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GRAPltICS MODELING TECHNIQUES IN COMPUTER AIDED DESIGN 

Harvard H. Holmes 

Lawrence Berkeley Laborator'y 
Berkeley. California 

ABSTRACT 

vi 

Schematic diagrams form a natural medium of communication 

in a wide range of problem areas. In this thesis. we will 

describe a comprehensive approach to problem solving using 

schematic diagrams as the interface between man and computer. 

Past efforts at computer aided design have been hampered 

by an approach which combined the man-machine 

problem-description interface with the problem analysis 

portion of the system. In this thesis. we set forth a 

methodology which separates these two aspects of computer 

aided design. By recognizing those topological properties of 

schematic diagrams that are common to a wide variety of· 

disciplines. GMS is able to provide a sinRle man~machine 

problem description interface for use in a wide,variety of 

problem,solving disciplines •• In addition. GMS includes 

intermediate data structures and preprocessing facili~{es that 

form a natural interface and starting point for the creation 

L o o 0 
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of additional analysis capabilities are described. 

The problem-definition interface supports two ~ain 

activities: the creation of elements, and the interconnection 

of these elements to form diagrammatic models. These elements 

are the basic building blocks for creating models. In the 

past, the elements have been embedded rather deeply in the 

software. Thus, the creation and description of elements was 

done by the system designer or, at best, was relegated to a 

separate phase which required substantial familiarity with the 

software. The main difficulty in creating a new element was 

to communic~te to the analysis portion of a system the ex.ct 

meaning of the element. Our approach, on the other hand, 

makes it easy for a user to ~escribe the meaning (semantics) 

of a new element in a natur~l way. If the new element is a 

primitive (containing no other elements as components), the 

semantic desciiption is given in analytic form (e.g. a 

formula), or in empirical form (such as a table of numbers). 

If the new element is ~omposite (a combination of previously 

created elements), its semantics are defined implicitly by the 

semantics of the component elements along with the topology of 

the interconnections. A convenient representation of the 

topology of the interconnections is given by a routine which 

traces lines in a drawing and recognizes nets of joined lines. 

A translator is described which produces explicit semantics of 

composite ~lements fro~ the semantics of the component 

elements and the topology. A complete prototype 

.. 
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implementation for this part of the system is descrihed. 

The problem-solving portion of this methodology allows a 

wide variety of analysis techniques which can he flexibly 

combined to solve a particular problem at hand. This approach 

recognizes that no workable scheme for automatically 

constructing computer programs has been developed. 

Nevertheless, several improvements in present techniques for 

constructing programs can be made to prepare for such schemes. 

These improvements include flexible data structuring 

facilities for programming languages and generalized user 

interfaces. An initial set of data structures and analysis 

functions for constructing programs is described. 

Another aspect of our work is to demonstrate how existin~ 

problem solving systems can he extended using the graphics 

problem description interface. These extensions serve to 

tailor analysis packages to a spectrum 6f disciplines where 

such analysis techniques are appropriate •. This gives the user 

the impression that he is using an analysis routine which has 

been specifically constructed for his problem. 

I. o 0 



1. AN INTRODUCTION TO DIAGRAMMATIC MODELING 

In many areas of design, symbolic or schematic diagrams 

are the most widely used representations for the statement of 

a problem or the representation of an idea. D i a g ram s' h a v e 

been utilized fot a wide variety of disci~lines, in which 

instruction in the discipline is based on diagrammatic 

representation~. Symbolic diagrams have thus become a rather 

universal means of communication within disciplines. In 

addition, the diagrams themselves have developed into powerful 

tools for guiding problem formulation and solution. 

Once computer aided design (CAD) techniques and computer 

graphics techniques had succeeded, it was only natural to 

combine these two techniques and provide graphical input to 

computer aided design programs. There are many such programs 

in existence, but their growth has not been as rapid as the 

computing world expected. The 'reasons for this slow growth 

are many, including primarily an inability to directly use 

previous work [BASK68), and the high cost of graphics 

hardware. The inability ··to use previous work results in a 

high cost for developing new applications,and this difficulty 

is addressed in this work. The high cost of graphics hardware 

has largely disappeared; mini-computer displays are now 

relativelyinexpen.ive and operating ~ystems are now ~~ch 

better suited to sup~ort interactiv~ com~uttnR. 

The minimum level of software design which allows the 

I. o o 
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incorporation" of previous work is one which uses common 

subroutine~ in each successive graphics input CAD program. 

This level of design has not been very effective, with most 

subroutines being at the level of common graphics functions. 

A significant step forward in the organization of graphics 

software design was provided by Baskin [BASK68J in developinv, 

a conceptual model for such software d~sign. Baskin suggested 

that a graphics CAD ,facility be organized as five separate 

subsystems or modules for: (1) creating elements, (2) 

diagrammatic modeling, (3) analyzing problems represented as 

diagrammatic models, (4) revising analysis procedures, and (5) 

providing output. Two other key ideas in this paper were: 

that semantic description of an element could be done in terms 

of three definition mechanisms; and that a large class of 

diagrams could be included in a single generalized topolrigical 

framework. 

Many of these ideas were reflected in contemporary and 

subsequent work. Softwaremodularization is evident in an 

experimental CSMP [BREN66), in GINA [MAGN67J, in OESIGNPAD 

[BELA7l] and ina graphic version of ECAP [HOGS67J. Efforts 

to handle diagrammatic models in a general way are evident in 

the experimental CSMP and in OESIGNPAD. One semantic 

descripti6n mechanism appears in the Simulation and Modeling 

System [GEAR70J, but as an extension to the ,modeling 

capabilities, rather than as a part of the ~lement description 

facility. This thesis undertakes to extend and revise these 
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ideas and describes an implementation of the graphic input 

which includes such ideas. 

1.1 DIAGRAMMATIC MODELING DEFINED AN!) ILLUSTRATEn 

1 • 1 • 1 Use of Diagrams for Modeling 

A model. in the most general sense, is an abstract 

representation of reality; a diagrammatic model is one which 

is presented as a stylized drawing or diagram. Oiagrams take 

many forms according to the customs of the many diverse 

disciplines which use them. Nevertheless. the conventional 

tools of their construction, namely pencil and paper, have 

forced the great majority of these diagrams into a common 

format. Observing Figure I, we see that a diagrammatic model 

is composed of elements, interconnected by lines, together 

with alphanumeric annotation. To the designer, the elements 

are the building blocks of his model. The lines show the 

relationships between elements of the model. Usually, only 

the topology of the relationship is important, since other 

representations with the same topology would be considered 

equivalent. Almost always, a single element is used for a 

large class of similar objects; when the designer uses an 

element, he identifies the appropriate member of the class 

using some annotation. Annotation is als~ used for commentary 

and for identification. 

The choice of elements is often dictated by the 

o () a 
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conventions of the particular discipline involved. These 

conventions have been established by long experience and they 

are usually very effective. The convention usually sp~cifies 

both the visual symbol and the class of objects which it 

represents (i.e., the meaning or se~antics associated with the 

visual symbol). In electrical engineering, these choices have 

become so standardized that templates of the various shapes 

are available as drawing aines, and documentation 

specifications may even establish the exact size to be used 

for the symbols. Semantic conv~ntions are equally complex and 

well developed, although they may change with the appli~ation. 

Thus, to take a very specialized example, the symbol in Figure 

2A may at times represent a physical resistor with its 

associated inductance and capacitance. At other times, it may 

represent a pure resistance so that a physical resistor must 

have its inductance and capacitance shown explicitly, as in 

the composite element shown in Figure 2B. 

Note that the components of the composite element have 

separate meanings (semantics) of their own, which have a role 

in establishing the semantics of the larger element. This is 

only one case of the more general existence of hierarchies of 

diagrammatic models, in which the detail of the model is 

adjusted'to fit the necessities of the application. 

The primary virtue of having hierarchies of models is to 

enable an easy comprehension of the model by using several 

layers of abstractions with each layer based on the next lower 

9 o n OJ ~. ,~ 
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level. This facilitly uses man's language and abstract 

reasoning skills to break a complex problem into 

understandable subunits and understandahle compositions of 

these subunits. We will return to this line of observation 

later (Section 1.2.1, 1.2.2). For the pres~nt. we simply wish 

to note that these layers can be observed in any particular 

discipline as a fundamental tool for problem sblving. 

The use of diagrams to show relationships among elements. 

of a model brings with it several advantages and 

disadvantages. The primary advantage is that the irrelevant 

relationships may be removed from the diagram leavin~ the 

designer free to concentrate on those deemed relev.ant. To use 

an electronic circuit as our example again, the designer can 

concentrate on signal flow and not worry about' the actual 

three dimensional packaging of components in the model. A 

-
secondary advantage is that a three dimensional situation can 

often be easily reduced to two dimensions. Of course, the 

abstraction inherent in modeling and the use of pencil and 

paper have provided mutual reinforcement of this capabilitv. 

Finally, we can observe that even a physical situation that is 

basically two dimensional in its spatial configuration can 

often benefit from using ahstract diagrams rather than spatial 

configuration to convey relationships. The field of optics 

provides exaMples where the symmetry of lenses allows a 

convenient two dimensional representation, yet a more 

schematic approach has often been taken. 

n n 
~} o 
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The primary disadvantage of using diagrams to show 

relationships is the converse of the advantage: they may omit 

some relationships which are significant. This may result in 

the design of a model which cannot be physically realized. 

While these tradeoffs are inevitable, the situation is n6t 

hopeless - the usual remedy is to incorporate more 

relationships explicitly in the model. In an electronic 

circuit diagram, for example, some of the circuit delays may 

be incorporated explicitly by replacing a line by a modeling 

element which represents time delay. The amount of delay 

would be set by the designer, who can estimate it from 

packaging considerations. 

t'.1.2 Earlier Modeling Programs 

In early diagrammatic modeling systems, the semantics of 

primitive elements were quite rigIdly built into the software 

and the propogation of semantics from elements to combinations 

of elements was, in most cases, straightforward. 

Historically, the first graphical modeling program in the 

sense of this thesis is SKETCHPAD [SUTH63). It combines an 

interactive drawing routine with a scheme for evaluating and 

satisfying constraints on the drawing. It manipulate~ lines, 

constraints, and subpictures (which may include other 

subpictures). A versatile copy function allows combinations 

of constraints to be copied 'from one instance of a subpicture 

to another. These constraints, the semantics of SK~TCHPAD, 
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are created and incorporated into the data structure via the 

same graphic techniques which are used to create the ori~inal 

drawing. We may characterize SKETCHPAO by notin~ that ~ 

single data structure and a single analysis routine are used, 

with the semantics given implicitly by the analysis routine. 

Following SKETCHPAD, there appear programs desi~ned to 

support more interesting analysis routines. Ex~mrles of such 

pro g ram s are C I RCA L [ DE R T 6 7) , CAD Ie [ PRES 6 7 1 and C A f) n 

[DERT65] • These programs may also be characterized as having· 

a single data structure used by both the ~rawin~ phase and the 

analysis phase. 

Baskin and Morse [BASK68] created an experimental CSMP 

in which the graphic input functions and the analysis 

functions were separated and implemented as separate modules. 

It is noteworthy that an existing interactive drawing pro~ram 

(DIM [RIEK67]) was used. This demonstrated rather clearly 

that graphic input facilities did not have to he tailor-made 

for each particular application. DIM allowed the user to 

create subpictures from lines and other subpictures in a very 

general fashion • DI~ also provided rotation and scalinR of 

subpictures. For use in the modeling system, DIM was given A 

basic set of entities (predefined primitive elements) which 

corresponded to functions availabl~ in the analysiS package. 

The user created models using lines and these entities. A 

second overlay generated a topological description of the 

model in the form required by the analysis package. 

I 
t~.~ n o 
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overlay, again based on an existing program. did the analysis 

and produied the output. 

An extension of this work. DESIGNPAO [BELA7l]. 

concentrated more thoroughly on the interactive drawing 

package and the topological analysis routines. elahorating 

upon the intermediate data structure for use by analysis 

programs. 

2250 ECAP [HOGS67] and GINA [MAGN67] aTe examples of 

graphic drawing packages which are used interactively to 

produce input for "standard" batch mode circuit analysis 

programs. Each of these has a predefined menu of circuit 

elements. from which a circuit diagram is constructed. GINA 

is able to change its output format to suit any of several 

~ircuit analysis packages. J. L. franklin and E. R. Dean 

[FRAN73] describe a system similar to GINA. but with the added 

ability to nest diagrams to form a hierarchy of models. 

BIOMon [GRON71] is a system designed for biological 

problems; it uses CSMP for its analysis phase. In BIOMOn. 

all'symbols are shown visually as rectangles (a disadvantage). 

but a more complete set of semantic description facilities is 

provided. including CSMP primitive elements. algebraic. 

differential and chemical equations, and Fortran statements. 

Symbols may also be combined to form hierarchies (implemented 

by means of macros). BIOMOD offers good facilities for 

semantic ,description (although limited to the analysis 
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facilities of CSMP), but no facilities for user-drawn 

primitive symbols. 

The principal shortcoming of all of th~se earlier 

programs is their dependence on a single analysis program, or 

a single class of analysi& programs. Thus, the semantics of 

their primitive elements are built into the system and the 

semantics of composite elements can be generated in a uniform 

manner using the topological description. Although this 

allows them to sidestep the dIfficult question of semantic 

description, it precludes the generalization of these systems 

to allow multiple forms of semantic description that might he 

required for various fields of application. Most of the 

earlier systems also exploit the specializ~d nature of their 

application to simplify the graphics programming. The 

ultimate cost of this specialization is a lack of 

transferrability of the software. 

1.2 A CONCEPTUAL FRAMEWORK FOR INTERACTIVE CAn 

This section describes the Graphics Modeling System 

(GMS) in terms of the facilities which are necessary for very 

general problem formulation and solution. Many of the parts 
... 

of GMS can be viewed as extensions of similar facilities in 

these earlier programs, generalized and made more systematic 

to serve a wider variety of disciplines. The goal is to nake 

GMS so general that it can be modified online to suit whatever 

analysis the user wants to make. In addItion, the 

p,... b o .. ·.! to ii<'1 0·· 
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organization of GMS should be straightforward so that even an 

inexperienced user can adapt GMS to his problem. 

1. 2. 1 The Art of Design 

I 

The art of design is the successful combination of 

synthesis and evaluation. Design proceeds by a process of 

synthesis or proposal followed by ,an ev~luation and refinement 

of the proposal. Refinement is merely a variation of 

synthesis, and so the designer repeats these steps over and 

over. First, a synthesis and then a evaluation; then a return 

to the synthesis phase to improve the solution using the 

results of the evaluation to guide the synthesis. In the 

early st~ges of design, these two activities are carried on 

entirely within the imagination of the designer. They become 

a series of "thought experiments." The designer mentally 

proposes some situation; then he explores it to see if it will 

provide the desired result. 

At some point, the designer is r~ady for a more concrete 

evaluation; he is ready to test his ideas using a CAn system. 

For this purpose, the CAD system must be fast and flexible (at 

the cost of some accuracy, ~erhaps). It must respond quickly 

to allow many ideas to be tested and it must respond to each 

idea fast enough to promote a steady flow of invention. If he 

must wait too long, the designer becomes bored or impatient, 

his attention wanders, and the atmosphere of creativity is 

lost. At this early stage, the designer is likely to shift 
I! .; 
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his attention from one aspect of the design to another; thus 

the CAD system must he flexible in order to accommodate these 

several aspects of the problem and to allow easy modification 

of the design. 

An essential part of the art of design is the ~hility to 

partition the problem. The designer breaks one laige problem 

into a number of smaller problems. This subdivision is 

evident in practically any problem solving situation. It is a 

key part of design; a proposal is just a synthesis of 

subparts. One central activity in design is the suh-division 

of the problem into satisfactory (more tractable) suhparts. 

A most important counterpart of this ability to suhdivide the 

problem is the designer's repertory of known solutions. The 

designer with a wide knowledge and understanding of existing 

solutions is able to use this knowledge to greatly extend his 

effectiveness. The art of design then hecomes a search 

through a tree structure. At each stage, a branch is 

subdivided and each of the subbranches are explored. In most 

cases the designer can immediately evaluate the suhparts of 

the design from his prior knowledge. 

In one common design methodology, this subdivision and 

evaluation takes place in "depth first" manner; that is, as a 

task is .suhdivided, one of the subtasks is selected and 

pursued to its conclusion hefore effort returns to any of the 

other highest-level subtasks. This is a very effective way of 

pursuing the bottleneck in a deSign, that difficult aspect 

o it' !. 
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which, separates it from known solutions. At each subdivision, 

most of the subtasks are recognized as having known ~olut(ons; 

they can thus be quickly discarded froM the part of the 

problem that needs further consideration. In this way 

irrelevant detail is avoided while pursuing the heart of the 

problem to any necessary level of detail. This approach makes 

good use of man's ability to organize and recognize patterns, 

while, at the same time, it minimizes the amount of detail 

which must be managed since man is limited in" this regard. 

As the design becomes established. there is a need for a 

more exact evaluation and refinement of it. At this point. 

the design~r turns to Mechanical and technical aids. First 

the design is committed to paper; then the designer begins to 

refine and evaluate his proposal with the aid of rules of 

thumb, technical formulas, and the use of a cbmputer. In the 

past, the use of a co~puter, allhough desirable or necessary, 

was delayed until the last possible moment. This was an 

unhappy result of the great effort required to obtain a 

computer evaluation of the design. The de~igner did not want 

to make this effort until he was reasonably sure that the 

design was nearly correct. The use of the COMputer, although 

necessary,was so costly that alternate solutions could not be 

pursued unless the original was unsatisfactory. This led to 

barely adequate designs and stifled the search for innovative. 

superior designs. 
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1.2.2 Goals of CAD Systems 

The goal of CAD systems should be to ~ake the co~puter so 

easy to use that it beco~es an aid to evaluation and 

refinement from the very beginning of a design. This requires 

a CAD system which is easy to communicate with and which 

suppports suhdivision and evaluation strategies that are 

natural a~d convenient for the designer. The technique of 

diagrammatic modeling can be an important part of CAD systems 

because it contains these necessary tacilities. Ease of 

communication is inherent in the use of schematic diagrams, 

since these are the first choice for the communication of 

ideas in many disciplines. The other feature~ of a 

diagrammatic modeling technique must allow for experiment, 

deSign, evaluation and refinement at a variety of levels of 

detail. The incorporation of a hierarchical structure into 

the elements of a dia~rammatic model is the best technique for 

supporting the experimental partitioning and synthesis of the 

suhparts of a design. The designer must be free to construct 

his model as his attention directs and to return to and extend 

sections of the model with progressively more and mor~ detail. 

A hierarchical structure, together with the ability to 

redefine elements or .to have alternate definitions for 

elements, allows the designer to establish a schematic diagram 

with only very rough notations of what each element should do. 

Thus, he can hegin with a very simple definition for some 

elements, and then at a later time he can return and redefine 

o 



them in terms of simpler subelements. This allows the 

designer to concentrate on crucial problem areas and pursue 

them to the necessary level of detail, while temporarily 

16 

ignoring the rest of the problem. Later, other parts of the 

problem can be elaborated upon without disturbing earlier 

parts of the design. 

In addition, a hierarchlcalorganization allows one 

aspect of a problem to be removed from the rest of the problem 

and tested out of context. Thus, th~ designer can-perform his 

"thought experiments" until a particular aspect reaches i1 

level of detail which he n~eds help in evaluating. He can 

describe this one part of the system and test it, using his 

mental design to guide him in describing the environment of 

this part. For example, in the design of an FM radio, for 

which a ne~ detector is proposed, the designer divides the 

radio intb an RF section, an .IF section, a detector and an 

amplifier. He immediately dismisses all but the detector as 

being known. A detector is then proposed and described to the 

CAD system; from experience the designer can describe the 

input to the detector and r~cognize good or bad output. Thlls 

he does not even ne~d to incl~de the other parts of the radio 

in the d~scription he gives to the CAD system. Alternatively 

he can includ~ them without describing their internal 

structure in detail. 

If the designer has been using a CAO system for some 

time, then some of his prior experience can be incorporated 
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inio a library of previously designed parts. A diagrammatic 

modeling facilitly can lend itself to easy management of this 

library. As earlier designs are completed, they are stored 

and their individual parts are reused in later designs. 

