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Chapter 1 

Introduction 
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This report describes the results of the research efforts carried out under 
MOU131. The overall goal of this resarch was to develop a machine vision 
system for use in vehicle control applications. Towards this end we performed 
research to extend and improve the capabilities of machine vision algorithms. 
We also demonstrated real-time implementations of some of these algorithms 
which could actually be used as part of a closed-loop control system. 

In this report we propose a new approach for vision based longitudinal 
and lateral vehicle control. The novel feature of this approach is the use of 
binocular vision. We integrate two modules consisting of a new, domain- 
specific, efficient binocular stereo algorithm, and a lane marker detection 
algorithm, and show that the integration results in a improved performance 
for each of the modules. 

Longitudinal control is supported by detecting and measuring the dis- 
tances to leading vehicles using binocular stereo. The knowledge of the cam- 
era geometry with respect to the locally planar road is used to map the images 
of the road plane in the two camera views into alignment. This allows us to 
separate image features into those lying in the road plane, e.g. lane mark- 
ers, and those due to other objects which are dynamically integrated into an 
obstacle map. Therefore, in contrast with the previous work, we can cope 
with the difficulties arising from occlusion of lane markers by other vehicles. 
The detection and measurement of the lane markers provides us with the 
positional parameters and the road curvature which are needed for lateral 
vehicle control. Moreover, this information is also used to update the cam- 
era geometry with respect to the road, therefore allowing us to cope with the 
problem of vibrations and road inclination to obtain consistent results from 
binocular stereo. 

Chapter 2 of this report describes the research that has been done on imr- 
poving and extending the capabilities of our machine vision system. Chapter 
3 describes our real-time implementation of lane-finding and stereopsis capa- 
bilities. Chapter 3 discusses some of our conclusions and future work. 
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Chapter 2 

An Integrated Stereo-Based 
Approach to Automatic 
Vehicle Guidance 
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2.1 Introduction 
We propose an approach and develop a system for vision based longitudinal 
and lateral vehicle control which makes extensive use of binocular stereopsis. 
Former work on autonomous vehicle guidance has mostly concentrated on 
road following. Some of these approaches [DM92, Porn921 perform very well 
in uncrowded traffic scenes, where lane markers are clearly visible and not ob- 
structed by other vehicles. However, in real traffic scenes, other vehicles are 
usually present, and this raises two problems. First, they are potential obsta- 
cles, which are to be detected. This problem has been addressed using optical 
flow interpretation [EnkSO, CE901, stereopsis [ZJB+SO, OOS+90, Mat921, or 
a combination of both [CMTSl]. These approaches are often computation- 
naly expensive. Second, lane markers are often obstructed by other vehicles, 
which might defeat the algorithms which do not take explicitly occlusion into 
account. 

Novel aspects of our system include (a) exploitation of domain constraints 
to simplify the search problem in finding binocular correspondences (b) tem- 
poral integration of the results of the stereo analysis to build a reliable depth 
map of obstacles (c) dealing with crowded traffic scenes where substantial 
segments of the lane boundaries may be occluded (d) on-line updating of the 
external camera calibration with respect to the road. The vision system is 
designed to interface in a modular fashion with the use of non-visual sensors 
such as magnetic sensors for lateral position measurement and active range 
sensors (e.g. Doppler radar) for an integrated approach to vehicle control 
such as that being investigated in the California PATH project. 

Longitudinal control - i.e. maintaining a safe, constant distance from 
the vehicle in front - is supported by detecting and measuring the distances 
to leading vehicles using binocular stereopsis. A known camera geometry 
with respect to the locally planar road is used to map the images of the road 
plane in the two camera views into alignment. Any significant residual image 
disparity then indicates an object not lying in the road plane and hence a 
potential obstacle [MBLBSl]. This approach allows us to separate image 
features into those lying in the road plane, e.g. lane markers, and those 
due to other objects. In the absence of this separation, image features due 
to vehicles which happen to lie in the search zone for lane markers would 
corrupt the estimation of the road boundary contours. 

The features which lie on the road are stationary in the scene and appear 
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to move only because of the egomotion of the vehicle. Measurements on these 
features are used for dynamic update of (a) the lateral position of the vehicle 
with respect to the lane markers (b) the camera parameters in the presence of 
camera vibration and changes in road slope. Lane markers are detected and 
used for lateral control, i.e. following the road while maintaining a constant 
lateral distance to the road boundary [DM92, Tho90, Pom92, RH91, APR921. 
For that purpose we model the road and hence the shape of the lane markers 
as clothoidal curves. The system gives a precise estimate of all the positional 
and dynamical parameters of the lane markers. In particular, the flow of the 
lane markers is computed (time derivative of the position and orientation of 
the lane in the mobile car's reference frame) and the important look-ahead 
information consisting of road curvature is also obtained. The lane is sensed 
with a look ahead distance of 60 meters, and even at this distance, all the 
road parameters are estimated. 

