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ABSTRACT
We study the impact of sky-based calibration errors from source mismodelling on 21 cm power
spectrum measurements with an interferometer and propose a method for suppressing their
effects. While emission from faint sources that are not accounted for in calibration catalogues
is believed to be spectrally smooth, deviations of true visibilities from model visibilities
are not, due to the inherent chromaticity of the interferometer’s sky response (the ‘wedge’).
Thus, unmodelled foregrounds, below the confusion limit of many instruments, introduce
frequency structure into gain solutions on the same line-of-sight scales on which we hope
to observe the cosmological signal. We derive analytic expressions describing these errors
using linearized approximations of the calibration equations and estimate the impact of this
bias on measurements of the 21 cm power spectrum during the epoch of reionization. Given
our current precision in primary beam and foreground modelling, this noise will significantly
impact the sensitivity of existing experiments that rely on sky-based calibration. Our formalism
describes the scaling of calibration with array and sky-model parameters and can be used to
guide future instrument design and calibration strategy. We find that sky-based calibration that
downweights long baselines can eliminate contamination in most of the region outside of the
wedge with only a modest increase in instrumental noise.

Key words: instrumentation: interferometers – techniques: interferometric – dark ages, reion-
ization, first stars – radio lines: general.

1 IN T RO D U C T I O N

Observations of redshifted 21 cm emission are poised to unveil the
properties of the earliest luminous sources in the Universe, their
impact on the global state of the intergalactic medium and how
they affected the subsequent generations of stars and galaxies (see
Furlanetto 2016; McQuinn 2016 for recent reviews).

One approach to detecting the cosmological 21 cm signal is to
measure the fluctuations in the brightness temperature that can be
mapped tomographically with a radio interferometer. To enhance
the significance of a detection, most experiments are attempting to
measure the spherically averaged power spectrum of these fluctu-
ations. The mitigation of foregrounds that are four to five orders
of magnitude brighter than the signal itself is a central challenge
that 21 cm experiments must overcome but is greatly aided by
the spectral smoothness of these foregrounds (Di Matteo et al.

� E-mail: aaronew@mit.edu
†Hubble Fellow.

2002; Oh & Mack 2003; Morales & Hewitt 2004; Zaldarriaga,
Furlanetto & Hernquist 2004). An interferometer measures the
brightness distribution on the sky by cross-correlating the outputs
from many pairs of antennas. Flat-spectrum radio waves from a
single point source, at a given time of observation, appear at a
fixed time delay in the correlation between two antennas. Since
the delay between two correlated antenna outputs is the Fourier
dual to frequency, each fixed-delay source introduces a sinusoidal
ripple as a function of frequency with a period that is inversely
proportional to the difference of the arrival times of that source at
the two correlated antennas. This sinusoid in frequency will cor-
respond to a single comoving cosmological mode. In the absence
of reflections, the maximal delay between signals arriving from a
source on the sky [corresponding to the maximal line-of-sight (LoS)
cosmological Fourier mode that is contaminated] occurs when the
source is located along the separation of the antennas, at the horizon.
Hence, as viewed by an interferometer, the spectrally smooth fore-
grounds are naturally contained within a region of Fourier space
known as the wedge (Datta, Bowman & Carilli 2010; Morales
et al. 2012; Parsons et al. 2012b; Vedantham, Udaya Shankar &
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Subrahmanyan 2012; Thyagarajan et al. 2013; Liu, Parsons & Trott
2014a,b), which is given by the horizon delay for each baseline
separation and increases with that separation.

It is also possible for the signal chain of the instrument to im-
print spectral structure into the measured visibilities. For example,
a reflection within the signal path can delay the correlated signal.
Hence, longer delays in the signal path contaminate finer frequency
scales and are capable of leaking significant power outside of the
wedge (Beardsley et al. 2016; Ewall-Wice et al. 2016a,b). Digital
artefacts can also introduce fine spectral features such as those in-
troduced by the polyphase filter bank on the Murchison Widefield
Array (MWA; Offringa et al. 2016). For each delay that is contam-
inated by structure in the antenna gains, an attenuated copy of the
foregrounds, which are ∼104–105 times larger than the signal, is in-
troduced. Using foreground simulations, Thyagarajan et al. (2016)
establish that in order to avoid contaminating the comoving LoS
scales of several h−1 Mpc or smaller, which are targeted by 21 cm
experiments, instrumental chromaticity beyond a 250 ns delay must
be suppressed to the ≈ −50 dB level. Thus, (a) the smoothness of
the instrumental gain must meet this specification, or (b) calibration
methods must be capable of suppressing any instrumental spectral
structure to be within these limits.

Interferometric experiments have taken several distinct ap-
proaches to calibrating out instrumental spectral structure. Experi-
ments focusing on imaging, such as the MWA (Tingay et al. 2013),
the Low-Frequency Array (LOFAR; van Haarlem et al. 2013), early
deployments of the Precision Array for Probing the Epoch of Reion-
ization (PAPER; Jacobs et al. 2011, 2013; Kohn et al. 2016) and the
Giant Metrewave Radio Telescope (GMRT; Paciga et al. 2013),1

calibrate their gains on a model of the sky that is usually iteratively
improved with self-calibration (where observed sources are fed into
an updated sky model that is used to obtain more accurate gain
solutions). Pipelines such as the MWA’s real time system (Mitchell
et al. 2008), fast holographic deconvolution (Sullivan et al. 2012)
and sageCAL (Kazemi et al. 2011; Kazemi & Yatawatta 2013;
Kazemi, Yatawatta & Zaroubi 2013) rely on the modelling approach
that we refer to as sky-based calibration. An alternative route is to
constrain the instrumental gains using many redundant measure-
ments of the same visibility (Wieringa 1992; Liu et al. 2010; Zheng
et al. 2014). This strategy was implemented by the MIT EoR array
(Zheng et al. 2014, 2017a,b), the latest configurations of PAPER
(Parsons et al. 2014; Ali et al. 2015) and the Hydrogen Epoch of
Reionization Array (HERA; DeBoer et al. 2017; Dillon & Parsons
2016) that is now being commissioned in South Africa.2 Finally, in
situ calibration can be obtained using the injection of known sig-
nals (Patra et al. 2017a). The Canadian Hydrogen Intensity Mapping
Experiment (Newburgh et al. 2014) is employing a combination of
redundant calibration, signal injection and pulsar holography to
correct for instrumental gains.

Recent analyses of MWA data, using sky-based calibration, have
been contaminated by intrinsic chromaticity in the signal chain at
the � −20 dB level (Dillon et al. 2015b; Beardsley et al. 2016;
Ewall-Wice et al. 2016b; Jacobs et al. 2016) out to less than a

1 In the GMRT’s case, a single, well-known, pulsar is used while the rest of
the sky is eliminated by difference time-steps that correspond to the pulsar’s
‘on’ and ‘off’ states.
2 HERA is designed to be fully redundantly calibratable but it is useful
to assess the performance of sky-based calibration as an alternative with
potentially different systematics. Since redundant calibration does not rely
as much on a model of the sky, there exists the possibility of this array
outperforming any of the predictions in this paper.

delay of 2 × 103 ns, arising from a combination of reflections in
the beam former to receiver cables and digital artefacts. Increasing
the frequency degrees of freedom within sky-based calibration is
a potential solution as the gains are permitted to absorb fine-scale
instrumental frequency structure at high delays (Offringa et al. 2016)
and improvements in features such as cable reflections were noted
in power spectra calibrated with additional parameters (Trott et al.
2016).

While calibration solutions with fine-frequency degrees of free-
dom are able to model the detrimental spectral features in an instru-
mental bandpass, they are susceptible to absorbing the imperfections
in any sky model used for calibration. Naively, errors in a smooth
foreground model should not impart spectrally complex errors into
a gain solution. However, because every gain participates in many
baselines with varying lengths and (due to the wedge) intrinsic chro-
maticities, calibration can imprint the frequency-dependent errors
of the longest baselines in which an antenna participates into its
gain solution. The application of this gain solution on the short
baselines that the antenna participates in will mix contamination
from long to short baselines, potentially contaminating the epoch
of reionization (EoR) window. Recent studies by Barry et al. (2016,
henceforth B16) and Patil et al. (2016) have demonstrated the exis-
tence of these errors in simulations of the special cases of the MWA
and LOFAR with specific point source realizations. It has not yet
been established how these errors scale with the properties of the
instrument and the source catalogue and whether they will pose a
fundamental limitation to upcoming 21 cm experiments that expect
to rely on sky-based calibration such as the Square Kilometre Ar-
ray (SKA). Although B16 propose a low-order polynomial-based
method to mitigate these effects, it generally relies upon intrinsi-
cally spectrally smooth antenna bandpasses, which may not be the
case for many interferometers.