1.2.3 Need for Separation of Tasks 

Cnnsideration of the pr6posal and evaluation aspects of 

design suggest that for a CAD system, the proposal aspect can 

be hest supported by a good communications medium, while 

evaluation requires the services 6f more conventional 

mathematical programs. Since use of the system in an 

interactive descriptive mode alternates with mathematical 

evaluations, it appears feasible to provide separate software 

in the CAD system for these two functions. The critical 

requirement is that the two functions not be required 

simultaneously. In almost all cases, there is no need for 

mathematical evaluations during the interactive description 

phase and vice versa. Thus, these two functions can he 

organized as two separate software systems with communication 

through a common data base. 

The prinCipal advantage of this separation of tasks Is 

that a wide variety of analysis systems may share the same 

graphics facilities for problem definition. This will lead to 

a better graphics product, since the graphics facilities need 

to be designed and implemented only once. Thus, we can 

justify doing a more complete job than we might otherwise have 

o 
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done and we can include features which we might omit if they 

were to be used with only a sinp,le analysis procedure. 

Equally important is greater convenience for the user, due to 

the fact that he can use the graphics facility as a common 

interface. He is no longer required to learn a variety of 

languages in which to state his problem, and yet he can use a 

wide variety of arialysis procedures. Since the same graphics 

facility is used with a variety of analysis procedures, it is 

also a simple m~tter to use the same problem description with 

more"than one analysis procedure. That is, a particular 

problem needs th be descrihed only once to be available as 

input to several analysis procedures. 

In addition, the use 6f separate subsystems makes the use 

of intelligent terminals for the graphics subsystem a very 

attracti~e possibility. This reduces th~ real. time load on 

the central facility and simultaneously provides even better 

response for th~ most common interactions. The use of an 

intelligent terminal may also allow the 'use of a low-handwidth 

connection hetween the central facility and a remote user. 

W~thout the use of an intelligent terminal, a hiRh handwidth 

connection to the central facility would be required, which 

might be uneconomical or impossible. 

But the greatest benefit by far accrues to the analysis 

programs which ~an use this common graphics facility. An 

analysis program that is not used with a separate graphics 

facility must either include a graphics f~cility within the 
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analysis program or use some external form of problem 

description, such as card images. Incorporation of a graphics 

facility into analysis systems introduces problems of real 

time interaction and consequent hardware and operating system 

dependencies. 

Use of the data structures of a common data hase, if they 

are well thought out and carefully desiRned, is preferahle to 

many of the schemes that have been widely emp~oyed to encode 

schematic diagrams in a hatch processing environnent. Those 

schemes use data structures hased on card images in which code 

numbers or similar techniques convey the topological 

information. They are tedious to use and very prone to error, 

as well as being very difficult to update to conform to 

changes in the original schematic diagram. By using a 

translator, as described subsequently, one can adapt the 

"standard" interface data structure to a wide variety of card 

i~age-based schemes (if necessary), allowing batch programs to 

be used with the graphics facility. 

1. 2 • 4 The -G rap h i c s Fa c iii t Y 

The function of the graphics facility is to allow CAn 

problems to be conveniently descrihed as schematic diagrams. 

The methodology of this description was suggested by Baskin 

[BASK68], who proposed three types of element descriptions. 

Two types of semantic description nechanisMs are provided for 

primitive elements: an analytic or relational expression (e.~. 

£ b' l (1 i; • {i ('~ t1 0 rJl -.. cr, 
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a form u I a) and an em pi ric a lor ex p Ii cit rei at ion s u c has a 

table of numbers. The semantics of composite elements are 

given by the interconnection (topology) of component elements 

(and the semantics of the component elements). 

To support this methodology, the following software 

components are required: (1) an interactive graphics editor, 

(2) an interactive text editor, (3) a topological analysis 

module, (4) data management for primitive elements with 

-
empirical descriptions, (5) a translator t6 propagate the 

semantics of primitive elements up througb the hierarchy and 

to provide customized data structures for output J and (6) 

filing and retrieval functions. 

I • 2 • 5 The An a I y sis Fa c iii t Y 

The analysis subsystem uses the problem descripti~n and 

produces answers for the user. Although ideally the analysis 

subsystem should include a1acility for con~tructing new 

analysis' pr'ocedures as simply as new modeling elements can he 

constructed, the state of the art in automatic programming has 

not yet reached this ability. Thus, the analysis facility 

will include a set of preassembled packages, together with a 

large set of more elementary routines to use as buildinR 

blocks for new analysis packages. These building blocks will 

include mathematic~l routines, data output and display 

routines, and user interface routines. The system shoulrl 

pr.ovide an easy-to-use, interactive facility to guide the user 

.; , 
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in assembling these routines to do what he wants. One 

approach to this pr,oblem is evident in the Dynamic Hodelinp, 

System [PROJ72] in which suhroutines from several different 

languages c~n he comhined in a single system. Perhaps the 

user can use the graphics interface to descrihe programs. The 

facilities needed here for program assembly must be on a 

h i g her 1 eve 1 0 f a h s t r act ion t han t h a, t pro v ide d b y G R A I L 

[ELLI69], with'most of the tedious details of programming and 

data structure being taken care of autonatically for the u~er 

(who is not a programmer). 

Two examples may illustrate some of the variety of 

analysis techniques which can be applied. Many problems fall 

naturally into one of two categories with respect to the 

computational procedure required to evaluate them: sequ'ential 

problems and "gestalt" problems. Sequental prohlems ,are 

characterized by an inherent modularity: thet is,_ the model is 

composed of elements with a definite input-output 

relationship; computation performed on the inputs for each 

element yi~lds outputs which serve as inputs to another 

e I em en t. Such a configuration can he recognized in analog , . 

computers, digital logic, compartmental flow models, queueing 

situations, pert charts and flowcharts. Analysis routines for 

these problems must organize the sequence of modules for 

evaluation. 

It often happens that the analysis routine for sequential 

problems must deal with the problem of closed loops caused bv 

I . ~ 
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feedback. Numerical integration problems, for example, are 

often solved by reduction to integral equation form, the 

graphical equivalent of which is to break the loop by assuming 

that the outputs of the numerical integration are known in 

advance. Then using these known v~lues~ new ~nputs to the 

integration routines are computed. During execution, the 

analysis routine must ensure that the old values are adequate 

approximations to the new val~es. For some other problems, 

for example, digital logic, closed loops may be broken by the 

inclusion of time delay in the loop. 

Once the proper sequence for the modules has been found, 

they ~ay be evaluated interpretatively (CSMP), by compilation 

and execution MIMIC [CONT68], or by translation to another 

I an g u age, n S L / 3 60 [S Y N 6 8] , . where For t ran is the tar get 

language. The evaluation routines must include the necessary 

control routines, and usually also provide utility routines, 
, 

such as those for integration, time-delay and the 

trigonometric functions. 

Gestalt problems, on the other hand, lack the modularity 

exhibited by sequential problems. Some electronic circuits 

and bridge and building siructures are examples of ~uch 

problems. Efficient analysis of the behavior of such a 

structure as a whole cannot be accomplished by the sequential 

evaluation of computation procedures associated with the 

component elements. The analysis of such a problem requires 

that the description of the elements be reorganized into a set 

_ i 
i 
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of relationships (e.g. equations), which describe the .behavior 

of the system as a whole. These equations can then he 

evaluated, often by the sa~e techniques (e.g. numerical 

integration) used for sequential models. We will return to 

this examination of analysis routines and packages in 

Chapter 4. 

1.3 AN IDEALIZED MODELING SYSTEM 

1.3.1 Defining a Primitive Element 

We shall begin our explanation of GMS with the creation 

of a new primitive element, one which is not composed of other 

elements. Although a library of elements is maintained, it 

often happens that a new element is required tor a particular 

problem. A new element is created by giving it a name. A 

semantic description of the element must then be given which 

can be understood by the intended analysis routine. For 

primitive elements, two mechanisms for semantic descriptions 

are provided: (I) the analytic or relational description of an 

element by means of text, and (2) the empirical description of 

an element by means of a numeric or empirical relationship 

between variables described by some data set. 

The analytic description is created using the text 

editor. It is often used to specify an analytic ielationship 

between variables using a math~matical notation suitable fo~ 

the desired analysis routine. For example, a resistor may be 

defined by I = (VI - V2)/R; or a NAND gate: 0 = NOT (A + R + 

o 0 
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C). For Some applications, a suitable description can be 

obtained from past experience, either with the modeling system 

or with similar analytic procedures. For other applications, 

experimentation with alternate descriptions may be a 

significant modeling activity. "An analytic description may 

also give a functional relationship implicitly rather than 

explicitly, by referrinR to a procedure supplied by the 

analYSis routine: 

X a f (y,z) 

or 

RIal 3-7 1100 

where the procedure itself is specified by the first character 
< 

"R". 

The empirica~ description form is used to associate a 

data set with a primitive element. For example, a transistor 

can often be best described by some of its characteristic 

curves. Simple data sets can be generated or edited using the 

graphic faci1~ties of GMS. 

A symb6l (the pictorial o~ visual representation of the 

element) mai also be associated with the name. When an 

element is used as a component of a larger element (model) a 

symbol is required for use in the specifi~ation of 

interconnections among the compon.nts of the model. The user 

creates the symbol with the line drawing commands of the 

graphics editor (Figure 3A illustrates resistor, capacitor and 
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NAND gate symbols), ~nd he specifies points on the symhol 

which ~re available for connection to other symbols in a 

model. These points are called attacher points, since they 

specify where lines in a model can be placed to attach the 

symbol to other symbols. Each attacher point consists of this 

position together with a character string which identifies the 

variahle (in the analytic or empirical description) which is 

to be associated with this position. Each attacher point of a 

symbol has this unique character string and a unique 

coordinate location relative to the symbol. Figure 3R 

illustrates resistor, capacitor and NAND gate symhols with 

attacher points added. 

1 • 3 • 2 Creating a CompQ8ite Element 

A composite element is defined in terms of other 

elements, ~llowing users to create hierarchies, to assemhle 

collections of elements and use these collections as single 

new elements. They can huild layer upon layer of composite 

elements, with each layer an abstraction of the layers helow. 

On the other hand, a large problem can be broken into SMaller 

and smaller subunits, with the arrangement of subunits being 

easily com~rehensihle at every stage. Thus, within this 

framework, the user can work from the top down or from the 

bottom up. In working from the bottom up, new elements are 

created from comhinations of existing ones, creating larger 

and larger buildIng blocks for larger and larger problems. 

. . 
I 
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In working from the top down, elements already defined may be 

refined by replacing tentative or experimental definitions bv 

more exact definitions composed of other elements. Ry analogy 

to programming languages, the creation methodology for 

composite elements is called macro definition. 

We use the term model as a convenient shorthand for a 

composite element. Thus "model" refers to the combination and 

"element" to the components. Strictly speakinR~ of course, a 

model is just another element and can be used as a conponent 

of a larger model. 

After giving a. name to the composite element. the next 

step is to select the elements which are to be used in it. 

These elements are represented by their symbols. These 

symbols must then be connected by lines joining the 

appropriate attacher points. A set of connected lines is 

called a net. A single object or two ohjects juxtaposed 

(without lines) may also be considered nets. A net will 

usually join attacher points from different symhols, but two 

or mor~ attacher points of the same symbol can be joined 

together if desired. Finally, labels are added to the model 

to identify particular nets. (These labeled nets are 

associated ~ith correspondingattacher points in the symbol 

(discussed next) of the composite element. If no symbol has 

been given or a lahel does not match an attacher p~int on the 

symbol, then the label is assumed to denote a constant or 

specific name for the net, and the character string is Made 

L o 
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available to subsequent analysis routines.) 

A composite element may also be given a symhol to allow 

it to be used as a component in larger models. This symho1 

has its own attacher points that will be used to connect it 

into larger models. Each attacher point is identified hv its 

associated character string. The net (in the model 

description) which corresponds to a particular attacher point 

(in the model symbol) is identified hy a label with a 

character string which matches the character string of the 

attacher point. Values entering a symbol as formal parameters 

through an attacher point propagate down to the matching net 

and become actual parameters to the suh-symbols. 

This character string matching is requiredbecallse the 

symbol (picture) of the model (composite element) is not 

inherently identified with the collection of pictures of its 

component elements and their interconnections, that ig, with 

the graphical object generated in the description of the 

model. The attacher points have identifying character strings 

in the symbol of the model. These are identified with nets in 

the composite model description by giving matching labels to 

the nets. 

In many respects, the propagation of semantics in GMS is 

parallel to the propagation of semantics in conventional 

programming syntax. By analogy with the use of procedures, 

the semantic definition of an element for~s the body of the 

. i 
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procedure and the ~ymbol forms the procedure declaration. The 

symbol establishes both a pictorial name for the procedure and 

the formal parameters. As with conventional procedure 

declarations, the symbol provides the ~orrespondence hetween 

external and internal references to the parameters. External 

references are made according to the order of parameters, or 

in the case of symbols, by coordinate location. Internal 

references are made to the corresponding character strings. 

Procedure declarations give an implicit correspondence between 

the external order of the parameters and their internal 

character string referents. For symbols, the attacher points 

provide a correspondence between coordinate locations with 

respect to the symbols (for external reference) and character 

string identifiers (for internal reference). Thus, in a 

conventional syntax for calling procedures the actual and 

formal parameters must agree in order (and number), while in 

GMS they must agree in coordinate location. 

1.3.3 Graphics Features 

Thefundamentalgraphic o~erations are the creation of 

lines and alphanumeric annotation, the selection and 

positioning of symbols, and the erasure of these elements. 

Lines are used for the outline of symbols a~d for creating 

nets in composite elements. Lines can be created in a 

point-to-point fashion (most suitable for nets) or as multiple 

segments approximating a free hand curve. 

o ~.~ f ~r 

Alphanumeric 
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annotation is ased for attacher ~oints and for labels. It is 

constructed and positioned with keyboard and lightpen. A 

number of character sizes are provided. Symbols are used in 

composite elements, and each instance of a symbol has a size 

and an orientation. 

'A number of graphics features are provided as aids to 

drawing. Among the most important features are zooning. 

clutter suppression. grids, and a subpi~ture facility. The 

zoom facility allows the user to enlarge any portion of the 

screen to any desired size. Typi~ally, symbols are enlarged 

by a factor of 16 to 64 for greater ease in drawing (where a 

magnification factor of one displays the entire drawing area 

on the screen). Models are then created at a somewhat reduced 

size to allow more symbols to be visible at any one tim~. 

Clutter suppression operates in conjunction with the zoom. 

Its effect is to suppress the displ~y of character strings 

from the screen when they would be too small to be legihl.e or 

they would overlay one another in a cluttered manner if made 

large enough for legibility. When a symbol appears in a model 

(at a smaller size than it was created at) the character 

strings associated with its attacher points are usually 

suppressed. A grid can be overlayed on the drawing to help 

the user draw his lines in exactly the right orientation, or 

to help him Make one line twice as long as another. et cetera. 

The grid can also be calibrated to provide dimen~ional 

accuracy on the finished drawing. (An implementation is 

I . 
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currently in use as a drafting aid to produce printed c~rcuit 

boards.} The subpicture facility allows a part of a symbol to 

be drawn separately and then used in several places. For 

example. computer logic diagrams often use small circles to 

denote inversion at the input or output of elements. These 

circles can easily be drawn as subpictures and then called as 

needed. Suhpictures can also be rotated or scaled as desired. 

In addition to the graphics and text editors. it is also 

necessary to have file management o~erations which allow the 

storage. retrieval and manipulation of sets of elements 

(1 ibraries) • These operations also allow the deletion and 

replacement of individual elements within libraries. 

1.3.4 Topological Analysis of Composite El~ments 

A topological data structure is cr~ated by scanning the 

graphics representations of macro definitions of composite 

elements. Working from coordinate information. the topoloRical 

analysis mudule decides which lines are connected. then traces 

out the nets. and provides a structure in which the relevant 

topological corinections are displayed. From this structure, 

other modules (Section' 1.3.5) can determine either the 

connectivity of each attacher point associated with an 

element. or the set of attacher points and labels associated 

with each net. That is. either the elements or the nets can 

be the starting point for information retrieval by other 

6 o 
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modules. 

1.3. 5 The Role of the Translator 

The primary purpose of the translator is to provide for 

semantic propagation as described aarlier (Section 1.3.2) and 

to reformat the results into the various forms required by 

analysis routines. A common form is text on card images 

similar to conventional programming syntax. For this form. 

the translator allows the user to specify a suhroutine or 

macro syntax (for example) for,the output. Startin~ with a 

model to be analyzed the translator creates the appropriate 

initialization and then compiles each instance of a component 

element into the specified call syntax with the actual 

parameters t~ken from the labels (~ames) of the nets in the 

mod el. If no name was given to a net. then one is created. 

For each distinct element used in the model. a suhroutine for 

that element is constructed. A subroutine declaration is 

created using the attacher points to identify the formal 

parameters. If the element has an analytic definition. it is 

simply ~opied after the suhroutine declaration. If an 

empirical definition is given. a user-specified statement is 

constructed. If a macro definition is used •. calls are 

compiled for the component elements as in the highest level 

model. 

When a model is to be analyzed. the model and the 

analysis module are identified to GMS. which provides the 
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proper translation and then passes control to the desiRnated 

analysis module. A simple extension to the selection command 

allows several models to be selected as a group, if the user 

find~ that more convenient than incorporatirig them ina sinRle 

higher level model. 

Since GMS treats all models similarly until one is 

selected for analysis, there is no diffi~ulty inselectinR 

parts of ~ larger problem for analysis or in maintatnin~ 

several variant approaches to a particular problem. The only 

difference to GMS is that a model which is selected for 

analysis need not have a symbol, since a symbol is needed only 

for use at a higher level. GMS can accept any model as the 

top level model for analysis, and conversely, such a model can 

have a symbol drawn for it and then it can be used in the same 

way as any other ele~ent. This uniform treatment preserves 

the open~endedness which is necessary for flexibility and 

continued expansion of the system. 

The secret of success of GMS lies in the fact that the 

propagation of semantics from components to composite model is 

independent of the nature of element semantics. Thus although 

the element semantics must be tailored for an assumed analysis 

program, nevertheless a common translator can propaRate 

semantics for any analysis program. 

The necessary information for elemen~ semantics consists 

of formulas or element descriptions in the form of text or of 

o o o 
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numeric data also input as text or as ~ curve (graphically). 

The information needed to propagate the semantics consists of 

the interconnections. At ~ given hierarchical level, these 

are just lines (nets) that join symbols (at attacher points). 

Between levels there are labels that relate internal nets to 

external attacher points. GMS translates the Rraphics 

(line-and-Iabel) topology description into a ~acro and 

subrout~ne parameter form that can be adapted to all analysis 

routines. 

1.4 EXAMPLES OF MOOELI~G 

These examples illustrate just a few of the many problems 

which can be conveniently represented by a graphics diagram. 

They were created using PICASSO [HOLM72], which is our· 

prototype realization of a GMS. 

1 .4. 1 PERT Diagram Example 

A PERT (Program Evaluation and Review Technique) diagram 

is a representation of job scheduling designed to identify the 

minimum time to complete a job and to isolate the "critical 

path", the set of job steps which, if delayed. would delay the 

whole project. In addition, the PERT diagram may identify, 

for each step not on the "critical path", the amount of 

scheduling leeway that can be permitted without delayinr, the 

entire job. Figure 4 i~lustrates a simple PERT diagram. Tn 

this figure, each circle represents a job step and the lenRth 
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of the job step is indicated by the number within the circle. 

The job step at the tail of an arrow must be completed before 

the one at the head is begun. With these c~nventions in mind, 

we would like to compute the time required to complete the 

job. We will use MIMIC for the analysis. Each line 

connecting job steps is associated with the time it takes to 

complete the job steps ahead of it. In this example we aSSUMe 

that each job step has at most 3 imme~iate predecessors. 

