Governing Equations

The governing equations solved by OVERFLOW are outlined. The Navier-Stokes equations

can be written in vector form with respect to a generalized coordinate system:

∂−→q
∂t

+
∂
−→
E

∂ξ
+
∂
−→
F

∂ν
+
∂
−→
G

∂ζ
= 0 (3.1)

where ξ, ν, and ζ represent the generalized coordinates. The fluxes in each direction are

signified as
−→
E ,

−→
F , and

−→
G The vector of conserved scalars is shown as:

−→q
V

=



ρ

ρu1

ρu2

ρu3

ρe◦


(3.2)

Here ρ, −→u , and e are the unknown field variables of density, velocity, and total energy per

unit mass, respectively, over the control volume V . These equations are linearized, and a

pseudo-time term is added to allow for sub-iteration and faster iterative numerical schemes

to be employed. The resulting system is given as the following:

[
I +

∆t

(1 + θ)∆τ
+

∆t

1 + θ
(∂ξA+ ∂ηB + ∂ζC)

]
∆qn+1,m+1

= −
[
(qn+1,m − qn)− θ

1 + θ
∆qn +

∆t

1 + θ
RHSn+1,m

]
(3.3)

For 2nd order temporal accuracy, θ = 1/2 is used. The fluxes create the right-hand side
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term

RHS =
∂
−→
E

∂κ
+
∂
−→
F

∂ν
+
∂
−→
G

∂ζ
(3.4)

Due to having five equations and six unknowns another equation is needed to close the

system. The internal energy per unit mass e can be related to the temperature using the

perfect gas assumption by

e◦ = cνT (3.5)

where cν represents the specific heat at a constant volume. The internal energy per unit

mass is related to the total energy per unit mass by

e = e◦ +
1

2
uκuκ (3.6)

Finally, the system of equations is closed using the relation

P = ρrT (3.7)

The governing equations could be solved without further analysis using discretization tech-

niques with appropriate integration and boundary conditions. However, this approach loses

practicality as it would need a significant amount of computational resources to resolve even

a small control volume. To account for this, turbulent length scales can be split into re-

solved and unresolved regions [28]. The resolved portions can be solved with a fine enough

grid, while the unresolved portions can be modeled to reduce the computational cost. The
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unresolved subgrid-scale stresses use an eddy viscosity model and are calculated from

τij = 2µt

(
Sij −

1

3

∂uκ
∂xκ

δij

)
− 2

3
kδij (3.8)

Several techniques can be used to solve for the turbulent eddy viscosity, µt, and the turbulent

kinetic energy, k which can be modeled from the one equation Spalart Allmaras (SA) and

the two equation Shear Stress Transport (SST) Turbulence Models [25].

Numerical Algorithm

Equation (3.3) has the general matrix form Ax = b. The first bracketed term is the left-

hand side matrix A. The second bracketed term represents the vector b. Solving the system

of equations described requires the inversion of the A matrix, which necessitates a large

amount of computational time and memory. Various approximations are made to expedite

the procedure. The factored form of eqn. (3.3) is given as the following

[
I +

∆t

1 + θ
∂ξA

] [
I +

∆t

1 + θ
∂ηB

] [
I +

∆t

1 + θ
∂ζC

]
∆qn+1,m+1

= −
[
(qn+1,m − qn)− θ

1 + θ
∆qn +

∆t

1 + θ
RHSn+1,m

]
+ Error (3.9)

A = XAΛAX
−1
A (3.10)

B = XBΛBX
−1
B (3.11)

C = XCΛCX
−1
C (3.12)
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XA

[
I +

∆t

1 + θ
∂ξΛA

] [
1 +

∆

1 + θ
∂ηΛB

] [
I +

∆t

1 + θ
∂ζΛC

]
∆qn+1,m+1

= −
[
(qn+1,m − qn)− θ

1 + θ
∆qn +

∆t

1 + θ
RHSn+1,m

]
+ Error (3.13)

Equation (3.13) is in scalar pentadiagonal matrix form. The inversion of this equation

at each point can be done using extremely efficiently using the diagonal schemes within

OVERFLOW [17].

Namelist Inputs

In this investigation, simulations are run with a fifth order central difference scheme for the

flux algorithm and a diagonalized scalar pentadiagonal scheme for solution algorithm, both

of which showed promising performance in 2D dynamic stall simulations [18]. Furthermore,

a scalar dissipation scheme is employed with many smoothing parameters set to default by

OVERFLOW standards. The primary means for convergence is based on the right-hand

side (RHS) residual drop of the subiterations and maintaining close to a 2-order magnitude

drop across each time step [29]. In the Reynolds number regime studied in this investigation,

laminar separation occurs at the leading edge, hence three transition models are compared:

SST Langtry-Menter (γ − R̃eθt) model, SA Medida-Baeder (γ − R̃eθt) model, and the SA

James Coder Amplification Factor Transport (AFT) model.
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3.2 AFT Transition Model

Evaluation of the turbulence production and destruction terms must not require any inte-

gration paths or global searches. In theory, it is possible to model the growth of instability

frequencies using a transport equation, however, tracking multiple frequencies with the hope

that one of them is the critical frequency requires a separate transport equation for each one,

making this approach quickly lose its practicality. Drela and Giles developed the approxi-

mate envelope method, which provides an appealing alternative in the simplification of eN

theory to a single scalar variable [30]. This serves as the bases for the amplification factor

transport equation. Furthermore, the secondary variable is the modified intermittency. The

amplification factor is a measure based on a linear stability theory of how close a laminar

boundary layer is to transition whereas the intermittency is a measure of the probability

that a given point in space is located inside the turbulent region, that is the fraction of time

that the flow is turbulent during transition [31]. The governing Partial Differential Equa-

tions (PDE) describing the evolution of the approximate envelope amplification factor and

modified intermittency are given as the following

∂ρñ

∂t
+
∂ρuiñ

∂xi
= ρΩFcritFgrowth

dñ

dReθ
+

∂

∂xi

(
(µ+ σnµt)

