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WHY FIRST -PRINCIPLES CALCULATIONS FOR ALLOYS? 

D. de FONTAINE 
Department 0/ Materials Science and Mi."leral Engineering. University o/California. 
Berkeley. CA 94720. USA. and 
Lawrence Berkeley Laboratory. Berkeley. CA 94720. USA 

ABSlRACT. A brief non-technical overview of fIrst-principles calculations is presented. with emphasis on 
prediction of phase equilibria. Merits and drawbacks of various methods are briefly discussed. 

1 . Introduction 

What arefirst-principles calculations and what can be done with them? In view of the importance 
of this topic and of the misunderstandings which it has generated, it may be useful to try to answer 
these questions at least qualitatively. Such is the purpose of this brief paper. The literature on the 
subject is now quite vast, so that no attempt will be made here to review the field. Bibliography is 
cited only sparingly. 

Ultimately all materials problems are quantum mechanical in nature. Does that mean, however, 
that we should try to improve the ductility of, say, high-temperature alloys by solving the 
SchrOdinger (or Dirac) equation? Surely not. Should we construct a supercell with a grain 
boundary in it, and let a dislocation run through it while we compute all energies by electronic band 
structure calculations? Such a huge "brute force" undertaking is quite unnecessary. besides being 
unrealistic. 

Rather, we should continue to use classical. macroscopic, continuum models which have been 
around a long time and which are currently taught in Materials Science and Physics Departments: 
elasticity, plasticity. dislocation theory, fracture mechanics. bulk and surface thermodynamics, and 
so on. In the past, these classical theories have not been used to full advantage because, very often, 
materials parameters required "to make the equations go" were unavailable. What first-principles 
calculations can now provide, however, are values for these elusive parameters. In other words, 
quantum mechanical calculations can generate the required data bases, so that, for the first time in 
the relatively young history of Materials Science, theory can become truly predictive, with first
principles calculations serving to establish a continuous computational path from purely atomic 
phenomena all the way to practical problems concerning, say, mechanical properties. 

By first-principles or ab initio calculations we mean, in the present context, more than just 
calculating cohesive energies of crystals knowing the atomic numbers and locations of atoms in the 
unit cell; we also mean calculating entropies, hence free energies. Hence, good statistical 
mechanical models. which are also tractable, must be available, along with interaction energies 
which determine the system's thermodynamics. It follows that such ab initio calculations require 
the solution of both quantum and statistical mechanical problems. Moreover, computations must be 
carried out with a high degree of accuracy since important parameters generally result from small 
differences of large numbers. 
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Some of the electronic energy calculation techniques currently in use for perfect crystals at 
absolute zero of temperature will be briefly described in Section 2, then the extension to disordered 
systems will be discussed in Section 3. Applications to phase diagrams will be mentioned in 
Section 4. For reviews of the subject matter treated here the interested reader may consult Refs. 
[1]-[3]. 

2 . Perfect Crystals at Absolute Zero 

Let the term "perfect crystal" denote a crystalline stoichiometric compound free from imperfections 
or, of course, an elemental crystal. The problem is to calculate the cohesive energy of the 
compound in a given crystal structure, i.e., the difference in energy between the crystalline 
aggregate and the isolated atoms. It is necessary to solve the SchrOdinger (or Dirac) equation for 
the electronic states of each free atom and for the periodic crystalline structure. As by-products, 
one obtains electronic densities of state and, when the wave functions are calculated, the local 
electron density in the unit cell. 

The problem is impossible to solve exactly, since all electrons interact dynamically with 
themselves and with atomic nuclei, some 1()22 in number. Hence, drastic simplifications are 
required. Since the nuclei are so much more massive than the electrons, one first assumes that the 
nuclei' are stationary and occupy fixed lattice positions. By this decoupling procedure, nuclei 
dynamics can be handled subsequently at non-zero temperatures by lattice dynamics methods. 

The remaining problem is still very difficult: that of electrons interacting with the field of fixed 
nuclei and with all other electrons. Here, one generally makes the important one-electron 
approximation, i.e., one solves self-consistently for a single electron moving in the effective 
potential field of the nuclei and the charge density of all other electrons. Various methods have 
been proposed for carrying out these self-consistent calculations, the most frequently used being the 
local density functional method (LDF) [4] which has made first-principles calculations feasible on 
fast computers. 