(This is no iestriction.) Thus, for a single job step with 

three job steps directly ahead rif it, the time of completion 

T is given by 

T = max(A, S, C) + D 

where A, 8, C, are the completion times of the jobs directly 

ahead of this one and D is the time for this job step. This 

formula is the semantic description of JOBSTEP and can he 

understood by the analysis routine. Now note that we can use 

this same formula for job steps preceeded by less than three 

jobs if the missing completion times are set to zero. Since 

PICASSO's translator can assign default values (Section 2~~.4) 

to unused attacher points we can use one element for all joh 

steps, with unused inputs having a default val~e of zero. 

We can now apply these ideas at the console, beginninR hy 

creating the "JOBSTEP" element. 

for a new analytic description. 

First we select the comMand 

At this poiryt we may either 

choose an existing element (for modification) or create a new 
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element. We do the latter and type in the ne~ name, JORSTEP. 

The semantic description is then entered by typing the formula 

T = MAX(A, S, C) +D 

in the appropriate columns of a card image. 

Whentbe semantic description is complete. we select the 

command to draw a symbol for an element. We designate the 

name of our element, JOBSTEP. After we set the zoom factor 

(Section 1.3.3) and ask for a grid, we draw the circle and the 

lines shown in Figure 5R. The attacher points (A,R,C,n and 

T) are then created, by first typing in each char.acter string 

and then positioning it with the lightpen.Note that some 

attacher points include default values, and that attacher 

points are positioned at graphics features (e.g. endpoirits of 

lines) which can be used to locate them if the accompanying 

character strings are suppressed to prevent clutter (Section 

1.3.3). 

Now we have the primitive element we need to create a 

mod e I. We select the command for a new macro description and 

supply a name for our model. We ask for the JOHSTEP symbol hy 

typing its name and, working from a rough sketch, we position 

it with the light pen. Eight JOBSTEP symbols are required in 

this case. The length of each job step is specified by a 

label at the attacher point 0 (inside the circle). Lahels are 

created by typing the associated character strings and 

positioning them with the light pen. The labels inside the 

o 0 



38 

FIG 5 

T .... (A,.,C)·D 

z 

FIGURE 5A. AIALYTIC DEFIIITIOI. FOR JO.STEP JLE .. EIT 

FIGURE 51. SY"IOL FOR JOISTEP ELE"EIT 



circles will be interpreted by the analysis routine (MIMIC) as 

constants. The job steps are then connected together bv 

lines. 

We now realize that the output (the cumulative completion 

time) of the final jobstep element must be printed in order to 

have a useful analysis. We suspend work on our model and' 

create another primitive element referrin~ to one of MI~IC's 

built in functions for printing results. Armed with this 

output element, we return to our model, add the output symhol 

to the model and connect it up (Figure 6). 

Another co~mand selects the model for analysis, and 

provides the translator with specifications needed for the 

propagation of semantics. These specifications also include 

job control language (JCL) which executes the analysis prograM 

and returns control to GMS. The text editor subsystem of 

GMS is used to examine the output (Figure 7). 

1. 4.2 Circuit Diagram Example 

For this example~ we shall assum~ a more knowledgeahle 

user than previously. In particular, we shall aSSUMe that he 

is primarily interested in using GMS to translate a drawing 

into card images for input to SPICE [NAGE73], a circuit 

analysis program. His problem is simplified hecause SPICE 

determines his text definitions and electrical enp,ineering 

conventions determining his symbols. He creates names, 

o 
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semantic descriptions and symbols for three primitive elements 

-- a resist~r. a capacitrir. and a transistor -- using common 

symbolism (see Figure 8). Extra lines have been added to each 

of thes~ sy~bols in order to clarify where the element value 

and the element identification (XXX) are tobe placed. The 

textu~l semantic description for each of these elements is 

contrived to produce ~alid inptit for SPICE. For the resistor. 

the following definition is satisfactory 

R->XXX IN! IN2 VAL 

the R -> ens~res that whatever identification is chosen will 

be presented to SPICE with an R (prefix) in front of it, thus 

allowing SPICE to recognize that it is a resistor. Similar 

descriptions are used for the capacitor and transistor 

elements: 

C -> XXX INl IN2 VAL 

Q -> XXX ~C NB NB MNAME 

Then the user creates a composite elment (model) named 

ONETRAN. After first positioning the symbols for the 

resistors. the capacitors and the transistor, he connects the 

symbols together with l{nes. Parameters for the individual 

elements are provided by labels positioned at the appropriate 

at t a c her pol n t s (F i g u r e 9). Each set of connected lines (net) 

joins together a group of attacher points. These connections 

comprise the topological information in the diagram. 

• i 
! 
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The translator performs the semantic propagation by 

expanding the model (macro definition) in terms of the 

semantics of its component elements. In this case, the 

propagation is quite simple. since only one level of semantic 

propagation is involved. The translator assigns a ~ to 

each net (as identified by the topological analysis routine). 

Labeled nets are assigned the label as their name. Unlabeled 

nets areassigrted a name which is generated internally by the 

translato~. Each net name then becomes tbe actual parameter 

which is used (substituted) in place of the formal parameters 

identified by the attacher points. Figure 10 illustrates how 

formal parameters in the element descriptions have been 

replaced by actual parameters from the macro description. The 

results of this analysis are shown in Figure 11. 

1.4.3 Digital Logic Ex~mple 

This example demonstrates the power and flexibility of 

GMS by using it to "redefine" (adapt) an existin~ language 

(MIMIC) to handle a digital logic problem. for whi~h it was 

not designed. Without GMS this would not be practical. but 

with GMS the user can create a set of elements and then work 

with the symbols for those elements. unencumbered by constant 

attention to the intricate details needed to "redefine" the 

existing language. Since elements are parameterized. only a 

small number of primitive elements may be needed. We begin 

with the definition of a NAND gate. a gate whose output is 

9 S /. o 0 
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false if and only if its two inputs are both true. Our first 

convention is to represent true values as analog signals with 

a value ofl.O and false values as signals with a value of O. 

Then the arithmetic expression 

Z = 1.0 - X * Y 

is contrived to compute the output Z of a NAND gate with two 

inputs, X and Y. Using this NANn gate as a primitive element 

we can construct a model to function as a half adder (see 

Figure 12A). In order to test it, we need a means for 

assigning inputs and observing outputs. We do this with some 

MIMIC functions (see Figure 13). The results are shown in 

Figure 15. 

However, when this NAND gate is used in situations with 

feedback, MIMIC produces a diagnostic which usually indicates 

a non-physical situation. In this case, our model neglected 

the fact that physical gates have an inherent time delay and 

we revise the text of our semantic description to include 

this. (MIMIC's TDL (time delay) function requires a third 

argument (10.0) for storage allocation purprises~) 

Z = TDL O. - X * Y, TD, 10.0) 

Here we have introduced a parameter, TD, which is glohal sjnce 

no attacher point occurs to make it a formal parameter, and we 

must be careful to give it a vallie in our model. This allows 

us to simulate "slow" or "fast" logic by manipulation of this 

9 S I. o n (1 0 
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parameter. 

The point of our description is to emphasize that 

refinemerits can be made to the semantic descriptions of 

elements without disturbing models which use them as 

54 

components. This is essential to allow pro~ressive refinement 

of problem descriptions~ A further refinement (to correct 

roundoff errors) .is shown below: 

Z FIX (TDL(l. - X * Y, TD,IO.) + .5). 

This particular element, NAND with time d~lay, is used in ~ 

more complicated logic problem, designed by Richard La Pierre 

(Figure 16). More complete documentation for this problem is 

a v a i I a b I e from the PIC ASS 0 use r' sma n u a I [ A II g T 7 2 1 • 

1.4.4 Compartmental Modeling 

Compartmental modeling is a technique in which fluids are 

modeled as if contained in a discrete set of compartments with 

channels between them. It can be applied in diverse 

situations from many fields, including biology, chemistry and 

engineering. We shall take the following example from an 

engineering application, an analysis of water and pollution 

flows in the San Francisco Bay area. Our model of the bay 

will be a series of compartments, connect~d by channels. A 

roogh sketch of the configuration reveals that no compartment 

is connected to more than three channels, so we designate 

three possible channels for each compartment, labelled, A, B, 

• ! 
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and e,and we use only as many as are needed in each case. 

The amount of water in each compartment, V, is the time 

integral of the net flow into it from the three channels: 

Vet) = V(O) + f (LA(t) + L'R(t) + Le(t» dt 

Each channel connects two compartments, which we designate as 

A, the upstream compartment, and S, the downstream 

compartml~nt. The amount of water flowi.ng in n channel is 

proporti'onal to the difference hetween the hei~hts of the 

compartments, HA, and HR, and to the cross-sectional area CA 

of the channel: 

But the height of the water in a compartment is the ratio of 

the volume V to the base area AREA: 

H ( t) v (t) /AREA 

In the same manner, we analyze the amnunt of pollutant P in a 

compartment: 

where. for each of the three channels A, R, and e, 

M A ( t) • L( t) if L(t) > 0 , 
I 
I. 

F (t) = 

if L(t) < 0 

Here "A andM B are the concentrations ofa pollutant in the 
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two compartments. The assumption is that each compartment is 

well mixed; that is, the concentration of pollution is uniform 

throughout the compartment. This concentration is therefore 

simply the amount of the pollutant divided by the voluMe: 

MCt) = pet) I VCt) 

These two elements, the compartment and the channel, are 

the primary elements needed for the analysis. However, a 

number of other elements are needed : variations of these 

primary elements to suit special needs, and utility elements 

for input, output and termination. The two special elements 

required are a compartment whose height is a sinusoid and 

whose pollution conc~ntration is zero (to serve as the ocean). 

and a channel whose flow is independent of height (which can 

be used as a river). The utility elements required are 

constructed using analytic definitions which refer to standard 

predefined MIMIC funciions for input (Figure 17), output 

(Figure 18) and termination. 

We can now enumerate the parameters which must be 

provided for a compartment: three outputs (the height of the 

water H, the amount of pollution P and the concentration of 

pollution M), and nine inputs, that is, three initial 

conditions (volume V(O), base area AREA, and initial pollution 

P(O» and a pair of inputs for each of three channels (water 

Each channel 

has four outputs (two water flows LA and LB and two pollution 

o 
7 

~. 
II ! 
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flows FA and '8)' and five inputs (two heights HA and HR , two 

pollution concentrations MA and MR, and th~ value for the 

channel cross sectional area). Note that th~ n~t flow in the 

channel is zero; we have assumed that the channel has no 

storage capacity. 

him. 

The us~r has now reached the point where GMS ca~ help 

He has formulated the problem and derived the 

mathematics necessary for its solutio~. Most importantly, he 

has estahlished a conceptual framework and a set of 

conventions to guide him in further development of the model. 

The actual example shown here uses a special string 

substitution feature to reduce the numher of nets (Secti6n 

2.6.7) rieede~ to join compartments and channeis. Since the 

translato~ will substitute the name of "a net for the formal 

parameters named on the attacher points, we can use a 

concatenation feature in the translator to prefix ~ach of 

several identifying characters to the string which represents 

the name of the net. The effect of this (tn this case) is to 

provide four variahles from a. single net name. If our 

character string manipulation~ are consisterit among the 

various elements, we can use these four variables as i·f they 

were connected hy four parallel nets. For the compartment the 

formal p~rameters for connection to the three channels are A, 

Band C. The variables associated with parameter A w~uld he 

LA (for the flow), HA (for the height) FA (for the pollution 

flow) and MA (for the concentration). Other variahles are 
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renamed as follows: VOL for the initial volume V(O) and POL 

for the initial pollution P(O). Similar manipulations are 

made in the channel parameter names. 

The user must now create the primitive elements, 

including names, semantic descriptions, and sy~hols for the 

compartment (Fi~ure19), the channel (Fi~ure 20), and the 

special variations of these elements. The utility elements 

must also he constructed, unless they can be borrowed from one 

of the existing libraries of elements. 

Then the model (Figure 21) must be created, including i~s 

name, placment of the various symbols, and their connections. 

Attention must be paid to the assignment of parameters t~ the 

elements, to be sur~ ~hat all the channels have base areas, 

initial volumes and so forth. The value~ used in this model 

were obtained in part from a report on the San Francisco Ray 

by the Kaiser Corps of Engineer~ [KAIS69j. 

The translator function in GMS will provide a card image 

interpretation of the semantics of the model and its component 

elements. Figure 22 gives a partial listing. Control then 

pa~ses to MIMIC (via JCL) for analysis and display (Figures 21 

and 24 show typical outputs). When MIMIC is terminated, 

control returns to GMS for more work on the model or 

termination of the session. 

a 0 
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NODE 

V INT(L4A+L 4 1+L4C,VOL) 
HT (V-VOL)I AREA 
H4A HT .' 
H41 HT 
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FIGURE 19A. ANALVTIC DEFINITION FOR A CO"PART"ENT 
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2. A GRAPHICS MODELING SYSTEM 

2.1 SOFTWARE ORGANIZATION (AND OPERATION) 

i 
We have argued that a CAD system can be divided into a ,.1 

problem definition module and a problem-solvin~ analysis 

module. Figure 25 illustrates the information flow for such a 

system. We have shown a CRT and a keyboard is the,man-machine 

interface. For maximum effectiveness such an interface cOllld 

also lnclude a lightpen, tablet, or other auxiliary devices. 

The illustration shows GMS on the left being used to construct 

primitive elements and models, and storing them in a library. 

The anal~sis section is shown to the right, with its input 

obtained either directly from the element library or 

indirectly via the translator and an intermediate file (shown 

dotted) • The analysis sectiori produces an output file which 

is then interpreted by the display routines. In many cases, 

the display routines will be combined ~ith the analysis 

routines. (Ultimately, ho~ever, I think that a set of general 

purpose display routines. will prove to be more powerful than 

an individu~l set for each analysis package. The reasoning 

behind this conclusion is analogous to that leading to a 

separate GMS rather than one for each application.) 
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2. 1. 1 GMS Information Flow 

Figure 26 shows the information flow within GMS itself. 

The graphics editor accepts information from the user, 

modifies the ~ buffer, and updates the display. The text 

editor performs similatly on text. The edit buffer is simply 

a reserved part of memory in.which addressing of individual 

items is very simple. '(Details of these data structures are 

provided in Sections 2.2 and 2.3.) Th~ filinR module is 

responsible for storage and retrieval from disk and for 

loading the edit huffer from the element library ~rea in 

memory. The filing module is the highest level routine, in 

the sense that it loads the edit buffer and activates the 

other routines. It also maintains the directory structure 

which ties together the symbols and ~emantic descriptions of 

elements. 

GMS, in the c~nceptu~l sense, is a methodology for the 

problem-description phase of CAD activities. GM S, in the 

programming sense, is a data sttuctureand a set of modules 

which support the design techniques. In the conteptual sense, 

we have found it convenient to describe activiti~s such as 

creating primitive elements, creating composite elements and 

translating models f6r a~alysis. In the programming sense, 

the creation of primitive elements is not concentrated in a 

single module, but rather spread over the filing, text editor 

and graphics editor modules. In the same manner, the graphics 

editor is not limit~d in responsibllity to just one task, but 
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must edit symbols, macro definitions and empirical 

descriptions; a single common editor is preferred to a 

separate editor for each task. This requires that a common 

set of graphics primitives be found for these three tasks. 

2.1.2 Graphic Primitives 

74 

The design of GMS requires the specification of the 

graphics primitiveS to be used and their correspohdence td our 

description of element symbols, model descriptions and 

empirical descriptions. In the case of model descriptions, 

the cor~espondenceis obvious: subpictuies for sym~ols, lines 

for nets, and alphanumeric annotation for labels of nets. For 

subpictures, we have added the useful features of scaling and 

rotation. In general, alphanumeric annotation could include 

both a coordinate location for the attachment (to some 

feature) of the string and a separate location for the display 

of the char~cter string. This latter location would be 

strictly a graphics feature, but could increase the legibility 

of dense displays. In the prototype, only one location is 

allowed; the coordinate location for attach~ent is also used 

as the origin of the first character of the string for 

display. Also in the prototype, the entire annotation is the 

unit of editing, precluding either the replacement of 

individual characters within the string, or moving the string 

once its position has been confirmed. This has not ~een 

inconvenient, since most annotation is short. 
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Our choices of graphics primitives are motivated by a 

desire to choose high-level primitives which are still 

compatible with easy editing (of our type of drawings) and 

easy interpretation (for topological analysis). Thus, if lnes 

were created explcitly from points, the flexibility gained 

would not compensate for the greater complexity in using and 

analyzing the drawing. At the other extreme, if sets of 

joined line segments were the units of editing, the user would 

find it more difficult to change one line segment in a group, 

although the topological analysis might be easier or faster. 

Another motivation for our choice of graphics primitives 

is to allow the use of the same graphics primitives and editor 

for drawing element symbols. For use in element symbols, 

lines correspond to lines and alphanumer~c annotation to 

attacher points. The graphics elements are the same, but the 

meaning isdifferent~ Line~ have no meaning other than as a 

visual element, while annotation is now Osed for attacher' 

points instead of labels. 

The corr~spondence between graphics primitives and data 

sets for empirical definitions of primitive elements is the 

least well developed of the prototype's capabilities. While 

lines and alphanumerics enable nearly a~l charts and graphs to 

be reproduced in a visual sense, it is not always clear how 

these charts and graphs should be converted to data sets (e.g. 

tables of numbers) and vice versa. The prototype system 

requires that empirical descriptions haye the form of a single 

t. n ., o 
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curve, single valued on the x-axis. Scales may be given for 

both axis arid either axis may be specified as linear or 

logarithmic. A generalized I/O facility in the prototype can 

convert any drawing to a card image description of its 

graphics primitives and vice versa. This feature can be used 

to incorporate simple tables into empirical descriptions. 

For the creation of text, the prototype has followed the 

example of most common simple text editors. The units of 

editing are the line and the character. No problems were 

encountered (or expected) in this approach. 

2.2 DATA STRUCTURgS AND STORAGE 

The purpose of a data structure is to allocate storage to 

the various pieces of information which must be stored (items) 

and to provide access paths for use explicitly by the program 

and implicitly by relations within the data (links). For 

GMS, there is a natural grouping of the it~ms into blocks. 

This grouping is natural in the sense that links in G~S always 

refer to a complete blo~k and not to items within a block. 

2.2.1 Types of Blocks 

The four types of blocks are grarhics blocks (items are 

lines, alphanumeric annotation and symbol references), ~ 

blocks (items are lines of text), topology blocks (items are 

nets, labels, symbol references and attacher points) and 
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empirical blocks (items are pairs of numeric values)~ 

A primitive element with an analytic description has a 

graphics block for its symbol and a text block for its 

semantic descriptor. A primitive element with an empirical 

description has a graphics block for its symbol and a graphics 

block for its semantic description. In principle it also has 

an empirical block containing data points that comprise a 

tabular representation of the semantic description r,raphics 

block; this block is not formed until need~d since it is a lot 

of work to keep it up to date when the graphics changes. 

Each composite element has a graphics block for its 

symbol (if any) and a graphics block for its semantic 

d esc rip t ion. In principle, it also has a topology block 

containing a rearrangement 6f the graphics block lines into 

nets; this block is not formed until needed. 

The translator also uses templates (Section 2.6.3), the 

data for which is stored in the text block. These are created 

in the sam~ manner as the analytic description text blocks 

used for primitive elements. 

The normal display operation is a sequential scan of a 

graphics block or of a text block in the edit huffer, 

interpreting each item and generating the specified picture or 

text string display. Topolo~y and empirical blocks are 

processed only by the translator; they contain auxiliary 

information (topology or data points) need~d for translation 

7. l o 0 



but not for display. 

The strategy used in the prototypeGMSis to allocate 

memory at the block level and to keep track of these blocks 

with a directory (Figures 27, 28). For the sake of 

simplicity, the prototype stores eacb block in the element 

78 

library, a contiguous area of main memory. When a block is to 

be edited, it is moved to the edit buffer and the followin~ 

blocks are moved up to reclaim the space. When editing is 

finished, the block is moved from the edit buffer to the end 

of the element library area. (The amount of memory available 

to the program and thus the size of the element lihrary area 

can be changed by a request to the operatin~ system.) This 

technique eliminates the need for a separate garbage 

collection phase and requires a minimum of memory. In use, 

editing seems to cluster within a few blocks, and these blocks 

move to the end of the storage area and reduce the amount of 

storage shuffling r~quired subsequently. 