∂ñ

∂xi

)
(3.14)

∂ργ̃

∂t
+
∂(ρuiγ̃)

∂xi
= c1ρSFonset(1− exp(γ̃))− c2ρΩFturb(c3exp(γ̃)− 1) +

∂

∂xi
(µ+ σnµt)

∂γ̃

∂xi

(3.15)

Eqs. (3.14) and (3.15) are coupled to the SA equation for the working variable ν̃
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∂ν̃

∂t
+
∂(uiν̃)

∂xi
= cb1Sν̃(1− ft2)− (cw1fw − cb1

κ2
ft2)

(
ν̃

d

)2

1

σ

[
∂

∂xi
(ν + ν̃)

∂ν̃

∂xi
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
(3.16)

Through the modified ft2 term

ft2 = ct3(1− exp(γ̃)

In the source terms of Eqs. (3.14) and (3.15) Fcrit and
dn

dReθ
are functions of the displacement

to momentum thickness ratio or integral shape factor H12, itself a function of the local shape

factor HL

HL =
d2

µ

[
∆ρ

(
−→u ∆d

d

)
∆d

d

]
(3.17)

where d is the wall distance and the first gradient factor acts as an indicator of pressure

gradient from the freestream. HL is limited within [-0.25,200] for numerical stability. Fcrit

toggles from 0 to 1 when the local vorticity Reynolds number

Reν =
ρSd2

µ+ µt

(3.18)

reaches a critical threshold Reνθ correlated to the transition momentum-thickness Reynolds

number by a function of the integral shape factor H12. The production term for the inter-

mittency is activated by Fonset
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Fonset1 = min

[
ñ

Ncrit

, 2

]
(3.19)

Fonset2 = max

[
1−

(
µt

3.5µ

)3

, 0

]
(3.20)

Fonset = max[Fonset1 − Fonset2, 0] (3.21)

and modulated by the laminar boundary-layer growth factor Fturb

In (3.14) the critical amplification number Ncrit it is given by the Mack formula

Ncrit = −8.43− 2.4ln(τ) (3.22)

adapted for a high turbulence level with

τ = 2.5tanh

(
Tu∞
2.5

)
(3.23)

where Tu∞ is the freestream turbulence intensity. Ncrit = 9 has been shown to work well

in a number of aerodynamics problems and it is therefore the default used here unless

stated otherwise. At the inflow and farfield boundaries ν̃∞ and γ̃∞ are set to zero, whereas

extrapolation is used at the outflow and Neumann boundary conditions are applied at viscous

walls [32]. An in-depth description and derivation of this transition model can be found

in [33].
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3.3 γ − R̃eθt Transition Model

Correlation based transition modeling relies on a non-dimensional form of the boundary

layer momentum thickness and its relation to the stability of the boundary layer. Similar to

the eN method, a fully laminar solution is initially presumed, and the momentum thickness

Reynolds number is computed at all locations in the domain. The computed values are then

compared to an empirical correlation to determine the location where transition is onset.

Similarly with the issue described in the description of the AFT model, boundary layer

parameters are non-local. The following equations outlined are with respect to Menter’s

Shear Stress Transport Model (SST). Rather than introducing a shape factor, components

are localized through the relationship between vorticity Reynolds Number and momentum

thickness Reynolds number [34].

ρy2

µ

∣∣∣∣∂u∂y
∣∣∣∣ (3.24)

Reν is related to Reθ by the relation

Reθ =
max(Reν)

2.193
(3.25)

The max(Reν) corresponds to the maximum value the vorticity Reynolds number obtains

in the plane normal to the surface. The denominator is chosen to be 2.193 such that for a

Blasius profile max(2.193Reθ
Reν

) = 1. A transport equation is used to distribute the empirical

correlation throughout the flow field to enable the comparison between the local Reynolds

and a localized onset value. This model defines the “transition onset momentum thickness

Reynolds number” to serve as the onset criteria. Its transport equation is given by
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∂(ρR̃eθt)

∂t
+

∂(ρujR̃eθt)

∂xj
= Pθt +

∂

∂xj

[
σθt(µ+ µt)

∂R̃eθt
∂xj

]
(3.26)

The production term Pθt is defined as

Pθt = cθt
ρ

t

(
Reθt − R̃eθt

)
(1− Fθt) (3.27)

The second transport equation of intermittency is given as

∂(ργ)

∂t
+
∂(ρujγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt

σf

)]
∂γ

∂xj
(3.28)

The production of intermittency attempts to simulate the transition process by progressively

switching on the SST k− ω turbulence model. The value of intermittency in the freestream

is set to 1 to accurately account for freestream turbulence decay rates, allowing the SST

κ − ω model to function undisturbed outside the boundary layer. Once the onset criteria

has been met, the intermittency is used to active the turbulence kinetic energy, k, through

scaling the production term in the SST k − ω turbulence model

∂(ρk)

∂t
+
∂(ρujk)

∂xj
= P̃γ − Ẽγ +

∂

∂xj

[
(σk + µ)

∂k

∂xj

]
(3.29)

where

P̃k = γeffPk (3.30)
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D̃k = min[max(γeff , 0.1), 1.0]Dk (3.31)

where γeff is an effective intermittency defined as a function of the transported intermittency

and a laminar-separation criterion [34]. Implementation of the γ − R̃eθt model with the SA

turbulence model is relatively similar to the process described above, where the model retains

the primary features of the original model by solving two scalar transport equations and using

the local vorticity Reynolds number criterion and experimental correlations for the transition

momentum thickness to predict the transition onset. A full list of the relevant equations

relating to this SA counterpart of the γ − R̃eθt model can be found in [25].
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3.4 Static Validation