The binocular measurement of the lane markers enables us to perform 
an on-line updating of the external geometric parameters of the stereo rig 
with respect to the road. We can therefore deal with change in slope of 
the road, as well as variations in inclination of the car caused by bumps or 
accelerations and decelerations. This allows us to maintain a high accuracy 
of measurement within'our domain-specific stereo algorithms. 

Outline of our approach 
The idea behind our approach is to build a reliable and efficient system by 
exploiting a number of geometric constraints which arise from the configura- 
tion of our stereo rig, and from the fact that the road can be modeled locally 
as a plane. These geometric constraints are detailed in Sec. 3.2. 

At each new instant, we first compute the stereo disparity using an ef- 
ficient algorithm based on the Helmholtz shear (Sec. 3.3). The disparity 
map is used in two ways. First, a 3D obstacle map is dynamically updated 
over time by tracking identified vehicles and introducing new vehicles which 
appear. (Sec. 2.4). This provides the information needed for longitudinal 
control, ie measuring the distances to leading vehicles. Second, the areas of 
the image belonging to the ground plane are identified. This ensures that 
the search area for lane markers (which is defined using the parametric de- 
scription of the lane markers which was found at the previous instant) is not 
corrupted by occlusions. Within this area, the lane markers are localized 
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control conrrol 

Figure 2.1: The flow of information in our integrated approach 

by a specialized feature detector (Sec. 2.5). From the image positions of 
the lane markers, we can update the geometric parameters of the stereo rig 
(Sec. 2.6) The new parameters will be used to compute the stereo disparity 
at the next instant, and to map the lane markers to the ground plane, where 
a parametric description is obtained for them (Sec. 2.5). This parametric de- 
scription provides the information needed for lateral control, ie maintaining 
a constant distance to the road boundary. The flow of information that we 
just described is summarized in Fig. 2.1. 

2.2 The geometrical model 

2.2.1 A stereo rig viewing a plane 

In our application, the vision system consists of a binocular stereo rig. The 
road surface plays an important role, since it contains the lane markers to be 
tracked for lateral control, and since every object which lies above it is to be 
considered as a potential obstacle. Our key assumption is that this surface 
can be locally modeled as a plane. 

The camera is modeled as a pinhole camera using the projective linear 
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model. There is a one-to-one correspondence between the image plane R1 and 
a given plane II, and that this correspondence is given by the homography: 

where m1 (resp Mn)  are the projective coordinates of a point of R1 (resp 
II). In the case of two cameras, we get that the two images ml and m2 of a 
point Mn on a given plane II are related by the homographic relation: 

2.2.2 The Helmholtz shear 
In a particular case, this relation reduces to what we call the Helmholtz 
shear, a configuration where the process of computing the stereo disparity 
is tremendously simplified. We have chosen this term to acknowledge the 
fact that this insight is due to Helmholtz [He1251 more than a bundred years 
ago. He observed that objectively vertical lines in the left and the right view 
perceptually appear slightly rotated. This led him to the hypothesis that 
the human brain performs a shear of the retinal images in order to map the 
ground plane to zero disparity. Then, any object above the ground plane will 
have non-zero disparity. This is very convenient because the human visual 
system is most sensitive around the operating point of zero disparity. 

In the most general situations where the Helmholtz shear applies, the 
correspondence between two views of a point of the road plane can therefore 
be described by the relation: 

U' = u + h12v + h13 
v' = v 

which means that the matrix H I 2  takes the special form: 

H12 = I3 + [ i ] [ 0 h12 h,13 ] 

It is known that the expression for the general homography is: 

H12 = A'(R + -TnT)A-l 1 
cl 

(2.2) 
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In this expression, A (resp A') is the matrix of intrinsic parameters of the 
first (resp. second) camera. The motion parameters R and T describe the 
displacement between the two cameras. The equation of plane II is nTM = d ,  
where n is the unit normal vector of the plane and d the distance of the plane 
to the origin. From this expression, one can easily see that the correspondence 
H I 2  is a Helmholtz shear, if and only if 

