Lawrence Berkeley National Laboratory
Recent Work

Title
GRAPHICS MODELING TECHNIQUES IN COMPUTER AIDED DESIGN

Permalink
https://escholarship.org/uc/item/2vw0k4gt

Author
Holmes, Harvard H.

Publication Date
1975-11-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2vw0k4gt
https://escholarship.org
http://www.cdlib.org/

AIDED DESIGN

Harvard H. Holmes
(Ph. D. thesis)

November 1975

Prepared for the U. S. Energy Research and
Development Administration under Contract W-74

1

For Reference

- . Not to be taken from this room

_

~

J

LBL-4240

el

GRAPHICS MODELING TECHNIQUES IN COMPUTER

05-ENG-48

obev-1d1

2

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

1.

TABLE OF CONTENTS

An Introduction to Diagrammatic Modeling

1.1

Diagrammatic Modeling Defined and Illustrated

1.1.1

1.1.2

A Conceptual Framework for Interactive CAD

1.2.1

1.»2.2

1.2.3

1.2.4

1.2.5

Use of Diagrams for Modéling

Eaflier Modeling Prograhs

The Art of Désign

Goals of CAD Systems

Need for Separation of Tasks :

‘The Graphics Facility

The Analysis Facility

’

An Idealized Modeling System

1.3.1

Defining a Primitive Element
Creating a Composite Element

Graphics Features

Topological Analysis of Composite

Elements

The Role of the Translator

" Examples of Mddeling

PERT Diagram Example
Circuit Diagram Example
Digital Logic Example

Compartmental Modeling

(AN B B2 R RN (I ¢

PAGE

11
12
15
17
19

20

23

23

26

29

31

32

34
34
39
45

54

2. A Graphies Modeling.System

2.1

Software Organization (and Operation)

2.1.1 GMS Information Flow

‘2.1.2 Graphic Primitives

Data Structures and Storage

2,2.1 ‘Types of Blocks

24242 _Déta Structures for Graphics and

Derived Blocks
2.2.3 .Data Structure for Text Blocks

2.2.,4 Filing Module

Thé Prototype Gra%hics Editor

2.3.1 Data Structures Used‘by the
Graphics Editor |

2.3.2 Implementafion of Graphics

Ed;tor Commands

'2.3.3 The Software Graphics Interbretor

Text Editor

Analyzing the Topology

2.5.1 Data Structure

2.5.2 The Topological Analysis Process

~2+.5.3 Other Data Structures

~The Translator

2.6,1 Notation

2.6.,2 Overall Operation of the Translator

ii

70
70
72

74
76

76

78
83

84
86
86
88
91

93

95

9.5

99

101

102

103

104

2.6.3

A Table Drivén Tranélatof

Nets and Labéls

Details of ElemeﬁtAProcessing”
Treatmeﬁt of Empiricél Data in the
Prototype _ V_ ‘ R

Concateﬂatibn and Coordinates

3.. An Evaluation of the Prototype GMS

3.1 User Evaluation of the Prototype GMS

3.2 A Survey of Analysis Routines

3.2.1

A Continuous Systems Simﬁ¥ét6r? MiMIC
Electronic Circuit Analysis: SPICE
WireQrap)

Language Compilers

Lower Levél Interactive.Languages: CUPID

Operating System Support

¢

3.3 1Improvements to the Prototype GMS

4, Future CAD
4,1 Where

Modularity

Iﬁprovements to the Gtaphics Editor
Topolbgical Analysis

Translator Improvements

Operational Improvements

Systems
We Are Now
Types of Exiéting Systems

0 sl 0B F 000

iii

114

116

121
122

125

127

128
129

129

130

131

133
134

I35

137

137

137

4.1,2 Trends in CAD Systems

" Goals for Future CAD Systems

4,2.,! Data Structure Goals

4.2.2 Analysis Techniques

v4.2.3 User Interface

4.,2.4 Implementation Aids

Proposals for Future CAD Systems

4.3.1 Data Structure Proposals
. 1

Al

- 4.3.2 Analysis Techniques

Appéndix

Appendix

"4,3.3 'User Interface

 4.3.3 Implementation Aids

A. Response to the Users Questionnaire

B. Program Documentation

References and Bibliography

iv
139

141
142
145
146

147

148

149

153
157
162
165
185

186

ACKNOWLEDGEMENT

I am indebted to my thesis committee, ?rofessor H, B,
Baskin, Professor D, Ferrari and Dr. L. P; Meissner, for their
enc0uragemeﬁt and guidance, to D. M. Austin for many helpful
suggestions and coliaborétion in the programming of the
prototype, and to the users at Lawrence Bérkelef Laboratory
for their suggestidns and motivation, specifically Ivan Wood
and Horace Warnock of Electrical Engineeringvntafting, and
‘Michifuki Nakamura, Richard LaPierre, John Mendes, Don
Evans and Frank Neu of Electrical Engineeriﬁg Research and
Development.' 1 am also indebted to James Baker and Cari
Quong, Math and_Coméuting, LBL, for support and encouraggment;

and -to Virginia Franks for preparing the manuscript.

Finally, this project would never have been
completed without the encouragement and support of my

"wife Susan.

This work was supported by the Energy Research and

Development'Administration under contract W-7405-eng-48,

e/ f0p k0800

vi

GRAPHICS MODELING TECHNIQUES IN COMPUTER AIDED DESIGN

Harvard H. Holmes

Lawrence Berkeley Laboratory
Berkeley, California

ABSTRACT

Schematic diagréms form a natural medium of'comhhnication
in a wide range of problem.areas. In thisvthesis; we w111
describe a comprehensive approach to problem sdlving uéing

schematic diagrams as the interface between man and computer.,

Past efforts at computer aided design have been hampered
by an approach which combined the‘man-méchiné.
problem-deséription'intérface'with the problgm_analysis
portion of ghe system, In this thesis, we set forth a
methodolog§ which separates these two aspects of computer .
aided design; By recognizing those topological properties of
schematic diagrams that are comﬁon»tova wide variety of-
~disciplines, GMS is able to provide a single m#nshaghine
.problem description interface for use_ih 5 wide;yariety of
problemusolving disciplines. .In addition,‘GMS‘includes
intermediate data structures and preprocessing facilities that

form a natural interface and starting point'for the creation

e/l iopbaof0n

vii
of additiqnal_analysis capabilities are described.,

Thé ﬁroblem-definition interface supporfs two nain
activities: the creation of elements, and the intercoqnectidn
of these elements to form diagrammatic mbdels.A These elemen;s
are the basic building blocks for creating models, 1In the
past, the elements have been embedded rather deeply in the
sdftwaté. "Thus, the creétion and description-of:eiements was
'donevby.the system deéigner or, at best, was relegated to a
separate bhase which required substantial familiarity with the
software, - The main difficulty in creating a new element wés
to communicate to the analysis portion of a system thévexact
meaninquf_the element. Oﬁr approach, on thé other hand,
makes it e;éy for a user to deséribé the meaning.(semantiés)
of a new elément'in a natural way, If tﬁe new element is‘a
primiﬁive (éqntaining no other elements as'components); the
vsemantic.déscfiption is given”in.analytic fbrm (e;g. a
formula), or invempirical'forﬁf(éuch as a tahble of numbers).
If the new element is composite (a combinatidn of previously

'created'elements), its semantics are defined~implicit1y by the

semantics of the component elements along with the topology of .

the intercdhnections. A convenient representation of the
topology of the interconnections 1is gived‘by a routine which

traces lines in a drawing and fecognizes nets of joined lines.

A translator is described which produces explicit semantics of

composite elements from the semantics of the component

elements and the topology.. A complete prototype

s

2

viii
implementation for this part of the system is described.

The problém~solving portion of thisimethodology allows a
wide variety of analysis techniqﬁes which can be flexibly
combined to solve a particular problem at hand. This approach
recognizes that no workable scheme fof automatically
constructing computer programs has been developed.
Nevertheless, several improngents in present techniques for
constructing programs can be made to prep#ré-for sﬁch schemes,
These improvements include flexible data é;ructuring
facilities for programming languages and generalized user
interfaces. An 1ni}ia1 set of data sfructures and analysis

functions for constructing programs is described.

Another aspect of our work is to demonstrate how existing
problem solving systems can be exteﬁded uéing the graphics
problem description interface. These exfensions serve to
tailor analysis packages to a spectrum of disciplines where
such analysis techniques are appropriate.. This givés the user
the impression that he is using an analysis routine which has

been specifically constructed for his problem,.

R N

™
b/
N
o
e
Et
e

V3

1. AN INTRODUCTION TO DIAGRAMMATIC MODELING

In many areas of design, symbolic or schematic diagrams.
are the most widely used representations for the statement of

a problem or the representation of an idea. Diagrams have

been utilized for a wide variefy of disciplines, in which

instruction in the discipline 1§ based on_diagrammatic
representations. Symbolic diagrams have thus become a rather
unive:sal means of communication within discipiines. fn
additioh, the diagrams themselves have developed into powerful

tools for guiding problem formulation and solution.

Once cbmputer aided design (CAD) techniques an& computer
graphics”teéhniquesvhad succeeded, it was'only_natural to
combine these two techniques and provide graphicai iqput to
cémputer aided design programs, There are many such‘programs

in existence, but their growth has not been . as rapid as the

computing world expected. 'The'reasons for this slow growth

are many, including primarily an 1nability to directly use
previous work [BASK68], and the high cost of graphics
hardware. vThe inability”to'use‘previoUS'wofk results in a
high cost for developingvnew applicatiops,land this difficdity
is addressed in this work. The high cost'éf graphics hardware
has largely disappeared; mini-comﬁuter displays are now
relatively»inexpensivevaﬁd operating Systéhs,éreghhw‘mﬁch

better suited to support interactive computing.

The minimum level of software design which allows the

FEe /Lt 0 EE G000

incorporation of pfévious work is one which‘uses common
subroutines in each successive graphics input CAD program,
This levéi of design has not been very éffective, with most
subroutinés being at the level of common graphics functions.
A significant step forward in thevorganization.of graphics
softﬁaré design was provided by Baskin [ﬁASK68} in developing
a conceptual model for such software design, Baskin suggested"
that a_graphics CAD,facility be organized as five separatg
subsystems of modulgs for: (1) éfeating elements;‘(Z)
diagramm#fig modeling,.(3) énalyzing problems represenﬁed as
diagrammatié modeis, (4) revising analysié_procedurés, and (5)
providing”oﬂtput. Two other key ideas in‘this paper were:
that'semaﬁpic description of an eleﬁent cduld be d;ne in terms
of thfee definition‘mechanisms; and that ‘a large class'of

’

diagrams could be included in a single generalized topoldgical

\

framework.

Many of these ideas were feflectedvin'qontempofary>énd
vsubsequenf work, Sof:ware'modularizatioﬁ is eQident in én
experiméntal>CSMP [BREN66), in GINA [MAGN67], in DESIGNPAD
[BELA71]'an& in a graphic.versibn'of ECAP_[HOGS67]. Efforts .
to handle diagrammatic mddels in a general wéy are evident 1in
the experimental CSMP and in DESIGNPAD. One semantic
desériptioh~mechanisﬁ appears in.the Simulation and Modeling
System [GEAR70], but as an éxtension to the modeling

capabilitiés; rather than as a part.of the element description

facility. This thesis undertakes to extend and revise these

ER)

2t

ideas and describes an implemenfatidn of the graphic input

which includes such ideas.

1.1 DIAGRAMMATIC MODELING DEFINED AND ILLUSTKATED
1.1.1 Use of Diagrams for Modeling

A mo&el,lin the most general sense, is an abstract
represenfation of reality; é diagrammatic model is one which
is preseﬁted as a stylized drawing or diagrém. Niagrams. take
many forms according to the customs of the mahy diverse
disciplines which use them. Nevertheless, the convenﬁional
tools of their construction,'namely pencil and paper, ﬁave
foréed the great majority of thesé diagrams into a commoﬁ |
format. Observing Figure 1|, we see that a d;agtammatic model
is composed of elements, interconnected by lines, together

with alphanumeric annotation. To the designer, the elements

are the bﬁilding blocks of his model. The lines show the
reiationships'between elements of the médel. Usually,'only
the topology of the relationship is imporfant, since other
representafions with the same topology would be considered
equivalent.. Almost always; a single element is used for a
large class of similar objects; when the designér uses an
element, he identifies the appropriate mem%er of the class
using some anndtatioﬁ. Annotation is also qsed for commentary

and for identification,

‘The choice of elements is often dictated by the

Se /1L 0F k000D

FIG1 -

FEGURE 1. EXAMPLES OF DIAGRARMMATIC MODELS

&

convenéions of the particular discipline involved. These
conventions‘have been established by lbng experience And they
are usuali& very effective. The COnventibﬁkusually specifies
both the visual symbol and the class of objects which it
represenés'(i.e., the meaning or semanticsbassociated with the
visual symbol). In electrical engineeriﬁg, these choices have
become so standardized that templates of the various shapes
are available as drawing aides, and documentation
specificafions may even establish the exact size to be used
for ;he symbols. Semantic conventions are equally compleg and
well developed, although they may change with the application,
Thus, to take a very speclalized example,vthe symbol in Figure
2A may at times represent a physical resistor with its
associated inductance and capacitance, At other times, it may
represent a pure resistance so that a physical resistor must
have its inductance and capacitance shown explicitly, as in

the composite element shown in Figure 2B,

Note that the components of the composite element have
separate meanings (semantics) of their own, which haﬁé a role
in establishing the semantics of the larger élement. This is
only one case of the more general existeﬁce of hierarchies of
diagrammatic models, in which the. detail of the model 1is

adjusted to fit the necessities of the application.

The primary virtue of having hierarchies of models is to
enable an easy comprehension of the model by using several

layers of abstractions with each layer based on the next lower

e /Lt 0000

F162

FIGURE 2A. SIMPLE SYMBOL FOR A RESISTOR AS A PRIAMITIVE ELENENT

L
\

FIGURE 2B. AORE COMPLICATYED MODEL FOR A RESISTOR

AS A COMPOSITE ELEMENT

ul

level, .This facilitly uses man’s languagevand abstract
reasoning skills to bréak a complex problem in;o
understandable subunits and understandable compositions of
these subunits, We will return to this line of observation
later (Section 1,2,1, 1.2,2), For the present, we simply wish
to note that these’layers can be observed in any particﬁlar

i
discipline‘as a fundamental tool for problgm solving.

The use of diagrams to show relatibnships among elemenfs
of a modgl brings with it several advahtages and
disadvanfages. The primary advantage is that the irreleQan;_
relationships may be removed from the diagram leaving the
designer free to cohcentrate on those deemed relevant, To use
an electronic circuit as our example again, the degigner can
concentrate on signal flow and not worry about the acfual
;hreeidimensional packaging of components‘in the model., A
secondary advantage is that a three dimensional situation can
oftén'Se eaSily teduced.to two dimensions, Ofvcdursé,.the
ébstraction inherent in modeling and the use of pencil and
paper have provided mutual reinforcement of this capability.
Finally, we can observe that even a phyéical siﬁuationvthat is
basically two dimeﬁsional in its spatial configuration can
often benefit from using abstract diagrams father than spatial
configuratidn to convey relationships. The field of optics
provides examples where the symmetry ofvlenses allows a
convenient two dimensional representation, yet a more

schematic approach has often been taken,

LS /L1 opbk 0000

The primary disadvantage of using diagrams to show
relationships is the converse of the advanéage; they may omit
some relationships which are significantf This may result in
the design of a model which cannot be physically realized.
While these tradeoffs are inevitahle, the situation is not
hopeless -~ the usual remedy is to incofpérate more
relationships explicitly in the_model. In an‘electronic
circuit diagram,vfor exampie,.soﬁe of the circuit delays may
be inéorporated.explicitly by replacing a iine by a modeliﬁg
element which represents time delay. The amouﬁt of.deléy
" would be set by'the designer, who can esfimaté.it from

packaging considerations.

1.1.2 Earlier Modeling Programs

In early diagrammatic modeling systems, the semantics of
primitive elements were quite rigidly built into the software
and the propogation of semantics from elements to combinations

of elements was, in most cases, straightforwérd.

Historically, the first graphical mpdeling program in the
sense of this thesis is SKETCHPAD [SUTH63]. It combines an
interactive drawing routine with a scheme.for evaluating and
satisfying cdnstraints on the.drawing. If ménipulates lines,
éonstréints; and subpictures (which may include othef
subpicfurés); A vetsatile‘copy function allows combinatfons
of constraihﬁs to be copied\from one instance of a subpicfure'

to another, 'These constraints, the semantiés of SKETCHPAD,

are created and incorporated into the daté'structure via the
same gréphic'techniqueé which are used to create the original
drawing.' We may characterize SKETCHPAD by noting tha£ a

single data structure and a single analysis routine are used,

with the semantics given implicitly by the analysis routine.

Following SKETCHPAD, there appear programs designed to
support mofe interesting analysis routines. Examples of such
progfams»are CIRCAL [DERT67], CADIC [PRES67] and CADD
[DERT65). These programs may also be characterized as having-

a single data structure used by both the drawing phase and the

analysis phase.

Baskin and Morse [BASK68) created an expefimen£;1 Céﬁ?
in which tﬁe graphic input fuﬁctions and the analyéis)
.functions'ﬁere separated and implemenfed-as séparate hodﬁieé.
It is noteworthy that an existing interactive drawiné pgog;am
(DIM [RIEK67]) was used. This demonstrated rather cléariy
ﬁhat graphic input facilities did not have to be tailor-made
for each particular application, DIM allowed the user to
create subpictures from lines and other subpictures in a very
general fashion, DIM also provided rotation and scaling of
subpictures. For use in the modeling system, bIM was given a’
basic set of entities (predefined primitive<elements)-which‘
corresponded to functions available in the analysis package,
The user created models using lines and these entities., A
second overlay generated a topologicalvdescription of the

model 1in thé.form required by the analysis package. A third

8 ¢

8 e /L1t np 0000

10

overlay, again based on an existing progranm, did the analvsis

and produded the output,

An extension of this work, DESIGNPAD [BELA71],
concenttated more thoroughly on the interaétive drawing
package and the topological analysis routiﬁes, elaborating
upon the intermediate data structuré for use by analysis

.programs,

2256 ECAP [HOGS67] and GINA [MAGN67] are examples of
graphicrdraWing packages whicﬁ are used 1ntéractive1y to
.produce‘input for “standa;d" batch mode ;ircuit anaiysis_
programs, Each.qf thgse has a predefinéd ménu.bf circuit
elements, from which a circuit diagram is_consﬁructed. GINA
is able fo change 1té output format to suit any of several
circuit analysis packages. J. L. Franklin and E. B.-Deén
(FRAN73) describe a system similar to GiNA; but with the added

ability to nest diagrams to form a hierarchy of models.

BIOMOD [GRON71] is a system designed_for,biological
problehs;_if uses CSMP for its anélysis phaée. In BIOﬁOb,
all‘symbéls are sﬁown_visually'as rectangles (a disadvantage),
but a more complete set of semantié description facilities.is
provided, fncluding-CSMP pfimitive elements; algebraic,
differential and chemical equations, and Fértran statements,
Symbdlé may also be combined to form hierarchies (implemented
by meaﬁs of macros). BIOMOD offefs good facilities for

semantic description (although lihited to the analysis

T

11

facilities of CSMP), but no facilities for user-drawn

primitive symbols,

The principal shdrtcoﬁing of all of these earlier
programs‘is their dependence on a single:analysis program, or
a single cléss qf analysis programs. Thus, the‘semantics of
their primifive elements are built into the system and the
semantics of composite elements can be generated in a uniform
mghner using the topological description. Although this.
allows them to sidestep the difficult question of semant{c.
description, it précludes the generalization of ;hese systems
to aliow muitiple»forms of semanticvdesétiption that might be
rgquired for various fields’of application,b ﬁost of the” .
earlier sYs;ems also exploit.the specializéd nature of fheif

applicatibn to simplify the graphics programming. The

"ultimate cost of this specialization is a lack of

transferrability of the software.

1.2 A CONCEPTUAL FRAMEWORK FOR INTERACTIVE CAD

This section describes the Graphics Modeling Sysfem
(QMS) in terms of the faciiities'which are necessary for very
geéneral problem formulation and solutién, Many of the parts
of GMS can be viewgd as extensions of similar facilities in
these earlier pfograms, generalized and made more svstematic
to serve a Qider variety of disciplines, The goal is to nake
GMS so general that it can be modified onliﬁe to suit whatever

analysis the user wants to make. 1In addition, the

&8/ tobb0o00

12

"

organizaﬁion'of GMS should be straightforward so that even an

inexperienced user can adapt GMS to his problem.

1.2.1 The Art of Design

i ' ¢ : '
The art of design is the successful combination of |

éynthesis and evaluation., Design proceéds by a process of

-synthesisrér proposal followed by .an evaluation and refinement
of the proposal, Refinement is merely a_variation of
synthesis, and so the designer repeé;s these Steps over and
over, First, a synthesis and then a evaluation; thenva return
td the syntﬁesié phase to improve the solution usiﬁgvtheh' i
results of the evaluation to guide the synthesis, 1In the
early stagés_of design, these two activities aré.cafried on
entifely within the imagination of_the designer. Théy becomé

a series of "thought experiments,"

The designer mentally
proposes some éituation; then he explores it to see {f it will

provide ;he'desired result, - ' : - '

At some po;nt,.the designer is ready for a more Concrefe
evaluatidn; he is feady to test his ideag USiﬁg a CAD systen,
For this ﬁurpose,‘the CAD system must be fast and flexible (at
the cost of some accuracy, perhaps). It muét respond quickly .
to allow.mény idéas to be tested and it must respond to each

idea fast enough to promote a steady flow of invention, 1If he

must wait too long, the designer becomes bored or impatient,

his attention wanders, and the atmospherebof creativity 1is

lost. At this early étage, the designer is likely to shift

13

his attehtion from one aspect of the design to another; thus
the CAD system must be flexible in order to accommodate these
several aspects of the problem and to allow easy modification

of the design.,

An essential part of the art of design is the ability to
partigion_the problen, The designer breaks one large problem
into a number of smaller proﬁlems. This éubdivision is
eVident'in.practically any problem solving situation. It is a
key part of design; a proposal is just a synthesis of
subparté, One central activity in design is the sub-division
of the problem into satisfactory (more-tfactable) subparts,

A most.important counterpart of this ;bility to subdivide ;hé
problem 1is the designer’s repertory of known solutiong.v The.
designer with a wide knowledge and underétanding of existiné
solutions is able to use this knowledge fo greatl? ektend hi§
effectiveness., The art of dgsign then becomes a search
through a tree structure., At each stape, a branéh is
subdivided.énd each of the subbranches are explored. 1In most
cases the dgsigner can immediately eValua;é'theISprarts of

the design from his prior knowledge,

In one common design‘methodology, this subdivision and
evaluation ‘takes place iﬁ "depfh first" maﬁner; that is, as a
task isvéubdivided, one of the subtasks is selected and
pursued to its conclusion before effort returns to any of the
other highest-level subtasks., This is avvery effective way of

pursuing the bottleneck in a design, that difficult aspect

OF /Lt 0k bEOCDD

5 v . | . . 14

which, separates it from known‘solutions. At each subdivision,
most of ;he subtasks are recognized as having known solutions;
they caﬁ.thUS‘be quickly discarded from the paft of the
problem tﬁat needs further consideration, In tﬁis vay
irrelevant detéi1 is avoided while pursuihg‘the heart of the
problem to any necessary level of detail, This approach makes
good use of man’s ability to organize and'recognize patterﬁs,
yhile,‘at the same time, it minimizes the amount of detail

which must be managed since man is limited in this regard.

As ﬁhe design becomes established, there is a need fbr a
more exéct evaluation and refineﬁent Qf it. At this poinf.
the desigﬁér turns to mechanical and éechnical aids., First
thé desigﬁ is committed to paper; then the designer begins to
refine and evaluate his propoéal Qith the aid of rules of
thunmb, technical formulas, and the use of aICOmputer; In the
past, fhe:dée of a computer, allhough desirable or necessary,
was’delayea until the iaét possible moment. This was an
unhappy reéult of the great.effort requifed to obtain a
computer evalua;ion'of the deéigng_ The déSigner‘did not want
to ﬁake this effort untilvhe was reaéonably'sure that the
design wasfnearly correct. The usevof-tﬁe computef, although
necessary, was so COstiy that alternate solutions could not be
pursqed unless the original was uﬁsatisfactory. Tﬁis led to
bareiy adeqdate designs and stifled the search for innovative,

superior designs,

15

1.2.2 Goals of CAD Systéms

Thé,gﬁal of CAD systems should be to make the computer so
easy to use that it becomes an aid to evaiuation and
refinement from the very beginning of a design, This»requires
a CAD systém which is easy to communicate Qith‘and which
suppports sﬁbdiviéion and evaluation strafegies that are
nafural and convenient for the designer. The technique of
diagrammatic modeling can be an important bart of CAD systems
because it contains these.necessary factlities., FEase of
communication is inﬁerent in the use of schematic diagrams,
since these aré the first choice for the communication of
ideas in many disciplines, The other features df a
diagrammatic modeling technique must allow for experiment,
design, evaluation and refinement at a variety of levels of
detail, The incorporation of a hierarchicaltstructure into
the elements of a diagrammatic model is‘the best technique for
supporting the expgrimental partitioning and synthesis of the
subparts of a design, The designer must be free fo construct
- his model as his attention directs and to return to and exteﬁd
sections‘bf-the model with‘progressively ﬁore énd'moré detail.
A hierarchiéal structure; together with thé ability to
redefine elements or to have alternate definitions for
elements, éllows the designer to estahblish a schematié diagram
with only very rough notations of what each element should do.
Thus, he can begin with a very simple definition for sonme

elements, and then at a later time he can return and redefine

m
w5
T
AT
oy
P,‘”‘-
S
i
&
-
"
3
3

16

them in terms éf simpler subelements. 'Thisléllbwé the .
designer ;slconcen:tate on crucial problem‘areés and pursue
them to.the necessary level of detail, thle temporarily
ignoring the rest of the problem, Later, other parts of the
problem can be elaborated upon without disturbing earlier

parts of the design,

In addition, a hierarchiégl'Organization‘allows one
aspect of a problem to be removed from thé rest of the problem
and tested'ou£ of context. Thus, the designer can-pérform‘his
"thoughg.experiments" until a particular aspect reaches a
level of‘deﬁail which he needs hélp in evaluating.. He can
describe this'one part of the system and test it, using his
-mental de#ign>to guide him inbdeScrising the environment of
this part. Fo; example; in the design of an FM radio, for
which avnew‘detector iS»prdpbsed, the designer divides the
radio into‘an RF séction, an IF section, a detector and an
amplifief.__He immediétely_dismisses all but the detector as
being known. A detector is. then proposed and described to the
CAD system; from experieﬁce the designer can descriﬁe the
input to the.detector_aﬁd recogﬁize good ér bad outputf Thus
he does not even.need tobinclude the other parts of the rédio
in the description he gives to the CAb system. Alternatively
he can include them withopt déscrihing their internal

structure in detail.