The time-independent SchrOdinger equation applied to solids reduces to an extremely large 
eigenvalue problem which can be solved in principle by two types of mathematical techniques: 
variational methods or Green's function methods. In either case, wave functions may be expanded 
in orthonormal sets of functions, the choice of which depends on computational convenience but 
also on the nature of the simplified potential adopted. 

Atomic potentials have a spherically symmetric llr dependence near the nucleus but lose that 
symmetry nearer to the Wigner-Seitz cell boundaries. One simplification consists of replacing the 
true potential in each WS cell by a central spherically symmetric one terminating, near cell edges, in 
a perfectly flat potential. Such is the so-called muffin-tin (MT) potential. This potential is adopted 
by various computational methods which then differ from each other by the choice of basis 
functions: APW (augmented plane waves), ASW (augmented spherical waves), and KKR 
(Korringa-Kohn-Rostoker, a "multiple scattering" method). A linearized version of the laner, i.e., 
one which, by expansions about fixed energy values, converts complicated determinental equations 
into simpler secular equations, goes by the name of LMTO (linear muffin-tin Orbital). A further 
simplification is possible, that which consists of eliminating the "interstitial" region between MT 
spheres altogether by allowing them to overlap. Such is the atomic sphere approximation. The 
resulting method, the LMTO-ASA, is extremely efficient but works best for close-packed 
structures. Other methods can be "linearized" as well, resulting in the LAPW method, for example. 
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The trouble with the spherically symmetric muffin-tin potential is that departure from simple 
local symmetry cannot be handled properly. Hence, in order to handle, say, cIa relaxation in 
tetragonal unit cells, or distortions required to compute elastic constants, full (F) potentials must be 
retained in the fmmalism. Corresponding electronic structure methods go by the acronym R..APW, 
FLMfO. 

For molecules, one often uses as basis functions the atomic orbitals themselves. Wave 
functions are then built up by linear combinations of atomic orbitals (LCAO). That method can of 
course be used for (infinite) periodic structures as well, but the matrix elements of the Hamiltonian 
are very difficult to compute ab initio in this basis. It is then customary to obtain these elements 
from fits to the band structure or as derived from the LMTO [5]. The ingredients of matrix 
elements are then treated as parameters of the model and electronic self-consistency is handled in an 
approximate manner. One then has the very convenient, physically meaningful, but sometimes 
computationally unreliable tight-binding approximation (TB), which nevertheless works rather well 
for transition metals. Finally, let us mention pseudopotential techniques, which are particularly 
well suited to covalently bonded structures [6]. 

Computer codes required to perfonn the calculations are of such complexity that non-initiates 
are well advised not to attempt to write their own versions. Fortunately, ready-made, quasi "black 
box" LMTO-ASA, APW, and ASW codes are available and, to a lesser degree, KKR and R..MrO ' 
codes. Tight-binding codes are simple enough to generate, but Cambridge University puts out a 
nice package which includes the clever recursion algorithm for calculating electronic densities of 
state for disordered systems [7]. Still, as for all sophisticated techniques, one must know the 
principles of the method quite well in order to use the tool to full advantage. To borrow an analogy 
familiar to all materials scientists, it is not necessary to build an electron microscope oneself, but 
one must know the principles of operation very thoroughly in order to operate the instrument 
effectively. Also, the more powerful the instrument, the Jonger must be the learning stage for 
successful utilization. 

It is also true that "you get what you pay for": high reliability and accuracy require elaborate 
codes with long running times. As a general rule, for modest-size problems, tight binding can be 
run on a PC, LMTO-ASA on a work station, and APW, KKR, particularly full potential codes, on 
a supercomputer. Of course, CPU times depend critically on the size of the problem: if the unit cell 
contains N atoms, the,running time will be proportional to N3. That is a very serious limitation 
which prevents certain very interesting problems from being tackled at all, at present 

3 • Disordered Systems 

3.1 DEFECTS 

The simplest type of configurational disorder is the isolated point defect, a vacant lattice site, for 
example. The introduction of a defect breaks translational symmetry so that the great simplification 
offered by application of the Bloch Theorem, valid for periodic structure, can no longer be used. 
To restore translational symmetry, what is usually done is to set up a periodic lattice of supercells, 
each one containing identical copies of the defect configuration considered. Care must be taken, 
however, to insure that the lattice parameter of the supercell array be significantly larger than the 
linear dimensions of the defect(s) to be calculated. If the defects are (relatively) too close together 
in supercell space, then the calculation yields not just the self-energy of the defects that one wishes 
to calculate, but also the interaction energies which are an artifact of the repeating nature of the 
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the repeating nature of the defects in their supercells. It is clear, therefore, that the N3 
computational rule referred to above, where now N is the number of atoms in the supercell, 
severely limits the application of the method to very simple defect structures. 

