
Lawrence Berkeley National Laboratory
Recent Work

Title
GRAPHICS MODELING TECHNIQUES IN COMPUTER AIDED DESIGN

Permalink
https://escholarship.org/uc/item/2vw0k4gt

Author
Holmes, Harvard H.

Publication Date
1975-11-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2vw0k4gt
https://escholarship.org
http://www.cdlib.org/

" I,.

LBL-4240
('.1

GRAPHICS MODELING TECHNIQUES IN COMPUTER
AIDED DESIGN

Harvard H. Holmes
(Ph. D. thesis)

November 1975

Prepared for the U. S. Energy Research and
Development Administration under Contract W _7405-ENG-48

For Reference

, Not to be taken from this room

Q ... :; I
\) (,' .

r n

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

TARLE OF CONTENTS

1. An Introduction to Diagrammatic Modeling

1.1 Diagrammatic Modeling Defined and Illustrated

1.1.1 Use of Diagrams for Modeling

1~1.2 Earlier Modeling Programs

1.2 A Conceptual Framework for Interactive CAD

1 • 2. 1 The Art of Design

1 .2. 2 Goals of CAD Systems

1 .2. 3 Need for Separation of Tasks

1. 2.4 'The Graphics Facility

1. 2. 5 The Analysis Facility

1.3 An Idealized Modeling System

1.3.1 Defining a Primitive Element

1.3.2 Creat~ng a Composite Element

1.3.3 Graphics Features

1.3.4 Topological Analysis of Composite

Elements

1.3.5 The .Role of the Translator

1.4 . Examples of Modeling

1.4.1 PERT Diagram Example

1.4.2 Circuit Diagram Example

1.4.3 Digital Logic Example

1.4.4 Compartmental Modeling

o (}

PAGE

i

1

3

3

R

1 1

1 2

1 5

1 7

1 9

20

23

21

21)

2<)

31

32

34

34

39

45

54

2. A Graphics Modeling System

2;1 Software Organization (and Operation)

2.1.1 GMS Information Flow

2.1.2 Graphic Primitives

2.2 Data Structures and Storage

2.2.1 Types of'Blocks

2.2.2 Data Structures for Graphics and

Derived Blocks

2.2.3 Data Structure for Text Blocks

2.2.4 Filing Module

2.3 The Prototype Graphics Editor

2.3.1 Data Structures Used by the

Graphics Editor

2.3.2 Implementation of Graphics

Editor Commands

2.3.3 The Software Graphics Interpretor

2.4 Text Editor

2.5 Analyzing the Topology

2.5.1 Data Structure

2.5.2 The Topological Analysis Process

2.5.3 Other Data Structure"s

2.6 The Translator

2.6.1 Notation

2.6.2 Overall Operation of the Translator

ii

. 70

70

72

74

76

76

78

83

84

" 86

86

88

91

93

9 5

95

9<)

101

102

103

104

•

, '
v

iii

·2.6.3 A Tahle Driven Translator 107

2.6.4 Nets and Labels 1 11

2.6.5 Details of Element Processing 1 1 2

2.6.6 Treatment of Empirical Data in the

Prototype 113

2.6.7 Concatenation and Coordinates 1 1 4

3., An Eval'uation of the Prototype GHS 116

3.1 User Evaluation of the Prototype GMS 1 1 7

3.2 A Survey of Analysis Routines 121

3.2.1 A Continuous Systems Simulator: MIMIC 122

3.2.2 Electronic Circuit Analysis: SPICE 125

3.2.3 Wirewrap 127

3.2.4 Language Compilers 128

3.2.5 Lower Level Interactive Languages: CUPIO 129

3.2.6 Operating System Support 129

3.3 Improvements to the Prototype GMS 130

3.3. 1 M.odularity 131

3.3.2 Improvements to the Graphics Editor 132

3.3.3 Topological Analys i s 133

3.3.4 Translator Improvements 134

3.3. 5 Qperational Improvements 135

4. Future CAD Systems I 37

4.1 Where We Are Now I '3 7

4. 1 • 1 Types of Existing Systems 137

0 i·e-1_ l , i 0 • ~.." n V ~. .;.,,~

{t:; 0 0
.' ,

iv

4. 1 • 2 Trends in CAD Systems 119

4.2 Goals for Future CAD Systems 141

4.2.1 Data Structure Goals 142 "

4.2.2 Analysis Techniques 14 5

4.2.3 User Interface 146 w'

4.2.4 Implementation Aids 147

4.3 Pr:oposals for Future CAD Systems 14R

4.3. 1 Data Structure Proposals 149
\

4.3.2 Analysis Techniques 1 53

4.3.3 'User Interface 1 57

4.3.4 Implementation Aids 162
I'

Appendix A.Response to the Users Questionnaire 165

Appendix B. Program Documentation 1 R 5

References and Bibliography 186

v

ACKNOWLEDGEMENT

I am indebted to my thesis committee, Professor H. B.
"

Baskin, Professor D. Ferrari and Dr. L. P. Meissner, for their

encouragement and guidance, to D. M. Austin for many helpful

suggestions and collaboration in the programmin~ of the

prototype, and to the users at Lawrence Berkeley Laboratory

for their suggestions and motivation, specifically Ivan Wood

and Horace Warnock of Electrical Engineering Drafting, and

Michiyuki Nakamura, Richard LaPierre, John ~endes. Don

Evans and Frank Neu of , Electrical Engineering Research and

Development. I am also indebted to James Baker and Carl

Quong, Math and Computing, LBL, for support and encouragement;

and to Virginia Franks for preparing the manuscript.

Finally, this project would never have been

completed without the encouragement and support of my

wife Susan.

This work was supported by the Energy Research and

Development Administration under contract W-7405-eng-48.

,
~
i:" ," l , 0 " p (i .r!~ 0 0

,,0 ..

GRAPltICS MODELING TECHNIQUES IN COMPUTER AIDED DESIGN

Harvard H. Holmes

Lawrence Berkeley Laborator'y
Berkeley. California

ABSTRACT

vi

Schematic diagrams form a natural medium of communication

in a wide range of problem areas. In this thesis. we will

describe a comprehensive approach to problem solving using

schematic diagrams as the interface between man and computer.

Past efforts at computer aided design have been hampered

by an approach which combined the man-machine

problem-description interface with the problem analysis

portion of the system. In this thesis. we set forth a

methodology which separates these two aspects of computer

aided design. By recognizing those topological properties of

schematic diagrams that are common to a wide variety of·

disciplines. GMS is able to provide a sinRle man~machine

problem description interface for use in a wide,variety of

problem,solving disciplines •• In addition. GMS includes

intermediate data structures and preprocessing facili~{es that

form a natural interface and starting point for the creation

L o o 0

vii

of additional analysis capabilities are described.

The problem-definition interface supports two ~ain

activities: the creation of elements, and the interconnection

of these elements to form diagrammatic models. These elements

are the basic building blocks for creating models. In the

past, the elements have been embedded rather deeply in the

software. Thus, the creation and description of elements was

done by the system designer or, at best, was relegated to a

separate phase which required substantial familiarity with the

software. The main difficulty in creating a new element was

to communic~te to the analysis portion of a system the ex.ct

meaning of the element. Our approach, on the other hand,

makes it easy for a user to ~escribe the meaning (semantics)

of a new element in a natur~l way. If the new element is a

primitive (containing no other elements as components), the

semantic desciiption is given in analytic form (e.g. a

formula), or in empirical form (such as a table of numbers).

If the new element is ~omposite (a combination of previously

created elements), its semantics are defined implicitly by the

semantics of the component elements along with the topology of

the interconnections. A convenient representation of the

topology of the interconnections is given by a routine which

traces lines in a drawing and recognizes nets of joined lines.

A translator is described which produces explicit semantics of

composite ~lements fro~ the semantics of the component

elements and the topology. A complete prototype

..

viii

implementation for this part of the system is descrihed.

The problem-solving portion of this methodology allows a

wide variety of analysis techniques which can he flexibly

combined to solve a particular problem at hand. This approach

recognizes that no workable scheme for automatically

constructing computer programs has been developed.

Nevertheless, several improvements in present techniques for

constructing programs can be made to prepare for such schemes.

These improvements include flexible data structuring

facilities for programming languages and generalized user

interfaces. An initial set of data structures and analysis

functions for constructing programs is described.

Another aspect of our work is to demonstrate how existin~

problem solving systems can he extended using the graphics

problem description interface. These extensions serve to

tailor analysis packages to a spectrum 6f disciplines where

such analysis techniques are appropriate •. This gives the user

the impression that he is using an analysis routine which has

been specifically constructed for his problem.

I. o 0

1. AN INTRODUCTION TO DIAGRAMMATIC MODELING

In many areas of design, symbolic or schematic diagrams

are the most widely used representations for the statement of

a problem or the representation of an idea. D i a g ram s' h a v e

been utilized fot a wide variety of disci~lines, in which

instruction in the discipline is based on diagrammatic

representation~. Symbolic diagrams have thus become a rather

universal means of communication within disciplines. In

addition, the diagrams themselves have developed into powerful

tools for guiding problem formulation and solution.

Once computer aided design (CAD) techniques and computer

graphics techniques had succeeded, it was only natural to

combine these two techniques and provide graphical input to

computer aided design programs. There are many such programs

in existence, but their growth has not been as rapid as the

computing world expected. The 'reasons for this slow growth

are many, including primarily an inability to directly use

previous work [BASK68), and the high cost of graphics

hardware. The inability ··to use previous work results in a

high cost for developing new applications,and this difficulty

is addressed in this work. The high cost of graphics hardware

has largely disappeared; mini-computer displays are now

relativelyinexpen.ive and operating ~ystems are now ~~ch

better suited to sup~ort interactiv~ com~uttnR.

The minimum level of software design which allows the

I. o o

2
"

incorporation" of previous work is one which uses common

subroutine~ in each successive graphics input CAD program.

This level of design has not been very effective, with most

subroutines being at the level of common graphics functions.

A significant step forward in the organization of graphics

software design was provided by Baskin [BASK68J in developinv,

a conceptual model for such software d~sign. Baskin suggested

that a graphics CAD ,facility be organized as five separate

subsystems or modules for: (1) creating elements, (2)

diagrammatic modeling, (3) analyzing problems represented as

diagrammatic models, (4) revising analysis procedures, and (5)

providing output. Two other key ideas in this paper were:

that semantic description of an element could be done in terms

of three definition mechanisms; and that a large class of

diagrams could be included in a single generalized topolrigical

framework.

Many of these ideas were reflected in contemporary and

subsequent work. Softwaremodularization is evident in an

experimental CSMP [BREN66), in GINA [MAGN67J, in OESIGNPAD

[BELA7l] and ina graphic version of ECAP [HOGS67J. Efforts

to handle diagrammatic models in a general way are evident in

the experimental CSMP and in OESIGNPAD. One semantic

descripti6n mechanism appears in the Simulation and Modeling

System [GEAR70J, but as an extension to the ,modeling

capabilities, rather than as a part of the ~lement description

facility. This thesis undertakes to extend and revise these

. .

1

ideas and describes an implementation of the graphic input

which includes such ideas.

1.1 DIAGRAMMATIC MODELING DEFINED AN!) ILLUSTRATEn

1 • 1 • 1 Use of Diagrams for Modeling

A model. in the most general sense, is an abstract

representation of reality; a diagrammatic model is one which

is presented as a stylized drawing or diagram. Oiagrams take

many forms according to the customs of the many diverse

disciplines which use them. Nevertheless. the conventional

tools of their construction, namely pencil and paper, have

forced the great majority of these diagrams into a common

format. Observing Figure I, we see that a diagrammatic model

is composed of elements, interconnected by lines, together

with alphanumeric annotation. To the designer, the elements

are the building blocks of his model. The lines show the

relationships between elements of the model. Usually, only

the topology of the relationship is important, since other

representations with the same topology would be considered

equivalent. Almost always, a single element is used for a

large class of similar objects; when the designer uses an

element, he identifies the appropriate member of the class

using some annotation. Annotation is als~ used for commentary

and for identification.

The choice of elements is often dictated by the

o () a

4

FIG 1

100

II ~_III 10

. ,

5

conventions of the particular discipline involved. These

conventions have been established by long experience and they

are usually very effective. The convention usually sp~cifies

both the visual symbol and the class of objects which it

represents (i.e., the meaning or se~antics associated with the

visual symbol). In electrical engineering, these choices have

become so standardized that templates of the various shapes

are available as drawing aines, and documentation

specifications may even establish the exact size to be used

for the symbols. Semantic conv~ntions are equally complex and

well developed, although they may change with the appli~ation.

Thus, to take a very specialized example, the symbol in Figure

2A may at times represent a physical resistor with its

associated inductance and capacitance. At other times, it may

represent a pure resistance so that a physical resistor must

have its inductance and capacitance shown explicitly, as in

the composite element shown in Figure 2B.

Note that the components of the composite element have

separate meanings (semantics) of their own, which have a role

in establishing the semantics of the larger element. This is

only one case of the more general existence of hierarchies of

diagrammatic models, in which the detail of the model is

adjusted'to fit the necessities of the application.

The primary virtue of having hierarchies of models is to

enable an easy comprehension of the model by using several

layers of abstractions with each layer based on the next lower

9 o n OJ ~. ,~

6

FIG 2

FIGURE 21. "ORE CO"'LlCATED "DDEL FOR. RESISTOR

.

7

level. This facilitly uses man's language and abstract

reasoning skills to break a complex problem into

understandable subunits and understandahle compositions of

these subunits. We will return to this line of observation

later (Section 1.2.1, 1.2.2). For the pres~nt. we simply wish

to note that these layers can be observed in any particular

discipline as a fundamental tool for problem sblving.

The use of diagrams to show relationships among elements.

of a model brings with it several advantages and

disadvantages. The primary advantage is that the irrelevant

relationships may be removed from the diagram leavin~ the

designer free to concentrate on those deemed relev.ant. To use

an electronic circuit as our example again, the designer can

concentrate on signal flow and not worry about' the actual

three dimensional packaging of components in the model. A

-
secondary advantage is that a three dimensional situation can

often be easily reduced to two dimensions. Of course, the

abstraction inherent in modeling and the use of pencil and

paper have provided mutual reinforcement of this capabilitv.

Finally, we can observe that even a physical situation that is

basically two dimensional in its spatial configuration can

often benefit from using ahstract diagrams rather than spatial

configuration to convey relationships. The field of optics

provides exaMples where the symmetry of lenses allows a

convenient two dimensional representation, yet a more

schematic approach has often been taken.

n n
~} o

8

The primary disadvantage of using diagrams to show

relationships is the converse of the advantage: they may omit

some relationships which are significant. This may result in

the design of a model which cannot be physically realized.

While these tradeoffs are inevitable, the situation is n6t

hopeless - the usual remedy is to incorporate more

relationships explicitly in the model. In an electronic

circuit diagram, for example, some of the circuit delays may

be incorporated explicitly by replacing a line by a modeling

element which represents time delay. The amount of delay

would be set by the designer, who can estimate it from

packaging considerations.

t'.1.2 Earlier Modeling Programs

In early diagrammatic modeling systems, the semantics of

primitive elements were quite rigIdly built into the software

and the propogation of semantics from elements to combinations

of elements was, in most cases, straightforward.

Historically, the first graphical modeling program in the

sense of this thesis is SKETCHPAD [SUTH63). It combines an

interactive drawing routine with a scheme for evaluating and

satisfying constraints on the drawing. It manipulate~ lines,

constraints, and subpictures (which may include other

subpictures). A versatile copy function allows combinations

of constraints to be copied 'from one instance of a subpicture

to another. These constraints, the semantics of SK~TCHPAD,

. ,.

9

are created and incorporated into the data structure via the

same graphic techniques which are used to create the ori~inal

drawing. We may characterize SKETCHPAO by notin~ that ~

single data structure and a single analysis routine are used,

with the semantics given implicitly by the analysis routine.

Following SKETCHPAD, there appear programs desi~ned to

support more interesting analysis routines. Ex~mrles of such

pro g ram s are C I RCA L [DE R T 6 7) , CAD Ie [PRES 6 7 1 and C A f) n

[DERT65] • These programs may also be characterized as having·

a single data structure used by both the ~rawin~ phase and the

analysis phase.

Baskin and Morse [BASK68] created an experimental CSMP

in which the graphic input functions and the analysis

functions were separated and implemented as separate modules.

It is noteworthy that an existing interactive drawing pro~ram

(DIM [RIEK67]) was used. This demonstrated rather clearly

that graphic input facilities did not have to he tailor-made

for each particular application. DIM allowed the user to

create subpictures from lines and other subpictures in a very

general fashion • DI~ also provided rotation and scalinR of

subpictures. For use in the modeling system, DIM was given A

basic set of entities (predefined primitive elements) which

corresponded to functions availabl~ in the analysiS package.

The user created models using lines and these entities. A

second overlay generated a topological description of the

model in the form required by the analysis package.

I
t~.~ n o

A third

lO

overlay, again based on an existing program. did the analysis

and produied the output.

An extension of this work. DESIGNPAO [BELA7l].

concentrated more thoroughly on the interactive drawing

package and the topological analysis routines. elahorating

upon the intermediate data structure for use by analysis

programs.

2250 ECAP [HOGS67] and GINA [MAGN67] aTe examples of

graphic drawing packages which are used interactively to

produce input for "standard" batch mode circuit analysis

programs. Each of these has a predefined menu of circuit

elements. from which a circuit diagram is constructed. GINA

is able to change its output format to suit any of several

~ircuit analysis packages. J. L. franklin and E. R. Dean

[FRAN73] describe a system similar to GINA. but with the added

ability to nest diagrams to form a hierarchy of models.

BIOMon [GRON71] is a system designed for biological

problems; it uses CSMP for its analysis phase. In BIOMOn.

all'symbols are shown visually as rectangles (a disadvantage).

but a more complete set of semantic description facilities is

provided. including CSMP primitive elements. algebraic.

differential and chemical equations, and Fortran statements.

Symbols may also be combined to form hierarchies (implemented

by means of macros). BIOMOD offers good facilities for

semantic ,description (although limited to the analysis

1 1

facilities of CSMP), but no facilities for user-drawn

primitive symbols.

The principal shortcoming of all of th~se earlier

programs is their dependence on a single analysis program, or

a single class of analysi& programs. Thus, the semantics of

their primitive elements are built into the system and the

semantics of composite elements can be generated in a uniform

manner using the topological description. Although this

allows them to sidestep the dIfficult question of semantic

description, it precludes the generalization of these systems

to allow multiple forms of semantic description that might he

required for various fields of application. Most of the

earlier systems also exploit the specializ~d nature of their

application to simplify the graphics programming. The

ultimate cost of this specialization is a lack of

transferrability of the software.

1.2 A CONCEPTUAL FRAMEWORK FOR INTERACTIVE CAn

This section describes the Graphics Modeling System

(GMS) in terms of the facilities which are necessary for very

general problem formulation and solution. Many of the parts
...

of GMS can be viewed as extensions of similar facilities in

these earlier programs, generalized and made more systematic

to serve a wider variety of disciplines. The goal is to nake

GMS so general that it can be modified online to suit whatever

analysis the user wants to make. In addItion, the

p,... b o .. ·.! to ii<'1 0··
[-.. 4' "'- ~ ~ ~

1 2

organization of GMS should be straightforward so that even an

inexperienced user can adapt GMS to his problem.

1. 2. 1 The Art of Design

I

The art of design is the successful combination of

synthesis and evaluation. Design proceeds by a process of

synthesis or proposal followed by ,an ev~luation and refinement

of the proposal. Refinement is merely a variation of

synthesis, and so the designer repeats these steps over and

over. First, a synthesis and then a evaluation; then a return

to the synthesis phase to improve the solution using the

results of the evaluation to guide the synthesis. In the

early st~ges of design, these two activities are carried on

entirely within the imagination of the designer. They become

a series of "thought experiments." The designer mentally

proposes some situation; then he explores it to see if it will

provide the desired result.

At some point, the designer is r~ady for a more concrete

evaluation; he is ready to test his ideas using a CAn system.

For this purpose, the CAD system must be fast and flexible (at

the cost of some accuracy, ~erhaps). It must respond quickly

to allow many ideas to be tested and it must respond to each

idea fast enough to promote a steady flow of invention. If he

must wait too long, the designer becomes bored or impatient,

his attention wanders, and the atmosphere of creativity is

lost. At this early stage, the designer is likely to shift
I! .;

1 1

his attention from one aspect of the design to another; thus

the CAD system must he flexible in order to accommodate these

several aspects of the problem and to allow easy modification

of the design.

An essential part of the art of design is the ~hility to

partition the problem. The designer breaks one laige problem

into a number of smaller problems. This subdivision is

evident in practically any problem solving situation. It is a

key part of design; a proposal is just a synthesis of

subparts. One central activity in design is the suh-division

of the problem into satisfactory (more tractable) suhparts.

A most important counterpart of this ability to suhdivide the

problem is the designer's repertory of known solutions. The

designer with a wide knowledge and understanding of existing

solutions is able to use this knowledge to greatly extend his

effectiveness. The art of design then hecomes a search

through a tree structure. At each stage, a branch is

subdivided and each of the subbranches are explored. In most

cases the designer can immediately evaluate the suhparts of

the design from his prior knowledge.

In one common design methodology, this subdivision and

evaluation takes place in "depth first" manner; that is, as a

task is .suhdivided, one of the subtasks is selected and

pursued to its conclusion hefore effort returns to any of the

other highest-level subtasks. This is a very effective way of

pursuing the bottleneck in a deSign, that difficult aspect

o it' !.

I 4

which, separates it from known solutions. At each subdivision,

most of the subtasks are recognized as having known ~olut(ons;

they can thus be quickly discarded froM the part of the

problem that needs further consideration. In this way

irrelevant detail is avoided while pursuing the heart of the

problem to any necessary level of detail. This approach makes

good use of man's ability to organize and recognize patterns,

while, at the same time, it minimizes the amount of detail

which must be managed since man is limited in" this regard.

As the design becomes established. there is a need for a

more exact evaluation and refinement of it. At this point.

the design~r turns to Mechanical and technical aids. First

the design is committed to paper; then the designer begins to

refine and evaluate his proposal with the aid of rules of

thumb, technical formulas, and the use of a cbmputer. In the

past, the use of a co~puter, allhough desirable or necessary,

was delayed until the last possible moment. This was an

unhappy result of the great effort required to obtain a

computer evaluation of the design. The de~igner did not want

to make this effort until he was reasonably sure that the

design was nearly correct. The use of the COMputer, although

necessary,was so costly that alternate solutions could not be

pursued unless the original was unsatisfactory. This led to

barely adequate designs and stifled the search for innovative.

superior designs.

1 5

1.2.2 Goals of CAD Systems

The goal of CAD systems should be to ~ake the co~puter so

easy to use that it beco~es an aid to evaluation and

refinement from the very beginning of a design. This requires

a CAD system which is easy to communicate with and which

suppports suhdivision and evaluation strategies that are

natural a~d convenient for the designer. The technique of

diagrammatic modeling can be an important part of CAD systems

because it contains these necessary tacilities. Ease of

communication is inherent in the use of schematic diagrams,

since these are the first choice for the communication of

ideas in many disciplines. The other feature~ of a

diagrammatic modeling technique must allow for experiment,

deSign, evaluation and refinement at a variety of levels of

detail. The incorporation of a hierarchical structure into

the elements of a dia~rammatic model is the best technique for

supporting the experimental partitioning and synthesis of the

suhparts of a design. The designer must be free to construct

his model as his attention directs and to return to and extend

sections of the model with progressively more and mor~ detail.

A hierarchical structure, together with the ability to

redefine elements or .to have alternate definitions for

elements, allows the designer to establish a schematic diagram

with only very rough notations of what each element should do.

Thus, he can hegin with a very simple definition for some

elements, and then at a later time he can return and redefine

o

them in terms of simpler subelements. This allows the

designer to concentrate on crucial problem areas and pursue

them to the necessary level of detail, while temporarily

16

ignoring the rest of the problem. Later, other parts of the

problem can be elaborated upon without disturbing earlier

parts of the design.