If the designer has been using a CAD system for some

time, then some of his prior experience can be incorporated

17

into a library of previously designed parts, A diagrammatic
modeling facilitly can lend itself to easy management of this
library. " As earlier designs are completed, they are stored

and theit individual parts are reused in later designs.

1.2.3 Need for Separation of Tasks

Consideration of thg proposal and evaluation aspects of
~design suggest that for a CAD system, the proposal aspect.can
be best supported by a good communications medium, while
evaluation.requirés the services of more conventional
mathematicéi programs. Since use of the system iﬁ an
interactivé‘descriptive mode alternates with mathematical
evaluations, it appears feasible to provide séparate software
‘in the CAD system for these two functions. The critical
,rgquirement is that ghe t&o func;ions not be required
simultaneously. 1In alﬁost all cases, thgre is no néed for
matﬁematicai evaluationsvduring the inte;activé description
phase and vice versa, Thué, these two functions can be

organized as two separate software Systems with communication

through a common data base.

The principal;advantage of this sepérétion of tasks is
that a Qide variety of analysis systems may share the sane
graphicsrfacilitiés fdr problem definition. This will léad to
a better g};phics product, since tﬁe graphics facilities need

to be designed and implemented only once. Thus, we can

justify doing a more complete job than we might otherwise have

4

CE /L 0P B OD0D

18

.done and we can include features whiéh,we’m@ght omit if they
were to be used with only a single analysis pfocedure.
Equally iMportant is greater convenience for the user, due to
the fact that hercan use the graphics facility as a common
interface. ,Hevis no longer required to leafn a variety of

blanguages.in which to séate his problem; and yet he can use a
wide variety of analysis procedures, Since the same-graphics
facility 15 used with a variety of analysi§ procedures, it is
also a gimplé matter to use the same proﬁlem descfiption with
more "than one analysis procedure. That is,.a particular
problem needs to be described only once to be available as "

input to several analysis procedures,

In‘addition, the use of separaté subsyétems makes the use
of intelligent terminals for the graphics subsystem a very
attractiVé'possibility. This reduces ;he'féai,time load on
the qentrai.faciiitf and simultaneously érovides even better
response‘for the most common interaction$,>>The usevof an
intelligéht termiﬁél mayvalso.allow the use of a low-bandwidth
connection between the"central facility andba remote user.,
Without the use of an intelligent tefminai;,a high bandwidth
connectionrto the cenﬁralvfacility wou1d be required, which

might be uneconomical or impossible.

But the greétest benefit by far accrues to the analysis
programs which can use this common graphics facilit&. An
analysis prdgram that 1is not used with a separate graphics

facility must either include a graphics fééility within the

19

analysis program or use some external form of problem
description, such as card images. .Incorboration of a graphics
facility into énalysis systems introduces problems of real
time 1nteréction and consequent hardware ahd operating svstem

dependencies.

Use Qf the data structures of a common data base, if they
are well‘thought out.and carefully designed, is preferahie té
many of thé schemes that.have been widely employed to encode
schematic‘diagrams.ih a b;tch processing environnent. Thoset
schemes use data structures based on card images in which éodé
numbers or similar techniques convey the topologicai '
informafion. They are tedious to use and Qer; prone to error,
as well as>being very difficult to update to conform to
changes 1h the original schematic diagfamf By using.a
translator;:as described subsequehtly, one can adapt the
"standard“ interface data structure to a wide variety of éard'

image~based schemes (if necessary), allowing batch programs to

be used with the graphics facility,

1.2.4 The Graphics Facility

The’f@ncpion of the graphics facility is to.allovaAn
pfoblems‘fo be conveniently described as schematic diagrams.
The methodoiogy of this descriptionbwas suggested by Bask&n
[BASK68], who proposed three types of elément descriptions,
Two types of.semantic‘description mechénisms are provided for

primitive elements: an analytic or relational exbressinn (e.g2.

v,

SF /L lorb0on00

3
L.z

!

20

a formula) and an empirical or explicit relation such as a
table of numbers. The semantics of comEosite elements are
given by the interconnection (topology) of component elements

(and the semantics of the component elements).

To support this methodology, the follOwihg softw;re
components are required: (1)_an interactive graphics editdr,
(2) an intéractive text editor, (3) a topolbgical analysis
module, (4) data management for p;imitivé'elements with -
empirical desctiptions,v(S) a translatorito‘propagate the
semantics of primitive elemgnts up through the hierarchy and
to prov1de-éustomized data structures for,output,‘and_(b)l

filing and-rétrieval functions,

1.2.5 The Analysis Facility

The analysis subsystem uses the problem description and
produceg answers for the user, - Although ideally ;he analysis
subsysteﬁ.sﬂould inclﬁde a facility for cénStfucting new
analysis'prbcedufes asvSimply as hew modelihg elements can be
constructed; the state of the art in automafic prog;adming hds
not yet reéched this ability, 4Thus, the analysis facility
will include a set of preassembled packages,:tdgether with a
large set‘of'more elementary routines to use as building
blocks for new analysis packages. .These building blocks will
include mathématical routines, data output and display
routines, and user interface routines. Thé system should’

provide an‘easy-to-uSe, interactive facility to guide the user

21

in assembling these routines to do what he‘wants. .One
approach fb this problem is evident in thé Dynamic’Modeling
System [PR0OJ72) in which subroutines from several different
languages éan be combined in a single Systeﬁ., Perhaps the
user can use the graphics interface to describe programs, Thé
facilities needed here for program assembly must be oﬁ a
higher level of abstraction than that proyided by GRATL
VtELLI69], Qith'most of the tedious details of programming and
data structure being taken care of.autohatically for the user

(who is not a programmer).

Two examples may illustrate somebof the Qariety of_
analysis techniques which can be applied. Many p:oblems fall
naturally into one of two categories vith respect po_the
computational procedure required to evaluate them: seqﬁential
brobléms'ana "gestalt" problems, Sequental-problems.are
characterized by an inherent modularity: that is,.the model is
composed of elements wiﬁh a definite input-éutbut
relationship§ compﬁtation performed on.thé_inpdts for each
element yields outputs which serve as 1nputs to another
element, Such a configuration can be ;ecpghized in aﬁalog
computers, digital logic, compartmental.fiow modeis, qﬁeueing
situations, pert charts and flowcharts, Analysis'routines for

these problems must organize the sequence of modules for

evaluation,

It often happens that the analysis routine for sequential

problems must deal with the problem of closed loops caused by

P/ 0k bEONDOD

22

feedb;ck. Numerical integration problems, for example, are
often solved by reduction to integral equation form, the
graphicél equivalent of which is to breék'the lbop by assuming
that the outputs of the numerical integration are known in
advance., Then using these known values, ﬁew inputs to tﬁe
integra£i§n routines afe computed. quing execution, the
analysis réqtine must ensure.that the old values are adequate
approximations to fhe new’vaIUes. For some other problens,
for exampie, digital logic, closed loops'may be broken by the

inclusion of time delay in the loop.

Once the proper sequence for the modules.has been found
they may be evaluated interpretatively (CSMP), by compilation?
and execution MIMIC [CONTH68], or by translation to‘another
. language, DGL/360 [SYN68], where Fortran is the_target
language. ‘The eyaluation routines must includevthé necessary
control rquﬁ?nes, gnd‘usually also provide utility routinef,
such as thqse for integrgtion, time-delay énd the

trigonometric functions,

»Gestalq problems, on the other hand, lack tﬁe modular{ty
exhibited by éeduential probiehs, Some eléctronic'circhité
and bridge and building_structures.are examples of guch
proBlems,” Efficient énalysis of tﬁe behavior of such‘a
structure as a whole cannot be accomplished by the sequential
evaluation of computation procedﬁres associated with the
component éléments. Tﬂé analysis of éuch a problem requires

that the description of the elements be reorganized into a set

23

of relationships (e.g. equations), which describe the behavior
of the system as a whole. Theée equations can then be
evaluated, often by the same techniques (e.g. numerical
1ntegration).used for sequential models. Wé will réturn to
this examiﬁation of analysis routines and packages in

Chapter 4,

'

1.3 AN IDEALIZED MODELING SYSTEM

1.3.1 Defining a Primitive Element

We shall begin our explanation of GCMS with the creation.

of a new primitive element, one which is not composed of other
elements, Although a libfary of elements ‘is méintained, it
often happens that a new element is required for a particular
problem. A new element‘is created by giving it a name. A

semantic description of the element must then be given which

can be understood by thevintended analysis routine. For
primitive elements, two mechaqisms for semantic descriptions.
are provided: (1) the analytic or rélatiqﬁal description of an
element by means of text, and (2) the emEiriéal deséription of
an elemenp by means of a humeric or empitiéalirelationsﬁip

between variables described by some data set,

The analytic description is crea;ed using the text
editor. It is often used to spécify an analytic relationship
between variables using a mathematiéal notation suitahie for
the desired analysis routine. For example, a resistor may be

.defined by I = (V1 - V2)/R; or a NAND gate: D = NOT (A + B +

€Er /1l 0REOP 0D

24

C). For some appiications, a suitable description can be
obtained frpm past experience, either with tﬁe modeling system
or with similar analytic procedures. For other applications,
experimeh;aﬁion with alternate descriptions may be a
signifiéant modeling activity. "An analytic description may
also give.a functidnal relationshfp implicitly rather than
expiigitiy, by referring to a procedure supplied by the
aﬁélysis'routiné: |

x = f (y,z)
or

R101 3-7 1100

~ where the procedure itself is specified by the first character

"R".

The empirical description form is used to associate a
data set with a primitive element. For e*ample,'a transistor
can oftéh be best desqfibed by some of its characteristic
curves, Simple data sets can be generated or edited using the

graphic facilities of GMS,

A sxmbbl.(the pictorial or visual representation of the
eiement) may also be associatea with thé nane, When an
element is ﬁsed as a éomponent of a larger element (model) a
symbol 1is feqﬁirea for use in the specifiéation of
interconnections among the components of tﬁe model. The user
creates the‘éymbol with the line drawing éommands of the

graphics editor (Figure 3A illustrates resistor, capacitor and

F163

~AW~

R
1 >

FIGURE 3A. PARTIALLY COMPLETED SYMBOLS

.Y\f\,_.

1

FIGURE 3B. SYAMBOLS WITH ATYACNERYFOIITS ADDED

25

26

NAND gate symbols), and he specifies points on the symbol

which are available for connection to other symbols in a

model, These points are called attacher points, since they
specify where lines in a model can bé placed to attach the
sfmbol to other symbols, Each attacher.point.consists of this
position toge;he? with a character string which identifies the
variable kinvthe analytic or empirical description) which 1is
to be associated with this positioﬁ. Each attacher point of a
symbol has fhis unique character string.and a unique
coordinafe.location relative to the symbol. Figure 3B
illustrateé resistor, cap#citor and NAND gate symbols witﬁ

attachervpoints added.

1.3.2 Creating a Composite Element

A composite element is defined in térmsfof other

elements, ailowing’users to create hieraréhies, to assemble
collections of elements and use these collections as éingle
new elements. They can build layer upon layef of composite
elements,>with each layer an abstraction of_the 1aygrs below.
On the othef haﬁd, a large problem can be broken into_émaller
and smaller'subunits,'with the arrangement of subunits being
easily comprehensible at every stage, Thus; within this
framework, ghe user can work from the toﬁ down o;.from the
bottom up. .In working from the bqt;om,up, new elements are
created from combinations of existing ones, creating larger

and larger buildlng blocks for larger and larger problems,

27

In wofking'ftom the top down, elements already defined ﬁay be
refinedvbyvreplacing tentative or experimental definitions by
more exact definitions composed of other elements. By analogy
to programming languages, the creation methodology for

composite elements is called macro definition.

We use the term model as a convenient shorthand for a
composite element. Thus "model" refers to fhe combination and
"element" to the components. Strictly speaking, of course; a
model is juét another element and can bg used as a componént

of a larger model.

After giving a name to the composite eiement; the ﬁext
step is to select the elements which are to be used in it, -
These elements are repfesented by their symbols, Tﬂese
stﬁols must then be connebted b& lines joining the
approbriaté attacher poiﬁts. A set of conﬁected lines 1;
éalled abggi. A Sinéle'object or two ohjects juxtaposed
(witﬁout lines) may also be considered nets. 'A net will
usually join attacher points from diffefent symbols, but two
.or more attacher points of the same symbol can be‘joinéd
together if desired. Fiﬁally, labelg are added tb the model
to identify particular nets. (These labéled nets are
associated with corresponding_attacher points in the symbol
(discussed next) of the composite eleﬁent. If no symbol has
been given or a label does not match an attacher point on the
symbol, then the labél'is assumed to denote a constant or

specific name for the net, and the character string is made

28

available to subsequent analysis routines.)

A cbmposite element may also be given a symbol to allow
it to be used as a component in larger modéls. This symbol
has its own attacher points that will be used to connect it
into larger modelé. Each attacher point is identified hy 1its
associated qharacter string. The net (in the model |
description) which éorresponds to a partidular attacher point
(in the model symbol) is 1dentified_by a Iabél witﬁ a
~character stfihg which matches the character'stfing of the
attacher péint.v Values entering a symbdi as formal parameters
through an attacher point propagate down to the matchinﬂ.net

and become actual parameters to the sub-svymbols,

This character string matching is required because the
symbql (picfﬂre) of ;he model (composité element):is not
inherently identified with the‘colyectioﬁ of-pictures of its
component elemgnts and their interconnections, tﬁat is, with
the gréphicél object generated in the desgription of the
model., The attacher points have identifying‘character'strings
“in the syﬁboi of the model. These are identified with nets in
v'the‘composite ﬁodelrdescription by giving maﬁching 1aheis_to

the nets.

In many respects, the propagation of semantics in GMS is
parallel to the propagation of semantics in conventional
programming syntax. By analogy with the use of procedures,

the semantic definition of an element forms the body of the

-4

!
|
|
i

29

procedure and the symbol férms the procedure declarétion. The
symbol establisﬁes both a pictorial name for the proceddre and
the formal pafameters. As with conventional procedufe
declarations, the symbol provides the correspondence between
external and internal references to the pérameters. External
references are made 'according to the order of.parameters, or
in the case of symbols, by coordinate location. 1Internal
references are made to the corresponding character strings.
Procedure déclarations give an implicit correspondence between
the extefnal order of the parameters and their‘interﬁal»
character string refereﬁts. For symbols; the attacher points
provide avco;respondence between coordinate locations with
_respect to the symbols (for external reference) ahd character
‘string ideﬁtifiers (for internal reference). Thus, in a
.cdnventional syntax for calling_procedures thé‘actual and .
.fofmal pafameters must agree in order (énd nuﬁber); while iﬁ

GMS they must agree in coordinate location.

1.3.3 - Graphics Features

Thefundamental '‘graphic obefations ;re the creation of
lines and alphanumeric annotation, the selecfion and
positioning of‘symbols, énd the erasure of these elemehts.
Lines are used for the.outline of symbols and for cféating
bnets.in composite elements. Lines can be créated in a |
point-to—poinﬁvfashion.(most suiﬁabie for ﬁets) or as_multible

segments épproximating a free hand curve, Alphanumefic

Er/Z 10k 0000

30

annofatiohvis used for attacher points and fér labels, It is
Constructed and positioned with keyboardvaﬁd iightpen. A

" number of éharaéter sizes are provided. Symbols are used in
composité'eiements, and each instance.of'a‘symbol has a size

and an orientation..

A number of graphics fgétures are provided as aids to
drawing.v Aﬁong the most important features are zoonming,
-ciutter suppfession, grids, and a subpiéturé facility. The
zoom faciiity allows the user to enlarge any portion of the
screen to any desired size., Typically, symbols are enlérgea
by a factor éf 16 to 64 for greater easé:iﬁ'drawing (where a
magnification factor df one displéys the entire dfawingvarea'
‘on the sc;eén). Models are then created at a somewﬁat reduced
~size to allbw more symbols to be visible at any one time.
Clutter suﬁpreséion operates in conjunction Qith thevzoom.

Its effeét_is to suppress the display of ﬁhafactervstrings
from the screen when they Qould be too small to be legible or
they would overlay one anofher in a cluttered manner if made
large enéugh for 1egibility. When a symbol appears in a model
(at a smaller size than it was created at) the character
strings aésdqiated with its attacher points ére usually
suppressed, A érid can be overlayed on the drawing to help
‘the user draw,his lines 1in exacﬁly the right'orientatioh,_or
to help him make one line twicé as long as another, et cetera,
The grid cap»also be calibrated to provide dimensional

accuracy on the finished drawing, .(An implementation 1is

31

currently in use as a drafting aid to produce printed circuit
boards.) Thé subpicture facility allows a part of a symbol to
be drawn sebarately and then used in several places. For
example, computer logic diagrams often use small circles to
denote inversion at»the input or output of élements. These
circles can easily be drawn as subpictures‘and then called as

needed. Subpictures can also be rotated or scaled as desired.

vln addition to the graphics and text editors, it is also
necessary to have file managemeﬁt operations which alloﬁ the
storage, retrievalrand manipulation of sets of elements
(libraries). These oéerations also gllow:the deletion and

replacemenf of individual elements within libraries.

1.3.4 Topological Analysis of Composité Elements

A topological data structure is created by scanning the
graphics representations of macro definitions.of composite
elements, WO;king from coordinate informatibn,.the tqpolbﬁical
analysis.module decides which lines are connectéd, theﬁ traces
"out the nets, and provides a structure in which the relévant
topological coﬁnéctioﬁs-are displayéd. From this strﬁcture,
other modules (Section 1.3.5) can determine either the
connectivify of each aftacher point assqciafed with an
element, or the sef of attacher points and 1abe1s associated
with each net. That is,.either the elements or the nets can

be the starting point for information retrieval by other

£

A B B R s B W

modules.

1.3.5 The Role of the Translator

The primary purpose.of the translator is to provide for
semantic propagation as described earlier (Section'l.3.2) and
to reformat the results into thé various forms required by
analysis_roﬁtines. A common form is texf on cardvimages
similar to{conventional programming syntax. Fér-this form,
the translafor allows the user to specify a subroutine‘or
macro syntax (for example) forlthe’output;. Starting with a
model to Bé analyzed the translator creates the éppropriate
initialization and then compiles each instance of a_éomponent
element into the specified call syntax with the actual
parameterg taken from the labels (names) ofithe‘nets in the
model. If no name was given to a net, tﬁen one is created,.
For each disfinct element_used in thg modél,'a subroutine for
that elemeﬁt is éonétructed. A subroutine declaration is
created gsing_the attacher points to ideﬁtify the formal
parameters. If the element has an anaijtié definition, it is
simply copied after the subroutine declaration. If an
empiricalvdefinitjon,is given, a user—sﬁécified sta;ement is
constructed, If a macro definition is uséd, calls are
compiléd fbr the component elements as in iﬁe higﬁést level

model.

When a model is to be analyzed, the model and the

analysis module are identified to GMS, which provides the

33

proper tranélation and then passes control to the designated
analysis»module. A simple extension to the selection command
allows several models to be selected as-abgroup, if.the‘user
finds that more convenient than incorporating them in -a single

higher level model,

Since GMS treats all models éiqilarly until one is
selected for analysié, there is no difficulty in~s¢1ectiﬁﬂ
'parts“of a larger problem for analysis or in maintaining
‘several vériant approaches to a particular problem; The only
difference to GMS 1s that a model which is selected for
analysis need not have a symbol, since a symbol is needed only
for use af a higher level, GMS can accept any model as the |
top level model for énalysis, and conversely, sych a'model:éan.
have a symbol drawn for it and fhen it can be used in fhe séme
way as aﬁy other eiement. This uniform treatment pfeséfvéé
the open-endedness which is necessary for'flexibility and»

continued expansion of the system.

The secret of success of GMS lies in the fact that the
p;opagation of semantics from components to composite 6ode1 is
independent_of the nature‘of.elementvsemantics. fhusvalthough
the element semantics must be tailored fbr an assumed analysis
program, nevertheless a common tranélator'Can propagate

semantics for any analysis program.

The necessary information for element semantics consists

of formulas or element descriptions in the form of text or of

0 & Lok b

¥
- ““':
o
-

34

numeric data also input as text or as a éurvev(graphicalfy).
The information needed to bropagate the.semaﬁtics_consisté of
the intg:cpnnections. At a given hierarchicalllevel, these
are just lines (nets) that join symbols (at attacher points).
Between ievels there are labels that relate internal nets to
extérnal attacher points, GMS translates the graphics
(lihe-and;label) topology description in#o a»macré and

'subroutine_barameter form that can be adapted to all aﬁalysts

routines.

1.4 EXAMPLES OF MODELING

Thése”éxamples illustrate just a few of the many problems
which can be conveniently represented by a graphics diagram.
They were created using PICASSO [HOLM72], which 1is our °

prototype realization of a GMS.

1.4.1 PERT Diagram Example

A PERT_(Prégram Evaluation and Review.Technique) d{agram
is ; represéntation of job scheduling designed to identify the
miniﬁum time to complete a job and to isblate the "critical
path", the éet of jéb steps which, if del&yed, would delay the
whole prbjéct. In addition, the PERT.diagram may identifvy,
for each step not on the "critical path", the amount of
scheduling leeway that can be permitted without.delaying the
entire job. Figure 4 il}ustrateé a simple PERT diagram, 1In

this figure, each circle represents a job step and the length

FI1GH

FIGURE &. A SIMPLE PERT DIAGRARN

s /s i o0b e

35

36
of the job step is indicated by the number within the circle.
The job step at the tail of an arrow ﬁugt be completed Sefore i
the one at the head iS begun., With these conventions in mind,
ﬁe would li#e to compute the time required to completevthe
job., We will use MIMIC for the analysis. .Each line ,
connecting job steps is associated with thg time it.takes to
complete‘the job s#éps ahead‘of it. In this example we assume
that each job step has at most 3 ihmediate.predecessors.

(This 1is norfestriction.) Thds, for a single job stép with

three jobvsteps directly ahead of it, the time of conmnpletion

T is given by ' _ f
T = max(A, B, C) + D

where A, B, C, are the completion tiMes of the jobs directly
ahéad of this one and D is the time for this.job step. This
formula is fhé'seman;ic description of JQBSTEP and can be
understood by the analyéis toutine,‘ Now note that we can use
this same formula for job stéps preceeded by Less:than three
jobs if the missing completion times are set to zero. Since %
PICASSO’s tranélator can assign default values (Section 2.6.4)

"to unused attacher points we can use one element for ail job . ;

steps, with unused inputs having a default value of zero.

We can now apply these ideas at the console, beginning by
creating the "JOBSTEP" element. First we select .the command
for a new analytic description, At this poiqt we may either

choose an existing element (for modification) or create a new

element. We do the latter and type in the new name, JOBSTEP,

The semantic description is then entered by typing the formula
T = MAX(A, B, C) + D
in the appropriate columns of a card image,

When ‘the seman;ic description is complete, we select the
command to draw é symbol for an element, We designaté the
name of our element, JOBSTEP, After we éet.thé zoom factor
(Sectioq 1.3.3) and ask for a grid, we draw the circle and the
lines shown in Figure 5B. The attacher points (A,R,C;D and
T) are then created, by first typing in each character string
and then positioning it with the lightpen. Note that some
attacher pbints include default values, and that attacher
points are positioned at graphics features (e.g. endpoints'of
lines) which can be used to locate them if the accompanying
éharacter,s;rings are sup?ressed to prevent glutter (Section

1.3.3).

Now Qé have the primitive element we need to create a
model., We select the command for a new macro description and
supply a name for our model. We ask for”the JOBSTEP symﬁol-by
typing its.name and, working from a rough sketch, we position
it with the 1ight pen., Eight JOBSTEP symbols are required in
this case, The length of each job step is specified by a
label at the attacher point D kinside.the circle).. Labels are
created by typing the associa;ed character strings and

positioning them with the light pen. The labels inside the

CE /LR G000

FIGS-

1 MAX(A,B,C)eD

FIGURE SA. ANALYTIC DEFINITION FOR JOBSTEP ELERENT

 FIGURE 58. SYMBOL FOR JOBSTEP ELEMENT

38

39

14

circles will be interpreted by the analysis routine (MIMIC) as

constants. The job steps are then connected together by

lines.

We néw realize that the output (the cumulative Compietion
time) of the final.jobstep element must be printed in.order to
have a useful analysis. We suspend work bn.out model and
create énotﬁer primitive element referring to one of ﬁIMIC's
built in functions for printing results, _Armed with this
output element, we return to our model, add the outbut symbol

to the model and connect it up (Figure 6).