Next in order of complexity are extended defects such as dislocations, surfaces, interfaces, 
antiphase boundaries, etc. Again, the supercell technique may be used, but what is gained in 
accuracy by perfonning detailed first-principles calculations is often lost by the necessity of solving 
rather artificial problems. Rather than carrying out brute force calculations, it is usually preferable 
to use semi-empirical potentials, obtained from "embedded atom" techniques [8], and to model 
actual atomic configurations, relaxation included, by molecular dynamics. Gross features of 
extended defect structures and estimates of fonnation energies can be obtained by these methods, 
which, however, appear not to be sufficiently accurate at present to predict the thennodynamics of 
ordered or partially ordered (or disordered) structures. This problem is taken up in the next section. 
A very promising method of calculating cluster energies for use in extended defect problems has 
been introduced recently by Pettifor [9]. Green's functions techniques are also being developed for 
isolated defects in essentially infinite solids. 

3.2 DISORDERED ALLOYS 

As a first step, consider concentrated alloys in a state of complete disorder. Here, the supercell idea 
is not applicable: the unit cell is the whole crystal itself. The tenn "complete disorder" means a 
distribution of, say, A and B atoms, of specified average concentration c, where atomic site 
occupations are completely uncorrelated. With that understanding, a method for calculating average 
electronic structures and cohesive energies naturally suggests itself: calculate the required 
properties of a particular configuration in a given crystalline region, repeat the calculation for all 
configurations which conserve the chosen average concentration, and take averages of the results. 
Even in a small region and for a small number of sample configurations, such a computation 
requires prohibitively long computational times, unless a simple electronic structure approach is 
used, such as the tight binding method. This procedure, labeled DCA (direct configurational 
averaging), has been used with success for certain transition metal alloys [10]. 

If more elaborate and accurate electronically self-consistent methods are required, 
configurational averaging must be replaced by a technique which, by creating as it were identical 
"average atoms," restores translational symmetry to disordered systems. That method, known as 
the "coherent potential approximation" (CPA) [11], defmes an average atomic potential (in a binary 
alloy, say) by requiring that the replacement of it, on the average, by an A or a B potential causes 
no additional electronic scattering. The average potential is thus detennined self-consistently, 
usually in fewer iterations (electronic self-consistency not included) than are required for 
configurational averaging. The CPA is a mean field technique, unlike the DCA, since the properties 
of an (artificial) average structure are computed rather than the average of properties. Nevertheless, 
the CPA has given very reliable results, say, for the density of states of completely disordered 
systems [12]. Let us note, finally, that the CPA relies on the calculation of an average Green's 
function, hence must be used in conjunction with the tight binding method, the KKR, or, very 
recently, with the LMTO-ASA. 

3.3 PARTIAL ORDER 

Perfectly ordered or completely disordered structures at absolute zero cannot describe real alloys, 
and cannot deal with the complexities of phase stability as a function of temperature, for example. 

~. 
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Then the properties of phases. stable or metastable. must be calculated as a function of temperature 
and concentration c (or "chemical field" J.1. a difference of chemical potentials). Better yet. what is 
sought is a way of detennining properties as a function of alloy configuration. In what follows. it 
is understood that "disorder" designates atomic (A. B •... ) disorder on the sites of a given lattice. 
Complete order then produces superstructures of the given lattice (usually fcc or bec). 

A general and rigorous method exists for expanding in a set of basis functions any alloy 
property which depends on configuration: 

(1) 

a 

In this equation. first derived by Sanchez. Ducastelle and Gratias [13]. 0 denotes an arbitrary 
crystal configuration (location of A and B atoms on lattice sites. in the binary A-B case). <Pa(o) are 
cluster functions which may be chosen to form an orthonormal set. fa are the coefficients of the 
expansion. and the index a denotes clusters of lattice sites: point. pairs. triplets. quadruplets, etc. 
Energies (formation. ordering •... ). elastic moduli and other properties may be thus expanded. 
What is required in macroscopic systems is the expectation values of the properties f(o), averaged 
over configurations: 

(2) 

a 

where, at least for binary systems, the ~a are correlation functions: point (average concentration). 
pair, triplet •... , in general, multi site correlation functions. The expansion has been shown to be 
valid for both concentration-dependent and -independent coefficients fa [14]. 