In this paper, we employ linearized approximations of the cali-
bration equations developed by Wieringa (1992, hereafter W92) and
Liu et al. (2010, hereafter L10) to investigate the amplitude of errors
arising from incomplete calibration catalogues. Since these faint
unmodelled sources can be described statistically (Liu & Tegmark
2011, 2012; Trott, Wayth & Tingay 2012; Dillon, Liu & Tegmark
2013; Dillon et al. 2014, 2015a; Trott et al. 2016), we will address the
ensuing errors as a type of correlated noise that we will hereafter
refer to as modelling noise. Unlike its thermal counterpart, mod-
elling noise does not integrate down with observing time, biasing
any power spectrum estimate. Since interleaved times in this noise
are correlated, this bias cannot be eliminated (unlike thermal noise)
by the technique of cross-multiplying interleaved time integrations
(e.g. Dillon et al. 2014). We will derive equations describing the
amplitude of modelling noise and its dependence on the properties
of a radio interferometer such as the antenna count, distribution
and element size along with the depth of the calibration catalogue.
We use these equations to approximate the level of modelling noise
in the existing MWA and LOFAR experiments (finding that our
analytic results are in broad agreement with the simulation results
in B16) along with the expected contamination in the upcoming
instruments SKA-1 LOW and HERA. This contamination arises
fundamentally from the chromaticity on long baselines; hence, it
can be eliminated by downweighting long baselines in calibration,
a strategy that we develop and verify in this paper.

We take an analytic approach in order to illuminate the origins
of modelling noise in 21 cm power spectrum measurements and
guide future array design and calibration strategies. For analytic
tractability, we make a number of assumptions, which we attempt
to describe clearly in the text, but do not necessarily hold for all
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observing scenarios. Thus, our quantitative results should be under-
stood as accurate only to within an order of magnitude, illustrating
how modelling noise scales with the properties of the sky catalogue
and instrumental parameters. Relaxing the assumptions in this paper
for more accurate predictions is the subject of ongoing simulation
work.

This paper is organized as follows. In Section 2, we introduce
our analytic framework, based on W92 and L10, for describing the
impact of calibration modelling errors on the 21 cm power spec-
trum and discuss its dependence on array and catalogue properties.
In Section 3, we apply this formalism to predict the amplitude of
calibration errors relative to 21 cm fluctuations in current and up-
coming experiments given our current knowledge of foregrounds
and primary beams. In Section 4, we explore a strategy for elim-
inating this noise through inverse baseline-length weighting. We
conclude in Section 5.

2 FORMALISM

In this paper, we model gain errors as a statistical noise arising
from the myriad of faint unmodelled sources. Such sources are not
precisely modelled in calibration.

Since baselines and visibilities are formed from two antennas,
we index them with a Greek index and we index antennas with
lowercase Latin indices. We will also sometimes explicitly write
a baseline index as a 2-tuple of antenna indices (e.g. α = (i,
j)). We describe the residual, cα(ν), between the true visibility
formed from antennas i and j, vtrue

α (ν), and the model visibility,
yα(ν), as a random variable with a mean 〈cα(ν)〉 and covariance
Cαβ (ν, ν ′) ≡ 〈[cα(ν) − 〈cα(ν)〉] [cβ (ν ′) − 〈cβ (ν ′)〉]∗〉. We assume
that cα is composed of the sum of the 21 cm signal, sα , unmodelled
foregrounds, rα , and a component arising from thermal noise, nα ,
whose impact on calibration is explored in Trott & Wayth (2016).
The true visibility is the sum between the modelled and unmodelled
component,

vtrue
α = yα + cα = yα + rα + nα + sα. (1)

Each unmodelled component is statistically independent, which
means that

Cov[c, c†] ≡ C = R + N + S, (2)

where † denotes the conjugate transpose of a vector or matrix. In
Section 2.1, we discuss expressions for the amplitude and frequency
coherence of rα in terms of a parametrized point source population
and diffuse galactic emission. This ‘noise’ will be imprinted on the
calibration solutions in a way that, for sufficiently small errors, is
analytically tractable and can be described using the matrix for-
malism of W92 and L10, which we overview in Section 2.2. We
derive expressions for the impact of these errors on the 21 cm power
spectrum in Section 2.3 and the degree to which each visibility co-
variance contributes in Section 2.4. Using the expressions we derive,
we discuss the scaling of modelling noise with the properties of the
source catalogue and array in Section 3.4. Since both the 21 cm
signal and thermal noise terms are already well considered in the
literature (W92; L10; Trott & Wayth 2016), we will focus on the
contribution from rα .

2.1 The statistics of unmodelled source visibilities

Extensive work exists on statistical models of faint point sources in
the power spectrum (e.g. Wang et al. 2006; Liu & Tegmark 2011;
Trott et al. 2012, 2016; Dillon et al. 2013, 2015b), and we take an

approach similar to these papers and assume that the sources have
uniform spectral structure (described by a single power law) that
can be factored out of the visibilities and is far less significant than
the frequency dependence introduced by the interferometric point
spread function (PSF). We now give an overview of our charac-
terization of the unmodelled point sources along with the diffuse
emission from the Galaxy. Since residual Galactic emission is, for
the most part, uncorrelated with residual point source emission, the
covariance of unmodelled emission on each baseline is given by the
sum of the covariance of each source,

R = R
P + R

G, (3)

where R
P is the covariance due to unmodelled point sources and R

G

is the covariance of Galactic emission. We now describe our model
of the covariances for these two emission sources.

2.1.1 Unmodelled point sources

With the MWA, point sources are completely sampled down to
Smin ≈ 50–80 mJy (Carroll et al. 2016; Hurley-Walker et al. 2017;
Line et al., in preparation) and on LOFAR down to the Smin ≈
0.1 mJy level (Williams et al. 2016) within the primary beam. We
represent these sources with an achromatic version of the model
from Liu & Tegmark (2011). At these faint fluxes, the sources
are isotropically distributed and the number of sources with fluxes
between S and S + dS within an infinitesimal solid angle d� is well
described by a random Poisson process with a power-law mean (Di
Matteo et al. 2002),

d2N

dSd�
= k

⎧⎪⎪⎨⎪⎪⎩
(

S

S∗

)−γ1

S ≤ S∗(
S

S∗

)−γ2

S > S∗

, (4)

where k = 4000 Jy−1 sr−1, γ 1 = 1.75, γ 2 = 2.5 and S∗ = 0.88 Jy.
Consider a visibility, vα , formed by antennas i and j, which are

separated by baseline bα . The covariance between two baselines
vα(ν) and vβ (ν ′) at two frequencies, ν and ν ′, assuming unclustered
and flat-spectrum sources is

RP
αβ (ν, ν ′) =

∫ Smin

0
dS

dN

dSd�
S2
∫

d�|A(ŝ)|2e−2πiŝ·(bαν−bβν′)/c

= σ 2
r (Smin)

∫
d�|A(ŝ)|2e−2πiŝ·(bαν−bβν′)/c, (5)

where A(ŝ) is the primary beam of each antenna that we assume
are identical. The Fourier convolution theorem tells us that the last
integral in equation (5) is equal to the convolution of the Fourier
transform of the beam with itself evaluated at (bαν/c − bβν ′/c) in
the uv plane. This quantity falls to zero when |bαν/c − bβν ′/c|
is larger than the diameter of the antenna aperture. Thus, as long
as two baselines are separated by a distance greater than the an-
tenna aperture diameter, RP

α �=β ≈ 0. We may therefore ignore off-
diagonal terms in the residual covariance matrix for minimally
redundant arrays. It turns out that the diagonal covariance assump-
tion gives similar results, even for maximally redundant arrays (see
Appendix A).

2.1.2 Diffuse galactic emission

Diffuse Galactic emission is correlated on large angular scales. We
may construct a simple model of this emission using the same
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steps we used to obtain equation (5) and assuming that uv power
spectrum of the diffuse emission does not evolve significantly over
an antenna footprint. Under these assumptions, one can show that
the covariance between two visibilities from diffuse emission is

RG
αβ (ν, ν ′) ≈ PG(bα/λ0)

∫
d�|A(ŝ)|2e−2πiŝ·(bαν−bβν′)/c, (6)

where PG(u) is the power spectrum of diffuse galactic emission in
the uv plane and λ0 is the wavelength of the centre of the inter-
ferometer’s band. To model PG(u), we use an empirical power-
law fit to the two-dimensional power spectrum of a desourced
and destriped (Remazeilles et al. 2015) Galactic emission map
(Haslam et al. 1982) centred at RA = 60◦, Dec. = −30◦ and
scaled from 408 to 150 MHz using a frequency power law with
a spectral index of −0.6 (Rogers & Bowman 2008; Fixsen et al.
2011).3 We find that the angular power spectrum of galactic emis-
sion at 150 MHz is well modelled by a power law in u = |b|/λ0,
PG(u) = 6 × 1011u−5.7 Jy2 Sr−1. Throughout this paper, we will as-
sume that the model used for calibration completely ignores diffuse
emission so that all of RG

αβ is included in the covariance of residual
visibilities.