0 the intrinsic parameters A and A' are the same' 

0 the rotation R is the identity 

0 the translation T has only a component along the X-axis 

0 the component of the normal n along the X-axis is zero 

In such a situation, the stereo rig is entirely characterized by the following 
parameters: 

4 

0 intrinsic parameters of the first camera A 

0 baseline b 

The position of the plane with respect to the stereo rig can be described by 
two parameters (that we will call the geometric parameters), for instance: 

0 the height of the stereo rig with respect to the road plane d 

0 the angle of tilt of the stereo rig with respect to the road plane a 

They are related to the coefficients of the Helmholtz shear by: 

h12 = b /d  sin Q 

hi3 = b / d  COS Q 

'Actually with the exception of the parameters uo and ub which may differ. In the 
sequel, we will just suppose that A and A' are totally identical. 
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2.3 Binocular Stereopsis 

Although proposed algorithms in the literature for computing binocular stere- 
opsis are quite computationally expensive we are able to reduce the com- 
plexity considerably by using region-of-interest processing and exploitation 
of domain constraints. 

The process of computing the stereo disparity is tremendously simplified 
by using the Helmholtz shear described in Sec. 3.2. After applying this very 
simple transformation to the image, obstacles get mapped to points of non- 
zero disparity making them very easy to detect. 

The disparity is found by computing the normalized correlation between 
small horizontal windows in the two images at the locations of the points-of- 
interest. The normalized correlation for disparity shift T~ at horizontal image 
location II: is: 

(.$(x + 7-7 9) 

~ 2 ' ~ )  = al,r(x + 7 7  x + T ) 4 r 1 r ( 2 7  5) 
(2.4) 

4 

where the correlations a;,j(z7 y) are approximated by summations 

+Wl2 

u=-w/2 
4 ( z 7  Y) = gi(z + u)gj(y + u )  (2.5) 

which are calculated over a window of size W .  
Points-of-interest are those locations in the right image where the value 

of o:,~ is above a threshold. The normalized correlation function is calcu- 
lated only in those regions. Sub-pixel disparities are obtained by quadratic 
interpolation of the function about the maximum T .  

Residual disparities - which appear in the image after the ground plane 
disparity has been mapped to zero - indicate objects which appear above 
the ground plane. A simple threshold is used to distinguish between features 
lying on the ground plane (e.g. lane markers or other stuff painted on the 
road) and features due to objects lying above the ground plane (which may 
become future obstacles). Figure 2.2 shows the result on a single frame. 

2.4 Temporal integration 

Computing depth from just a pair of images is known to be sensitive to noise. 
One can improve the accuracy of the depth estimation by exploiting the 

9 



Figure 2.2: a) left image and b) light indicates objects were detected to be 
on the road surface, dark indicates objects are above the road surface, black 
indicate regions where the disparity could not be accurately recovered. 

temporal integration of information with time using the expected dynamics 
of the scene via Kalman filters. Objects of interest will be assumed to be 
either other vehicles on the road or stationary objects connected to the road 
plane. In addition we can exploit the physical constraints of the environment. 
We can assume we are interested in connected, rigid objects. This would 
allow us to use spatial coherence in identifying objects from the depth map. 

We utilize the spatial coherence of objects in order to segment the depth 
map into objects of interest. First, connected components are found in a 
3D space consisting of the two image dimensions plus the depth dimension. 
In the two image dimensions, points are connected if they are one of the 4 
nearest neighbors. In the depth dimension they are connected if the difference 
in depth is less than the expected noise in the depth estimates. Figure 2.4 
gives an example of two objects which are connected in this image/depth 3 0  
space. 

These connected components form the basis of potential objects which 
are to be tracked with time. If the same object appears in two consecutive 
frames, we can initialize a Kalman filter to track its position and velocity with 
respect to our vehicle. Figure 2.4 show the objects found by this method. 

t 

2.5 Lane marker detection and tracking 
To avoid the computational expenses and the sensitivity to the vertical vi- 
bration induced by the car suspension which plague the methods based on 
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Image x 

Figure 2.3: Connected components in image/depth space consist of those 
pixels which are nearest neighbors in image coordinates as well as having 
depth differences less than depth uncertainty. 