In addition, a hierarchlcalorganization allows one

aspect of a problem to be removed from the rest of the problem

and tested out of context. Thus, th~ designer can-perform his

"thought experiments" until a particular aspect reaches i1

level of detail which he n~eds help in evaluating. He can

describe this one part of the system and test it, using his

mental design to guide him in describing the environment of

this part. For example, in the design of an FM radio, for

which a ne~ detector is proposed, the designer divides the

radio intb an RF section, an .IF section, a detector and an

amplifier. He immediately dismisses all but the detector as

being known. A detector is then proposed and described to the

CAD system; from experience the designer can describe the

input to the detector and r~cognize good or bad output. Thlls

he does not even ne~d to incl~de the other parts of the radio

in the d~scription he gives to the CAD system. Alternatively

he can includ~ them without describing their internal

structure in detail.

If the designer has been using a CAO system for some

time, then some of his prior experience can be incorporated

1 7

inio a library of previously designed parts. A diagrammatic

modeling facilitly can lend itself to easy management of this

library. As earlier designs are completed, they are stored

and their individual parts are reused in later designs.

1.2.3 Need for Separation of Tasks

Cnnsideration of the pr6posal and evaluation aspects of

design suggest that for a CAD system, the proposal aspect can

be hest supported by a good communications medium, while

evaluation requires the services 6f more conventional

mathematical programs. Since use of the system in an

interactive descriptive mode alternates with mathematical

evaluations, it appears feasible to provide separate software

in the CAD system for these two functions. The critical

requirement is that the two functions not be required

simultaneously. In almost all cases, there is no need for

mathematical evaluations during the interactive description

phase and vice versa. Thus, these two functions can he

organized as two separate software systems with communication

through a common data base.

The prinCipal advantage of this separation of tasks Is

that a wide variety of analysis systems may share the same

graphics facilities for problem definition. This will lead to

a better graphics product, since the graphics facilities need

to be designed and implemented only once. Thus, we can

justify doing a more complete job than we might otherwise have

o

1 8

done and we can include features which we might omit if they

were to be used with only a sinp,le analysis procedure.

Equally important is greater convenience for the user, due to

the fact that he can use the graphics facility as a common

interface. He is no longer required to learn a variety of

languages in which to state his problem, and yet he can use a

wide variety of arialysis procedures. Since the same graphics

facility is used with a variety of analysis procedures, it is

also a simple m~tter to use the same problem description with

more"than one analysis procedure. That is, a particular

problem needs th be descrihed only once to be available as

input to several analysis procedures.

In addition, the use 6f separate subsystems makes the use

of intelligent terminals for the graphics subsystem a very

attracti~e possibility. This reduces th~ real. time load on

the central facility and simultaneously provides even better

response for th~ most common interactions. The use of an

intelligent terminal may also allow the 'use of a low-handwidth

connection hetween the central facility and a remote user.

W~thout the use of an intelligent terminal, a hiRh handwidth

connection to the central facility would be required, which

might be uneconomical or impossible.

But the greatest benefit by far accrues to the analysis

programs which ~an use this common graphics facility. An

analysis program that is not used with a separate graphics

facility must either include a graphics f~cility within the

1 <}

analysis program or use some external form of problem

description, such as card images. Incorporation of a graphics

facility into analysis systems introduces problems of real

time interaction and consequent hardware and operating system

dependencies.

Use of the data structures of a common data hase, if they

are well thought out and carefully desiRned, is preferahle to

many of the schemes that have been widely emp~oyed to encode

schematic diagrams in a hatch processing environnent. Those

schemes use data structures hased on card images in which code

numbers or similar techniques convey the topological

information. They are tedious to use and very prone to error,

as well as being very difficult to update to conform to

changes in the original schematic diagram. By using a

translator, as described subsequently, one can adapt the

"standard" interface data structure to a wide variety of card

i~age-based schemes (if necessary), allowing batch programs to

be used with the graphics facility.

1. 2 • 4 The -G rap h i c s Fa c iii t Y

The function of the graphics facility is to allow CAn

problems to be conveniently descrihed as schematic diagrams.

The methodology of this description was suggested by Baskin

[BASK68], who proposed three types of element descriptions.

Two types of semantic description nechanisMs are provided for

primitive elements: an analytic or relational expression (e.~.

£ b' l (1 i; • {i ('~ t1 0 rJl -.. cr,

20

a form u I a) and an em pi ric a lor ex p Ii cit rei at ion s u c has a

table of numbers. The semantics of composite elements are

given by the interconnection (topology) of component elements

(and the semantics of the component elements).

To support this methodology, the following software

components are required: (1) an interactive graphics editor,

(2) an interactive text editor, (3) a topological analysis

module, (4) data management for primitive elements with

-
empirical descriptions, (5) a translator t6 propagate the

semantics of primitive elements up througb the hierarchy and

to provide customized data structures for output J and (6)

filing and retrieval functions.

I • 2 • 5 The An a I y sis Fa c iii t Y

The analysis subsystem uses the problem descripti~n and

produces answers for the user. Although ideally the analysis

subsystem should include a1acility for con~tructing new

analysis' pr'ocedures as simply as new modeling elements can he

constructed, the state of the art in automatic programming has

not yet reached this ability. Thus, the analysis facility

will include a set of preassembled packages, together with a

large set of more elementary routines to use as buildinR

blocks for new analysis packages. These building blocks will

include mathematic~l routines, data output and display

routines, and user interface routines. The system shoulrl

pr.ovide an easy-to-use, interactive facility to guide the user

.; ,

21

in assembling these routines to do what he wants. One

approach to this pr,oblem is evident in the Dynamic Hodelinp,

System [PROJ72] in which suhroutines from several different

languages c~n he comhined in a single system. Perhaps the

user can use the graphics interface to descrihe programs. The

facilities needed here for program assembly must be on a

h i g her 1 eve 1 0 f a h s t r act ion t han t h a, t pro v ide d b y G R A I L

[ELLI69], with'most of the tedious details of programming and

data structure being taken care of autonatically for the u~er

(who is not a programmer).

Two examples may illustrate some of the variety of

analysis techniques which can be applied. Many problems fall

naturally into one of two categories with respect to the

computational procedure required to evaluate them: sequ'ential

problems and "gestalt" problems. Sequental prohlems ,are

characterized by an inherent modularity: thet is,_ the model is

composed of elements with a definite input-output

relationship; computation performed on the inputs for each

element yi~lds outputs which serve as inputs to another

e I em en t. Such a configuration can he recognized in analog , .

computers, digital logic, compartmental flow models, queueing

situations, pert charts and flowcharts. Analysis routines for

these problems must organize the sequence of modules for

evaluation.

It often happens that the analysis routine for sequential

problems must deal with the problem of closed loops caused bv

I . ~
t~ I ~ o o o

22

feedback. Numerical integration problems, for example, are

often solved by reduction to integral equation form, the

graphical equivalent of which is to break the loop by assuming

that the outputs of the numerical integration are known in

advance. Then using these known v~lues~ new ~nputs to the

integration routines are computed. During execution, the

analysis routine must ensure that the old values are adequate

approximations to the new val~es. For some other problems,

for example, digital logic, closed loops may be broken by the

inclusion of time delay in the loop.

Once the proper sequence for the modules has been found,

they ~ay be evaluated interpretatively (CSMP), by compilation

and execution MIMIC [CONT68], or by translation to another

I an g u age, n S L / 3 60 [S Y N 6 8] , . where For t ran is the tar get

language. The evaluation routines must include the necessary

control routines, and usually also provide utility routines,
,

such as those for integration, time-delay and the

trigonometric functions.

Gestalt problems, on the other hand, lack the modularity

exhibited by sequential problems. Some electronic circuits

and bridge and building siructures are examples of ~uch

problems. Efficient analysis of the behavior of such a

structure as a whole cannot be accomplished by the sequential

evaluation of computation procedures associated with the

component elements. The analysis of such a problem requires

that the description of the elements be reorganized into a set

_ i
i

21

of relationships (e.g. equations), which describe the .behavior

of the system as a whole. These equations can then he

evaluated, often by the sa~e techniques (e.g. numerical

integration) used for sequential models. We will return to

this examination of analysis routines and packages in

Chapter 4.

1.3 AN IDEALIZED MODELING SYSTEM

1.3.1 Defining a Primitive Element

We shall begin our explanation of GMS with the creation

of a new primitive element, one which is not composed of other

elements. Although a library of elements is maintained, it

often happens that a new element is required tor a particular

problem. A new element is created by giving it a name. A

semantic description of the element must then be given which

can be understood by the intended analysis routine. For

primitive elements, two mechanisms for semantic descriptions

are provided: (I) the analytic or relational description of an

element by means of text, and (2) the empirical description of

an element by means of a numeric or empirical relationship

between variables described by some data set.

The analytic description is created using the text

editor. It is often used to specify an analytic ielationship

between variables using a math~matical notation suitable fo~

the desired analysis routine. For example, a resistor may be

defined by I = (VI - V2)/R; or a NAND gate: 0 = NOT (A + R +

o 0

24

C). For Some applications, a suitable description can be

obtained from past experience, either with the modeling system

or with similar analytic procedures. For other applications,

experimentation with alternate descriptions may be a

significant modeling activity. "An analytic description may

also give a functional relationship implicitly rather than

explicitly, by referrinR to a procedure supplied by the

analYSis routine:

X a f (y,z)

or

RIal 3-7 1100

where the procedure itself is specified by the first character
<

"R".

The empirica~ description form is used to associate a

data set with a primitive element. For example, a transistor

can often be best described by some of its characteristic

curves. Simple data sets can be generated or edited using the

graphic faci1~ties of GMS.

A symb6l (the pictorial o~ visual representation of the

element) mai also be associated with the name. When an

element is used as a component of a larger element (model) a

symbol is required for use in the specifi~ation of

interconnections among the compon.nts of the model. The user

creates the symbol with the line drawing commands of the

graphics editor (Figure 3A illustrates resistor, capacitor and

F I .G 3

9

FI6URE lA. PARTIALLY CO"PLETED SUIOLS

A --'\/Vv- •
l'o~"

FIGURE 31. SY"IOLS ~ITK ATTACKER POINTS ADDED

o o a

25

26

NAND gate symbols), ~nd he specifies points on the symhol

which ~re available for connection to other symbols in a

model. These points are called attacher points, since they

specify where lines in a model can be placed to attach the

symbol to other symbols. Each attacher point consists of this

position together with a character string which identifies the

variahle (in the analytic or empirical description) which is

to be associated with this position. Each attacher point of a

symbol has this unique character string and a unique

coordinate location relative to the symbol. Figure 3R

illustrates resistor, capacitor and NAND gate symhols with

attacher points added.

1 • 3 • 2 Creating a CompQ8ite Element

A composite element is defined in terms of other

elements, ~llowing users to create hierarchies, to assemhle

collections of elements and use these collections as single

new elements. They can huild layer upon layer of composite

elements, with each layer an abstraction of the layers helow.

On the other hand, a large problem can be broken into SMaller

and smaller subunits, with the arrangement of subunits being

easily com~rehensihle at every stage. Thus, within this

framework, the user can work from the top down or from the

bottom up. In working from the bottom up, new elements are

created from comhinations of existing ones, creating larger

and larger buildIng blocks for larger and larger problems.

. .
I

- !

,
" ,

;

! .

27

In working from the top down, elements already defined may be

refined by replacing tentative or experimental definitions bv

more exact definitions composed of other elements. Ry analogy

to programming languages, the creation methodology for

composite elements is called macro definition.

We use the term model as a convenient shorthand for a

composite element. Thus "model" refers to the combination and

"element" to the components. Strictly speakinR~ of course, a

model is just another element and can be used as a conponent

of a larger model.

After giving a. name to the composite element. the next

step is to select the elements which are to be used in it.

These elements are represented by their symbols. These

symbols must then be connected by lines joining the

appropriate attacher points. A set of connected lines is

called a net. A single object or two ohjects juxtaposed

(without lines) may also be considered nets. A net will

usually join attacher points from different symhols, but two

or mor~ attacher points of the same symbol can be joined

together if desired. Finally, labels are added to the model

to identify particular nets. (These labeled nets are

associated ~ith correspondingattacher points in the symbol

(discussed next) of the composite element. If no symbol has

been given or a lahel does not match an attacher p~int on the

symbol, then the label is assumed to denote a constant or

specific name for the net, and the character string is Made

L o

2R

available to subsequent analysis routines.)

A composite element may also be given a symhol to allow

it to be used as a component in larger models. This symho1

has its own attacher points that will be used to connect it

into larger models. Each attacher point is identified hv its

associated character string. The net (in the model

description) which corresponds to a particular attacher point

(in the model symbol) is identified hy a label with a

character string which matches the character string of the

attacher point. Values entering a symbol as formal parameters

through an attacher point propagate down to the matching net

and become actual parameters to the suh-symbols.

This character string matching is requiredbecallse the

symbol (picture) of the model (composite element) is not

inherently identified with the collection of pictures of its

component elements and their interconnections, that ig, with

the graphical object generated in the description of the

model. The attacher points have identifying character strings

in the symbol of the model. These are identified with nets in

the composite model description by giving matching labels to

the nets.

In many respects, the propagation of semantics in GMS is

parallel to the propagation of semantics in conventional

programming syntax. By analogy with the use of procedures,

the semantic definition of an element for~s the body of the

. i

2q

procedure and the ~ymbol forms the procedure declaration. The

symbol establishes both a pictorial name for the procedure and

the formal parameters. As with conventional procedure

declarations, the symbol provides the ~orrespondence hetween

external and internal references to the parameters. External

references are made according to the order of parameters, or

in the case of symbols, by coordinate location. Internal

references are made to the corresponding character strings.

Procedure declarations give an implicit correspondence between

the external order of the parameters and their internal

character string referents. For symbols, the attacher points

provide a correspondence between coordinate locations with

respect to the symbols (for external reference) and character

string identifiers (for internal reference). Thus, in a

conventional syntax for calling procedures the actual and

formal parameters must agree in order (and number), while in

GMS they must agree in coordinate location.

1.3.3 Graphics Features

Thefundamentalgraphic o~erations are the creation of

lines and alphanumeric annotation, the selection and

positioning of symbols, and the erasure of these elements.

Lines are used for the outline of symbols a~d for creating

nets in composite elements. Lines can be created in a

point-to-point fashion (most suitable for nets) or as multiple

segments approximating a free hand curve.

o ~.~ f ~r

Alphanumeric

~ n o u

30

annotation is ased for attacher ~oints and for labels. It is

constructed and positioned with keyboard and lightpen. A

number of character sizes are provided. Symbols are used in

composite elements, and each instance of a symbol has a size

and an orientation.

'A number of graphics features are provided as aids to

drawing. Among the most important features are zooning.

clutter suppression. grids, and a subpi~ture facility. The

zoom facility allows the user to enlarge any portion of the

screen to any desired size. Typi~ally, symbols are enlarged

by a factor of 16 to 64 for greater ease in drawing (where a

magnification factor of one displays the entire drawing area

on the screen). Models are then created at a somewhat reduced

size to allow more symbols to be visible at any one tim~.

Clutter suppression operates in conjunction with the zoom.

Its effect is to suppress the displ~y of character strings

from the screen when they would be too small to be legihl.e or

they would overlay one another in a cluttered manner if made

large enough for legibility. When a symbol appears in a model

(at a smaller size than it was created at) the character

strings associated with its attacher points are usually

suppressed. A grid can be overlayed on the drawing to help

the user draw his lines in exactly the right orientation, or

to help him Make one line twice as long as another. et cetera.

The grid can also be calibrated to provide dimen~ional

accuracy on the finished drawing. (An implementation is

I .

31

currently in use as a drafting aid to produce printed c~rcuit

boards.} The subpicture facility allows a part of a symbol to

be drawn separately and then used in several places. For

example. computer logic diagrams often use small circles to

denote inversion at the input or output of elements. These

circles can easily be drawn as subpictures and then called as

needed. Suhpictures can also be rotated or scaled as desired.

In addition to the graphics and text editors. it is also

necessary to have file management o~erations which allow the

storage. retrieval and manipulation of sets of elements

(1 ibraries) • These operations also allow the deletion and

replacement of individual elements within libraries.

1.3.4 Topological Analysis of Composite El~ments

A topological data structure is cr~ated by scanning the

graphics representations of macro definitions of composite

elements. Working from coordinate information. the topoloRical

analysis mudule decides which lines are connected. then traces

out the nets. and provides a structure in which the relevant

topological corinections are displayed. From this structure,

other modules (Section' 1.3.5) can determine either the

connectivity of each attacher point associated with an

element. or the set of attacher points and labels associated

with each net. That is. either the elements or the nets can

be the starting point for information retrieval by other

6 o

I
!

32

modules.

1.3. 5 The Role of the Translator

The primary purpose of the translator is to provide for

semantic propagation as described aarlier (Section 1.3.2) and

to reformat the results into the various forms required by

analysis routines. A common form is text on card images

similar to conventional programming syntax. For this form.

the translator allows the user to specify a suhroutine or

macro syntax (for example) for,the output. Startin~ with a

model to be analyzed the translator creates the appropriate

initialization and then compiles each instance of a component

element into the specified call syntax with the actual

parameters t~ken from the labels (~ames) of the nets in the

mod el. If no name was given to a net. then one is created.

For each distinct element used in the model. a suhroutine for

that element is constructed. A subroutine declaration is

created using the attacher points to identify the formal

parameters. If the element has an analytic definition. it is

simply ~opied after the suhroutine declaration. If an

empirical definition is given. a user-specified statement is

constructed. If a macro definition is used •. calls are

compiled for the component elements as in the highest level

model.

When a model is to be analyzed. the model and the

analysis module are identified to GMS. which provides the

33

proper translation and then passes control to the desiRnated

analysis module. A simple extension to the selection command

allows several models to be selected as a group, if the user

find~ that more convenient than incorporatirig them ina sinRle

higher level model.

Since GMS treats all models similarly until one is

selected for analysis, there is no diffi~ulty inselectinR

parts of ~ larger problem for analysis or in maintatnin~

several variant approaches to a particular problem. The only

difference to GMS is that a model which is selected for

analysis need not have a symbol, since a symbol is needed only

for use at a higher level. GMS can accept any model as the

top level model for analysis, and conversely, such a model can

have a symbol drawn for it and then it can be used in the same

way as any other ele~ent. This uniform treatment preserves

the open~endedness which is necessary for flexibility and

continued expansion of the system.

The secret of success of GMS lies in the fact that the

propagation of semantics from components to composite model is

independent of the nature of element semantics. Thus although

the element semantics must be tailored for an assumed analysis

program, nevertheless a common translator can propaRate

semantics for any analysis program.

The necessary information for elemen~ semantics consists

of formulas or element descriptions in the form of text or of

o o o

34

numeric data also input as text or as ~ curve (graphically).

The information needed to propagate the semantics consists of

the interconnections. At ~ given hierarchical level, these

are just lines (nets) that join symbols (at attacher points).

Between levels there are labels that relate internal nets to

external attacher points. GMS translates the Rraphics

(line-and-Iabel) topology description into a ~acro and

subrout~ne parameter form that can be adapted to all analysis

routines.

1.4 EXAMPLES OF MOOELI~G

These examples illustrate just a few of the many problems

which can be conveniently represented by a graphics diagram.

They were created using PICASSO [HOLM72], which is our·

prototype realization of a GMS.

1 .4. 1 PERT Diagram Example

A PERT (Program Evaluation and Review Technique) diagram

is a representation of job scheduling designed to identify the

minimum time to complete a job and to isolate the "critical

path", the set of job steps which, if delayed. would delay the

whole project. In addition, the PERT diagram may identify,

for each step not on the "critical path", the amount of

scheduling leeway that can be permitted without delayinr, the

entire job. Figure 4 i~lustrates a simple PERT diagram. Tn

this figure, each circle represents a job step and the lenRth

35

FIG ..

s· l 0 f,. r,,,,,,
r'

,,'ej,
.~) o 0

of the job step is indicated by the number within the circle.

The job step at the tail of an arrow must be completed before

the one at the head is begun. With these c~nventions in mind,

we would like to compute the time required to complete the

job. We will use MIMIC for the analysis. Each line

connecting job steps is associated with the time it takes to

complete the job steps ahead of it. In this example we aSSUMe

that each job step has at most 3 imme~iate predecessors.

(This is no iestriction.) Thus, for a single job step with

three job steps directly ahead rif it, the time of completion

T is given by

T = max(A, S, C) + D

where A, 8, C, are the completion times of the jobs directly

ahead of this one and D is the time for this job step. This

formula is the semantic description of JOBSTEP and can he

understood by the analysis routine. Now note that we can use

this same formula for job steps preceeded by less than three

jobs if the missing completion times are set to zero. Since

PICASSO's translator can assign default values (Section 2~~.4)

to unused attacher points we can use one element for all joh

steps, with unused inputs having a default val~e of zero.

We can now apply these ideas at the console, beginninR hy

creating the "JOBSTEP" element.

for a new analytic description.

First we select the comMand

At this poiryt we may either

choose an existing element (for modification) or create a new

37

element. We do the latter and type in the ne~ name, JORSTEP.

The semantic description is then entered by typing the formula

T = MAX(A, S, C) +D

in the appropriate columns of a card image.

Whentbe semantic description is complete. we select the

command to draw a symbol for an element. We designate the

name of our element, JOBSTEP. After we set the zoom factor

(Section 1.3.3) and ask for a grid, we draw the circle and the

lines shown in Figure 5R. The attacher points (A,R,C,n and

T) are then created, by first typing in each char.acter string

and then positioning it with the lightpen.Note that some

attacher points include default values, and that attacher

points are positioned at graphics features (e.g. endpoirits of

lines) which can be used to locate them if the accompanying

character strings are suppressed to prevent clutter (Section

1.3.3).

Now we have the primitive element we need to create a

mod e I. We select the command for a new macro description and

supply a name for our model. We ask for the JOHSTEP symbol hy

typing its name and, working from a rough sketch, we position

it with the light pen. Eight JOBSTEP symbols are required in

this case. The length of each job step is specified by a

label at the attacher point 0 (inside the circle). Lahels are

created by typing the associated character strings and

positioning them with the light pen. The labels inside the

o 0

38

FIG 5

T (A,.,C)·D

z

FIGURE 5A. AIALYTIC DEFIIITIOI. FOR JO.STEP JLE .. EIT

FIGURE 51. SY"IOL FOR JOISTEP ELE"EIT

circles will be interpreted by the analysis routine (MIMIC) as

constants. The job steps are then connected together bv

lines.

We now realize that the output (the cumulative completion

time) of the final jobstep element must be printed in order to

have a useful analysis. We suspend work on our model and'

create another primitive element referrin~ to one of MI~IC's

built in functions for printing results. Armed with this

output element, we return to our model, add the output symhol

to the model and connect it up (Figure 6).

Another co~mand selects the model for analysis, and

provides the translator with specifications needed for the

propagation of semantics. These specifications also include

job control language (JCL) which executes the analysis prograM

and returns control to GMS. The text editor subsystem of

GMS is used to examine the output (Figure 7).

1. 4.2 Circuit Diagram Example

For this example~ we shall assum~ a more knowledgeahle

user than previously. In particular, we shall aSSUMe that he

is primarily interested in using GMS to translate a drawing

into card images for input to SPICE [NAGE73], a circuit

analysis program. His problem is simplified hecause SPICE

determines his text definitions and electrical enp,ineering

conventions determining his symbols. He creates names,

o

40

PER T

FI&URE 6. PERT DIA&RA" READY FOR A.AlYSIS

F I 61

CU "I"IC OYERLAY WERSIOI OCT 11, 1'"
I

3
--"I"IC SOURCE-LIIIUIIE 'ROIRI"---,

'I

5

6
1

I
9

10
11
12
13

.U" "I"IC
1001
6002
6003
600'1
6005
6001
1006

RUI OF 'ERT 'RODUCED IV "I "YERT
"AU 0.)+ 1-
"IUO.,1001)+ 1.
"AI(1001,1001)+ 3.
"AI(1001)+ 'I.

"AI(1001,1003,100'l~+ , .
"AU 6001)+ 6.
"AI(6001,6005)+ 1.
o UTe 1006)

1'1 EID
15 0--- 10 FII STATE"EIT FOUID. "I"IC ASSU"ES - FII(T,TZERO) - ---
16

11
II 6006 = 1.100000E+Ol
19
20
21
22
23
2'1
25

FI6URE T. 'ERT DIA6RA" AIAlYSIS

o o 0

41.