Static results are validated against XFOIL and LES results as a sanity check. These static

cases are run continuously until there is stabilization of the aerodynamic loads and residual

values. Figure 7 shows the surface pressure and skin friction coefficients with respect to

the three grid resolutions for the SA AFT transition model. The CFD results are time and

spanwise-averaged, and compared with XFOIL and LES [1] results. The purpose of this was

to identify if the natural transition location and the overall surface pressure and skin friction

coefficients are within acceptable margins. Prior to running the 3D dynamic cases, the mesh

and numerical parameters are also validated via 2D RANS simulations on a 2D surface grid

comprised of the same number of points in the chordwise (811) and normal (200) direction as

Grid 2. Due to the lack of experimental data at Re = 2×105, the CFD results are compared

against experimental data by Hristov and Ansell [35] at a M = 0.10 and Re = 1× 106. The

lift, drag, and pitching moment coefficient up until the static stall inception point can be

seen in Fig. 8. Both the 2D and 3D static predictions show acceptable results for starting

the 3D dynamic case.
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Figure 7: Grid resolution study on time and spanwise averaged a) Cp and b) Cf on 3D
NACA 0012 airfoil section at M = 0.10, Re = 2× 105, and α = 4◦.
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at M = 0.10, Re = 1× 106.
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Chapter 4

Dynamic Stall Results

4.1 Grid Resolution Study

This section presents an overall overview of the dynamic stall process, grid sensitivity, and

validation with respect to the SA AFT transition model. Figure 9 shows the effect of all the

grid resolutions during the upstroke phase. Similarly with the static case, validation is done

through comparing predictions of the aerodynamic loads against the LES computations [1].

Grids 2 and 3 show relatively similar predictions in the converged aerodynamic loads and

stall inception point during the dynamic stall process whereas Grid 1 shows an early onset

of dynamic stall, which is an expected result considering the coarse grid configuration. The

residual drop shown in Fig. 10 confirms numerical accuracy of the solution with all grid

resolutions showing close to a two-order drop across each time step. For all cases the peak

lift coefficient is underpredicted compared with LES, however, the predicted aerodynamic

loads are within acceptable margins, permitting the study of flow physics with respect to

Grid 2 (811× 200× 100) for the remainder of this study.
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410× 133) for a) CL, b) CD, and c) CM .
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4.2 Dynamic Stall Stages

The dynamic stall process is broken down into various stages and studied more in depth

within this section with respect to Grid 2 using the James Coder AFT transition model.

These stages signify the important points during the dynamic stall process, similar to those

described by McCroskey et al. [6] and Visbal and Garmann [1] which include an initial

shear layer separation, loss of suction at the leading edge, and the subsequent formation

and propagation of the DSV. It is important to note that in the following sections, many

parameters of interest will be spanwise averaged and/or low pass filtered due to the extremely

transient nature especially at high angles of attack. Analyzing one plane is sufficient for

attached flows, however, averaging is more suitable to represent the averaged patterns of

highly fluctuating flows. The different stages during the dynamic stall process can be seen in

Fig. 11, along with their respective descriptions and flow topologies reported in Table 3. The

spanwise averaged surface pressure and skin friction coefficients from stage 3 (α = 10.6◦)

to stage 7 (α = 21.5◦) are seen in Figs. 12(a) and 12(b). As the angle of attack increases

there is the gradual increase in maximum suction, however, as the flow begins to get closer

to the point of the suction collapse, the flow near the leading edge starts becoming unstable,

indicated by the oscillations in the pressure recovery region for the surface pressure and

skin friction coefficients. This is in line with the findings of Pauley et al. [11] who found

on 2D static stall experiments that for stronger adverse pressure gradients corresponding

to increased suction, the separated region lengthened and small oscillations developed in

the skin friction. The two distinct spikes in the surface pressure at stage 4 (α = 15.2◦)

is due to the unsteadiness of the within the flow causing nearly two reattachment point of

the boundary layer just downstream of the LSB before full pressure recovery. This occurs

just prior to suction collapse as the adverse pressure gradient becomes too strong for the

boundary layer to reattach smoothly.
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Figure 11: Various stages of dynamic stall (Grid 2).

Table 3: Dynamic Stall Stages

Stage Flow Topology
1 (α = 8◦) Boundary layer transition point is propagating upstream.
2 (α = 10.6◦) A laminar separation bubble forming at the leading edge with initial shear

layer separation and subsequent reattachment as a turbulent boundary
layer.

3 (α = 12.9◦) Increase in suction at the leading-edge and reattachment of turbulent
boundary slightly further downstream than the previous stage. Gradual
thickening of the boundary layer over the entire blade section.

4 (α = 15.2◦) Suction still increasing at the leading edge, however adverse pressure gra-
dient begins to have a more pronounced effect on the separation bubble,
as instabilities begin to settle in, resulting in two reattachment branches
of the boundary layer.

5 (α = 16.9◦) Suction is lost at the leading edge as the laminar separation bubble col-
lapses due to the strong adverse pressure gradient, causing a large region
of unsteadiness at the leading-edge. Lift is still increasing linearly.

6 (α = 18.6◦) The separated shear layer following the bubble collapse begins to roll up
into a dynamic stall vortex. Significant increase in the Cl − α slope due
to DSV formation.

7 (α = 21.5◦) Dynamic stall vortex is fully formed and begins is propagating down-
stream, up until roughly 50% chord length where it detaches from the
surface.
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(a)

(b)

Figure 12: Spanwise-averaged a) Cp, and b) Cf during different stages in the dynamic stall
process.
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(a)

(b)

Figure 13: Spanwise-averaged contours of a) Cp and b) Cf during the dynamic stall process.