2.2 Frequency domain calibration errors

So far, we have a model of the discrepancies between true and
modelled interferometer visibilities. Given this model, what are the
statistics of the errors in our frequency-dependent gain solutions?
Our goal in this subsection is to derive the covariances of errors in
gain parameters in terms of the covariances of the visibility residuals
discussed in Section 2.1.

We will start by writing down the system of equations that cali-
bration algorithms attempt to solve, and, following W92 and L10,
we will reduce this system to a set of linear equations that are valid
in the regime of small calibration errors, which is the case for errors
generated by the faintest sources on the sky. This approximation
holds when the gains are nearly correct after large gain variations
are removed by a first iteration of calibration using a reasonably ac-
curate calibration catalogue. Writing down these systems in matrix
form, the covariances of the least-squares solutions for these linear
systems are readily obtained in the same manner as W92 and L10.

We start by writing down the equations that calibration must
solve. In line with the notation of L10, we parametrize the small
gain and phase of the ith antenna after rough calibration as the
exponent of a complex number,

gi(ν) = eηi (ν)+iφi (ν) ≈ 1 + ηi(ν) + iφi(ν), (7)

where ηi is the amplitude of the gain and φi is the phase. In calibra-
tion, one attempts to solve the set of equations

gi(ν)g∗
j (ν)vtrue

ij (ν) = vmeas
ij (ν), (8)

where vmeas
ij (ν) is the measured visibility. If we divide by yij on both

sides, we have

gig
∗
j

(
1 + cij

yij

)
= vmeas

ij

yij

. (9)

Recall that cij represents the sum of unmodelled components of
a visibility (equation 1) while yij represents the modelled compo-
nent. For analytic tractability, we will linearize these equations by

3 This power law is for spectral radiance. For brightness temperature, the
spectral index is −2.6.

working to first order in cij/yij, ηi and φi. With this approximation,
equation (9) becomes

vmeas
ij

yij

≈ (1 + ηi + iφi)(1 + ηj − iφj )

(
1 + cij

yij

)
(10)

≈ 1 + ηi + ηj + iφi − iφj + cij

yij

. (11)

Separating the real and imaginary parts gives us two systems of
linear equations:

ηi + ηj + Re

(
cij

yij

)
≈ Re

vmeas
ij

yij

− 1 ≡ M
η
ij (12)

and

φi − φj + Im

(
cij

yij

)
≈ Im

vmeas
ij

yij

≡ M
φ
ij . (13)

Since residual foregrounds may be described statistically, we treat cij

as a noise term in the same way that thermal noise is treated in L10.
Unlike thermal noise, which is typically uncorrelated in frequency
and ideally has the same variance across baselines, the correlation
properties of modelling noise are those of the unmodelled sources
discussed in Section 2.1. We can write the system of equations given
by equation (12) in matrix form,4⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M
η
12

M
η
23

...

M
η
N−1N

M
η
13

...

M
η
N−2N

...

M
η
1N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 . . . 0

0 1 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

1 0 1 . . . 0

...
...

...
. . .

...

1 0 0 . . . 0

...
...

...
. . .

...

1 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1

η2

η3

...

ηN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ Re

(
c
y

)
, (14)

which we write more compactly as Mη = Aη + Re(c/ y). The same
can be done for equation (13),⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M
φ
12

M
φ
23

...

M
φ
N−1N

M
φ
13

...

M
φ
N−2N

...

M
φ
1N

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . −1

1 0 . . . 0

...
...

. . .
...

1 0 . . . 0

...
...

. . .
...

1 0 . . . −1

1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
φ1

φ2

...

φN

⎞⎟⎟⎟⎟⎟⎠ + Im

(
c
y

)
, (15)

4 The system of equations used here only attempts to solve for the gains. In
redundant calibration, the number of unique true visibilities is reduced to
a point where one can also solve for them as well. This leads to different
forms for the matrix equations (see W92 and L10 for examples).
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where the last row in the matrix arises from imposing the constraint
(L10) that

∑
jφj = 0.5 We write the imaginary equation as Mφ =

Bφ + Im(c/ y).
Given a model and measurements of Mφ and Mη, a least-squares

estimator that applies weights of W to each measurement will arrive
at solutions for η and φ given by

η̂ = (AᵀWA)−1AᵀWMη ≡ �Mη (16)

and

φ̂ = (Bᵀ
WB)−1B

ᵀ
WMφ ≡ �Mφ. (17)

We emphasize that η̂ and φ̂ are estimates of the true values, η and
φ. The covariance of these estimates,

Cη(ν, ν ′) = 〈η̂(ν)η̂ᵀ(ν ′)〉 − 〈η̂(ν)〉〈η̂ᵀ(ν ′)〉 (18)

Cφ(ν, ν ′) = 〈φ̂(ν)φ̂
ᵀ

(ν ′)〉 − 〈φ̂(ν)〉〈φ̂ᵀ
(ν ′)〉, (19)

is given by

Cη(ν, ν ′) = �Cov

[
Re

(
c
y

)
, Re

(
c
y

)ᵀ]
�ᵀ (20)

Cφ(ν, ν ′) = �Cov

[
Im

(
c
y

)
, Im

(
c
y

)ᵀ]
�ᵀ . (21)

Thus, we have arrived at expressions for the covariances of er-
rors in the gain parameters in terms of the covariances of the
real and imaginary components of the unmodelled visibilities.
Equations (20) and (21) show that the covariance of any given
gain solution is the linear combination of the covariances of every
visibility in the array. Thus, the application of a gain solution (de-
rived from an incomplete sky model) to a short baseline introduces
the fine-frequency errors from long baselines. Our next step is to
determine the impact of this leakage on the power spectrum.

2.3 The impact of gain errors on the 21 cm power spectrum

We now propagate the frequency-dependent errors in each gain
solution into the delay power spectrum. Calibration gives us an
estimate of the gains,

ĝi = eη̂i+iφ̂i ≈ 1 + η̂i + φ̂i . (22)

whose deviations from the true gains (ηi and φi) have covariances
given by equations (20) and (21). The corrected, model-subtracted
visibilities obtained from calibration are given by

Vij = gig
∗
j

ĝi ĝ
∗
j

(yij + cij ) − yij

≈ (yij + cij )

× [1 + (ηi − η̂i) + (ηj − η̂j ) + i(φi − φ̂i) − i(φj − φ̂j )] − yij .

(23)

The delay transform (Parsons et al. 2012b) is a popular estimate
of the power spectrum in which visibilities are Fourier transformed

5 The arbitrary phase reference is often set in sky-based calibration by defin-
ing the phases as the differences between each antenna phase and that of
an arbitrarily chosen reference antenna. This constraint can be written as
φref = 0 and would modify the last row of B to be zero except for the
index of the reference antenna (rather than all ones as we have written it).
While choosing the reference antenna form of the phase constraint affects
the details of some of the expressions in this paper, it results in the same
scaling relationships and has a negligible effect on quantitative results.

from frequency into delay. Delay can be mapped approximately
to Fourier modes along the LoS while the uv coordinates of the
visibility can be mapped to Fourier modes perpendicular to the
LoS. The delay transform is given by

Ṽij (τ ) =
∫

dνe2πiντVij (ν), (24)

which we can apply to the gain-corrected and foreground-
subtracted visibility in equation (23). Taking the delay transform of
equation (23) and setting η′ ≡ η̂ − η and φ′ ≡ φ̂ − φ, we have

Ṽij (τ ) ≈ −yij �
(
η̃′

i + η̃′
j + iφ̃′

i − iφ̃′
j

)
+ c̃ij − c̃ij �

(
η̃′

i + η̃′
j + iφ̃′

i − φ̃′
j

)
, (25)

where � denotes a convolution in delay space. For the sake of
analytic tractability, we will ignore the chromaticity of yα and set
all yα = S0, essentially assuming that the modelled visibilities are
dominated by a single source near the phase centre that exceeds the
flux of all other sources by a factor of several. Even with chromatic
yα , per-frequency inverse-covariance weighting, which multiplies
each αth weight by |yα|2 (L10), removes some of this structure. In
Appendix B, we explore the impact of relaxing this assumption and
find that our achromatic yij model predicts the LoS wavenumbers at
which the modelling noise drops below the 21 cm power spectrum
to within ≈10 per cent of what we find with chromatic yijs obtained
from a realistic sky model. Still, this dramatic assumption limits
the accuracy of our specific quantitative predictions, and we are
exploring its impact in full calibration simulations.