42

semantic descriptions and symbols for three primitive elements

-- a resist~r. a capacitrir. and a transistor -- using common

symbolism (see Figure 8). Extra lines have been added to each

of thes~ sy~bols in order to clarify where the element value

and the element identification (XXX) are tobe placed. The

textu~l semantic description for each of these elements is

contrived to produce ~alid inptit for SPICE. For the resistor.

the following definition is satisfactory

R->XXX IN! IN2 VAL

the R -> ens~res that whatever identification is chosen will

be presented to SPICE with an R (prefix) in front of it, thus

allowing SPICE to recognize that it is a resistor. Similar

descriptions are used for the capacitor and transistor

elements:

C -> XXX INl IN2 VAL

Q -> XXX ~C NB NB MNAME

Then the user creates a composite elment (model) named

ONETRAN. After first positioning the symbols for the

resistors. the capacitors and the transistor, he connects the

symbols together with l{nes. Parameters for the individual

elements are provided by labels positioned at the appropriate

at t a c her pol n t s (F i g u r e 9). Each set of connected lines (net)

joins together a group of attacher points. These connections

comprise the topological information in the diagram.

• i
!

43

FIG 8

aUI(

FI6URE 8. SYftlOLS FOR CIRCUIT A.ALVSIS

n

44

ONE T RA N

DC . \
12

D
PLOT ". PH

1HZ 100 UHl

AC
1

DC
-12

4 5

The translator performs the semantic propagation by

expanding the model (macro definition) in terms of the

semantics of its component elements. In this case, the

propagation is quite simple. since only one level of semantic

propagation is involved. The translator assigns a ~ to

each net (as identified by the topological analysis routine).

Labeled nets are assigned the label as their name. Unlabeled

nets areassigrted a name which is generated internally by the

translato~. Each net name then becomes tbe actual parameter

which is used (substituted) in place of the formal parameters

identified by the attacher points. Figure 10 illustrates how

formal parameters in the element descriptions have been

replaced by actual parameters from the macro description. The

results of this analysis are shown in Figure 11.

1.4.3 Digital Logic Ex~mple

This example demonstrates the power and flexibility of

GMS by using it to "redefine" (adapt) an existin~ language

(MIMIC) to handle a digital logic problem. for whi~h it was

not designed. Without GMS this would not be practical. but

with GMS the user can create a set of elements and then work

with the symbols for those elements. unencumbered by constant

attention to the intricate details needed to "redefine" the

existing language. Since elements are parameterized. only a

small number of primitive elements may be needed. We begin

with the definition of a NAND gate. a gate whose output is

9 S /. o 0

1

2
3

" 5
6

7

I ,
10
11
12
13
1'1

15
16
17

18
19

20
21
22
23

2"

S-PICE AUN OF
VOl 01 0
. "ODEL X33
AO' 01 OZ
V03 03 0 DC
Cl0 0" 03
011 05 OZ
A12 06 05
A13 0" 07
.OUTPUT VI"
.AC DEC 10
V15 06 0
V16 07 0
.END

46

ONETRAN

ONETAU
AC 1

,
NPN BF=30 AB=50 VA=ZO
11(

0
1 UFD

0" Xl3
500
11(

05 0 PLOT "A PH
1HZ 100"E&HZ
DC 12
DC -IZ

SPICE -----

.............. , ~ ~~~~~~~~:~.-~~~~~~~.-~~~.~~ ... ~-.-- --

1. tJ~ ,J~+ .. ~
l • .::.:ij~t"l.
1. 5a~£. +.;G
l.~~!,>[,_+ .. u
2. 'j~2::': +.;G
J.10':::C.+,,1I
J. 381..': + .. ;;
~. oj.a.~:' t

b. ,slut:. +;JI,;

1.~It.)L

1. ;j 0 ~..:: .. ~ 1
1."jL1
1. S8:H. +~ J.
1.i'1:Jt. ... 1

;:.S.i.;'U~l

').lU.!L + .. 1.
3. ~8.1. ul
~. II.L .. L t ... l

o. J1 J Iti.
I.':'It')L·,d.
.1. Ou;;l t

1.4!S'JLt u ..

1.:'b-,It.tu2:
1.';I':f:.ot.

2. S12i::
,).lb.:;.c. +
3dolt: ... 2
).1,1.1':.:.., ...
b • .il,J~ ... ,:,
1.9",)(:.+1.;,
1. uO;t: .~:,
1.0:::7 J&:.'''''''
.... S8:iE..1.~
1. ':f~:tc tI .. ,)

<:.51Zc.+"j'j

It.vO''l.~ul
".ul.. .. :..:.- .. l

--".i)G .. :':-::'l
... 1,11.0 '+L-J.1

It • b ~ S; t: - ~ ,
..... d.:.. - .. !
;,. u·O UL- ~ 1
It oOLJu .. -Ll'

:..t.[;Ol.-
't • <.I l u ... - .. ~

:. 0613:'-~';'
... 1,1;' ':IL.- Vol.

... u~7.:> .. .:.
It .0 .. 1, -u 1.
;, .vt..~;:-;; 1
... U·J ... L.- u 4

't./I.jl...- J.
... :J ... 1 L - I. ~

... J~.J...:-,.d
:..> ;;1...-1.,

';. it C) •• i - ~;.

;1.0'1.1.1.-11.1.
u.:.>':7i::-id

1." ... _11 ... -1."
O. u~jl....-VJ..

J. • .J.,)uL.L..J

1 • .:lt7L.tJu
.;..::',/e.tl.,,·

1. cb:;i: .. "
,,- • .)..>/e.tuu
~.·Hlt:t":;;'
.).7'1;.01... u ...

.. • !.tJ7[t~;'
:>),)l..tU ..

1...-.i7!.il.tv;J

,) • .11)1::1...;. (. d''... Lt

3.~aJ.L .. ".) ·J.j17L:tV",
:..>.ul.:t.:.t .. .) H t"J.
o. Jj.Ue. tu,) 10 ILt

1.>::t .. JLt:i (.)':1;.... <l"
J. • ..,(,<ll........,) ... "c..t" ..
.1 H',:h .. t .. 't)t:.. ... l:.t ~ ..

J..'O::. ... t\.... .",,;,':1 f lI ..
.1. ".1';t!..ot.+" ..

~.!j.L':';:: It
J. J.EI.: ... t

.).':HHc.t
:;I. ul~(..+
I) •• H~~.~ ..
1.;I/t.H.t .. 1t

.1. ~I,/ .. L + ... ;;
1. ~:..> ~ t. + ~ ,
1.. :"0::'1... + ... ~
.I. • ;I ~, e. t .. J

0:::. !1.l.O:::L t .. ~
j.1o~c..t' ... ~
;).~d u:.~:;

j." 1~Lt'
D. J.l.uLt 1.<:-'
1.':IIt.kt ... :;
1. ~v + .. b
1.~~~1..+ .. 0
1. ~o:;c: t ~u
1. :I".1 ... l..t

2. !il1~~+LO
,). :A.o':::t..+ ... 1..0

.).":Ib1L o
;.0 .L..:t..+IIO

ii.ll':;C:+.:c
1,~".,)t.."Q

1.uli:.c: 7
.1. • .::!>;lc.+ ... 1
1.5o:Ji:.· ... 7
l. '1'1 "I.I
2.5.1.2L:t ... 7
j.lb':I..+1..1
.).'10.1.1..""/
~. vlLL 7
a. '>11.01... 1
1.'1ItJe. 1
.I.. ~ui;~t ... Ci:l·

.I.; ... l.. t l.;.I,

... ... :,i't. J.

.I. ,l.. t " ..
1 ... ;.0,,1..'1,1

l ... :...ol..tU.l.
..I. "';:.,,, ..

.I. • :. 0 ~ ... t iJ i

.... ,,\:".:)1_'.'"
1 ... "' t • .1
.... 40 b .. t;: ... 1

.I.. 'ttl:.>!.., oJ 1
1.'00:"'1.... t\,oJ.

J.;t;~;C:· ... 1 ...
l.'ol):.>i .. t,d

1 ... t:.;>1.. t L ~
..... b:.>r..t .. l

.1. ... '-':.>1....+0.1.

.i. ... b;.Lt" ..

~ • ;"0:.01... t II ~
~ ... ,-,;...:..." 1.
1. "1.1;.0:;"+1.1
1. o:,.(...iH
..... 0:..1.... 1

...... l.. ... c..·v.l.

.,;. G:.;t.:·ur

..... lou'.> U 1

1. :'o~i::tii";'
l.'oujr;.t UJ.
~ ... ['~L: t U 1
, ... \.I;..c. t ul
r~· .. U;":.':'l"
1 ... u:... tul
.. ... b ... ' ,,!
..... to:"O + 0 ~

... .. l.o:>:.....;u..;.
....... u:.>i... .. u.i.
......... 4-b:;::t:. .~ .

1.IlDilEtDl

. '. .. _ .. -. __ _._. __ _-_ ... _._-----.----;,_.

· - --

· - ... ~--.---- -. .
.. .;--- ---'-_._ .. __ ... __

--.t

· · . ··--t- ------.~ _ ... _------_._--_ .. _--· . ,.

. __ .- ___ -;. __________________ 4_ . .
- ..

1.000EtOZ

..

· - ---- -- '-. -----;--T"-- ._----;-.--_.-----_. __ ._.--

· _-.-----....... -----;---~------
---.,-----,,----_ .. _. ---.-.. . . .

-. - ._ ... -.- _ .. --- .. -----------"f.----;--...

-.----.-----.-----~--~-
.' . . ._-_._--_._---_. --.--,.......-.--~-- ..

· - ----_. __ .. _----.--------;-----.------ -'

. __ .:------_ ... _------_._-:._--.- ... _ ... _---_ _-
· . . -- --- - -------- -------------- .--- - ---

.... _. __ ._- ---.--:.---------;---;----
· . . - -- --- ---- - - ----.-.--- -

- ... ----.-;------- --.. ------.~---. .----..
.. -- --.--.-7---------;--.---· ..

... -------.------------.-....... _._-· . . -.-------_._------;--:-.-----

·
· . .

----;----------.-~------- -

-,
---,----7--.-.. -- ... -.- ... -

----.---~.-----.--

· . . ----_ _-._------ -----.~ .. -.--------.-..

· -- -_ .. _--- ~--- --'--"'---;--.--- . __ .

FIGURE 11A. RESULTS OF SPICE ANAL YSIS - MAGNITUDE

I o o

47

----- SPICE -----

i E" PE kA I mrr---'ZTI:;1 • • IJ1.nUrDDr1£G""C:-

.......................... '" , .. .
F"f<.£JUc..iH .. Y

------------ -----------
o • 9.IIO&hOl 1.S00E+az

.... "J\,£.t~.: ·j..7"ui.'i.J~
1.l;-JL'.... -.I. ./'7t.>L' ~ ..
l.sa~[+ ... I;· -i.7':t .. L",I,j': " ..
l.~~;Jt.'"'' - 1 ~..lt.t 1" ..

~.51li: ... ~ -1.7~_':"t~ ..
3.1b .. I;..",v - 1611. •• 11 ..

;;.~O.l.~'"'' -.I..7ou"~"
'.""1.:1:....... -J..7o.:::L'''~
o;.H.i::+':':' -~-~77ot..~~ --••
I.'lt •. h " -:".ll ... Lf,d.
1.,JOJi. ... l -i.7{.jZ.;'.. .'
1." ~ l - (~"t..",:
1.;o::ii:+ .. l -J..7.:;i.t'u,
.... <j~~t..101 - ("Jl.l,j~
,j::·.51·2t..... ~ .• :.i'i;;i ... ;i
J.lb~t. ... l -.I. .o'1~t;.'I".:'
,).~t)'"c.l - •• ou.lLtl,l ..

;'.J.,J.,L* .. l -.I..t,'';it..+u.;
.... .31011..1. -1.:;0 JL+ oJ ..

I. <i4.l.......... - ;J~'L.U<.
J..QO~z.:.~, -·1-... 67~ .. ·,j£·
1.~'JL:: -J. ... dh>tlJ ..
... 'iio;i:+ .. , -l.:ro:';:.u.:.
1.. :f'1 .. /;:...... - ,) ... bt. .u":
2.51Zc. , ·.:.1.,5uL. .. ~,
,).lb~i.· .. i
l~'J6i['l\:Z

- 'u .. t.:
:';'- 161~.~;::

;. "J.'::i.: + .. .: - l.).:L
o.jluL.~':: -J..1l.2i:t,,<.:
'.':IIlt,)L ... ' - 1 L'l:
l.u,,;,!:+..,.) ·-l.H..:~.~.::

l.~" It. "u,) - l".:.t i.":
.;:'0:;['+·:3 -1:r-.s':Eh2
1. :;4(j:lt.""',) -!. LO(L·
~.51.:!c.+.:.~ -?Ii..:E.~.:.
.$.·l&':L"U,) -l • .:::.d. ... tl,j.:.

~.~6.1.L ... wJ ... ::'-'Ju7~·.u..:
':1. Ill':: t. ,) -:'.')oo(.,t",.;
b.J.ut. ~ - •• Io')ui;.t..:';

1.':flt ... t. J -l.':'d :k.u':
1.iJDul,........ -l.~ ... H_.IJ ...
1 • .:!~'jt........ -.I.. :..':I .. t. •• ""
.... 5&:,l...... - ... t.,)UL.II.::
1.~~:>C.+L't· - O,)L."_
2.'1",;: .. i.it -·".031'[tL·':·
.$.lb.::t "u4 -1. , l,)l..t u ...
,). '~8J......... - •• 7') .. t..u <-

:... :...i~::..I.. ..
o.31.:.-t: :.
I.<:I .. ,)c.. 1o

-J,../lf:J!;.·t .. _

:"'i.7~u~'-u.,: .t
-l.I ... :.>[.:
·--i.77::'-C:t~~· - of.
-~.llol..t .. c ...

-,

l.·;'i, u,:. ~~
.I.. ,::i~~. "';)
.... Sc:..::: :J

1. ':II'1:Jc. "w'
C. .51c:L ... ~

-l.(~iL'-J~ .. --
-1. (O·..>L"U,,:
.;. 7()~tT;.·.:

j.lo~'" ... ~ -l.I':I ... L.';'';
;;.""9a·l[.:~ .. ---i.7'1')Ei·C-:- -.
~ •• il~t. ... SI - 7Yi+r:. • .J.:.:
6.,{1"ttl.:i --J,.. 7<:tt.L.u,
I.'jle')t,.+u.. -".7':1UL.":'"
1.u".:..,:. ... 1) -~.7':1/t..1J.;

--,

. -.-

,
T

- •• 1 ':to c.. v.! '.

. - ---- - - ----~--------------· '-

· . _._ .. _--_._----------------· .
· '-.. ----- ---_._---------------_._-- -_. · .

· . _._---------------- ------ ---_._-- -

· . _. __ .. _-----_.- ----------------_._- ._-_.-· .

· . -- ... _-- --------- ------_._------- .. · .
------------~------------

· --- --.--.--~------------- ._------

· . ----- .. _-------------_._.---_._-------_ ... _------

· . - ------------------------------- -------_._--

-- -- ---------- ------,--,----:,------------------

-------------;,----------------

-------':---------------
1.~'~t..VO

·l-;S&:ii.:·-;'·o .. ·;:r.-l':t()::.'~·: .. ·· '".---.--- - -----.--.. --.--------
1.'j~~1,.. ... 1.o - I':1':1l.,t u .:.. · .
~.S.l~L b· -H'lJ'1Lt~;"

... -~.------------.---------------- ._--- --- _. · . J.lt)':t.+~t> -1.7~'1t.tu .. · .
3.3tllc..~t) -~.7l:;j"L.U .. _.- ----- -----------_._-------_._----· .
,.Ul~i...Uu -l.7~':II&:.u... t •
o;;Jl';j;:··:;O---~;"Ifij~i'uZ_··-l---------·-----------;-·- --
7. ':tlt,)l;..wo -1. tlLJ,Jt..u,::
1.·{;-UiiEl;;7 "::4..8tiu~.<iZ ~-------.------.------.

1 • .::SJI;."1.1 - >ll.l .. c..u ..
1.585,:.u7 - 3liiJi:.(j.:-· ---------------------~-

1.'J~~t. ... i - d"IIc.:..
·';5r'[... 7--·=i7Huu~.J(: V" -------------- --- ------------:-:----~~----;:------
J.16'::L ... 1 -l.c.Uut..IJ ..
J.'16.i.l ... 1 -.l..ou-..;r..~,- -.-----
,.u1'::1...\lI -".tsuLL.U ..
b;Jl:Uc. I ··-i.dL·uc. .. u~

FIGURE 11B. RESULTS OF SPICE ANAL YSIS - PHASE

.-

.-

--.----

48

49

false if and only if its two inputs are both true. Our first

convention is to represent true values as analog signals with

a value ofl.O and false values as signals with a value of O.

Then the arithmetic expression

Z = 1.0 - X * Y

is contrived to compute the output Z of a NAND gate with two

inputs, X and Y. Using this NANn gate as a primitive element

we can construct a model to function as a half adder (see

Figure 12A). In order to test it, we need a means for

assigning inputs and observing outputs. We do this with some

MIMIC functions (see Figure 13). The results are shown in

Figure 15.

However, when this NAND gate is used in situations with

feedback, MIMIC produces a diagnostic which usually indicates

a non-physical situation. In this case, our model neglected

the fact that physical gates have an inherent time delay and

we revise the text of our semantic description to include

this. (MIMIC's TDL (time delay) function requires a third

argument (10.0) for storage allocation purprises~)

Z = TDL O. - X * Y, TD, 10.0)

Here we have introduced a parameter, TD, which is glohal sjnce

no attacher point occurs to make it a formal parameter, and we

must be careful to give it a vallie in our model. This allows

us to simulate "slow" or "fast" logic by manipulation of this

9 S I. o n (1 0

50

HAL F

c'

z

FIGURE 12A. HALF ADDER FRO" .A.O GATES

FI6URE 1211. HalF AOOERSY"IIOl

51

HAL F T 5 T

HA

o

o

FI6URE 13. HALF ADDER TEST CIRCUIT

o 0

$I API

2

3

" 5

6

7

8 ,
10

11

12

13

1"
15

11>

17
18

l'
20

21

22

23

2"
25

Z6

HALFTST

PlIPlIC RU. OF HALFTST PRODUCED IV PlIPlVERT

HAlF

6001

6002

6003

C

600"

6005

Z

I

HALF

V

IPllI C , I , V , I)

=F I I (T D 1I 1 . - X. V, T D , 20.) + . 5)

=F I XI T D 1I 1 • - X. X , T D ,20.) + . 5)
=FIXlTDlIl.-V-V,TD,20.)+.5)

=FIXlTD1I1.-6001.6001,TD,20.)+.5)

=F I X (T D 1I 1 . - 6003 - 6002 , T D, 20.) + . 5)

=F I X (T DlI 1 . - 6001- 600", T D, 20.) +.5)

=FI I(TD1I1.-6005.6005, TD,20.)+.5)

E PIA

PAR (Xl, 12, 13, V1 , V 2, V 3)

PAR(TFI.,PI,TD)

F 1.(T , T Fl.)
=FS II(S U(PI. (T - Xl)/13)-S 1.(P 1-(T - Xl) 113), 1 . ,0. ,0.)

CPllIC ,I ,V .. Z
=FS W(Sill(PI- (T - V1) IV 3) - S I .(PI. (T - VZ)/ V 3) , 1 . , 0 . , O.)

PLO(T,I,C,I,V)

E.D

FI6URE 1". TRA.SLATOR OUTPUT FOR HALF ADDER

52

1ft

Co>

o
o

•

o
o ..

0
0

~r

~l
I
~l

o
o ..

o
o ..

o
o

~

0

0
0

~

•

0
0 ,
•

o
o

.. '

o
o

~

o

0
0

~

•

0
0

,
•

0
0

o
o

~p---------~~-----------r----------~r-~--------~----------'

o
o

~
........... .1

..
•

0
0 ..
•

0
0

• • o. 5.00 10.00 15.00

T

FIGURE 15. RESULTS OF HALF ADDER TEST

o o .', ,

I
I

I
I

I
I
j

to.OO Z5.00

11/01115. 1~.~5.5~.

() 0

53

parameter.

The point of our description is to emphasize that

refinemerits can be made to the semantic descriptions of

elements without disturbing models which use them as

54

components. This is essential to allow pro~ressive refinement

of problem descriptions~ A further refinement (to correct

roundoff errors) .is shown below:

Z FIX (TDL(l. - X * Y, TD,IO.) + .5).

This particular element, NAND with time d~lay, is used in ~

more complicated logic problem, designed by Richard La Pierre

(Figure 16). More complete documentation for this problem is

a v a i I a b I e from the PIC ASS 0 use r' sma n u a I [A II g T 7 2 1 •

1.4.4 Compartmental Modeling

Compartmental modeling is a technique in which fluids are

modeled as if contained in a discrete set of compartments with

channels between them. It can be applied in diverse

situations from many fields, including biology, chemistry and

engineering. We shall take the following example from an

engineering application, an analysis of water and pollution

flows in the San Francisco Bay area. Our model of the bay

will be a series of compartments, connect~d by channels. A

roogh sketch of the configuration reveals that no compartment

is connected to more than three channels, so we designate

three possible channels for each compartment, labelled, A, B,

• !

PIE R R E 2

. _ 1'RI
~RI ~
~R.C tTat"" ~

~IO

~IO

1-.

55

~CT

r-'·· ,
" ~ o

and e,and we use only as many as are needed in each case.

The amount of water in each compartment, V, is the time

integral of the net flow into it from the three channels:

Vet) = V(O) + f (LA(t) + L'R(t) + Le(t» dt

Each channel connects two compartments, which we designate as

A, the upstream compartment, and S, the downstream

compartml~nt. The amount of water flowi.ng in n channel is

proporti'onal to the difference hetween the hei~hts of the

compartments, HA, and HR, and to the cross-sectional area CA

of the channel:

But the height of the water in a compartment is the ratio of

the volume V to the base area AREA:

H (t) v (t) /AREA

In the same manner, we analyze the amnunt of pollutant P in a

compartment:

where. for each of the three channels A, R, and e,

M A (t) • L(t) if L(t) > 0 ,
I
I.

F (t) =

if L(t) < 0

Here "A andM B are the concentrations ofa pollutant in the

57

two compartments. The assumption is that each compartment is

well mixed; that is, the concentration of pollution is uniform

throughout the compartment. This concentration is therefore

simply the amount of the pollutant divided by the voluMe:

MCt) = pet) I VCt)

These two elements, the compartment and the channel, are

the primary elements needed for the analysis. However, a

number of other elements are needed : variations of these

primary elements to suit special needs, and utility elements

for input, output and termination. The two special elements

required are a compartment whose height is a sinusoid and

whose pollution conc~ntration is zero (to serve as the ocean).

and a channel whose flow is independent of height (which can

be used as a river). The utility elements required are

constructed using analytic definitions which refer to standard

predefined MIMIC funciions for input (Figure 17), output

(Figure 18) and termination.

We can now enumerate the parameters which must be

provided for a compartment: three outputs (the height of the

water H, the amount of pollution P and the concentration of

pollution M), and nine inputs, that is, three initial

conditions (volume V(O), base area AREA, and initial pollution

P(O» and a pair of inputs for each of three channels (water

Each channel

has four outputs (two water flows LA and LB and two pollution

o
7

~.
II !
'. ' o o

58

FIG 1 7
r---~----------~--------------__.

I
I

I
I

2

PARCP1,P2,Pl,P4,P5,P61

FIGURE 1fA. ANALYTIC DEFINITION FOR 'ARA"ETER INPUT

! ,
I
I

r-----~------------_.------~II

t------1I

L---T-______ ,-______ ~---L ______ ~ll

!
6/ 51 L

'-'-,..--------~---

FIG 1 e

2

PLO (lin,: 1M2, 113, II", I If, 116)

FIGURE IIA. AIALYTIC DEFllltlO. FOR PLOTTED OUTPUT

I.'I~

I
I
1 I

'---_I i
i
i
I

~~----~--------------------I

,.
FIGURE 181. SY"IOL FOR PLOTTED OUTPUT

! '1 \) o

59

60

flows FA and '8)' and five inputs (two heights HA and HR , two

pollution concentrations MA and MR, and th~ value for the

channel cross sectional area). Note that th~ n~t flow in the

channel is zero; we have assumed that the channel has no

storage capacity.

him.