Figure 2.4: Objects identified as being in the same lanes of tra.ffic as the test 
vehicle. On the right side of the image is a “birds-eye-view” from above the 
road surface showing the relative position of the tracked objects with respect 
to the test vehicle. 
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optical flow, our approach to lateral control relies on the evaluation of the 
global relative motion of the lane markers. The goal of lane marker detec- 
tion and tracking is to provide us with the lane flow information. We need 
therefore to compute, in the coordinate system linked to the car: 

0 the horizontal offset of the lane marker 

0 the orientation of the lane marker 

In addition to these parameters, we also take into account road curvature 
that we want to detect as far ahead as possible. 

When the system is started (or reinitialized in case of detected unconsis- 
tencies), we assume that we are in the most usual configuration where the 
car is on a straight portion of the road. We search for the position of poten- 
tial line markers as straight lines, using the fact that they are parallel. The 
algorithm, which uses only simple voting and clustering operations, is based 
on the image of Gaussian derivatives, which was already computed to find 
the features during disparity computation. An example is shown Fig. 2.5. 

In the steady state mode, the tracking is based on a predict and verify 
procedure. The following loop continually executes: 

0 Predict new parameters for each lane marker. 

0 Define horizontals search bands in the image (an example is given 
Fig. 2.5) based on the predicted parameters, their uncertainties, and 
the previous homography matrices. The information provided by stere- 
opsis is used here to exclude points which are images of obstacles. 

0 Localize within the search zone the center of line markers, using a bright 
bar model. This is done in two stages. First, we localize the center of 
the marker by performing a local convolution with an approximation 
of the elongated 2D filter consisting of the product of a second deriva- 
tive of a Gaussian (perpendicular direction) by a Gaussian (direction 
parallel to the lane marker). Then, to select the final position, we 
use a model-based approach. Within the expected interval of width, 
we compare the brightness value and variance of the bar and of the 
background. An example of the points found is shown Fig. 2.5. 
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0 Backproject the points just found to the ground plane using the up- 
dated homography matrices and the predicted parameters. Fit a new 
clothoid model to the backprojected points. To avoid large-scale non- 
linear minimization, specific techniques are used. First, the offset and 
orientation are computed by determining the tangent at the origin of 
the curve through a LMedS line fitting. Then to reduce the search space 
for the curvature parameters, we take into account the fact that they 
can only evolve in a limited number of ways, depending on the type 
of the portion of the road where the vehicle is (successively: straight, 
curve entry, middle of a curve, end of a curve). An example of a portion 
of clothoid found is shown in Fig. 2.6. 

0 Update the model parameters 

The road model that we use is based on the the actual road layouts 
widely used in civil engineering to produce high-speed roads. Each of the 
line markers detected is modeled as a plane curve which is characterized by 
the 5 parameters: 

0 0: lateral offset of the line in the car’s coordinate system 

0 8: angle between the direction of the line at the closest position and 
the line of sight of the car 

0 C1, C2, C3 curvature at the beginning, middle, and end of the observa- 
tion zone. 

The clothoid model, which is used in road designing, consists in assuming that 
the curvature along the road is a continuous function of arc length , with a 
piecewise constant variation a;: C(s) = C1 +ais. The constant ichanges only 
at the middle of the observation zone. The model can represent accurately 
straight lines, arc of circles, and the transitions between them. In spite of 
the small number of parameters, and of these simplifications, the model is 
more accurate than assuming just zero curvature [TMGM88, Cri90, Ken891 
or parabolic sections [I<T92]. 

The computation of the actual 3D points from the values of the model 
parameters is quite expensive, since curvature is a second-order quantity, 
and thus to have a fast access to the curve from its parameters we use a 
look-up-table which is precomputed. 
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On a typical example, the results of curvature estimation are fairly con- 
sistent with what could be expected, as can be seen in Fig. 2.6. As shown in 
Fig. 2.7, occlusion of lane markers might lead to spurious values of the cur- 
vature parameters. Removing the occluded points using using the residual 
disparity with respect to  the ground plane enables us to find that the lane 
being tracked is straight. 

Figure 2.5: The initialization of the algorithm is done by detection of portions 
of straight lines of common orientation (top left). Within the search zone 
predicted (top right), a precise localization of line markers points if performed 
(bottom). 

2.6 Determining the camera geometry using 
residual disparity 

So far, we have supposed that the camera geometry with respect to the road 
is known, and fixed. However, the movements of the car’s suspension and 
the change in vertical road curvature can affect this geometry. Indeed, it 
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Figure 2.6: Estimated parameters, top view, and reprojected view of the 
fitted clothoids. The zoom shows that the fit is quite precise, in spite of the 
large distance and curvature variation. 

has been reported [DD90] that a small difference in the assumed and actual 
camera tilt angle with respect to the ground affects the 3D reconstruction 
significantly. Moreover, the operation of mapping the ground plane disparity 
to zero is very sensitive to this parameter, as a small error in the inclination 
angle will cause a significant error on the localization of the ground plane. 
Therefore, we need a way to update the camera geometry relative to the 
ground plane. The idea is to use the measurements of the image of the road 
to compute the external parameters. 