Another commaﬁd selects the model for anmalysis, and
provides the traﬁslatqt with spgcifications needgd for the
propagatién of semantics. These specifications also include
job control language (JCL) which'exeCutes'tﬁe anaiysis progran
and returns control to GMS. The text editof sﬁﬁsystem of

GMS 1is used fo_examine the output»(Figuré .

1.4.2 Circuit Diagram Example

For this example,’we_shall assume avmore knowledgeahlé
user than previously, In particular.'we shallvassume that he
is primarily interested in using GMS to translate a drawing
into card iﬁages for input go SPICE [NAGE?B],ia circuit
analysis.program. His problem is siaplified because SPICE
determines his text definitions and electrical engineering

conventions determining his symbols, ' He createslnames,

il
g
P
<cora.
E
=5
T
¥
sy

S

PERT

FIGURE 6. PERT DIAGRAM READY FOR ANALYSIS

40

FI167
11 CU MIMIC OVERLAY VERSION OCT 27, 1969
2 seMIMIC SOUNCE-LANGUAGE PROGRAMsss,
3
L .
5 siam MIRIC AUN OF PERT PRODUCED BY MIMVERT
6 6001 MAKCO.)e 1.
7 £002 RAX(0.,66001)+ 2.
] §003 MAX(G002,6001)e 3.
9 5004 AAX(GO0L)s o, S
10 6005 MAT(6002,6003,6000)+ 5,
11 5007 MAX(6002)+ 6.
12 6006 MAX(GOOT,G005)+ T.
13 0UT(6006)
f1s END
15 Ossv NO FIN STATEMENT FOUND. MIMIC ASSUMES - FINCT TIERO) - sss
16 ‘
1T 1
18 6006 = 1.800000E+01)
19
20
21
22
23 ,
24 FIGURE 7. PERT DIAGRAM ANALYSIS
25 :

o

41

42

&

semantic descriptiohs and symbols for three primitive elements

== a resigtbr, a capacitor, and a transistor -- using common
symboiisﬁ (see Figure 8)., Extra lines have been added to eaéh
of thgse symbols in order to clarify where the element value
an& the éiement 1dentif1cation (XXX) are to be placed. The
textual'sehantié description for each of these elements is
contrived to produce'&alid inﬁﬁt for SPICE, For the resistor,

the following definition is satisfactory
R=>XXX IN! IN2 VAL

the R ->'ensdres that whatever identificatipn is chosen will
be presentéd‘to SPICE with ‘an R (prefix) in front of 1it, thus
allowing'SPiCE to recognize that it is a.resistor. Similar
deécriptions are used for tﬁe capacitor and transistor

elements:
C -> XXX IN1 IN2 VAL

Q -> XXX NC NB NB MNAME

Then the user c;éates a composite elment.(model) named

| ONETRAN, Affef first positiéning the symbolé for the
resistors, the capacitors and the transistor, he connects the
symbols together with lines. Parameters for the individual
elements are provided by labels positioned at the approp?iate
attacher points (Figure 9). Each set of cqnnected linesl(net)
joins together‘a‘group of attacher points, These conﬁectionsb

comprise the topological information in the diagram.

FIGS

ALUE

-

[3

FIGURE 8. SYMBOLS FOR CIRCUIT ANALYSIS

LY
-y
wur?
=5
o
sy
as®
3

S & /4

43

ONETRAN

%33

'AL—QPI BF=30 RB=59 VA=20

FIGURE 9. ONE TRANSISTOR ARMPLIFIER

&‘_.,,a

bC

— 12

— PLOT RMA[PH.

1IN 100BEGNHZ

DC

— -12

44

45

The trahélator performs the semantic proﬁagation by
expanding'ﬁﬁe model (macro definition) in terms of the
semantics of its component elements. 1In this case, the
propagatidn is quite simple, since only oﬁe level of semantic
propagation.is involved. The translator assigns a name to
each net (as identified by the topological analysis routine).
Labeled nets are assigned the label as their name. Unlabeled

nets are assigned a name which 1s generated internally by the

translator. FEach net name then becomes the actual parameter

which is uéed (substituted) in place of‘the formal parameters
identifiéd‘by the attacher points. Figure 10 illustrates how
formal parameters in the element descriptions have been

replaced by_actual parameters from the macro descripfiqn}j The

results of this analysis are shown in Figure 11,

1.4,3 Digital Logic Example

This exémple demonStrates the power‘aqdbflexibility of
GMS by using it to "redefine" (aaapt) an e*isting language
(MIMIC) to handle a_digital logic problem;_for which it was
not designed; Without GMS this would not be practical, but
with GMS.the user can creage a set of eleménﬁs and then wofk
with the symbols for those elements, unencumbered by constant
attentionlto.the intricate details needed to "redefine" the
éxisting language. Since élements are parameterized, only a
small number of primitive elements may be needed. We begin

with the definition of a NAND gate, a gate whose output is

D
2]
o,
oy
Rty
m}»‘
-f"‘}
-
-

ONETRAN

W NV W N

o

10
11
12
13
14
15
16
17
18
119
20
21
22
123
24

SPICE RUN DOF ONETRAN

vos 01 0 AC 1

.MODEL X33 NPM BF=30 RB=50 VA=20
RO9. ~ 01 02 1K

vo3 03 0 DC O

C10 - 04 03 1UFD

@11 05 02 08 X33

R12 - 06 05 500

R13. 0% 07 1K

.OUTPYT Vise 05 0 PLOT MmA PH
.AC DEC 10 1HZ 100MEGHZ

vis 06 0 DC 12

vie 0T 0 DC -12

.END

N

FIGURE 10. TRANSLATOR QUTPUT FOR'AH?L!?IER'

46

—eecc SPICE ~==-e

APITE KUK ur undTakh

AT ALALY SIS - -
PRIV EINIEEIISIIIILINIIINEII I IRV
FREQUENCY e ITuoe OF Voo 7T Tt T . - -
leduul=de Leudue~=ul 1.000£¢030 . 1.000E001 1.000£¢02

ledducei $aOlwe=0i) T T - ¥ . v — .
lec3ac el . . + - . .
pS-1.- I MY - o ¥ . 0 e
1a99c ey MevLHL=UL . . + . . .
26542400 WebI%E-I4 T T T T I . o T
Sedocctou wauliomll . + .
3.3810¢00 Y. LTLE-0) . - - ¥ .- : -
Deuadituy weolLo-Ll s B + .
CER HTR R YebL8l-L: W - e ¥ -
Taduice.e 4svloa=ii . . + .
1.005C+01 4001352~ . T : WO R T .
ledBsttul HeuidL-ua . + .
1,580 401 ; . . - — s -
leddoneuu . . * .
T.siceell . I - - - — g e em :
dedulrect weUduLT U,
3.381c 001 S . . T T g .
Yeulaieoy “edlL-Li . . . e
o.dlubei w.3Tdl-wl . . . ° - . o
[LETR IV Velsetul
Le00ile DalSai-ul . ° o TSt o tTmoTTmmer e 0 I
1.259L ¢uc «09li-uls . .
LebbuEdue wev i~ . .
ledovese., fodcaisui . .
2.512T 400 0.0%3C-0y . . -
SelbcEdie leaduLtiy . .
Sagoleel? L.lb7ceu . T o o R T

Sauldetio . .
Bedlole . . TromrTm T
£.963c 042 ce3afLtiun . .
1.0l CadliEech .) o Te T -
Li¢zserus EPET TR . .
4e9B3E413 SeW3ITESLL . o T T T T e e -
lewdor ey Debouttuy . . -
C291%E 4403 [I v} . . Y - -
delodc ey fediitegy . . .
3.38.C003 Gl l7Teuy . o o T T . -
veuldleod LeldULtuL . . .
s d1Uc tul Leatefrtyst .
Toduiteud sed3zrug . . . ot .
Levbunvow sedauteus . . oL T T T e T .
Legodc ey Leobiueis . : . . .t .
Le28ictLn REEELYIR RN . 00 T crommmmm ey - 4 W
Levdbree.y LebcaLol . - . + .
CebBLliZecu 1eedfeess . ° T . . * TS T
Selbaceun Levslutu, - . + .
DedBlteuy TN . : ool . T . B ¥ o T
Fevldetun isdboceul . . . + .
0a3iilech Letuuztis . : |) o7 T . . N T - .
7adbdbeci ladozvtul . . + .
Lebdueti> abwiondus Tt : - .) + ooy T
ladudre o Lewwictol . - . *
PR ETR N sesbuteul . : o .) . *
Leddre i LemunLtyL . . . *
c¢ablctecy Lewouitui . i . N . +
Selole ey . . *
3.38lE+4. 3 o o . . ¥
Seuldieas Lewuvietul
beSluLtud fewbouels . :)) . ¥
&3 L E T8) iesbureys . . . - *
Lewtvitul . - . oo E .) +
Lewbrltyl . . *
NS S TR B B h h - . . ¥
Led3gilecu L TEFR TS S . - *
2.512C 400 lawusben) . oo T . . ¥
seinditin litoveedl . . } . .« .t
SedblLrio leswbvirul . : SO0 T T . +
Yebidetun FECT IR . . . *
.3L3T+l0 PRE LTS W T = . » ¥
fo3%ic+vo asluvCeul . . . A
Ledbaceo7 le+050Ce0., . - - LT T T . . ¥
lecBdcte/ levedoeul . . . *
LeS830L4.7 1euBE+0L T . T e e D . ¥
iedYvL Lt ievboceul . . o +
Ce5L2U T TOAVARYLe LT T = Tt K . - ¥
Salbeo s Lewbiotol . . - +
TR LevboLtul N PR
Devldr .7 iesovituy.
bedlucecd LeuboleLl T . 0
(K LTS 4 sevubiryl . - *
. o ¥

LedlUETHCH AVRES UL

S
o

48 (

sesvsssrs

.
. e [J— s N
*lebuuotde ~GeulLE+LL . 9.000E€004 1.800€+02
4.000E#CC ~ie7S%0btu. L4 - . - N s
Ledbdr ey “lefgul e, . .
1.5850¢00 7 ~i.Tweleul * . TooTTmem e
led9ot e “asaf3scrue 4 -
Ca512E%ui “le?yiiedls +
Jedocc v “aelBaLtue . . .
Je98icecu ~1s76uitin . ° . 3
bedldlbovu =lefochktuz . - .
Ba31Ii#ll T OSLNTTSEML: LR T TTUTUT 0] 0 :
fodedcriu ~iellcivuc ot :
PERT PN R SY PN .t LT T T T o T . - - i
Lecbdel ~aefioted X . . . i
1e503E001 “leTulctic ° T SO T e . Tt . - -
ia992b00d ~salodtrue . . {
: ki > i
de162c¢0d =Lepbikrby . o
S.9Bict.i | mi.oudctuc B T !
Sebadboct s “lobZyteruc . H
UedluL vl ~iebbateuc . T
Te9%o iy Tassbcttic -
lellalelic L e87efic O
Ledbitee “l.dcBivuc . i
ieZ85l¢c ~le3o0i¢ii B :
leddortee “ieSubttus - H
Ze5i2ctic 1.E50T*sc 0 T {
S.1beivud “sscuibral . :
3VIBAILICT T FL. 6L GC - -
Sevicltec .
6e3buceil =lediciruc 0 o
fadu3Ltuc Taelllttue .
LobuTeld Tefliloleic < -
ied5L tud Taealectiy .
4 YBIERIT SLE402 T 0y T T
14998000 =~i.ldetroe . i
CeBllE ¥l “se2BJEVGC . B o . : - :
elbdrtia =lecbhittic . + . . -
Se3BALHLI T ELLIUTULE P T . . - .
Jsuldctun =led00cCtuC | o . c e . .
Bediurtus “iebdubtic . *
Tedvact.s ~le.d8dEruc R
lcUnI]L.d“ “levadcric - ° ¢ : v ' . -
LedS9t vy “ievYitruc
1e583L¢un T -isbouctue - . e) . . -
LeY93cels’ =i.uoottL.
2a5Liitii Y < . - . °
Jelbiteub b TY R IR . . . :
“aeldoutruc. .o T 8 o T . . k
E “lefluctu. . # . . . ;
5.3L0Ce.s =1, 7%0E4ue .t Tt o . T . B . '
[A LTS 2N] =leludbty at . . . '
LoBblels FLLTTETAGL L T R : . . .
Lee3deeus maullocted b . . ;
asbB2I €L =lar8leder T T T T e T . !
Leddbre.d ¢ . . ¢
&.51cleld [- . . '
deiadctiy + . . . '
3 9FLENS T a7 TTT T . __ . . :
Yeulébed TR A LT g + . . .
6e3LuErLs -1 7Y0leue v Y o . .
7. 9030ty A TTATISYON + . . .
LaGGlid¥vn =ae797L0ue ¢ - T . . T
1.2%4L%u0 A LTI . ‘e . . .
Y1 FIX - Seley eI . v . . .
ledYuitiu YA NN e . . .
P N S T Cl - e B A o :
Jelocctio ~le?99ctuc . . . - i
3.30ictio ~i.T7YsLeul ¢ ° T T . 0 '
3ed12i U0 =de?799cruc + . - .
BILTIHDT TTTIBUICFUT ¥ - ST T T 0 0
7.94acv.o “1.804e¢0e :
LJGUIERST ieBUoE+u2 ¥ - s T T T d — . - .
LagSate? SsedluLtuc + . - . .
15858007 *ae300TH#YET T ¥ B - Y « - Tt '
1e930c¢oi =L.dbuckus ¢ . . . '
EIBLZE T T TEITBUWIFIT ¥ DR e 0 i
S.1Betu? ~legbultu, ¢ . . . 1
Se38il+l? -l.slulvol T TH - . . :
2evleets SsaBuLitic 4
6.3lucenr Telldleerue T VT T - . '* - . '
{a9usL b *ieBlultia + . . .
TSV GE4cs 1 P 3 . . ;
- i
L)

49

false if and only if its two inputs are both true, Our first
convention is to represent true values as analog signals with
a value of 1,0 and false values as signals with a value of 0.

Then the arithmetic expression
Z = 1.0 - x * Y

is cont;i§ed to compute tﬁe output 7 of é_NAND gate with two
inputs, X and Y. Using this NAND gate as a primitive'element
we can construct a model to function as a half adder (see
Figure IZA). In order to test it, we ﬁeéd a means for
assigning inputs and observing outputs. We dq this with some
MIMIC functions (éee Fiéure 13)., The results are shown in

Figure 15,

However, when this NAND géte is used in sifuatidns with
féedback, MIMIC produces a diagnbstic which hsually indicates
a non-physiéal'situation. In this case, our model neglected
the fact that physical gates héve an inherent time delay and
we revise the text of our semantic description to include
this. (MIMIC’s TDL (time deléy) function requires a third

~argument (10.0) for storage allocation purposes,)
Z.= TDL (l. - X * Y, TD, 10.0)

Here we have introduced a parameter, TD, which 1is global since
no attacher point occurs to make it a formal parameter,. and we
must be careful to give it a value in our model., This allows

us to simulate "slow" or "fast" logic by manipulation of this

g s& /L i 0bp kOG0

50

HALF

l_}—

o>

FIGURE 12A. HALF ADDER FROM MAND GATES

— 1
— | ‘ c

FIGURE 12B. HALF ADDER SYMBOL

HALFTST

n

.

[0

F o

FIGURE 13. HALF ADDER TEST CIRCUIT

51

NN N NN NN o e oo e vt e e e
VD WN = O W ® NV EWN ~O O

® ~N 0 B W N -

HALFTST

MIMIC RUN OF WALFTST PRODUCED BY WMIMVERT
" HALF BAL(C X .Y 1).
6001 SFIXCTOL(L.-XsY, TD,20.)+.5) ‘
6002 SFIXCTDLCL.~XeX, TD, 20.)¢.5)

6003 ZFIX(TDL(1.~YsY, TD,620.)+.5) _
c =FIX(TDL(1.-6001%6001,7TD,20.)¢.5)
600n =FIX(TDL(1.-600356002,7YD,20.)+.5)
6005 SFIX(TDL(1.-600156004,7TD,20.)¢+.5)
z =FIX(TDL(1.~6005+6005,TD,20.)+.5)

EMA v

PARCXL, X2,%3,Y1,¥2,¥3)
PARCTFIN,PT,TD)
FINCT, TFIN)

X SFSW(SIM(PES(T-X1)/X3)eSIN(PIo(T~-X2)/%3),1.,0.
HALF L TR X K 0
v SFSW(SIN(PIS(T-Y1)/Y3)sSIN(PIs(T-¥Y2)/¥3),1., 0.
PLOCT,Z,C,X,¥) C
END

FIGURE 15. TRANSLATOR OUTPUT FOR HALF ADDER

0.

’

0.

'

)

)

52

4.00 6.00 8.00

-2.00

-2.00

6.00

4.00

Q.

-4.00

-2.00

4.00

-4.00

=6.00
=6,

-4.00

~4.00

25.00

53

0. 5.00 10.00 15.00 20.00

FIGURE 15. RESULTS OF WALF ADDER TEST

11702775, 1%.45.54,

54

parameter,

*

The point of our déscription is to emphasize that
refinements can be made to the semantic descriptions of
elements without disturbing models which use them as

components, This is essential to allow prbgressive refinement
1

of-problem descriptions, A further refinement (to correct
roundoff errors) is shown below:
Z = FIX (TDL(l, - X * Y, TD, 10.) + .5).

This particular element, NAND with time delay, is used in a
more complicated logic problem, designed by Richard La Pierre"

(Figure 16), More complete documentation for this problem is

.available from the PICASSO user’s manual [AUST?Z].

l1.4.4 Compartmental. Modeling

Compartmental modeling is a technique in which fluids are

modeled as if contained in a discrete set of compartmgdts with
.channels‘bétweén them..'It can be applied 1ﬁ diverse.

situations from many fields,‘including biology, chemistry and .§
1énginee;ing. We shall take éhe following example from an

engineering épplication, an analysis of water and pollutioh

flows in thé Sah Fraﬁcisco Bay area, 'Ouf model of the bay -
Qill be a series of compartments, connected by channelé,‘ A -
roogh sketch of the configufation reveals ;hat no compartment

is connected to more than three channels, so we designate

three possible channels for each compartment, labelled, A, B,

PIERRE?Z2

m-l:' (] ", 3:“;‘; mr—' »
o ol ™
A =
e

SE

SEQUT

Ca

-

s
gRBC £ | —
‘ 10 . l"

g
I
l

o

§13]
O
(3133
0
$§§41)
| O

FIGURE 16. SAMPLE LOGIC PROBLEM

e e

56

and C, and we use only as many as are needed in each case,
The amount of water in each compartment, V, is the time

integral of the net flow into it from the three channels:

V(t) = V(0) +;/'(LA(t) + Lg(t) + Lo(t)) dt
Eéch chanﬁel connects two compartments, which we designate as
A, the upsfream compartment; and B, the downstream
compartﬁent; The amounﬁ nf’water flowing in a channel is
proportional to the differénée between the'heights of the
compafﬁments, HA' and HB’ and to the cross-sectional area GA

of the channel:
L(t) ='(HA(t) - HB(t)) . CA

But the height of the water in ‘a compartment is the ratio of

the.volume V to the base area AREA:

H(t) = v(t) / AREA

In the same hanner,'we analyze the amount. of pollutant P in a

‘compartment:’
P(t) = P(0) +[(FA(t)T+. Fa(t) + Fo(t)) dt
where, for each of the three channels A, B, and C,

MA(t) . L(t) 1f_L(t) > 0
F(t) = | |

Mg(t) o L(t) 1if L(t) < 0

Here M, and M, are the concentrations of a pollutant in the

57

two compartments. The assumption is that each compartment is
well mixed; that is, the concentration of pollution is uniform
throughout the compartment. This concentration is therefore

simply the amount of the pollutant divided by the volune:
M(t) = P(t) / V(t)

These two elements,.the compartment and the channel, are
the'priméfy elements needed for the anal&sis. However, a
number of.other elements are ﬁeeded : vafiations of these.
primary élements to suit special needs, and utility elements
for inﬁut, oﬁfput and términation. The two spec1a1 elements
requifed_are a compartment whose height is a sinusoia and
whose>pollufion concentration is zero (to serVe as the ocean),
and a cﬁaﬁnél whose flow is independent éfvheight (which can
be used as a river). The utilicy elementsvrequired are
constfucted using analf;ic definitions yhich refer to standard
predefined MIMIC funqtions fpr input (Figufe‘l7), output

(Figure 18) and termination.

" We cén'noﬁ enumerate thevparametersbwhich_must be
provided for a compartment:.threé outputs (the height of the
water H, the amount of pollution P and the concentration of
pollution ﬁ), and nine inputs, that is, thrég initial
conditioﬁs.(volume V(0), base ;rea AREA, and initial pollution
P(O))vand avpair ;f ihputs'for each of tﬁree:channel# (water

‘flow, LA’ LB’ LC and po;lution flow FA’ FB' FC). Each channel

has four outputs {(two vater flows LA-and LB and two pollution

FI1G1L17
1 PAR(PY P2,P3, P4 P5 P6)
2
"FIGURE 1T7TA. ANALYTIC DEFINITION FOR P‘RARETEA INPUT
—s1s
| a7} 7]
- —3/
| |
Pos 5/ jol
FIGURE 178B. 59000L FOR PARAMETER INPUT
-

58

FIG18

PLOCINL,IN2,IN3,INA, INS, [N6)

-FIGURE 18A. ANALYYIC DEFINITION FOR PLOTTED OUTPUT

*
. FIGURE 188. SYMBOL FOR PLOFYTED QUTPUT

59

60

flows F, and.FB). and five inﬁuts (twoyhefgh;s HA anﬂ HB’ Fyo
pollutioﬁ'ééncentrations MA and MB’ and thé vaLue fot the
channel cross sectional area)., Note that tﬁe nét.flow in the
channel is zero; we have assumed that the channel has no

storage capacity.

The user has now reached the point where GMS can help
him, He has formulatea the problem and derived the
mathematics neceséary for its solution, ﬁost importantly, he
has establisﬁed a conceptual framework and a set of

conventions to guide him in further development of the model,

The actual example shown here uses a special string
substitutioﬁ feature to feducé the number of nets (Section
2.6.7)}heéded to join compartments and channels. Since the
translétof.will substitute the name of ‘a net:for the formal
parameters named. on ;he aptéchet points, we can use a
cpncatenafion feature in the‘traﬁslaﬁor to prefix each of
several ideﬁt;fying'éharacters té the striﬁg which repfesents
the name of .the net. The effect of this (in this casg) is to
. provide qur.variables from a single net name, 1If our
character. string manipulations are consistent among the
vgrious eleménts, we can use these four variables as 1if they
were connec;ed by four parallel nets. ‘For the compartment the
formal parameters fo; connection to the thrée‘éhannels are A,
B and C. The ;ariables:assoéiéted with parameter A would be
LA (for the flow), HA (for the height) FA (for the pollution

flow) and MA (for the concentration). O:her variables aré

61

renamed as follows: VOL for the initial volume V(0) and POL
for the initial pollution P(0). Simiiar,manipulations are

-

made in the channel parameter names.

The user must now create the primitiVe“élements,
including,names,'semantic descriptions, and symbols for the
compartment (Figﬁre 19), the channel (Figufe 20), and the
special variations of these elements. The“utility elements
must alsO'bebconstructea, unless the§ can Be borrbwed ffom one

of the existing libraries of elements.

Then fhe model (Figure 21) must be created, including its
name,vplacment of the various symbols, and #heir connectiqns.
Attention must be paid to the assignment of parameﬁers to the
glement§,~to.be surévthat all the channelé have base.areas,
.1nitia1 Qolumes and so fofth. . The valueé‘used in this model
were obtained in part from a report on tﬁe San Frahcisco Bay

by the Kaiser Corps of Engineers [KAIS69).

The translator function iﬁ GMS will provide a card image
interpretaffon of the semantics of thé modei.and its component
elements, Figure 22 gives a partial listing. .Céntrol then
_ paéses to MIMIC (via'JCL)»fér analysis and'display (Figures 23
and 24 show.typical outputs). When MIMIC is terminated,
control returns to CMS for more work on ﬁhe-model or

termination of the session.

PO /L oFE 0000

NODE
. v INT(L=A+L=BsL~C,VOL)
2 WY (V-VOL)/AREA
3 Wt T
' H-B HY
5 Mt T
6] INT(F=A+F=BsF=C, POL)
7 n P/V
8 e)
9 nes "t
10 n-c "
11
12
13
14
15
16 ,
17 FIGURE 19A. ANALYTIC DEFIMITION FOR A COMPARTRENT
10 :

62

F1G198

FIGURE 19B.

SYMBOL FOR A COMPARTMENT

3§
e
T

ok 2O 00

0

63

CHAN

- e e e
B W N - O W

@D ~N VLW N e

DH
L=B
L=A
n

F-A

FTR(N=A-H=B, TAU)
DHeCAsKF

~L-8

RAXCOHSKD, 0. Yo Meh
(IA-MAX(-DH*KD,0.)sn<B)sCASKF
~F-8 : o

FIGURE 20A. ANALYTIC DEFINITION FOR

A CHANNEL

64

{
1
i
i

FI1G208B

FIGURE 208.

SYRMBOL FOR A CHAMNNEL

65

66

BAYMQD

FIGURE 21. A COMPARTMENTAL MODEL FOR MIMIC AMALYSIS

BAYMOD

1 sIAm MIMIC AUN OF BAYMOD PRODUCED BY MIMVERT -!