The us~r has now reached the point where GMS ca~ help

He has formulated the problem and derived the

mathematics necessary for its solutio~. Most importantly, he

has estahlished a conceptual framework and a set of

conventions to guide him in further development of the model.

The actual example shown here uses a special string

substitution feature to reduce the numher of nets (Secti6n

2.6.7) rieede~ to join compartments and channeis. Since the

translato~ will substitute the name of "a net for the formal

parameters named on the attacher points, we can use a

concatenation feature in the translator to prefix ~ach of

several identifying characters to the string which represents

the name of the net. The effect of this (tn this case) is to

provide four variahles from a. single net name. If our

character string manipulation~ are consisterit among the

various elements, we can use these four variables as i·f they

were connected hy four parallel nets. For the compartment the

formal p~rameters for connection to the three channels are A,

Band C. The variables associated with parameter A w~uld he

LA (for the flow), HA (for the height) FA (for the pollution

flow) and MA (for the concentration). Other variahles are

61

renamed as follows: VOL for the initial volume V(O) and POL

for the initial pollution P(O). Similar manipulations are

made in the channel parameter names.

The user must now create the primitive elements,

including names, semantic descriptions, and sy~hols for the

compartment (Fi~ure19), the channel (Fi~ure 20), and the

special variations of these elements. The utility elements

must also he constructed, unless they can be borrowed from one

of the existing libraries of elements.

Then the model (Figure 21) must be created, including i~s

name, placment of the various symbols, and their connections.

Attention must be paid to the assignment of parameters t~ the

elements, to be sur~ ~hat all the channels have base areas,

initial volumes and so forth. The value~ used in this model

were obtained in part from a report on the San Francisco Ray

by the Kaiser Corps of Engineer~ [KAIS69j.

The translator function in GMS will provide a card image

interpretation of the semantics of the model and its component

elements. Figure 22 gives a partial listing. Control then

pa~ses to MIMIC (via JCL) for analysis and display (Figures 21

and 24 show typical outputs). When MIMIC is terminated,

control returns to GMS for more work on the model or

termination of the session.

a 0

1

2
3

" 5

~

7

8
9

10

1 1

12
13

1"
15
1 ~

17

\8

62

NODE

V INT(L4A+L 4 1+L4C,VOL)
HT (V-VOL)I AREA
H4A HT .'
H41 HT
H~C HT
P INT(F~A+F41+F~C,POL)

.H P/V
"~A "T
"~I "T
"~C "T

FIGURE 19A. ANALVTIC DEFINITION FOR A CO"PART"ENT

63

FIG 1 'I B

III T

fiT

REA I

I ,
A Ol

FIGURE I'll. SV"1I0l FOR A COI'IPARUIENT

i
l _____ ~ ___ ~

o .' n a

1

Z
3 ..
5
6

T

8 ,
10

1 1

1 Z

13

1"

DH
L".
L"A
UI
F ...

F"'A

C HAN

FTR(H"'A-H"'.,TAU'
DH·ChIlF
-L"'.
"AI<DH+IIO,O. , "
(Z"-"AI(-OH+IIO, O. , '.CA.IIF
-F"'.

FIGURE 20A. ANALYTIC DEFINITION FOR A CHANNEL

64

65

FIG 2 0 B

• I

i
I

I
FIGURE 208. SY"80l FOR. CM •• NEl

991. n t-;.
b~ t1 0 (1 0

BAVI'IQD

Q
'I

'Z

'3

" ,~

L,--~-r~-T'Ur-----~------__ __

I.

0--
1.

i
i

fOil , I,
_1-----, I

~ .. ~'r·D-1 I
• I .

.. i I
III I ! I

FI6URE 21. • CO"PAAHIE.TAl "ODEl FDA "I"IC .I"'LYSIS
L-____ ~---i

66

I SIA"

2

3

" 5

b

7

8 ,
10

II

12

13

I"
15

I b

11

1

18

I'

1

20

2 I

122
23

1
2

" .

1

25

1

26

27

2·8

2'

I" 31

32

,33
, 3 'I

35

BAVfIIOD

OT"U

OT"U

FINIT,TFIN)

TIOE·SINlh.5)

O.
PAAITIOE,OT"AI, TAU, IF, 10,fFIN)

G003 FTAI HGOOI-HG008, TAU)

l G008

lGOOI

GOOb

F GOO 8

F GOO.I

G003. 5 .• IF

-lG008

"UIG003+10,0.)."GOOI

I GOOb-"AII -G003+10,0.)."G008'. 5 .• IF

-FG008

PAAI PI, P2, P3, PII, P5'

G007 FfAIHG002-HGOO',TAU)

lGOO'

lG002

GOIO

FGOO'

GOOh 5 .• I(F

-lGOO'

"A~I G007+IO, O.)."G002

I GOIO-"AII -6007+1(0,0. '."GOO'l" 5 .• IF

-F GOn

FTAI H600ll-HFF, TAU'

GOI3. 3. .IF

-lFF

F G002

GO 13

lFF

lGOO'!

GOI'!

FFF
F600'!

GO 11

,HSOUTH

HGOl5

HGOO'

H60 I I

.·"AIIG,OI3+I(0,0.)."GOOII

P S 0 UT H

GO 16

FIGURE 22.

I 601'l-"AII -GOI3+10, O. '."FF). 3 .• I.F

-FFF

INT(lGOI5+lGOO'+lGOII, 100.'

16017- 100.11 b.O

HSOUTH

HSOUTH

HS 0 UT H

INTlFGOI5+FGOO'+F6011, PII,

PSOUTH/6017

9 n ,.} o 0

l
I

67

...
• • • •

1ft r
z & o~ ~ ... ~ ...
=- ... • co • ...
co
'" .. u .. '"

I

I ~I-co ~I -
0. !!SO. 00 1.0E+01

T

FI6URE Zl. 200 HOURS OF POllUTIOI HISTORY II ~ CORPAAIREITS

11/02/'5. 16.25.03.

0

:~
0

~

~

z • • ... 0 ... 0 &.
:. 0 • 0 •
0 ... • u
&.

o 0

O. Z.OE+OZ 4.0E+OZ 6.0E+OZ I.OE+OZ 1 . OE+.03

T

FI6UIIE Z4. IEII 'AIIA"ETEIIS UOII EFFECTS EITEIDED II TI"E

11/0Z/TS. 16.30.Z1."

o 0

70

2. A GRAPHICS MODELING SYSTEM

2.1 SOFTWARE ORGANIZATION (AND OPERATION)

i
We have argued that a CAD system can be divided into a ,.1

problem definition module and a problem-solvin~ analysis

module. Figure 25 illustrates the information flow for such a

system. We have shown a CRT and a keyboard is the,man-machine

interface. For maximum effectiveness such an interface cOllld

also lnclude a lightpen, tablet, or other auxiliary devices.

The illustration shows GMS on the left being used to construct

primitive elements and models, and storing them in a library.

The anal~sis section is shown to the right, with its input

obtained either directly from the element library or

indirectly via the translator and an intermediate file (shown

dotted) • The analysis sectiori produces an output file which

is then interpreted by the display routines. In many cases,

the display routines will be combined ~ith the analysis

routines. (Ultimately, ho~ever, I think that a set of general

purpose display routines. will prove to be more powerful than

an individu~l set for each analysis package. The reasoning

behind this conclusion is analogous to that leading to a

separate GMS rather than one for each application.)

FIG 2 ?

B
\

EJ

1--
I fRUSLATE I

-9\-
4- -..t

I /IIIPUT \

\ FILE /

....... -

--- -
Ie 8 D

.. :~~ ... I!
ni

A.ALYlE I DISPLAY

FIGURE 25. 61'S-CAD IIIFOU'ATIO. flOW

691. 0 ~1 ~ t"" -~.J r~ 0 0

71

l

72

2. 1. 1 GMS Information Flow

Figure 26 shows the information flow within GMS itself.

The graphics editor accepts information from the user,

modifies the ~ buffer, and updates the display. The text

editor performs similatly on text. The edit buffer is simply

a reserved part of memory in.which addressing of individual

items is very simple. '(Details of these data structures are

provided in Sections 2.2 and 2.3.) Th~ filinR module is

responsible for storage and retrieval from disk and for

loading the edit huffer from the element library ~rea in

memory. The filing module is the highest level routine, in

the sense that it loads the edit buffer and activates the

other routines. It also maintains the directory structure

which ties together the symbols and ~emantic descriptions of

elements.

GMS, in the c~nceptu~l sense, is a methodology for the

problem-description phase of CAD activities. GM S, in the

programming sense, is a data sttuctureand a set of modules

which support the design techniques. In the conteptual sense,

we have found it convenient to describe activiti~s such as

creating primitive elements, creating composite elements and

translating models f6r a~alysis. In the programming sense,

the creation of primitive elements is not concentrated in a

single module, but rather spread over the filing, text editor

and graphics editor modules. In the same manner, the graphics

editor is not limit~d in responsibllity to just one task, but

FIG 2 6

EJ
GRAPHICS

EDITOR

EDI T BUFFER

FILIIG

flODUlE

TEXT

ED IT 011

TOPOLOGY

UAl'lSIS

UUSlATOIl

FI GURE Z6. GflS IIFOllflAT 101 flOW

o L I"~
" ! o 0

73

must edit symbols, macro definitions and empirical

descriptions; a single common editor is preferred to a

separate editor for each task. This requires that a common

set of graphics primitives be found for these three tasks.

2.1.2 Graphic Primitives

74

The design of GMS requires the specification of the

graphics primitiveS to be used and their correspohdence td our

description of element symbols, model descriptions and

empirical descriptions. In the case of model descriptions,

the cor~espondenceis obvious: subpictuies for sym~ols, lines

for nets, and alphanumeric annotation for labels of nets. For

subpictures, we have added the useful features of scaling and

rotation. In general, alphanumeric annotation could include

both a coordinate location for the attachment (to some

feature) of the string and a separate location for the display

of the char~cter string. This latter location would be

strictly a graphics feature, but could increase the legibility

of dense displays. In the prototype, only one location is

allowed; the coordinate location for attach~ent is also used

as the origin of the first character of the string for

display. Also in the prototype, the entire annotation is the

unit of editing, precluding either the replacement of

individual characters within the string, or moving the string

once its position has been confirmed. This has not ~een

inconvenient, since most annotation is short.

7 5

Our choices of graphics primitives are motivated by a

desire to choose high-level primitives which are still

compatible with easy editing (of our type of drawings) and

easy interpretation (for topological analysis). Thus, if lnes

were created explcitly from points, the flexibility gained

would not compensate for the greater complexity in using and

analyzing the drawing. At the other extreme, if sets of

joined line segments were the units of editing, the user would

find it more difficult to change one line segment in a group,

although the topological analysis might be easier or faster.

Another motivation for our choice of graphics primitives

is to allow the use of the same graphics primitives and editor

for drawing element symbols. For use in element symbols,

lines correspond to lines and alphanumer~c annotation to

attacher points. The graphics elements are the same, but the

meaning isdifferent~ Line~ have no meaning other than as a

visual element, while annotation is now Osed for attacher'

points instead of labels.

The corr~spondence between graphics primitives and data

sets for empirical definitions of primitive elements is the

least well developed of the prototype's capabilities. While

lines and alphanumerics enable nearly a~l charts and graphs to

be reproduced in a visual sense, it is not always clear how

these charts and graphs should be converted to data sets (e.g.

tables of numbers) and vice versa. The prototype system

requires that empirical descriptions haye the form of a single

t. n ., o

76

curve, single valued on the x-axis. Scales may be given for

both axis arid either axis may be specified as linear or

logarithmic. A generalized I/O facility in the prototype can

convert any drawing to a card image description of its

graphics primitives and vice versa. This feature can be used

to incorporate simple tables into empirical descriptions.

For the creation of text, the prototype has followed the

example of most common simple text editors. The units of

editing are the line and the character. No problems were

encountered (or expected) in this approach.

2.2 DATA STRUCTURgS AND STORAGE

The purpose of a data structure is to allocate storage to

the various pieces of information which must be stored (items)

and to provide access paths for use explicitly by the program

and implicitly by relations within the data (links). For

GMS, there is a natural grouping of the it~ms into blocks.

This grouping is natural in the sense that links in G~S always

refer to a complete blo~k and not to items within a block.

2.2.1 Types of Blocks

The four types of blocks are grarhics blocks (items are

lines, alphanumeric annotation and symbol references), ~

blocks (items are lines of text), topology blocks (items are

nets, labels, symbol references and attacher points) and

77

empirical blocks (items are pairs of numeric values)~

A primitive element with an analytic description has a

graphics block for its symbol and a text block for its

semantic descriptor. A primitive element with an empirical

description has a graphics block for its symbol and a graphics

block for its semantic description. In principle it also has

an empirical block containing data points that comprise a

tabular representation of the semantic description r,raphics

block; this block is not formed until need~d since it is a lot

of work to keep it up to date when the graphics changes.

Each composite element has a graphics block for its

symbol (if any) and a graphics block for its semantic

d esc rip t ion. In principle, it also has a topology block

containing a rearrangement 6f the graphics block lines into

nets; this block is not formed until needed.

The translator also uses templates (Section 2.6.3), the

data for which is stored in the text block. These are created

in the sam~ manner as the analytic description text blocks

used for primitive elements.

The normal display operation is a sequential scan of a

graphics block or of a text block in the edit huffer,

interpreting each item and generating the specified picture or

text string display. Topolo~y and empirical blocks are

processed only by the translator; they contain auxiliary

information (topology or data points) need~d for translation

7. l o 0

but not for display.

The strategy used in the prototypeGMSis to allocate

memory at the block level and to keep track of these blocks

with a directory (Figures 27, 28). For the sake of

simplicity, the prototype stores eacb block in the element

78

library, a contiguous area of main memory. When a block is to

be edited, it is moved to the edit buffer and the followin~

blocks are moved up to reclaim the space. When editing is

finished, the block is moved from the edit buffer to the end

of the element library area. (The amount of memory available

to the program and thus the size of the element lihrary area

can be changed by a request to the operatin~ system.) This

technique eliminates the need for a separate garbage

collection phase and requires a minimum of memory. In use,

editing seems to cluster within a few blocks, and these blocks

move to the end of the storage area and reduce the amount of

storage shuffling r~quired subsequently.

2.2.2 Data Structures for Graphics and Derived

Blocks

A design decision in the prototype was to include nO

auxiliary or secondary information in the graphics data

structure. That is, while a graphics block is being edited,

no secondary information (e.g. nets) is derive~ from the

pictorial information. A se~arate block is used for this

information and a conversion module is executed when the

FLG21

"

DISK

LIBRARY

EDI T BUFFER

CURRENT

--1 eM •• CTfll
HAl'"
8tJH£A

FIGURE 21. OVERVIE~ OF THE DATA STRUCTURE

Q a

79

F r Gl 8
r--- -- .--

ELEJIIlENT

DIRECTORY

'" • >-

'"
C> CD
-- C>

C> - • C>
E a:
>- C>

'" --

(TEIT I

TJPOL06Y

I
~;~~·
~T. PT.

LI 8 R A R V

I
I

,I

CHARACTER
STRING.

eUFFER

SUI IS

STRIlt6

E 0 I T

BUFFER

1------_·
I .

1111(

I
IAUI i/l

~ I I . I
i '
I

I

FIGURE 28_ DETAIL OF THE BLOcr .SrORAGE STRUCTURE
i L-_-:-__________________________ --'-____ .-l

80

R 1

secondary information is needed (if chan~e9 ha~ebeen made . ,

since the last conversion). In the prototype, this secondary

information is the topology and the empirical analysis of the

drawing, produced by the topology and empirical routines. The

advantage of this separation of data structures is that hoth

~tructures are easier to interpret, less computation is

required during graphics editing, and programming is reduced

and simplified. The disadvantage of this approach is that no

topological Jnformation can be given to the user durin~

editing. For example, he cannot be warned that a particular

connection might be invalid. He can be warned later, of

course,but effort may have been wasted in the meantime on the

editin& of erroneous data.

The separation of data structures also provides more

insight into how an existing graphics editor might be

incorporated into a eMS.

Within a block, the individual items have heen arranRed

to meet the needs of each particular type of block. For

graphics blocks (Figure 29), each item c~nsists of five

fields. The first field gives the type of the item (line,

alphanumerics or symbol reference); the second and third

fields give the x and y coordinates of the origin of the item;

and the fourth and fifth fields give the endpoint coordinates

for lines, or a size/orientation field and a pointer field for

alphanumerics and symbols. For alphanumerics, the pointer

refers to a character string buffer, a reserved area of fixed

n n O· d. J _

82

FlG-2.~
,.---_ ..

LINE

1 I v

.. NOTATION

I] --V---r--S-I-Z-E-'-"--T-O-C'-H-·;--:-'I~

ROT AT I ON BUffER -'---___ --' _____ --1. ____ -'-__ ---"-__ -'-______ _

2

I
I

S VP'80l

'---____ 3--' ___ 1 __ -'--__ '1 __ 1_-_R_:_:_:_:_;_O_N_'--,-~_D I-:';'~~~~~_~

FIGURE 29. GRAPHICS ITE"S DATA STRUCTURE

t<

83

size where the character string for annotation is st~red.

(See Section 3.3.2 for improvements.) For symbol references,

the pointer field contains a link to the block whos~ items are

the lines and alphanumerics of the symbol. More details can

be found in Sections 2.3, 2.5 and 2.6.6.

For blocks containing a topological analysis, the items

are similar to graphics items. Lines have been removed by the

topological analysis module and their information is now
/

conveyed by ~ numbers. Attacher pOints are now included,

distinguished from labels ~y a different type number (and a

different function). Label and symbol items are similar to

the graphics format, with the fourth (size/orientation) field

replaced by the net number.

Blocks containing a data set for an empirical definition

are compo~ed of a sequence of x,y coordinates, stored in the

hardware floating point format.

2.2.3 Data Structure for Text Blocks

A te.xt block is composed of lines of text with eacy line

terminated by an end-of-iiine character. Ten characters are

stored in each computer word. Trailing blanks in each-line

are removed ind the last (partially filled) computer word is

filled with blanks and theend-of-line character. Thus, each

line of text occupies an integral number of comf')uter words.

/, o i .

r" a

84

2.2.4 Filing Module

While the element library contains all the information

associated with a set of elements, it is necessary to provide

permanent storage for this data. Although a simple disk

writing routine might suffice, the prototype has been provided

with the capability to store and access several element

libraries, collectively known as the ~ library (Fip,ure 27).

The user may copy the current element library area to the di~k

library as a named element library. Named element librari~s

may be loaded,erased, or appended to the current element

library.

Ordinarily, the user's first action after the prototype

begins execution is t~ select an element library to be read in

(loaded) 'from the disk. A fixed-length directory is stored on

the disk with a name for each element library and a disk

add~ess for it.

A copy of this directory ~esides in main memeory,

although changes to the directory are immediately made to the

disk copy also. This,ensures that when the program or

hardware crashes, the disk can be read to recover the most

recent version of the element libraries.

At the dis~ address referenced by anel~ment lihrary

name, there is a short record giving the lengths of the

element library directory, the element library character

string buffer and the element library blocks. These objects

R5

then foilow~ using as much disk space as required. When a

named element library is to be read into the current element

library area, the name is designated, the program looks up the

disk address, and reads the length information. At this

point, more memory is requested from the operating system if

it is required, and the data is then read into memory. If an

elment library is being appended to an existing element

library, then the disk is read into memory following the

existing element library area. Within the appended sets of

elements, the pointers to the directory and to the character

string buffer are incorrect by a fixed offset. A subroutine

scans the entire data structure and revises these pointers to

corresp6nd to the new locations in the directory and the

character string buffer.

When a named element library is to be erased from the

disk library, the directory entry for that named element

library is simply deleted. When the element library is to be

stored on the disk, more disk space is allocated and the

element library is eopied out. The directory is updated botb

on the disk and in memory • Garbage collection of the old

...
information is performed at the end of each run but the user

has the option of skipping it.

9 L I. 0 p- o.
r'~'f r"'·

r",
~")

86

2.3 THE PROTOTYPE GRAPHICS EDITOR

The gra~hics editor operates on the edit buffer. The

filing module copies a block from the element library into the

edit buffer. The editor displays the items in the buffer,

accepts requests to add or delete items, and displays the

revised buffer.

2.3.1 Data Structures Used by the Graphics Editor

This section describes the requirements which must be

satisfied, and the resulting data structure. First, the data

structure is used for display of the picture; second, the data

structur~ must identify items from graphics input (that is,

act as a look-up table) and third, the data structure must he

analyzed to form nets. These three requirements, together

with the need for easy modification of the data, guide the

evaluation of proposed data structures.

The dominant influence on the design is whether the data

structure is to be interpreted by hardware o~ software for
~;', ",:

display of the picture. If the data structur~ is to serve as

a conventional hardware-interpreted display list for a refresh
J

display, then the alternatives are practically elminated and

the other aspects of the data structure are fitted in as well

as possible. In the prototype, the data structure was to be

interpreted by software and these other aspects strongly

influenced the design. Software interpretation is not

87

altogether bad, however, since it simplifies zrioming and

providing a large work area. The alternative is to provide

several graphics "pages" for a drawing, but the user shouldn't

be forced to divide his drawing if he doesn't want to.

Ideally, both schemes should be provided.

The second most frequent use of the data structure is as

a look-up table fron graphics input to data item locations.

As before, the hardware available can make a big difference.

In parti~ular, if the h~rdware provides a pointer to the

display item detected {by light pen or special tablets

equipped with comparators),then the look-up is much easier.

In our case, only the x,y coordinates of the item detected are

. '
returned. In order to provi~e the look-up without an

exhaustive search, the prototype stores its graphi~s items in

the edit buffer according to the x coordinate of the item.

That is, when ari item is to be stored, its x coordinate

(~uitably s~aled) is used as the index in the array where the

item is stored. When an item is selected by the user, the

coordinates are used as tbe index to retrieve the item.

Co~lisions are dealt with in a manner used by many hashing

schemes: an item colliding with another is stored in the riext

sequential unused (open) location. The. storage scheme must

also recogniz~ this convention in its searches: beginnin~ at

the index for the coordinates given. it scans sequentially

until the ~esired item or an open word is found. If an item

is erased, it is replaced by an "empty" but non-open word.

o o

88

The third requirement for the GMS data strutture. to

allow a net search, is quite similar to the second. since a

coordinate-oriented look-up is involved. If the look-up frir

graphics input has been performed by the hardware however. as

in DIM for example, some auxiliary table is usually required

for this search.

In its ease of modification. the structure used by the

prototype is superb, since there ~re no linkages or

directories to be updated and neither deletion nor insertion

requires existing entries to &e moved.

Summarizing our implementation of the edit huffer

structure. its advantages are ease of look-up and net

searches. and ease of modification. Its disadvantages are its

fixed size and its bias toward software interpretation for

display.

2.3.2 Implementation of Graphics Editor Commands

The graphics display is divided into three areas: an ar~a

for the display of ihe edit buffer. a menu area (the right

hand side of the screen); and an area for the display of

status and instructions (top of screen). Commands are

initiated by pointing to .the appropriate menu entry. for each

command. instructions and (possibily) a new menu are provided.

The major commands are given below.

1. The first tommand required to edit a drawing is given

89

to the filing module, to retrieve a particular graphics block

from the el~ment library for editing. The filing module

retrieves each item from the block and stores it in the edit

buffer according to its x-coordinate. The block is then

deleted fro~ the element library. The topological analysis or

empirical analysis is also deleted if any exist.

2. To draw a line, one specifies a sequence of points

(e.g. by light pen). The first point bep,ins the line and

subsequent points are joined 'to the previous ones to create a

joined line segment. If coordinate input is received when no

command has been selected, the line command is assumed. Th i s

is the only default command. There is a hardware mode which

provides a eontinuous stream of points (from the tracking

cross). The software organizes these points into line

segments.

3. To enter alphanumeric annotation, one types the

charac~er string on a keyboard; and then enters a position via

the lightpen. At this time the annotation appears, but it can

still be moved about, rotated and changed in size, using an

auxiliary menu which replaces the primary menu for the

duration Jf this command. (During this manipulation, only the

changing annotation is rewritten in the display hardware,

using an addressing capability in the display hardware.) When

the user is satisfied, a "confirm" signal is given and the

annotation is frozen. It can no longer be manipulated, except

by erasing it and creating it again. At this time, the

I (1 o

90

primary menu resumes.