The cosmological 21 cm power spectrum, P (k), is well approxi-
mated by the mean amplitude square of the delay-transformed vis-
ibility multiplied by linear factors given in Parsons et al. (2012a),

P (k) ≈
(

c2

2k2
Bν2

0

)2
X2(ν0)Y (ν0)

Bpp�pp
〈|Ṽ (u, η)|2〉, (26)

where �pp = ∫ d�|A(ŝ)|2 and Bpp = ∫
df|B(ν)|2 are respectively

the integrals of the squares of the beam and bandpass, ν0 is the
centre frequency of the observation, kB is the Boltzmann constant,
and (X, Y) are multiplicative factors converting between native in-
terferometry coordinates and comoving cosmological coordinates,
2π(u, v, η) = (Xkx, Xky, Ykz). In line with Parsons et al. (2012a),
η is used to denote the Fourier dual to frequency at fixed |u| and
τ to denote the frequency Fourier transform of a visibility that in-
tegrates over a slanted line in uν space. While this slanted integral
introduces non-negligible mode mixing (namely the wedge), it is
a decent approximation for the range of ηs probed by current- and
next-generation experiments.

Therefore, we can estimate the power spectrum from calibration
modelling errors by cross-multiplying Ṽα with its complex conju-
gate. If we denote the expectation value

〈Ṽα(τ )Ṽ ∗
β (τ ′)〉 ≡ Pαβ (τ, τ ′), (27)

the bias from visibility residuals is equal to Pαα(τ, τ ) multiplied
by the constant prefactors in equation (26). While we only need
Pαα(τ, τ ) for the bias, we will need off-diagonal terms to calculate
the variances of binned and averaged power spectrum estimates. We
first write down Pαβ (τ, τ ′) to second order in c/ y with baseline α

formed from antennas i and j and baseline β formed from antennas
m and n,

〈Ṽα(τ )Ṽ ∗
β (τ ′)〉 ≡ Pαβ

≈ S2
0 [〈η̃′

i η̃
′∗
m〉 + 〈η̃′

i η̃
′∗
n 〉 + 〈η̃′

j η̃
′∗
m〉 + 〈η̃′

j η̃
′∗
n 〉

+ 〈φ̃′
i φ̃

′∗
m 〉 − 〈φ̃′

i φ̃
′∗
n 〉 − 〈φ̃′

j φ̃
′∗
m 〉 + 〈φ̃′

j φ̃
′∗
n 〉
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− i〈η̃′
i φ̃

′∗
m 〉 + i〈η̃′

i φ̃
′∗
n 〉 − i〈η̃′

j φ̃
′∗
m 〉 + i〈η̃′

j φ̃
′∗
n 〉

− i〈φ̃′
i η̃

′∗
m〉 + i〈φ̃′

i η̃
′∗
n 〉 − i〈φ̃′

j η̃
′∗
m〉 − i〈φ̃′

j η̃
′∗
n 〉]

− S0[〈η̃′
i c̃

∗
β〉 − 〈η̃′

j c̃
∗
β〉 − i〈φ̃i c̃

∗
β〉 + i〈φ̃j c̃

∗
β〉

− 〈c̃αη̃′∗
m〉 − 〈c̃αη̃

′∗
n 〉 + i〈c̃αφ̃′∗

m 〉 − i〈c̃αφ̃
′∗
n 〉]

+ 〈c̃α c̃∗
β〉. (28)

For the sake of space, we do not explicitly write τ or τ ′ in every term
but understand that every complex conjugated term in each product
is a function of τ ′ and every non-conjugated term is a function of τ .

Equation (28) involves six types of terms: those involving cross-
multiples of η̃′, cross-multiples of φ̃′, cross-multiples of η̃′ and φ̃′,
products between η̃ and φ̃ with c̃, and finally the covariances of
the residuals themselves. In Appendix C, we obtain approximate
expressions for each of the first five terms when the baseline sepa-
ration is longer than the antenna diameter,

〈η̃′
i(τ )η̃′∗

m(τ ′)〉 ≈
∫

dνdν ′e2πi(ντ−ν′τ ′)[Cη(ν, ν ′)]im

≡ S−2
0

2
[�C̃(τ, τ ′)�ᵀ]im

= S−2
0

2
iγ 

ᵀ
δmC̃γ δ(τ, τ ′) (29)

〈φ̃′
i(τ )φ̃′∗

m (τ ′)〉 ≈
∫

dνdν ′e2πi(ντ−ν′τ ′)[Cφ(ν, ν ′)]im

= S−2
0

2
[�C̃(τ, τ ′)�ᵀ]im

= S−2
0

2
�iγ �

ᵀ
δmC̃γ δ(τ, τ ′) (30)

〈c̃α(τ )η̃′∗
m(τ ′)〉 ≈ 1

2
mγ

∫
dνdν ′e2πi(ντ−ν′τ ′)[C(ν, ν ′)]γ α

= 1

2
iγ C̃γ

α(τ, τ ′) (31)

〈c̃α(τ )φ̃′∗
m (τ ′)〉 ≈ i

2
�mγ

∫
dνdν ′e2πi(ντ−ν′τ ′)[C(ν, ν ′)]γ α

= i

2
�mγ C̃γ

α(τ, τ ′) (32)

〈η̃′
i(τ )φ̃′∗

m (τ ′)〉 ≈ 0, (33)

where we used Einstein notation with repeated raised and
lowered indices to denote summation and have defined
C̃(τ, τ ′) as the delay transform of the C matrix. C̃αβ (τ, τ ′) ≡∫

dνdν ′e−2πi(τν−τ ′ν′)Cαβ (ν, ν ′). We also denote the delay transform

of the N, R and S matrices in a similar way as Ñ, R̃ and S̃. The
final term in equation (28) is simply the covariance matrix of the
delay-transformed residual visibilities, C̃αβ (τ, τ ′). Using the above
identities, we may write equation (28) as

Pαβ (τ, τ ′) = 1

2

[
iγ 

ᵀ
δm + iγ 

ᵀ
δn + jγ 

ᵀ
δm + jγ 

ᵀ
δn

+ �iγ �
ᵀ
δm − �iγ �

ᵀ
δn − �jγ �

ᵀ
δm + �jγ �

ᵀ
δn

]
C̃γ δ(τ, τ ′)

− 1

2

(
iγ + jγ − �iγ + �jγ

)
C̃γ

β (τ, τ ′)

− 1

2

(
mγ + nγ + �mγ − �nγ

)
C̃γ

α(τ, τ )

+ C̃αβ (τ, τ ′). (34)

The power spectrum bias in delay-transformed estimates is given
by Pαα(τ, τ ) (i = m and j = n),

Pαα(τ, τ ) = 1

2

(
iγ 

ᵀ
δi + 2iγ 

ᵀ
δj + jγ 

ᵀ
δj

)
C̃γ δ(τ, τ )

+ 1

2

(
�iγ �

ᵀ
δi − 2�iγ �

ᵀ
δj + �jγ �

ᵀ
δj

)
C̃γ δ(τ, τ )

− (iγ + jγ )C̃γ
α(τ, τ ) + C̃αα(τ, τ ). (35)

Equations (35) and (34) show how calibration leaks unmodelled
structure in every visibility, including the highly chromatic ones,
into the power spectrum of otherwise smooth short baselines. The
last term in equation (35) is the power spectrum of unmodelled fore-
grounds, noise and the signal itself. Recall that since foregrounds
are naturally contained within the horizon delay of bα , it does not
contribute power into the EoR window. The sums in the first two
lines, on the other hand, mix the chromaticity of foregrounds on
all baselines into the delay power spectrum of the αth visibility.
Baselines that are longer than bα contribute emission at delays be-
low their individual horizon delays that are greater than the horizon
delay of bα , allowing for contamination of the EoR window.

Typically, an estimate of Pαα is obtained by cross-multiplying
integration over independent time intervals and since noise within
each interval is independent, Nαβ (ν, t ; ν ′, t ′) = 0 (Dillon et al. 2014)
and we can ignore the thermal noise contribution to the bias given
by equation (34). However, a subtlety introduced by calibration
errors is that if calibration solutions for the cross-multiplied visibil-
ities are not derived from complementary time intervals, there will
still exist a thermal noise bias arising from all but the last term in
equation (34). This is the case in Dillon et al. (2015b), Beardsley
et al. (2016) and Ewall-Wice et al. (2016b) where 0.5 s time-steps are
used for interleaving visibilities but 112 s non-interleaved time-steps
are used for calibration. This bias can also survive cross-multiplying
different redundant measurements of the same visibility as is done
with PAPER (Parsons et al. 2014; Ali et al. 2015).