The contours of the surface pressure and skin friction can also be seen in Figs. 13(a) and

(b) respectively throughout the duration of the dynamic stall process. The surface pressure

contour in Fig. 13(a) shows the clear formation of the LSB and the propagation of the DSV.

More interestingly, the contour of skin friction, shown in Fig. 13(b), indicates that this stall
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process is related with “pressure gradient bubble bursting” leading-edge stall rather than

“turbulent leading-edge” stall caused by the rapid upstream propagation of the reverse flow

through the trailing edge. It can be seen that the reversed flow, indicated by the negative

regions of skin friction near the trailing edge, does not propagate upstream throughout the

duration of the prescribed motion. While some of the overall aspects regarding the dynamic

stall have been discussed, the remainder of the sections will cover the flow physics more in

depth throughout the various stages described.
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4.3 General Flow Physics

The approximate transition location is predicted through the production of turbulent kinetic

energy (TKE) within the boundary layer. The dashed line in Fig. 14 represents the spanwise

averaged TKE from which approximations of the transition location are computed.

Figure 14: a) Contour of spanwise-averaged TKE production, and b) approximate transition
location as a function of angle of attack.
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The upstream propagation of the transition point has been documented by many researchers

studying this phenomenon at low Reynolds numbers, including Gupta and Ansell [36], as

well as Mulleners and Raffel [37], who performed experimental studies of dynamic stall

at transitional Reynolds numbers. Figure 15 shows the vorticity magnitude during the

various stages described above during the unsteady pitch up motion. From stage 1 (α = 8◦),

transition can be seen through the small vortices present within the boundary layer as the

transition point propagates upstream. Moreover, in the earlier stages, the formation and

presence of a LSB can be seen through the vorticity magnitude production at the leading

edge. This presence of the LSB is clearer from predictions of the surface pressure coefficient

shown in Fig. 13(a) where there is a distinct pressure plateau at the leading-edge followed

by a rapid recovery region, indicating turbulent reattachment of the boundary layer. As the

angle of incidence increases there is a gradual increase in the boundary layer thickness that

can be seen in Figs. 15(b)-(e). In Fig. 15(f) the presence of an initial trailing edge vortex

(TEV) is seen through the rapid spatial growth in vorticity production towards the trailing

edge. Even in the presence of vorticity production at the trailing edge, the overall external

flow is not greatly deviated as the lift force continues to increase linearly. This is opposite to

its counter-part static stall, where flow reversal usually provokes a massive flow separation

followed by a drastic loss in lift and increase in drag [37]. Up until Fig. 15(d) there still

exists suction at the leading edge, however as it is seen in the predicted pressure and skin

friction contours, the instabilities begin settling in which eventually cause the collapse of the

bubble due to the large adverse pressure gradient induced at higher angles of attack, which

can be seen in from Figs. 15(d)-(e) through the sudden decrease in vorticity magnitude at

the leading edge. This is the initial trigger for the further events correlated with the dynamic

stall process. Following the collapse of the LSB, the separated shear layer beings to roll up

into a DSV. Further details regarding the shear layer roll up and DSV formation will be

discussed in subsequent sections. The suction collapse and successive formation of the DSV

is indicated in the Cl, α curve in Fig. 11 through the sudden increase in the slope of the lift
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coefficient beyond the linear region at approximately α = 18.6◦. This sudden change of the

lift-curve slope was also documented by McCroskey [5], as well as Visbal and Garmann [1].

The nature of the DSV rotation results in entrainment of outer flow into the boundary layer

near the point where the DSV is still attached to the surface [1]. This results in a strong

reverse flow region under the DSV, indicated by the strong signature of vorticity magnitude

seen close to mid-chord in Fig. 15(f). While the dynamic stall vortex continues to take up

vorticity, counter-rotating vortices emerge near the airfoil’s surface as a result of increasingly

strong interactions between the DSV and the reversed flow due to entrainment, a feature

that was experimentally captured and described by Mulleners and Raffel [37]. The rotating

DSV pushes the counter rotating structures towards the leading edge, thereby forcing itself

to detach; a process that is known as vortex-induced separation [37]. In the latter stages

close to the stall point, there is the presence of longitudinal vortex sheets downstream of the

DSV indicated by the distinct streaks in the vorticity magnitude close to the airfoil surface

beyond the DSV, which were also noted by Visbal and Garmann [1]. At stage 7 (α = 21.5◦),

the blade section is getting closer to the point of lift stall, as the DSV is still propagating

downstream. Stall is onset just after Fig. 15(h) when the DSV is shed from the airfoil surface.

The overall sequence of the events described lies in parallel to observations by Visbal and

Garmann [1], McCroskey et al. [6], Shih et al. [9], and Carr et al. [38].
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(a) α = 8◦ (b) α = 10.6◦

(c) α = 12.9◦ (d) α = 15.2◦

(e) α = 16.9◦ (f) α = 18.6◦

(g) α = 21.5◦ (h) α = 23.2◦

Figure 15: Instantaneous (midplane) contours of vorticty magnitude.

45



Figure 16 shows the time histories of the instantaneous (Cp), spanwise-averaged (< Cp >),

and low-pass-filtered (< Cp >lpf ) surface pressure, Cp, and near-wall velocity, unw at the

chordwise location x/c = 0.15. The instantaneous data across the airfoil surface is sampled

every 125 time steps, correlating to every 0.1o of rotation. This data is first spanwise-

averaged, and then run through low-pass-filter to attenuate high frequency oscillations. As

expected, the flow remains relatively parallel at low angles of attack with no real distinctive

differences in instantaneous, spanwise-averaged, and low pass filtered pressure and velocity.

The relative unsteadiness of the flow phenomena can be seen through the large spikes in

both these flow variables just after the occurrence of transition and the formation of the LSB.