4. When the user wishes to add a previously defined

element symbol to the graphic description of a composite

block, the operation is similar to that for annotation. The

user is instructed to type the name of the element whose

symbol is desired. (~nly enough characters for unique

id~ntification need be given.) the user is then directed to

enter an initial position. The symbol appears here hut it CAn

still be moved about, rotated, and changed in size, using an

auxiliary menu. When the user is satisfied, the symhol is

frozen.

5. To erase an item, the user points to the item and the

x coordinate is used to find the item in the edit buffer. The

item is blinked and then erased upon confirmation. If more

than one item is located at the given coordinates, each one Is

blinked in turn for the user to select the proper one. A

variety of options aid in this selection, including a choice

of what kind of item is to be erased, and whether confirmation

is required or not.

6. When the zoom parameters 'are to ,,:be 'changed, the

display is redrawn at a magnificat~on ~~ctor of one and a

square is drawn on the screen outlining the area displayed

previously. The .square can be moved and changed in size with

the light pen until the desired area is within the ~quare.

The display is then redrawn ~ith the desired area filling the

"

_J

91

screen. An alternate set of commands allows the square to be

moved in any directon, in steps of the square width.

7. A ~rid is provided as an array of dots. The user

specifies (by typing a number) the spacing between dots (with

a spacing of zero denoting no dots).

8. When the user is finished editing, the items in the

edit buffer are copied to the end of the element lihrary and

the new graphics block is entered in the directory under the

name selected earlier.

2.3.3 -The Software Graphics Interpreter

The software graphics interpreter provides the link

bet~een the structure used by the editor and the capabilities

of the actual hardware (see Figure 30). The prototype uses

-some simple system routines to generate the actual display

commands.

As illustrated in Figure 30, the interpreter scans the

edit buffer to get the next item. Lines and annotations are

transformed according to the current size, rotation and zoom

parameters, clipped and drawn. Symbol references cause the

current size and rotation values tobe stored and new ones

constructed from the size and rotation values in the symbol

reference. Then the interpreter scan is directed to the

symbol hlock until the end of the block i~ reached. At the

end of the symbol, the previous size and rotation values are

6 l I
, .

l , o d

i

I

F I c;. 3 0

EDIT

BUFFER

IT£"

I
I

I !
I J

~

FIGURE 30.

/
/
~
~

i

GRAPHICS DISPLAV INTERPRETER

I
~---

92

;

restored and the interpreter resumes the scan of th~ edit

buffer.

The interpreter can also be instructed to display i'I

single item. This feature is used when new items are being

added to an existing display.

2.4 TEXT EOITOR

The text editor was designed to be the essence of

simplicity. To that end, it interacts only with the keyhoard,

and each line of text is identified by a number displayed with

it. When a text block is to be edited, it is moved to the"

edit buffer and each line is filled out with blanks to be 80

characters long.

The general form of a command is

<string>;<string>;<linenumber><commandchar><commandchar>

where each of these e1ments is optional. We will use n as a

shorthand for <line number>. The default line number is the

current on~, and the default command character is I (Insert);

so the command

<string>

will insert <string> at the current editing position. Other

commands are

<string 1> < S t r in g 2 >; n A

o S I.

to replace (alter) <string 1> by <string 2>in line n.

to delete line n. -.'

nD

(;.D will then delete the next line.)
:- , Y

<strin-g> n I

will insert <string> before line n.

k
n

T <tab char>

94

wi 11 define tab stops at· k
i

• •••• k activated by <tah char>
n

in the input. For example. 7;T* followed by *X = Y will place

X in column seven.

will start the display at line n. If more than 35 lines are

in the edit huffer

;P

will start the display 35 lines (one screen full) beyond the

present starting position recycling fr~m the end to the

beginning.

<string> Q

will apppend the file <string> to the current text. beRinning

at the current position of t~e file.

<string> X

95

will rewind the file <string>.

<string> W

will write the current text block on file <string>. x. Q. and

W may be combined. For example,

ZAP;XWXQ

will copy the text buffer onto the end of itself using ZAP as

a temporary file.

;R

will exit (Return) from the editor. The trailing blanks in

each line of text are replaced by an end-of-line character as

the lines of text are moved to the element library. The

entire collection of lin~s is stored as one text block in the

element library.

2. 5 ANALYZING THE TOPOLOGY

2. 5. 1 Data Structure

The topological data for a composite element is extracted

from the graphics block for th~ macro definition of that

e 1 emen t • The topological data structure adds explicit

connections between ite~st which, in the pictorial

representation, are only implicit (identical incoordinate

values).

0·· ~.

t • Ii, f7 f'?' ! .. I

96

The topology of a drawing is repr~sented usin~ the item~

of a topology block (see Figure 31), whose data structure is

analogous to that of the items of a graphics block. Although

the graphics items are desi~ned for display, a similar format

works well for the topological items.

To represent the topology of a drawing, each net in the

drawing is assigned a sequence number, beginning with 2 (l is

reserved for a special case). The topology module then

generates a block (Figure 32) in the element library. The

first two words contain the number of nets and the number of

labels found. N~xt comes a list of items corresponding to all

of the labels in the drawing; these are in alphahetical order.

The character string for the label is not duplicated, since

the pointer field in the item is copied from that of the

correspondinp, graphics items; thus it references the same

string used in the dtawing. The rest of the list is conposed

of group~of items, with each group representing an instante

of a symbol within the drawing. A symbol item heads each

group to identify which symbol is being used. Attacher point

Each items follow, one for each attacher point on the symbol.

attacher point refers both to the formal parameter (the

character string) and (indirectly) to the actual parameter

(net number) to be associated with this formal parameter. The

special net number 1 is reserved for those nets whith have

only one node. These are typlically attacher ~oints which are

unused in a particular instance or labels which are used as

:.

!

I
I
I
I
!
!

I

FIG3\

'---

LABELS

21 ~
----.~ NET CHAR

I NUI'IBER BUFfER'
. ..L _____ ... ___ ... __ . ___ .. ___ .. ___ .. _ ..

. Y

SY"BO~S

ATTACHER POINTS

[____ ".i· __ I __ L--___ .-J __ NET K-T 0 C-H-";-.--',; NU"BER . . B UF F E R·---.t;
-- -----_ .. __ .. _-._.'

FIGURE 31. TOPOLOGY ITEI'IS DATA STRUCTURE

'---'

I
I
I
I

!

97

FIG.3Z-

HEADEA

LABElS

S H'BO L AND

ASSOC'I ATED

ATT ACHEA

POI NT S

98

<I
NIJIOIfR or lifTS J .Ufllf~ Of lA'HS

-------.. ---

f I J lifT TO-r..~
NIJIOIf~ 'UH.fR

lifT fJ e .. AII.}--+
NUfOIfR !lH~

-----_ .. -
fJ

DI.£("'IOR. ~

lifT TJ e
II\!fIItII '''HfR

~
lifT TJ CM". .

IItJIIIIfR 'UHf· · I

Ta

DIRHTJ ••

• lIfT TJ C".
NUfII£R HlfrrR

I lifT T~ eMU. 1
• f----i:> NL""fR ItlfH. I

FIGUAE 32- TOPOLOGY BLOC« STAUCTURE

"

99

comments in the drawing. These nets receive special treatment

from ihe translator.

2.5.2 The Topolo~ical Analysis Process

When analysis of a model is desired, th~ filing module

,ensures that all composite elements have topology blocks. It

_scans all the entries in the directory and calls the topoln~y

module (TOPO) for any which need a topological analysis. We

may note that the filing module erases the out-of-date

topological analysis only when a macro definition (composite

element) is edited. Thus, most of the topological analyses

may have already been done.

To prepare for the topological analysis of a drawinR, the

filing module copies the graphics block into the edit huffer,

indexing each item (according to .its x conrdinate) into its

proper location. TOPO now scans the edit buffer and

preprocesses each line and symbol item. For lines, a

" rever sed" (e n d poi n t sin t e r c han g e d) 1 in e i s c rea ted and s tor e d

as a special element within the edit buffer. These "reversed"

lines are indexed into the working area at the location

corresponding to the x coordinate of the terminal point of the

'original line. TOPO can now retrieve both the initial and

terminal points of a line by indexing.

During this pass, the symbol items are also processed to

create the attacher point items.

! I,. n ~
f:7

TOPO finds the symhol using

t-.. t'"\"
,~ . ,

"",/ (1 0

100

the directory and scans the symbol to find each of its

attacher points. Then, using the location, size, and

orientation of the symbol just as if it were dr~wing it, the

routine computes where each attacher point appeared on the

drawing. TOPO then creates an attacher point item and stores

it in the edit buffer at the location appropriate to its

coordinates. A list structure which links each attacher point

to the proper symbol item is also created. At the conclusion

of the first pass, all of the relevant items have been placed

in the working area, each indexed by its x coordinat~

location.

The second pass creates the nets. Starting with the·

first line, label, or attacher point (from left to right),

TOPO.assigns a net number to the object and saves its

coordinates. If the object is a line, the coordinates of the

opposite endpoint of the line are placed on the coordinate

stack and the ·"reversed" line is· deleted from the edit huffer.

TOPO then searches the edit buffer for other objects which are

close (within a certain tolerance) to the current coordinates •

.
If any are found,they are also lahel~d with the same net

riumber. If the new item found is a line, it is tre~ted as

before; thit is, the endpoints are again stacked and the

"reversed" line deleted. When the search is finished, TOPO

examines the coordinate stack for new search coordinates.

Ultimately, all the line segments are thus traversed. When l1

net has been completely traced out, the routine checks the

1 01

number of nodes (attacher points or lahels) on the net. If

only one node was found. that node is marked with the special

net n urn b e r 1. Finally. the net number is advancerl and the

routine scans for another new item. avoiding. of course. items

already having a net number.

A third pass over the edit huffer extracts all the labels

and moves them to the topology block. sorting them into

alphabetical order.

The fourth pass extracts symhols and attacher point

items. For each symbol. all of its attacher points are found

and moved to the topology block. sorting them into

alphahetical order. The -u s e 0 fan alp h abe tic a 1 so rtf 0 r the

attacher points provides a canonical ordering for them. This

permits the translator to produce output in the order in which

it encnunt~rs the attacher points. taking advanta~e of this

consistency in the order of the parameters.

2.5.3 Other Data Structures

Other model huiling ~rograms have typically used much

more complicated data structures for the representation of

topology. A ring structure is used by many. 1ncludin~

SKETtHPAO arid CSMP. Several matrix structures were considere~

for this p~o~ram. but were rejected as heing less effective.

The structure chosen was designed so that the translator could

make one pass over the topology block and produce the requirerl

102

output.

Conversion to one of the more complicated data

structures, from the data structure as it already exists, is

an easy step, because this structure is adaptahle as an

inter~ediate form "for many other topological data structures.

We conclude this section by describinR how the present

structure can easily be converted into a ring-type data

structure. First the array of lahels must he enlarged to

provide i header item for each ring of labels and attacher
~

points. Each label should be inserted in the array using its

net number as the array index. Each header item is given a

point to itself. These header items each form a degenerate

ring. The array of symbols and attacher points can then be

scanned and" each inserted in the appropriage ring. For each

attacher point encountered, the net number is replaced hy the

pointer in the corresponding header and the header is updated

to point to this item. At the conclusion of the scan, the

header will have a pointer to the last item of that net and

the pointers will link upwards, eventually returning to the

header to complete the ring.

2.6 THE .TRANSLATOR

The purpose of an idealized translator is to "propagate

semantiCS", i.e. to incorporate the semantics of component

elements into a complete semantic description of a composite

element. The translator should provide a variety of schemes

103

to represent the semantics. In the prototype translator, we

have selected a subroutine or macro notation as one of these

schemes, yet we have provided considerable flexibility within

this framework. This notation provides an interface to a

larger number of existing analysis routines which expect unit

record (card image) input.

This input must he directly usable without requiring

modifications of the analysis routines themselves~ This

requires a high degree of flexihility in the trans1ator~ hut

we feel that this is justified, for there are a lar~e nUMb~r

of analysis programs which expect card image input and which

deal with problems having a diagrammatic representation.

These prbgrams are the backbone of present c~mputer usage in

various fields, and it is impractical to rewrite them.

2 • 6 • 1 Nbta~ion

Central to the operation of the translator is the

selection of a suitahle notation for the description of the

hierarchical structure of the model to be analyzed. This

notation must also provide for describing the network

structure encountered within the model ind within subsidiary

elements.

For the prototype, the use of a subroutine (or macro)

notation is well matched both to the graphics methodology and

to the usual input conventions of analysis programs. For

o a

104

example, it is fortunate that SPICE (see Section 1.4.2)

requires each component to be given together with the nets it

is connected to. This is entirely parallel to the graphics

methodology. An alternative would be to require a list of

components connected to each net. That is, the information

associated with an element would no longer be collected in a

single place. This would be more difficult to prov1de, since

it conflicts with the use of elements as the organizinR

concept, a scheme natural to a subroutine notatiori. An

advantage of subroutine notation is that it is familiar to

almost all users and its use to represent hierarchical

relationships is well understQod.

We will now describe the detailed operation of the

translator in sections which explain and illustrate each of

its major features.

"

2.~.2 Overall Operation of the Translator

The translator treats the model and the elements within

it as a complete entity,and its output consists of all the

information necessary for an analysis routine. A table of

templates specifies formats required. The output is in the

form of card images and comprises three files: a control card

(JCL) file, a program file, and a data file.

In a first pass, the translator scans the model and

compiles a list (a "load" list) of all the elements used

.'

105

"'ithin it. Composite elements are scanned so that all

elements which are used (directly or indirectly) in the model

are included in the list. The list is then sorted accordinR

to the depth of each element within the hierarchy, ensuring

that the output of each element will he in the proper order

for thos~ compilers and assemblers which require that macros

or procedures be defined before they are used.

The second pass of the translator creates the actual

output and writes it on the designated files. Each instance

of an element in the model (i.e. the top level element) is

transformed to a subroutine or macro call notation. The

translator creates ihe call using the name of the element and

the proper actual parameters. The actual parameters are

created from labels which appear on nets connected to the

attacher points. That is, if element X with attacher point

A appears as a co~ponent in a m~del, and the net connected to

A is labeled B, then the object X is invoked with actual

parameter B (e.g. CALL X(R) is created). After the top level

model has be~n converted into card images, the translator must

include all of the elements which have been used as

components. Each component element begins with a translator

generated he~der card giving the formal parameters, followed

by the body of the semantic description: a series of calls if

the element is composite, a copy of the text if the element

has an analytic definition, or a statement constructed frOM

the table of templates if the element has an empirical

I. o

106

definitiop.

The tr-anslator has created subroutine calls or macro

calls as directed by the format table. Now, if they are macro

calls, the choice is whether to pass them to the analysis

routine for expansion or to have the translator expand them.

In the prototype, we choose to have the translator expand them

to one level only. This was done for several reasons. first.

a single level expansion can he manually forced into a

complete expansion, which requires several passes but at least

gives a semiautomatic process to enable use of analysis

program~ with no subprogram or macro capability. Second, this

expansion is adequate for simple models having only dne level,

or for testing the lowest level of a hierarchical model.

Third, a sinp,le level expansion has some has some of the

aesthetic properties of the full expansion: in particular, the

output is cleaned up by eliminating the large number of

one-line macros which otherwise occur. fourth, an expansion

moves part of the burden from the analysis routine to the

translator. If the same model is to be analyzed several

times, this can reduce processing time. Note that since the

subroutine call or macro call format is only a notation. the

same expansion occurs in a model which is to be translated

into subroutine notation. Subroutine calls on primitive

elements ate replaced by the text of the primitive element,

with actual parameters substituted for formal parameters.

,

107

2.6.3 A Ta61e Driven Translator

To be as complete as possible, the translator atteMpts to

supply many of the details required to make the text output

into a fully complete input for analysis routines. These

details a~e supplied by a table of templates. This tahle is

constructed with the text editor. In the prototype, a dummy

element is created with an analytic definition to hold the

table. When an element is to be translated, the naMe of the

element is given; if a second name is also given, ,then the

second element is assumed to contain a table for the

translator as its analytic description. If no second eleMent

is given, a default table (the table of MIMIC templates) is

used.

In the prototype translator, the controls provided by the

table are very simple: an asterisk is replaced'by the name of

an element, and a left parenthesis triggers the construction

of a list of parameters complete with right parenthesis also.

The first two templates are a header and a trailer card for

the highest level Model. For CDC Fortran, typical templates

would be

PROGRAM * (INPUT,OUTPUT)

END

often the header card is used only as a title (see the SPIr.r.

example, Section 1.4.2). If it gets in the way, it can often

be made to appear as a comment card.

I I. o

Putting the name on this

n 0

lOR

card is useful for documentation.

A similar pair of templates is used for subroutine or

:.
macro definitions. In this case, ho,,,ever, the translator must i

I

supply the formal parameters as well as inserting the name of

the element. A typical template for a MIMIC macro would be:

* RMA(

where WMA is the MIMIC mnemo~ic for begin macro. The trailer

template would be

EMA

For a Fortran subroutine the corresponding pair would be:

SUBROUTINE * (
RETURN ; ENO

Note that the prototype translator allows only one line for

the trailer (terminator) of a subroutine or macro definition,

so we have used non-standard Fortran. A subroutine call

template which i~ analo~ous to the subroutine header template

must be provided, for example, MIMIC's call macro

* CMA(

or the Fortran CALL statement

CALL * (

Other information found in the translator directs the

10<)

treatment of empirical data. For each set of empirical data,

the translator completes a template for reading this data.

Each time apartic~lar empirical table is referred to, the

translat6r completes a template supplying the name of the

table and the parameters for table look-up. The translator

ensures that the data input statements will occur in the same

order as the data, and it can specify the length of each

empirical table to the data input routines. The input

template for HU1IC is "constant function"

* CFN(%.O)

The percent sign is another special character. In this case

it is replaced by the number of data items. Empi.rical data

has not been used with analysis programs other than MIMIC.

The table contains several flags and directives as well

as the templates. These are specified on a single card ima~e

in fixed fields of 10 characters each. A continuation

character and column may be specified fo~ use when the output

would otherwise extend beyond column 72. The disk files which

are to be used for the text and the empirical data are

specified, as well as positioning for these files. The files

may be rewound either before or after the translator outrut is

written on them, and an end of file indicator may be

optionally ~ritten. For example, to use files PROG and nATA,

to rewind PROG before writinR, endfile it, and rewind nATA

after writing, the following specification is used~

a B I. r1 ~ e'i? C 0:1 <

f t\ b r· r f ~: f

110

PROG/R EOF DATA/BR

The notation used reflects file position options used in the

local operating system. The table of templates also specifies

an initial character for translator-created names. The

translator uses this initial character and appends a seqllence

number. For most analysis programs, the choice of initial

character is of little consequence. Where numeric names are

needed, either a number or a blank can be used.

A flag determines the order in which element definitions

are written on the translator's output file. A "down" fla?,

will output the hierarchy from the top down, beginning with

the model and ending with the primitive elements. This order

is customary in Fortran programs. The directive "up" will

cause the hierarchy to be scanned from the bottom tip,

producing output for the model last. For the benefit of most

macro processors (notahly MIMIC) this mode of operation of th~

translator ensures that on the translator output fil~ the

definiti6n for each macro wiil preceed its use.

The final portion of the template specification is a set

of control cards (JCL) which are written to a system file for

execution when the translation is completed. This JeL will

typically call an analysis program into execution, handle

errors in execution, and return control to the prototype at

the termination of the analysis program.

111

2.6.4 Nets and Labels

The first operation in the second pass of the translator

is to assign names to all the nets. To the translato~,a net

represents a variable which is an actual parameter to the

various co~ponent elements. If the net is labeled, then the

label is taken as the name of the net. If no label is

present, then the translator creates a unique name usinp, the

initial character specified in the table of options to the

translator.

One-node nets are flagged by the topological analysis

routine and receive special handling by the translator. They

can be either isolated labels or unused attacher points on

symhols. Isolated lahels are simply ignored by the

translator; their function is to help explain the picture and

they are not required by analysis routines.Wh~n the

translator ~ecognizes an unusued attachet point, it searches

the character strinp, associated with the attacher point to

determine whether a default string has been specified (see

example, Section 1.4.1). If no default string is specified,

the translator generates. name and suppli~& it as the actual

parameter. This treatment of unused attacher points

encourages the creation of more general, more flexible

elements.

6 B o (' "

~ p o o

2.6~ 5 netails of Element Processin~

After names are assigned to all of the nets, the

translator scans the list of elements created by the

topological analysis. Each element is processed in turn.

112

If

macro expansion is not being performed, then the template for

subroutine Qr ma~ro calls is copied to the output.

asterisk is encountered, the name of the element is

If an

substituted. If a left parenthesis is encountered, the list

of actual parameters is created. From each attacher point,

the net number is extracted and used to find the net name.

These names are written to the output, separated by commas and

enclosed in parentheses.

If a macro is being expanded, then the element being

called is a primitive element (since only bottom level

elements are expanded). If it has an analytic definition,

then the 'text of .that definition is broken into tokens, either

names (strings of consecutive alphanumeric characters) or

operators (non-alphanu~etic characters). Each name is matched

with the list of attacher point names; if it matches, the net

number (from the attacher point) is used to find the net name.

The net name is then substituted for the name token. Operator

tokens are passed unchanged to the output with two

exceptions: (1) the concatenation operator is not passed to

the output and (2) where a string of blanks appears, blanks

may be added or deleted to try to preserve the column spacing

of the original analytic definition. This treatment of blanks

1 1 3

facilitates the use of fixed-field languages.

2. 6.6 Treatment of Empirical Data in the Prototype

Empirical data is stored in the data structure as a list

of coordinates extracted from a "hand drawn curve". There are

three phases in the treatment of empir{cal data: first, the

actual data must be placed on a file where it can he easily

referenced; second, statements must be placed in the

translator output to read the data; and third, routiries must.

be called to locate data values when required.

The prototype provides a complete treatment of empirical

data only for the MIMIC analysis routine.

For MIMIC, the translator assembles a list of needed data

sets during the first pass of the hierarchy scan. During the

second pass, input statement-s are generated which tell MIMIC

to read the data sets. These stat~ments preceed any other

references to the data set, and only one statement per data

set is provided (no matter how many references are

subsequently made to the data set). For each reference to the

data set, a table look-up statement is created referring to a

data set which has been previously ~ead. After the second

pass, the needed data sets are written to the appropriate file

using a format specific to MIMIC. The order of the data sets

agrees with the order of input statements.

o 6 I. • t7' o Q 0

1 1 4

2.6.7 Concatenation and Coordinates

The translator has two special features which have heen

useful in some instances. At present, these features are

implemented only for analytic definitions, but the extension

to labels ~ithin macro definitions is straightforward.

The ahility to concatenate two' or more strings has heen

provided by the use of a special concatenation character, the

right arrow (Section 2.6.5). This character serves as a hreak

character, but is not copi~d to th. output. Thus, two strings
,

may be concatenated. This features is useful primarily when

one of t~e character strings is a formal parameter. The

translator will first substitute an actual parameter for the

formal parameter and then perform the concatenation, forming a

new name from the net name supplied. This technique has been

used to form a whole family of names from a single net name

(see Section 1.4.4). Used with care, this allows a number of

variables to share a single line in the model; that is, a

single line can be made to represent the flow of several

pieces of information when the analysis routine does not allow

arrays to b~ used.

Another use for the concatenation facility is to prefix

(or suffix) a character to strings, where a particular

character has meaning to the analysis routine. (see the

SPICE example, Section 1.4.2)

A second useful feature is the option of using, within a

1 1 5

composite element definition, the actual coordinates of a

component symbol attacher point. If the ~ttacher point name

in an analytic definition has the characters #X or Ny appended

to it, the translator will retrieve the actual X or Y

coordinates of the attacher point for the particular instance

being expanded. In this way, parameter values are derived

from the position on the diagram rather than from lahels. 4

mundane, but very practical example of this technIque is used

in circuit hoard layout. In this case, defiriitions are

contrived to print flut the coordinates of ~ads used for

connection to circuit elements. A paper tape to drive an

automatic drill is generated directly from these coordinates.

At this point, it is well to note that this technique is

only a glimpse of the problem of preserving graphical

information in the topological data structure. This technique

represents only an ad hoc answer to a specific need. and does

not derive from a general approach to the eventu~l solution of

this problem. The real goal, in fact, is to allow reversal of

the analysis, including error messages or even new graphics

configurations, to be presented in the context of the 6riginal

input.