2.2.2 Data Structures for Graphics and Derived 

Blocks 

A design decision in the prototype was to include nO 

auxiliary or secondary information in the graphics data 

structure. That is, while a graphics block is being edited, 

no secondary information (e.g. nets) is derive~ from the 

pictorial information. A se~arate block is used for this 

information and a conversion module is executed when the 
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secondary information is needed (if chan~e9 ha~ebeen made . , 

since the last conversion). In the prototype, this secondary 

information is the topology and the empirical analysis of the 

drawing, produced by the topology and empirical routines. The 

advantage of this separation of data structures is that hoth 

~tructures are easier to interpret, less computation is 

required during graphics editing, and programming is reduced 

and simplified. The disadvantage of this approach is that no 

topological Jnformation can be given to the user durin~ 

editing. For example, he cannot be warned that a particular 

connection might be invalid. He can be warned later, of 

course,but effort may have been wasted in the meantime on the 

editin& of erroneous data. 

The separation of data structures also provides more 

insight into how an existing graphics editor might be 

incorporated into a eMS. 

Within a block, the individual items have heen arranRed 

to meet the needs of each particular type of block. For 

graphics blocks (Figure 29), each item c~nsists of five 

fields. The first field gives the type of the item (line, 

alphanumerics or symbol reference); the second and third 

fields give the x and y coordinates of the origin of the item; 

and the fourth and fifth fields give the endpoint coordinates 

for lines, or a size/orientation field and a pointer field for 

alphanumerics and symbols. For alphanumerics, the pointer 

refers to a character string buffer, a reserved area of fixed 

n n O· d. J _ 
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size where the character string for annotation is st~red. 

(See Section 3.3.2 for improvements.) For symbol references, 

the pointer field contains a link to the block whos~ items are 

the lines and alphanumerics of the symbol. More details can 

be found in Sections 2.3, 2.5 and 2.6.6. 

For blocks containing a topological analysis, the items 

are similar to graphics items. Lines have been removed by the 

topological analysis module and their information is now 
/ 

conveyed by ~ numbers. Attacher pOints are now included, 

distinguished from labels ~y a different type number (and a 

different function). Label and symbol items are similar to 

the graphics format, with the fourth (size/orientation) field 

replaced by the net number. 

Blocks containing a data set for an empirical definition 

are compo~ed of a sequence of x,y coordinates, stored in the 

hardware floating point format. 

2.2.3 Data Structure for Text Blocks 

A te.xt block is composed of lines of text with eacy line 

terminated by an end-of-iiine character. Ten characters are 

stored in each computer word. Trailing blanks in each-line 

are removed ind the last (partially filled) computer word is 

filled with blanks and theend-of-line character. Thus, each 

line of text occupies an integral number of comf')uter words. 

/, o i . 
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2.2.4 Filing Module 

While the element library contains all the information 

associated with a set of elements, it is necessary to provide 

permanent storage for this data. Although a simple disk 

writing routine might suffice, the prototype has been provided 

with the capability to store and access several element 

libraries, collectively known as the ~ library (Fip,ure 27). 

The user may copy the current element library area to the di~k 

library as a named element library. Named element librari~s 

may be loaded,erased, or appended to the current element 

library. 

Ordinarily, the user's first action after the prototype 

begins execution is t~ select an element library to be read in 

(loaded) 'from the disk. A fixed-length directory is stored on 

the disk with a name for each element library and a disk 

add~ess for it. 

A copy of this directory ~esides in main memeory, 

although changes to the directory are immediately made to the 

disk copy also. This,ensures that when the program or 

hardware crashes, the disk can be read to recover the most 

recent version of the element libraries. 

At the dis~ address referenced by anel~ment lihrary 

name, there is a short record giving the lengths of the 

element library directory, the element library character 

string buffer and the element library blocks. These objects 
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then foilow~ using as much disk space as required. When a 

named element library is to be read into the current element 

library area, the name is designated, the program looks up the 

disk address, and reads the length information. At this 

point, more memory is requested from the operating system if 

it is required, and the data is then read into memory. If an 

elment library is being appended to an existing element 

library, then the disk is read into memory following the 

existing element library area. Within the appended sets of 

elements, the pointers to the directory and to the character 

string buffer are incorrect by a fixed offset. A subroutine 

scans the entire data structure and revises these pointers to 

corresp6nd to the new locations in the directory and the 

character string buffer. 

When a named element library is to be erased from the 

disk library, the directory entry for that named element 

library is simply deleted. When the element library is to be 

stored on the disk, more disk space is allocated and the 

element library is eopied out. The directory is updated botb 

on the disk and in memory • Garbage collection of the old 

... 
information is performed at the end of each run but the user 

has the option of skipping it. 

9 L I. 0 p- o. 
r'~'f r"'· 
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2.3 THE PROTOTYPE GRAPHICS EDITOR 

The gra~hics editor operates on the edit buffer. The 

filing module copies a block from the element library into the 

edit buffer. The editor displays the items in the buffer, 

accepts requests to add or delete items, and displays the 

revised buffer. 

2.3.1 Data Structures Used by the Graphics Editor 

This section describes the requirements which must be 

satisfied, and the resulting data structure. First, the data 

structure is used for display of the picture; second, the data 

structur~ must identify items from graphics input (that is, 

act as a look-up table) and third, the data structure must he 

analyzed to form nets. These three requirements, together 

with the need for easy modification of the data, guide the 

evaluation of proposed data structures. 

The dominant influence on the design is whether the data 

structure is to be interpreted by hardware o~ software for 
~;', ",: 

display of the picture. If the data structur~ is to serve as 

a conventional hardware-interpreted display list for a refresh 
J 

display, then the alternatives are practically elminated and 

the other aspects of the data structure are fitted in as well 

as possible. In the prototype, the data structure was to be 

interpreted by software and these other aspects strongly 

influenced the design. Software interpretation is not 
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altogether bad, however, since it simplifies zrioming and 

providing a large work area. The alternative is to provide 

several graphics "pages" for a drawing, but the user shouldn't 

be forced to divide his drawing if he doesn't want to. 

Ideally, both schemes should be provided. 

The second most frequent use of the data structure is as 

a look-up table fron graphics input to data item locations. 

As before, the hardware available can make a big difference. 

In parti~ular, if the h~rdware provides a pointer to the 

display item detected {by light pen or special tablets 

equipped with comparators),then the look-up is much easier. 

In our case, only the x,y coordinates of the item detected are 

. ' 
returned. In order to provi~e the look-up without an 

exhaustive search, the prototype stores its graphi~s items in 

the edit buffer according to the x coordinate of the item. 

That is, when ari item is to be stored, its x coordinate 

(~uitably s~aled) is used as the index in the array where the 

item is stored. When an item is selected by the user, the 

coordinates are used as tbe index to retrieve the item. 

Co~lisions are dealt with in a manner used by many hashing 

schemes: an item colliding with another is stored in the riext 

sequential unused (open) location. The. storage scheme must 

also recogniz~ this convention in its searches: beginnin~ at 

the index for the coordinates given. it scans sequentially 

until the ~esired item or an open word is found. If an item 

is erased, it is replaced by an "empty" but non-open word. 

o o 
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The third requirement for the GMS data strutture. to 

allow a net search, is quite similar to the second. since a 

coordinate-oriented look-up is involved. If the look-up frir 

graphics input has been performed by the hardware however. as 

in DIM for example, some auxiliary table is usually required 

for this search. 

In its ease of modification. the structure used by the 

prototype is superb, since there ~re no linkages or 

directories to be updated and neither deletion nor insertion 

requires existing entries to &e moved. 

Summarizing our implementation of the edit huffer 

structure. its advantages are ease of look-up and net 

searches. and ease of modification. Its disadvantages are its 

fixed size and its bias toward software interpretation for 

display. 

2.3.2 Implementation of Graphics Editor Commands 

The graphics display is divided into three areas: an ar~a 

for the display of ihe edit buffer. a menu area (the right 

hand side of the screen); and an area for the display of 

status and instructions (top of screen). Commands are 

initiated by pointing to .the appropriate menu entry. for each 

command. instructions and (possibily) a new menu are provided. 

The major commands are given below. 

1. The first tommand required to edit a drawing is given 
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to the filing module, to retrieve a particular graphics block 

from the el~ment library for editing. The filing module 

retrieves each item from the block and stores it in the edit 

buffer according to its x-coordinate. The block is then 

deleted fro~ the element library. The topological analysis or 

empirical analysis is also deleted if any exist. 

2. To draw a line, one specifies a sequence of points 

(e.g. by light pen). The first point bep,ins the line and 

subsequent points are joined 'to the previous ones to create a 

joined line segment. If coordinate input is received when no 

command has been selected, the line command is assumed. Th i s 

is the only default command. There is a hardware mode which 

provides a eontinuous stream of points (from the tracking 

cross). The software organizes these points into line 

segments. 

3. To enter alphanumeric annotation, one types the 

charac~er string on a keyboard; and then enters a position via 

the lightpen. At this time the annotation appears, but it can 

still be moved about, rotated and changed in size, using an 

auxiliary menu which replaces the primary menu for the 

duration Jf this command. (During this manipulation, only the 

changing annotation is rewritten in the display hardware, 

using an addressing capability in the display hardware.) When 

the user is satisfied, a "confirm" signal is given and the 

annotation is frozen. It can no longer be manipulated, except 

by erasing it and creating it again. At this time, the 

I (1 o 
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primary menu resumes. 

4. When the user wishes to add a previously defined 

element symbol to the graphic description of a composite 

block, the operation is similar to that for annotation. The 

user is instructed to type the name of the element whose 

symbol is desired. (~nly enough characters for unique 

id~ntification need be given.) the user is then directed to 

enter an initial position. The symbol appears here hut it CAn 

still be moved about, rotated, and changed in size, using an 

auxiliary menu. When the user is satisfied, the symhol is 

frozen. 

5. To erase an item, the user points to the item and the 

x coordinate is used to find the item in the edit buffer. The 

item is blinked and then erased upon confirmation. If more 

than one item is located at the given coordinates, each one Is 

blinked in turn for the user to select the proper one. A 

variety of options aid in this selection, including a choice 

of what kind of item is to be erased, and whether confirmation 

is required or not. 

6. When the zoom parameters 'are to ,,:be 'changed, the 

display is redrawn at a magnificat~on ~~ctor of one and a 

square is drawn on the screen outlining the area displayed 

previously. The .square can be moved and changed in size with 

the light pen until the desired area is within the ~quare. 

The display is then redrawn ~ith the desired area filling the 

" 
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screen. An alternate set of commands allows the square to be 

moved in any directon, in steps of the square width. 

7. A ~rid is provided as an array of dots. The user 

specifies (by typing a number) the spacing between dots (with 

a spacing of zero denoting no dots). 

8. When the user is finished editing, the items in the 

edit buffer are copied to the end of the element lihrary and 

the new graphics block is entered in the directory under the 

name selected earlier. 

2.3.3 -The Software Graphics Interpreter 

The software graphics interpreter provides the link 

bet~een the structure used by the editor and the capabilities 

of the actual hardware (see Figure 30). The prototype uses 

-some simple system routines to generate the actual display 

commands. 

As illustrated in Figure 30, the interpreter scans the 

edit buffer to get the next item. Lines and annotations are 

transformed according to the current size, rotation and zoom 

parameters, clipped and drawn. Symbol references cause the 

current size and rotation values tobe stored and new ones 

constructed from the size and rotation values in the symbol 

reference. Then the interpreter scan is directed to the 

symbol hlock until the end of the block i~ reached. At the 

end of the symbol, the previous size and rotation values are 

6 l I 
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restored and the interpreter resumes the scan of th~ edit 

buffer. 

The interpreter can also be instructed to display i'I 

single item. This feature is used when new items are being 

added to an existing display. 

2.4 TEXT EOITOR 

The text editor was designed to be the essence of 

simplicity. To that end, it interacts only with the keyhoard, 

and each line of text is identified by a number displayed with 

it. When a text block is to be edited, it is moved to the" 

edit buffer and each line is filled out with blanks to be 80 

characters long. 

The general form of a command is 

<string>;<string>;<linenumber><commandchar><commandchar> 

where each of these e1ments is optional. We will use n as a 

shorthand for <line number>. The default line number is the 

current on~, and the default command character is I (Insert); 

so the command 

<string> 

will insert <string> at the current editing position. Other 

commands are 

<string 1> < S t r in g 2 >; n A 

o S I. 



to replace (alter) <string 1> by <string 2>in line n. 

to delete line n. -.' 

nD 

(;.D will then delete the next line.) 
:- , Y 

<strin-g> n I 

will insert <string> before line n. 

k 
n 

T <tab char> 
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wi 11 define tab stops at· k
i 

• •••• k activated by <tah char> 
n 

in the input. For example. 7;T* followed by *X = Y will place 

X in column seven. 

will start the display at line n. If more than 35 lines are 

in the edit huffer 

;P 

will start the display 35 lines (one screen full) beyond the 

present starting position recycling fr~m the end to the 

beginning. 

<string> Q 

will apppend the file <string> to the current text. beRinning 

at the current position of t~e file. 

<string> X 
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will rewind the file <string>. 

<string> W 

will write the current text block on file <string>. x. Q. and 

W may be combined. For example, 

ZAP;XWXQ 

will copy the text buffer onto the end of itself using ZAP as 

a temporary file. 

;R 

will exit (Return) from the editor. The trailing blanks in 

each line of text are replaced by an end-of-line character as 

the lines of text are moved to the element library. The 

entire collection of lin~s is stored as one text block in the 

element library. 

2. 5 ANALYZING THE TOPOLOGY 

2. 5. 1 Data Structure 

The topological data for a composite element is extracted 

from the graphics block for th~ macro definition of that 

e 1 emen t • The topological data structure adds explicit 

connections between ite~st which, in the pictorial 

representation, are only implicit (identical incoordinate 

values). 

0·· ~. 
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The topology of a drawing is repr~sented usin~ the item~ 

of a topology block (see Figure 31), whose data structure is 

analogous to that of the items of a graphics block. Although 

the graphics items are desi~ned for display, a similar format 

works well for the topological items. 

To represent the topology of a drawing, each net in the 

drawing is assigned a sequence number, beginning with 2 (l is 

reserved for a special case). The topology module then 

generates a block (Figure 32) in the element library. The 

first two words contain the number of nets and the number of 

labels found. N~xt comes a list of items corresponding to all 

of the labels in the drawing; these are in alphahetical order. 

The character string for the label is not duplicated, since 

the pointer field in the item is copied from that of the 

correspondinp, graphics items; thus it references the same 

string used in the dtawing. The rest of the list is conposed 

of group~of items, with each group representing an instante 

of a symbol within the drawing. A symbol item heads each 

group to identify which symbol is being used. Attacher point 

Each items follow, one for each attacher point on the symbol. 

attacher point refers both to the formal parameter (the 

character string) and (indirectly) to the actual parameter 

(net number) to be associated with this formal parameter. The 

special net number 1 is reserved for those nets whith have 

only one node. These are typlically attacher ~oints which are 

unused in a particular instance or labels which are used as 

:. 
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comments in the drawing. These nets receive special treatment 

from ihe translator. 

2.5.2 The Topolo~ical Analysis Process 

When analysis of a model is desired, th~ filing module 

,ensures that all composite elements have topology blocks. It 

_scans all the entries in the directory and calls the topoln~y 

module (TOPO) for any which need a topological analysis. We 

may note that the filing module erases the out-of-date 

topological analysis only when a macro definition (composite 

element) is edited. Thus, most of the topological analyses 

may have already been done. 

To prepare for the topological analysis of a drawinR, the 

filing module copies the graphics block into the edit huffer, 

indexing each item (according to .its x conrdinate) into its 

proper location. TOPO now scans the edit buffer and 

preprocesses each line and symbol item. For lines, a 

" rever sed" (e n d poi n t sin t e r c han g e d ) 1 in e i s c rea ted and s tor e d 

as a special element within the edit buffer. These "reversed" 

lines are indexed into the working area at the location 

corresponding to the x coordinate of the terminal point of the 

'original line. TOPO can now retrieve both the initial and 

terminal points of a line by indexing. 

During this pass, the symbol items are also processed to 

create the attacher point items. 

! I,. n ~ 
f:7 

TOPO finds the symhol using 

t-.. t'"\" 
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the directory and scans the symbol to find each of its 

attacher points. Then, using the location, size, and 

orientation of the symbol just as if it were dr~wing it, the 

routine computes where each attacher point appeared on the 

drawing. TOPO then creates an attacher point item and stores 

it in the edit buffer at the location appropriate to its 

coordinates. A list structure which links each attacher point 

to the proper symbol item is also created. At the conclusion 

of the first pass, all of the relevant items have been placed 

in the working area, each indexed by its x coordinat~ 

location. 

The second pass creates the nets. Starting with the· 

first line, label, or attacher point (from left to right), 

TOPO.assigns a net number to the object and saves its 

coordinates. If the object is a line, the coordinates of the 

opposite endpoint of the line are placed on the coordinate 

stack and the ·"reversed" line is· deleted from the edit huffer. 

TOPO then searches the edit buffer for other objects which are 

close (within a certain tolerance) to the current coordinates • 

. 
If any are found,they are also lahel~d with the same net 

riumber. If the new item found is a line, it is tre~ted as 

before; thit is, the endpoints are again stacked and the 

"reversed" line deleted. When the search is finished, TOPO 

examines the coordinate stack for new search coordinates. 

Ultimately, all the line segments are thus traversed. When l1 

net has been completely traced out, the routine checks the 
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number of nodes (attacher points or lahels) on the net. If 

only one node was found. that node is marked with the special 

net n urn b e r 1. Finally. the net number is advancerl and the 

routine scans for another new item. avoiding. of course. items 

already having a net number. 

A third pass over the edit huffer extracts all the labels 

and moves them to the topology block. sorting them into 

alphabetical order. 

The fourth pass extracts symhols and attacher point 

items. For each symbol. all of its attacher points are found 

and moved to the topology block. sorting them into 

alphahetical order. The -u s e 0 fan alp h abe tic a 1 so rtf 0 r the 

attacher points provides a canonical ordering for them. This 

permits the translator to produce output in the order in which 

it encnunt~rs the attacher points. taking advanta~e of this 

consistency in the order of the parameters. 

2.5.3 Other Data Structures 

Other model huiling ~rograms have typically used much 

more complicated data structures for the representation of 

topology. A ring structure is used by many. 1ncludin~ 

SKETtHPAO arid CSMP. Several matrix structures were considere~ 

for this p~o~ram. but were rejected as heing less effective. 

The structure chosen was designed so that the translator could 

make one pass over the topology block and produce the requirerl 
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output. 

Conversion to one of the more complicated data 

structures, from the data structure as it already exists, is 

an easy step, because this structure is adaptahle as an 

inter~ediate form "for many other topological data structures. 

We conclude this section by describinR how the present 

structure can easily be converted into a ring-type data 

structure. First the array of lahels must he enlarged to 

provide i header item for each ring of labels and attacher 
~ 

points. Each label should be inserted in the array using its 

net number as the array index. Each header item is given a 

point to itself. These header items each form a degenerate 

ring. The array of symbols and attacher points can then be 

scanned and" each inserted in the appropriage ring. For each 

attacher point encountered, the net number is replaced hy the 

pointer in the corresponding header and the header is updated 

to point to this item. At the conclusion of the scan, the 

header will have a pointer to the last item of that net and 

the pointers will link upwards, eventually returning to the 

header to complete the ring. 

2.6 THE .TRANSLATOR 

The purpose of an idealized translator is to "propagate 

semantiCS", i.e. to incorporate the semantics of component 

elements into a complete semantic description of a composite 

element. The translator should provide a variety of schemes 
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to represent the semantics. In the prototype translator, we 

have selected a subroutine or macro notation as one of these 

schemes, yet we have provided considerable flexibility within 

this framework. This notation provides an interface to a 

larger number of existing analysis routines which expect unit 

record (card image) input. 

This input must he directly usable without requiring 

modifications of the analysis routines themselves~ This 

requires a high degree of flexihility in the trans1ator~ hut 

we feel that this is justified, for there are a lar~e nUMb~r 

of analysis programs which expect card image input and which 

deal with problems having a diagrammatic representation. 