2.4 Calibration bias for a simplified model

How do the covariances between pairs of visibilities contribute to
the final power spectrum? We showed in Section 2.1 that R, the
covariance matrix of unmodelled foreground visibilities, is well ap-
proximated as a diagonal in minimally redundant arrays. The same
is true for thermal noise that arises from independent fluctuations
at each antenna and the 21 cm signal. Thus, the first two lines of
equation (35) are formed from the weighted sum of the variance of
the Nant(Nant − 1)/2 visibilities (where Nant is the number of antenna
elements) with γ = δ where the weight of each variance is given by
iγ 

ᵀ
γ j and �iγ �

ᵀ
γ j . These values depend crucially on our choice

of visibility weighting, W, but it is highly instructive to examine
the case where W is equal to the identity. In Appendix D, we use
matrix algebra to show that in the case of W equal to the identity,

iγ =

⎧⎪⎨⎪⎩
1

Nant − 1
i ∈ γ

−1

2(Nant − 1)(Nant − 2)
i �∈ γ

(36)

and

�iγ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Nant
γ = (i, ·)

− 1

Nant
γ = (·, i)

0 i �∈ γ

, (37)
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where γ = (i, ·) denotes any visibility with i as the non-conjugated
antenna and γ = ( ·, i) any baseline with i as the conjugated antenna.
Equation (36) makes intuitive sense if we recall that iγ is the linear
weight multiplied by each Mη

γ that is summed to form the ith gain
solution. Inspecting equation (12), we see that summing all Nant − 1
iγ Mη

γ that antenna i participates in gives us∑
γ�i

i
γ Mη

γ = ηi + 1

Nant − 1

∑
k �=i

ηk. (38)

To remove the extra sum, and isolate ηi, we must subtract the sum
all Mη that do not include the ith antenna, divided by Nant − 1. For
each k �= i, there are Nant − 2 baselines that involve k but not i, so we
must also divide each term by Nant − 2. This gives us the weights
for baselines not involving the ith antenna in equation (36). We can
apply similar logic to equation (37) by inspecting equations (13)
and (37).

The weight with which the covariance between each pair of mea-
surements contributes to the total covariance of η̂ and φ̂ is just
the product of the weight with which each measurement is linearly
summed,

iγ 
ᵀ
δj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(Nant − 1)2
i ∈ γ and j ∈ δ

−1

(Nant − 2)(Nant − 1)2
i ∈ γ and j �∈ δ

−1

(Nant − 2)(Nant − 1)2
i �∈ γ and j ∈ δ

1

(Nant − 1)2(Nant − 2)2
i �∈ γ and j �∈ δ

(39)

and

�iγ �
ᵀ
δj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

N2
ant

γ = (i, ·), δ = (j, ·) or γ = (·, i), δ = (·, j )

− 1

N2
ant

γ = (i, ·), δ = (·, j ) or γ = (·, i), δ = (j, ·)
0 otherwise.

(40)

For non-redundant arrays, C(ν, ν ′) is diagonal and we can focus
on γ = δ terms. From equations (39) and (40), we see that when
i = j, each visibility variance is weighted by ∼N−2

ant when i ∈ γ

and at most by N−4
ant when i �∈ γ . Since there are ∼Nant visibilities

with antenna i and ∼N2
ant visibilities without antenna i, i = j terms

contributing to Pαα are given roughly by the average of visibility
variances not involving i divided by ∼N−2

ant plus the average of
visibility variances involving antenna i divided by ∼Nant,

iγ 
ᵀ
δiC̃

γ δ(τ, τ ) ≈ 1

N2
ant

〈C̃δδ(τ, τ )〉i �∈δ + 1

Nant
〈C̃δδ(τ, τ )〉i∈δ

≈ 1

Nant
〈C̃δδ(τ, τ )〉i∈δ, (41)

where the 〈〉i ∈ δ indicates an average over the set of baselines that
include antenna i and 〈〉i �∈δ denotes an average over baselines that
are not formed using antenna i. The same equation holds for the �

sums. Considering how elements of C(ν, ν ′) scale with Nant, we can
see the average of visibilities involving antenna i dominate Pαα by
a factor of Nant.

For i �= j, there is exactly one visibility that involves both antennas
and will be weighted at most by N−2

ant . The ∼Nant visibilities formed
from i XOR j are weighted by N−3

ant and the ∼N2
ant visibilities that

involve neither i nor j are weighted by N−4
ant . Thus, all terms with

i �= j in equation (35) give contributions of the order of the average
of the visibility variances divided by N2

ant.

It follows that if C(ν, ν ′) is diagonal for all ν, ν ′ and W is equal
to the identity, i = j sums in equation (35) dominate by ∼Nant and
are well approximated by the average visibility variance involving
antenna i or j divided by Nant. The overall level of foreground
contamination from calibration errors therefore goes as N−1

ant with
the details of the extent in delay contamination depending on the
antenna distribution and primary beam. Replacing each i = j sum in
equation (35) with an average over visibility covariances involving
i and j and ignoring i �= j sums, we arrive at an approximate formula
that can be readily used to estimate Pαα ,

Pαα(τ, τ ) ≈ 1

Nant

[〈
C̃δδ(τ, τ )

〉
i∈δ

+
〈

C̃δδ(τ, τ )
〉

j∈δ

]
+ C̃αα(τ, τ ). (42)

The two assumptions going into this formula are that for each ν

and ν ′, C(ν, ν ′) is diagonal (minimal redundancy) and that W is set
equal to unity. Equation (42) illustrates how the bias of a power
spectrum estimate depends on both the covariance of the individual
baseline (the second term) and the covariances of the baselines that
share common antennas. In other words, the measurement of the
power spectrum for a given baseline and delay depends on both the
residual foregrounds, noise and signal at that baseline and delay
and, suppressed by a factor of Nant, that of all other baselines at that
delay that share an antenna with it.

3 MO D E L L I N G N O I S E IN E X I S T I N G A R R AY S

Having developed our formalism in Section 2, we may obtain order-
of-magnitude estimates for the visibility modelling noise using
equation (34) for four existing or planned arrays: LOFAR, MWA,
HERA and the re-baselined SKA-LOW. We discuss our models
of each instrument (Section 3.1). We then determine the level of
modelling noise in Section 3.2 and the impact of beam modelling
errors in Section 3.3. Equation (42) can be used to provide us with
some intuition for how the properties of the noise scale with those
of the array and catalogue. In Section 3.4, we discuss these scalings
and to what extent they may be used to reduce the amplitude of
modelling noise. In each simulation, we assume that the foreground
model, used for calibration and subtraction, contains point sources
modelled down to some minimal flux level Smin and that the true
sky contains both the diffuse emission and all point sources.

3.1 Instrumental models

For all arrays, we consider an Airy beam for an aperture with
diameter dant,

A(ŝ) = A(θ ) =
(

2
J1(πdant cos θ/λ0)

πdant cos θλ0

)2

, (43)

where θ is the arc length from the beam pointing centre. An Airy
beam has the virtue of a simple analytic expression that, unlike
a Gaussian beam, exhibits realistic side-lobe structure, which in
turn affects foreground contamination near the edge of the wedge
(Thyagarajan et al. 2015; Pober et al. 2016).

Strictly speaking, the primary beam evolves with frequency; how-
ever, we find in numerical calculations that allowing for this vari-
ation has a negligible impact on our results. In order to expedite
the computation of calibration noise, especially for the arrays with
large numbers of antennas, such as HERA and the SKA-1, we also
assume that R is diagonal. This is clearly not the case for the highly
redundant HERA layout but we find (Appendix A) that this only
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impacts the amplitude of the modelling noise by a factor of order
unity and has a negligible impact on which modes are contaminated.
In all arrays, we assume that every baseline is given equal weighting
of unity. Note that for the SKA and LOFAR, we do not explicitly
include outrigger antennas in our model of calibration. Our models
for each individual instrument are as follows.

(i) The Murchison Widefield Array. For the MWA, we use the
128-tile layout described in Beardsley et al. (2012) and Tingay et al.
(2013). Antennas are modelled as 4 m diameter circular apertures.
We assume a flux limit of 86 mJy, which is the limit for the array’s
naturally weighted PSF at 150 MHz and similar to limits obtained in
Carroll et al. (2016). Other analyses have obtained complete samples
down to 35–50 mJy (Hurley-Walker et al. 2017) but this order unity
change in Smin does not significantly impact the modelling noise
level that scales as ∼S1.25

min (see Section 3.4). The deeper TIFR GMRT
Sky Survey (TGSS) covers a significant portion of the MWA’s field
of view and is complete down to 10 mJy (Intema et al. 2017). We
therefore also consider an optimistic scenario where a deep TGSS
catalogue is used to calibrate the instrument.