2 DTMIN DTAAX : !

3 DT DT MAX

4 FINCT,TFIN)

5 HEOO 4 "TIDE*SIN(T» . 5)

6 NGO04 0. .

7 PAR(TIDE,DTRMAX, TAU, KF, KD, TFIN)

8 6003 FTR(HGOO1-HEO008, TAY) . :

9 L6008 6003+ 5. sKF

10 L6001 -Le008

11 6006 MAX(GOO3I+KD,0.)smEO01

12 FE008 (GOO6~MAX(~6003+KD,0.)sMG5008)s 5. sKF

13 F600) -FG008 - B

14 PAR(P1, P2, P3, Pa4, PS)

15 6007 FTRCHGOO2-HG009,TAU) '

16 L6009 GOOTs S.sKF

17 L6002 -1L6009

18 6010 MAY(GOOT+KD,0.)em5002 _

19 FE009 (GOLO-MAX(-GOOT+XD, 0.)smGO09)e S sKF

20 F6002 -F6009. :

21 6013 FTR(HGOOA-HFF, TAU) ,
22 LFF 6013% 3. sKF o
23 L6004 -LFF : }
24 . 6014 .. . MAX(G013+KD,0.)sm6004 : i
25 CFFF (G014-MAX(-E013+KD, 0.)oMFF)s 3. »KF |
26 FEOO04 ~FFF . , i
27 6017 INT(LEOL1S+16009+L 6011, 100.) - :
28 MSOUTH (601T- 100.)/ 6.0 ﬁ
29 HEO15 HSOUTH :
io HE0O09 HSOUTH

3t HGOL1 HSOUTH N :
32 PSOUTH INT(FGOLIS+FGO09+FEO0I1, PA) §
13 6016 PSOUTH/EOLT

by : _ _
s FIGURE 22. PARTIAL LISTING OF THE COMPARTRENTAL MIDEL

P
Ny
¥
5

T

AN
v ¥

0

67

68

:-!;.-_..:I.;I{f .-4j
po -
1 L
1 1
00°01 000 00'Y TN 00°'2 "o
L A . i 14¢
000l YR 909 00'% 00°2 0
L [} LLUTH
000t 00°8 00°9 TR 00°'2 0
t ¥ Vinidy
00°01 00°¢ TR 00" 003 0

Hinosd

1.5€+02 2.0E+02

1.0E+02

- 50.00

200 HOURS OF 'OLLUYIOI'NISTOIV.II N CORPARTAENTS

FIGURE 23:

16.25.03.

11702775,

L}

PSOUTH

00 “6.00 00 10.00

.00
FcEnTnh

i

.00 6. 00 8. 00 10.00

.00
Isanra

B

10.00

8. 00

6.00

2.00

0. 2.0E+02 4.0E+02 6.0E+02 8.0E+02 1.0E+0)

FIGURE 24. WEW PARAMETERS SHOM EFFECTS EXTENDED IN TINE

11702775, 16.30.21.

69

70

2. A GRAPHICS MODELING SYSTEM

2,1 SOFTWARE ORGANIZATION (AND OPERATION)

We have argued that a CAD system.can bg divided into a
problem.definition module and a'problem-éolving analysis
module. Fighre 25 illustrates the information flow for sﬁch a
system.l We have shown a CRT and a keyboard as the man-machine
interface, For maximum effectiveness sucﬁ an interface could
also include a lightpen, tablet, or othér auxiliaryvdevices.
The illustration sths GMS on the left being used to construct
primitive elements and.mode1s, and storing them in a library.
The analyéié section is shown to the righf,>with its input
"obtained éither directly from the element library or
indirectly via‘the ;raﬁslafqr and an ihperﬁediate'file (shown
dotted). The analysis section produces ‘an outpuf file:which
is then interpreted by the display rdutines.» In many céses,
the display routines will bg combined With £he analysis
routinés; '(Ultimately, howeQer, 1 thinkfthaf a set of general
.purpose'dispiay rputines'will prove to be mofe powerful than
an 1ddividual set for each analysis packége. The reasoniﬁg
behind thisJCOnclusion is énalogous to thaf leading to a

separate GMS rather than one for each appiication.)

Fl

625

MODELING

LIBRARY

CRTY

'\ . :

—

KBD }

l TRANSLATE

——\

ELEMENT

/

FIGURE 25.

\

|

I

~
/

AN

INPUT

~

-

FILE /

ANALYSIS -
ROUTINES

NEW \\1
i

o

|

L

ANALYTE

DISPLAY

GMS-CAD INFORMATION FLOW

b

53

P

71

12

2.1.1 GMS Information Flow

Figure 26 shows the information flow within GMS itself.
The graphics editor accepts information from the user,

modifies the edit buffer, and updates the display. The text

editor performs similéfly on text. The edit buffer is simply
a reserVed‘part of memory in which addrgssing of individual
items ié_véry éimple. ‘(Details of these data structures are
provided-in'seétions 2;2 and 2.3.) The f{ling modulebis,

responsible for storage and retrievalffrom d1sk and for

loading the édit buffer~from‘thé element library area in
memory. ;Thg filing module is the highest'lévei routine, in
the sense tﬁat it loads the editvbuffer_an6 activates thé.

: othgr roﬁtipes. It also maintains the diregtory structure
which fiés together the syébols 5ﬁd éemantic“déscriptions of

elements.

GMS, in the cbnceptual seﬁse,bis a methodology for the
problem—@escription phase of CAD acfivitieé. GMS, in the
p;og:ammiﬁg_sense, is a data structure and a set of modﬁles
which support the désign tecﬁniqueé."Iﬁ_the.conCeptual sense,
wé have found it convenienf.to describe activities such as
creating»priﬁitive e1ements,Aéréating cdmposite elements and
translating_mddels ﬁbr anéi&sis. ‘In the programming sensé,
the creation of primitive elements is not concentrated in a
single modulg,'but tafher sp;ead over the filing, fext editor
and graphi@s,editor méduies. In the same hanner, the gfabhics

editor is not limited in fespbnsibility to just one task, but

.F1 G626

CRT

a

GRAPHICS

TEXTY

EDITOR

EDITOR

ToroLosY

EDIT BUFFER ANALYSITS

FILING
MODULE

TRANSLATON

ELERENT

LIBRARY

FIGURE 26. GMAS INFORMATION FLOWM

73

14

must edit symbols, macro definitions and empirical
descriptions; a single common editor is preferred to a
separate editor for each task., This requires that a common

set of graphics primitives be found for these three tasks.

2.1.2 Graphic Primitives

The design of GMS requires the specification of the
graph1c$ prihitiQes_po 5e.used and thelir correspondeﬁcg to our
description of element symbols; model descriptions and
empiricél_descriptions. .fn the case of ﬁodel descriptioné,
the_cofteépondenée'is‘obv;dus: subpictufés for smeols, lines
for nets, and a1phanumeric annotatioﬁ for igbels of nets, For
>Subpiéturé§; we have added the useful featdfes of scaling and
rotation, :In general, alphanuheric annoté;ion codid includg
both a coordinate location for thévattachment (to'some
feature) of the stfing and a sepérate location for the display

of'the'chéréctér string. This latter location would be:

sttictiy a graphics feature, but could increase the legibility

of dénse-displays.: In the prototype, only one location is
allowed; thé coordinate location for attachment is also uséd_
as the oriéin‘of fhe first pharécter of the string for
display. Also iﬁ,thé prototype, theventire.annotationbis the
unit of editing, precluding either the replacement of |
individgal characters within the string, or moving the string
once its‘position has been confirmed. This has not been |

inconvenient, since most annotation is short,

¢
!
i
H
!
b
i

75

Our choices of graphics primitives are motivated'by a
desire tolchoose high-level primitives which are sfill
compatible with easy editing (of our type of drawings) and
easy inﬁerpretation (for topological analyéis). Thus, if 1nes
were created explcitly from points, the flexibility gained
would nét'compensate for the greater comblexity in using and
analyzing the drawing. At the other extreme, 1if sets of
joined 1line segments wére ;he units of editing, the user would
find it more difficult to éhange one line segment in a group,

élthough the topological analysis might be'easier or faster.

Another motivation for‘oqr chéice of graphics primitives
ié to allow the use of the same graphics primitives and editor
fot drawiﬁg element symbols.‘ For usevin element symbols,
lines correspond to lines and élphanumeric annotation to
attacher points, Thg graphics elements are the same, but the
ﬁeaning.is_différent;. Lines have no meaning other than;as a
visual elemént, while annotation 1is now_Uséd fbr attacher

points instead of labels.

The correspondénce between graphics primitivés and data
sets. for empiriéal définitions of primitive elementé’is the
"least well developed of the prototype’s capabilifiés. While
lines aﬁd»alphanumerics enable nearly all cﬁarts and praphs to
be reproduced in a visual senée, it is not always clear how
these charté and graphs should be convertea to data sets (e.g.
tables of numbers) and Qice versa, The'prototype system .

requires that empirical descriptions have the form of a single

4 /21 6kt 0000

76

curve, single valued on the x=axis. chles may be given for
both axis and either axis may be specified:as linear or
1ogarithmic. A generalized 1/0 facility in the profotype can
convert ahy drawing to a card image description of its
graphics primitives and vice versa. This feature éan be used

to incorporéte simple tables into empirical descriptions,

For_the creation of text, the prototype has followed the
example of most common simple text editors. The units of
editing are the line and the character. No problems were

encountered (or expected) in this approaéh;

2.2 DATA STRUCTURES AND STORAGE

The purpose of a data st;ucturehis to alloéate’storagé to
the varidus pieces of information whiéh must be étored (items)
and to provide access paths for use expiicifly by‘the program
and ifmplicitly by relations within the data (1links). For
GMS,lthé:é is a naturai grouping of the items into -blocks,
This grduping is natural in‘theISense that_iinks in GMS aLQays

refer to a ¢omp1ete‘bIOCk and ho; to iteﬁs'within a block.

2.2.1 Types of Blocks

The four types of blocks'are‘gtaghics blocks (items are
lines, alphanumeric annotation and symbol references), text
blocks (items are lines of text), togologx blocks (items are

nets, labels, symbol references and attacherupoints)'and

17

empirical blocks (items are pairé of numeric Values)i

A primitive elemenﬁ with an analytic description has a
graphics block for its symbol and a text block for {ts
semantic desériptor3 A primitive element with an empifical
description has a graphics block for its symbol and a graphics
block for its semantic description. 1In principle it also has
an empiriéal block>containing data points ;hat comprisé a
tabular repfesentatioﬁ of the semantic description praphics
‘block; this block is not formed until neédéd since it is a lot

of work to keep it up to date when the graphics changes.

Each composite element has a graphiés block for its
sjmbol (if any) and a graphics block fof‘ifs semantic
descriptioﬁ, In principle, it also has é topologyv block
containing a rearrangement of the graphids block lines into

nets; this block is not formed until needed.

The translator also uses templates (Section 2.6.3), the
data for which is stored in the text block. These are created
in the samé manner as the analytic description text blocks

used for primitivebelements.

" The norﬁal display operation is a sequential scan. of a
graphics block or of a_text block in the edit buffer,
interpre;iﬁg each item énd generating the specified picture or
text strihg_display. Topology and empirigal'blocks aré
procesSed only by the translator; they contain auxiliaty

informatioh (topology or data points) needed for translation

A A A B O R A 4 o

78

but not for display.

The strategy used in the prototype GMS is to allocate
memory at the block level and to keep track of these biocks
with a directory (Figures 27, 28).» For the sake of
simplicity, the prototype stores eaéh block in the element
library, é ébntiguous area of main memory. When a block is to
be edited, it is.movea to the edit buffer and the following
blocks are moved up to reclaim the space;‘ When editing is
finished, the block is moved froh the edit‘buffer to the. end
of the element library area. (The amoﬁnt of memory available
to the program and thus the size of the element librarf area
can be chéﬁged by a request to the operating sfstem.i This
tgchnique eliminates the need for a separate garbége.
collgction phase and requires a minimum of memofy. In use,
editing seeﬁs to cluster'qithin a fewibl§cks; and fhese biocks
mov; tb thé end of the storage area and reduce the amoun;“of-

storage_shuffling required subsequently,

2.2.,2 Data Structures for Graphics and Derived

Blocks

A design decision in the prototype wés té include no
auxiliaryvof secondary information in the graphics dafa
structure, That is}Awhile a graphics block is being edited,
no secondafy information (e.g.'nets) is derived from the
pictoriai information. A seﬁarate block is used for this

information -and a conversion module is executed when the

@

FLG27

EDIT BUFFER

: CURRENT
DISK .
ELEMENT - \
LIBRARY LIBRARY X
S A R S

: FILiNg FIUING
DIRECTORY —
DIRECTORY <— ‘Bt NODULE

PODULE
X A
/
. /]
\g CHARACTEW
STRING

BISFER

i

ELEMENT

/ /
v BLaCK Y
) '/

i

/

!

i

E

e

FIGURE 27. OVERVIEW OF THE DATA STRUCTURE

FIeas

ELEMENT

-

DIRECTORY
-
wie| e
ai=1:=
AR

>
alel 2
]
L/
BLOCK
AREA
SYmeO(

(GRAPHICS)

ANALYTIC DEF.
(TEXT)

AT, PT.

FIGURE 28.

' S T LaREL
STRING q__/ '

T3POLO BY ’/ ’
SYmBdL
AT. PT. |

LIBRARY

CHARACTER
STRING.

BUFFER

STRING

DETAIL OF THE BLOCK STORAGE

EDIT

BUFFER

SYRBDL
Ling
.
i
i
{
i
i
STRUCTURE

80

4

31

secondary information is needed‘(if Chanﬁés‘haVeibeen’made
since the last conversion). 1In the prototype, tﬁis secondary
information is the topology and the émpirical analysis of the
drawing, produced by'the topology and empirical routines. The
advantage of this separation of data‘stfuctures is that both
Structures are easier to interpret, less computation is
required during graphics editing, andbproéramming“is reduced

and simplified., The disadvantage of this épproach is that no

topological information can be given to the user during

éditing.’ For exémple, he cannot be warned that a particular
connection might be invalid. He can be warned later, of
course,7bﬁt effort may have been wasted in the meantime on the

editing of erroneous data,

The separation of data structures also provides more
insight into how an existing graphics éditor might be

incorporated into a GMS.

Within a block, the individual items have been arranged
to meet the needs of each particular type of block. For
graphics blocks (Figure 29), each item consists of five

fields. The first field gives the type of the item (line,

~alphanumerics or symbol reference); the second and third

fields.give the x and y coordinates of the origin of the ifem;
and the fourth and fifth fields give thé ehdpoint coordinates

for lines, or a size/orientation field and a pointer field for
alpﬁanumerics and symbols. For alphanumerics; the pointer

refers to a charactér string buffer, a reserved area of fixed

kAL 0P EG 00

FI1G29

LINE

"ANNOTATION

SIZE/

ROTATION .

TQ CHAR.
BUFFER

SYMBOL

SIZE/
AOTATION

!

FIGURE 29.

GRAPHICS. ITERS

DATA STRUCTURE

BRI :
DIRECTIRY

82

83

siée where the character string for énnoféﬁion is stored.

(See Secfion 3.3.2 for‘improvements;) For s&mbdl.reférences,
the pointér field contains a link to the block whose item§ are
"the lines and alphanumerics of the symbol. More details can

be found in Sections 2.3, 2.5 and 2.6.6.

-For blocks containing a topological analysis, the items
are similér to graphics items. Lines have been removed by the
topologicéi_analysis module and their information is now

conveyed by net numbers, Attacher points are now included,

distinguished from labels ﬁy a different type number (and a
different function). Label and Symbol items are similar to
the graphics format, with the fourth (size/drientation) field

replaced by the net number.

Blocks containing a data set for an empirical definition’
are compOSed of a sequence of x,y coordinates, stored in the

hardware floating point format.

2.2.3 Data Structure for Text Blocks

A text block is composed of lines of text with eacy line
terminated by an end-of-liine character. Ten characters are
storgd in eaéh computer word. Trailing blanks in each-line
are removed and the last (partiélly filled) computer word 1is
filled wiih Elanks and the end-of-1ine character. Thﬁs, each

line of text occupies an integral number of comnuter words.

84

2.2.4 Filing Module .

While the element library containé all the information
associated with a set of elements, it is necessary to provide
permanent storage fbr this data. Although'a‘simple disk . .
writing'roﬁtine might suffice, the protdtype-has been provi&ed
with_the capability to store and access several element

libraries, collectively known as the disk library (Figure 27),

The user may copy the current element library area to the disk
library as a named.element'library. Named element libraries
may be loéded,verased, or appended to the current element

library.

Ordinarily, the user’s first actiqn after the prototype
beginsvéxecutibn is to se1ectvan element iibrary to‘be read in
'(loaded)”frbm the disk. A fixed-length directory is stored on
the disk with a namé for each element library and a disk

address for it.

A'copy o£”this directory resides in haiﬁ memeory,
~although changes to the directory.arekimmédiately made to the
disk copy aléo. This ensures that when the‘program or
hardware créshes, the disk can be read to recover the most

recent version of the element libraries,

At the disk address referenced by an element libhrary
name, there is a short record giving the lengths of the
element library directory, the element library character - ;

string Buffer and the element library blocks. These objects

85

then foilow; using as mpch disk space as required. When a
named element library is to be read 1nt6 the current element
library érea, the name is designated; thé program looks up the
disk address, and reads the length information. At this
point, mdfe memory is requested from the operating system if
it is reduifed, and the data_is then read into memory. 1f an
elment library is being appended to an existing element
library, thgn the disk is read into memory following the
existing elément library area. Within the appended sets of
elements, the pointers to the directory énd to the character
‘string bﬁffer are Iincorrect by a fixed offset. A subroutine
scans the entire data structure and revises these pointers to
.correspdnd_to the néw locations in the directory and thg

character string buffer,

When a.named element library is to be erased from the
-disk library} the directory entry for that named element
library is simply deleted. wﬁen the element'library is to be
‘stored on the disk, more disk space 1is alioééted and the
element library is copied out. The directory is updated both
on the disk énd in memory. Garbage coliéction of thé‘old
information is pérformed ;t zhe end of each'ruﬁ but the user

2

has the option of’skipping it.

£
™
.
F
£
-
on }

86
2,3 THE PROTOTYPE GRAPHICS EDITOR

The graphics editor operates on the edit buffer. The
filing mbdule copies a block from the elemeﬁt library into the
edit buffer. The editor displays the 1temsvin the buffef,
acéepts reqpests to add or dele;é 1tems,'and.displays the

revised buffer,

2,3.1 Data Structures Used by the Graphics Editor

This section describes the requirements which must be

satisfied, and the resulting data structﬁre; First, the data

structure is‘used for display of the piqtﬁre; second, the data
structure must iden;ify items from graphicé inpgt (that.is,
act as a look-up table) and third, the data structure must be
analyzgd':o'form nets, Thgse th;eé requirements, together
with the need for easy modification of the data, guide tﬁe

evaluation of proposed data structures.

The dominant influence on the design 1s ‘whether the data

struct@revis to be interpreted by hardware_q;_sdftware fof
.displéy of the picture, If.the data sfruétd;; is to serve as
a conventibnél hardware—interpreted diéplay;list for a refresh
display, tﬁen the alternatives are practibaily elminated and
the other aspects of the data structure are fitted Lﬁ as well
as bossiblg; In thé prototype, the data étructure was to be
interpreted by software and these othér aspécts strongly

influenced the design. Software interpretation is not

v
4
i
{
i
{
H
i
'

(4]

87

i

-~

altogether Bad, however, since it simpiifies zooming énd
providing a large work area. The alternative is to provide
several gréphics “pages" for a drawing, butvthe user shouldn’t
be forced to‘divide his drawing 1if he dogsn't want to.

Ideally, both schemes should be provided.

The second most frequent use of the data structure is as
a lbék;ub table from graphics inpdt.to data item locations.
As before, the hardware available can make a big difference.
In particular, if the hardware provides a poiﬁter to the
display item detected (by 1ight pen 6rjspecial'tab1e£s
equipped with comparators), then the look-up is much easier.
In our case, only the x,y coordinates of the 1item detected are
feturned. In drd;r'td.pfovide the look-ub without an
exhaustivé_Search, the prototype stores its gfaphits items in
the edif bﬁffer according to the x COordiﬁate of the item.
TFaE is, when én item is to be stored, its x coordinate
(suitably écaled) is used as the index in the érray'where the
item is'étored. When an 1;em is selectéd by the user, the
coofdinages;are used-as fhe 1ndéx'to rétrieve the item,
Colliéions are dealt with iﬁ'a manner usediby many hasﬁing
schémes:ﬁaﬁ item colliding with another is stored 1in the next
sequential.uﬁused (open’ location, Thezétorage scheme must
also recognizé ﬁhis convention in its seérches: beéihning at
the.index for the.coordinates gi?en, it scans sequentiallyt
until the desired item or an open word 1s found. If an item

i8 erased, 1t is replaced by an "empty" but non-open word.,

L4 /LoD 000

88

vThe third requirement for the GMS data structure, to
allow a net search, is quite similar_td the second,'since a
coordinate;étiented look-up is involved. .If the look-up for
gtaphics.inpdt has been performed by the hardware thever,vas
in DIM for example, some auxiliary ta@le'is usually required

for thié'séarch.

In its ease of modificatibn, the structure used by the
prototype is superb, since there are no linkages or
directories to be updated and neither deletion nor insertion

requires existing entries to be moved.

Summarizing our implemeq;ation of the edit buffer
structure, its advantageé are ease of look-up and net
searches,.énd ease of modification. Ité disadvan;ages are its
fixed size.aﬁd its bigs.toward software iﬁterpretationAfor

display.

2.3.2 Implementation of Graphics Editor Commands

The g;aphics display is dividgd into fﬁree'areas: an ;rea
v fof'the dispLay of the edit.buffér, a menu area (the right
hand side of the screen), aﬂd an area for the display of
status and instructions (top of screen). Commands are
initiated bylbointing to .the appropriate menﬁ entr&. For each
command, instructions and (possibily) a new menu are prbvided.

The major commands are given below.

1. The first command required to edit a dréwing'is given

@
e

89

to the filiﬁg module, to retrieVe.a particular graphics block
from tﬁe elément library for editing. The filing module
retrieves each item from the block and stores it in the edit
buffer according to its x-coordinate. The block is then
deleted from‘the elgment library. The topological analysis or

empirical analysis is also deleted if any exist,

2. To draw a line; one specifies a sequénce of points
(e.g. by light pen). The first point begins the line and
subsequent.poin;s are joined'to the previousvones to create a
joined line segment, If.coordinate input is recéived when no
command has been selected, the line command is assumed. .This
is the only default command., There is a hardware.mode which
provides akcontinuous sfream of points (ftom fhe tracking
cross). The software organizes these points into line

segments,

3. To énter alphanumeric annotation, 6ne‘type$.the
character string on a keyboa;d; and then enters a position via
the lightpen, At this time the annotation'aﬁpears, Sﬁt it can
still be moved about, rotated and‘changed in size, using an
auxiliary menu whicﬁ feplaceé the primary mqﬁu.for the
dﬁration of this command. (During this manipulation, only the
chaﬁging annotation is rewritten iﬁ the dispiay hardware,
using én addressing capability in the display hardware.) When

the user is satisfied, a "confirm" signal is given and the

‘annotation is frozen. It can no longer be manipulated, except

by erasing it and creating it again. At this time, the

e /L /O OO0D0

90
primary menu resumes,

be When the user wishes to add a previously defined.
element symsol to the graphic description of a composiée
bldck, the 6pefation is similar to that for annotation. The
usér is instructed to type the name of tﬁe'element whose
symbol 1is désired. (Only enough characters for unique
idéntificatién need be given.) the user is then directed to
enfer ah’initial»position. The symbol aﬁpears here but it can
still be moved about, rotated, and changed invsize, using an
auxiliary menu. When‘the user 1is satisfied, thé symbél is

frozen,

5. To erase an item, the user points to the item and the

x coordinate 1s used to find the item in the edit buffer. The

item is blinked and then erased upon confirmation. If more
than one item is located at the given coordinates, each one is
blinked in.turn for the user to select the proper one. A

variety of options aid in this selection, including a choice

of what kind of item is to be erased, and whether confirmation"

is required or not.

6. When the;zoom paramétersfare toﬁbe~éhanged, the
display is redrawn at a magnification f?§tor of one and a
>square is'dfawn on the scfeen oufliningythe”area disﬁlayed
previously. The square can be moved and changed in size with
the light ﬁen until'the desiréd éréa is within the square.

The display is then redrawn with the desired area filling the

91

screen. An alternate set of commands allows the square to be

moved in any directon, in steps of the square width,

7. A grid is provided as an array of dots, The user
specifies (by typing a number) the spacing between dots (with

a spacing of zero denoting no dots).

8. When the user is finished editing, the items 1n the
edit buffef are copied to the end of the element library and
the new graphics block is entered in the directory under the

name selected earlier.,

2,3.3 -.The Softwafe-Graphics Interpreter

The software g:aphiés interpreter proviAes the link
betvéenbthg'struc;ure used by the editor and the capabilities
of the actual hardware (see Figure 30). The prototypevuses
‘some simpie éystem‘fou:inéé to generate>the actuél.display

commands.

As'illustrated_iﬁ Figure 30;'tﬁe interpreter scéns the
edit buffér to get ;he next item, Lines and annotations aré
transforaedbacco£ding té the current éizé; rotation and zoom
parameters, clipped and drawn, Symbollreferences cause the
current size and rotation values to.be stored and new ones
constructed from the size and_rptation values in the symbol
reference. Then the interpreter scan.iSIAirected to the
symbol block until the end of the block is_reachgd. At the

end of the symbol, the previous size and rotation values are

1‘3
St

b

& L /1

FI1G30

EDITY
BUFFER

—t

ELEMEN
LIBRAR

sLace

ITEM
kl LINE
6T

FIGURE 30.