(~ I. f 0 bt 'b 0 (I 0 0 ,

1 1 ~

3. AN EVALUATION OF THE PROTOTYPE eMS

Our evaluation of the prototype GMS can perhaps best

begin by comparing it with the idealized GMS. The idealized

system describes a single man-machine problem-definition

interface for use in a wide variety of problem solving

disciplines. The prototype has demonstrated such an interface

for a variety of analysis routines. The idealized methodolo~y

for creating elements from two types of primitive elements and

one compound element has been verified by the prototype. The

idealized system has proposed a topological interpretation and

a hierarchical structure. The prototype has demonstrated one

feasible solution to the analysis of topology and the

propagation of topological structure through a hierarchy of

models. It has shown how simple manipulations on character

strings provide consistant resuls without concern for whether

the character strings are formal parameters, variables or

cbnstants.

In addition, the prototype has demonstrated a feasible

notation and translation method for this notation which

enables the conversion of internal structure to card images in

a flexible way.

The prototype eMS has demonstrated that these elments of

a modeling system can be provided at a reasonahle cost. The

programming time required for the prototype eMS was

approximately 12 man-months. We estimate that adding similar

1 1 7

facilities to a single applications program would have

required six to eight man mo~ths and would not he any cheaper

to use. Thus, if two or more applications can use such

.1!
graphics facilities, then it is economically sound to program

a graphics facility.

Based on our experience with the prototype GMS, the next

sections describe user reaction to the prototype, a survey of

analysis routines available to the prototype, and improvements

to the prototype GMS that are possible within its present

structure.

3.1 USER EVALUATION OF THE PROTOTYPE GMS

In attemption to evaluate the prototype GMS, we undertook

a survey of opinions and experience of as many of the users as

c.ould be located. A questionnaire was prepared and

circulated, the results of which are in Appendix A.

Most of the users of the prototype were employees of the

Lawrence Be~keley Laboratory, and a few were students at the

nearby Berkeley campus of the University of California.

Most of them had programmed or used a computer. In addition

to an informal open invitation to the Laboratory staff, a few

staff members were approached and asked to provide test

problems. These members were aided by the author and others

in setting up and solving their problems. Most of these users

were in the Electrical Engineering Oepartment of the

(;; o a

1 1 R

Laboratory. The majority of these problems were in dip,ital

logic design. Since a simulation or analysis program for

digital logic is not currently available at the Laboratory,

these problems were solved by simulating the digital logic

with an analog simulator. The substitution was successful,

however, and several limited size problems were solved.

Users with problems in analog simulation were quite

pleased with PICASSO. Mark Horovitz [HOR072] provided an

unsolicitied evaluation in one of his puhlications, in which

he described a biological model and the modeling facilities of

LBL. He made the following remarks:

[Although the author is listed as a co-author of this paper,

the opinions expressed are entirely those of Mark Horovitz.]

Evaluation of the System

How easy it is to construct models by using the PICASSO
program? Skill is required to choose and define the primitive
elements so that they yield neat, naturalbuildling blocks for
a class of models. Once the primitives have heen defined,
model structures can easily be built. The lihrary storage
facilities for graphics models are very convenient. To
illustrate some of the features of the system, let us suppose
that we want to give a user an introduction to compartmental
models. We can take a one-compartment model out of the
library, analyze it - examine the equations produced in the
analysis phase, execute a simulation run - examine the
results, change the parameters, and run it again. Then we can
pick a two-compartment model ~nd go through the same cycle.
Next we could build a model of real interest to the user or
look at more complete stored models - all in orie session at
the console. Starting out in this way, the new user does not
have to spend a great deal of time learninp, ahout the system
before being able to tackle problems of interest to him.

1 1 g

Extensi~ns

It is ea~y to accommodate analysis of other languages,
and we expect this aspect to proliferate. It seems to me that
this should be encouraged, provided a processor for the
language is available on our machine. If one is aiming for
ease of use, then a new PICASSO user with some experience of
modeling, using for example, GPSS or nYNAMO, should be
encouraged to continue by generating PICASSO models which are
executed via GPSS or DYNAMO.

In the present system, if I wish to construct a model
with the same functions and analyze it via either MIMIC or
FORTRAN, I have to generate two sets of definitions and n~mes.

In other words, I may have one visual representation for the
model, but I need two sets of names. Example: for an adder
I could have ADDERF witba FORTRAN definition, and AnnERM
with a MIMIC definition. A later version of PICASSO will
permit multiple definition of symbols. It is also hoped to
add features so that animiation of diagrams will be made easy.

Several students did classwork and other projects using

the GMS prototype, including class assignments in fn~ineerin~

Ill, that most students do using CSMP, a less powerful system

on the Berkeley campus.

Itis clear that GMS will he successful only when applied

to a suitable problem; that is a problem usually descrihed

symbolically and for which an analysis procedure exists. It

is helpful if the analysis procedure is currently in use. In

this case, there is little difficulty in showing users how to

use GMS. On the other hand, our conversations with users

revealed that designers did not always design as we expected.

For example, a digital logic deSigner related that he desip,ned

with boolean equations and let the draftsman develop the logic

diagrams. lie still relied on the logic diagram to some de?,rce

however, especially for problem areas.

I 'F
~ ~ b

,

r ", .~

The designer of

f' 0 0

120

control systems may prefer to work directly with the poles and

zeros of the desired transfer function rather than with a

block diagram. This does not mean that GMS is not applicable;

it only means that we might do well to direct our attention to

the draftsmen as well as the engineers. Ind~ed. PICASSO has

been used successfully as a drafting aid for logic diagrams

and for analysis of these diagrams.

In general users. felt that the graphics interface was

adequate, although clearly not optimum. The author concurs

and work is under way to improve it (Section 3.3). A

significait part of the frustration is due to the hardware and

operating system. When the host, a large batch processing

system, is lightly loaded, response is excellent. When the

system is heavily loaded, swapping delays are a significant

source of frustration. An intelligent terminal is an obvious

cure for these problems.

The cost of using PICASSO varied from $10 to $20 per hour

of terminal time. Connect charges are approximately $6 per

hour; the remaining charge is primarily for I/O and reflects

the variations in working speed from novice to very

experienced users. At $10 per hour, a GMS is cost effective

at practi~ally any task which it can perform. Only two users

(out of ten) found alternate systems easier or cheaper. Tn

the first case, inadequate documentation was cited as a

difficulty in using PICASSO; inquiry revealed that the user

did not have a complete set of the available documentation.

f

1 2 1

The second involved the use of PICASSO asa graphics editor

only; for this application an editor was written which was

cheaper to use. More than six months of daily use were

required to amortize the cost of the new editor, however!

In summary, users were excited by the prospects inherent

in PICASSO and im~ressed by its capabilities. The main

complaint related to reliability problems in the hardware and

the operatinp, system, subjects which are beyond the control of

the GMS designer. Users were also of the opinion that the

interface lacked polish, although after several hours

experience, they felt comfortable with it. Fin all y , my 0 t"n

strongest feelin?, as a user was that the operatinp, system was

poorly matched to the ve~y high I/O r~te required for

ihteractive drawing and manipulation. An intelligent terminal

or an intelligent concentrator should be provided to buffer

. these ihteractions. into larger chunks.

3.2 A SURVEY OF ANALYSIS ROUTINES

In this section on supportin~ software, we will descrihe

the analysis routines which have been interfaced to the

prototype GHS or for which an interface would be useful and

easily constructed. We will describe the analy~is systems,

what problems they are suited to, and the effectiveness of the

GMS-analysis system combination compared to manual preparation

of input. We also give the translator template used ,.,ith

these systems, and any problems encountered. Finallv, we will

6 o o

122

describe the operating system support which the prototype GMS

uses.

The analysis systems used or proposed for use with the

prototype GMS include MIMIC, a continuous system simulator,

SPICE, an electronic circuit analysis program, a wirewrap tape

generator,GPSS, a discrete event simulator (not descrihed),

and .langu<lp,e compilers, e.g. Fortran, ALGOL, and QIJEL, a lower

level interactive language.

3.2. I A Continous Systems Simulator: HIMIC

MIMIC, the first analysis system to be interfaced with

the prototype GMS, is a simulator of continuous systems which

accepts a set of equations and evaluates them iteratively as a

function of an independent variable (time). Munc is llsed

primarily in the solution of differential equations. Hl'lIC

is most valuable in cases where the behavior of each element

in a problem is known and the behavior of a collection of

elements is to be simulated. The equations describing

comp~tation for each element are entered by the user, as

formulas that can include functions availabl~ in MIMIC.

MIMIC sorts the ~quations into an e~ficient computational

order by placing computation$ which yield an int~rmediate

result before computations which use that result. This

sorting and the special treatment of integration, time delay

and 0 the r s p e cia 1 fun c t ion s g i v est h e imp res s ion t hat H I ~f I C

evaluates all the equations in parallel.

123

Almost any MIMIC problem which is visualized as a diaRram

is well suited to using GMS for input preparation. The first

use of GMS for a particular problem is often more work than

coding the problem directly in MIMIC's input language. This

is due to the extra work required to create primitive elements

suitable for the problem. If primitive elements are already

available, then using GMS is significantly faster than coding

the problem directly in MIMIC's input lan~uage. In addition,

the GMS version is much more likely to be free from syntax and

typing or coding errors. Variable names are particularly

prnne tn spelling errors and GMS is a great help in this area.

In GMS, a variable name is given only once by the user and is

propagated, always correctly, by the translator. When a model

is to be modified, making the changes graphi~ally is much

faster than making the corresponding changes via MIMIC's input

language. GMS makes it easy to group e!ements and to work

with these groups as single units. Also important is having

GMS propagate changes in the semantic description to all

places where it is used.

The first step in using the translator for MIMIC diagraMS

is to become familiar with the input format for MIMIC

statements. MIMIC uses fields beginning at columns 1;2,10,

and 19 of the inp~t card images. The editor has tab stops

which aid in putting text in the correct fields but the

translator does not check this. The template for the

translator is then created, using the documentation for

l o 0

124

guidance.

There were two problems in using MIMIC with the

generalized translator. The first problem is that MIMIC does

not allow statements to extend beyond a single line. In a few

I

cases, the substitution of long strings for short ones caused

a line of text to get too long. In these cases, long formulas

were rewritten as two short ones. The second problem is that

MIMIC allows only 6 formal parameters in its macro

declaration. Extra parameters must be declared on succeeding

lines with a different keyword. We did not think that this

syntax was worth implementIng as a generalized facility, so

the translator was modified internally to handle this case.

$IAM MIMIC RUN OF * PRODUCED BY MIMVERT
END

* BMA(
EMA

* CMA(
* CFN(%.O)

DATA/R NOEOF

TIM.
REWIND,DATA,MIM.
SFL,70000.
SCP,A=IOO.
MIMGO,DATA,lHM.
EXIT.
CXIT.
FIN.
SCP,A=O.
COPY,MIM/R8R,OUTPUT.
REWIND,DATA.
SFL, 55000.
DRAW.

DATA G UP

:

1 2 5

3.2.2 Electronic Circuit Analysis: SPICE

SPICE was selected as a typical electronic circuit

analysis package for a numher of reasons. First, the input

format is relatively simple and consistent, yet it is quite

typical of those used by the majority of circuit analysis

packages. Second, it produces both frequency domain and time

domain response, thus serving a larger group of potential

users. Finally, it has some graphics output routines.

The input to SPICE is a list of the circuit elements,

their connections and values. SPICE then analyzes the

connections to construct differential equations (Section

1.2.5) which give the behavior of the circuit. These are then

solved numerically to provide the desited response. SPIr.r: is

well suited to small-signal analysis of circuits with 40 to 50

elements or less. This will enc6mpass two or three stages of

a typical amplifier, but not an entire piece of electronic

equipment.

In the case of SPICE, the primitive elments are trivial

to construct. The typical user knows exactly what the symbol

for a resistor, capacitor, etc. should be. and the analytic

definition for these elements is obvious from the SPICE

documentation. There is a time saving even for the first

application, since the element lihrary is so easily

constructed. When a circuit is to be changed. the user is far

ahead with GHS. Although some changes are easy to manage in

12~

SPICE"s input language, such as adding or removing a

component, other changes are rather difficult. For example,

if two nodes are combined, all of the components for .one of

the nodes have to he changed to have the other node nunher.

This tedious and error prone operation is antomatically

handled by GMS when the corresponding chan~e is made

graphically to the model.-

Setting up the translator for use with SPICE is quite

simple. SPICE does not support macro& or ,ubrolltines, so the

user does not have this detail to worry about (but

hierarchically deep ~ir~uits are not very practical). SPICE

identifies the type of each component by its first letter, so

the concatenation facility is used to append the correct first

letter to the component names. The translator provides for

setting the first character of translator-provided names

(Section 2.6). This character is set to a blank so that these

names will be numeric strings as required ~y SPICE. The

control cards (JCL) required are taken from the SPICE

documentation and modified slightly to return control to GMS

at the termination of SPICE.

SPICE RUN OF *
.END

DATA/R

REWIND,DATA.
SPICE,DATA.
PTSS,D.

NOEOF DATA UP

' ..

eXIT.
EXIT.
FIN.
DRAW.

3.2.3 Wirewrap

127

A wirewrap program ~ccepts awirinR list for electronic

circuitry and generates a tape which drives an automatic

wiring machine. The primitive elements for the' wirewrap

program are modules with various numbers of pins, e.g. ~ates,

flip-flops and other components. The symbols used for these

elements are similar in shape to the actual physical modules.

Each module has an analytic definition which, when translated,

lists the module type, name, location, pin numbers and sip,nal

names. Macro's or subroutines are not required, so the

translator is quite easy to set up.

The only problem encountered wa~ that the input for the

wirewrap program must be sorted by signal name. Since the

translator does not have this capability, a conversion routine

was written locally. The conversion routine is

straightforward and is written in SNOHOL, althou~h a standard

sort routine would be more efficient.

The effectiveness of this experimental project was

questionable, since the user created a diaRram of the actual

pin arrangement and wired that from the circuit diap,ram,

rather than reproducing the circuit diagram in G~S, from which

the same information could have been derived. There were no

128

problems in this application, since the conversion nodule was

designed with the translator output in mind.

3.2.4 Language Compilers

Another class of analysis systems is represented by the

language compilers, such as Fortran, ALGOL, and PL/l. We

have experimented with the prototype GMS as a flowchart

analyzer. It is not adequate to handle all of the details of

a language such as Fortran in a convenient manner~ While it

is easy to set up the translator to produce statements in a

desired format from a drawing, tbere are several prohlems in

the overall approach. First, there is no mechaniSM to

generate DIMENSION and other declarations from an analysis of

the flowchart. This can be circumvented by requiring the user

to include declarations in the flowchart. Second, the

graphics han~ling of no loops and related control structures

is difficult since the contents of the no loops and crintrol

structures can vary so much in size. This problem will

decrease as experience is gained. Varia~l~ sizes for symhols

could be used to good advantage here. Finally, there is no

mechanism for ordering statements. Our experim.ents have used

GO TO state~~nts at the end of every statement to control the

flow of execution. This is inefficient and results in a

program which is impossible to read. Nevertheless, we have

produced some experimental programs which have .compiled

without error. A diagraph analysis could easily be used here

! :

to generate an efficient statement order.

PROGRAM *(INPUT,OUTPUT.FILM)
END
SUBROUTINE *(
END
CALL *(
DATA */

* DATA NOEOF DATA 9

3.2.5 Lower Level Interactive Languages:

DOHN

CUPID

Another area of language processors with considerahly

more promise is the use of GMS to produce input for lower

level interactive languages. In particular. CUPID [Hcn075] is

a system using GMS to produce input for QUEL [HEL!)7 5]. an

interactive data hase inquiry language. Since the

relationships between items in a data hase are often descrihed

by use of a diagram, GMS is well suited to conversion of this

diagram directly into input for a lower level inquiry

language. This experiment has been quite succes.sful.

3.2.6 Operating System Support

The operating system support which is used by the

prototype GMS is commonly found on most medium to large

systems. In particular, some features the prototype uses are

(1) dynami~ memory allocation to vary the size of its

operatin~ partition, (2) random access to disk storaRe, (3)

operatin~ system graphics modules, and (4) the ahility to

change the job's control record to specify execution of

(1 o

1 TO

analysis routines after GHS terminates. Abilities (1) and (2)

are provided on almost all systems with perhaps (1) being

provided by virtual memory. GMS uses the system graphics

modules at a rather low level: the graphics modules used allow

one to draw lines and characters, overwrite part of a display

if it is a refreshed display and to read coordinate input from

various hardware devices. The job control facilities provirlerl

by the operating system allow a joh to change its own control

record. This allows another program to be executed with

control returning to GMS as directed. This is similar to

spawning another process, except that the new process runs

sequentially with GMS rather than in p~rallel with it. This

feature is necessary to provide a satisfactory measure of

control and simplicity in operating the analysis programs from

within GHS. It allows the job control sequence for each

analysis pr6gram to be stored within GMS.

3.3 IMPROVEMENTS TO THE PROTOTYPE GMS

There are many improvements which can be made to the

prototype GMS within its present structure, that is, as

incremental changes, without requiring a redesign of the

entire system. These s~ggestions .are not so much criticisms

of the system as it stands, but, rather the insighti of

hindsight and plans for continued development.

. .

1 31

3.3.1 Modularity

In several areas of the prototype, the code is not

ideally structured. Better structure couln be achieved hy

~reaterattention to control structures and the assignment of

functions to modules. This would facilitate comprehension,

maintenance and modification. A specific benefit would be the

easier conversion of parts of the system to use new hardware,

e.g., an intelligent terminal.

The most difficult design problems involving modularity

of software are in the interface with the data structure.

Since the components of the data structure are related in ways

which must be recognized by individual modules, it is not

possible to isolate all the modules from the data structure.

The prop~r approach is to provide sub-modules for each of

those functions which require an interface with the data

structure. For the graphics editor, for example, such

sub-modules would include (1) displaying an item or several

items from the data structure on the screen, (2) identifying

an item from light pen or other input, (3) adding or removing

an item from the data structure, and (4) composing items from

their constituent fields or decomposing items into separate

fields. Another set of sub-modules could· be used in the

editor to display commands and to interpret command input.

These sub-modules can easily be combined to get the graphics

editor. All that is left is to create the menus of commands,

use a sub-module to display and interpret them and a giant

6 I. o o

1 32

"case" statement to accomplish each command. Each command

requires only the collection of the necessary parameters (from

an I/O suh-module), whi~h are then passed to the data

structure sub-modules. In this way, the details of command

display and interpretation are separate from details of I/O

and a I so , f rom de t a i Iso f the data s t rue t u r e •

3.3.2 Improvements to the Graphics Editor

In the graphics editor, we would revise the treatment of

character strings to store them with the rest of the display

items rather than in a separate huffer. This ,wuld hoth

eliminate the danger of overflow for large element libraries

and reduce the space required for small ones. The storage of

symbols would be changed so that ~ line segment which began at

the end of anothei segment would be displayed consecutively if

possible. This would reduce both transmission time and

flicker.

A menu of symbols would be provided, so that the user

could choose them with the light pen rather than typi~R in the

name of the element. Presently, the user must rememher the

available elements.

We would allow global scale changes on drawings; an

entire drawing could be enlarged or reduced by some factor~

This is e~pecially important for the novice, who often finds

that his initial set of symbols was too large or too small.

'.
i

,
j
J-

133

The entire drawinR could also be trarislated to allow
,
More room

at some side of the drawing.

More control over the character strinR display can be

provided. At a minimum, it should be possible to delete from

the display the attacher point strings associated with symbols

in a co~posite element.

A more drastic chanRe is the use of an intelliRent

terminal to implement the graphics editor. The use of

intelliRent terminals is motivated by a desire to improve

response time, save money, and bring the graphics facility

closer to the user. Response time is improved by providinR

immediate response without waiting for transmission time to

·thehost computer or for s~heduling delays within the host

computer. Money is saved by reducing computation at the

central site or timesharing facility. In remote areas (i.e.,

user areas) a high bandwidth connection is not feasible; a

non-intelligent terminal could not provide adequate response.

To achieve significant bandwidth reductions, a substantial

part of the data structure must be moved to the intelligent

terminal.

3.3.2 Topological Analysis

For the topological analysis, we expe~t that schemes for

the incremental compilation of topology will be investigated.

These schemes will use more elaborate topological data

o o

structures, in exchange for a reduced computation time. The

more elaborate structures are needed to preserve temporary

information which is now discarded when analysis is complete

and recreated for each new analysis. We also expect that the

data structure describing the topological analysis will be

improved. The topological analysis will also incorporate

connectivity checking, either from auxiliary user supplied

data or from a data set supplied as part of the analysis

package. It will warn the user of non-connected or ilegally

connected lines.

The topological analysis would be revised to include a

graphical "symbol (name) table." This would have many

advantages (see 2.6.7); for e~ample, it would enable error

messages generated by analysis programs to be related to the

graphics structures which caused them.

3.3.4 Translator Improvements

Development of the translator will be guided by the

recognition of parallels with assembly language macro

processors. These parallels will provide guidelines for a

more consistent control specification, for incorporating new

facilities and also for constructing the software itself. The

translator needs to have a better syntax and semantics for the

control of the translation process. It also needs to be mane

recursive and given better facilties for incorporating data

sets into models. We would experiment with an output notation

135

more suitable for computer interpretation, perhaps a sequence

of pointers comprising one of the more common list structures.

Beyond this. the translator will become a data base inquiry

and conversion routine which provides a conversion from the

topological data structure into the exact structure required

by any particular analysis routine. Eventually. such a data

structure conversion module will be separated from the GMS and

will he viewed as a general tool for the development of

analysis routines rather than as a special purpose part of the

g~aphics interface. It will be used wherever needed between

analysis modules, not just between the graphics system and the

input section of an analysis module.

3.3.5 Operational Improvements

The prototype GMS also needs some operational

improvements -to mak~ it easier to use. The most important of

these is the automatic preservation of the element library

when the program terminates to execute an analysis program.

The e1ment library would also be automatially restored as part

of the program initialization. These operations must be done

manually at present. The startup setting for the zoom

parameter should also be changed to a more useful value.

Some extra commands should be added so that users could

avoid following the full hierarchical command path. In

particular. a single command should switch back and forth

between the symbol and the semantic description of an element.

n a

13~

A command should also he added to the graphics editor which

would store the current element, translate it, and start, the

analysis routine all in one operatin. When the analysis is

finished and control returns to GMS, the initialization

procedure could return to the graphics editrir with the element

just analyzed, ready for any changes.'

Finally, some on-line help and tutorial commands would be

useful.

,
i .

1 '37

4. FUTURE CAD SYSTEMS

4.1 WHERE WE ARE NOW

This chapter explores some of the problems inherent in

the continuing development of CAD systems. It is clear that

the need for CAD software is growing faster than the supply of

progr~mmets and funding for software developmment. CAD

software development must therefore rely increasingly on

techniques for increasing programmer productivity. We feel

that the term "structured programming" [DIJK72], is applicahle

to almost all of these techniques, although various authors

have used the term in more restricted contexts.

4. 1. 1 Types of Existing Systems

We can divide CAD software into three general areas:

data stru~ture and data management techniques, computational

techniques, and user interface techniques. Examples, are

described which are effective in each of these areas.

Architecture is a design area in which data structure and

d~ta management techniques predominate. These systems

typicalli h~ve a rather larg~ data base, but only modest

requirements for complex computations. There are single

architecutral systems which have subsystems for the design and

checking of space utilization, structural ~etails,

architectural aesthetics,bills of materials, and buildinR

0-'
" o o

118

codes. A variety of subsystems are required to support the

multitude of overlapping considerations which influence such a

design. The architectural designer may chan~e rapi~ly from

one design aspect to another in this way. For example, he may

change a room, then check the new space utilization and view a

perspective drawing; change some structural details, then see

how costs are affected and check for compliance with the

building codes. To support this switching from one subsystem

to another, the overall architectural CAn system must he

modular and it must have a very general data structure and

data management facility.