(ii) The Low-Frequency Array. We model LOFAR as the 48-
element high band core described in van Haarlem et al. (2013),
with 30 m diameter circular stations. The confusion limit for the
naturally weighted core is ≈35 mJy at 150 MHz. However, the
use of LOFAR’s extended baselines measures source catalogues
that are complete down to Smin ≈ 0.1 mJy (Williams et al. 2016).
While the Williams et al. (2016) survey is over a ≈4◦ field of
view, the catalogue we consider here covers the entire sky. Such
a catalogue would involve accurately characterizing ∼27 million
sources and may not happen before the SKA but we consider it as
a very optimistic bracket on LOFAR’s performance.

(iii) The Hydrogen Epoch of Reionization Array. For our model of
HERA, we use the 331-element hexagonally packed core described
in Pober et al. (2014). Each element is modelled as a 14 m diameter
circular aperture. HERA is designed to be calibrated redundantly
(Dillon & Parsons 2016); hence, the power spectrum estimates it
obtains will not directly be affected by the modelling errors we
explore in this paper. We choose to include HERA in order to
assess the performance of compact cores in sky-based calibration
and to explore sky-based calibration as an alternative to redundant
calibration. HERA’s confusion limit is Smin ≈ 11 Jy. However, the
Dec. ≈−30◦ stripe that it will scan is also covered by the TGSS
survey that is complete down to ≈10 mJy. We therefore also consider
an optimistic scenario in which the TGSS catalogue is used for
calibration.

(iv) The Square Kilometre Array. We investigate the level of
modelling noise in the SKA-1 LOW design proposed in Dewdney
(2013) but scaled down to half of the described collecting area due
to recent re-baselining. The array consists of 497, 30 m stations
with a number density distributed as a Gaussian in radius where
75 per cent of antennas fall within 1 km of the centre, corresponding
to a standard deviation of σ ant ∼ 600 m. The confusion limit of
the SKA’s core is ≈27 mJy; however, the inclusion of extended
baselines out to ≈100 km will bring the confusion limit at 150 MHz
to ≈0.1 mJy (Prandoni & Seymour 2015), which we also consider
as an optimistic case.

3.2 Modelling results

In Fig. 1, we plot cylindrically binned and averaged delay-
transformed power spectra of residual visibilities from unmodelled
foregrounds, calculated using equation (35) for the MWA, LOFAR,

HERA and SKA-1. We explore two different Smin values for each
array. As we might expect, the majority of residual power is con-
tained within the wedge, arising from the last term in equation (35).
This term is the power spectrum of the unmodelled residual sources
and would exist in the absence of calibration errors. For the MWA,
which has a smaller aperture, hence a wider primary beam, the
wedge of unmodelled sources extends to larger k‖ values. Beyond
the wedge extends the power spectrum of calibration errors that
exist at the level of 106–108 h3 Mpc−3 mK2, one to two orders of
magnitude greater than the 21 cm signal. For the MWA, the level
of contamination inside of the EoR window is within an order of
magnitude of the simulated errors encountered in B16 who consider
a calibration catalogue that is incomplete to a similar depth. It is
apparent that the calibration errors experience a sharp cutoff at the
k‖ corresponding to the delay of the edge of the main lobe on the
longest baselines of the array. A vertical stripe of additional con-
tamination appears in the LOFAR plot at k⊥ ≈ 0.6 h Mpc−1, which
corresponds to separation scale for the high band (HBA) antenna
pairs. Since even the longest outriggers participate in a short base-
line with this length, more significant contamination is introduced
at the corresponding Fourier mode.

We also estimate the region of k-space in which the 21 cm signal
will be accessible by computing the ratio between the 2d power
spectrum of residual visibilities and a representative signal com-
puted using 21CMFAST6 (Mesinger & Furlanetto 2007; Mesinger,
Furlanetto & Cen 2011). The reionization parameters are set to
T min

vir = 2 × 104 K, ζ = 20 and Rmfp = 15 Mpc, yielding a redshift
of 50 per cent reionization of ≈8.5. For fiducial catalogue limits,
we see that the entire EoR window is unusable for LOFAR and the
MWA while the SKA is only able to detect the signal at large k �
0.4 h Mpc−1. If LOFAR and the SKA use their extended baselines
to obtain deep source catalogues and calibrate on these catalogues
with only their core antennas, they will be able to isolate modelling
errors to be contained primarily within the wedge. By calibrating
on a deep 10 mJy catalogue such as the TGSS, HERA can rely
on traditional sky-based calibration as a potential alternative to its
primary redundant strategy.

3.3 The impact of primary beam modelling errors

So far, we have assumed that the antenna primary beam is known
perfectly. Here we examine the impact of an imperfectly modelled
beam on calibration noise. It is worth noting that while we only
examine the impact of beam errors on calibration, errors in beam
modelling can affect other aspects of the analysis (for example,
the power spectrum normalization in equation 26). Recent in situ
measurements with Orbcomm satellites (Neben et al. 2015, 2016)
indicate that electromagnetic modelling of instrumental primary
beams may only be accurate to the 1 per cent level within the central
lobe and only to the 10 per cent level within the side lobes. Even if a
complete model of the sky exists, systematic errors in the apparent
flux of these sources will cause calibration errors similar to those
encountered in Section 3.1. We describe beam modelling errors
as an angle-dependent function, D(ŝ), that is added to the known
component of the beam B(ŝ),

A(ŝ) = B(ŝ) + D(ŝ). (44)

For the purposes of this section only, we take the optimistic case
that we have a perfect external catalogue and that all calibration

6 http://homepage.sns.it/mesinger/DexM___21cmFAST.html
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Figure 1. Top: the power spectrum residuals computed using equation (35) for the MWA, LOFAR, HERA and the SKA-1 LOW designs with sources modelled
down to the array confusion limit. Unmodelled foregrounds are contained within the wedge, which is demarked by dashed black lines at the first primary beam
null and solid black lines at the horizon. The calibration errors introduced by these foregrounds bleed out of the wedge into the EoR window. The narrower
central lobes (larger stations) employed by LOFAR and the SKA help to significantly reduce the leakage at large k‖ that exists for the MWA. Contours where
the signal, from a 21CMFAST simulation, is equal to 1, 5 and 10 times the calibration noise are indicated by cyan, orange and red lines, respectively. Bottom: the
same as the top for optimistic scenarios. The optimistic scenario for LOFAR and the SKA involves complete modelling of point sources down to 0.1 mJy using
additional long baselines. For HERA and the MWA, the optimistic scenario assumes that the 10 mJy source catalogue from the TGSS is used for calibration.
If long baselines can faithfully model the sources down to 0.1 mJy, modelling noise does not appear to limit LOFAR and the SKA. Sky-based calibration with
HERA is improved significantly by using a deep source catalogue from a complementary array. The vertical stripe in the LOFAR figure at k⊥ ∼ 0.6 h Mpc−1

arises from the arrangement of the HBA antennas in short spaced pairs so that even the outrigger antennas, which are heavily contaminated, participate in a
single short baseline.

modelling error comes from an incorrect model of the primary
beam. A true visibility in the presence of these errors is

vtrue
α =

∫
d�[B(ŝ) + D(ŝ)]I (ŝ)e−2πibαν/c

= yα +
∫

d�D(ŝ)I (ŝ)e−2πibαν/c. (45)

Our new calibration residual, rα , takes on the form

rα → ∫
d�D(ŝ)I (ŝ)e−2πibαν/c. (46)

This leads to a new form of Rαβ as well:

Rαβ →
∫ Smax

0
dS

d2N

dSd�
S2
∫

d�|D(ŝ)|2e−2πi(bαν/c−bβν′/c), (47)

where Smax is the flux of the highest flux source in the field of view
that is obtained by setting the number of sources with intrinsic flux
greater than Smax equal to unity,

Smax = S∗

[
k

∫
d�A(ŝ)

]1/γ

. (48)
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Figure 2. Top: same as Fig. 1 except now we consider a perfect calibration catalogue with calibration errors arising only from mismodelling the primary beam
at the 1 per cent level in the main lobe and the 10 per cent level in the side lobes. With the exception of HERA, foreground residuals arising from primary beam
modelling errors dominate the signal in the entire EoR window. Bottom: the same as above, but with a uniform modelling accuracy of 1 per cent. Much of the
EoR window is still contaminated for LOFAR and the MWA while significant bias exists in much of the EoR window for the SKA.