These prbgrams are the backbone of present c~mputer usage in 

various fields, and it is impractical to rewrite them. 

2 • 6 • 1 Nbta~ion 

Central to the operation of the translator is the 

selection of a suitahle notation for the description of the 

hierarchical structure of the model to be analyzed. This 

notation must also provide for describing the network 

structure encountered within the model ind within subsidiary 

elements. 

For the prototype, the use of a subroutine (or macro) 

notation is well matched both to the graphics methodology and 

to the usual input conventions of analysis programs. For 

o a 
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example, it is fortunate that SPICE (see Section 1.4.2) 

requires each component to be given together with the nets it 

is connected to. This is entirely parallel to the graphics 

methodology. An alternative would be to require a list of 

components connected to each net. That is, the information 

associated with an element would no longer be collected in a 

single place. This would be more difficult to prov1de, since 

it conflicts with the use of elements as the organizinR 

concept, a scheme natural to a subroutine notatiori. An 

advantage of subroutine notation is that it is familiar to 

almost all users and its use to represent hierarchical 

relationships is well understQod. 

We will now describe the detailed operation of the 

translator in sections which explain and illustrate each of 

its major features. 

" 

2.~.2 Overall Operation of the Translator 

The translator treats the model and the elements within 

it as a complete entity,and its output consists of all the 

information necessary for an analysis routine. A table of 

templates specifies formats required. The output is in the 

form of card images and comprises three files: a control card 

(JCL) file, a program file, and a data file. 

In a first pass, the translator scans the model and 

compiles a list (a "load" list) of all the elements used 

.' 
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"'ithin it. Composite elements are scanned so that all 

elements which are used (directly or indirectly) in the model 

are included in the list. The list is then sorted accordinR 

to the depth of each element within the hierarchy, ensuring 

that the output of each element will he in the proper order 

for thos~ compilers and assemblers which require that macros 

or procedures be defined before they are used. 

The second pass of the translator creates the actual 

output and writes it on the designated files. Each instance 

of an element in the model (i.e. the top level element) is 

transformed to a subroutine or macro call notation. The 

translator creates ihe call using the name of the element and 

the proper actual parameters. The actual parameters are 

created from labels which appear on nets connected to the 

attacher points. That is, if element X with attacher point 

A appears as a co~ponent in a m~del, and the net connected to 

A is labeled B, then the object X is invoked with actual 

parameter B (e.g. CALL X(R) is created). After the top level 

model has be~n converted into card images, the translator must 

include all of the elements which have been used as 

components. Each component element begins with a translator 

generated he~der card giving the formal parameters, followed 

by the body of the semantic description: a series of calls if 

the element is composite, a copy of the text if the element 

has an analytic definition, or a statement constructed frOM 

the table of templates if the element has an empirical 

I. o 
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definitiop. 

The tr-anslator has created subroutine calls or macro 

calls as directed by the format table. Now, if they are macro 

calls, the choice is whether to pass them to the analysis 

routine for expansion or to have the translator expand them. 

In the prototype, we choose to have the translator expand them 

to one level only. This was done for several reasons. first. 

a single level expansion can he manually forced into a 

complete expansion, which requires several passes but at least 

gives a semiautomatic process to enable use of analysis 

program~ with no subprogram or macro capability. Second, this 

expansion is adequate for simple models having only dne level, 

or for testing the lowest level of a hierarchical model. 

Third, a sinp,le level expansion has some has some of the 

aesthetic properties of the full expansion: in particular, the 

output is cleaned up by eliminating the large number of 

one-line macros which otherwise occur. fourth, an expansion 

moves part of the burden from the analysis routine to the 

translator. If the same model is to be analyzed several 

times, this can reduce processing time. Note that since the 

subroutine call or macro call format is only a notation. the 

same expansion occurs in a model which is to be translated 

into subroutine notation. Subroutine calls on primitive 

elements ate replaced by the text of the primitive element, 

with actual parameters substituted for formal parameters. 

, 
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2.6.3 A Ta61e Driven Translator 

To be as complete as possible, the translator atteMpts to 

supply many of the details required to make the text output 

into a fully complete input for analysis routines. These 

details a~e supplied by a table of templates. This tahle is 

constructed with the text editor. In the prototype, a dummy 

element is created with an analytic definition to hold the 

table. When an element is to be translated, the naMe of the 

element is given; if a second name is also given, ,then the 

second element is assumed to contain a table for the 

translator as its analytic description. If no second eleMent 

is given, a default table (the table of MIMIC templates) is 

used. 

In the prototype translator, the controls provided by the 

table are very simple: an asterisk is replaced'by the name of 

an element, and a left parenthesis triggers the construction 

of a list of parameters complete with right parenthesis also. 

The first two templates are a header and a trailer card for 

the highest level Model. For CDC Fortran, typical templates 

would be 

PROGRAM * (INPUT,OUTPUT) 

END 

often the header card is used only as a title (see the SPIr.r. 

example, Section 1.4.2). If it gets in the way, it can often 

be made to appear as a comment card. 

I I. o 

Putting the name on this 

n 0 
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card is useful for documentation. 

A similar pair of templates is used for subroutine or 

:. 
macro definitions. In this case, ho,,,ever, the translator must i 

I 

supply the formal parameters as well as inserting the name of 

the element. A typical template for a MIMIC macro would be: 

* RMA( 

where WMA is the MIMIC mnemo~ic for begin macro. The trailer 

template would be 

EMA 

For a Fortran subroutine the corresponding pair would be: 

SUBROUTINE * ( 
RETURN ; ENO 

Note that the prototype translator allows only one line for 

the trailer (terminator) of a subroutine or macro definition, 

so we have used non-standard Fortran. A subroutine call 

template which i~ analo~ous to the subroutine header template 

must be provided, for example, MIMIC's call macro 

* CMA( 

or the Fortran CALL statement 

CALL * ( 

Other information found in the translator directs the 
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treatment of empirical data. For each set of empirical data, 

the translator completes a template for reading this data. 

Each time apartic~lar empirical table is referred to, the 

translat6r completes a template supplying the name of the 

table and the parameters for table look-up. The translator 

ensures that the data input statements will occur in the same 

order as the data, and it can specify the length of each 

empirical table to the data input routines. The input 

template for HU1IC is "constant function" 

* CFN(%.O) 

The percent sign is another special character. In this case 

it is replaced by the number of data items. Empi.rical data 

has not been used with analysis programs other than MIMIC. 

The table contains several flags and directives as well 

as the templates. These are specified on a single card ima~e 

in fixed fields of 10 characters each. A continuation 

character and column may be specified fo~ use when the output 

would otherwise extend beyond column 72. The disk files which 

are to be used for the text and the empirical data are 

specified, as well as positioning for these files. The files 

may be rewound either before or after the translator outrut is 

written on them, and an end of file indicator may be 

optionally ~ritten. For example, to use files PROG and nATA, 

to rewind PROG before writinR, endfile it, and rewind nATA 

after writing, the following specification is used~ 

a B I. r1 ~ e'i? C 0:1 < 
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PROG/R EOF DATA/BR 

The notation used reflects file position options used in the 

local operating system. The table of templates also specifies 

an initial character for translator-created names. The 

translator uses this initial character and appends a seqllence 

number. For most analysis programs, the choice of initial 

character is of little consequence. Where numeric names are 

needed, either a number or a blank can be used. 

A flag determines the order in which element definitions 

are written on the translator's output file. A "down" fla?, 

will output the hierarchy from the top down, beginning with 

the model and ending with the primitive elements. This order 

is customary in Fortran programs. The directive "up" will 

cause the hierarchy to be scanned from the bottom tip, 

producing output for the model last. For the benefit of most 

macro processors (notahly MIMIC) this mode of operation of th~ 

translator ensures that on the translator output fil~ the 

definiti6n for each macro wiil preceed its use. 

The final portion of the template specification is a set 

of control cards (JCL) which are written to a system file for 

execution when the translation is completed. This JeL will 

typically call an analysis program into execution, handle 

errors in execution, and return control to the prototype at 

the termination of the analysis program. 
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2.6.4 Nets and Labels 

The first operation in the second pass of the translator 

is to assign names to all the nets. To the translato~,a net 

represents a variable which is an actual parameter to the 

various co~ponent elements. If the net is labeled, then the 

label is taken as the name of the net. If no label is 

present, then the translator creates a unique name usinp, the 

initial character specified in the table of options to the 

translator. 

One-node nets are flagged by the topological analysis 

routine and receive special handling by the translator. They 

can be either isolated labels or unused attacher points on 

symhols. Isolated lahels are simply ignored by the 

translator; their function is to help explain the picture and 

they are not required by analysis routines.Wh~n the 

translator ~ecognizes an unusued attachet point, it searches 

the character strinp, associated with the attacher point to 

determine whether a default string has been specified (see 

example, Section 1.4.1). If no default string is specified, 

the translator generates. name and suppli~& it as the actual 

parameter. This treatment of unused attacher points 

encourages the creation of more general, more flexible 

elements. 

6 B o (' " 
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2.6~ 5 netails of Element Processin~ 

After names are assigned to all of the nets, the 

translator scans the list of elements created by the 

topological analysis. Each element is processed in turn. 
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If 

macro expansion is not being performed, then the template for 

subroutine Qr ma~ro calls is copied to the output. 

asterisk is encountered, the name of the element is 

If an 

substituted. If a left parenthesis is encountered, the list 

of actual parameters is created. From each attacher point, 

the net number is extracted and used to find the net name. 

These names are written to the output, separated by commas and 

enclosed in parentheses. 

If a macro is being expanded, then the element being 

called is a primitive element (since only bottom level 

elements are expanded). If it has an analytic definition, 

then the 'text of .that definition is broken into tokens, either 

names (strings of consecutive alphanumeric characters) or 

operators (non-alphanu~etic characters). Each name is matched 

with the list of attacher point names; if it matches, the net 

number (from the attacher point) is used to find the net name. 

The net name is then substituted for the name token. Operator 

tokens are passed unchanged to the output with two 

exceptions: (1) the concatenation operator is not passed to 

the output and (2) where a string of blanks appears, blanks 

may be added or deleted to try to preserve the column spacing 

of the original analytic definition. This treatment of blanks 
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facilitates the use of fixed-field languages. 

2. 6.6 Treatment of Empirical Data in the Prototype 

Empirical data is stored in the data structure as a list 

of coordinates extracted from a "hand drawn curve". There are 

three phases in the treatment of empir{cal data: first, the 

actual data must be placed on a file where it can he easily 

referenced; second, statements must be placed in the 

translator output to read the data; and third, routiries must. 

be called to locate data values when required. 

The prototype provides a complete treatment of empirical 

data only for the MIMIC analysis routine. 

For MIMIC, the translator assembles a list of needed data 

sets during the first pass of the hierarchy scan. During the 

second pass, input statement-s are generated which tell MIMIC 

to read the data sets. These stat~ments preceed any other 

references to the data set, and only one statement per data 

set is provided (no matter how many references are 

subsequently made to the data set). For each reference to the 

data set, a table look-up statement is created referring to a 

data set which has been previously ~ead. After the second 

pass, the needed data sets are written to the appropriate file 

using a format specific to MIMIC. The order of the data sets 

agrees with the order of input statements. 

o 6 I. • t7' o Q 0 
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2.6.7 Concatenation and Coordinates 

The translator has two special features which have heen 

useful in some instances. At present, these features are 

implemented only for analytic definitions, but the extension 

to labels ~ithin macro definitions is straightforward. 

The ahility to concatenate two' or more strings has heen 

provided by the use of a special concatenation character, the 

right arrow (Section 2.6.5). This character serves as a hreak 

character, but is not copi~d to th. output. Thus, two strings 
, 

may be concatenated. This features is useful primarily when 

one of t~e character strings is a formal parameter. The 

translator will first substitute an actual parameter for the 

formal parameter and then perform the concatenation, forming a 

new name from the net name supplied. This technique has been 

used to form a whole family of names from a single net name 

(see Section 1.4.4). Used with care, this allows a number of 

variables to share a single line in the model; that is, a 

single line can be made to represent the flow of several 

pieces of information when the analysis routine does not allow 

arrays to b~ used. 

Another use for the concatenation facility is to prefix 

(or suffix) a character to strings, where a particular 

character has meaning to the analysis routine. (see the 

SPICE example, Section 1.4.2) 

A second useful feature is the option of using, within a 
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composite element definition, the actual coordinates of a 

component symbol attacher point. If the ~ttacher point name 

in an analytic definition has the characters #X or Ny appended 

to it, the translator will retrieve the actual X or Y 

coordinates of the attacher point for the particular instance 

being expanded. In this way, parameter values are derived 

from the position on the diagram rather than from lahels. 4 

mundane, but very practical example of this technIque is used 

in circuit hoard layout. In this case, defiriitions are 

contrived to print flut the coordinates of ~ads used for 

connection to circuit elements. A paper tape to drive an 

automatic drill is generated directly from these coordinates. 

At this point, it is well to note that this technique is 

only a glimpse of the problem of preserving graphical 

information in the topological data structure. This technique 

represents only an ad hoc answer to a specific need. and does 

not derive from a general approach to the eventu~l solution of 

this problem. The real goal, in fact, is to allow reversal of 

the analysis, including error messages or even new graphics 

configurations, to be presented in the context of the 6riginal 

input. 

(~ I. f 0 bt 'b 0 (I 0 0 , 
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3. AN EVALUATION OF THE PROTOTYPE eMS 

Our evaluation of the prototype GMS can perhaps best 

begin by comparing it with the idealized GMS. The idealized 

system describes a single man-machine problem-definition 

interface for use in a wide variety of problem solving 

disciplines. The prototype has demonstrated such an interface 

for a variety of analysis routines. The idealized methodolo~y 

for creating elements from two types of primitive elements and 

one compound element has been verified by the prototype. The 

idealized system has proposed a topological interpretation and 

a hierarchical structure. The prototype has demonstrated one 

feasible solution to the analysis of topology and the 

propagation of topological structure through a hierarchy of 

models. It has shown how simple manipulations on character 

strings provide consistant resuls without concern for whether 

the character strings are formal parameters, variables or 

cbnstants. 

In addition, the prototype has demonstrated a feasible 

notation and translation method for this notation which 

enables the conversion of internal structure to card images in 

a flexible way. 

The prototype eMS has demonstrated that these elments of 

a modeling system can be provided at a reasonahle cost. The 

programming time required for the prototype eMS was 

approximately 12 man-months. We estimate that adding similar 



1 1 7 

facilities to a single applications program would have 

required six to eight man mo~ths and would not he any cheaper 

to use. Thus, if two or more applications can use such 

.1! 
graphics facilities, then it is economically sound to program 

a graphics facility. 

Based on our experience with the prototype GMS, the next 

sections describe user reaction to the prototype, a survey of 

analysis routines available to the prototype, and improvements 

to the prototype GMS that are possible within its present 

structure. 

3.1 USER EVALUATION OF THE PROTOTYPE GMS 

In attemption to evaluate the prototype GMS, we undertook 

a survey of opinions and experience of as many of the users as 

c.ould be located. A questionnaire was prepared and 

circulated, the results of which are in Appendix A. 

Most of the users of the prototype were employees of the 

Lawrence Be~keley Laboratory, and a few were students at the 

nearby Berkeley campus of the University of California. 

Most of them had programmed or used a computer. In addition 

to an informal open invitation to the Laboratory staff, a few 

staff members were approached and asked to provide test 

problems. These members were aided by the author and others 

in setting up and solving their problems. Most of these users 

were in the Electrical Engineering Oepartment of the 

(;; o a 
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Laboratory. The majority of these problems were in dip,ital 

logic design. Since a simulation or analysis program for 

digital logic is not currently available at the Laboratory, 

these problems were solved by simulating the digital logic 

with an analog simulator. The substitution was successful, 

however, and several limited size problems were solved. 

Users with problems in analog simulation were quite 

pleased with PICASSO. Mark Horovitz [HOR072] provided an 

unsolicitied evaluation in one of his puhlications, in which 

he described a biological model and the modeling facilities of 

LBL. He made the following remarks: 

[Although the author is listed as a co-author of this paper, 

the opinions expressed are entirely those of Mark Horovitz.] 

Evaluation of the System 

How easy it is to construct models by using the PICASSO 
program? Skill is required to choose and define the primitive 
elements so that they yield neat, naturalbuildling blocks for 
a class of models. Once the primitives have heen defined, 
model structures can easily be built. The lihrary storage 
facilities for graphics models are very convenient. To 
illustrate some of the features of the system, let us suppose 
that we want to give a user an introduction to compartmental 
models. We can take a one-compartment model out of the 
library, analyze it - examine the equations produced in the 
analysis phase, execute a simulation run - examine the 
results, change the parameters, and run it again. Then we can 
pick a two-compartment model ~nd go through the same cycle. 
Next we could build a model of real interest to the user or 
look at more complete stored models - all in orie session at 
the console. Starting out in this way, the new user does not 
have to spend a great deal of time learninp, ahout the system 
before being able to tackle problems of interest to him. 
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Extensi~ns 

It is ea~y to accommodate analysis of other languages, 
and we expect this aspect to proliferate. It seems to me that 
this should be encouraged, provided a processor for the 
language is available on our machine. If one is aiming for 
ease of use, then a new PICASSO user with some experience of 
modeling, using for example, GPSS or nYNAMO, should be 
encouraged to continue by generating PICASSO models which are 
executed via GPSS or DYNAMO. 

In the present system, if I wish to construct a model 
with the same functions and analyze it via either MIMIC or 
FORTRAN, I have to generate two sets of definitions and n~mes. 

In other words, I may have one visual representation for the 
model, but I need two sets of names. Example: for an adder 
I could have ADDERF witba FORTRAN definition, and AnnERM 
with a MIMIC definition. A later version of PICASSO will 
permit multiple definition of symbols. It is also hoped to 
add features so that animiation of diagrams will be made easy. 

Several students did classwork and other projects using 

the GMS prototype, including class assignments in fn~ineerin~ 

Ill, that most students do using CSMP, a less powerful system 

on the Berkeley campus. 

Itis clear that GMS will he successful only when applied 

to a suitable problem; that is a problem usually descrihed 

symbolically and for which an analysis procedure exists. It 

is helpful if the analysis procedure is currently in use. In 

this case, there is little difficulty in showing users how to 

use GMS. On the other hand, our conversations with users 

revealed that designers did not always design as we expected. 

For example, a digital logic deSigner related that he desip,ned 

with boolean equations and let the draftsman develop the logic 

diagrams. lie still relied on the logic diagram to some de?,rce 

however, especially for problem areas. 

I 'F 
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control systems may prefer to work directly with the poles and 

zeros of the desired transfer function rather than with a 

block diagram. This does not mean that GMS is not applicable; 

it only means that we might do well to direct our attention to 

the draftsmen as well as the engineers. Ind~ed. PICASSO has 

been used successfully as a drafting aid for logic diagrams 

and for analysis of these diagrams. 

In general users. felt that the graphics interface was 

adequate, although clearly not optimum. The author concurs 

and work is under way to improve it (Section 3.3). A 

significait part of the frustration is due to the hardware and 

operating system. When the host, a large batch processing 

system, is lightly loaded, response is excellent. When the 

system is heavily loaded, swapping delays are a significant 

source of frustration. An intelligent terminal is an obvious 

cure for these problems. 

The cost of using PICASSO varied from $10 to $20 per hour 

of terminal time. Connect charges are approximately $6 per 

hour; the remaining charge is primarily for I/O and reflects 

the variations in working speed from novice to very 

experienced users. At $10 per hour, a GMS is cost effective 

at practi~ally any task which it can perform. Only two users 

(out of ten) found alternate systems easier or cheaper. Tn 

the first case, inadequate documentation was cited as a 

difficulty in using PICASSO; inquiry revealed that the user 

did not have a complete set of the available documentation. 

f 
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The second involved the use of PICASSO asa graphics editor 

only; for this application an editor was written which was 

cheaper to use. More than six months of daily use were 

required to amortize the cost of the new editor, however! 