Figure 16(a) depicts transition through the kink in the low pass filtered surface pressure near

α = 8◦ , and similarly in Fig. 16(b), through the jump in the near wall velocity. The collapse

of suction can be seen around α = 16◦ where there exists a sudden increase in pressure.
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Figure 16: Represenations of instaneous, spanwise-averaged, and low-pass-filtered a) Cp, and
b) unw at x/c = 0.15.
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The iso-surfaces of Q-criterion, or the measure of swirling strength, shown in Fig. 17 depict

the 3 dimensionality of this flow. The periodic shedding of coherent structures can be seen

in Fig. 17(a), which lies in agreement with the findings of Kurelek et al. [39] who found that

amplifications in the LSB generated on a NACA 0018 at a low Reynolds number caused the

separated shear layer to roll up into coherent vortices that are shed from the leading edge.

It can be noted downstream in Fig. 17(a), that these vortices deform rapidly and breakdown

into fine scale turbulent structures past the reattachment point where there exists a fully

turbulent boundary layer. In Fig. 17(c) the entrainment of outer fluid just beyond the DSV

can be seen through a distinct quiescent region mid-chord, in between the DSV and initial

trailing edge vortex (TEV), where the presence of strong vortices is not captured. The

DSV dynamics can be recognized as the leading-edge separated shear layer transitions from

detachment close to the airfoil surface to full separation far from the airfoil surface, a feature

also noted by Visbal and Garmann [1].
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(a) α = 13.5◦

(b) α = 15.2◦

(c) α = 18.6◦

Figure 17: Iso-surfaces of Q-criterion = 25 colored by streamwise velocity.
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The overall behavior of the unsteady flow is also shown in Fig. 18 by the instantaneous con-

tours of TKE. Figures 18(b)-(d) show the gradual thickness of the turbulent boundary layer,

which was also identified in the vorticity magnitude contours from Fig. 15. The breakdown

of suction at the leading-edge can be seen by the rapid decrease of TKE production at the

leading edge by Fig. 18(d). In this stage, the shear layer begins to roll up into a DSV,

which is seen in Fig. 18(d) as the separated shear layer shows interaction with the unsteady

region just after the LSB collapse that eventually leads up to the DSV formation. More

interestingly, the distinct pockets of TKE during the formation of the DSV in Figs. 18(d)-(e)

agree with the findings of Mulleners and Raffel [37] as well as Pruski and Bowersox [10],

who found that the DSV consists of a combination of rolled-up shear layer and remnants of

several vortices induced by the instability of the shear layer at the leading edge. The early

stages of vortex induced separation of the DSV can be clearly visualized from Figs. 18(f)

and (g), where there is the transition of strong TKE production at the surface, to a more

separated boundary layer, indicating the interaction between the DSV and the reversed flow

just below the DSV, which causes the vortex induced detachment.
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(a) α = 10.6◦ (b) α = 12.9◦

(c) α = 15.2◦ (d) α = 16.9◦

(e) 17.4◦ (f) α = 18.6◦

(g) α = 21.5◦ (h) α = 23.2◦

Figure 18: Instantaneous (midplane) TKE across various dynamic stall stages.
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Figure 19 shows the time history of the dynamic stall process at a variety of chordwise

stations. Figure 19(a) portrays the formation and collapse of the LSB. Stations x/c = 0.1

and 0.15 are of great interest as they capture the transition to turbulent flow through the

respective peaks in the spanwise averaged pressure coefficient, in parallel with computations

by Visbal and Garmann [1]. In Fig. 19(b), the presence of the DSV is seen through the

negative peaks in the pressure. The gradual strength of the DSV can be seen up until

roughly 40% chord length, in which case, the DSV starts to shed from the surface of the

airfoil. This point is characterized by the peak lift coefficient in Fig. 11, just prior to the

onset of stall. This point of the DSV reaching its maximum strength lies in parallel with

observations reported by McCroskey et al. [6] in their study of turbulent leading-edge stall,

where the vortex detaches close to mid-chord, and lift stall ensues. The detachment of the

DSV is the reason for the weaker signatures of the surface pressure at downstream locations

past the stall angle.
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Transition

(a)

(b)

Figure 19: Time history of low-pass-filtered Cp representing a) LSB collapse and b) DSV
formation and propagation at various chordwise stations.
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4.4 Leading-Edge Flow Features

This section will investigate the unsteady flow physics at the leading edge in more detail,

focusing on the process of DSV formation. The existence of a LSB within this flow regime is

very well known and has been documented by Visbal and Garmann [1], McCroskey et al. [6],

Carr [7], and McCroskey et al. [38], and others. Even though its highly unsteady nature

makes it difficult to fully grasp, there are some general characteristics which have been

identified regarding the influence of the LSB on the dynamic stall process. For example, at

high Reynolds numbers, it has been documented that the bursting of the LSB is induced more

so by the upstream propagation of the reverse flow within the boundary layer, starting from

the trailing edge [12]. At lower Reynolds numbers, the LSB collapse has been documented

as a result of pressure gradient-induced bursting. Initial experiments by Ham first linked the

formation of the DSV to the LSB prior to airfoil stall [8], documenting it on a NACA 0012

airfoil at a Reynolds number of 300, 000. Ham along with a variety of other researchers:

Chandraeskhara, Carr, and Wilder [40], Lee and Gerontakos [41], Martin et al. [42], all

documented the presence of a LSB at the leading edge prior to stall but couldn’t clearly

identify the bursting process and the effect it had on the overall DSV formation/dynamic

stall process. Many studies showed high sensitivity of dynamic stall behavior to the Reynolds

number, hence accurate conclusions couldn’t be made to the influence of solely the LSB. As

discussed previously, McCroskey et al. [6] did a more extensive study based on the findings

during the late 20th century and identified different forms of which dynamic stall is onset.