Eq. (2) shows very clearly how the statistical and quantum mechanical calculations are 
decoupled. in some sense: the fa coefficients are obtained from electronic band structure 
calculations at absolute zero, the ~ correlations are obtained by minimizing a free energy functional 
at the temperatures and average concentrations of interest The cluster variation method (CVM) 
[15] free energy functional is most commonly used as it is naturally expressed as a function of 
multisite correlation functions. the ~a, and, when used with large enough clusters, has proved to be 
highly accurate and reliable. 

The problem, of course, is to calculate the coefficients fa. As was seen in Section 2, quantum 
mechanical techniques exist for calculating energies of perfectly ordered or completely disordered 
crystals for which the considerable simplification of translational symmetry is available. either 
because it is naturally present in stoichiometric compounds, or because it is imposed by the CPA on 
disordered crystals. There are thus basically two methods for obtaining the fa expansion 
coefficients: that based on perfect order calculations. and those based on complete disorder. 

The former, which may be called the "structure inversion method," was first used by Connolly 
and Williams [16] and often goes by the names of these two authors: one decides which clusters a 
are going to contribute importantly. say, to the energies of partially ordered structures. Then a 
number of ordered superstructures are selected, at least equal in number to the non-equivalent 
clusters considered. and total energy ab initio calculations are performed on each superstructure. 
Since the ~a correlations can be calculated exactly for perfect superstructures, hence are considered 
"known," Eqs. (2). written for all structures calculated, form a linear system in the fa unknown, 
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which can be solved by matrix inversion or least squares optimization. This method has many 
advantages since it is generally simpler and more accurate to compute properties of perfect crystals 
than of disordered ones, and since more flexibility is available in the choice of band structure 
computational techniques. All of the electronic structure methods mentioned in Section 2, and 
more, may be used. The disadvantage of the inversion method is that the resulting values of the fa 
coefficients depend to some extent on the choice of superstructures. This undesirable feature is 
attenuated by considering a large enough set of structures to calculate [17]. 

The other methods, based on disorder, consist in calculating the fa directly as responses of the 
disordered system to the perturbation caused by the corresponding cluster function CPa. If the 
perturbing function is a harmonic concentration wave in the CPA medium, we have the S(2) method 
of Gy6rffy and Stocks [18] or, equivalently, the original k-space generalized perturbation method 
(GPM) of Ducastelle and Gautier [19]. Today, the real-space GPM method is generally used [20], 
or the embedded cluster method (ECM) [21], both consisting of cluster perturbations of the single
site CPA medium. As mentioned above, the multiple scattering formalism must be used (KKR) or, 
in simplified form, the tight binding approximation. In this way, each cluster coefficient fa is 
computed independently of the others and the calculation is pursued until the fa for large clusters 
become very small. The series (1) or (2) are known to converge, but no general theoretical 
convergence criterion is available at present. The KKR-CP A is unfortunately a highly 
computationally-intensive method and at present rather unwieldy. 

An alternative method has already been mentioned: the method of direct configurational 
averaging (DCA). Small clusters are embedded in a medium which is averaged by repeated choices 
of random configurations, that of the embedded cluster remaining fixed. This technique, which 
does not rely on the mean field approximation, is very efficient when applied in the tight binding 
formalism used in conjunction with the so-called "orbital peeling algorithm" [22]. The 
disadvantage of this technique is that only simplified band structure methods, such as the TB, have 
been used up to now, hence are not applicable to all alloy systems. 

4 • Phase Diagram Calculations 

There are several reasons for wishing to calculate ab initio temperature-composition phase 
diagrams. First of all, if the phase diagram is not known empirically, it is of course useful to 
determine theoretically what the diagram may look like, even approximately. Such was the case for 
the oxygen-ordering YBa2Cu30x phase diagram: the diagram was calculated from first principles 
[23] and, subsequently, experimental phase transition points were found to fall almost perfectly on 
the calculated phase boundaries [24]. Secondly, even when, as is usually the case, binary phase 
diagrams have been empirically determined, it is useful to perform the calculations for the following 
reasons: if calculated and experimentally determined phase diagrams agree reasonably well, it 
means that the calculations, which are very complex ones, are accurate and that the methods are 
sound. It is found indeed that the nature of the phases present at eqUilibrium and the location of 
phase boundaries depend critically on the accuracy of the calculations. Hence, the phase diagram is 
an extremely sensitive test of the computations. Also, calculations give information not only about 
eqUilibrium but also about metastable phases, which can be of considerable interest to alloy 
designers. Finally, and perhaps most importantly, if one can calculate a phase diagram, one has at 
one's disposal all quantitative information concerning formation energies, entropies, free energies, 
states of order, lanice parameters, elastic moduli, etc., of stable and metastable structures in all 
concentration and temperature ranges. 
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The calculations proceed roughly as follows: first. the appropriate lattices are selected, i.e., 
those which are expected to be parent to the tenninal solutions and superstructures found in the 
system. Then the faior each lattice are detennined by one of the methods alluded to above. With 
these sets of values, one can then perfonn, for each lattice, a ground state analysis along the lines 
described elsewhere in these workshop proceedings [25]. In some cases, it is possible to predict 
truly ab initio which will be the stable superstructures, without actually guessing at a number of 
competing structures and calculating, a posteriori, which are the ones with lowest energy at 
absolute zero. 