In summary, users were excited by the prospects inherent 

in PICASSO and im~ressed by its capabilities. The main 

complaint related to reliability problems in the hardware and 

the operatinp, system, subjects which are beyond the control of 

the GMS designer. Users were also of the opinion that the 

interface lacked polish, although after several hours 

experience, they felt comfortable with it. Fin all y , my 0 t"n 

strongest feelin?, as a user was that the operatinp, system was 

poorly matched to the ve~y high I/O r~te required for 

ihteractive drawing and manipulation. An intelligent terminal 

or an intelligent concentrator should be provided to buffer 

. these ihteractions. into larger chunks. 

3.2 A SURVEY OF ANALYSIS ROUTINES 

In this section on supportin~ software, we will descrihe 

the analysis routines which have been interfaced to the 

prototype GHS or for which an interface would be useful and 

easily constructed. We will describe the analy~is systems, 

what problems they are suited to, and the effectiveness of the 

GMS-analysis system combination compared to manual preparation 

of input. We also give the translator template used ,.,ith 

these systems, and any problems encountered. Finallv, we will 

6 o o 
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describe the operating system support which the prototype GMS 

uses. 

The analysis systems used or proposed for use with the 

prototype GMS include MIMIC, a continuous system simulator, 

SPICE, an electronic circuit analysis program, a wirewrap tape 

generator,GPSS, a discrete event simulator (not descrihed), 

and .langu<lp,e compilers, e.g. Fortran, ALGOL, and QIJEL, a lower 

level interactive language. 

3.2. I A Continous Systems Simulator: HIMIC 

MIMIC, the first analysis system to be interfaced with 

the prototype GMS, is a simulator of continuous systems which 

accepts a set of equations and evaluates them iteratively as a 

function of an independent variable (time). Munc is llsed 

primarily in the solution of differential equations. Hl'lIC 

is most valuable in cases where the behavior of each element 

in a problem is known and the behavior of a collection of 

elements is to be simulated. The equations describing 

comp~tation for each element are entered by the user, as 

formulas that can include functions availabl~ in MIMIC. 

MIMIC sorts the ~quations into an e~ficient computational 

order by placing computation$ which yield an int~rmediate 

result before computations which use that result. This 

sorting and the special treatment of integration, time delay 

and 0 the r s p e cia 1 fun c t ion s g i v est h e imp res s ion t hat H I ~f I C 

evaluates all the equations in parallel. 
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Almost any MIMIC problem which is visualized as a diaRram 

is well suited to using GMS for input preparation. The first 

use of GMS for a particular problem is often more work than 

coding the problem directly in MIMIC's input language. This 

is due to the extra work required to create primitive elements 

suitable for the problem. If primitive elements are already 

available, then using GMS is significantly faster than coding 

the problem directly in MIMIC's input lan~uage. In addition, 

the GMS version is much more likely to be free from syntax and 

typing or coding errors. Variable names are particularly 

prnne tn spelling errors and GMS is a great help in this area. 

In GMS, a variable name is given only once by the user and is 

propagated, always correctly, by the translator. When a model 

is to be modified, making the changes graphi~ally is much 

faster than making the corresponding changes via MIMIC's input 

language. GMS makes it easy to group e!ements and to work 

with these groups as single units. Also important is having 

GMS propagate changes in the semantic description to all 

places where it is used. 

The first step in using the translator for MIMIC diagraMS 

is to become familiar with the input format for MIMIC 

statements. MIMIC uses fields beginning at columns 1;2,10, 

and 19 of the inp~t card images. The editor has tab stops 

which aid in putting text in the correct fields but the 

translator does not check this. The template for the 

translator is then created, using the documentation for 

l o 0 
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guidance. 

There were two problems in using MIMIC with the 

generalized translator. The first problem is that MIMIC does 

not allow statements to extend beyond a single line. In a few 

I 

cases, the substitution of long strings for short ones caused 

a line of text to get too long. In these cases, long formulas 

were rewritten as two short ones. The second problem is that 

MIMIC allows only 6 formal parameters in its macro 

declaration. Extra parameters must be declared on succeeding 

lines with a different keyword. We did not think that this 

syntax was worth implementIng as a generalized facility, so 

the translator was modified internally to handle this case. 

$IAM MIMIC RUN OF * PRODUCED BY MIMVERT 
END 

* BMA( 
EMA 

* CMA( 
* CFN(%.O) 

DATA/R NOEOF 

TIM. 
REWIND,DATA,MIM. 
SFL,70000. 
SCP,A=IOO. 
MIMGO,DATA,lHM. 
EXIT. 
CXIT. 
FIN. 
SCP,A=O. 
COPY,MIM/R8R,OUTPUT. 
REWIND,DATA. 
SFL, 55000. 
DRAW. 

DATA G UP 

: 
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3.2.2 Electronic Circuit Analysis: SPICE 

SPICE was selected as a typical electronic circuit 

analysis package for a numher of reasons. First, the input 

format is relatively simple and consistent, yet it is quite 

typical of those used by the majority of circuit analysis 

packages. Second, it produces both frequency domain and time 

domain response, thus serving a larger group of potential 

users. Finally, it has some graphics output routines. 

The input to SPICE is a list of the circuit elements, 

their connections and values. SPICE then analyzes the 

connections to construct differential equations (Section 

1.2.5) which give the behavior of the circuit. These are then 

solved numerically to provide the desited response. SPIr.r: is 

well suited to small-signal analysis of circuits with 40 to 50 

elements or less. This will enc6mpass two or three stages of 

a typical amplifier, but not an entire piece of electronic 

equipment. 

In the case of SPICE, the primitive elments are trivial 

to construct. The typical user knows exactly what the symbol 

for a resistor, capacitor, etc. should be. and the analytic 

definition for these elements is obvious from the SPICE 

documentation. There is a time saving even for the first 

application, since the element lihrary is so easily 

constructed. When a circuit is to be changed. the user is far 

ahead with GHS. Although some changes are easy to manage in 
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SPICE"s input language, such as adding or removing a 

component, other changes are rather difficult. For example, 

if two nodes are combined, all of the components for .one of 

the nodes have to he changed to have the other node nunher. 

This tedious and error prone operation is antomatically 

handled by GMS when the corresponding chan~e is made 

graphically to the model.-

Setting up the translator for use with SPICE is quite 

simple. SPICE does not support macro& or ,ubrolltines, so the 

user does not have this detail to worry about (but 

hierarchically deep ~ir~uits are not very practical). SPICE 

identifies the type of each component by its first letter, so 

the concatenation facility is used to append the correct first 

letter to the component names. The translator provides for 

setting the first character of translator-provided names 

(Section 2.6). This character is set to a blank so that these 

names will be numeric strings as required ~y SPICE. The 

control cards (JCL) required are taken from the SPICE 

documentation and modified slightly to return control to GMS 

at the termination of SPICE. 

SPICE RUN OF * 
.END 

DATA/R 

REWIND,DATA. 
SPICE,DATA. 
PTSS,D. 

NOEOF DATA UP 

' .. 



eXIT. 
EXIT. 
FIN. 
DRAW. 

3.2.3 Wirewrap 
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A wirewrap program ~ccepts awirinR list for electronic 

circuitry and generates a tape which drives an automatic 

wiring machine. The primitive elements for the' wirewrap 

program are modules with various numbers of pins, e.g. ~ates, 

flip-flops and other components. The symbols used for these 

elements are similar in shape to the actual physical modules. 

Each module has an analytic definition which, when translated, 

lists the module type, name, location, pin numbers and sip,nal 

names. Macro's or subroutines are not required, so the 

translator is quite easy to set up. 

The only problem encountered wa~ that the input for the 

wirewrap program must be sorted by signal name. Since the 

translator does not have this capability, a conversion routine 

was written locally. The conversion routine is 

straightforward and is written in SNOHOL, althou~h a standard 

sort routine would be more efficient. 

The effectiveness of this experimental project was 

questionable, since the user created a diaRram of the actual 

pin arrangement and wired that from the circuit diap,ram, 

rather than reproducing the circuit diagram in G~S, from which 

the same information could have been derived. There were no 
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problems in this application, since the conversion nodule was 

designed with the translator output in mind. 

3.2.4 Language Compilers 

Another class of analysis systems is represented by the 

language compilers, such as Fortran, ALGOL, and PL/l. We 

have experimented with the prototype GMS as a flowchart 

analyzer. It is not adequate to handle all of the details of 

a language such as Fortran in a convenient manner~ While it 

is easy to set up the translator to produce statements in a 

desired format from a drawing, tbere are several prohlems in 

the overall approach. First, there is no mechaniSM to 

generate DIMENSION and other declarations from an analysis of 

the flowchart. This can be circumvented by requiring the user 

to include declarations in the flowchart. Second, the 

graphics han~ling of no loops and related control structures 

is difficult since the contents of the no loops and crintrol 

structures can vary so much in size. This problem will 

decrease as experience is gained. Varia~l~ sizes for symhols 

could be used to good advantage here. Finally, there is no 

mechanism for ordering statements. Our experim.ents have used 

GO TO state~~nts at the end of every statement to control the 

flow of execution. This is inefficient and results in a 

program which is impossible to read. Nevertheless, we have 

produced some experimental programs which have .compiled 

without error. A diagraph analysis could easily be used here 

! : 



to generate an efficient statement order. 

PROGRAM *(INPUT,OUTPUT.FILM) 
END 
SUBROUTINE *( 
END 
CALL *( 
DATA */ 

* DATA NOEOF DATA 9 

3.2.5 Lower Level Interactive Languages: 

DOHN 

CUPID 

Another area of language processors with considerahly 

more promise is the use of GMS to produce input for lower 

level interactive languages. In particular. CUPID [Hcn075] is 

a system using GMS to produce input for QUEL [HEL!)7 5]. an 

interactive data hase inquiry language. Since the 

relationships between items in a data hase are often descrihed 

by use of a diagram, GMS is well suited to conversion of this 

diagram directly into input for a lower level inquiry 

language. This experiment has been quite succes.sful. 

3.2.6 Operating System Support 

The operating system support which is used by the 

prototype GMS is commonly found on most medium to large 

systems. In particular, some features the prototype uses are 

(1) dynami~ memory allocation to vary the size of its 

operatin~ partition, (2) random access to disk storaRe, (3) 

operatin~ system graphics modules, and (4) the ahility to 

change the job's control record to specify execution of 

(1 o 
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analysis routines after GHS terminates. Abilities (1) and (2) 

are provided on almost all systems with perhaps (1) being 

provided by virtual memory. GMS uses the system graphics 

modules at a rather low level: the graphics modules used allow 

one to draw lines and characters, overwrite part of a display 

if it is a refreshed display and to read coordinate input from 

various hardware devices. The job control facilities provirlerl 

by the operating system allow a joh to change its own control 

record. This allows another program to be executed with 

control returning to GMS as directed. This is similar to 

spawning another process, except that the new process runs 

sequentially with GMS rather than in p~rallel with it. This 

feature is necessary to provide a satisfactory measure of 

control and simplicity in operating the analysis programs from 

within GHS. It allows the job control sequence for each 

analysis pr6gram to be stored within GMS. 

3.3 IMPROVEMENTS TO THE PROTOTYPE GMS 

There are many improvements which can be made to the 

prototype GMS within its present structure, that is, as 

incremental changes, without requiring a redesign of the 

entire system. These s~ggestions .are not so much criticisms 

of the system as it stands, but, rather the insighti of 

hindsight and plans for continued development. 

. . 
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3.3.1 Modularity 

In several areas of the prototype, the code is not 

ideally structured. Better structure couln be achieved hy 

~reaterattention to control structures and the assignment of 

functions to modules. This would facilitate comprehension, 

maintenance and modification. A specific benefit would be the 

easier conversion of parts of the system to use new hardware, 

e.g., an intelligent terminal. 

The most difficult design problems involving modularity 

of software are in the interface with the data structure. 

Since the components of the data structure are related in ways 

which must be recognized by individual modules, it is not 

possible to isolate all the modules from the data structure. 

The prop~r approach is to provide sub-modules for each of 

those functions which require an interface with the data 

structure. For the graphics editor, for example, such 

sub-modules would include (1) displaying an item or several 

items from the data structure on the screen, (2) identifying 

an item from light pen or other input, (3) adding or removing 

an item from the data structure, and (4) composing items from 

their constituent fields or decomposing items into separate 

fields. Another set of sub-modules could· be used in the 

editor to display commands and to interpret command input. 

These sub-modules can easily be combined to get the graphics 

editor. All that is left is to create the menus of commands, 

use a sub-module to display and interpret them and a giant 

6 I. o o 
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"case" statement to accomplish each command. Each command 

requires only the collection of the necessary parameters (from 

an I/O suh-module), whi~h are then passed to the data 

structure sub-modules. In this way, the details of command 

display and interpretation are separate from details of I/O 

and a I so , f rom de t a i Iso f the data s t rue t u r e • 

3.3.2 Improvements to the Graphics Editor 

In the graphics editor, we would revise the treatment of 

character strings to store them with the rest of the display 

items rather than in a separate huffer. This ,wuld hoth 

eliminate the danger of overflow for large element libraries 

and reduce the space required for small ones. The storage of 

symbols would be changed so that ~ line segment which began at 

the end of anothei segment would be displayed consecutively if 

possible. This would reduce both transmission time and 

flicker. 

A menu of symbols would be provided, so that the user 

could choose them with the light pen rather than typi~R in the 

name of the element. Presently, the user must rememher the 

available elements. 

We would allow global scale changes on drawings; an 

entire drawing could be enlarged or reduced by some factor~ 

This is e~pecially important for the novice, who often finds 

that his initial set of symbols was too large or too small. 

'. 
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The entire drawinR could also be trarislated to allow 
, 
More room 

at some side of the drawing. 

More control over the character strinR display can be 

provided. At a minimum, it should be possible to delete from 

the display the attacher point strings associated with symbols 

in a co~posite element. 

A more drastic chanRe is the use of an intelliRent 

terminal to implement the graphics editor. The use of 

intelliRent terminals is motivated by a desire to improve 

response time, save money, and bring the graphics facility 

closer to the user. Response time is improved by providinR 

immediate response without waiting for transmission time to 

·thehost computer or for s~heduling delays within the host 

computer. Money is saved by reducing computation at the 

central site or timesharing facility. In remote areas (i.e., 

user areas) a high bandwidth connection is not feasible; a 

non-intelligent terminal could not provide adequate response. 

To achieve significant bandwidth reductions, a substantial 

part of the data structure must be moved to the intelligent 

terminal. 

3.3.2 Topological Analysis 

For the topological analysis, we expe~t that schemes for 

the incremental compilation of topology will be investigated. 

These schemes will use more elaborate topological data 
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structures, in exchange for a reduced computation time. The 

more elaborate structures are needed to preserve temporary 

information which is now discarded when analysis is complete 

and recreated for each new analysis. We also expect that the 

data structure describing the topological analysis will be 

improved. The topological analysis will also incorporate 

connectivity checking, either from auxiliary user supplied 

data or from a data set supplied as part of the analysis 

package. It will warn the user of non-connected or ilegally 

connected lines. 

The topological analysis would be revised to include a 

graphical "symbol (name) table." This would have many 

advantages (see 2.6.7); for e~ample, it would enable error 

messages generated by analysis programs to be related to the 

graphics structures which caused them. 

3.3.4 Translator Improvements 

Development of the translator will be guided by the 

recognition of parallels with assembly language macro 

processors. These parallels will provide guidelines for a 

more consistent control specification, for incorporating new 

facilities and also for constructing the software itself. The 

translator needs to have a better syntax and semantics for the 

control of the translation process. It also needs to be mane 

recursive and given better facilties for incorporating data 

sets into models. We would experiment with an output notation 
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more suitable for computer interpretation, perhaps a sequence 

of pointers comprising one of the more common list structures. 

Beyond this. the translator will become a data base inquiry 

and conversion routine which provides a conversion from the 

topological data structure into the exact structure required 

by any particular analysis routine. Eventually. such a data 

structure conversion module will be separated from the GMS and 

will he viewed as a general tool for the development of 

analysis routines rather than as a special purpose part of the 

g~aphics interface. It will be used wherever needed between 

analysis modules, not just between the graphics system and the 

input section of an analysis module. 

3.3.5 Operational Improvements 

The prototype GMS also needs some operational 

improvements -to mak~ it easier to use. The most important of 

these is the automatic preservation of the element library 

when the program terminates to execute an analysis program. 

The e1ment library would also be automatially restored as part 

of the program initialization. These operations must be done 

manually at present. The startup setting for the zoom 

parameter should also be changed to a more useful value. 

Some extra commands should be added so that users could 

avoid following the full hierarchical command path. In 

particular. a single command should switch back and forth 

between the symbol and the semantic description of an element. 

n a 
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A command should also he added to the graphics editor which 

would store the current element, translate it, and start, the 

analysis routine all in one operatin. When the analysis is 

finished and control returns to GMS, the initialization 

procedure could return to the graphics editrir with the element 

just analyzed, ready for any changes.' 

Finally, some on-line help and tutorial commands would be 

useful. 

, 
i . 
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4. FUTURE CAD SYSTEMS 

4.1 WHERE WE ARE NOW 

This chapter explores some of the problems inherent in 

the continuing development of CAD systems. It is clear that 

the need for CAD software is growing faster than the supply of 

progr~mmets and funding for software developmment. CAD 

software development must therefore rely increasingly on 

techniques for increasing programmer productivity. We feel 

that the term "structured programming" [DIJK72], is applicahle 

to almost all of these techniques, although various authors 

have used the term in more restricted contexts. 

4. 1. 1 Types of Existing Systems 

We can divide CAD software into three general areas: 

data stru~ture and data management techniques, computational 

techniques, and user interface techniques. Examples, are 

described which are effective in each of these areas. 

Architecture is a design area in which data structure and 

d~ta management techniques predominate. These systems 

typicalli h~ve a rather larg~ data base, but only modest 

requirements for complex computations. There are single 

architecutral systems which have subsystems for the design and 

checking of space utilization, structural ~etails, 

architectural aesthetics,bills of materials, and buildinR 

0-' 
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codes. A variety of subsystems are required to support the 

multitude of overlapping considerations which influence such a 

design. The architectural designer may chan~e rapi~ly from 

one design aspect to another in this way. For example, he may 

change a room, then check the new space utilization and view a 

perspective drawing; change some structural details, then see 

how costs are affected and check for compliance with the 

building codes. To support this switching from one subsystem 

to another, the overall architectural CAn system must he 

modular and it must have a very general data structure and 

data management facility. 

The predominant type of CAD systems are those which are 

used for their analytic capacity. Examples of such systems 

are NASTRAN, for structural analysis, TRANSPORT, for 

accelerator magnet design, ~nd SPICE, for electronic circuit 

design. These systems dperate on modest amounts of data (from 

a data management point of view), so they have tended to us~ 

data structures formulated to facilitate the required 

computation. Another characteristic of th~se systems is that 

they are very specific; they concentrate very thoroughly on a 

very small problem area. The algorithms used by these 

computational systems show that they have a good theoretical 

framework. Nevertheless, they recognize a large number of 

~pecial cas~s, often at substantial cost in software. 

NASTHAN, for example, recognizes beams, plates, cylinders, and 

many other shapes. 
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Interactive CAO systems are rapidly movinp, from an 

academic to an industrial environment. While the data 

capacity and the computational capacity of these systems has 

been modest, industry is finding that tn many cases an 

interactive facility is cost effective. The eMS described in 

this work, together with o~e of the analysis routines forms a 

cost effective combination for many problems. While the ease 

of use of such a system will often encourage more analysis and 

hence more computing, the time saved by the user will usually 

more than compensate for the added computation cost. 

4.1.2 Trends in CAD Systems 

As CAO systems grow in scope, they must incorporate 

methods and techniques which are increasingly general if they 

are to increase in scope without a corresponding increase in 

Data structures which are formulated to meet the needs of 

some particular computation are usually optimUM in terms of 

computer utilization. They are usually not optimum in terms 

of programmer utilization. As software development takes an 

increasing portion of CAO project cost, the best course will 

swing away from tailor made structures toward general 

techniques. In data structures~ these ~eneral 'techniques are 

evident in the well established computer utility systems for 

data base ma~agement. Generalized approaches to data 

structures are also being provided by improved programming 

r. 0 9 n [1 f" n (';-: n n ,ti? 
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languages, in which the compiler assumes the detailed 

management of an increasing variety of data structures. 
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In the computational area, generalization will octur as 

special cases are combined into a common theoretical 

framework. This combination will be a result of work in the 

individual disciplines and mathematics in general. As these 

generalizations are incorporated into systems, ne~ special 

cases will constantly arise; w,e c'an rest assured that special 

cases will constantly be with us as long as CAn systems grow 

in applicability. 