For lower speed applications, the stall process has been documented by pressure-gradient

induced bursting of the laminar separation bubble. They stated the laminar separation

bubble can remain small, but the turbulent flow over the bubble can reach a state where

the reattachment is no longer possible, causing a breakdown of the bubble, and producing

”leading-edge bubble-bursting stall” [6]. This section will investigate the feasibility of DDES

in terms of capturing the overall leading-edge boundary layer behavior.
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Figure 20 shows the spanwise variation in the streamwise velocity at different stages during

the dynamic stall process. From Fig. 20(a), the clear onset of the LSB can be seen through

concentrated region of reversed flow along the span. The consequent bursting of the LSB

and the formation of a DSV appear on the wider stretched velocity contours. The presence

of the strong region of a reversed flow below the DSV is consistent with the findings of Gupta

and Ansell [36] who observed the region of reversed flow under the DSV, connecting it with

the entrainment of outer flow into the boundary layer. Moreover, this is consistent with

Fig. 15(f) and 18(f), where this region shows a localized region of a high vorticity magnitude

and a high TKE production.
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Figure 20: Spanwise variation of instantaneous streamwise velocity.

56



Figure 21 shows the behavior of the LSB at the leading edge through representation of the

reversed flow. Here, the formation of the bubble is seen through the presence of slightly

reversed flow at the leading edge. There is a gradual increase in reversed flow within this

region up until Fig. 21(b) where there is a clear visual of the LSB itself. Prior to the collapse

of the LSB, the upstream propagation of the bubble is apparent from Figs. 21(c)-(d), where

the reversed flow propagates towards the leading edge between α = 12.9◦ and α = 13.5◦.

The profile at α = 15.2◦ suggests the claims previously mentioned of instabilities starting to

settle in the flow. The collapse of the LSB is captured at α = 16.9◦, where there no longer

exists a concentrated region of reversed flow at the leading edge, and there is the presence of

a more chaotic velocity distribution. Previous predictions by Visbal and Garmann [1] with a

denser grid configuration showed a maximum contraction and suction peak at 15.2◦, followed

by the abrupt collapse of the bubble. From this current study, although there is a contraction

of the bubble seen from α = 12.9◦ - α = 13.5◦, prior to the complete loss of suction, it seems

the bubble is contracting and expanding continuously prior to collapse. In Fig. 21(f), shows

the initial stages of the DSV formation can be seen through the large unsteady reverse flow

region present. The reverse flow profiles indicates that although the separation bubble itself

doesn’t generate stall directly, it does have a significant influence on the overall stall process,

as upon collapse, there is the distribution of unsteady flow downstream that eventually leads

to the formation of a DSV. Moreover, during these earlier stages, there is not a significant

indication of strong reversed flow near the trailing edge, indicating that this type of stall is

in parallel with Visbal and Garmann [1], McCroskey et al. [6], and Gupta and Ansell’s [36]

description of abrupt leading-edge stall induced through a strong adverse pressure gradient

bursting the LSB rather than rapid propagation of reversed flow upstream meeting the LSB.
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(a) α = 8◦ (b) α = 12.9◦

(c) α = 13.5◦ (d) α = 15.2◦

(e) α = 16.9◦ (f) α = 17.4◦

Figure 21: Spanwise-averaged streamwise velocity.
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The closer looks at the vorticity magnitude profiles at the leading-edge in Fig. 22 also shed

light on some of the discussed features regarding the leading-edge flow physics during the

dynamic stall process. The separation bubble is indicted by the pockets of positive vorticity

production. In Fig. 22(b), the shedding of vortices can be seen from the separated shear

layer, which was also captured by Pruski and Bowersox [10]. The collapse of the LSB at the

leading-edge can be seen at α = 16.9◦, where there is a rapid decrease in vorticity in the

vicinity of the bubble in the previous stage. Another interesting point to note is the upwards

propagation of the shear layer with increasing angle of incidence. This upwards propagation

is caused by the clockwise rotation of the DSV which pushes the detached shear layer further

from the airfoil surface.
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Figure 22: Near surface representations of instantaneous (mid-plane) vorticity magnitude.

From Fig. 23, a clearer representation of the separated shear layer behavior can be seen

through the spanwise vorticity. As the angle of incidence is increased, there is a localized

region of high spanwise vorticity at the leading edge of the airfoil, indicating the presence of a

LSB. With larger angle of attack, the region of high vorticity continues to expand, indicated

by Fig. 23(c). An interesting observation is that at α = 15.2◦ there exists the two distinct
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reattachment branches in the flow, that were discussed previously. These reattachment

zones present themselves as individual branches of vorticity that move towards the surface

with a small pocket of low vorticity in between, which provide evidence on the kinks seen

in pressure recovery region in the skin friction coefficient from Fig. 11(b). The complex

nonlinear interactions in the leading-edge region just after suction is lost are what lead

to the eventual formation of the DSV [37] which can be seen from Figs. 23(d)-(e). The

strong interactions between counter-rotating vortices and the DSV can be seen at leading

edge from the instantaneous spanwise vorticity in Fig. 23(f). There are distinct pockets of

negative vorticity interacting with positivity vorticity prior to the DSV formation. Based on

the spanwise averaged profiles, the instantaneous profile indicates that the negative vorticity

contribution is arising from the separated flow downstream after suction collapse. Although

researchers posed the question of if the LSB plays a significant role in the DSV process, after

its initial separation, it does seem to have a significant effect on the dynamics of the DSV as

a majority of the turbulent interactions seem to be stemming from the separated shear layer

and its interaction with the reversed flow region just downstream after suction collapse. As

mentioned previously, the bursting of the LSB is what initially triggers the process. It was

found that a higher Reynolds number (106) by Benton and Visbal [12] that through high

frequency actuation that the LSB bursting was suppressed, and the onset of stall was delayed.