GRAPHICS DISPLAY INTERPRETER

JR—
TRAKS - : CO0E,
v onm eute SEMER -
NEXT |_ ANDTATION : aToR
ITEM . st . ¢
SYmeoL {staing
. :
€m0 OF i 015P LAY
SYmeoL l SDDAESS
I
RESTONE SavE i
i I
d.
pORL
_, COORDINATES Rl owpLl-
G ThANS - . reut
FoRm CATES?
Q'mmlns an=
maND

92

93

restored and the interpreter resumes the scan of the edit

buffer.

The interpreter can also be instructed to display a
single item, This feature is used when new items are being

added to an existing display.

2.4 TEXT EDITOR

The text editor was designed to be the essence of
simplicity. To that end, it interacts only with the keyboard,
and each line of text is identified by a number displaved with
it. When a text block is to . be edited, it is mo?ed to the’
edit buffer and each line is filled out with blanks to be 80

characters long.
The general form of a command is
<string>;<string>;<11nenumber><commandchar><commandchar>

where each of these elments is optional. We will use n as a
shorthand for <line number>. The default line number is the
current bné. and the default command character is 1 (Insert);

so the command
<string>

will insért_<str1ng> at the current editing position. Other

commands are

<string 1> ; <String 2> 3 nA

CR /LI OPEDOOD

94
to replace.(alter) <string 1> by <string 2> in line n.

D

1=

-

to delete iinebi. (3D will then delete the next line.)

v

<string> ; n I
will insert <string> before line n.

-k kﬁ’ k3,..., kn ; T <tab char>

1!

will define tab stbps at'ki, ooy kh activated by <tab char>

in the input. For example, 7;T*>followed by *X Y will pléce

X in column seven.
;nP

will start the display at line n. If more than 35 1ines are

in the edit buffer
s P

will start the display 35 lines (one screen full) beydnd the
presentAstarting position recycling fr&p the end to the

beginning.
<string> ; Q

will apppend the file <string> to the curreﬁt text, bepginning

at the current position of the file,

<string> ; X

<

95

will rewind the file <string>.
<string> ; W

will write the current text block on file <string>. X, Q, and

W may be combined., For example,
ZAP ; XWXQ

will coﬁy the text buffer onto the end of itself using. ZAP as

a temporary file.
s R

will exit (Returnf from thg editor. The. trailing blanksbiq
each line of text are replaced by an end;pf—line cﬁaracfer as
the lines of te*t are moyéd to the element Iibrary{ The
entire coliection of lines 1s stored as one text block in the

eiement library.

2.5 ANALYZING THE TOPOLOGY

2.5.1 Data Structure

The topological data fé: a composite element is extracted
from the graphics block for the macr§ definition of that |
elemeﬁt. The to?ological'data structure adds explicit
connections betweén 1tem§, which, in the pictorial
representation, are only implicit (identical in coordinate

values).

™
b]
mn:g
%

o
P
e
-

18/t 0%p

96

The topology of a dfawing is represented using the ftems
of a topolégy block (see Figure 31), whose data structure is |
analogous to that of the 1teﬁs of a gfaphicé block. Although
the graphics items are designed for display, a similar format

works well for the topological items.

"To rebresent‘£he:topology of a drawiﬁg; each net in tbe ' 5
drawing is assigned a sequence number, bggiﬁniﬁé with 2 (1 is
reserved fqr a special casei. The topology module then
generates a‘block (Figure 52) in the element-libréry. The
first twé words contain the number of nets and the number of
labels found. Next comes a list of items.cbrrespondihg to all
of the lgbéls invthe drawing; these are.in éiphabetical.éfder.
The character string for the label is not'duplicaped, since
the pointér field in the item is copied from that of.the
corresponding graphics items;'thus it references the same
étring used in tﬁe”dfawing.‘ Thé rest of the iist is composed
6f groups_qf items; with each gréup»rebreéenting an instance
of é symbol_within the drawing., A symbol item heads each !
group to idéntify which symboi is being used. Attaché:'poin;_
items follow, one for each attacher point on the.symbol.,-Each
attacher point refers both.:o the formal parameter (thev “
character string) and (indirectly) to the aétual parameter) é
(net number) to be asspciated with this for@él parameter.‘vfhe' K I
special netvhumber 1 is reserved for those nets which have
only one node. These are typlically attacher boiﬁts which are

unused in a particﬁlar instance or labels which are used as

-r)

FIG3)

97

LABELS
NET CHAR .
2 X ¥
. NURBER BUFFER-
SYRBOLS
—— o SR
\ \ - o]
Y
DIRECTORY | >
ATTACHER POINTS
: TO CHAR.
4 X v NET : —_
' , NURBER BUFFER
FIGURE 31. TOPOLOGY ITEMS DATA STRUCTURE
.
= y y [} 74 .
e 2 /0 o0k bk O 00

98

FI1eaz
i . WURBER OF WETS -
HEADER
NUMBER OF LABELS
) [3 10 CHan.)
? .
I ' ! NURSER surrer |
LABELS '
. , - 13 Cuma
2 ! NURBER BUFFER
' ;
’ (. [- I8 . .
SYMBOL AND 3 * Y pinectony [—P
- T T3 Cne. ‘
ASSOCTATED . ' ' weser | e D |
ATTACMER L i
. i
POINTS . ‘ ‘ 3] 13 Cwan, :
. NUWBER BSFER
i
i
3 H v 12 | !
DIRELTIRY !
34 1) MR,
N 1 ! ' NURBER MEFER D
! t2 cwar. | ‘
[*] 4 . ! NURBER BFER | b)
FIGURE 32. TOPOLOGY BLOCK STRUCTURE ’
¢
3

99

comments in the drawing. These nets receive special treatment

from the translator.

2.5.2 The Topological Analysis Process

_When.anélysis of a model is desired, the filing module
.ensures thatvall.composite elgments have topology blocks, 1t
_scans all the entfies in the directory and calls the t0polngy
module (TOPO) for any whigh need a topological analysis., Ve
may notevthat the filing module erases the out-of-date
topological analysis only when a macro définition (composite
element) ié edited. Thhs, most of the topoiogical analyses

may have already been done.

To brepare for the.topoiogical analysis ofvé drawing,lthe
filing moduig copigs the graphics block into the edit buffer,
indexing each item (accqrding tq.its_x;coo;gipqgg} into its
proper location. TOPO now scans the edif buffer and
p?eprocesses-each line and simbol 1tem; For lines, a
ﬁrefersed" (endpoints 1nterchangedf linetig created and stored
as a specialtelement'within'fhe edit buffer,. These "reversed"
lines are indexed into the wofkiﬁg area at the location
correspondiﬁg'to,the‘x coordina£e of the terminal_point of the
'originél liné. TOPO can now retrieve both fﬂe initial and

terminal'points of a_line‘by‘indexing.

During this pass, the syﬁbol items are also processed to

créaté thevéttacher point items. TOPO finds the symbol using

100

the direcfory and scans thg symbol to find each of 1its

attacher points. Then, using the lbcation, size, and

orientation‘of the symbol just as if it were drawing it, the | o
routine cbméutes where each attacher point appeared on the
drawing.~_TOPQ then createé an attacher péiht itgm and store§

it in the_edit buffer at the 1opat10n appropriaté to ité

coordinates. A list struqcure'yhich 1inké éach attacher point

to the proper symbol item is also created; At the conclusion

of the first pass, all of the relevant item#-have been placed

in the working area, each indexed by its x coordinate

location.

The sgcond pass creates the nets, Starting with the _v E
" first line, label, or attacher point (from left"fo right), | ‘
TOPO assigns a net number to the object and saves its
coordinates, If thevobject is a 1line, the coordinates of the
opposite:eﬁdpoint of the line are placéd'on the coordinate
stack and the '"reversed" line is'deleted ffom:the edit buffer.
TOPO then searches the edit buffer for othe; objects whicﬁ'are
close (within a certain tolerance) to the current coordinates,
"If any are fohnd,Athey are also labeled with-the same net
number. _If the ﬁew item found is a 11ne,'it.is treétedias
before; that is, the endpoints are again stacked and the
“"reversed'" line deletéd. Qhen the search is finished, TOPO
examines the cdordinate stack for new séaréh coordinateé;
Ultimateiy, all the iine segments are thus traversed. When a

net has been completely traced out, the routine checks the

101

number df ﬁodes (attacher points or 1ahels5 on the net. If
only one node was found, that node is mafkéd with the special
net number 1., Finally, the.nét number is advanced and the.
routine scans for another new iteh, avoiding, of course, items

already having a net number.

A third pass over the edit buffer extracts all the labels
and moves them to the topology block, sorting them into

alphabeﬁical order.,

The fourth pass extracts symbols and attacher point
items. For each symbol, all of its attacher points are found

and moﬁed to the topology block, sorting them into

“alphabetical order., The .use of an alphabetical sort for the

attacher points provides a canonical ordering for them, This
permits the translator to produce output in the order in which
it encounters the attacher points, taking advantage of this

consistency in the order of the parameters.

2,5.3 Other Data Structures

Other model builing programs have ;ybically used much "

more complicated data structures for the representation of

topology. ‘A ring structure is used by many, including

’

SKETCHPAD and CSMP, Several matrix structures were considered
for this program, but were rejected as being less effective,
The structure chosen was designed so that the translator could

make one pass over the topology block and prdduce the required

P8 /Ll 0F P 0000

102

output,

C&nversion tb one of the more comp1icated'data
structures;'from the data structure as 1t already existé, is
an easy step, because this structure is adaptable as an
lintermedfaiéiform'for many other topological data structures.
We conclude this section by describing how the present
structure can easily be converted into a fing—type data
structure.v-First the ‘array of labels must be enlarged to
provide é_header item qu each ring of labels and attacher
pbints, -éach label should be inserted in the array using its
net number as the array index. Each header item is given a
point to itself., These header items each form a degenerate
ring. The array of symbéls_and attacher points can then be
scanned and;each inserted in the appropriage ring, For each
attacher point encountered, the net number is replaced by the
pointer in the correspondiﬁg'header and the header is updated
to point to this item., At fhevconclusion of the scan, the
header will have a pointer ta the last itém of that net and

the pointers will link upwards, eventually returning to the

header to'complete'the ring.

2.6 THE .TRANSLATOR

The purpose of an idealized translator is to '"propagate
semantics", i.e. to incorporate the semantics of component
elements into a complete semantic description of a composite

element. The translator should provide a variety of schemes

o

Y

103

to represent the semantics. 1In the prototype translator, we

have selected a subroutine or macro notétioh as one of these

schemes, yet we have provided considerable flexibility within

this framework. This notation provideslﬁn interféce to a
larger number of existing analysis routines which expect unit

record (card image) input.

This ihﬁut must be directly usable without requiring
modifications of the analysis routines themselves. This
requirés a high dégree of flexibility in the trahslator;obut

we feel that this 1is justified, for there are a large number

of analysis programs which expect card image input and which

deal with problems having a diagrammatic_répfesentation.
These programs are the backbone of present computer usage in

various fields, and it is impractical to rewrite them.

2.6.1 Notation

Central to the oporation of the translator is the
selection of»a suitable notation for the description of the
hierarchical structure of the model to‘bé>analyzed. This
notation‘mosp also provide for describiné.the network
structurevoncountered within the model and within suhsidiary

elements,

For the prototype, the use of a subroutiné (or macro)
notation is well matched both to the graphics methodology and

to the usual input conventions of analysis programs. For

104

example, it is fortunate that SPICE (see Section 1.4.2)
requires‘each component to be given togéﬁher with the ﬁets it
15 connééééd to. This is entirély parallel to the graphics
methodology; "An alternative would be to réquire a list of
componeﬁts connected to each.net. That is; the 1nformation
associated with an eiement would no longerrbe collected in a
single place. This wéuld‘be more difficult;;o‘provide,_since
it conflicts with ;he use of_elements as the organizing
concept, a scheme natural to a subroutine_nbtatioh. An
advantage of subroutine notation.is'that-it is famili&r to
almost all users and 1ts use to'represent hierarchical

relationships is well understood.

We will now describe the detailed ope:atioﬁ of the_
translator in sections which.explain and illustrate each of
its major features,

Kl

2.6.2 Overall Operation of the Translator

The translator treats tﬁe model and the eleﬁents within
it as. a-éomplete entity, and its output coﬁsists of all the
1nformation:pecessary for an analysié.routine. A table of
temglatesjspecifies formats required. The'oﬁtput is in the
form of card images and comprises three fiies: é control card

(JCL) file, a program file, and a data file,

In a first pass, the translator scans the model and

compiles a list (a "load" 1list) of all the elements used

105

within it. Composite elemeqts are scanned §oithat all
elements which are used (directly or‘indirectly) in the model
are included in the‘list. The 1ist is then‘sorted according
to the déﬁﬁhvof each element. within the ﬁierarchy, ensuring
that the output of each elemeﬁt will be in the proper order
for thosé‘compilérs and assemblers which.;e§uire that macros

or procedures be defined before they are used.

The second pass of the translator creates the actual
output and writes it on the designated fileg. Fach instance
»of an element in the model (i.e. the top level element) 1is
transformed to a subroutine or macro call.nétation. TheA
translator.érgates the call using the name of the elémént and
the proper actual parameters. The actual pafameters are
created from labels which appear on nets cdnnected to the
attacher points., That is, 1if elemenf X with attacher point
A appears as a component in a model, and thé net connected to
A is labeled B, then the object X is iﬁvoked with actual
parameter B (e.g. CALL X(B) is creatgd). After the top level
model has been converted into card images, the translator must
include all of the elements which have,been‘used as
components, Each component element begins Qith a transléfor
generated heéder card giving the formal parameters, followed
by the body qf the semantic description:‘a'series of calls 1if
the elemeqt is compositg, a copy of the text 1If the element
has an analytic definition, or a statément constructed fronm

the table of templates if the element has an empirical

106

definition,

The translator ﬁas created subroutine calls or macro
calls as difected by the format table. Now, if they are macro
calls, the choice is whethér to pass them to the analysis
routiné for expansion or to haQé the translator expand then,
In thé prototype, we choose to have the translator expand them
té one levéi only. This was doné_for several reasons, First,
a single level expansion can be mahually forced into a
ébmpleté expansion, which requires several passes but at least

gives a semiautomatic process to enable use of analysis

programs with no subprogram or macro capability.' Secohd, this

expansion is adequate for simple models having only one level,
or for testing the lowest level of a hietarchicél model.
Third, a single level expansion has some has some of the
aesthetic properties of the full expansion: in partiéular, the
output is cleaned up by eliminating thé large number of
one-line macros which othefwise occur. Foufth; an expansion
moves part ofbthe burden from the_aﬁalysis routine to the
trénslator. .If the same model is to be analyzed several
t;mes) this can reducé processing time. Note that since the
subroutine call of macro call format is only a notation, the
same expansidn occurs in a model which is to be translated
into subroqgiﬁe notation, Subroutine calls'on primiti;e
elements are replaced by the text of the primitive element,

with actual parameters substituted for formal parameters,

107

2.6.3 A Tahle DPriven Translator

To bé as complete as possible, the éranélator atﬁempts to
supply many of the details required to make ;he text‘outpuf
into a fqlly complete input forbanalysis fougines. These
details aré supplied by a table of templates. This table is
constructéd'with the text editor.,. In the prototype, a dummy
elemént is created with an analytic definition to hold the
table. When an element is to be translaﬁed, fhe'ﬁame of the
element 1is giQen; if a second name is also given;sthen the
second elément is assumed to contain a table for the
translator ag its analytic description. 1If no second element
is given, a default table (the table of MfMIC templates) is

used,

In thevbrogotype translator, tﬁé controls provided by the
table are very simplg: aﬁ asgerysk is réplacedfby tﬁe name of
an element, and a 1eft parenthesis triggers the construction
of a 1list of parameters cdmplete with fight parenthesis also.
The first two templates are a header and a trailer card for
the highest level model, For CDC Fortranm, typical femplates

i

would be

PROGRAM * (INPUT,OUTPUT)

END.

often the header card is used only as a title (see the SPICR
example, Section 1.4.2)., If it gets in the way, it can often

be made to appear as a comment card. Putting the name on this

/

e

LEop 00D

108
card is useful for documentation.,

A similar pair of templates is used for subroutine or
macro definitions. In this case, however, the translator must
supply the formal parameters as well as inserting the name of

the_elemeht. A typical template for a MIMIC macro would be:
* BMA(

where BMA is the MIMIC mnemonic for begin macro. The ;railer

‘template would be
EMA
For a Fortran subroutine the corresponding pair would be:

SUBROUTINE * (

RETURN ; END

Note that the ﬁrbtotype translator allows only onevline for
the traile;.(te:miﬁator) of a1subroutine.or magro‘definition,
so we have used non-standard Fortran. A subrout{ﬁé caltl
template which is analogous tb the‘subroutine header tempfate

must be provided, for example, MIMIC’s call macro
* CMA(
‘or the Fortran CALL statement

CALL * (

Other information found in the translator directs the

109

treatment_qf empirical data. For each set of empirical data,
the translator completes é template for ;eading this data.
Each time a particular empirical table is referred to, the
translator completes a template supplying ;he name of the
table and tﬁe parameters for tabie look~up. The translator
ensures that the data input statements will occur in the same
order as thé data, and it can specify the length of each
empirical table to the data input routines. The input

" template for MIMIC is "constant function"
* CFN(%Z.0)

The percent sign is another special character, 1In this case
it is replaced by the number of data items. Empirical data

has not been used with analysié prdgrams other than MIMIC,

"~ The table contains several flags and directives as well
as the templates. These are specified oﬁ a single card‘iméﬁe
in fixed'fields'of_lo characters each. A continuation
character and column may be specified for use when the output
would otherwise extend beyond column 72, The disk files which
are to bé used fof the text éﬁd the empirical»data are
specified, as wellvas positioning for these files. The files
may be rewound either before or after the,traﬁslator output is
written on ﬁhem, and an end of file ind?cator may be
op;ionéllyIWrittén. For example, to use files PROG and DATA,
to rewind PROG before writing, endfile it, and rewind DATA

after writing, the fbllowing specification is used:

PROG/R EOF DATA/BR

The notation ﬁsed reflects file position options used in the .
local operating system. The table of templates aiso specifies ;
an initial character for translator-created names. The
translator uses thig initial character and appends a sequence
number, For most analysis programs, the choice of initial
character is of iittle consequence, Where numeric names are’

needed, eithér a number or a blank can be used.

A flag_determines the order in which element definitions
are written on the tranglator's output file. A "down" flag
will output the hierarchy from the top down, beginning with
the modelvand ending with the_primitivé elements; This order ' E
is customary in Fortran programs. The directive "up" will
cause the hierarchy to be scanned from the bottom up,
producing output for the model.last. For the benefit of most
‘macro proéessors (notably MIMIC) this mode of operation of the
translator ensures that_on the translator output file the

definition for each macro will preceed its use,

The final portion of the template specification is a set
of control cards (JCL) which are written to a system file fér
execution when the translation is completed. This JCL will
typically call an analysis program into execution, ﬁandle
errors in exeCUtion,'and return control to the prototype at

the termination of the analysis program.

111

2.6,4 Nets and Labels

The first operation in the second péss bf the translator
is. to assigﬁ names to all the nets. To the translator, a net
represents a variable which is an actual parameter to the
various component elements. If the net_isllabeled, then Ehe
label is taken as the name of the net. 1If no label is
present, then the translator creates a unique name using the
vinitial character specified in the table of options to the

translator.

One-node nets are.flaggéd by the topological analysis
routine and receive special handling by the translator. They
can be ei;hér isoléted labels or unused attécher points on
symbols, Isolated labels ére simply ignored by the
translator; their function is to help explain the picture and
they are not required by analysis routines. When the
fransiator recégnizeé éhnunuéued attacher point; it searchés
the character string'associated with the attacher point to
determine whether a default string has beén‘specified (see
example, Section l.4.1). If novdefau1t string is specified,
the translator generates a name and éuppliés it as the»actual
parameter, This treatment of unused attaéhér points
encourages the création of more general, mbre flexible

elements,

68 /1 0pponopo

2.6.5 Details of Element Processing

After names are assigned to all of the_hets, the
transiatof scans the 1list of elementé creéted by the
topological énalysis. Each element is processed in turn. If
macré expansion is not being performed, then_the template for
sub;outine or macro calls is copied to the output. If an
asterisk is encoun;ered, the name of the element is
>substitutéd. If a leff parenthesis 1is encbuntered, the list
of actualvpérameters is created., From eacﬂ attacﬁer point, -
the net number is extracted and used to find the net name.

These names are written to the output, separated by conmas and

enclosed in parentheses.

If a macro is béing expanded, then tﬁe element being
called is a brimitive element‘(sincé only bottom level
elementévare expanded). If it has an analytic definition,
then the ‘text of that definitiqn is broken into tokens, either
names (strings of consecutive alphanumeric characters) or
1opefators (hon—alphanumefic characters). Each name is matched
with the 1list of attacher point names; if it ﬁétches, tﬁe‘net
number (from the attacher point) 1is used to find the net name.
The ﬁet nameiis then substituted for the ﬁame token, Operatér
tokens are ﬁassed unchanged.to the output witﬁ two
éxceptions{ (1) the concatenation operafor is not passed to
the output énd (2) where a string of blanks appears, blanks

may be added or deleted to try to preserve the column spacing

of the oriéinal analytic definition. This treatment of blanks

facilitates the use of fixed-field languages.

2,6,6 Treatment of Empirical Data in the Prototype

Empirical data is stored in the data structure as é list
of'coordiﬁates.extfacted from a "hand drawn curve'". There are
three phasesvin_the treatment of empirical data: first, the
actual data must be placed on a file where it can bhe eésily
referenced; second, statements must bevplacea in;the
translator output to read the data; and third, routines must
be called :o locate data values when required,

The prototype provides a complete treatment of empirical

data only for the MIMIC analysis routine.

For MiMIC, the translator assembles a list of needed data
sets during the firét pass of the hieratchy §can. Duriﬁg fhe
second pass, 1nput'statémgntb'afe generated which teli MIMIC
to read the data sets. These statements preceed any other

references to the data set, and only one statement per data

"set is provided (no matter how many references are

subsequently made tq the data set). For each reference to the
data set, a table look-up statementiis creaﬁéd referping to a
déta set which has been previously read. ‘After the second

pass, thé_needed data sets are written to the appropriate file
using a forﬁat specific to MIMIC. The order of the data sets

agrees with the order of input statements,

2.6.7 Concatenation and Coordinates

The translator has two special features which have been
useful in some instances. At present, these features are
implemented only for analytic definitions, but the extension

to labels within macro definitions is straightforward.

The ability to concatenate two or more strings has been
provided by the use of a special concatenation character, the
right arrow (Section 2.6.5). This chéracter.sefves as a break
charaéter, but is not copied to the outpﬁt._ Thus, two strings
may be concatenated. .This features 1is usefulvprim;rily when
one of the éharactef strings is a formal parameter. The
translator will first substitute an actual parameter for the
formal parameter and then perform the concatenation, forming a
new name from the net name subplied. This technique has been
used to forﬁ a who;e family of names from a single net name
(see Section 1.4.4). Used with care, this allows a numbg: of
variables to share a single line in the model; that is, a
single line can be made to represent the flow of several

pieces of information when the anélysis routine does not allow

arrays -to be used,

Another use for the concatenation facility is to prefix
(or suffix) a character to strings, where a particular
character has meaning to the analysis routine. (see the

SPICE examplé, Section 1.4,2)

A second useful feature is the option of using, within a

composite element definition, the actual coordinates 6f.a
componen; symbol attacher point. 1If the attacher pdinf ﬁame
in an anélytic definition has the characters #i or #Y appeﬁded
to it, the'translator will retrieie the actﬁal X or Y
coordinates of the attacher point for the pafticulariinstance
being expanded. In thisvway, parametér vélpes are derived
from the position on the diagram rather thén from labhels, A
mundane, but very practical example of this technique is used
_invcircuit Board layout. 1In this case, definitions afe
pontrivea tq,print out the coordinates of,pads used for
connection.;o circuit elements, A paper tape to drive an

automatic drill is generated directly from these coordinates,

At thié point, it is wellv#o note tﬁat this techﬁique is
only a glimpsé of the probleﬁ of preserving graphical
information in the topological data strupture. This technique
represents only an ad hoc answer to a.speéific ﬁeed, an& does
not derive from a general appréach to the eventudl solution of
this problem. The real goal, in fact, is to allow reversal of
the analysis, including error messages or even new graphics
configurations, to be présented in the conﬁéxﬁ offthé Orig{nal

input.

ez i apboonn

3. AN EVALUATION OF THE PROTOTYPE GMS

Our e?aiuation of the prototype GMS can perhaps best
begin by comparing it with the idealized GMS, The idealized
system describes a single man-machine problem-definition
interface for use in a wide variety of prbﬁlem solving
disciplineéf The prototype has demonstrated suph_an interface
for é variety of analysié routines. The idealized methodology
for creating eléﬁents from two types of primitive elements and
one compound element»has beenlverified by the prototype. The
idealized system has .proposed a topological ihterpretation and
a hierarchical sgructure. The prototype has:deménstrated one
feasible solgtion to the analysis of topoiogy and the
propagation of topologiéal structure through a hierarchy of
models., It has shown how simple manipulations on.chafacter
stringsvproVide consistant resuls without concern for whether
the character strings are formal parametefs, variables or

c'onstant:s."

In addition, the prototype has demonstrated a feasible
notation and,translation method for this notation which
enables the conversion of internal structure to card imapes in

a flexible wavy.

The prototype GMS has demonstrated that these elments of
a modeling system can be provided at a reasbnahle cost. The
programming time required for the prototype GMS was

approximately 12 man-months, We estimate that adding similar

faciIitiéQ to a siﬁgle applications ﬁrograﬁ Qould have
required sixvto eight man months and woﬁld not he any cheaper
to use, Thus, if two or more applications can use such
graphics facilities, then it is economically sound to program

a graphics facility.