The predominant type of CAD systems are those which are

used for their analytic capacity. Examples of such systems

are NASTRAN, for structural analysis, TRANSPORT, for

accelerator magnet design, ~nd SPICE, for electronic circuit

design. These systems dperate on modest amounts of data (from

a data management point of view), so they have tended to us~

data structures formulated to facilitate the required

computation. Another characteristic of th~se systems is that

they are very specific; they concentrate very thoroughly on a

very small problem area. The algorithms used by these

computational systems show that they have a good theoretical

framework. Nevertheless, they recognize a large number of

~pecial cas~s, often at substantial cost in software.

NASTHAN, for example, recognizes beams, plates, cylinders, and

many other shapes.

139

Interactive CAO systems are rapidly movinp, from an

academic to an industrial environment. While the data

capacity and the computational capacity of these systems has

been modest, industry is finding that tn many cases an

interactive facility is cost effective. The eMS described in

this work, together with o~e of the analysis routines forms a

cost effective combination for many problems. While the ease

of use of such a system will often encourage more analysis and

hence more computing, the time saved by the user will usually

more than compensate for the added computation cost.

4.1.2 Trends in CAD Systems

As CAO systems grow in scope, they must incorporate

methods and techniques which are increasingly general if they

are to increase in scope without a corresponding increase in

Data structures which are formulated to meet the needs of

some particular computation are usually optimUM in terms of

computer utilization. They are usually not optimum in terms

of programmer utilization. As software development takes an

increasing portion of CAO project cost, the best course will

swing away from tailor made structures toward general

techniques. In data structures~ these ~eneral 'techniques are

evident in the well established computer utility systems for

data base ma~agement. Generalized approaches to data

structures are also being provided by improved programming

r. 0 9 n [1 f" n (';-: n n ,ti?
~~,- ';:.~-" Lr

languages, in which the compiler assumes the detailed

management of an increasing variety of data structures.

140

In the computational area, generalization will octur as

special cases are combined into a common theoretical

framework. This combination will be a result of work in the

individual disciplines and mathematics in general. As these

generalizations are incorporated into systems, ne~ special

cases will constantly arise; w,e c'an rest assured that special

cases will constantly be with us as long as CAn systems grow

in applicability.

Systems in which data base inquiry and report generation

predominate also have a need for more complex analysis

f a c i 1 i. tie s • These systems will adopt computational techniques

from work in analytic areas.

Interactive facilities are anong the least well developed

aspects of CAn systems. While a great deal of research has

taken place on man-machine communication, little of this

research has filtered down to the level of the average

applications programmers where it can be applied as simple,

convenient subroutine packages. Subroutine packages to

simplify the control of the man-machine dialogue are becoming

available.

handling.

These include pyimarily syntax checking, and error

To go much beyond this, the content of the data

structure must be availahle to these interfacing routines.

This has not happened in a general way yet.

14 1

The software tools for continuing development of CA~

systems includes both subroutine packages and compiler

development. The two most critical areas seem tobe in data

structures where compiler development would be most useful.

and interactive techniques. where software packages seem to he

the best first step.

4.2 GOALS FOR FUTURE CAD SYSTEMS

The goal of a CAD system is to enable a user (at a

console. perhaps) to perform some manipulations upon his data

without understanding the layers of computer software between

what he sees and what is actually going on. To support this

capability. the first requirement is for data structures

appropriate to the user's view of the world. A second

requirement is for manipulative routines to perform the

desired transformations. analysis and synthesis. A third

requirement is for user interfaces to provide controls for the

manipulation routines and display of the data.

Viewed in terms of computer software. we can add another

requirement for implementation tools, (e.g •• co~pilers.

subroutine pack~ges) which will allow such systems to be

conveniently built. In this section we shall discuss each of

these requirements in turn to develop some idea of the extent

and depth of each topic. In Section 4.3. we shall offer some

ideas about the necessary elements of the system desi~n.

o p 0 0

142

4. 2. 1 Data Structure Goals

A data structure should reflect the structure of a

problem, allow efficient manipulation of the data, and provide

rapid access to the data. When we say that a data structure

should reflect the structure of a problem, we mean that it

should be easy to int~rpret the d~ta structure and provide a

display which is readily understood by the user. This display

should allow him to easily visualize the results of various

manipulations which he may perform on the data. For example,

consider a program to compute income tax. A good choice of

data structure might be one which is parallel to the IRS form

with which we are all familiar. Within a category called

Identification, we have Name, Address, Occupation, and so

forth. A category called Deductions will contain

sub-categories Medical, Taxes, etc. The Medical category can

be further broken down into Drugs, Doctors, Hospitals, and

others. The user is now able to make statements such as:

subtract Total Deductions from Income. The information in the

data structure should be displayed in a way which makes clear

the results of such operations.

Data structures should be flexible to support efficient

manipulation." Even within a single discipline, a variety of

structures may be required. For' example, a cartography

application might require the storage of a map. An array of

boundary points of each area would be suitable for cloropleth

mapping (shading) applications but unsuitable for determining

143

which areas are adjacent, ~s might be requir~d in neiRhhorhood

analysis. A structure suitahle for finding adjacent areas

may, in turn, be unsuitable for storage of individual

boundaries.

Older prograMming languages, (e.g., Fortran, Algol60)

have been limited in the variety of data structures \"hich they

support. They have provided only the simplest language

constructs and data structures. The programmer has heen

forced to build his own superstructure using the compiler

provided structures as primitives. Newer languages (e.g.,

Algo168, Pascal, ELI) have provided not only a greater

diversity of structures, but also tool~ for more conveniently

creating n~w structures. 'Languages with extension facili·ties

can also provide a compact notation for describing operations

on these new structures. Currently, these newer languages are

not ~s efficient as the equivalent programmer defined

structures using the older languages. As compilers improve,

this inefficiency will be accepted as a comprOMise which

improves oveiall programmer productivity. Many operations

could be written more compactly using such a facility. The

programmer could concentrate on data manipulation without

wasting programming effort on the manipulation of hiRh level

structures using primitive operations meant for arrays.

Currently, a program is composed partly of manipulation

of'a data structure mechanism and partly of implementation of

such data structures, the two parts heing so mixed together

o

144

that it is sometimes difficult to separate them. It has been

said that a revised algorithm can produce order-of-magnitude

increases in program speed, whereas re-coding a problem rarely

improves the speed by more than a factor of two. Almost

always, such a revised algorithm depends on a revised data

structure which allows more efficient computation. In many

cases, the newer languages should allow the replacement of

data structure and operator definitions within an algorithm

without recoding the entire algorithm.

What we have described above is an access structure,

which is what the user/programmer sees. At a lower level,

there is a storage structure onto which the access structure

is mapped. ~he choice of a storage structure depends on its

compatibility with the access structures, the speed of access

and the relative compactness of the storage scheme. It is

quite possible that two schemes with the same access structure

could require different storage structures due to varying

amounts of computing, different frequencies of mass storage

access, or different sizes of the data structures. A single

access structure or notation should be al16wed to manipulate

several physical structures, for example, the same notation

for sequential access could apply to either vectors or lis~s.

It would also be useful to allow more than one logical

structure or notation to be used with a particular physical

structure. A representation of a street map, for example,

could be manipulated either with a logical structure of

, I

i

14 5

streets and intersections (arcs and nodes), or with a lo~ical

structure of street names (vectors). An important start in

this direction has been made by schemes for multiple keys

access to items with several attributes.

4.2.2 Analysis Techniques

Analysis routines supply the hrains of a system. These

are the alRorithms which the programmer s~pplies for the

manipulation of the data; they are controlled by the user

interface routines. There are many features which ~ake an

analysis routine convenient to use: accuracy, speed,

documentation, and error control. Most of these al~orithms

perform an operation whieh can be defined mathematically.

Accuracy is a measure of how little the results deviate fro~

the mathematical definition. Inaccuracies are caused by the

finite precision of the hardware and the approximations

necessary for efficient computation.

Speed is a requirement ~hi~h usually conflicts with

accuracy. Speed is obtained primarily by using the fastest

algorithms and secondarily by carefully coding the.algorith~.

Documentaion must explain all the aspe~ts of a routine

covered here: accuracy, speed, error control, and other

modules required, and it should give the algorithm used.

To achieve error control, a routine must validate its

iriput and monitor the algorithms used to ensure their correct

o o

operation; errors must be reported back to the superior

routine.

4.2.3 User Interface

l411

The us~r interface is the most important part of a CAn

facility, both in the amount of effort required and in its

impact on the user. The user interface must instruct the user

in the manipulations available within a particular program and

it must carryon a dialogue with the user durinR operation of

the program. Documentation is part of this user interface; it

is unreasonable to exp~ct all aspects of a prograM to be

explained as part of its operation. This dOCUMentation should

be the primary reference m~terial for a program. The user

should never have to consult a "listinp," of the pro~ram. The

documentation should explain the domain of applicability, the

algorithms used, any restrictions, the commands and their

paraMet.ers, and describe the po.ssible outputs. The program

itself should provide instruction in· its use. for the novice,

a list of commands should be provided with the most likely

commands notedi when parameters are required, the range of

acceptable values should be given and a default value provided

if possible. For the expert, it should be possihle to

abbreviate these messages. Each input should he checked and

in case of error the user should be allowed to correct nnlv

the value in error.

When output is presented, the user should always he ahle

. ;

147

to suspend or terminate .the output, in case he hdR asked for

too much output or for the wrong item.

Every interactive program should have some means of

preservin~ its state, so that it may be interrupted and then

continued it or near the point of interruption. This allows

the user to suspend the program, use some other facility or

stop work fnr the time being, and return to the task at some

later time.

4.2.4 Implementation Aids

Implementation aids are the editors, compilers, and other

mechanized aids to program development (including

documentation) • After the choice of hardware, the most

far-reaching decision among implementation aids is the choice

of a language. No language is ideal, but the existing body of

software provides a po~erful incentive to choose an existing

language as a starting point. Such an approach also avoids

the work required to design the language and perhaps also the

work required to implement it. Ideally, the language could

gradually be provided with" extensions, first implemented by a

preprocessor, for the source text, then subsequently by

revising the compiler. In addition, a programmer woul~ expect

to use extensions included in the text of a routine, if the

language permitted.

Debugging aids are often supplied for working with

, , .. o o o ¥

148

asiembly languages b~t they are rarely supplied for a high

level language because they must incorporate practically the

entire compiler. A feasible alternative is an interpreter

and/or incremental compiler.

4.3 PROPOSALS FOR FUTURE CAn SYSTEMS

In this section, we will provide enough detail so that

individual components can be identified. While we will not

attempt to design these components, we will identify SOMe

which can he adapted from currently available software and

others which must be developed from scratch. A CAl) facility

cannot remain static if it is to serve the changing needs of

its users. Thus, we cannot say what should or should not he

included in a system. A system is complete or incomplete only

with respect t6 its community of users.

From our point of view, a system is a collection of

modules for data access, for data manipulation, and for user

interfacing. Within this system, there are also COMplete

programs which include one or more modules from the groups

given. Our job is to maintain these modules and programs and

to provide implementa~ion tools and guidelines so that new

modules and programs can be created. This view sugp,ests that

system management is an administrative task rather than a

programmin~ task, although it is programming which we want to

manage. A concept relevant to this manageMent is "structurec!

programming". One basis for structurec! programming is "the

149

realization by management that it should incur short-range

costs in order to achieve long range benefits" [t-tEIS74]. Our

.. proposals fall within the domain of structured programMing;

they will incur short-range costs in the hope of long range

benefits. Our proposals are also administrative: they require

disciplined ~rogramming. a discipline which will free the

programmer to be more creative in the long run.

4. 3 • 1 Data Structure Proposals

Within a data structure. there are at least three levels

at which a piece of information can be considered. These

levels are (1) a physical or storage structure. which provides

access at the hardware and, operating system level; (2) a

logical or access structure r.lated to the physical structure

by compiler or programmer, provided access mechanisms; and (3)

a display or presen~ation structure which is presented using

the nom~nclature of the user's discipline. The physical data

structure is provided by the hardware and the operating

system; it usually takes the form of random access to small

amounts of information (main memory). or indexed sequential

access to larger amounts of information (secondary memory).

The logical data 'structure is the most impdrtant level of data

access. since most of the programming in the system will refer

to the structure at this level. The function of this level is

to provide a convenient set of concepts and the corresponding

notation to simplify manipulation of the dati structure. A

• t o 0

1 5(1

simple example of a structure at this level is a matrix, or

two dimensional array. The programmer uses this notation

because it is convenient to his problem, while the compiler

provides the transformation (or mappinR) to the physical d~ta

structure which is actually available, usually sequentially

organized memory. The hi~hest level of data access is the

presentation to the user. This may parallel the structure of

level 2 but it must be provided with labels and id~ntificatton

to make it meaningful to the user. To extend the example of

the m~trix,the user must see not only the numbers, but also

lahels for each row and column, e.g., the rows could be

labeled with county names within a state, and the columns

could be labeled Total Population, White Population, ~lack

Pop ul at ion,. etc. The point of the third level of data access

is that the concepts for the second level of data access are

comnori to a wide va~iety of applicat·ions while the third level

must change from user to user.

The programmer must discuss the user's needs, and then

select those logical (compiler-provided) structures which are

appropriate for problem definition and manipulation. The

programmer then constructs the user interface which augments

the logical structures by adding the appropriate terminology

and symbology.

There are two aspects of ~ata structure as currently

implemented in high level languages which need to be improved.

A greater variety of data structures must be provided and more

1 51

isolation must be provided between the logical structure as

seen by the programmer (user) and the physical structure as

implemented by the compiler or data access modure. A Rreater

variety of data structures serves the needs of the pro~rammer

in an obvious way; he is better able to choose a data

structure which reflects the structure of the problem, allows

efficient manipulation, and provides rapid access to the data.

Improved isolation between logical and physical structures

allows a variety of logical structures to address a particular

physical structure. This allows the programmer to use an

appropriate notation for each subproblem to decrease the

amount of coding required and increase the maintainability of

the code by making the operations more obvious. It will also

reduce the amount of reformatting necessary to provide input

to manipulation routines, since these routines will now accept

a wider variety of data structures without modification.

These choices are complicated by the existence of

extension facilities in the high level language. These

provide a substitute for the implicit construction of compiler

defined data structures during compilation or execution. They

are certainly necessary, since no language can supply all

possible data structuress but we would certianly prefer the

compiler's built-in structures where feasible.

The data structure facilities should include the

following data types: integers, characters~ pointers, code

(machine instructions), floating point representation, douhlp.

6 o n o o

1 52

precision and complex numbers. This list covers the data

types usually supported by hardware and those commonly

supplied by software. It should be possible to add new data

types to this list. Using these data types as nodes or

leaves, the following structures should be provided as a

mininum: vectors, arrays, lists, stacks, and hash coding.

Any structure should allow any other structures as an item;

for e~ample, an array whose first item is a list, and whose

second item is a stack. These structures should he dynamic,

so that an array, for example, could be shorten~d or

lengthened, or an item of an array could be first a list and

later a complex number.

might also be provided.

Structures for associative access

There are several approa6hes which can be taken to

improve the isolation between a logical data structure and its

physical representation. The ultimate solution is to let the

compiler make the deci~ion about the best physical

representation based on an evaluation of the program

[suggested by H. B. Baskin]. The logical data structures must

still be provided, but the programmer is free to change from

one logical structure to another as his needs dictate, letting

the compiler provide the proper access to the physical

structure. A difficulty is that the compiler does not know

which other programs also access the data structure, and so it

cannot do a truly global optimization.

A less diff'icult scheme for the separation of logical and

1 53

physical access is to declare the physical .structure

beforehand for tho~e variables which need it. This scheme

provides almost as many problems as compiler selection of data

structure. but it allows global optimization by the pr~grRmMer

and removes the most difficult decision from the rlomain of the

compiler.

The situation is much simpler. if we require the

programmer to declare his data structures within the program

and to us~ the corresponding notation throughout. This

corresponds to current language implementRtion~ except that we

assume that a wider variety of data structures are offered.

An interim scheme could be implemented with current

languages by using a preprocessor to implement data references

as explicit function calls where necessary.

4. 3.2 Analysis Techniquei

The analysis routines form the bulk'of the CAO system.

They require substantial amounts of coding. testing. and

documentation. Fortunately. these routines are most easily

borrowed from other installations. A facility could expect to

imp 0 r t as m u c h . as 90% 0 fit s r 0 uti n e sin it i a 11 y and 50 ~

subsequently. Recognizing that there are requirements for

accuracy. speed. documentation. and error control.

nevertheless the administrator'~ most pressing need is for an

overview of analysis modules which will allow him to make an

o ·(.1
.~-.. a 0

··,
;.-

1 54

intelligent initial selection for his facility, and which will

allow him to evaluate what is available at other faciliti~s.

At the lowest level are the elementary operations rBnging

from square root to the hyperbolic functions of complex and

double precision arguments. These should be part of the

run-time library of the language processor.

Th~ next level will form the major part of the library of

analysis routines. This level would include (1) mathematical

functions and operators, (2) mathematical approximations, (3)

simulations, and (4) symbolic manipulations.

The mathematical functjons and operations are responsible

for solving some mathematical equations and computing well

defined operations. This class is characterized by the fact

that the amount of ~omputation can be predicted (at least

bounded) a priori. Thus, matrix manipulations, Fourier

transforms, and the statistical packages are part of this

class. The solution of some differential equations and of

algebraic equations of order 4 or less 'oJould ·be in this class.

The solutiori of a quintic degree algebraic equation would not

be included because there is no ~athematical formula for the

result in closed form.

Mathematical approximations are iterative or approximate

techniques such as numerical integration, relaxation

techniques, approximate solutions to differential and

algebraic equations, and function minimization. The user must

1 5')

be aware of the limitations of these methods, and take care

that he obtains a valid answer. Where possible and

appropriate, these routines should provide some measure of

errors.

Simulation techniques compute the results of some process

by iteratively computing the state of the process at

subsequent points as a function of time (or other innepennent

variahle). TheSe techriiques are applicahle where a problem is

less well known or more difficult, such that a glohal solution

by mathematical functions or approximations is not known.

Since only a local knowledge of each aspect of a prohlem must

be known, simulation techniques are more wid~l~ applicable

than exact or approximate solution techniques. Oiscrete

simulation can be used when it is known that the state of

variahles changes only at discrete times. Continuous

simulation attempts to monitor the variables continuously in

time. Ona digit*l computer, continuous simulation is

implemented as discrete simultion with very short time

intervals. The variables are assumed to change an

insignificant amount or in a known way between time steps.

Simulation techniques are often combined with mathematical

approximations such as numerical -integration.

Symbolic manipulations are those which operate on the

symbolic definition of a problem rather than the numeric

aspects. For example, some integration problems can be solved

by performing a symholic integration on the formula and then

o

1 56

computing the answer exactly with the mathematical functions,

rather than using a Mathematical approximation technique.

Examples of routines available are those for manipulating

algebraic expressions, polynomial arithmetic, symbolic

integration, and the predicate calculus. Routines for the

man~pulation of Roolean logic are in this class, as are

routines for the synthesis of electronic logic from Roolean

equations or truth tables. Routines which examine or

manipulate graph structures are also included, such ~s finding

the Bpanning tree of an electronic circuit, or finding loops

in a flow chart.

Observation of a large computer installation suggests

that careful attention to the library of analysis routines

will be amply repaid. Programmers will almOSt always use the

installation library for low level routines, e.g., sine,

cos i n e, and the y wi I I eve n t hi n k t w ice h e for e the y c oo.j u r e II P

their own version of a higher level routine, for example, a

Fourier transform routine. When new routines are developed,

the administration should take the following steps to ensure

maximUM utility fromthe routine: (1) a senior

programmer/analyst should select the mafhematical basis for

the algorithm and should design the interface between the

module and other routines; (2) a committee of users should

ensure that the proposed design Meets all their requirements,

and (3) the routine can be coded and test. These steps are

designed to ensure that the module will satisfy as Many users

1 57

as possibieand will be flexible and easy to use. The purpose

of the committee is to ensure that any slight variations in

requirements can be included in a single routine without

leading to a proliferation of similar routines. The actual

coding of the r6utine is of less importance compared to the

interface since it can be changed at any time, while the

innerface will become rapidly frozen as u~ers include it in

their prograns.

4.3.3 User Interface

The user interface to an interactive system is, in some

sense, the total set of capabilities which are available to

the user. A good user interface will make all of' these

capabilities easy to use, while a poor one will make them

difficult rir even impossible to use. In this section, we will

concentrate .on the control aspects of the user interface.

Control is a function which is complimentary to data

structures and algorithms. If we consider a computer program

as a model of some real situation, then we can identifv the

data struct~re as providng the objects of the model, the

algorithms as providing the actions which manipulate the

objects, and the user interface as providing the control and

decision-making which guide the actions. It should also be

clear that the elements of control do not all appear in the

same place or at the same level, but, rather, ihey are spread

out and appear throughout the program.

o

1. 58

This notion of layers of control is most important to the

development of good user interfaces. These must provide

flexible means for buildIng these layers of progran and

control structures. These ideas are clearly parallel to those

guiding the development of data structures and a similar

flexibility should be provided. The principle tool should be'

a uniform and flexible framework for ~ontrol structures at all

levels including the operating system. Several alternate

notatiOns can he provided· to most nearly correspond with the

user's thought patterns. For example. one important class of

control structures includes structures for aggregation of

activities. Assembly languages provide this capahility in the

form of macros; higher level languages provide suhroutines or

procedures. and operating systems often provide cataloged

procedures. The well designed user interface ~hould provide

all of these schemes at all levels. and as sug~ested in the

section on data structures. perhaps the notation and the

implementation should not correspond one to one. but rather

the user interface should select the most appropriate

implementation regardless of the notatin. Ag~in. this may riot

be immediately possible. but it should be the g091. and as

with data structures. there are reasonable interim steps. One

gbvious interim scheme is to have the user specify the

implementation for each instance of aggregation (with . .

defaults. of course).

Having adopted many levels of control. the user interface

must provide for moving easily through the control structure

for purposes of examinaion or modification. This facility

should include text editors, (hyper-text editors?) and

automatic tree diagrams (or flow charts) of control

structures.

A second aspect of the user interface has been desciibed

as habitability [DEFA75], or livability. This refers to the

ease or naturalness of use of the interface. Several features

are important to this riaturalness, but the two key ideas are

that the user must know what is going on, and he must he in

control. There are a multitude of details which cont~ibute to

this feeling of ease.

The control section should be self-explanatory in

operation with at least these features: a list of commands,

acceptable and default values given for parameters, and

well-labeled input and output.

Another area which is basic to an interactive program is

the availability of tutorial commands. In a GMS, the help

commands are not needed so much for the functioning of

specific commands (since all the commands are easily

understood) but r~ther to give a sense of direction when the

user gets bogged down in detail. With this .end in mind, the

help commands need to be far more intelligent than the usual

canned explanations found in interactive programs. While the

prototype G.IS was originally written with the comnands

.,
f 0 .. tl'~ if"; ~

J if'?' !~ ~f U o 0

160

structured so as to leave the initiative with the operator, it

is clear that this was overdone, especially for novice usrs.

One scheme for regaining the initiative is to have m6re fixed

interrogative sequences in which the user is told what to do , .
or asked questions by the program. The user no longer needs

to specify the normal command sequence; explicit action is

needed only to escape from the normal sequence.

Another scheme for providng a sense of direction is the

use of intelligent "help" commands. These commands wOllld he

used when the user is not sure what to do next in the sense of

solving a problem, not in the sense of what command does what.

They should be aware of the status of the program,and they

could tailor their response according to the current activity

in a global sense. These help commands could provide an entry

to program .directed activity. Such a sequence might

1 • Explain the purpose of the program. Introduce
,

elements as building blocks of the system, including symbols

and definitions. Give models as diagrams to be analyz~d or

used as d~finitiDns.

2. Suggest reviewing existing libraries of elements for

similar applications. Assist in viewing these lihraries.

3. Ask what new elements are needed. Automatically ".

cycle each element through a symhol drawing and text

definition phase. Ensure that symhols are all compatihle in

size; give unsolicited advice about attacher points and other

1 fi 1

matters.

4. Guide the user through the model construction phase.

Suggest he start with a sketch, then place.essential or

critical elements, connect and lahel them, give numerical or

constant parameters, then place non-essential (for exaMple,

I/O or optional) elements and connect them.

5. Guide the user through the use of the translator.

Ptovide queries to set up the table of templates and provide a

check-list for the job control languaRe.