The two geometric parameters in our model are the inclination angle cy 

and camera height, h. The points-of-interest which exhibit small residual 
disparities are assumed to lie on the ground plane. This residual disparity 
can be used to update the inclination angle cy and height h. The idea is to 
minimize with respect to cy and h the sum of squares of differences between 
these measured disparities and the disparity under the ground plane assump- 
tion. The values of cy and h are then continuously updated over time using 
a linear Kalman Filter based on the dynamics of (Y and h. For example, the 
height h is modeled as a damped harmonic oscillator driven by noise. This 
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Figure 2.7: 
(green) and 

parameter 

Estimated parameters and zoom showing the feature points 
the fitted lane markers (red). Left; all the feature points are 

used. Right: the spurious feature points (purple) are removed using the 
residual disparity with respect to the ground plane 

is a model consistent with the suspension system of the car. 
There are essentially two origins for variations in a and h: a short term 

variation due to camera vibrations, which requires a large process noise, and 
a long term variation caused by a change in the slope of the road, which can 
be captured using a small process noise. An example of the results obtained 
from a sequence of 210 frames recorded during 7 seconds of freeway driving 
is shown in figure 2.8. 
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Figure 2.8: Camera inclination angle and camera height estimated from 
ground plane disparities for a freeway driving sequence. 
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Chapter 3 

A Real-Time Approach to 
Stereopsis and Lane-Finding 



3.1 Introduction 

This paper will report new results we have obtained in applying stereo vision 
algorithms to the problem of autonomous vehicle navigation on highways. 
The goal of our project was to design, implement and test a vision system 
that would take the video signals from a pair of CCD cameras and compute 
in real time (20 Hz) the position and orientation of the car with respect to 
the lane and the position of other obstacles on the roadway including other 
vehicles. 

This paper consists of two parts: Section 3.3 will describe a real-time 
stereo system (20 Hz) which computes the position of salient obstacles in the 
roadway, including other vehicles, with respect to the controlled car while 
Section 3.4 describes a real-time lane tracking system (20 Hz) which keeps 
track of the position and orientation of the vehicle with respect to the lane 
markers. 

The estimate for the position of the vehicle within the lane would be used 
as input to a lateral control system while the positions of the detected obsta- 
cles would be passed to a longitudinal control system which would regulate 
the speed of the vehicle. 

A number of researchers have demonstrated vehicle navigation systems 
that use vision as a primary control input [DM92, THKS88, MKLT95, Pom951. 
Our work [WKLM95]is most similar to that of Dickmanns et a1 in that we 
make use of models of the roadway and the obstacles in the field of view. 
However, our systems employ information from a pair of stereo cameras which 
allows us to directly measure the three-dimensional structure of the scene. 

Our algorithms have been implemented on a network of TMS320C40 Dig- 
ital Signal Processors in order to achieve real-time performance. The imple- 
mentations are described in more detail in the sequel. 

3.2 Description of imaging setup 

Figure 3.1 shows the stereo configuration that was used to acquire images in 
our experiments. The vectors X,, Y,, and 2, define the ground plane frame 
of reference while X,, Y ,  and 2, represent the frame of reference attached to 
the stereo rig. The stereo rig was mounted on the car at a height d above 
the ground plane and at an inclination 8. These parameters depend upon 
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Figure 3.1: Stereo configuration used in our experiments. 

the state of the cars suspension system and may vary over time. In our 
experiments, the stereo baseline, b was fixed at 10.5 centimeters. 

Equations 3.1 through 3.4 define the relationship between the coordi- 
nates of a point with respect to the stereo rigs frame of reference and the 
coordinates of its projection in the left and right images. 

, ul = s,( (X, + b)/Z,) + c: 
v' = S,(y,/Z,) + c:, 
ur = & ( ( X ,  - b)/Z,) + c: 
vr = S , ( y , / Z , )  + c j  

The parameters s, and sy refer to the scale factors in the z and y directions 
on the image plane and are assumed to be t.he same in both cameras. (cl ,  cf) 
and (cz ,c ; )  refer to the images of the centers of projection of the left and 
right cameras respectively. 