Based'on_our experience with the prototype GMS, the next
sections describe user reaction to the prototype, a survey of
anaiysis rbutines available to the brototybe, and improvements
to the protdtype GHS that‘aré-possible within its present

structure,

3.1 USER EVALUATION OF THE PROTOTYPE GMS

In attemption to evaluate the prototype_GMS, we undertook
a survey of opinions and experience of as many of the users as
_qould'be located. A questionnaire was prepared and

circulated, the results of which are in Appendix A,

Most of the users of the prototype were employees of the
Lawrence Berkeley Laboratory) aﬁd a few wére students at the
nearby Berkeley campus of the University of California,

Most of them héd prdgrammed or used a computer. In addition
to an inforﬁal open invitation to the Labqratﬁry staff, a few
staff members were approaéhed.énd asked to provide test
problems. These members were'éided by thé author and others
in setting up and solving their problems, Most of these users

were in the Electrical Engineering Depaftment of the

KA A BB R

Laboratorf.. The majority of these problems were in digital
logic design. Since a simulation or analysis program fo:

digital logic 1is not currently available at the Laboratqry,
these problems were solved by simulating the digital 1ogicv
with an analog simulator. The substitution was successful,

however, and several limited size problenms were solved.

Users with probiems iq énalog simulétion Qere quite
pleased with PICASSO. Mark Horovitz [HORO72] provided an
unsolicitigd evaluation in one of his puhliéations, in which
he described a biological model and the modeling facilities of
LBL. He made the following remarks:

[Although the author is listed as a co-author df thié paper,

the opinions expressed are entirely those of Mark Horovitz.,]

Evaluation”gﬁ the System

How easy it is to construct models by using the PICASSO
program? Skill is required to choose and define the primitive
elements so that they yield neat, natural buildling blocks for
a class of models. Once the primitives have been defined,
model structures can easily be built, The library storage
facilities for graphics models are very convenient. To
illustrate some of the features of the system, let us suppose
that we want to give a user an introduction -to compartmental
models., We can take a one-compartment model out of the '
library, analyze it - examine the equations produced in the
analysis phase, execute a simulation run - examine the

results, change the parameters, and run it again. Then we can.

pick a two-compartment model and go through the same cycle.
Next we could build a model of real interest to the user or
look at more complete stored models - all in one session at
the console, Starting out in this way, the new user does not
have to spend a great deal of time learning about the system
before being able to tackle problems of interest to him,

" Extensions

It is easy to accommodate analysis of other languages,

.and we expect this aspect to proliferate. It seems to me that

this should be encouraged, provided a processor for the
language is available on our machine. If one is aiming for
ease of use, then a new PICASSO user with some experience of
modeling, using for example, GPSS or DYNAMO, should be
encouraged to continue by generating PICASSO models which are
executed via GPSS or DYNAMO, '

In the present system, 1f I wish to construct a model
with the same functions and analyze it via either MIMIC or
FORTRAN, I have to generate two sets of definitions and names.
In other words, I may have one visual representation for the
model, but I need two sets of names. Example: for an adder
I could have ADDERF with a FORTRAN definition, and ADDERM
with a MIMIC definition., A later version of PICASSO will

-permit multiple definition of symbols., It is also hoped to

add features so that animiation of diagrams will be made easvy.

Several students did‘classwork and other projects using
the GMS prototype, ihcluding class assignments in Fngineering
111, that most students do using CSMP, a less powerful system

on the Berkeley campus,

It is clear that GMS will be successful only when applied
to a suitable problem; that is a problem us@ally described

symbolically and for which an analysis procedure exists, It

is helpful if the analysis procedure is currently in use. 1In

this case, there is 1it£1e‘difficu1ty in showing users how to
use GMS.F On the other hand, our cnnversations with users
révealed that designers did not always deéign as we expected,
For example, a digital logié designer related that he designed
with boolean equations and let the draftsman develop-thé loéic
diagrams. He still relied on the logic diagram to some degree

however, especially for problem areas. The designer of

S HE Lt D EbBOOD D

120

control systems may prefer to work directly'with the poles and
éeros of the desired transfer function rather than withva
block diagram., This does not mean that GMS is not applicable;
it only means that we might do well to direct our attention to
the draftsmén as well as the engineers. Indéed; PICASSO has
been used successfully as a drafting aia for 1ogic diagrams

and for analysis of these diagrams,

In general users. felt that the graphics interface was
adequate, although clearly not optimum,., The author concurs
and work is under way to improve it (Sectién 3.3).. A
significant part of the frustration is 6ue'to the hardwarg and
operating system, When the host, a large batch processing
system, is lightly loaded, response is excellent. When the
system is heavily loaded, swapping delays are a significant
source of frustration. An intelligent terminalvis an ﬁbviods

cure for these problems,

The cost of using PICASSO varied from $10 to $20 per hour
of terminal time. Connect charges are approximately $6 per
hour; the remaining cHafge is primarily for I/0 and reflects
the variations in workiﬁg speed from novice to very
experienced users. At $10 per hour, a GMS is cost effective
at practically ény task which it can perform. Only twé users
(out of ten)”found alternate systems easier or éheaper. Ip
the first case, inadequate documentation was cited as a
difficulty in using PICASSO; inquiry'reveéled that the user

did not have a complete set of the available documentation,

121

The second involved the use of PICASSO as a graphics editor
only; for this application an editor was written which was
cheapef to use., ‘More than six months of.daily use were

required to amortize the cost of the new editor, however!

In summary, users were excited by the'prospects inherent
invPICAéSO”and impressed by its cépabilities.z The main
complaint related to reliability problems in the hardware and-
the opgréting system, subjects wﬁich are.beyond the control of
the GMS.designer. Users were also of the opinion thét the
interface:lacked polish, although after several hours
experience, they felt comfortable withlit. Finally, my own
strongeét feeling as é user was that the operating system was
poorl* matéhed to the very high 1/0 fate fequired for
interactive drawing and maniﬁulation. An intelligent terminal
or an intelligent concéntrator shbuid be provided to buffer

"these interactions. into larger chunks.

3.2 A SURVEY OF ANALYSIS ROUTINES

"In this section on supporting software, we will describhe
the analysis routines which have been‘interfaced to the
prototype GMS or for which an interface would be useful and
easily constructed. We will describe the analysis syétemé,
what proﬁléms theyvére suited tb, and the effectivenesé'of the
GMS—~analysis system combination compared to manual preparat{on
of.input.'_We also give the translatbr template used with

these syétems, and any problems encountered. Finallv, we will

a6/ i obED DD

122

describe the operating system support which the prototype GMS

g
usese.

The analysis systems used or proposed for use with the
prototype GMS include MIMIC, a contiﬁuous system simulatorr
SPICE, an electronic‘circuit analysis program, a wirewrap tape
generator, GPSS, a discrete event simulator (not described),
~and language compilers, e.g. Fortran, ALGOL, and QUEL, a.lower.

level interactive language.

3.2.1 A Continous Systems Simulator: MIMIC

MIMIC, the first analysis system to be interfaced with
the prototype GMS, is a simulator ofbcontinﬁous systems wﬁich
accepts a set of equations and evaluates fhem iteratively as a
function of an indepehdent variable (time). MIMIC 1is used
primarily in the solution of differential.equations. MIMIC
is most valuable in cases whére the behavior of each element
in a problem is known and the behavior_of a collection of
elements is to be simulated., The equations’describing
cOmputation for eachlelement are entered by the user, as
formulas that can include functions availabié in MIMIC,

MIMIC sorts.the equations into an gﬁficient computational
order by placing‘computations which yield an intermediate
result before computétions which use that result, This
sorting and the special treatmént of integration, time delay‘
and other special functions gives the impressioﬁ that MIMIC

evaluates all the equations in parallel.

123

Almost any MIMIC problem‘which is visualizédias a diagram
is well sui;ed to using GMS for input preparation. The first
use of GMS for a particular problem is often more work than
ching the probiem directly in MIMIC's in@ut language., This
is due to the extra work rgquired to create primitive elements
suitable for the'problem. If primitive elements are already
available, then using GMS is significantly'faster than coding
the probléﬁ directly in MIMIC;s input 1anguégé. In addition,
the GMS vefsion is much more likely to be free from syntax and
typing or coding errofs. Variable names are particular1y
prone to spelling erfors and GMS 1is a gfeat help in this area.
Lh GMS, a variable name is given only once by the user and is
propagatéd; élways ¢orrecp1y,vby the translator. When a model
;s to be modified, making the changes gréphibally is much
faster than haking the corresponding changes via MIMIC s input
language. GMS makes it easy to group eiemenQS and to work
with these groups as single units. AISO important is having
GMS propagate changes in the sémantic description to all

places wvhere it is used.

The first step in using the translator fof MIMIC diagranms
is to become familiar with the input format for MIMIC
statements. MIMIC uses fields beginning at columns 1;2,10,

and 19 of the input card images., The éditor has tah stops

which aid in putting text in the corfect fields but the
translator does not check this; The template for the

translator is then created, using the documentation for

124

guidance.

Thgre were two problems in using MIMIC with the
generalized translator, The first problém is that MIMIC does
not allow statements to extend beyond a single line. In a few
caseé, the substitution of long strings for short ones caused
a line of text to get_too‘long. In these cases, long formulas
were rewritten as two short ones. The second problem is that
MIMIC allowsronly 6 formal parameteré in its macro
declaration, Extra pérameters must be declaréd on sgcceeding
lines with a different keyword. We did not think that this
syntax was worth 1mplementing.as a generalized fécility, so

the translator was modified internally tovhandle this case.

STAM . MIMIC RUN OF * PRODUCED BY MIMVERT

- END
* BMA(
EMA
* CMA(
* CFN(%Z.0) :
DATA/R NOEOF DATA e up
TIM.

REWIND,DATA,MIM,
SFL,70000.
SCP,A=100.
MIMGO,DATA,MIM,
EXIT.

CXIT.

FIN.

SCP, A=0. ,
COPY,MIM/RBR,OUTPUT.,
REWIND,DATA.

SFL, 55000.

DRAW,

125
3.2.2 FElectronic Circuit Analysis: SPICE

SPICE was éelected as a typical-electfonic circuit
analysis package for a number of reasons. First, the input
format is relatively simple and consistent, yet it 15 quite
typical of.those used by the majority of circuit analysis
packages. -Secondf it produces both f;eduehcy aomain and time
domain respdnse, thus serving a larger group of potential

users, Finally, it has some graphics output routines.

The inbht to SPICE is a list of the circuit elements,
their connections and values, SPICE then analyzes the
connections to construct differentialvgquatipns (Section
1.2.5) whiéh give tﬁe behavior of the circuit., These are then
solved nuﬁérically to provide the desired response. SPICE is
vell suifed tb small—éignal analysis of_cifduits.with 40 to 50
élements orlless. This wi}l encdmpass th or th;ee stages of
azpypical éhplifier, but not an entire piece of electronic

equipment.

In thé case of SPICE, the primitive élments are trivial
to construct; The typical user knows exactly.what the symbol
for a resistor, éapacitor, eﬁc. should be, and the analytic
definition for these elements is obvious from the SPICE |
documentation. There is a.time saving even for the first
applicatioﬁ,‘since the element iibrary'is ;o easily
constructéd. When a circuit is to be changed, the user is far

ahead with GMS, Although some changes are easy'to manage in

126

SPICE'sUinbut langﬁage, such as édding or removing a
component, other changes are rather difficult. For example,
if two.nédes are combined, all of the cbmponents for one of
the nodes have to bg changed to have the other node nunmber,
This tédious and errér prone operation is automatically
handled by GMS when the corresponding change is made

graphically to the model, -

Setting up the franslatbr for use with‘SPICE is quite
simple., SPICE does nbt suﬁpo;t macros. of.subroutinés, so the
user does not have this detail to worry about (but
hierarghigally deep éi:CUits are not ver& practical). SPICE
.idéntifies the type of eéch component by its first letter, so
the concatenation facility is used to append the correétvfirst
letter to the component names., The translator provides.for
setting the first character of translaﬁor-provided namés
(Section 2;6). This character is set to a.blaﬁk so that these
names will‘be numeric strings as required by SPICE. The
control cards (JCL) required ére taken from ;hé SPICFE
documentation and modified slightly to return control to GMS~
at the tefmination of SPICE,

SPICE RUN QF *
. END

DATA/R NOEOF DATA up

REWIND, DATA.
SPICE,DATA.
PTSS,D.

127

CX1IT.
EXIT.
FIN,

DRAW,

3.2.3 Wirewrap

A wireQrap program accepts a wiring list for electronic
circuitry and generates a tape which driﬁes an automatic
wiring machine. The primitive elements for the wirewrap
program afé.modﬁles with various numbers of pins, erg; gatés,
flip~flops and other components. vfhe symbols used for these
‘elements ére similar in shape to the actual physical modules.
Each moduie has an analyfié definition which, when translated,
" lists the module type, name, location, pin numbers énd signal
'Qames. Macro’s or subroutines are not required, go the

translator is quite easy to set up.

The_oﬁly problem encquntered was'thét the input for the
wirewrap prbgram'must be sorted by signal ﬁahe. Since thé
translator does not have this capability, a conversion routine
was written 1oca11y.l The cohversion routine 1is |
straightforward and is written in SNOBOL, altﬁough a standard

sort routine would be more efficient,

The effectiveness of this experimen;al project was
questionable, since the user éreated a diagram of the actual
pin arrangement and wired that froh the circuit diagranm,
rather than reproduciﬁg the circuit diagram in GMS, from which

the same information could have been derived. There were no

128

problems in this application, since the conversion module was

designed with the translator output in mind.

3.2.4 Language Compilers

Anothef class of analysis systems is represeﬁted by the
language compilers, such as Forfran, ALGOL, ana PL/1. We
have experimented with the prétotype GMS as a flowchart
analyzer. It is not adeduhte to handle all of the details of
a language such as Fortran in a convenient manner, While it
is easy to.set'up the translator to prodﬁcebstatements in é
desired format from a Arawing, there éreISeveralAproblems in
the overall'approach: Firé;,ithere is no méchanism.to
geherate DIMENSION and other declarationsbftqm an analysis of
the flowcharﬁ. This can be circumvented by requiring thé uséf
to'incluae declarations in the flchharf. . Second, the
graphics~handling of DO_loops_and relatedeOntrol'strpcturés
is difficulf §ince the contents of the DOlloops and control
structures can vary so much in size. This problem will
decrease as experience is gained. Variable sizes for symbols
could be usea to good advantage heréﬂ Finally, there is no
mechanism for ordering statements., 0ur eXperiments have used
GO TO statements at the end of every statement to control the
fléw of execution, .This ié inefficient aﬁd results in a
‘program which is impossible to read, Nevertheless, we haQe
produced séme experimental programs whichvhave,compiled

without error; A diagraph analysis could easily be used here

129

to generate an efficient statement order.

PROGRAM *(INPUT,OUTPUT,FILM)

END

SUBROUTINE *(

END

CALL *(

DATA */
* " DATA NOEOF DATA 9 DOWN

3.2.5 Lowér Level Interactive Languages: CUPID

Another area of language processors with considerably
more promise is the use of GMS to produce input for lower
1evelvintéractive languages, In particular, CUPID [MCD075] is
a system using GMS to produce input for QUEL_[RELD?S],-an
interactiﬁe_data base inquiry 1anguage: "Since the
relatioﬁshiﬁs between items in a data sase are often Aescrihed
by.ﬁse'of a diagram, GMS is well suited to conversion of this
diagrgm directly into_inpus for a lower level inquiry

language. This experiment has been quite successful,

3.2.6 Operating System Support

The operating system support which is used by the
prototype GMS is commonly found on most medium to large
systems, In:particular, some features the prototype uses are

(1) dydamié memory allocation to vary the size of its

-operating partition, (2) random access to disk storage, (3)

operating system graphics modules, and (4) the ability to

change the job’s control record to specify execution of

o
P
P,
X
x5
™
o
]

130

analysis roﬁtines after GMS terminates. Abilities (1).and (2)
are provided on almost all systems with perhaps (1) being
provided by virtual memory. CMS uses thé system grapﬁics
modules at a rather low lévélz the graphics modules used allow
one to d;aﬁ lines and characters, overw;iﬁe part of a display
if it is a refreshed display and to read coordinate input from
variﬁus hardware devices. The job control faCilities provided
by the operating system allow a job to change its own control
record. This allows énother program to bevéxecuted with
control rgturning to GMS as directed._ This is similar to
spawning ahother procéss, exceptvthat the new process runs
sequentially with GMS rather than in parallel with it. This
feature 1s necessary to provide a satisfactory measure of
control and simplicity in operating the analysis programs from
within GMS. It allows fhe job control sequence for eéch‘:

analysis program to be stored within GMS,

3.3 IMPROVEMENTS TO THE PROTOTYPE GMS

There are many improvements which can Se made to the
prototype GMS withiﬁ.its present Structute,‘that is, as‘
incremental changes, without requiring a redesign of the
entire systém. These suggestions .are not sovmuch critiéisms
'of the system as it étands, but, rather the insighté éf

hindsight and plans for continued development.

131

3.3.1 Modularity

In several areas of the prototype, ﬁhe code is not
ideally structured, Better structure coqld be achieved by
pgreater attention to control structures ahd tHe assignheht of
functidns-to‘modules. This would faéilitate comprehension,
maintenance and modification. A specific benefit would be the
easier conversion of parts of the system to use new hardware,

e.g., an intelligent terminal.

The most difficult design problems involving modularity
of software Are in the interface with the data structure,
Since the coﬁponents of the data structure are related in ways
which must be'recognized by individual modules, ‘it is not
possihle to isolate all the modules from the data structufe.
The proper approach is to providé sub-modules for each of
those functiqns which require an Interfacé with the data
structure. For the’graphics editor, for exémple, such
sub~modules wouid include (1) displaying An item or several
items.from the data structure on the screen,v(Z) identifying
an item from light peh or other input, (3) addihg or removing
an item from the data structure, and (4) composing items from
their congﬁituent fields of decomposing items'tnto separate
fields. Another set of sub-~modules could be used in the
editor to display commands and to interpret command input.
These sub-modules can easily be combined tb'get the graphics
editor. All that is left is to create the ﬁenus of commands,

use a sub-module to display and interpret them and a giant

oo

-
b

0

.,];:3.,)
rome
]

&

A
TS

A

132

"case" statement to accomplish each>commaﬁd. Fach command
requires only the collection of the neceséary parameters (from
an I1/0 sub-module), which are then passed'to the data
structure sub-modules. In this way, the details of command
display ;pd interpretation are separate from details of 1/0

and also .from details of the_data structure,

3.3.2 1Improvements to the Graphics Editor

In the graphics editor, we would revisé'the treatment of
character strings to store thgm with the rest of the display
itgms rather than in a séparate buffer. This wouid_hoth
eliminate the danger of overflow for large element lib;aries
and reduce the space required for small ones. The storage of
symbols would be changed so that a line segment which began at
the end of another segment wogld be displayed consecutivély if
possible. ‘This would reducé both transmissioh time and

flicker.,

‘A menu of symbols would be'provided, so that the user

could choose them with the light pen rather than typfng in the -

name of the element. Presently, the user must remember the

available elements,

We would allow global scale changes on drawings; an
entire drawing could be enlarged or reduced by some factor,
This is especially important for the novice, who often finds

that his initial set of symbols was too large or too small,

133

The entire drawing could also be translated to allow more room

at some side of the drawing,

More control over the character stfing display can be
provided. At a minimum, it should bevpossiblevto delete from
the display the attacher point strings associated with symbols

in a composite element,

A more drastic change is the use of an intelligent
terﬁinal t; imﬁlement the graﬁhics editor. The use of
intelligent terminals is motivated by a‘desire to improve
response time, save money, and bring the graphics facility
closef to the user. Response time is improved by providing
immediate responée without waiting for traﬁsmissionvtime\to
.the -host computer or for sCheduling delays within the host
computer. ~Money is saved by'redﬁcing computation at thév
central site or timgshgr;ng facility. In remote areas (i.e.,
user areas) a high bandwidth connection is not feasible; a
non—intelliéent_terminal could not provide'adéquate response.
To écﬁieve-significant bandwidth reductions, a substantial
__part of ﬁhe data structure must be ﬁoved to the intelligent

terminal.

3.3.2 Toﬁolbgical»Analysis

For tﬁe topological anélysis;-we expect'that schemes for
the incremental compilation of topology will bhe investigated.

These schemes will use more elaborate topological data

DCetnE 0000

134

structufes,’in exchange for a reduced gombutation ﬁime. The
morebelaborate structures are needed.to preserve temporary
information which is now discarded when aﬁaiysis is completé
and recreated for each new analysis. We also expect that the
data structure describing the topological analysis will be
improved. The topological analysis will also incorporate
connectiyity checking,.eitherlfrom auxiliary ﬁser supplied
data or fgom a data set supblied as part of the analysis
package, It will warn the user of non-connected or ilegally

connected lines,

The topological analysis would be revised to include a

'graphical "symbol (name) table." This would have many
advantages (see 2.6.7); for example, it would enable error

messages generated by analysis programs to be related to the

graphics structures which caused them.

3.3.4 Translator Improvements

Devélopment of the translator will be guided bf the
recognition of parallels with assembly.language macro
processors, These parallels will providg:guidelines for a
more consistent control specification, for incorporéting new
facilities énd also for constructing the software itself. The
translator needs to have a better syntax and semanﬁics for the
control of.che translation process. It élso needs to be made

recursive and given better facilties for. incorporating data

sets into models. We would experiment with an output notation

135

more suitable.fqr computer interpretation, @erhaps a sequence
of pointers comprising one of the more commén list structures,
Beyond this, the translator will become a data base inquiry
and conversion routine which provides a coﬁversion from the
'topological data structure into the exact structure required
by any particular analysis routine, Even;ually, such a data
structure conversidn module will be separated from the GMS and
will be-Qiewed'as a general tool for the development of |
analysis routines rather than as a special purpose part of the
gfaphics iﬁferface. It will be used wherever needed between
anélysisvmoduies, not just between the graphics system and the

input section of an analysis module.

3.3.5 Operational Improvements

The pfototype GMS aiso needs some operational
improveheﬁts-tn'make it easier to use., The most important of
these is the aqtomatic preservation of the element library
when the prog:am terminates to execute an énalysis program,
The elment library would aiso be automatially restotéd.as part
of the program ipitialization. These operations must he done

manually at present. The startup setting for the zoonm

parameter should also be changed to a more useful value.

Sdme extra commands should be added so that users could
avoid following the full hierarchical command path. In
particular, a single command should switch back and forth

between the'éymbol and the semantic description of an element.

: % ?ﬁ ﬁ £ ﬁ {}

Mo
-
Pa
1,

.

e

Oop o

136

A command should also be added to the graphics editor which
would store the current element, translate it, and start, the
analysis routine all in one opératin. When the analysis is
finished and control returns to GMS, the initialization
procedure could return to the graphics ediﬁdr with the element

just analyzed, ready for any changes.,:

Finally, some on-~line help and tutorial commands would be

useful.

137

4. FUTURE CAD SYSTEMS

4,1 WHERE WE ARE NOW

This chapter explores some of the problems inherent in
the continuing development of CAD systems. It is clear that
"the need for CAD softwafe‘is groving faster than the supply o}
programmers and funding for software devélopmment. CAD
software deyelopment must thereforg rely inéreasingly on
technique; fﬁr increasing programmer productivity. Wé feel
that the term "structured programmiqg" [DfJK?Z], is abplicahle

to almost all of these techniques, although'various authors

have used the term in more restricted contexts.

4,1.1 Types of Existing Systems

We can divide CAD software into three general areas:
data structure and data management techniques, computational
techniques, and user interface techniques. Examples, are

described which are effective in each of these areas,

Architeéture is a design area in which data structure and
“data manégément techhiques predominate. These systems
typically héve a rather large data base, but only modest
requireménfs_for complex computations. There are singlg'
architecutral systems which have subsystemsifor the design and
checking ofvspace.utilization, étructural details,

architectural aesthetics, bills of'materials, and building

138

codes. A vériety of 5ubsystems are required to supporf the
multitude df overlapping'cénsiderations whicﬂ influence such a
design. The architectural designer may dhangevrapidly from
.one desigh aspect to another in this way. For example, he may
change a room, then check the new space utiiization and view é
perspectivé drawing; change éome structural details, then see
h;w costs afe affected and check for'compliance with the
building codes. To support this switching'from one subsystem
to another, the overall architectural CAD.system must bhe

modular and it must have a very general data structure and

data managément facility.

The predoﬁinant type of CAD systehé are those which are
used for their ‘analytic capacity. -Examples of sucﬁ systems
are NASTRAN, for structural analysis, TRANSPORT, for
accelerator magnet design, and SPICE,.for elecgronic circuit
design, These systems operate on modest amounts of data (from
a data managementvpoint of view), so they have tended to use
data strucpﬁres formﬁlated to facilitate the.required
computation, Another characteristic of thése systems 1is ;hat
"they are very specific; they concentrate véry thoroughly on a
very small problem area. The algorithms used by these
computationai systems show that they have a good theoretical
framework.. Névertheless,'théy recognize a large number of
special cés¢s, often at substantial cost in software.

NASTRAN, for example, recognizes beams, plaées, cylinders, and

many other. shapes.

139

Interactive CAD'systems are rapidly moving from an
academic to an industrial environment. While tﬁe data
capacity aﬁdvthe computational capacity of these systems has
béen modest{rindustry is finding that in many cases an
interactive facility is cost effective. The CGMS described in
this work, together with one>6f the analysis routines forms a
cost effeqtive combipation for many problems. While the ease
of use of‘such a system will often encoufage;more analysis and
hence more computing, the time éaved by ﬁﬁe user will usually

more than cdmpenéate for the added computation cost,

4,1.2 Trends in CAR Systems

As CAD systems grow in scope, they must incorporate
methods and techniques which are increasingly general if thev
are to increase in scope without a corresponding increase in

complexity.