Since the literature typically reports fractional errors in beam mod-
elling, we describe D(ŝ) as the true beam A(ŝ) multiplied by a
fractional error function D(ŝ) = f (ŝ)A(ŝ), where we parametrize
f (ŝ) as the following piecewise function,

f (ŝ) =
{

A
[
1 − (1 − ez) exp

(− cos θ2/2σ 2
e

)] | cos θ | < s1

A
[
1 − (1 − ez) exp

(−s2
1/2σ 2

e

)] | cos θ | ≥ s1,

(49)

where Aez is the fractional beam modelling error at the pointing
centre, s1 is the angular distance of the pointing centre to the first
side lobe and A, σ e may be adjusted to give different fractional
modelling errors in the side lobes. This function allows us to assign
an arbitrary modelling uncertainty to the zenith and side lobes. We
compute the level of beam modelling noise in the 21 cm power spec-
trum for two different scenarios, one in which the beam is known
to 1 per cent at zenith and 10 per cent in the side lobes, which is
consistent with the precision reported in Neben et al. (2015). We

also consider a scenario in which an order-of-magnitude improve-
ment in beam modelling has been achieved and the beam is known
to 1 per cent in both the side lobes and the main lobe, which is
the target precision for in-development drone experiments (Jacobs
et al. 2017). We note that our model describes beam modelling er-
rors that are completely correlated between antennas. It is possible
that uncorrelated errors (which we might expect to arise from im-
perfections in the construction of each station) will integrate down
differently from the modelling errors we consider here.

Plotting the resulting residual power spectra from equation (34)
in Fig. 2, we see that with the current precision of primary beam
models, the calibration noise masks the power spectrum across all of
k-space for the MWA, LOFAR and the SKA. Even with an order-of-
magnitude improvement in our modelling, a significant foreground
bias �20 per cent of the signal amplitude will be present in mea-
surements by LOFAR and SKA-1. Thus, even under the optimistic
foreground modelling scenarios considered above, foreground er-
rors will still contaminate the EoR window unless significant
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Table 1. Inspection of the equations in Section 2 yields a number of an-
alytic and qualitative relationships between the properties of an array and
modelling catalogue.

Strategy Impact on error P (k)

Reduce Smin Reduce amplitude as S
3−γ
min

Reduce the standard deviation of
antenna positions, σ ant

(a) Increase amplitude as
σ

2(3−γ )/(1−γ )
a

(b) Reduce maximum kmin
‖ ∼ σa of

errors
Increase Nant (a) Reduce amplitude as N−1

ant
(b) Decrease Smin

a

Increase aperture diameter, dant (a) Reduces kmin
‖ ∼ d−1

ant

(b) Requires larger σ ant leading to
larger kmin

‖
aDepends on the distribution of additional antennas.

improvements in beam modelling are made. HERA’s compact lay-
out limits the impact of beam errors to small delays so that a signif-
icant portion of the EoR window is accessible even in the fiducial
beam modelling scenario.

3.4 The dependence of modelling noise on array and catalogue
properties

We can use the equations developed in Section 2.3 to determine
the impact of array configuration and catalogue depth on the power
spectrum bias Pαα . Since we are interested in the contribution from
modelling errors that, unlike thermal noise, do not average down
with integration time, we will let C = R in equations (28)–(34).
From equation (42), we list the effects of changing various parame-
ters in the instrument design and source catalogue in Table 1. There
are a number of adjustments in the array layout that can be made
to reduce the amplitude of the errors. Several of these adjustments
have multiple effects that work against each other.

3.4.1 Catalogue depth

Ignoring diffuse emission, the power spectrum of modelling errors
in equation (42) is proportional to σ 2

r = ∫ Smin

0 S2S−γ dS ∝ S3−γ
min .

With the power-law index of 1.75 for faint source populations,
the noise level will scale as S1.25

min . Hence, clearing a contaminated
region requires improvements in catalogue depth on the same order
of magnitude as the ratio of the bias to the expected signal.

3.4.2 Time averaging

If the instrumental gains are stable in time, modelling noise can
be suppressed by averaging over local sidereal times (LST). We
investigate the level of suppression that is possible for non -fringe-
stopped baselines using multi-field averaging by calculating the
temporal coherence of the modelling noise over some time interval,
�t. After a time �t has passed, the primary beam of the instrument
that had a gain of A(ŝ) towards the brightness field at I (ŝ) at time t
will now have a gain of A(ŝ) towards I (ŝ + �ŝ) at time t + �t,

Rαα(ν, t ; ν, t + �t) =
(∫

d�d�′e−2πiνbα ·(ŝ−ŝ′)/c
)

× Cov[Ir (ŝ), I ∗
r (ŝ′ + �ŝ)]

=
(
σ 2

r (Smin)e−2πiνbα ·�ŝ/c
)

×
∫

d�A(ŝ)A∗(ŝ − �ŝ). (50)

When �ŝ is larger than the extent of the beam on the sky, the integral
in equation (50) is close to zero. Hence, a baseline is temporally

coherent with itself when �ŝ is small enough that its fields of view
at the different times overlap. If the gains are stable over time,
one can calibrate on multiple fields and reduce the power spectrum
of calibration modelling errors by a factor of Np, where Np is the
number of non-overlapping pointings. More significant suppression
can arise from the oscillating term in equation (50), which arises
from our assumption that the sky has moved by �ŝ and would
not appear in the covariance between non-fringe-stopped baselines.
Averaging this oscillatory term over multiple LSTs can potentially
lead to a significant reduction in the amplitude of modelling noise
and is the subject of future work.

3.4.3 Array configuration

There are three primary ways of changing the array configuration
to affect modelling errors.

(i) Antenna distribution. Reducing the length of baselines in-
volved in calibration reduces the chromaticity of gain errors and
thus the smallest Fourier mode, kmin

‖ , that is not dominated by mod-
elling noise. On the other hand, the array PSF, and hence the minimal
flux that an array can model for self-calibration, is also set by its
compactness. If the antennas are distributed as a Gaussian with
standard deviation σ a, then the naturally weighted PSF can be ap-
proximated by a Gaussian with standard deviation, σp = λ0/(2πσa).
Condon (1974) determines that the confusion limit of an array, Smin,
depends on the PSF as σ 2/(γ−1)

p ∝ σ 2/(1−γ )
a . Since the amplitude of

the calibration noise is proportional to S3−γ
min , the overall normal-

ization of calibration noise will scale with the standard deviation
of the antenna distribution as σ 2(3−γ )/(1−γ )

a ∼ σ−3.33
a . At a glance,

this is a very steep change in amplitude that might counteract the
decrease in chromaticity. However, will find below that the impact
of chromaticity is much more important.

(ii) Antenna count. Increasing the number of antennas will cause
the amplitude of the modelling noise power spectrum to reduce as
∼Nant but larger numbers of antennas will also force the array to
be less compact, potentially increasing kmin

‖ while driving down the
confusion limit.

(iii) Antenna size. Increasing the size of each antenna reduces the
primary beamwidth and hence the contamination from foregrounds
at delays near the horizon but also drives up the minimal baseline
size.

The scaling of the noise with the array characteristics listed above
can be illuminated with some further simplifying assumptions. In
particular, if all of the stations have Gaussian beams with angular
standard deviations of σ b ≈ ελ/dant, where dant is the antenna di-
ameter and ε ≈ 0.45 and that the antennas are Gaussian distributed
with a standard deviation of σ ant, equation (42) allows us to derive a
closed-form prediction of the minimal k‖ in such an interferometer
that is not contaminated by foregrounds (Appendix E),

kmin
‖ ≈ 1.24 h Mpc−1

√
1 + z

10

( σant

1 km

)( dant

10 m

)−1

×
[

1 + 0.35 log

(
1 + z

10

)
− 0.04 log

(
�m

0.27

)
+ 0.1 log

(
Smin

10 mJy

)
− 0.08 log

(
P21

104 mK2 h−3 Mpc3

)
− 0.08 log

(
Nant

100

)
− 0.08 log

( σant

1 km

)
+ log

(
dant

10 m

)]
, (51)
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Figure 3. Using equation (51), we show the smallest kmin
‖ that is not dominated by modelling noise errors for arrays with Gaussian primary beams, a random

circular Gaussian distribution of Nant antennas with standard deviation σ ant, each with diameter dant. The area below the white dashed line is where side lobes
render the assumption of Gaussian beams inaccurate. Beige regions on the lower-right corner of each plot denote unphysically high packing densities. We see
that for all existing instrument designs, calibration noise extends to large k‖ values that will reduce their sensitivity to the 21 cm signal. HERA will benefit
greatly from the fact that it can be calibrated redundantly with minimal reliance on a sky model.

where P21 is the amplitude of the 21 cm power spectrum. This
formula can be used to get a quick order-of-magnitude sense as to
whether a mode will be accessible to an instrument; however, it
is very optimistic in that it assumes a Gaussian primary beam.
While it also strictly assumes that the antennas are distributed
as a Gaussian, we have found that it holds to 10 per cent accu-
racy for non-Gaussian arrays (such as LOFAR and the MWA)
as well.