Equation 3.6 gives the relationship between the coordinates of a point 
with respect to the world frame and its coordinates in the stereo rig frame. 

0 1 0  0 
-sin8 0 cos8 (dcos8) 
cos8 O sin8 (dsin8) 

0 0 0  1 

Consider the set of points that lie on the ground plane, that is, points 
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with world coordinates of the form ( X w ,  Y,, 0 , l ) .  We can derive the following 
equation which relates the stereo disparity of these points, (u' - u'), to  their 
row coordinates in the left image, v'. 

1 2bs, cos 8 (u - u') = (v' - h') + (cf, - cjc.) 
dSY 

Where hl = (cb - sy tan8) denotes the projection of the horizon of the 
ground plane in the left image. This expression is refered to as the Helmholtz 
shear equation [WKLM95] and it places a lower bound on the disparities we 
would expect between features in the left and right images on any given row 
of the image pair. 

3.3 The Stereo Algorithm 
The goal behind any stereo algorithm is to establish correspondences between 
points in the left and right images. Once this has been accomplished, it is 
a simple matter to compute the 3-D coordinates of the matched point via 
triangulation as shown in Figure 3.1. 

For this application, we have chosen to break the stereo matching pro- 
cedure into two stages. In the first stage we run a vertical edge extraction 
procedure on corresponding rows in the left and right images. This is accom- 
plished by convolving the image rows with a Canny edge filter [Can861 and 
selecting the local maxima above a certain threshold in the resulting array. 
This is typically the most computationally intensive stage in our algorithm, 
it takes approximately 1 millisecond per row on our C40 network. 

In the second stage of the matching process, we compare each edge in the 
left image row to potential correspondents among the edges in the right image 
row. The candidate matches are evaluated by computing the normalized 
correlation between a window of pixels centered around each edge. These 
windows are typically 20 to 30 pixels wide. The stereo algorithm selects 
the best correspondent for each edge in the left image on the basis of these 
correlation values; correlation values below a certain threshold are rejected 
as unreliable. 

The main advantage of this scheme is that it dramatically lowers the com- 
putational complexity of the stereo process. Since we only compare edges in 
the left and right images, the stereo algorithm does not have to consider 
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nearly as many possible matches as it would otherwise have to. Another rea- 
son for considering matches between regions with significant contrast changes 
is that correlation based matching schemes are most accurate when they are 
applied to these types of features. Similar edge based schemes have been 
successfully applied in indoor environments and at slower frame rates by a 
number of researchers [KTB89, CSSP921. 

The results of this stereo matching procedure could be passed to a group- 
ing algorithm such as the one described by Weber, Koller, Luong and Malik 
[WKLM95] which would group the matched edges into coherent obstacles 
which could be tracked over time. Temporal integration schemes like the 
Kalman filter could be employed to improve our estimates for the position 
and velocity of these obstacles with respect to the test vehicle. 

Cameras 

t 
Stagel: 
Frame Grabber 

Stage 2: 
Feature Extraction, 
Stereo 

Stage 3: 
Lane Fitting 

Graphics 
Subsystem 

Qa Display 

Figure 3.2: Network of TMS320C40s used to implement the real-time lane 
tracking and stereo systems. 

We have chosen to implement our stereo algorithm on a network of 
TMS320C40 Digital Signal Processors which are arranged in a network as 
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shown in Figure 3.2. The processors are arranged in a pipeline to improve 
system throughput. The processor at the head of the pipeline is equipped 
with a frame grabber which it uses to capture pairs of images from the left 
and right cameras. It then sends the image data on to a set of four pro- 
cessors which constitute the second stage of the pipeline. Processors in this 
stage perform the feature extraction and stereo matching procedures. The 
stereo results are collected together by the processor at the third stage of 
the pipeline which passes the results on to the final stage where the results 
are displayed on a VGA monitor. This organization allows us to exploit the 
parallelism inherent in the stereo algorithm since each of the four processors 
in stage two computes stereo correspondences for a different region of the 
image. Additional parallelism is realized by allowing processors at different 
stages in the pipeline to work independently so that multiple stereo pairs can 
be processed simultaneously. 

Our current system captures and processes stereo pairs from the cameras 
at a rate of 20 frames per second. Each of the images in the pair is digitized , 
at a resolution of 340 columns by 240 rows. The system performs its stereo 
calculations on 20 of the rows in the image pair as shown in figure 3.3. There 
is a delay of 100 milliseconds between the time that an image is captured 
and the time that the results of the stereo computation are made available. 