Data-étructures which are formulated to meet the needs of
some particulér computation are usually optimum in terms of
computer utilization. They are usﬁally not optimuh in terms
éf programmer utilization. As software deQelopment takes an
increasing.portién of CAD project cost, the best course will
swing away from tailor made structures toward general
techniques. - In data sfrqctﬁres,'these general techniques are
evident in the well established computervutility systens for
data 5ase méﬁagement. vGeneralized approacheé'to data

structures are also being provided By improved programming

C o gt orEO0 0D

140

languages, in which the compiler assumes the detailed

‘management of an increasing variety of data structures,

In the computational area, generalization will occur as
special cases are combined into a common theoretical
framework,., - This combination will be a result of work‘in the
individual disciplines and mathematics in géneral., As these
generalizations are incorporated into systemé, new special
cases wili eonstantly arise; we can rest»éésured that special
cases willvéonstantly be with us as long as CAD systems grow

in applicability.

‘Systems in which data base inquiry and report generation
predominate also have a need for more complek analysis
facilities. These systems will adopt computational'tecﬁniques

from work in analytic areas.-

Interactive facilities are among the least well'develoﬁed
aspecté of CAD systems., While a great deél of research has
taken place 6n man-machine ;omgunicatidn, little of this
research has.filtered down to the lgvel of the average
applications programmers where it can be applied as simple,
convenient subroutine packageé. Subroutiﬁe packages to
simplify the control of the man-machine dialogue are becoming
available.‘ These include primarily syntax checking, and error
handling. To go much beyond this, the content of the data
structure must bé available to these interfacing routines.

This has not happened in a general way yet.

141

The software tools.for continuing déngOpment Qf CAD
systems iﬁcludes both subroutine packages and combileri‘
development; The two most critical areas seem to be in data
structures where compiler development wouid be most useful,
and interactive techniques, where software packages seem to bhe

the best first step.

4.2 GOALS FOR FUTURE CAD SYSTEMS

The goal of a CAD system is to enable a usér (at a
console, perhaps) to perform some manipuiations upon his data
without understanding the layers of computer software between
what he sees and.whatyis actually going on. .To sﬁpboft this
capability, the first réQuirement is for data étructures
appropriate to the user’s view of the world. A second
tequirement is for maﬁipulative routines to perform the
desired trénéformations, analysis and.synthesis. A third
requiremenfvis for user interfaces to provide controls for the

manipulation routines and display of the data,

Viewed in terms‘of'compﬁter sdftware; we can add another
reqdirement'for implementation tools, (e.g., compilers,
subroutine packages) which.will allow such systems to be
convenientlyfbuilt. In this section we shéll discuss each of
these requifements in turn to develop some idea of the extént
and depth.of each topié¢., In Section 4.3, we shall offer éome

ideas about the necessary elements of the system design.

142

4,2,1 Data Structure Goals

A data structure should reflect the structure Af a
problem, allow efficient manipulation of thé data, aﬁd provide
rapid access to the data. When we say that a data structure
should reflect the structure of a problem, we mean that it
should be eaéy to intérprét the data structure and provide a
display which is readily understood by the user. This display
should ailow'him to easily yisualize the resuits of various
manipulafions wvhich he may perform on the data., For example,
consider a brégram to compute income tax. A good choice of
data struéture might be one which is parallél to the TIRS form
with which we are all familiar. Within a category called
Identification, we have Néme, Address, Occupation, and so
forth, A cétegory called Deductions will éontain
sub-categories Medical, Taxes, etc. The Médical categéry can
be further broken down into Drugs, Doétops; Hospitals, and
qthers. Thé.user is now able to make statements such as:
subtract Total Dedgctions from Income. Thé information in the
data.structure should be displayed in a way which makes clear

the results of such operations.

Daté structures sﬁould be fléxible to supporf efficient
manipulation,” Even within a single discipline; a variety of
étructures may be required. For'example, a cartography
application might reduire the storage of a map. An array.of
boundary points of each area would.be suitable for cloropleth

mapping (shading) applications but unsuitable for determining

which areas are adjacent, as might be required in neighborhood
analysis. ‘A structure suitable for finding adjacent areas
may, in turn, be unsuitable for storage of individual

boundaries.

Older‘prégramming languages, (e.g., fort:an, Algol60)
have been limited in the variety of daté structures which they
support., They have provided only the simplesf lanpuapge
constructs and data stchtures. The programmer ﬁas been
forced to build his own superstructure using the compiler
provided structures as primitives, Newe;ylanguages (eega,
Algol68, Pascal, EL1) have provided not only a greater
diversity of structures, but also tools for hofe cdnveniently
creatiﬁg neQ structures, ~Languages with éxtension facilities
can also provide a compact notation for describing operations
on these new-structures. Currently, these newer languages are
not as efficient as the equiValent pfogrammer defined
structures usingvthe older langpages. As compilers ihprove,
this inefficiency will be accepted as a.cqmpfomise whiéh
improves.ovétall programmer productivity. Many operations
céuld be Qritten more compactly uéing such a facility., The
programmer could concentféte 6n data maﬁipulation without
wasting programming effort on the manipulation of high level

structures using primitive operations meant for arrdys.

Currently, a program is composed partly of manipulation
of a data structure mechanism and partly of implementation of

such data structures, the two parts being so mixed together

SO0RE DR EOODD

144

that.it is sometimes difficult to separate fhem. It has been
said thag a revised algorithm can produce order-of-magnitude
increases in program speed, whereas re-coding a problem rarely
improves the speed_by more than a factor éf two, Almost
always, such a revised algorithm depends on a_revised data
structure which allows more efficient computation.,. In many
cases, the néwer languages should allow the replacement_of
data structure and operator definitions Qifhin an algorithm

without recdding the entire algorithm.

What Qe have described above is an access structure,
which is what the user/programmer sees. At a lower level,
there is a gtorage structure onto which the access structure
is mapped. The choice of a storage structure‘depends on its
compatibility wiéh the'acceés structures, the speed of access
and the relative compactness of the storage scheme. It is
quite possiﬁle thgt th»schgmes with the same access étructure
could require different storage strugtures due tovvérying
amounts of cbmputing, different frequencies 6{ mass storage
access, or different sizes of the data sfructﬂres. A single
access structure or notation should be allerd to manipulate
several physical structures, for example, the same notation

for sequential access could apply to either vectors or lists,

It would also be useful to allow more than one logical
structure or notation to be used with a particular physical
structure, A representation of a street map, for examnple,

could be manipulated either with a logical structure of

145

streets and intersections (arcs and nodes), or with a logical
structure of street names (vectors). An important start in
this direction has been made by schemes for multiple keys

access to items with several attributes.,

4,2,2 Analysis Techniques

Analysis routines supply the hrains.of a svstem, These.
are the algorithmé which the programmer'édpﬁlies fgr the
manipulatib# of the data; they are controlled by the user
inferface routines. There are many features which make an
"analysis routine convenient to use: accurécy, speed,
documentatibn, andJefror control, Most of these algorithms.
'perform'anVOpetation which can be defined mathematically,
Accuracy is a measure of how little the results déviate from
the mathemétical definition, Inaccuracies are caused by the
finite precision of the hardware and the apﬁréximations

necessary for efficient computation.

Speed is a requirement which usually conflicts with
accuracy., Speed is obtained primarily by using the fastest

algorithms and secondarily by carefully céding‘the‘algorithm.

Documentaion must explain all the aspects of a routine
-covered here: accuracy, speed, error control, and other

modules required, and it should give the algorithm used.

To achieve error control, a routine must validate its

input and monitor the algorithms used to ensure their correct

e 8 i b E0D

146

operation; errors must be reported back to the superior

routine.

4,2.3 VUser Interface

The user interface is the most impoftant part éf a CAD
facility, Both in the amount of effort required and in its
impact on the user. Thé user interface_must instruct the uéer
in the manipulations available within a particular program and
it must cafry on a dialogue with the usér‘ddring operation of
the program; Documentation is part of this'userrinterfate; it
is unreasonable to expect all aspects of a progran to be
_explained as part of its operation. Thisvdocunentation should
be the primary réferencg material for a prégfam. The usé?
should nevér have to consult a "listing" of’the_program.\ The
documentatidn should explain the domain'of applicability, the
algorithms used, any restrictioﬁé, the commands and their
parameters, and describe the possible Qutbuts. The program
itself should provide instruction in its use., .For the novice,
a list of commands should be prdvided with the most likely
commands noted; when parameters are required, the range of
acceptable vélues should ﬁe given gnd a default value provided
if possislé; For the expert, it'should be.poséible to
abbreviate thése messages, Eacﬁ input should be checked and
in case of error the user should be allowed to correct onlvy

the value in error.

When output is presented, the user should always be able

147

to suspend or terminate the output, in case he has asked for

too much output or for the wrong item.

Every interactive program shQuld ha?eiéome means of
preserving its state, so that 1t may be interrupted and then
continuéd at.or near the point of interruption., This allows
the user to suspend the'program, use some other facility or
stop work fof the time being, and return to the task at some

later time,

4.2.4 Implementation Aids

Impleméntation aids are the editors,.compilers, and other
mechanized:aids td program development (including
documentatibn). After the choicé of hardware, the mbst l
far-reaching decision among implementation aids is the choice
of a language. No language is ideal, but the existing body'of
software prdvides a powerful incentive to choose an existing
language as a starting point, Such an approach also avoids
the work‘reAuired to design the language and pe;haps also the
work réquired to implement it.- Ideally, the language could
gradually be provided with‘eitensibns, first implemented by a
preprocessor, for the source text, then subsequently by
revising thé compiler. Ip addition, 2 programmer would expect
to use.extensibns included in.the text‘of a:routine, if the

language permitted.

Debugging aids are often supplied for working with

LG8 ok OGO0OD

148

aséembly languages but they are rarely supplied for a high
level language because they must incorporate practically the
entire compiler., A feasible alternative is an interpreter

and/or incremental compiler.

4.3 PROPOSALS FOR FUTURE CAD SYSTEMS

In this section, we yill provide enough detail so that
individual componénts can be idgnfified. While we will not
attenmpt fo design these éomponents, we will identify some
which can be adapted from currently available_software and
others which must be developed ftom‘sératch. A CAD facility
cannot remain static if it is to serve :hebchanging needs of
its users. ‘Thus, we cannot say what should or should nof be
included in a system., A system is complete or incomplete only

with respect to its community of users,

From,dur_point of view, a syétem is a collection of
modules for data access, for data manipulation, and for user
interfacing. Within this system, there are also complete
programs which include one or more modules from the groups
given. Our job is to méintain.these mddulgs.and programs and
to provide implementation tools and guidelines so that new
modules and programs can be qreated. This view suggests that
system management is an administrative task rather than a
.programming task, although it is programming which we want to
manége. A céhcept relevant to this management is "structured

programming”. One basis for structured programming is "the

149

realizatidn.by management that it should incur short-range
costs in Qrder to achieve long range benefits" [MEIS74].. Our
proposalé.fall within the domain of strucfﬁréd programming;
they will incur short—range‘cdsts in the hope of long range
benefits.} Our p;oposals-are aiso administrative: fhey require
disciplinéd_prégramming,_a diséipline which will free the

programmer .to be more creative in the long run,

4,3.1 Data Structure Proposals

Withiﬁ a data structure, there are af leést three levels
at which a ﬁiece-of'infOrmation can be coﬁsidered;- These
levels are (l) a physical or storage struéture, which provides
access .at the hardware and. operating system level; (2) a
logical or access structure reléted to the physical structure
by compiler or pfogrammer‘ptovided access ﬁechanisms: and (3)
a display or presentation structure which is presented using
the_ﬁoménclature of'ﬁhe usef's discipline. fhe hhysicalAdata
structure iévprovided by the hardware and'thevoberat{ng
system; it ﬁsua}ly takes the form of random.access to small
amounts of informatioﬁ (m#in memory), or Iindexed sequential
aécess to larger amounts of‘ihformation (secondary memory).
The logical déta“structufe is. the most important level of data
access, since most of the programming in tﬂe system will refer
to the stfucture at this lével;‘ The fuﬁction_of this level is

to provide a convenient set of concebts and the corrésponding

notation to simplify manipulation of the data structure. A

]
e
e
T
Ky
.
N
vy
e
=
-

150

simple examble of a structure at this level is.a matrix, or
two dimensional array. The programmer uses this notation
because it is convenient to his problem,nwhile the compiler :
provides the transformation (or mapping) to‘the physical data
structure which is actually available, usually sequehtiall&
organized ﬁemory. The highest level of data access is the
presentafioh‘to the user, This may b#rallél the structure of
level 2 but it must be provided wifh 1aBels and’identification
to make it meaningfulvto tﬁe user. To extend the example of
the matrix, the user must see not only the numbers, but also
1abels fér each row and column, e.g., the rows could be
labeled witﬁ county names within a state;-and the columns
could be labeled Total Popﬁlation, White‘Population, Black E
Populatioh,Aetc.v The boint of the third 1éve1 of datavaccess-
is that the concepts for the second level of data access are ‘ :

common to a wide variety of épplications while the third level

must change from user to user.

The programmer must discuss the user's.ngeds, and then
select thése logical (compiler-provided) structures whiéh.are
appropriate for problem Aefinition and manipﬁlation.’ The
brogrammet then constructs the user interface which augments
the 1ogicalvstructures by adding ;he apprqpriate terminology

and symbology.

There are two aspects of data structure as currently
implemented in high level languages which need to be improved.

A greater variety of data structures must be provided and more

151

isolatioﬁ'must be proiided between the logical structure as
seen by the‘programmer (user) and the physiéal structure as
implemenfediby the compiler or data access module, A greater
variety of dété structures serves the ﬁeedé of the programmer
in.an obvious way; he is bettér abie to choose a data
structqré which reflects the structure of the problem, allows
efficient manipulation; and provides rapi@ access to the data.
Improved is§lation between logical and physical struCturéé
_alloWs a variety ofvlogical structures to‘éddfess a particular
physical'structure; This allows the programmer to use én
appfopriate notatioﬁ'for each subproblem‘to decrease the
amounf of éoding requiged and increase the maintainability of
the éode by makiﬁg the operations more obvious, It will also
reduce the amount of peformatting necessary to provide input’
to manipulation routines, since‘these routines will now accept

a wider variety of data structures Without’modifiéation.

»These éhoices are coﬁplicated»by the existence of
extension facilities in the high level language. These
pfovide a substitute for the implicit construction ofvcompiler
defined dafa structures during coméilatioﬁ‘or execution. They
are'certainly necessary, éince no language can supply all
possible aata structuress but we would certianly prefer the

compiler’s built-in structures where feasible.,

The data structure facilities should include the
following data types: integers, characters, pointers, code

(machine instructions), floating point representation, double

&0 8din0bkkEO0oC0D0

152

precision and éomplex numbers., ‘This 1list covers the data
typeé usualiy §upported by hardware and those comﬁonly
supplied by software. It should be possible to add new data
types to this list, Using thése data types as nodes or
leaves, the following-structures should be provided as a
miniﬁum: vectors, arrays, lists, stacks, and hash coding.
Any structure should allow-any other struéthrés as an'item;
for example, an array whose first item is a 1i§t, and whose
seqond item.is-a stack, These structures should be‘dynaﬁic,
so that an array, fof example, could be shorteﬁed or
lengthened, of an item of an array could be first a 1list and
latgr a coﬁpiéx number, Structures forvéssociative access

might also be provided.

There are several approééhes which can be taken to
imprové the iSblation between:a lbgical data:structure aﬁd its
physical repfesentation. The ultimate solution is to let the
compiler make tﬁe decision about the bestvbﬁysical
representation based on an evaluatién of the ﬁrogram
[suggested by H. B. Baskin].- The logical data structures mugt
still be pfovided, but the programmer-is free to change from
one logical structure to aﬁother as his'needs dictate, 1et£ing
the compilerrprovide thé proper access to the physical
structure, A difficulty is that the compiler does not . know
which‘other pfograms also access the data structure, and so it

cannot do a truly global optimization,

A less difficult scheme for the. separation of logical and

153

physical éccess is to declare the physical_struqture
beforehand for those variables which need it., This séhemé
provides almost as m#ny problews as compiler selection of data
struéture, Bht it allows global oﬁtimization by the prbgramme?
and removes the most difficult decision from the domain of the

compiler.

The situation is much simpler, if we fequiré the
prqgramﬁer fé declare his data structures within the.prbgram
~and - to usé'fhe torresponding notation througﬁout. This
corresponds to current language impleméntétion3 except that Qe

assume that a wider variety of data structures are offered.

-

“An interim scheme could be implementéd with current
languages by using a preprocessor to implement data references

as explicit function calls where necessary.

4.3.2 Analysis Techniques

‘The ahalysis routines form the bulk of the CAD systém.
They require substantial aﬁounts of coding, tesﬁing,'and
ddcﬁmentagion. Fortunately, fhese routines rare most easily
borrowed from other installations. A facility could expecf to
import as much ‘as 90% of ité routines initially and 50% .
subsequently} Recogniiing that thére are requirements for
accuracy, sbeed, documentation, and error control,
nevertheless the administrator”s most preséing need is for an

overview of analysis modules which will alldw him to make an

0 i

o0
ot d
.

=

-
R
T

-

>

154

.

intelligent initial selection for his facility, and which will

allow him to evaluate what is available af 6ther facilities.

At the iowest level are the elementary operations ranging
from square root to the hyperbolic functions of complex and
double precision argumeﬁts. These should be part of ‘the

run-time "1ibrary of the language processor.

The next level will form the major part of the library of
analysis routines, This level would include (1) mathematical

functions and operators, (2) mathematical approximations, (3)

simulations, and (4) symbolic manipulations,

The'mafhematical functions and operations are responsible
for solving some mathematical equations-aAd computing well
defined opérations. This class 1is cﬁaracterized By the f&ct
that thé'émount of'bomputatioh can be prediq;ed (at least
bounded) a4 priori, = Thus, matrix manipulations, Fourier
tfansforﬁs, and ;he statistiéal packages are paft of thi;
class. The solution of some differential equations and éf
algebraic eqUatians of order 4 or léss wduld~bevin this class.
The soiutioﬁ.of a quintic degree algebraic equation would no&

be included because there is no mathematical formula for the

result in closed.form.

Mathematical approximations are iterative or approximate
techniques such as numerical integration, relaxation
techniques, approximate solutions to differential and

algebraic equations, and function minimization., The user must

155

be aware of the limitations of these mephods,‘and take care
that he obtains a valid answer, Where possible and
appropriate; these routines should provide some measure of

errors.,

Simulation techniques compute the results of some process
by iteratively computing the state of the process at
subsequent points as a function of time (or other independent

variable). These techniques are applicable where a problem is

less well known or more difficult, such that a global solution

by mathematical functions or approximatioﬁs'is not'known;
Since only a local knowledge of each aspect of a problem nmust
be known, simulation techniques are more widély\applicable
than exact or appro*imate'solution techniques., Discrete
simulation éan be'ﬁsed when it is known ;hat the state of

variables changes only at discrete times. ~Continuous

" simulation attempts to monitor the variables continuously in

time. On a digital computer, continuous simulation is
implemented as discrete simultion with very short time
intervals. The variables are assumed to change an

insignificant amount or in a known way between time steps.

Simulation techniques are often combined with mathematical

approximations such as numerical integration,

Symbolic manipulations are those which operate on the
symbolic defiﬁition‘of a problem rather than the numeric
aspects, For example, somevintegration problems can be solved

by performing a symbolic integration on the formula and then

1 56

computiﬁg the answer exactly with the mathemétical functions,
rather than using a mathemé;ical approximaﬁion technique.
Examples.of routines available are thosé for manipulating
algebraic expressions, polynomial arithmeéic, symbolic
integration, and the predicate calculus. "Routines for the
manipulatibn of Boolean logic are in this class, as are
routines for fhe synthesis of electronic légic from Béolean
equations or truth tables. Routines which examine or
manipulate grabh structures are also included, such as finding
the spanning tree of an electronic circuit, or finding 1éops

in a flow chart.

Obsefvation éf a large qomputer installation suggests
that careful attention to thé librafy.of aﬁalysis routines
will be amply repaid. Programmers will almost always use the
installation library for low level routines, e.g., sine,
cosine, and they will even think twice hefofe they conjurelup
their own vefsion of a ﬁigher level'routine, for example, a
Fourier transform routine, When new routines are developed,
the administration.should take the following steps to ensure
maximum_ﬁtilit; fromthe routine: (1) a senior
programmer/analyst should select the mathematical basis for
the algorithm and should désign the inte;face between the
module and o;her routines; (2)va committee of users should
ensure that the proposed design meets all fheir requirements,
and (3) the routine can be coded and test, These steps are

designed to ensure that the module will satisfy as many users

157

as possibieYAﬁd wiil be flexible and easy to use, . The purpose
of the committee is to ensure that any slight variations in
requirements.can be inciuded in a siﬁgle rdutine withoﬁt
leading to a pfoliferation of similar routines. The actual
coding of the r0qtineyis of less importaﬁce compared to the
interface sihce it can be changed at any tiﬁe, wﬁile the

innerface will become rapidly frozen as users include it in

their programs,

4,3,3 User Interface

The Qser interface to an intéractive system 1is, inAsome'
sense, the tatal set of capabilities which ére available to
the user. A good'u#er ihterface will maké all of‘fhese
capaﬁilitieé easy to use, while a poof one will make them
difficulﬁ or even impossible to Qse.- In this section, we will
concentrate on the control asbects of the user interface.
Cdntr01 is a function which is“cohpliﬁentary to daté
structures and algorithms, If we consider a compﬁter program
as a model of some real situatiod, then wé can identifv the
data structure as p;ovidhg the objec;s of the'model, the
' algorithms as providing the actions which ménipulate the
objects, and‘the user 1interface as providing the control and
decision-making which gui&e th; actions., It should also be
clear that fhe elements of control do not ail a%pear in thé
same placeror at the same level, butvrather,'fhey are.spfead

out and appear throughout the program,

8
-
o0
ey
<3
Ry
5
3

1.58

This nd;ion of layeré ofvcontrol is most important to the
development of good user interfaces. These ﬁust provide
flexible heans for building these layers,of‘program and
control structures, ThéSe ideas are clearly parallel to those
guiding the development of data structures and a similar
flexibility should be provided; The prinéiple'tool should be
a uniform and flexiblelframework for contfol-structures atvall
levels iﬁcluding the oberating system., Several alternate
notations can be provided to most nearly corfespond with the
user’s thoughf péttefns. For example; one imporgant class of
control structures includés structures for aggregation of
activities. Assembly language; provide this'capability in the
form of macros; higher leQel langhages proVide-éubroutines or
procedures, and operatiﬁg systemnms 6ffen proQide cataloged
précedures. The well designed user interface should provide
all of these schemes at all levels, and as éﬁggested in the
section on data structures, perhaps the notation and thé
implementation should not correspond one ﬁo éne, but rather
the user.interface should select.the most éppropriate
implementation regardless of tﬁe notatin., Again, this may not
be immediately possible, but it should be tﬁe goal, and as
with data structures, there are reasonable interim steps. One
obvious interim scheme is to have the user specif§ the
iyplementation for each instance of aggregation (with

defaults, of course).

Having'adopted many levels of control, the user interface

1:59

must pro?ide for moving easily through thé controi'structure
for purposég.éf examinaion or modification;. This facility
should iﬁclude text editors, (hyper-text editorsf) And
automatic tree diagrams (or flow charts)»of control

structures,

A secpﬁd aspect of ;he user interface has been described
as habitaﬁility [{DEFA75), or livability. This refers to the
ease or naturalness of use of the interface. Several features
afe important to this naturalness, but the two key ideas are
that the uéer must know what is going on, aqd he must bhe in
control. There are a multitude of details which contribute to

this feeling of ease.

The control section should be self-explanatory in
operation with at least these features: a list of commands,
acceptable and default values given for parametefs, and

well-labeled input and output,

Another area which is basic to an interactive program is
the availability of tutorial commands. In a GMS, thé‘help
commands are not needed so much for the functioning of |
specific commands (since all the éommands are easily
understood) but rather to give a sense of direcfion whén.the
user geté‘bogged down in detail, With this end in mind, the
help comménds need to be far more intelligent than the usual
canned explanations found in interacti?e programs, wHilevthe

prototype GMS was originally written with the comnands

160

H

structufed‘sp as to leave the initiative with the operétor, it
is clear that this was overdone, especially for novicehusrs.
One scheme for regainihg the initiative is to have more fixed
interrogative sequences in which the user is told what to do
or asked>quéstions by the program. The ﬁsér no longer needs
to specify the normal command sequeﬁce;'explicit action is

needed only to escape from the normal sequence.

Another scheme for providng a sense of direction is the
use of intélligent “"help" comménds; These commands would be
used whéﬁ ﬁhe user is not sure what to do next in the sense of
solving a problem, not in the sense of what command does what.
They shoul& he‘aware of the status of the program, ‘and fhey
could tailor their response according'to.the’qurrent‘activify
in a global sense. These help coﬁmands could provide an entry

to program directed activity. Such a sequence might

1. Explain the purpose of the program. Introduce
elements as_building blocks of the system, including. symbols
and definitions. Give models as diagrams to be analyzed or

used as definitions.

2. Suggest reviewing existing libraries of elements for

similar applications. Assist in viewing thése libraries.

3. Ask what new elements are needed, ‘Automatically
cycle each element through a symbol drawing and text
definition phase. Fnsure that symbols are all compatible 1in

size; give unsolicited advice about attacher points and other

-

161

matters.