These possihilities can be achieved without redesigning

the entire GMS. A More powerful tutorial facility would hrinR

the program more into the domain of Computer Aided Instruction

rather than just a tool for symbolic diagrams. Nevertheless,

the reader is referred to SOPHIE [BROW74) as an example of the

power of unsolicited prompting.

The co~trol section should also provide an interrupt

facility so that the user can stop a process and see if it is

progressing satisfactorily. While many decision points will

be explicitly included in the control section as programmed

user interaction, it is also useful to have a mechanism for

stoppin~ at nearly any point and allowing the user to scan the

state of the process. Of course, we cannot expect this

mechanisM to he as well-developed as the explicit user

interactions provided by the programmer. The control modllie

should also provide operating system status information about

I. (' o (t " If o

162

the job. With this information and the interrupt facility,

the use rca n t a k e t 1m ely s t e pst 0 s top a .i 0 b w hie h has r· u n

away or betome otherwise uncooperative.

System aids which are commonly needed for control of

programs include the automatic compilation of programs from

decision tables, menu programs for conmand selection, and

formatting and questionnaire routines for simplified parameter

input.

4.3.4 Implementation Aids

There are many tradeoffs in the choice of a high level

language. Among these are the ease of implementation, the

varieties of data structure provided, and the software

available for the langua~e. The ease of implementation

depends on whether the language is new or existing and whether

a version exists for the hardware selected. If a version

exists then that is the easiest choice, wi.th the

implementation of a known language being much easier than the

design and implementation of a new language. As a personal

decision, I would avoid creating a new language.

To clarify this matter, I have chosen two representative

languages: one old, PL/l. and one new, ELI ['.n~r.~71]. PT./1

is implemented on the IBM 360 series and ELI is implemented on

the nEe pnp-IO. PL/l offers a wide variety of existing

software while ELI offers a wider variety of data structllres.

ELI {s an extensible language which allnws the prnRranmer to

add new data types and .structures, and new operators to the

language. Once the language has been extended. the pr~~rammer

can use a simple notation to efficiently describe data

structures and manipulations in each particular prohlem

domain. On an IRM 360 or the PDP-IO the choice woul~ he in

favor of the implemented language. On machines with neither

language. I would favor ELI as more useful in the long run.

This choice of language might affect My choice of hardware as

well.

After choosing a language, there
. ,

is a collection of text

editors. loaders, subroutine libraries, and so forth which

must be created. An interpreter would he most valuahle a~ a

program development and debugging aid. It allows the creation

of the proper environment for a procedu~e under test. and hy

executing one statement at a time the operation of the

procedure may be observed at any level of detail. The

procedure nay be modified and execution resumed without

disturbing the environment. This is a valuable improvement

over checkpoint-restart systems which may not allow a change

in the procedure between a checkpoint and a restart. The

interpreter offers the features of several assembly lanp,118Re

debugging p~ckages with the advantage of providing these

features for a high level language. The ahility to modify a

procedure and continue may save a great deal of time when the

~nvironment of a fault in a procedure occurs only after

o b
I~'

n o o

164

lengthy computing. The alternative is for the pro~rammer to

save and rsstore his own status; but this is generally'

impossible without more system knowledge than the programmer
\

generally has.

The design and construction of the interpreter, compiler,

and the rest of the ~nvironment is an admittedly complex task,

but one which need riot be any more difficult than the creation

of the disorganized collection of editors, interpreters,

compilers, loaders, subroutine libraries, and so fotth which

are available at any major computing center. What is

necessary is an overall view which puts each piece in its

place anrl specifies the interfaces between pieces.

In 5

Appendix A. Respons.e to the Users Questionnaire

NAME: Richard LaPierre - Assisted by Oon Austin

1. What was your overall impression of PICASSO?

I think it has great possibilities;

I'm just sorry it wasn't funded.

2. Did you find the system generally useful?

Yes

3. How extensively did you use the system? Hours? Days?

4 hours (although D. M. Austin spent two days

working on this particular problem).

4. What ~mportant problem did you solve?

A digital logic timing problem.

5. Could you have solved it another way?

Yes. by building the hardware.

6. How wnuld the two costs compare?

A breadboard device could have be~n built in 1 days.

PICASSO required three days to create a library of

logic el~ments and two days work on this particular

problem.

7. Do you plan to use the system again? Why? \~hy not?

Maybe, if the system is cost effective. To he cost

effective, it needs good accessibility - the engineer

must have constant access (in his work area); it needs

simple language and more reliable s~ftware

(operating system) and hardware.

8 • VI 0 u 1 d "y 0 u r e c 0 r.m end the sy s t em toy 0 u r colI e a g u e s ?

1 think they should look into it.

9. Did yoti recommend the system to your colleagues?

No.

10. What revisions or extensions would you recommend?

11.

Good accessibiliity, simple language, reliable

hardware and software.

Do you know of any better system? What are they?

No

\.Jh o?

167

NAME: Dan Maeder

(Answered by D. M. Austin who assisted nan Maeder)

. . 1 • What was your overall impression of PICASSO?

It is very hard to use, the computer system is

unreliable, and the lightpen is very hard to use.

(P. s. I am right-handed.)

2. Did you find the system generally useful?

Yes, very useful, in fact, we solved a probleM of two

weeks 'Fortran programming in one hour.

3. How extensively did you use th~'syst~m? ~ours? Days?

An hour a day for a couple of weeks (until the problem

was sol v e d) •

4. What important problem did you solve?

The hardware design of a delay line, varying the

parameters to get the proper waveform.

5. Could you have solved it another way?

Yes, build it and use an oscilliscope.

6. How would the two costs compare?

Using PICASSO was much, much cheaper. Builcl1np, the

hardware is impractical.

l r '. o 0

16R

7 • Do you plan to use the system again? , '.Jh y? Wh Y no t?

No, not available in Geneva (where I have moved).

8. Would you recommend the system to your colleaRues?

Yes.

9. Did you recommend the system to your colleaRues? Who?

Probahly (n. M. Austin is not sure).

10. What revisions or extensions would you recommend?

Some changes to MIMIC for optimization would he

helpful.

You should also make it transporiah1e to small

terminals.

It. Do you know of any better system? \Jh a tar e the y?

No

,
'.

169

NAME: Nancy McPonald

I. What was your overall impression of PICASSO?

Good, interesting, flexible, powerful, a little

cryptic to learn to use.

2. Did you find the system generally useful?

Yes

3. How extensively did you use the system? Hours? pays?

I used 65% of PICASSO's facilities. I worked \,r.!th

it for three months.

4. What important problem did you solve?

I used PICASSO as the basis for a picture query

language.

5. Coulrl you have solved it another way?

Yes

6. How would the two costs compare?

It would have been three times as much work without

PICASSO.

7 • Do you plan to use the system again? Why? \Jh V no t?

Yes, I am still using it.

!
P ~ .. I 9 n 17 r, ,.

".,
U 0 0

170

8. Would you recommend the system to your colleagues?

Yes.

9. Did you recommend the system to your colleagues? \olho?

No. my colleap,ues have no need for such a system.

10. What revisions or extensions would you recommend?

11. Do you know of any better system? What are they?

No.

1 7 I

NAME: Peter Levine

1. What was your overall impression of PICASSO?

Fantastic. pretty far out. but it had lightpen and

hardware problems. I was awed. confused.

2. Did you find the system generally useful?

/

Never got to that part.

3. Ho~ extensively did you use the system? Hours? Pays?

I. spend a lot of hours fiddeling around.

4. What important problem did you solve?

None

5. Could you have solved it another way?

Yes. This problem involved differential equAtions for

a complex feedback path in biological simulation. I

formulated it as a diagram. then wrote out the

equations from the diagram. Then I used a

simulation system that I was familiar with.

6. How would the two costs compare?

It was much easier without PICASSO.

7 • Do you plan to use the system again? Why? Why not?

No. Too clumsy.

6

172

8. Would you recommend the system to your colleagues?

For certain problems.

9. Did you recommend the system to your colleagues? Who?

No.

10. What revisions or extensions ~ould you recommend?

More reliahle hardware, software.

a complete set of documentation.

Also I did not have

11. Do YOQ know of any better system? What are they?

No.

,.

173

NAM": : John S. Co1onias

1. What was your overall impression of PICASSO?

It is a well documented and structured

computer program.

2. Did you find the system generally useful?

Yes. It fulfills a definite need.
M

3. How extensively did you use the system? Hours? Oa ys?

Approximately one month - on and off.

4. What important problem did you solve?

I did not solve any problem. I was trying to

see whether it could be used effectively in circuit

design applications.

5. Could you have solved it an6ther way?

Perhaps. Rut I have not given it a thought.

6. How would the two costs compare?

PICASSO would be less costly to operate.

7 • Do you plan to use the system again? Why? Why not?

When a defirtite need arises, yes.

8. Would you recommend the system to your colleagues?

o "\I.. ·0 !. " o

9.

Yes, I would (and I have).

Did you recommend the system to your colleaRues?

I have discussed PICASSO with people at the

Argonne National Laboratory and ~awrence

Livermore Laboratory.

10. What revisions or extensions would you recommend?

11. Do you know of any better system? What are they?

I have not taken the time to investigate

other systems.

174

Who?

175

NAME: Andrew E. Allen

1. What was your ove~all impression of PICASSO?

Very professionally finished product.

Much flexibiliity. Impressive.

2. Did you find the system generally useful?

Yes.

3. How extensively did you use the system? Hours? nays?

A total of a couple of weeks, ahout two

years ago.

4. What important problem did 'you solve?

None; just getting familiar with it.

s. Could you have solved it another way?

NA

6. How would the two costs compare?

NA - but not terribly expensive. In f act. f or the

work it does. reasonably inexpensive.

7. Do you plan to use the system again? Why? Uhy not?

Probably not - not quite in my area of application

(text editing and character graphics).

o d

8. Would you recommend the system to yo~r colleagues? .

9.

Unquestionably, if I thought they would have a

use for it.

Did you recommend the system to your coll~agues?

No.

lJh o?

10. What revisions or extensions would you recommend?

11.

(a) More general commands for processing polygons

i.e •• shrink by factor. to fit another, rotate hy

degrees, etc.)

(b) Better user's manual (although the one

I have is four years old and may already have heen

supplanted)

(c) 3-0

Do you know of any be~tet stst~m? What are they?

No.

176

177

NAME: Peter Wood

(Simulation application; see separate comments on

PICASSO as a starting point for a mapping pro1ect.)

1. What was your overall impression of PICASSO?

Good.

2. Did you find the system generally useful?

Yes, simulation, simple drawing and mapping,

and structured mapping.

3. How extensively. did you use the system? Hours? Oa ys?

Two weeks for simulation.

4. What important problem did you solve?

Class assignments for Engineering III at

UniVersity of California at Herkeley.

5. Could you have solved it another way?

Yes, using the campus META 4 - CSMP system.

6. How would the two costs compare?

.. The META 4 was too crowded •

7. Do you plan to use the system again? \.Jh y? \.rhy no t?

Yes, if applicable. I want to use GPSS ~hich

is not yet on our system.

o 0

8. Would you recommend the system to your colleaRues?

Yes.

9. Did you recommend the system to your colleagues?

Yes, Betty Seasonwei~.

10. What revisions or extensions would you reco~mend?

Add GPSS to available analysis routines.

Add more analysis ro~tines.

\.Jho?

Better documentation for the analysis interface.

11. Do you know of any better system? What are they?

No. CSMP - too limited -fixed lihrary,

no hard copy.

178

NAME: Pet~r Wood

1. What was your overall impression of PICASSO?

PICASSO is a well designed and debugged system.

2. Did you find the syste~ generally useful?

I found the system useful for continuous

simulation, where the symbols drawn have text

definitions, for explorations of Mapping

where the symbol placement on the screen is

significant, and for simple drawing (expecially

with quantum = 0).

3. How extensively did you use the system? Hours? Days?

Initially about two or'three days a week

for three to six months and occasionally

thereafter.

4. What important problem did you solve?

Through the USERCMO feature developed the

capacity to search a data structure of symbols

nested to many levels for all elements within

an arbitrary closed polygon.

5. Could you have solved it another way?

Not without duplicating a lar~e part of PICASSO.

The text definitions and analysis routin~s

o t\ O··}
~J

179

could have been bypassed. Of course, it could

have been done in batch mode.

6. Ho~would the two costs compare?

The .cost in man-hours would have been more·

and progress would have heeri slower without

PICASSO.

7. Do you plan to use the system again? Why? Why not?

Yes, when the occasion arises. PICASSO

is easy to use, convenient, and reliable.

8. Would you recommend the system to your colleagues?

Yes

9. Did you recommend the system to y6ur colleagues?

They recommended it to me.

10. What revi.sions or exteqsions would you recommend?

J 1 • Do you know of any better system? What are they?

No.

l~ho?

180

,"

181

NAME: Horace Warnock

1 • What was your overall impression of PICASSO?

Great.

2. Did you find the system generally useful?

Yes.

3. How extensively did you use the system? Hours? Oays?

Approximately 1000 hours starting in

Ha y 0 f 1971.

4. What important problem did you solve?

Scratchpad (sketching to scale) of

printed circuit layouts.

5. Could you have solved it another way?

Y~s - work up printed circuit layouts by

hand. Sketch to scale - tape and retape, etc.

6. How would the two costs compare?

We found that we saved approximately 20-25%

using PICASSO for sketching to scale and

using Xerox as a guide or underlay.

7. Do you plan to use the system again? Why? \.;rhy not?

Yes.

o n o

8. Would you recommend the system to your collea~ues?

Yes.

9. Did you recommend the system to your colleagues?

Yes. The Electronics. Engineerin~

Department - Lawrence Berkeley Laboratory.

10. What revisions or extensions would you recommend?

11.

Program - none

Terminal - higher resolution screens

Systems - stand alone very desir.bIe

Do you know of any better system? What are they?

No.

182

t./h o?

183

NAME: Rill Benson

':"<
1 • What was your overall impression of PICASSO?

Sexy. A powerful tool to build and

manipulate pictures. Have had no experience

analyzing models.

2. Did you find the system generally useful?

It was easy to add a user comMand to do

animation.

3 • How extensively did ynu use the system? Hours? Days?

Briefly - a few days with animation~ We

used it extensively about a year as a

specialized map editing program, but ~his was

heavily modified and all the analysis routines

were removed.

4. What important problem did y~u solve?

As above.

5. Could you have solved it another way?

Yep! but this was a fairly quick way to get

~oing and we got experience with the problem

of map editing.

6~ Ho~ would the two costs compare?

(i
... $ o 0

Much cheaper not usinR PICASSO.

7. 00 you plan to use the system ~gain? Why? Wh'y no t?

No immediate application in mind, hut

would certainly use it on an appropriate

problem.

8. Would you recommend the system to your colle~Rues1

Sure

9. Did you recommend the system to your collea~ues?

Richard Friedman, Jerry Knight.

10. What revisions or extensions would you recommend?

11.

Use device independent graphics. Make zoom

more convenient.

relative points.

Perhaps define symbols with

Rewrite code for clarity.

Do you know of any bett~r system? What are they?

No.

Who?

lR4

. I

18 5

Appendix H. Program DOCUMentation

Program documentation is available from the author at the

following address:

Harvard Holmes

Building SOH, Room 3238

Lawrence Herkeley Lahoratory

Berkeley, California 94720

nocumentatidn and access to the prorotype GMS (known as

PICASSO atLHL) is availahle in the followin~ forms:

1. A short paper describing the system.

2. A users guide to the graphics section with many examples.

3. A users guide to the translator.

4. Source code and listings of the program in Fortran and

assembly language (on tape and microfiche).

5. ARPANET access to LRL whereby the program can be executed

for a few devices (DEC GT40, Tektronix 4010 - 4015

terminals) •

[1 (,. 0 0

186

References and Bibliography

AUS71 Aus, H. M., Korn~ G. A., The Future On-Line

Conti.nuous-System Simulation, Proceedings!!!. the
I
I

.. t

, FJCC, 12" AFIPS Press, Montvale, New Jersey 0(71)

p p. 379-386

AUST72 Austin, D. M., Holmes, H. H., PICASSO: A General

Interactive Graphics Modeling Program, LBL-580,

University of C~lifornia, Lawrence Berkeley

Laboratory, Berkeley, California (J~nuary 1972)

BASK68 B-askin, H. B and Morse, S. P., A HuItt-level

Modeling Structure for Interactive Graphic DesiRn.

IBM Systems Journal, 1, 3 & 4 (19~8) pp. 218~229

BASK69 Baskin, Ho B., A Compre~ensive Applications

Methodology for Symbolic Computer Graphics, in

Pertinent Concepts .!.!!. Computer Graphics, University

of Illinois Press, Urbana, Illinois (1969) pp 414-428

BELA 71 Bel a d y, LoA 0, B 1 a sg en, M • W. -, E van gel i s t i, C.

J., and Tennisdn, R. Do, A Computer Graphics System

for Block Diagram Problems, IBM Systems Journal, ..!.Q.,

2 (1971) pp 143-161

BROlJ74 Brown, J.S., and B':!rton, R. Ro , SOPHIE: A

Pragmatic use of Artificial Intelli~ence in CAl,

Proceedings ~ ~ ~ Annual Conference l1li, San

Diego, California (November, (974)

CONT68 Control ~ HUnC; ~ Digital Simulation Language,

Reference Manual, Publication Number 44610400,

187

Control Data Corporation, Special Systems

Pub 1 i c' a t ion s " St. P a u 1, Min n e sot a (A p r i 1 1 q 6 8)

DEFA75 DeFanti, T. A., Sandin, D. J., and' Nelson T. H.,

Computer Graphics as a Way of Life, Computers ~

Graphics, 1" I, Per~ammon Press, Great Britian (rfay

1975) pp 9-15

DERT65 Oertouzos, M. L.and Santos, P. J., Jr., CAnD:

On-line Synthesis ~ Logic Circuits, Electronic

Systems Laboratory, Massachusetts Institute of

Technology, Report ESL-R-253, Cambridge,

Massachusetts (December 1965)

DERT67 Dertouzos, M. L., CIRCAL: On-line Cirtuit DesiRn,

P ro c e e din g s ~ .!..!!!. lEE E , 2..h. 5 (H a y 1 9 6 7) p p 6 3 7 - 0 54

OIJK72 Dijkstra, E. W., Notes on Structured Programminp" in

Structurad Programming edited by O. J. Dah, E. W.

Dijkstra and C. A. R~ Hoare, Academic Press, London

and New York (1972)

ELLI69 Ellis, ,T. 0., Heafner, J. F. and Sibley, W. L.,

The Grail Project: An Experiment in Man-Machine

Communications, The RAND Corporation, RM-5999-ARPA

(September 1969)

EVAN69
'~

Evantelisti, C. J.,and Morse, S. P., Graphical

Modelling Using Contextually Implied Functions.

Personal Communication (1969)

FRAN73 Frankliri, J. L., Dean, E. B., Interactive Graphics

for Computer Aided Network Design, Proceedirigs ~' the

Nce.!!1., AFIPS Press, Montvale, New Jersey (June

(1 o 0

GEAR70

GRON71

HELD75

HOGS67

HOLH72

HOR072

1973) pp 677-683

Gear, C. W., HY,de, C., Lewin, H., 'Michel, H. J.,

Ratliff, K., Wilkins, S., The Simulation and

Modeling System -- A Snapshot View, Department of

Computer Sciences File No. 824, University of

Illinois, Urbana, Illinois (1970)

G r on e r, G. F., C 1 ark, R. L., R e r m an, R. A.,

188

Deland, E. C., BIOMOD - An Interactive Computer

Graphics System for Modeling, Proceedings .2.!. ~

FJCC, l2. AFIPS Press, Montvale, 'New,Jersey (1972) pp

369-378

Held,'G. D., Stonebraker, M., and l.Jong, E., INGRF:S

- A Relational Data Rase Managemerit System,

,Proceedings ~. the 1975.!:!.££, AFIPS Press, ~10ntvale,

New Jersey (1975)

Hogsett, G. R., Nisewanger, D. A., and O'Hara,

A.' C., Jr., An Application Experiment with On-line

Graphics-Aided ECAP, iri Confg. Digest 1967

Internationa~ Solid-State Circuits Conference (1967)

pp 72-73

Holmes, H. H. and Austin, D. M.~ PICASSO: A

General Graphics Modeling Program, Proceedings of the

ACH SIGPLAN Symposium ..2.!!. Two-Dimensional

Han~Hachine Communication, Los Alamos, New Mexico

(October 1972)

Horovitz, M. W., Austin, n. M., and Holmes, H.

H., Symbolic Computer Graphics and Riological

Hodels, Proceedings.2.!. ill ACM/SIGGRAPH Symposiufll,

Pittsbur~h, Pennsylvania (March 1972)

KAIS69 Kaiser Engineers, San Francisco Bay-Delt~ Water

Quality Control Program (March 1969)

HAGN67 Magnuson, W. G., Jr., Kuo, F. F., Walsh, t~. J.,

On-line Graphical Circuit Design, UCRL-70796,

University of California, Lawrence Radiation

Laboratory (1967)

HCDO 7 5 McOonald, N., CUPID: A Graphics Facility for

Support of Non-Programmer Intetactions with a nota

Base (Ph.D. Thesis) University of California,

Berkeley, California (1975)

MAR017 Marovac, N., A Method for Defining General Networks

for CAD, Using Interactive Computer Grap~ics. The

Computer Journal, 1I, 4, pp 332-336

MEIS74 Meissner, L. P., talk on Structured

Programming/Local Aspects, Berkeley, California

(March 1974)

MER R 71 Merritt, M. J., Sinclair, R., IN~IGHT - An

Interactive Graphic Instructional Aid for Systems

Analysis, Proceedings .2.!. ill FJCC, l.2., AFIPS Press,

• H 0 n t val e, New J e r s e y (Nove m be r 1 9 7 1) p p 3 51 - 3 56

NAGE73 Nagel, L. W., and Pederson, D.O., SPICE:

Simulation Program with Iritegrated Circuit Emphasis,

Memorandum ERL-M382, Electronics Research

Laboratory, College of Engineering, University of

California, Berkeley (April 1973)

R?g Of?~n o 0

NE\'[M73

PRES65

PROJ72

RENA69

RH:K67

ROBB70

SUTH63

Newman, W., and Sproull, R., Principles ~

Interactive Computer Graphics, McGraw Hill, New

York (1973)

Preston, F. S., et aI, Oeveloprnent of Techniques for

Automatic Hanufacture of Inte~rated Circuit!::,

Technical Report AFML-TR-65-386, Volumes I and II,

Electronics Branch, Air Force Materials Lahoratorv,

Wright-Patterson AFR, Ohio (November 1965)

Project MAC Progress Report IX, Massachusetts

Institute of Technolor,y, Cambridge, Massachusetts

(July 1972)

Renaud, R. G., Walters, R. F., The Interactive

Creation, Execution and Analysis of Riological

Simulation using MIMIC on a Graphic Terminal,

Proceedings ~ ~ Conference !!.!!. Applications of

Continuous System Simulation Languages, San

F ran cis co, C a I i for n i a (1 9 6 9) p p 1 R 5- 1 9 1

Riekert, R. H., and Lieberman, O. V., nIM - A

Low Level Modeling System for Conversational

Graphics, I~M Research Report RC-1981, IRM T. J.

Watson Research Center, Yorktown, ~ew York (nctoher

1967)

Robbins, H. F., Reyer, J. D., An Interactive

Computer System using Graphical Flowchart Input,

Communications of the ACM, 12, 2 (February 1970) p

1 1 5

Sutherland, I. E.,- SKETCHPAD: A Han-Hachine

..

1 <} 1

Graphical Communication System. Proceedings SJCC: 12.
Spartan Rooks (1963) pp 329-346

" SYN68 Syn. \oJ. Mo. Turner. No No. and Wyman. D. Go.

..
DSL/360: Digital Simulation Language ~ Hanual.

EnRineering and Scientific Conputation Lahoratory.

IBM Corporation. San Jose. California (196R)

WEGB7l Weghreit. Bo. The ECL Programming System.

Proceedings .£L ~ FJCC. 1.2.,' "FIPS Press. Hontva]e.

New Jersey (1971) PI' 253-262

WIRTl Hirth. No. The Programming Language PASCA.L. Acta

I n for mat ion 1.. 1. p p 3 5- 6 3

o o

L.

r----_____ LEGAL NOTICE---------......

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.

~"

TECHNICAL INFORMA TION DIVISION

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

*" ',,\ ..,