In this case, a gradual upstream propagation of trailing edge separation was observed rather

than abrupt leading-edge stall. A further investigation would be required to assess the onset

and formation of the DSV at this low Reynolds number if the bubble is not present or its

bursting is suppressed by a means of flow control.
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Figure 23: Spanwise-averaged contours of spanwise vortictity during DSV formation.

The time history of the dynamic stall process at x/c = 0.05 is depicted in Fig. 24 Prior to

the collapse of the LSB there exists significant oscillations in the spanwise averaged pressure

coefficient, seen in Fig. 24. These strong oscillations prior to the realization of the DSV

were also noted in experimentation done by Lorber and Carta [43] on a NACA 0012 airfoil,
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where they identified similar high frequency oscillations at the leading edge. Moreover, the

difference in instantaneous and low pass filtered pressure in Fig. 24shows a significant spike

prior to LSB formation, which might be crucial when considering implementing flow control

technologies.
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Figure 24: Instantaneous and root-mean-square surface pressure and b) instantaneous - low-
pass-filtered surface pressure at x/c = 0.05.
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4.5 Streamwise Vortex Sheets

One aspect of this process is the formation of long and slender streamwise vortices, which

are depicted through the iso-surfaces of Q-criterion, or measure of the swirling strength, in

Fig. 25. These vortices begin to form at higher angles of attack, roughly 18◦, close to the

stall point. It can be seen across Figs. 25(a)-(j) that the vortices are shifting across the span

quite rapidly. This large sense of unsteadiness leads to the idea that these have a larger

influence on the onset of dynamic stall, namely the detachment of the DSV. Figure 26 gives

a clearer visual of the vortex sheets through the vortex core lines. Figure 27 shows the

presence of these vortices from a front view, where there is the strong vorticity magnitude

associated with these vortex sheets. It is hypothesized that these vortices have a significant

impact on the overall dynamic stall process as their presence seems to affect the separation

of the DSV. Due to their rotation around the streamwise axis, it is believed they can trigger

the detachment of the DSV from the surface resulting in an earlier onset of stall. As seen

in Figs. 25(i)-(j), these vortices remain in the flow field even beyond the stall angle. The

unsteady propagation of these sheets across the span can be seen from the transient shift of

the maximum regions of vorticity magnitude. These were briefly mentioned by Visbal and

Garmann [1] but not investigated in depth.
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Figure 25: Iso-surfaces of Q-criterion = 100 colored by vorticity magnitude.
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Figure 26: Vortex core lines across airfoil section.

Figure 27: Front-view of vorticity magnitude at x/c = 0.6.
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Chapter 5

Transition Model Study

5.1 Comparison of Transition Models

A more in-depth study is carried out on the 2nd grid configuration (811 × 200 × 100) to

analyze the effect of turbulence models on the dynamic stall process, and compare them to

benchmark LES results from Visbal and Garmann [1]. From Fig. 28, it can be seen that the

predicted air loads remain relatively similar between all three turbulence models, despite the

oscillations that are seen in the SA Medida-Baeder model at lower angles of attack. The SST

Langtry-Menter Model shows the earliest onset of stall while both SA Models show similar

points of stall onset. Differences can be seen when analyzing the flow physics in more detail,

which is shown by the surface pressure and skin friction coefficients for all the transition

models compared against LES [1] in Figs. 29 and 30.
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Figure 28: a) CL, b) CD, and c) CM for the 3 different turbulence models studied.
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Figure 29: Spanwise-averaged Cp at the various stages of dynamic stall.
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Figure 30: Spanwise-averaged Cf at the various stages of dynamic stall.
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At (12.9◦), it can be seen that for the SST Langtry-Menter (LM) Model, there exists a more

expanded bubble, which can be seen through the wider pressure plateau and rapid pressure

recovery, a feature that was not present with SA models investigated. The SA Medida-

Baeder and SA Amplification Factor Transport (AFT) model show very close similarities at

this stage in the dynamic stall process, however, the SA AFT model remains most accurate

in terms of comparison with the LES results. The SST Langtry-Menter model shows the

loss of suction much earlier than the previous two models, resulting in the earlier onset of

dynamic stall. The dynamic stall process can still be considered relatively similar between

all 3 cases, where during the pitch up motion, the transition point propagates upstream, and

forms a LSB. For all cases, although not to the same extent, due to the unsteadiness, the

LSB undergoes continuous expansion and contraction prior to collapse. This behavior was

also present in benchmark static stall analysis by Pauley et al. [11] who identified similar

unsteady expansion and contraction of the LSB. It can also be seen from Figs. 29 and 30

that there does not exist a significant amount of separated flow downstream prior to suction

collapse which would have been indicated through a negative skin friction being present

towards the trailing edge, further indicating that the type of stall investigated within the

various turbulence models lies in parallel with leading edge stall through the pressure gradient

induced burst of the LSB. The unsteady spikes in the spanwise averaged surface pressure at

lower angles of attack (α = 12.9◦) - (α = 15.2◦) are associated with vortices being shed from

the leading edge, just aft of the LSB, which can be seen in Fig. 31.
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Figure 31: Spanwise-averaged Cf at the various stages of dynamic stall.