Statistical mechanical methods (CVM, Monte Carlo simulation) are then used to detennine free 
energies as a function of temperature and chemical field for the various lattices and their relevant 
superstructures. Common tangents are constructed in the usual way and phase boundaries plotted. 
Up to now, only crystalline phases can be handled in this first-principles way. The liquid can be 
included by means of a fitted free energy curve. 

The degree of success and degree of difficulty encountered in this type of undertaking depend 
critically on the system envisaged. For example, in Ult: Al-Li case [26], relevant intennetallic 
compounds were almost all superstructures of fcc and hcc lattices, and were stabilized by effective 
cluster interactions (ECI, fa coefficients pertaining to configuration;!) energy) limited to first 
neighbor coordination shell for fcc and first and second for bec. Hence, small clusters could be 
used in the CVM free energy functional, and only a few structures needed to be calculated for the 
Connolly and Williams inversion. The resulting phase diagram and calculated parameters, such as 
lattice parameter, fonnation energies, and bulk moduli agreed closely with experimental values 
[26]. 

For AI-Ti, the situation is entirely different. Superstructures of fcc, bcc and also hcp are 
expected, and some of these structures can only be stabilized by fairly distant effective interactions 
[27]. Moreover, tetragonal distortions of non-cubic equilibrium phases are important and have to 
be taken into account in the perfect-structure calculations, which means that the structures must be 
"relaxed" not only with respect to atomic volume (or lattice parameter a), but also with respect to cIa 
and even bla ratios and unit cell angles. That, in turn, means that only full potential codes may be 
used, turning the complete set of calculations into a very elaborate undertaking indeed. In addition, 
local elastic relaxations are expected to be important in the disordered states as well, and vibrational 
entropy will have to be included to stabilize bec over hcp on the Ti -rich side of the phase diagram. 
Neither of these displacive fonns of disorder has received adequate theoretical fonnulations. 
Needless to say, no one has yet "tamed" the AI-Ti system computationally, although it is 
technologically a highly relevant one. 

Often, several different techniques must be brought to bear on the problem. For example, in a 
very recent work [28], FLAPW was used to calculate very precisely the cohesive energies of pure 
fcc and bcc Cu and Zn, the KKR-CPA-GPM combination was used to obtain the energies of 
complete fcc and bcc disorder in Cu-Zn and the effective cluster interactions as a function of 
concentration for both lattices, and an empirical Debye correction was used to stabilize bec Cu at 
high temperature (above the melting point). In that way, the solid-state (no liquid) Cu-rich portion 
of the Cu-Zn phase diagram was calculated, including fcc and bcc superstructures, some 
inaccessible in practice due to sluggish kinetics at low temperatures. Predictions about diffuse 
scattering in a-brass were made by the equivalent of the S(2) method. 
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5. Conclusion 

The full dynamical problem of interacting electrons and nuclei, which the Car-Parrinello method 
[29] attempts to tackle head-on, is rendered tractable by successive decoupling procedures: 
electronic motion is decoupled from nuclear (or ionic) motion by the Born-Oppenheimer 
approximation, and electronic structure calculations at absolute zero are decoupled from eqUilibrium 
configurational calculations by performing cluster expansions, Eqs. (1) or (2). The decoupling of 
vibrational and configurational entropy contributions then allows phase equilibrium determination 
on a given lattice to be handled as an Ising model problem [30]. 

Although much remains to be done, the various methods which have been developed to 
perform the required calculations have produced very encouraging results. It is therefore hoped 
that, in the near future, a true First-Principles Thermodynamics of Alloys will become available. 
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