3.4 Lane Recognition 

The lane tracking module is designed to provide estimates for the position 
and orientation of the car within the lane. Our approach to lane tracking is 
based upon a parametric model of the lane geometry, the tracking algorithm 
computes estimates for the parameters of this model from feature measure- 
ments in the left and right images. At each time instant, the lane tracker 
predicts where the lane markers should appear in the current image based 
on its previous estimates for the lane position. It then extracts possible lane 
markers from the left and right images. These feature measurements are 
passed to a robust estimation procedure which recovers the parameters of 
the lane along with the orientation and height of the stereo rig with respect 
to the ground plane. 

Figure 3.4 shows the relationship between the vehicle and a section of the 
highway lane some distance ahead while Figure 3.5 shows how that portion 
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Figure 3.3: (a) The left image of a stereo pair (b) The vertical edge features 
that the system extracted and found correspondences for in the right image, 
the gray value of the edge segment corresponds to its disparities, brighter 
features have larger disparities 
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Figure 3.4: Figure showing the zelationship between the vehicle and the 
highway lane 

U i 

Figure 3.5: The appearance of the roadway in the image plane 
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of the highway would appear in the left camera. 
Note that the model for the appearance of the lane markers in the image 

is captured by four parameters: two parameters, h' and i' which represent the 
vanishing point of the lane in the image and another two, s i  and s'_ which 
denote the slopes of the left and right lane markers respectively. Equations 
(3.9) through (3.11) describe the well known relationship between these image 
parameters and the parameters of the road and camera models. 

h = cy - s y t a n 8  1 1 
(3.8) 

1 S X  Y+ + b  s+ = -{cos 8( -) - sin 8 tan +} 
S Y  d 

(3.9) 

(3.10) 

(3.11) 

Note that the vanishing point in the image is simply the projection of the 
road direction vector onto the image plane. As such, there is a particularly 
simple relationship between the coordinates of the vanishing point, h' and i', 
the pitch and yaw parameters, 8 and $. The slopes of the left and right lane 
markers in the image, d+ and s'_ indicate the lateral position of the vehicle 
with respect to these lines. 

Prior knowledge of the range of values that the model parameters can 
assume serves to limit the range of possible values for the image parameters. 
More specifically, knowledge about the range of reasonable values of roll and 
pitch angles limits the area in the image in which the vanishing point could lie 
while knowledge about the range of road widths and the approximate height 
of the stereo rig above the ground limits the difference in slope between the 
left and right lane markers. 

The first stage of the lane tracking system is responsible for detecting 
and localizing possible lane markers in the left and right images. The lane 
markers are modeled as white bars of a particular width against a darker 
background. Regions in the image which satisfy this intensity profile can 
be identified through a template matching procedure. It is important to 
remember that the width of the lane markers in the image changes linearly 
as a function of the image row. This means that different templates are used 

26 



for different rows in the left and right images. The Helmholtz shear equation 
can be used to verify that candidate lane markers actually lie on the ground 
plane. 

Once a set of candidate lane markers has been recovered, the lane tracker 
applies a robust fitting procedure to find the set of model parameters which 
best match the observed data. A robust fitting strategy is absolutely es- 
sential in this application because on real highway traffic scenes the feature 
extraction procedure will almost always return a number of extraneous fea- 
tures that are not part of the lane structure. These extra features can come 
from a variety of sources, other vehicles on the highway, shadows or cracks in 
the roadway etc. These distractions can confuse naive estimation procedures 
based on least squares techniques. 

A number of other researchers [KL95, PJ921 have also proposed robust 
estimation techniques for road recognition. Most of these techniques have 
been too computationally demanding for real time implementation. Our 
research demonstrates that it is in fact possible to implement such schemes 
in real-time. 

The lane fitting procedure is divided into two stages. In the first stage, 
linear Hough transforms are performed on the left and right lane markers 
independently. The Hough transform procedure computes the scores associ- 
ated with a set of candidate lines through the observed lane markers. These 
scores indicate how well the lines conform to the observed data. 

,,/-candidate line 
/' 

// 

/I 

/I x 

candidate lane marker 
/&#- 

// weight = v*exp (-(do)*) 
// 

// 

Figure 3.6: Figure showing how a straight line is ranked by a particular image 
measurement 
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For each candidate line, the contribution of a given image measurement 
is based on the lateral distance between that measurement and the line and 
is weighted by the position of the feature in the image as shown in Figure 
3.6. Feature points that are lower in the image (and hence closer to the 
vehicle) are given a greater weight than lane markers that are further away. 
This strategy biases the extraction procedure towards solutions that fit more 
closely in the near field. It also reflects the fact that features in the near field 
are considered more reliable because they are larger and can be localized 
more accurately. 