Systems in which data base inquiry and report generation 

predominate also have a need for more complex analysis 

f a c i 1 i. tie s • These systems will adopt computational techniques 

from work in analytic areas. 

Interactive facilities are anong the least well developed 

aspects of CAn systems. While a great deal of research has 

taken place on man-machine communication, little of this 

research has filtered down to the level of the average 

applications programmers where it can be applied as simple, 

convenient subroutine packages. Subroutine packages to 

simplify the control of the man-machine dialogue are becoming 

available. 

handling. 

These include pyimarily syntax checking, and error 

To go much beyond this, the content of the data 

structure must be availahle to these interfacing routines. 

This has not happened in a general way yet. 
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The software tools for continuing development of CA~ 

systems includes both subroutine packages and compiler 

development. The two most critical areas seem tobe in data 

structures where compiler development would be most useful. 

and interactive techniques. where software packages seem to he 

the best first step. 

4.2 GOALS FOR FUTURE CAD SYSTEMS 

The goal of a CAD system is to enable a user (at a 

console. perhaps) to perform some manipulations upon his data 

without understanding the layers of computer software between 

what he sees and what is actually going on. To support this 

capability. the first requirement is for data structures 

appropriate to the user's view of the world. A second 

requirement is for manipulative routines to perform the 

desired transformations. analysis and synthesis. A third 

requirement is for user interfaces to provide controls for the 

manipulation routines and display of the data. 

Viewed in terms of computer software. we can add another 

requirement for implementation tools, (e.g •• co~pilers. 

subroutine pack~ges) which will allow such systems to be 

conveniently built. In this section we shall discuss each of 

these requirements in turn to develop some idea of the extent 

and depth of each topic. In Section 4.3. we shall offer some 

ideas about the necessary elements of the system desi~n. 

o p 0 0 
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4. 2. 1 Data Structure Goals 

A data structure should reflect the structure of a 

problem, allow efficient manipulation of the data, and provide 

rapid access to the data. When we say that a data structure 

should reflect the structure of a problem, we mean that it 

should be easy to int~rpret the d~ta structure and provide a 

display which is readily understood by the user. This display 

should allow him to easily visualize the results of various 

manipulations which he may perform on the data. For example, 

consider a program to compute income tax. A good choice of 

data structure might be one which is parallel to the IRS form 

with which we are all familiar. Within a category called 

Identification, we have Name, Address, Occupation, and so 

forth. A category called Deductions will contain 

sub-categories Medical, Taxes, etc. The Medical category can 

be further broken down into Drugs, Doctors, Hospitals, and 

others. The user is now able to make statements such as: 

subtract Total Deductions from Income. The information in the 

data structure should be displayed in a way which makes clear 

the results of such operations. 

Data structures should be flexible to support efficient 

manipulation." Even within a single discipline, a variety of 

structures may be required. For' example, a cartography 

application might require the storage of a map. An array of 

boundary points of each area would be suitable for cloropleth 

mapping (shading) applications but unsuitable for determining 
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which areas are adjacent, ~s might be requir~d in neiRhhorhood 

analysis. A structure suitahle for finding adjacent areas 

may, in turn, be unsuitable for storage of individual 

boundaries. 

Older prograMming languages, (e.g., Fortran, Algol60) 

have been limited in the variety of data structures \"hich they 

support. They have provided only the simplest language 

constructs and data structures. The programmer has heen 

forced to build his own superstructure using the compiler 

provided structures as primitives. Newer languages (e.g., 

Algo168, Pascal, ELI) have provided not only a greater 

diversity of structures, but also tool~ for more conveniently 

creating n~w structures. 'Languages with extension facili·ties 

can also provide a compact notation for describing operations 

on these new structures. Currently, these newer languages are 

not ~s efficient as the equivalent programmer defined 

structures using the older languages. As compilers improve, 

this inefficiency will be accepted as a comprOMise which 

improves oveiall programmer productivity. Many operations 

could be written more compactly using such a facility. The 

programmer could concentrate on data manipulation without 

wasting programming effort on the manipulation of hiRh level 

structures using primitive operations meant for arrays. 

Currently, a program is composed partly of manipulation 

of'a data structure mechanism and partly of implementation of 

such data structures, the two parts heing so mixed together 

o 
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that it is sometimes difficult to separate them. It has been 

said that a revised algorithm can produce order-of-magnitude 

increases in program speed, whereas re-coding a problem rarely 

improves the speed by more than a factor of two. Almost 

always, such a revised algorithm depends on a revised data 

structure which allows more efficient computation. In many 

cases, the newer languages should allow the replacement of 

data structure and operator definitions within an algorithm 

without recoding the entire algorithm. 

What we have described above is an access structure, 

which is what the user/programmer sees. At a lower level, 

there is a storage structure onto which the access structure 

is mapped. ~he choice of a storage structure depends on its 

compatibility with the access structures, the speed of access 

and the relative compactness of the storage scheme. It is 

quite possible that two schemes with the same access structure 

could require different storage structures due to varying 

amounts of computing, different frequencies of mass storage 

access, or different sizes of the data structures. A single 

access structure or notation should be al16wed to manipulate 

several physical structures, for example, the same notation 

for sequential access could apply to either vectors or lis~s. 

It would also be useful to allow more than one logical 

structure or notation to be used with a particular physical 

structure. A representation of a street map, for example, 

could be manipulated either with a logical structure of 

, I 
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streets and intersections (arcs and nodes), or with a lo~ical 

structure of street names (vectors). An important start in 

this direction has been made by schemes for multiple keys 

access to items with several attributes. 

4.2.2 Analysis Techniques 

Analysis routines supply the hrains of a system. These 

are the alRorithms which the programmer s~pplies for the 

manipulation of the data; they are controlled by the user 

interface routines. There are many features which ~ake an 

analysis routine convenient to use: accuracy, speed, 

documentation, and error control. Most of these al~orithms 

perform an operation whieh can be defined mathematically. 

Accuracy is a measure of how little the results deviate fro~ 

the mathematical definition. Inaccuracies are caused by the 

finite precision of the hardware and the approximations 

necessary for efficient computation. 

Speed is a requirement ~hi~h usually conflicts with 

accuracy. Speed is obtained primarily by using the fastest 

algorithms and secondarily by carefully coding the.algorith~. 

Documentaion must explain all the aspe~ts of a routine 

covered here: accuracy, speed, error control, and other 

modules required, and it should give the algorithm used. 

To achieve error control, a routine must validate its 

iriput and monitor the algorithms used to ensure their correct 

o o 



operation; errors must be reported back to the superior 

routine. 

4.2.3 User Interface 

l411 

The us~r interface is the most important part of a CAn 

facility, both in the amount of effort required and in its 

impact on the user. The user interface must instruct the user 

in the manipulations available within a particular program and 

it must carryon a dialogue with the user durinR operation of 

the program. Documentation is part of this user interface; it 

is unreasonable to exp~ct all aspects of a prograM to be 

explained as part of its operation. This dOCUMentation should 

be the primary reference m~terial for a program. The user 

should never have to consult a "listinp," of the pro~ram. The 

documentation should explain the domain of applicability, the 

algorithms used, any restrictions, the commands and their 

paraMet.ers, and describe the po.ssible outputs. The program 

itself should provide instruction in· its use. for the novice, 

a list of commands should be provided with the most likely 

commands notedi when parameters are required, the range of 

acceptable values should be given and a default value provided 

if possible. For the expert, it should be possihle to 

abbreviate these messages. Each input should he checked and 

in case of error the user should be allowed to correct nnlv 

the value in error. 

When output is presented, the user should always he ahle 

. ; 
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to suspend or terminate .the output, in case he hdR asked for 

too much output or for the wrong item. 

Every interactive program should have some means of 

preservin~ its state, so that it may be interrupted and then 

continued it or near the point of interruption. This allows 

the user to suspend the program, use some other facility or 

stop work fnr the time being, and return to the task at some 

later time. 

4.2.4 Implementation Aids 

Implementation aids are the editors, compilers, and other 

mechanized aids to program development (including 

documentation) • After the choice of hardware, the most 

far-reaching decision among implementation aids is the choice 

of a language. No language is ideal, but the existing body of 

software provides a po~erful incentive to choose an existing 

language as a starting point. Such an approach also avoids 

the work required to design the language and perhaps also the 

work required to implement it. Ideally, the language could 

gradually be provided with" extensions, first implemented by a 

preprocessor, for the source text, then subsequently by 

revising the compiler. In addition, a programmer woul~ expect 

to use extensions included in the text of a routine, if the 

language permitted. 

Debugging aids are often supplied for working with 

, , .. o o o ¥ 
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asiembly languages b~t they are rarely supplied for a high 

level language because they must incorporate practically the 

entire compiler. A feasible alternative is an interpreter 

and/or incremental compiler. 

4.3 PROPOSALS FOR FUTURE CAn SYSTEMS 

In this section, we will provide enough detail so that 

individual components can be identified. While we will not 

attempt to design these components, we will identify SOMe 

which can he adapted from currently available software and 

others which must be developed from scratch. A CAl) facility 

cannot remain static if it is to serve the changing needs of 

its users. Thus, we cannot say what should or should not he 

included in a system. A system is complete or incomplete only 

with respect t6 its community of users. 

From our point of view, a system is a collection of 

modules for data access, for data manipulation, and for user 

interfacing. Within this system, there are also COMplete 

programs which include one or more modules from the groups 

given. Our job is to maintain these modules and programs and 

to provide implementa~ion tools and guidelines so that new 

modules and programs can be created. This view sugp,ests that 

system management is an administrative task rather than a 

programmin~ task, although it is programming which we want to 

manage. A concept relevant to this manageMent is "structurec! 

programming". One basis for structurec! programming is "the 
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realization by management that it should incur short-range 

costs in order to achieve long range benefits" [t-tEIS74]. Our 

.. proposals fall within the domain of structured programMing; 

they will incur short-range costs in the hope of long range 

benefits. Our proposals are also administrative: they require 

disciplined ~rogramming. a discipline which will free the 

programmer to be more creative in the long run. 

4. 3 • 1 Data Structure Proposals 

Within a data structure. there are at least three levels 

at which a piece of information can be considered. These 

levels are (1) a physical or storage structure. which provides 

access at the hardware and, operating system level; (2) a 

logical or access structure r.lated to the physical structure 

by compiler or programmer, provided access mechanisms; and (3) 

a display or presen~ation structure which is presented using 

the nom~nclature of the user's discipline. The physical data 

structure is provided by the hardware and the operating 

system; it usually takes the form of random access to small 

amounts of information (main memory). or indexed sequential 

access to larger amounts of information (secondary memory). 

The logical data 'structure is the most impdrtant level of data 

access. since most of the programming in the system will refer 

to the structure at this level. The function of this level is 

to provide a convenient set of concepts and the corresponding 

notation to simplify manipulation of the dati structure. A 
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simple example of a structure at this level is a matrix, or 

two dimensional array. The programmer uses this notation 

because it is convenient to his problem, while the compiler 

provides the transformation (or mappinR) to the physical d~ta 

structure which is actually available, usually sequentially 

organized memory. The hi~hest level of data access is the 

presentation to the user. This may parallel the structure of 

level 2 but it must be provided with labels and id~ntificatton 

to make it meaningful to the user. To extend the example of 

the m~trix,the user must see not only the numbers, but also 

lahels for each row and column, e.g., the rows could be 

labeled with county names within a state, and the columns 

could be labeled Total Population, White Population, ~lack 

Pop ul at ion,. etc. The point of the third level of data access 

is that the concepts for the second level of data access are 

comnori to a wide va~iety of applicat·ions while the third level 

must change from user to user. 

The programmer must discuss the user's needs, and then 

select those logical (compiler-provided) structures which are 

appropriate for problem definition and manipulation. The 

programmer then constructs the user interface which augments 

the logical structures by adding the appropriate terminology 

and symbology. 

There are two aspects of ~ata structure as currently 

implemented in high level languages which need to be improved. 

A greater variety of data structures must be provided and more 
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isolation must be provided between the logical structure as 

seen by the programmer (user) and the physical structure as 

implemented by the compiler or data access modure. A Rreater 

variety of data structures serves the needs of the pro~rammer 

in an obvious way; he is better able to choose a data 

structure which reflects the structure of the problem, allows 

efficient manipulation, and provides rapid access to the data. 

Improved isolation between logical and physical structures 

allows a variety of logical structures to address a particular 

physical structure. This allows the programmer to use an 

appropriate notation for each subproblem to decrease the 

amount of coding required and increase the maintainability of 

the code by making the operations more obvious. It will also 

reduce the amount of reformatting necessary to provide input 

to manipulation routines, since these routines will now accept 

a wider variety of data structures without modification. 

These choices are complicated by the existence of 

extension facilities in the high level language. These 

provide a substitute for the implicit construction of compiler 

defined data structures during compilation or execution. They 

are certainly necessary, since no language can supply all 

possible data structuress but we would certianly prefer the 

compiler's built-in structures where feasible. 

The data structure facilities should include the 

following data types: integers, characters~ pointers, code 

(machine instructions), floating point representation, douhlp. 

6 o n o o 
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precision and complex numbers. This list covers the data 

types usually supported by hardware and those commonly 

supplied by software. It should be possible to add new data 

types to this list. Using these data types as nodes or 

leaves, the following structures should be provided as a 

mininum: vectors, arrays, lists, stacks, and hash coding. 

Any structure should allow any other structures as an item; 

for e~ample, an array whose first item is a list, and whose 

second item is a stack. These structures should he dynamic, 

so that an array, for example, could be shorten~d or 

lengthened, or an item of an array could be first a list and 

later a complex number. 

might also be provided. 

Structures for associative access 

There are several approa6hes which can be taken to 

improve the isolation between a logical data structure and its 

physical representation. The ultimate solution is to let the 

compiler make the deci~ion about the best physical 

representation based on an evaluation of the program 

[suggested by H. B. Baskin]. The logical data structures must 

still be provided, but the programmer is free to change from 

one logical structure to another as his needs dictate, letting 

the compiler provide the proper access to the physical 

structure. A difficulty is that the compiler does not know 

which other programs also access the data structure, and so it 

cannot do a truly global optimization. 

A less diff'icult scheme for the separation of logical and 
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physical access is to declare the physical .structure 

beforehand for tho~e variables which need it. This scheme 

provides almost as many problems as compiler selection of data 

structure. but it allows global optimization by the pr~grRmMer 

and removes the most difficult decision from the rlomain of the 

compiler. 

The situation is much simpler. if we require the 

programmer to declare his data structures within the program 

and to us~ the corresponding notation throughout. This 

corresponds to current language implementRtion~ except that we 

assume that a wider variety of data structures are offered. 

An interim scheme could be implemented with current 

languages by using a preprocessor to implement data references 

as explicit function calls where necessary. 

4. 3.2 Analysis Techniquei 

The analysis routines form the bulk'of the CAO system. 

They require substantial amounts of coding. testing. and 

documentation. Fortunately. these routines are most easily 

borrowed from other installations. A facility could expect to 

imp 0 r t as m u c h . as 90% 0 fit s r 0 uti n e sin it i a 11 y and 50 ~ 

subsequently. Recognizing that there are requirements for 

accuracy. speed. documentation. and error control. 

nevertheless the administrator'~ most pressing need is for an 

overview of analysis modules which will allow him to make an 
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intelligent initial selection for his facility, and which will 

allow him to evaluate what is available at other faciliti~s. 

At the lowest level are the elementary operations rBnging 

from square root to the hyperbolic functions of complex and 

double precision arguments. These should be part of the 

run-time library of the language processor. 

Th~ next level will form the major part of the library of 

analysis routines. This level would include (1) mathematical 

functions and operators, (2) mathematical approximations, (3) 

simulations, and (4) symbolic manipulations. 

The mathematical functjons and operations are responsible 

for solving some mathematical equations and computing well 

defined operations. This class is characterized by the fact 

that the amount of ~omputation can be predicted (at least 

bounded) a priori. Thus, matrix manipulations, Fourier 

transforms, and the statistical packages are part of this 

class. The solution of some differential equations and of 

algebraic equations of order 4 or less 'oJould ·be in this class. 

The solutiori of a quintic degree algebraic equation would not 

be included because there is no ~athematical formula for the 

result in closed form. 

Mathematical approximations are iterative or approximate 

techniques such as numerical integration, relaxation 

techniques, approximate solutions to differential and 

algebraic equations, and function minimization. The user must 
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be aware of the limitations of these methods, and take care 

that he obtains a valid answer. Where possible and 

appropriate, these routines should provide some measure of 

errors. 

Simulation techniques compute the results of some process 

by iteratively computing the state of the process at 

subsequent points as a function of time (or other innepennent 

variahle). TheSe techriiques are applicahle where a problem is 

less well known or more difficult, such that a glohal solution 

by mathematical functions or approximations is not known. 

Since only a local knowledge of each aspect of a prohlem must 

be known, simulation techniques are more wid~l~ applicable 

than exact or approximate solution techniques. Oiscrete 

simulation can be used when it is known that the state of 

variahles changes only at discrete times. Continuous 

simulation attempts to monitor the variables continuously in 

time. Ona digit*l computer, continuous simulation is 

implemented as discrete simultion with very short time 

intervals. The variables are assumed to change an 

insignificant amount or in a known way between time steps. 

Simulation techniques are often combined with mathematical 

approximations such as numerical -integration. 

Symbolic manipulations are those which operate on the 

symbolic definition of a problem rather than the numeric 

aspects. For example, some integration problems can be solved 

by performing a symholic integration on the formula and then 

o 
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computing the answer exactly with the mathematical functions, 

rather than using a Mathematical approximation technique. 

Examples of routines available are those for manipulating 

algebraic expressions, polynomial arithmetic, symbolic 

integration, and the predicate calculus. Routines for the 

man~pulation of Roolean logic are in this class, as are 

routines for the synthesis of electronic logic from Roolean 

equations or truth tables. Routines which examine or 

manipulate graph structures are also included, such ~s finding 

the Bpanning tree of an electronic circuit, or finding loops 

in a flow chart. 

Observation of a large computer installation suggests 

that careful attention to the library of analysis routines 

will be amply repaid. Programmers will almOSt always use the 

installation library for low level routines, e.g., sine, 

cos i n e, and the y wi I I eve n t hi n k t w ice h e for e the y c oo.j u r e II P 

their own version of a higher level routine, for example, a 

Fourier transform routine. When new routines are developed, 

the administration should take the following steps to ensure 

maximUM utility fromthe routine: (1) a senior 

programmer/analyst should select the mafhematical basis for 

the algorithm and should design the interface between the 

module and other routines; (2) a committee of users should 

ensure that the proposed design Meets all their requirements, 

and (3) the routine can be coded and test. These steps are 

designed to ensure that the module will satisfy as Many users 
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as possibieand will be flexible and easy to use. The purpose 

of the committee is to ensure that any slight variations in 

requirements can be included in a single routine without 

leading to a proliferation of similar routines. The actual 

coding of the r6utine is of less importance compared to the 

interface since it can be changed at any time, while the 

innerface will become rapidly frozen as u~ers include it in 

their prograns. 

4.3.3 User Interface 

The user interface to an interactive system is, in some 

sense, the total set of capabilities which are available to 

the user. A good user interface will make all of' these 

capabilities easy to use, while a poor one will make them 

difficult rir even impossible to use. In this section, we will 

concentrate .on the control aspects of the user interface. 