4. Guide the user through the model construction phase.
Suggest‘he start with a sketch, fhen place.essential or
criticai elémenﬁs, connect and label them, give numerical or
constant pa;aﬁeters, then place'non—essentiéi (for exanple,

1/0 or optional) elements and connect them,'

5. Cuide the user through the use of the translator,
Provide queries to set up the table of temblates and provide a

check-1ist for the job control language.

»Thesé possibilities can Be achieved.without'redesigning'
the entire GMS, A_moré powerful tutorial faciiity would bring
the program more into the domain of Compdter Aidéd Instruction
rather thén just a tool for symbolic diagrams, Nevertheless,
tﬁe reader is referred to SOPHIE [BROW74]‘a§ an example of the

power of unsolicited prompting.

The control section should also provide an ihterrupt
facility so ﬁhat the user can stop a process and see if it is
progressing satisfaétorily. While many decision points will
be'explicitl& included in ;he control seétion as programﬁed-
user interaction, it is also useful to haQe a mechanism-for.
stopping at ﬁearly any point'énd allowiné'the user fo scan the
state of the process, Of course, we cénﬁot.expect this
mechanism to be as well—developéd as the ékplicit user
interactionsvprovided by the programmer. The control module

should also provide operating system status information about

Pl g tapir00onoD

162

the job., With this information and the iﬁterrupt facility,
the user can take timely steps to stop a job which has run

away or become otherwise uncooperative,.

Systemn aids which are commonly needed for contyol of
programs include the automatic compilation of programs from
decision tablés, menu programs for gommand selectidn, and
fdrmatting and qﬁestionnaire routines for simplified parameter

input.

4.3.4 Implementation Aids

There are many tradeoffs in the choiée of‘a high level
language. Among these are tﬁe ease of implementation, the
varietieé of data structure providéd; and fhe software
available for the language. The ease of implémentation
depends oh QhetherAthe language is new or éxisting and whether
a version exists for the hardware selected. If a version
exists fhen that ié the easiest choice, with thé
ihplementation of ; known languagé being much eésier than the
design and implementation of a new language. As a pérsonal

decision, I would avoid creating a new language,.

To clarify this matter, 1 have chosén two representative
languages:.qne old, PL/1, and one new, ELI tWECR7l]. PL/1
is implemeh;ed on the IBM 360 series and ﬁLl is implemented on
the DEC PDP—IO. PL/1 offers a wide variety,of‘existing

software while EL]l offers a wider variety of data structures.

163

EL{ isvan extensible langﬁage which allows the programmer to
add new data types andfstfuctﬁtes; and newvopérators to the
1ahguage; '0nce the language has been exténded, the programmer
can use a simple notation to efficiently déscribe data
structufes.and manipulations in éach particular problem
domain, ‘Qn an IBM 360 or the PDP-10 the choice would be.in
faQor of the implemented language. On machines with neither
language, 1 would favor EL] as more useful 'in the long run,
Tﬂis choice of language might affeét my choice of hardwarg as
well. |

“‘

After choosing a language, there is a collection Qf fext
editors, lbaders, éubroutine‘libraries, and so forth which
must be creaged.' An interpreter would he most valuaﬁie as a
program devélopment and debugging aid. It allows the creation
of the proper environme;t for a procedure under test,band bv
executing one statement at a time the‘operation of'the |
'pfdcédurevmay be observed at any levei'of dgtail.. The
procedure nay be ﬁodified and execution resumed without
disturbing the environment. This is a valuable improvement
over'cheékpoint-réstaft systems thch may not allow a change
in the procedure between a chéckpoint and a restart, ,The
interpreter bfferé the featufes of severa1 assemb1y.languaae
debugging packages with the advantaée of proQiding these
featurés fof.athigh level language. The abilityﬁto nodify a
procedu:é and continue may save a great dealvo% time whenvthe

environment of a fault in a procedure occurs only after

Sl &titopbroonn

164

lengthy computingQ The alternative is for the programmer to

save and restore his own status; but this is generally"

impossible without more system knowledge than the programmer
.

generally has.

The design and construction of the interpreter, combiler,
and theireét of the environment is an édmittedly complex fask,
but one which need not be any more difficult than the creation
of the diéorganiied collection of editoré,finterpreters,
compilers, loaders, subroutine 1ibrar?es,vand so forth which
are available:at’any major computing center, What is
necessary is an ovefall view which pufs each piece in its

.

place and specifies the interfaces between pieces.

165

Appéndix A, Response to the Users Questionnaire

NAME: Richard LaPierre - Assisted by Don Austin

1.

7.

What was your overall impression of PICASSO?

I think it has great possibilities;

I‘m just sorry it wasn’t funded.
Did you find the system generally useful?
Yes
How extensively did you use the sysgéh?_Hours? Days?

A.hoursb(although D. M, Austin spent two davys

working on this particulaf problem).
What'important probleﬁmdid you solve?

A digita; 1ogic;tim1ng pfoblem;
Could you have solved it another way?

Yés?,by building the hardware,
How would the:two costs compare?

A breadboard device could have been built in 3 days.
PICASSO required three days to create a librarv of
logic elements and two days work on this particular

problen.

Do you plan to use the system again? Why? Why not?

i at ok 00

166

VMaybe, if the systeﬁ is cost effective. To be cost
effective, it needs good accéssibility - the engineer
vmust have constant access (in his work area); it needs
simple language and more reliabie-ébftware

(operating system) and hardware,

8. W0u1d;you recgmmend the system to your colleagues?
I think they should look into it.

9., Did you recommend the system to your colleagues? Who?.
No.

10. What revisions or extén;ions would you regommend?

Good accessibiliity; simple lanpguage, reliable

hardware and software.
11. Do you know of any better system? What are they?

No

167

NAME: Dan Maeder

(Answeredvby'n. M. Austin who assisted Dan Maeder)
l. What was your overall impression of PICASSO?

It is very hard to use, the computer system is
unreliable, and the lightpen is very hard to use.

(P.S. I am right-handed.)
2. Did you find the system generally useful?

Yes, very useful, in fact, we solved a problen of two

weeks 'Fortran programming in one hour.
3. How extensively did you use the\system? Hours? Davs?

An hour a day for a couple of weeks (until the problem =

- was solved).
4. What important problem did you'solvef

The hardware design of a delay line, varying the

parameters tq pet the proper wayefprm.
5. Could you ha;e éqlved it another way?

Yes,'build it and use an oscilliscope.
6. How wqﬁld the two costs compare?»

Using PICASSO was much, much éheaper. Building the

hardware is impractical,

S
e o
o
e
ey,
b rhe 3
=5
kY
-
o
-
o

168
7. Do you plan to use the system agaiﬁ? why? Why not?
No, not availablg in Geneva (where I have moved).
8. WOula you recommend the system.to yogr colleapues?
Yes,
9, DNDid you recommend the system‘to'yéur colleapues? Who?
Probably (D. M. Austin ‘is not sure).

10. What revisions or extensions would you recommend?

Some changes to MIMIC for optimization would be
helpful,
You should also make it transportable to small

terminals.

1. Do you know of any better system? What are they?

No .

169

NAME: WNancy Mchonald
1. What was your overall impression of PICASSO?

Good, interesting, flexible, powerful, a little

éfjptic to learn to use,
2,v Did you find the_sys;em generaliy useful?
~Yes
3. How extensivel& did you use the system?.Hours? Daysé

I used 657 of PICASSO s facilities. I worked with

it for three months,
4, What important problem did you solve?

I used PICASSO as the basis for a plicture query

.laﬁguage.

5. Could you hgve‘solveé it anotﬁer waxf
.Yes

6. MHow would the two costs cbmbare?

It would have been three times as much work without

PICASSO,
7. Do you plan to use the system again? Why? Why not?

Yes, T am still using {it.

Lo
seene
6]
=)
K
e
"
-
iy
-
3

170
8., Would you recommend the system to your colleagues?
Yes, . i

9, Did you recommend the system to your colleagues? Who?

No, my colleagues have no need for such a systen,

10, What revisions or extensions would vyou recommend?

l11. Do you know of any better system? What are they?

N-O 3 : ‘ - . ‘

171
.NAME: Peter Levine
1. What was your overall impression of PICASSO?

‘Fantastic, pretty far out, but it had lightpen and

hardwére problems. 1 was awed, confused,
2. Did'jbu find the system generally useful?
/ .
Never got to that part,
3. How extensively did you use the system? Hours? Davs?
I.spehd a lot of hours fiddeling around.
4, What important problem did you solve?
None

5. Could you have solved it another way?

Yés; Tﬁis éroblem involved differential equations for
a complex feedBack path.in bidlogicai éimulation. 1
formulated it as a diagram, then wrote out the
equations.from the diagram..vTheﬁ:I used a

simulation system that I was familiar with,
6. How would the two costs compare?
It was much easier without PiCASSO.
7. Do you plan to use the system again? Wﬁy? thy not?

No. Too clumsy.

6t et op k00D

172

8. Would vou recommend the system to your colleagues?
.Fo: certain~prob1em$.

9., Did you recommend the system to your qplleagues? IWho?
No.

10. What_fevisions or extensions would you'recémmend?

More reliable hardware, software. Also I did not have

a complete set of documentation.
11. Do you know of any'bettet system? What are they?

No,

173
NAME: John‘S. Colonias
1. What was your overall impression of PICASSO?

It.is a well documented and structured

computer program,

2. Did you find ;hg systgm geﬁerally usefﬁl?
Yes. It fulfills a definite need.

3. How extensively did you use the system? Hours? Days?
_Apbrpximately one mqnth - on‘and-dff,

4. What impéptant.pfobiem did you’solvg?

‘I did not solve any problem. I was trying to
see whether it could be used effectively in circuit

design abpli;ations.
S.v.Couldﬂyou have solved it another way?
vferh;ps. But I have not given it.a thdught;
6. How woﬁld ;he two costs compare?
PICASS0 would be less costly to opéréte.
7. Do you plan ﬁp use the system again? Why? Why not?
When a definite need érises, yes.

8. Would you recommend the system to your colleagues?

el nEROSOD

. Yes, 1 would (and 1 have).
9., Did you recommend the system to yvour colleagues? Who?

I have discussed PICASSO with people at the
Argonne National Laboratory and Lawrence

Livermore Laboratory.
10. What revisions or extensions would you recommend?
11. Do you know of any better system? what are they?.

I have not taken the time to investigate

other systems,

174

175
NAME: Andrew E, Allen-
1. What was your overall impression of PICASSO?

-Very professionally finiShed.produdt.

Much flexibiliity. Impressive,
2, Did yon‘find the system generally useful?
Yes.,
3. How extensively did you use the sysfem? Hours? Daysf

A total of a couple of weeks, about two’

years ago.
4, What important problem did 'you solve?
None; just getting familiar with 1it.
5. Could you bave solved_it another way?
NAW
6. How would the two costs compare?

NA - but not terribly expensive, In fact, for the

work it does, reasonably inexpensive.
7. Do you plan to use the system again? Why? Why not?

Probably not - not quite in my area of épplication

(text editing and character graphicsj.

lZe8iopraiopo

8.

9.

10.

11,

176
Would you recommend the system to yoﬁf colleagues?

Unquestionably, if 1 thought they would have a

use for it.

Did yéu recommend thg system to your cqilgagues? Who?
No.

What revisions or extensions would you recommendé
(a) More general commands for ﬁroéessing polygons -

i.e., shrink by factor, to fit another, rotate by

degfees, etc.)
(b) Better user’s manual‘ (although the one
I have is four years old and mayvalready have heen

supplanted)

(¢) 3-D
Do you know of any bettef system? What are they?

No.,

18

177

NAME: Peter Wood
(Simulation application; see separate comments on

PICASSO as a starting point for a_mapping project,)
1. What was your overall impression of PICASSO?
Cood5
2. Did you find the system generally useful?

Yes, simulétion, simple drawing and mapping,

and structured mapping.

3. How exténsively_did you use the systeﬁ? Hours? .Déys?
.Two;weeks for simulation.

4, What important problem did you solvg?

Class assignments for Engineering 111 at

University of California at Berkeley.
5. Could you have solved it ano;her way?
Yes,‘using thg cavpus META 4 - CSMP sys;em.
6. How'wouia the two costs compare?
The ﬁETA 4 was tpo crowded,
7. bo you plan to use the systéh again? th? Why‘not?

Yes, if,appiicable} I want to use GPSS which

is not yet on our system,

ce el o0 aoo0

bt

178

8. Would you recommend the system to your colleagues?
Yeé.

9., Did you recommend the system to your colleagﬁes? Who?
Yes, Betty Seasonwein,

10. What rey;sions orlextensions would you reconmend?

Add GPSS to available analysis routines.
Add more analysis routines.

Better documentation for the analysis interface,
11. Do you know of any better system? What are they?

No. CSMP - too limited - fixed library,

no hard copy.

179

NAME: Peter Wood

1.

3.

4,

3.

What was your overall impression of PICASSO?
PICASSO is a well designédvand debugged_system.
Did you. find the system generally useful?

I found the system useful for qohtinﬂqus
simulation, where the symbols drawn Have teﬁt
.definitions, for explorations of mapping

where the symbol plécement.on the screen is
éignificéﬁt, and for simple drawing (expecially

with quantum = ().,
How extensively did you use the system? Hours? Days?

‘Initially‘about two or three days a week
for three to six months and occasionally

thereafter.,

What important prdblem'did you solve?

Through the USERCMD feature developed the
_capacity to search a data structure of symbols
nested to many levels for all elements within

an arbitrary closed polygon.
Could you have solved it another way?.

Not without duplicéting a large part of PICASSO,
The text definitions and‘analysis routines

cEZatap 000

s

6.

10.

11,

180

could have been bypassed, Of course, it could

have been done in batch mode.
How would the two costs compare?

. The cost in man-hours would have been more.
and progress would have bheen slower without

PICASSO,
Do you plan to use the éystem again? Why?' Why not?

Yes, when the occasion arises, PICASSO
ié easy to use, convgnient, and reliable,
Wouidvyou recommend the'system to your colle;gues?
Yes
bid;yoﬁ recommeﬁd thé system.tq your colleagues? Who?
They recpmmended itlto me,
What revisions or extgnsions would you récoﬁmend?

Do you know of any better system? What are they?

No.

s

181

NAME: Horaée Warnock:
1. WHat'was your overall impression of PiCASSO?
 G;eat.
_2.. Did you find_thé system generally useful?
Yes.
3. How eXtensivgly did you use the system? .Hours? Days?

Approximatély 1000 hours starting in

May of 1971,
4., What important problem did you solve?

Scratchpad (sketching to scale) of .

printed circuit laybuts.
5. Could you havevsolyed it another way?

Yes - work up printed circuit layouts by

hand., Sketch to scale - tape and retape, etc.
6. How would the two costs compare?

We found that we saved approximately 20-2 5%
using PICASSO for sketching to scale and

using Xerox as a guide or underlay.
7. Do you plan to use the system again? Why? Why not?

Yes.

8. Would you recommend the system to yéur colleapues?
Yés.
9, Did you recommend the system to your éolleagues? Who?

Yes., The Electronics.Enginéering

'Department‘~ Lawrence Berkeley Laboratory,
10. What revisions or extensions would-you recommend?

Program - none
Terminal - higher resolution screens

Systems - stand alone very desirable
11. Do yoﬁ know of any better system? What are they?

No.

18

‘NAME: Bill Benson

l.

3.

4.

ve

3.

6

What was your overall impression of PICASSO?

Sexy. A powerful tool to build and
' manipulate pictures., Have had no experience

aﬁalyiing models,
Did you find the system generally useful?

It was easy to add a user command to do

animation.
How extensively did you use the system? Hours? Days?

Briefly - a few days with animation. We

used it extensively abédt a year as a
épééialized map editing program, but‘this was
hea&ily‘modified and éll the analysig routines

were removed.

What importgnt problem did you solve?r' .
As above.

Could yoﬁ have solved it another way?

: Yep! but this was a féirly quick way to pget
gsoing and we got experience with the problem

of map editing.
How would the two costs compare?

& 0o

1'\‘5
e
e
o
3
.
g3
-

183

184

Much cheaper not using PICASSO,
7. Do you plan to use the system égain? Why? Why not?

No immediate application in mind, but
would certainly use it on an appropriate

pfoblem. .

8. Would you récommend the system to yourvéolleégués?
Sure

9. Did you recommend the system to yqur.colleagueé? Who?
Richard Friedman, Jerry Knight,

10. What revisions or extensions would you recommend?

Use device independent graphics. Make zoon
more convenient. Perhapé define symbols with

relative points., Rewrite code for clarity,
1l Do you know of any better system? What are they?

No.

4%

185 -
Appendix B, Program Documentation

Program doéuméntation is available from the éuthor at the
following address}
Harvard Holmes
ﬁuilding 50B, Room 32}8
1Lawrence,Berke1ey LaBoratory

Berkeley, Caiifornia 94720

Documentation and access to the prorotype GMS (known as

. PICASSO at LBL) is available in the follbwing forms:

1. A short paper desqriﬁing the system.

2. A users guia; to the graphics section wiéh many examples., .

3. A useré guide to the translator. -

4, MSource ?bde and listings of the program in Fortran and
assémﬁly language (oﬁ tape éﬁd microfiche). |

5. ARPANET access to LBL whereby the prograﬁ canvbe executed
for a few devices (DEC GT40, Tektronix 4010 - 4015

terminals).

AUS71

AUST?72

BASK68

BASK69

BELA71

BROW74

CONT68

186

References and Bibliography

‘Aus, H, M., Korn, G, A., The Future On-Line

Continuous-System Simulation, Proceedings of the

FJCC, 39, AFIPS Pfess, Montvale, New Jersey (1971)

pp. 379-386

‘Austin, D. M., Holmes, H. H., PICASSO: A General

Interactive Craphics Modeling Program, LBL- 580,

University of California, Lawrence Berkeley

Laboratory, Berkeley, California (January 1972)

- Baskin, H, B and Morse, S; P., A Multi-level

‘Modeling Structufe for Interactivé Graphic Design.

IBM Systems Journal, 7, 3 & 4 (1968) pp. 218-229
Baskin, H. B., A Comprehensive Applications
Methodology for Symbolic Computer Graphics, in

Pertinent Concepts iﬂ‘Computer Graphics, University

of Illinois Press, Urbana, Illinotfs (1969) pp 414-428

Belady, L. A., Blasgen, M, w.; Evéngelisti, c.

J., and Tennison, R, D,, A Compﬁtef Graphi?s System
fof Block Diagram Problems, IBM Systems Jou}ﬁal, 10,
2 (1971) pp 143-161

Brdwn;‘J.'S;,-and Bprton, R. R., SOPHIE: A

Pragmatic use of Artificial Intelligence in CAT,

Proceedings of the ACM Annual Conference 1974, Saﬁ

Diego, California (November, 1974)

Control Data MIMIC; A Digital Simulation Language,

Reference Manual, Publication Number 44610400,

DEFA7S5

o

DERT®6 5

DERT67

NDIJK72

ELLI69

EVANG69

FRANT73

187

. Control NData Corporation, Special Systems

Publiéations,‘St. Paul,_Minnesoth‘(April 1968)

DeFanti, T. A., Séndin, D. J., and Nelson T, H.,

Computer Graphics as a Way of Life, Computers and

Graphics, 1, 1, Pergammon Press, Great Britian (May

1975) pp 9-15

Dertouzos, M. L. and Santos, P, J., Jr., CADD:

On-~line SYnﬁhesis.gi Logic Circuits, Electronic-

Systems Laboratory, Massachusetts Institute of

.Technology, Report ESL-=R=253, Cambridge,

Massachusetts (December 1965)

Dértouios,.M. L., CIRCAL: On-line Circuit Design,

Proceedings of the IEEE, 55, 5 (May 1967) pp 637-654

Dijkstra, E. W., Notes on Structured Programming, in

Structured Programming edited by 0., J. Dah, E. Q.
Dijkstra and C, A. R. Hoare, Acédémic Pfess,’London
and New York (1972)

Ellis, T. 0., Heafner, J. F, and Sibley, W. L.,

The Grail Projeét: An Experiment‘in Man-Machine
Communications, The'RAND Corﬁqration, RM—SéQQ-AﬁPA
(September 1969)

Evantelisti, C. J.,‘and Morse, S, P., Graphical

" Modelling Using Contextually Implied Functions,

Persona1>Communication (1969)"
Franklin, J. L., Dean,'E. B., Interactive Graphics

for Computer Aided Nefwork Design, Proceedings 2£'the

NCC 42, AFIPS Press, Montvale, New Jersey (June

Lég it ot 0o

188

1973) pp 677-683

GEAR70 -»Gear,'C; W., Hyde, C., Lewin, H., Michel, M, J.,
Ratliff, K., Wilkins, S,, The Siﬁulation and
Modeling System -- A Snapshot View, Department Qf
-Cqmputér Sciences File No,. 824,»University of
Illinois, Urbana, Illinois (1970)

GRON71 Groner, G. F., Clark, R. L.;vBermah, R. A.,

Deland, E. C., BIOMOD - An Interactive Computer

. Graphics Systen fbr Modeling, Proceedings of the

'FJCC, 39 AFIPS Press, Montvale;;NeQ,Jersey (1972) pp.
369-378 |

HELD7 5 Held, G. D., Stoneﬁraker, M.; énd WOné, E.,vINGRES

- A Relational Daté Base Management System,

%

vProceedihgs’gi"the 1975 NCC, AFTPS'Press, Montvale,

New Jeréey”(l975)

HOGS67 Hogsett, G. R., Nisewangér, D. A., and 0°Hara,
A. C., Jr., An Appiication'Experihent with On-line
Graphics—-Aided ECAP, 1in Confg..Digest 1967 |

'Internationai Solid-State Circuits Conference (1967)

‘pp 72-73
HOLM72 Holmes, H. H. and Austin, D. M., PICASSO: A

‘General GrabhicsvModeling_Program, Proceedings of the

ACM SIGPLAN Symposium on Two-Dimensional

- Man-Machine Communication, Los Alamos, New Mexico
(October 1972)
HORO72 Horovitz, M, W,, Austin, D, M,, and Holmes, H,

H., Symbolic Computer Graphics andeiological

»”

ve

KAIS69

MAGNG67

. MCDO75

MAR017

MEIS74

MERR71

NAGET73

1RO

Models, Proceediqgé-gi the ACM/SIGGRAPH Symposium,
Pittsburgh, Pennsylvania (March 1972)

Kaiser Engineers, San Francisco Bay-Delta Water

Quality Control Program (March 1969)

-

Magnuson, W. G., Jr., Kuo, F, F., Walsh, W, J.,
Oﬁ—line Craphical Circuit DNesign, UCRL—70796.
University of California, Lawrence Radiation
ﬂabbfatb;y (1§67)

Mchonald, N., CUPID: A Graphics Facility for‘
Support of Non-Programﬁer Infeféctions with a Data
Base (Ph.,D, Thesis) ﬂniQerSity of California,
Berkeley, California (1975)

Marovac, N., A Method for Defining‘Genéral.Networks
for CAD, Using Interactive Computer Graphics., The
Conmputer Journal,‘ll, 4, pp 332—356

Meiésner, Lé P., talk on Structuréd
Programming/Local Aspects,'Berkeley, California
(March 1974) |

Merritt, M, J., Sinclair, R., INSIGHT = An

- Interactive Graphic Instruétional Aid for Systens

Analysis, Proceedings 2£ the FJCC, 22, AFIPS Press,

Montvale, New Jersey (November 1971) pp 351-356
Nagel, L. W.,, and Pederson, D, O,, SPICEf

Simulatioﬁ Program with,Iﬁtegfated Ciréuitrﬁmphasis,
Memorandum ERL-M382, Electronics Research
Laboratory, College of Engineering, University of

California, Berkeley (April 1973)
870 b eCp o

,.,
e,

ok
&

" NEWM73

PRES6 5

PROJ72

RENA69

RIEK67

ROBB70

SUTHG63

190

Newman, W., and Sproull, R.,, Principles of

Interactive Computer Graphics, McGraw Hill, New

York (1973)

Preston, F, S., et al, Development of Techniques for
Automatic Manufacture of Integrated Circuits,
Technical Report AFML-TR-65-386, Volumes 1 and TI,

Electronics Branch, Air Force Materials Laboratory,

Wright-Patterson AFB, Ohio (November 1965)

Prdject MAC Progress Report IX, Méssachusetts
fnstitute of Technology, Cambridge, Maésdchusetts
(July 1972) -

Renaud, R, G., Walters, R, F., The Interactive
Creation, Execuﬁion and Analysis of Bioiogical

Simulation using MIMIC on a Graphic Terminal,

Proceedings of the Conference on Applications of

"Continuous System Simulation Lanpguages, San

Francisco, California (1969) pp 185-191

Riekert, R. ﬂ., and Lieberman, D.vV., DIM - A

Low Level Modeling System for Converéational
Graphics, IBM Research Report RC-1981, IBM T, J.
Watson Résearéh Center, Yorktown, New York (dctoberﬁ
1967)

Robbins, M, F., Beyer, J. D., An Interactive
Computer System using Graphica1>Flbwchart Input,
Communications of the ACM, 13, 2 (February 1970) »p
115 | |

Sutherland, I. E., SKETCHPAD: A Man-Machine

"

Ay

“

SYN68

WEGB71

WIRTI

191 -

Graphical Commﬁnication System, Proceedings SJCC 23,

Spartan Books (1963) pp 329-346

Syn, W. M., Turner, N, N., andIWyman; D. G.,

DSL/360: Digital Simulation Langdage User Manual,

- Fngineering and Scientific Computation Laboratory;

IBM Corporation, San Jose, California (1968)

. Wegbreit, B., The FCL Programming System,

Proceedings of the FJCC, 39, AFIPS Press, Montvale,
New Jersey (1971) pp 253-262
Wirth, N., The Programming Lahguage PASCAL, Acta

Infbrmation 1l, 1, pp 35-63

&2 a1t 0ok 000

i ¥

LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