At α = 18.6o, for all transition models, the prediction of surface and skin friction show similar

results. From Fig. 32, it can be seen that the duration of time from the DSV formation to

its peak strength post suction collapse stretches across 3 stages, which is approximately over

2◦ angle of incidence. Hence, since the collapse of suction in the SST Langtry-Menter model

is earlier on, this allows the DSV to reach its maximum strength during the while it was
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still developing in the SA AFT and SA Medida-Baeder model. The interesting aspect to

note here is that there exists a common ground for the flow physics post suction collapse,

regardless of the transition model, as seen from the formation of the DSV itself. Although

some of the flow features between both SA Models and the SST Model are different up to the

point of the suction collapse, including the presence of an elongated bubble and indication

of strong vortices being shed from the surface prior to LSB collapse, the events preceding

the loss of suction are fairly similar, emphasizing the point that the LSB is the initial trigger

for the dynamic stall process, more specifically, the formation of the DSV. The LSB’s prior

history before collapse seemingly doesn’t have a significant impact on the overall process

of DSV formation, as from Fig. 31, there exist differences in flow features leading up to

LSB collapse, however, after α = 16.9o up to the point of stall onset, the Cp profiles for all

transition models show similarities with one another. The reason for stall being onset earlier

with the SST model lies in the suction being lost early, allowing the DSV to form quicker

and propagate off the surface before the SA Models.
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Figure 32: Spanwise-averaged Cp distributions depicting DSV formation/propagation for a)
SA AFT, b) SST Langtry-Menter, and c) SA Medida-Baeder transition models.
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5.2 Comparison with Large Eddy Simulations (LES)

Based on the predicted aerodynamic loads from Fig. 28, it is clear that DDES shows promis-

ing results in the predicted aerodynamic loads compared to LES [1], despite that the onset

of lift stall was predicted slightly earlier using DDES with all turbulence transition models

studied, and the peak lift coefficient was also underpredicted. When looking deeper at the

overall flow physics and the leading-edge flow features, DDES seemed to capture the impor-

tant phenomena that are presented in [1] including the formation and collapse of the LSB and

the subsequent formation of the DSV. From the surface pressure and skin friction diagrams

in Figs. 29 and 30, the biggest differences between the LES predictions are observed. In the

earlier stages, for all 3 models there exist significantly more oscillations around the region of

the LSB, even after spanwise averaging of the variables. Furthermore, LES computations [1]

showed suction collapse at a later stage than the DDES results. While the mechanisms from

which the DSV is formed line up with [1], the formation and propagation of the DSV occur

at different rates, where the DDES shows slower formation and quicker propagation. De-

spite the differences presented, However, the performance of DDES was considered promising

and within acceptable margins considering the temporal and spatial resolutions used in this

investigation compared to that of LES [1]. Furthermore, another aspect to consider with

DDES is that the use of RANS in the boundary layer will not give the true boundary layer

behavior throughout the dynamic stall process, as small-scale turbulent features are averaged

out. This can have a significant effect on the leading-edge flow physics observed.
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Chapter 6

Conclusion

This thesis investigated the feasibility of DDES in terms of capturing important flow physics

and predicting the aerodynamic loads during the dynamic stall process. Using James Coder’s

Amplification Factor Transport (AFT) Model, and a grid configuration comprising of roughly

16 million points, an in-depth study of the complex features during dynamic stall was carried

out using NASA’s OVERFLOW code. The key findings presented lie in parallel with studies

done by a collection of researchers including Visbal and Garmann [1], McCroskey et al. [1],

Pauley et al. [11], Gupta and Ansell [36], Mulleners and Raffel [37], and many others. The

overall dynamic stall process comprised of the formation and collapse of a leading-edge

laminar separation bubble (LSB), and the roll up of an unstable shear layer into a dynamic

stall vortex (DSV) that propagates downstream. Upon investigation of these features, it was

found that the LSB had a direct impact on the stall onset itself, as it served as the trigger for

the particular events described leading up to the point of stall. Its importance is emphasized

through analyzing the interactions between the separated flow upon loss of suction, and the

separated shear layer emanating from the leading-edge whose complex nonlinear interactions

lead to the formation of the DSV. It remains to be investigated how using flow control at

this low Reynolds number would affect the process. Although flow control studies at higher
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Reynolds number (Rec > 106) suggest stall onset is delayed through bubble suppression and

the method of stall onset is more from upstream propagation of trailing-edge separation. The

regime of (104 < Rec < 105) has not been analyzed in detail. All transition models within

OVERFLOW showed significant promise in terms of the predicted aerodynamic loads as

well as the complex flow physics in comparison with high resolution Large Eddy Simulations

(LES) conducted by Visbal and Garmann [1]. The primary takeaway from these findings is

that the use of DDES coupled with state-of-the-art transition modeling seems to be proficient

in capturing the fundamental viscous mechanisms from which dynamic stall is onset. The

overall behavior of the flow and the complex flow features at the leading-edge were able to be

captured through not only the predicted pressure and skin friction profiles but also through

the contours of pressure, vorticity, reversed flow, and turbulent kinetic energy. The effect

of numerical methods with respect to the various transition models within OVERFLOW

remains to be investigated in the framework of studying dynamic stall. It is unknown

whether different numerical methods have a positive or negative effect on the predictions.

Furthermore, it is evident that without the presence of experimental data, the question

of prediction remains open ended. However, with the purpose of this study focusing on

the capabilities of DDES, the validation of the process against experimental data was not

of utmost importance, although sufficient experimental validation should be employed in

future work for more accurate studies. It is also important to emphasize again that the

dynamic stall process is heavily influenced by a variety of factors including compressibility,

airfoil geometry, as well as the pitching rate. As McCroskey et al. [6] described, these factors

influence the type of stall that is onset, as the process can be completely different from

the sequence of events described in this report. Moreover, the predictions of the surface

pressure at the leading edge showed significant oscillations prior to suction collapse, which

could allow the possibility of flow control technologies being employed delay or mitigate

the effects of dynamic stall. These distinct oscillations were in parallel with the findings

of Visbal and Garmann [1], Lorber and Carta [43], and Pauley et al. [11]. The numerical
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study carried out in this report has shown significant implications for future design work of

the next generation of rotorcraft, as simulations on the temporal and spatial order of this

study provide quick turnaround times, permitting more large-scale testing covering an array

of flow conditions and design configurations. This research topic remains an open area of

study given its significant complexity, however the promising results presented in this study

can assist in further investigations at a reasonable computational cost.
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