Control is a function which is complimentary to data 

structures and algorithms. If we consider a computer program 

as a model of some real situation, then we can identifv the 

data struct~re as providng the objects of the model, the 

algorithms as providing the actions which manipulate the 

objects, and the user interface as providing the control and 

decision-making which guide the actions. It should also be 

clear that the elements of control do not all appear in the 

same place or at the same level, but, rather, ihey are spread 

out and appear throughout the program. 

o 
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This notion of layers of control is most important to the 

development of good user interfaces. These must provide 

flexible means for buildIng these layers of progran and 

control structures. These ideas are clearly parallel to those 

guiding the development of data structures and a similar 

flexibility should be provided. The principle tool should be' 

a uniform and flexible framework for ~ontrol structures at all 

levels including the operating system. Several alternate 

notatiOns can he provided· to most nearly correspond with the 

user's thought patterns. For example. one important class of 

control structures includes structures for aggregation of 

activities. Assembly languages provide this capahility in the 

form of macros; higher level languages provide suhroutines or 

procedures. and operating systems often provide cataloged 

procedures. The well designed user interface ~hould provide 

all of these schemes at all levels. and as sug~ested in the 

section on data structures. perhaps the notation and the 

implementation should not correspond one to one. but rather 

the user interface should select the most appropriate 

implementation regardless of the notatin. Ag~in. this may riot 

be immediately possible. but it should be the g091. and as 

with data structures. there are reasonable interim steps. One 

gbvious interim scheme is to have the user specify the 

implementation for each instance of aggregation (with . . 

defaults. of course). 

Having adopted many levels of control. the user interface 



must provide for moving easily through the control structure 

for purposes of examinaion or modification. This facility 

should include text editors, (hyper-text editors?) and 

automatic tree diagrams (or flow charts) of control 

structures. 

A second aspect of the user interface has been desciibed 

as habitability [DEFA75], or livability. This refers to the 

ease or naturalness of use of the interface. Several features 

are important to this riaturalness, but the two key ideas are 

that the user must know what is going on, and he must he in 

control. There are a multitude of details which cont~ibute to 

this feeling of ease. 

The control section should be self-explanatory in 

operation with at least these features: a list of commands, 

acceptable and default values given for parameters, and 

well-labeled input and output. 

Another area which is basic to an interactive program is 

the availability of tutorial commands. In a GMS, the help 

commands are not needed so much for the functioning of 

specific commands (since all the commands are easily 

understood) but r~ther to give a sense of direction when the 

user gets bogged down in detail. With this .end in mind, the 

help commands need to be far more intelligent than the usual 

canned explanations found in interactive programs. While the 

prototype G.IS was originally written with the comnands 

., 
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structured so as to leave the initiative with the operator, it 

is clear that this was overdone, especially for novice usrs. 

One scheme for regaining the initiative is to have m6re fixed 

interrogative sequences in which the user is told what to do , . 
or asked questions by the program. The user no longer needs 

to specify the normal command sequence; explicit action is 

needed only to escape from the normal sequence. 

Another scheme for providng a sense of direction is the 

use of intelligent "help" commands. These commands wOllld he 

used when the user is not sure what to do next in the sense of 

solving a problem, not in the sense of what command does what. 

They should be aware of the status of the program,and they 

could tailor their response according to the current activity 

in a global sense. These help commands could provide an entry 

to program .directed activity. Such a sequence might 

1 • Explain the purpose of the program. Introduce 
, 

elements as building blocks of the system, including symbols 

and definitions. Give models as diagrams to be analyz~d or 

used as d~finitiDns. 

2. Suggest reviewing existing libraries of elements for 

similar applications. Assist in viewing these lihraries. 

3. Ask what new elements are needed. Automatically ". 

cycle each element through a symhol drawing and text 

definition phase. Ensure that symhols are all compatihle in 

size; give unsolicited advice about attacher points and other 



1 fi 1 

matters. 

4. Guide the user through the model construction phase. 

Suggest he start with a sketch, then place.essential or 

critical elements, connect and lahel them, give numerical or 

constant parameters, then place non-essential (for exaMple, 

I/O or optional) elements and connect them. 

5. Guide the user through the use of the translator. 

Ptovide queries to set up the table of templates and provide a 

check-list for the job control languaRe. 

These possihilities can be achieved without redesigning 

the entire GMS. A More powerful tutorial facility would hrinR 

the program more into the domain of Computer Aided Instruction 

rather than just a tool for symbolic diagrams. Nevertheless, 

the reader is referred to SOPHIE [BROW74) as an example of the 

power of unsolicited prompting. 

The co~trol section should also provide an interrupt 

facility so that the user can stop a process and see if it is 

progressing satisfactorily. While many decision points will 

be explicitly included in the control section as programmed 

user interaction, it is also useful to have a mechanism for 

stoppin~ at nearly any point and allowing the user to scan the 

state of the process. Of course, we cannot expect this 

mechanisM to he as well-developed as the explicit user 

interactions provided by the programmer. The control modllie 

should also provide operating system status information about 

I. (' o (t " If o 
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the job. With this information and the interrupt facility, 

the use rca n t a k e t 1m ely s t e pst 0 s top a .i 0 b w hie h has r· u n 

away or betome otherwise uncooperative. 

System aids which are commonly needed for control of 

programs include the automatic compilation of programs from 

decision tables, menu programs for conmand selection, and 

formatting and questionnaire routines for simplified parameter 

input. 

4.3.4 Implementation Aids 

There are many tradeoffs in the choice of a high level 

language. Among these are the ease of implementation, the 

varieties of data structure provided, and the software 

available for the langua~e. The ease of implementation 

depends on whether the language is new or existing and whether 

a version exists for the hardware selected. If a version 

exists then that is the easiest choice, wi.th the 

implementation of a known language being much easier than the 

design and implementation of a new language. As a personal 

decision, I would avoid creating a new language. 

To clarify this matter, I have chosen two representative 

languages: one old, PL/l. and one new, ELI ['.n~r.~71]. PT./1 

is implemented on the IBM 360 series and ELI is implemented on 

the nEe pnp-IO. PL/l offers a wide variety of existing 

software while ELI offers a wider variety of data structllres. 



ELI {s an extensible language which allnws the prnRranmer to 

add new data types and .structures, and new operators to the 

language. Once the language has been extended. the pr~~rammer 

can use a simple notation to efficiently describe data 

structures and manipulations in each particular prohlem 

domain. On an IRM 360 or the PDP-IO the choice woul~ he in 

favor of the implemented language. On machines with neither 

language. I would favor ELI as more useful in the long run. 

This choice of language might affect My choice of hardware as 

well. 

After choosing a language, there 
. , 

is a collection of text 

editors. loaders, subroutine libraries, and so forth which 

must be created. An interpreter would he most valuahle a~ a 

program development and debugging aid. It allows the creation 

of the proper environment for a procedu~e under test. and hy 

executing one statement at a time the operation of the 

procedure may be observed at any level of detail. The 

procedure nay be modified and execution resumed without 

disturbing the environment. This is a valuable improvement 

over checkpoint-restart systems which may not allow a change 

in the procedure between a checkpoint and a restart. The 

interpreter offers the features of several assembly lanp,118Re 

debugging p~ckages with the advantage of providing these 

features for a high level language. The ahility to modify a 

procedure and continue may save a great deal of time when the 

~nvironment of a fault in a procedure occurs only after 

o b 
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lengthy computing. The alternative is for the pro~rammer to 

save and rsstore his own status; but this is generally' 

impossible without more system knowledge than the programmer 
\ 

generally has. 

The design and construction of the interpreter, compiler, 

and the rest of the ~nvironment is an admittedly complex task, 

but one which need riot be any more difficult than the creation 

of the disorganized collection of editors, interpreters, 

compilers, loaders, subroutine libraries, and so fotth which 

are available at any major computing center. What is 

necessary is an overall view which puts each piece in its 

place anrl specifies the interfaces between pieces. 
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Appendix A. Respons.e to the Users Questionnaire 

NAME: Richard LaPierre - Assisted by Oon Austin 

1. What was your overall impression of PICASSO? 

I think it has great possibilities; 

I'm just sorry it wasn't funded. 

2. Did you find the system generally useful? 

Yes 

3. How extensively did you use the system? Hours? Days? 

4 hours (although D. M. Austin spent two days 

working on this particular problem). 

4. What ~mportant problem did you solve? 

A digital logic timing problem. 

5. Could you have solved it another way? 

Yes. by building the hardware. 

6. How wnuld the two costs compare? 

A breadboard device could have be~n built in 1 days. 

PICASSO required three days to create a library of 

logic el~ments and two days work on this particular 

problem. 

7. Do you plan to use the system again? Why? \~hy not? 



Maybe, if the system is cost effective. To he cost 

effective, it needs good accessibility - the engineer 

must have constant access (in his work area); it needs 

simple language and more reliable s~ftware 

(operating system) and hardware. 

8 • VI 0 u 1 d "y 0 u r e c 0 r.m end the sy s t em toy 0 u r colI e a g u e s ? 

1 think they should look into it. 

9. Did yoti recommend the system to your colleagues? 

No. 

10. What revisions or extensions would you recommend? 

11. 

Good accessibiliity, simple language, reliable 

hardware and software. 

Do you know of any better system? What are they? 

No 

\.Jh o? 
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NAME: Dan Maeder 

(Answered by D. M. Austin who assisted nan Maeder) 

. . 1 • What was your overall impression of PICASSO? 

It is very hard to use, the computer system is 

unreliable, and the lightpen is very hard to use. 

(P. s. I am right-handed.) 

2. Did you find the system generally useful? 

Yes, very useful, in fact, we solved a probleM of two 

weeks 'Fortran programming in one hour. 

3. How extensively did you use th~'syst~m? ~ours? Days? 

An hour a day for a couple of weeks (until the problem 

was sol v e d) • 

4. What important problem did you solve? 

The hardware design of a delay line, varying the 

parameters to get the proper waveform. 

5. Could you have solved it another way? 

Yes, build it and use an oscilliscope. 

6. How would the two costs compare? 

Using PICASSO was much, much cheaper. Builcl1np, the 

hardware is impractical. 

l r '. o 0 
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7 • Do you plan to use the system again? , '.Jh y? Wh Y no t? 

No, not available in Geneva (where I have moved). 

8. Would you recommend the system to your colleaRues? 

Yes. 

9. Did you recommend the system to your colleaRues? Who? 

Probahly (n. M. Austin is not sure). 

10. What revisions or extensions would you recommend? 

Some changes to MIMIC for optimization would he 

helpful. 

You should also make it transporiah1e to small 

terminals. 

It. Do you know of any better system? \Jh a tar e the y? 

No 

, 
'. 
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NAME: Nancy McPonald 

I. What was your overall impression of PICASSO? 

Good, interesting, flexible, powerful, a little 

cryptic to learn to use. 

2. Did you find the system generally useful? 

Yes 

3. How extensively did you use the system? Hours? pays? 

I used 65% of PICASSO's facilities. I worked \,r.!th 

it for three months. 

4. What important problem did you solve? 

I used PICASSO as the basis for a picture query 

language. 

5. Coulrl you have solved it another way? 

Yes 

6. How would the two costs compare? 

It would have been three times as much work without 

PICASSO. 

7 • Do you plan to use the system again? Why? \Jh V no t? 

Yes, I am still using it. 

! 
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8. Would you recommend the system to your colleagues? 

Yes. 

9. Did you recommend the system to your colleagues? \olho? 

No. my colleap,ues have no need for such a system. 

10. What revisions or extensions would you recommend? 

11. Do you know of any better system? What are they? 

No. 
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NAME: Peter Levine 

1. What was your overall impression of PICASSO? 

Fantastic. pretty far out. but it had lightpen and 

hardware problems. I was awed. confused. 

2. Did you find the system generally useful? 

/ 

Never got to that part. 

3. Ho~ extensively did you use the system? Hours? Pays? 

I. spend a lot of hours fiddeling around. 

4. What important problem did you solve? 

None 

5. Could you have solved it another way? 

Yes. This problem involved differential equAtions for 

a complex feedback path in biological simulation. I 

formulated it as a diagram. then wrote out the 

equations from the diagram. Then I used a 

simulation system that I was familiar with. 

6. How would the two costs compare? 

It was much easier without PICASSO. 

7 • Do you plan to use the system again? Why? Why not? 

No. Too clumsy. 

6 
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8. Would you recommend the system to your colleagues? 

For certain problems. 

9. Did you recommend the system to your colleagues? Who? 

No. 

10. What revisions or extensions ~ould you recommend? 

More reliahle hardware, software. 

a complete set of documentation. 

Also I did not have 

11. Do YOQ know of any better system? What are they? 

No. 

,. 
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NAM": : John S. Co1onias 

1. What was your overall impression of PICASSO? 

It is a well documented and structured 

computer program. 

2. Did you find the system generally useful? 

Yes. It fulfills a definite need. 
M 

3. How extensively did you use the system? Hours? Oa ys? 

Approximately one month - on and off. 

4. What important problem did you solve? 

I did not solve any problem. I was trying to 

see whether it could be used effectively in circuit 

design applications. 

5. Could you have solved it an6ther way? 

Perhaps. Rut I have not given it a thought. 

6. How would the two costs compare? 

PICASSO would be less costly to operate. 

7 • Do you plan to use the system again? Why? Why not? 

When a defirtite need arises, yes. 

8. Would you recommend the system to your colleagues? 

o "\I.. ·0 !. " o 



9. 

Yes, I would (and I have). 

Did you recommend the system to your colleaRues? 

I have discussed PICASSO with people at the 

Argonne National Laboratory and ~awrence 

Livermore Laboratory. 

10. What revisions or extensions would you recommend? 

11. Do you know of any better system? What are they? 

I have not taken the time to investigate 

other systems. 

174 
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NAME: Andrew E. Allen 

1. What was your ove~all impression of PICASSO? 

Very professionally finished product. 

Much flexibiliity. Impressive. 

2. Did you find the system generally useful? 

Yes. 

3. How extensively did you use the system? Hours? nays? 

A total of a couple of weeks, ahout two 

years ago. 

4. What important problem did 'you solve? 

None; just getting familiar with it. 

s. Could you have solved it another way? 

NA 

6. How would the two costs compare? 

NA - but not terribly expensive. In f act. f or the 

work it does. reasonably inexpensive. 

7. Do you plan to use the system again? Why? Uhy not? 

Probably not - not quite in my area of application 

(text editing and character graphics). 

o d 



8. Would you recommend the system to yo~r colleagues? . 

9. 

Unquestionably, if I thought they would have a 

use for it. 

Did you recommend the system to your coll~agues? 

No. 

lJh o? 

10. What revisions or extensions would you recommend? 

11. 

(a) More general commands for processing polygons 

i.e •• shrink by factor. to fit another, rotate hy 

degrees, etc.) 

(b) Better user's manual (although the one 

I have is four years old and may already have heen 

supplanted) 

(c) 3-0 

Do you know of any be~tet stst~m? What are they? 

No. 

176 
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NAME: Peter Wood 

(Simulation application; see separate comments on 

PICASSO as a starting point for a mapping pro1ect.) 

1. What was your overall impression of PICASSO? 

Good. 

2. Did you find the system generally useful? 

Yes, simulation, simple drawing and mapping, 

and structured mapping. 

3. How extensively. did you use the system? Hours? Oa ys? 

Two weeks for simulation. 

4. What important problem did you solve? 

Class assignments for Engineering III at 

UniVersity of California at Herkeley. 

5. Could you have solved it another way? 

Yes, using the campus META 4 - CSMP system. 

6. How would the two costs compare? 

.. The META 4 was too crowded • 

7. Do you plan to use the system again? \.Jh y? \.rhy no t? 

Yes, if applicable. I want to use GPSS ~hich 

is not yet on our system. 

o 0 



8. Would you recommend the system to your colleaRues? 

Yes. 

9. Did you recommend the system to your colleagues? 

Yes, Betty Seasonwei~. 

10. What revisions or extensions would you reco~mend? 

Add GPSS to available analysis routines. 

Add more analysis ro~tines. 

\.Jho? 

Better documentation for the analysis interface. 

11. Do you know of any better system? What are they? 

No. CSMP - too limited -fixed lihrary, 

no hard copy. 

178 



NAME: Pet~r Wood 

1. What was your overall impression of PICASSO? 

PICASSO is a well designed and debugged system. 

2. Did you find the syste~ generally useful? 

I found the system useful for continuous 

simulation, where the symbols drawn have text 

definitions, for explorations of Mapping 

where the symbol placement on the screen is 

significant, and for simple drawing (expecially 

with quantum = 0). 

3. How extensively did you use the system? Hours? Days? 

Initially about two or'three days a week 

for three to six months and occasionally 

thereafter. 

4. What important problem did you solve? 

Through the USERCMO feature developed the 

capacity to search a data structure of symbols 

nested to many levels for all elements within 

an arbitrary closed polygon. 

5. Could you have solved it another way? 

Not without duplicating a lar~e part of PICASSO. 

The text definitions and analysis routin~s 

o t\ O··} 
~J 
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could have been bypassed. Of course, it could 

have been done in batch mode. 

6. Ho~would the two costs compare? 

The .cost in man-hours would have been more· 

and progress would have heeri slower without 

PICASSO. 

7. Do you plan to use the system again? Why? Why not? 

Yes, when the occasion arises. PICASSO 

is easy to use, convenient, and reliable. 

8. Would you recommend the system to your colleagues? 

Yes 

9. Did you recommend the system to y6ur colleagues? 

They recommended it to me. 

10. What revi.sions or exteqsions would you recommend? 

J 1 • Do you know of any better system? What are they? 

No. 

l~ho? 

180 
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NAME: Horace Warnock 

1 • What was your overall impression of PICASSO? 

Great. 

2. Did you find the system generally useful? 

Yes. 

3. How extensively did you use the system? Hours? Oays? 

Approximately 1000 hours starting in 

Ha y 0 f 1971. 

4. What important problem did you solve? 

Scratchpad (sketching to scale) of 

printed circuit layouts. 

5. Could you have solved it another way? 

Y~s - work up printed circuit layouts by 

hand. Sketch to scale - tape and retape, etc. 

6. How would the two costs compare? 

We found that we saved approximately 20-25% 

using PICASSO for sketching to scale and 

using Xerox as a guide or underlay. 

7. Do you plan to use the system again? Why? \.;rhy not? 

Yes. 

o n o 



8. Would you recommend the system to your collea~ues? 

Yes. 

9. Did you recommend the system to your colleagues? 

Yes. The Electronics. Engineerin~ 

Department - Lawrence Berkeley Laboratory. 

10. What revisions or extensions would you recommend? 

11. 

Program - none 

Terminal - higher resolution screens 

Systems - stand alone very desir.bIe 

Do you know of any better system? What are they? 

No. 

182 
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NAME: Rill Benson 

':"< 
1 • What was your overall impression of PICASSO? 

Sexy. A powerful tool to build and 

manipulate pictures. Have had no experience 

analyzing models. 

2. Did you find the system generally useful? 

It was easy to add a user comMand to do 

animation. 

3 • How extensively did ynu use the system? Hours? Days? 

Briefly - a few days with animation~ We 

used it extensively about a year as a 

specialized map editing program, but ~his was 

heavily modified and all the analysis routines 

were removed. 

4. What important problem did y~u solve? 

As above. 

5. Could you have solved it another way? 

Yep! but this was a fairly quick way to get 

~oing and we got experience with the problem 

of map editing. 

6~ Ho~ would the two costs compare? 

(i 
... $ o 0 



Much cheaper not usinR PICASSO. 

7. 00 you plan to use the system ~gain? Why? Wh'y no t? 

No immediate application in mind, hut 

would certainly use it on an appropriate 

problem. 

8. Would you recommend the system to your colle~Rues1 

Sure 

9. Did you recommend the system to your collea~ues? 

Richard Friedman, Jerry Knight. 

10. What revisions or extensions would you recommend? 

11. 

Use device independent graphics. Make zoom 

more convenient. 

relative points. 

Perhaps define symbols with 

Rewrite code for clarity. 

Do you know of any bett~r system? What are they? 

No. 

Who? 

lR4 

. I 
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Appendix H. Program DOCUMentation 

Program documentation is available from the author at the 

following address: 

Harvard Holmes 

Building SOH, Room 3238 

Lawrence Herkeley Lahoratory 

Berkeley, California 94720 

nocumentatidn and access to the prorotype GMS (known as 

PICASSO atLHL) is availahle in the followin~ forms: 

1. A short paper describing the system. 

2. A users guide to the graphics section with many examples. 

3. A users guide to the translator. 

4. Source code and listings of the program in Fortran and 

assembly language (on tape and microfiche). 

5. ARPANET access to LRL whereby the program can be executed 

for a few devices (DEC GT40, Tektronix 4010 - 4015 

terminals) • 

[1 (,. 0 0 
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