In the second stage of the fitting procedure, the system selects a pair of 
candidate lines, one for the left lane marker and one for the right, that satisfy 
all of the applicable constraints and which have the best combined score. 
More specifically, the system ensures that the two selected lines will intersect 
within a particular area on the image determined by constraints on the pitch 
and yaw angles. It also guarantees that the difference between the slopes of 
the left and right lane markers will lie within a specified range which reflects 
the fact that there are constraints on the width of the highway lane and 
the height of the stereo rig. The combined score for the lane interpretation 
provides an indication of the systems confidence in its estimate. 

If one of the lane markers is occluded then the system estimates the 
probable location of that lane from the position of the other lane marker and 
from a set of default values for the height of the stereo rig, the pitch angle, 
and the lane width. 

A simple weighted averaging scheme is used to combine the last 20 mea- 
surements of the image parameters into a single estimate, the score associated 
with each estimate is used as a weighting factor. This temporal averaging 
scheme helps to eliminate high frequency noise in the measurements. 

Digital signal processors described in the previous section. Once again, the 
computation has been divided into a four stage pipeline. The processor at 
the head of the pipeline captures stereo images from the video source and 
distributes them to the four processors in the second stage. The processors 
in stage two extract candidate lane markers from different regions of the 
stereo pair. The processor in stage three collects the results from stage two 
and performs the robust fitting procedure described earlier. The stage four 
processor is responsible for displaying the extracted lane markers and the 
estimates for the lane position on a VGA monitor. 

The lane tracking system has been implemented on the network of TMS320C40 
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Figure 3.7: (a) The left image of a stereo pair (b) The lane markers horizontal 
markings represent candidate lane markers in the image while the straight 
line represents the tracking systems estimate for the position of the lanes 
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Chapter 4 

Conclusion 
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We have proposed an integrated approach for vision based longitudinal and 
lateral vehicle control. In this approach, the vision module provides the 
following information to be used for any control system: 

0 detection of the leading vehicles and measurement of their distance, 

0 estimation of the flow of lane markers and of road curvature at a dis- 
t ance 

The main originality of our approach is the extensive use of binocular 
stereopsis, and its integration with lane marker detection. 

We have presented a new stereo algorithm which exploits domain con- 
straints to achieve efficiency in computing the instantaneous disparity map, 
as well as a new method to update dynamically a 3-D obstacle map, which 
is well suited to the nature of our problem. Our results illustrate the fact 
that by combining these two algorithms, it is possible to obtain a reliable 
and relatively dense obstacle map at a small computational cost. 

We have then shown that the lane tracking task, which is traditionally car- 
ried on monocularly, can benefit significantly from a stereo based-approach. 
In particular, we are able to deal with crowded traffic scenes where substantial 
segments of the lane markers may be occluded. The binocular measurement 
of the lane markers enables us to perform an on-line updating of the ex- 
ternal geometric parameters of the stereo rig with respect to the road. We 
can therefore deal with change in slope of the road, as well as variations in 
inclination of the car caused by bumps or accelerations and decelerations. 

In Chapter 3 we discussed our real-time implementations of stereo-vision 
and lane-tracking. This work demonstrates the feasibility of using a real-time 
stereo system to recover the position of a vehicle within a highway lane and 
to detect obstacles in the roadway. We presented an approach to recovering 
sparse depth maps from stereo data in real time using vertical edge features. 
This approach works well on typical highway scenes where the vast majority 
of objects of interest contain some form of vertical structure. Our current 
implementation can capture and process stereo pairs at a rate of 20 Hz. 

We have also developed a robust feature based lane recognition system 
which works in real time (20Hz) on our network of TMS320C40 Digital Signal 
processors. The system is able to recognize and track the roadway even in 
the presence of a large number of spurious markings by employing robust 
estimation techniques based on the Hough transform. 
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Our current research work is directed towards the development of control 
algorithms which would use the data provided by the vision system for lateral 
and longitudinal control tasks under MOU 257. We have implemented lateral 
control control algorithms based on the output of our vision system which 
have been tested at speeds of up to 65mph. We plan to continue to improve 
and refine our control strategies over the coming months. 
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