From equation (51), we see that the extent of modelling noise
contamination depends primarily on σ ant/dant while other quantities,
such as Nant and Smin, contained within a logarithm have a much
weaker impact on kmin

‖ . This proportionality makes sense intuitively
since larger apertures have smaller primary beams, suppressing
emission at large zenith angles and larger delay. In closely packed
arrays, the σ ant/dant proportionality can be saturated so that the σ 2

r

inside of the logarithm will matter. While this equation ignores the
existence of side lobes, it gives us an order-of-magnitude estimate
of how modelling noise scales with array properties. In Fig. 3, the
kmin

‖ values predicted from the naturally weighted confusion limits
of various planned arrays exceed kmin

‖ � 0.2 h Mpc−1, including for
the SKA-1 core. Since interferometers such as the SKA and LOFAR
focus most of their sensitivity at small k‖ values, their ability to
detect the 21 cm signal will be heavily impacted by foreground
modelling errors (Pober et al. 2014).

We can get a conservative sense for how side lobes extend kmin
‖

beyond the values predicted in equation (51) by setting the ampli-
tude of the modelling noise at zero delay, multiplied by square of the
side-lobe amplitudes (for an Airy beam, equal to −13 dB) equal to
the 21 cm signal (see Appendix E). We denote the region of instru-
mental parameter space that is affected by side lobes in Fig. 3 with
a grey overlay. Since all planned instruments fall within this region,
the kmin

‖ predictions in this figure are actually optimistic. For these
arrays, a more detailed calculation of equation (34) with realistic
side lobes is necessary. We found in Section 3.2, with more realistic
side lobes considered, that the kmin

‖ obtained is indeed significantly
larger than predicted by equation (51).

4 ELI MI NATI NG MODELLI NG NOI SE W ITH
BA S E L I N E W E I G H T I N G

While optimistic scenarios in foreground characterization may be
precise enough to suppress calibration modelling noise below the
21 cm signal, elimination of this contamination will also require
beam characterization that is beyond the current state of the art.
Enabling a power spectrum detection in existing sky-based cali-
brated experiments calls for an alternate strategy. Redundant cali-
bration is one existing, and so-far successful alternative though it
can only be applied to regularly spaced arrays. Though redundant
calibration does not rely on a detailed sky model, it is possible that
antenna-to-antenna beam variations and position errors can violate
the assumption of redundancy and introduce chromatic artefacts
that are similar to the ones we have found for sky-based calibration,
a potential shortcoming that is being investigated. One approach is
to ensure that the instrument contains no structure in region of k-
space relevant for 21 cm studies, allowing for smooth fits that do not
contaminate the EoR window (B16). This is one of the approaches
being adopted by HERA (Ewall-Wice et al. 2016a; Neben et al.
2016; Thyagarajan et al. 2016; Patra et al. 2017b) and an upgrade to
the MWA. In this section, we explore an alternative strategy that can
be used even when the bandpass is not already intrinsically smooth.
By exponentially suppressing long baselines, sky-based calibration
is able to remove fine-frequency structure while avoiding contami-
nation within the EoR window.

Supra-horizon contamination from calibration noise arises from
the inclusion of longer baselines in calibrating gain solutions that
are applied to short baselines, leaking power from large to small
k⊥. One way of mitigating this source of contamination is to
weight the visibilities contributing to each gain solution in a way
that dramatically upweights short baselines over long ones. This
can be accomplished by choosing an appropriate W matrix in
equations (16) and (17). In Section 4.1, we explore the efficacy
of using a specific form of baseline weighting to eliminate mod-
elling noise. The use of non-unity weights will result in an increase
in thermal noise that we discuss in Section 4.2.
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4.1 Gaussian weighting for sky-based calibration

We explore the performance of a W matrix that downweights long
baselines with the functional form

Wαβ =
⎧⎨⎩exp

(
− b2

α

2σ 2
w

)
α = β

0 α �= β.

(52)

This function can result in weights that vary over a range beyond
what is allowed for by numerical precision. We note that generally
the off-diagonal elements of the weighting matrix can mix differ-
ent baselines (which might be desired if we wished to suppress or
emphasize features that covary between baselines). Our choice of
a diagonal matrix corresponds to simply multiplying each visibility
by a different weighting factor with which they will contribute to
the sum of squares that is being minimized in determining η̂ and φ̂.
In order to avoid poorly conditioned matrices, a regularization term
is also added equal to the identity multiplied by 10−6, which is large
enough to avoid numerical precision errors, but also small enough
such that the weights on long baselines are negligible compared to
the short ones (and below the dynamic range between foregrounds
and signal). With this weighting, core antennas participating in
many short baselines will have their gain solutions dominated by
relatively achromatic core visibilities. Meanwhile, outrigger anten-
nas that participate in only long baselines will derive their solutions
from many baselines with similarly small weights. In both cases,
a normalization step of (AWAᵀ)−1 corrects for the fact that these
weights do not sum to unity. Thus, long and short baselines are both
effectively calibrated using the Gaussian weighting scheme while
the leakage of chromatic errors on long baselines into gain solutions
being applied to short baselines is stymied.

We calculate Pαα given by equation (34) for the arrays considered
in this paper with different values of σw . For LOFAR and the SKA,
we use σw = 100 m. For the MWA and HERA, whose cores are
especially compact and have larger fields of view than LOFAR and
the SKA, we apply more aggressive weighting with σw = 50 m. We
compare the cylindrically binned and averaged results in the middle
row of Fig. 4 with cylindrical power spectra with W equal to the
identity (top row) and find that most of the EoR window is now free
of foreground contamination with the power spectrum accessible at
k‖ � 0.1 h Mpc−1 for most arrays.

However, stripes of foreground contamination still extend into
the EoR window at distinct k⊥ values in the MWA, LOFAR and
to a lesser degree for the SKA. Isolating these baselines in the uv

plane, we find that this contamination arises from antennas that
are associated with less than two baselines that receive significant
weighting. Define neff(i) for the ith antenna to be equal to the sum
of the weights of all visibilities that include this antenna divided
by their maximum value. As far as calibration is concerned, neff(i)
describes the effective number of baselines that an antenna partici-
pates in. If the number of effective baselines that are used to derive
gain solutions is too small, the system is underconstrained and a
degeneracy exists between possible solutions for the antenna gains.
Two antennas have two gains to solve for, but only one visibility
between them. The estimator is forced to break these degeneracies
by upweighting the contribution from the long baselines. An exam-
ple where neff is smaller than 2, in our Gaussian weighting scheme,
would be for an antenna that is extremely far away from all but one
other antenna. Only a single baseline associated with this antenna
has significant weight while the rest are downweighted to zero.

We identify these problematic baselines by calculating neff(i) for
each antenna. We then flag and exclude from the fit the highest

weighted visibilities on all antennas with neff ≤ 2 until all neff

are greater than 2. Flagging these visibilities leads to a loss in
≈6 per cent of visibilities for LOFAR, 1.3 per cent for the MWA,
0.1 per cent for the SKA and no visibilities for HERA. The high neff

for HERA antennas is something we would expect given its compact
configuration (every antenna has many short baselines associated
with it). Similarly, the SKA core we model is a compact Gaussian
with few isolated antennas. LOFAR, on the other hand, has antennas
that are arranged in pairs that are separated by short distances so that
all of the isolated outriggers have a single short baseline associated
with them (which results in the vertical stripe at k⊥ ≈ 0.4 h Mpc−1 in
the second row of Fig. 4). The MWA lacks these pairs, and as a result
has fewer low-neff antennas that tend to lie in the transition between
its compact core and extended outriggers. We show cylindrically
binned power spectra formed from the delay-transformed residuals
of unflagged visibilities in the bottom row of Fig. 4, finding that
upon flagging this small population of problematic baselines, the
EoR window is almost entirely clear above 0.1 h Mpc−1 for all ar-
rays studied. We also show the delay-transformed power spectrum
estimates of visibilities contaminated by primary beam modelling
errors of 1 per cent at zenith and 10 per cent in the side lobes with
and without Gaussian visibility weighting applied in the calibra-
tion solutions (Fig. 5). With Gaussian weighting, we are also able
to mitigate contamination with the current level of primary beam
modelling errors.

4.2 The impact of inverse baseline weighting on power
spectrum sensitivity

For an interferometer with identical antenna elements, the thermal
noise level on every baseline is the same and N is proportional to the
identity matrix. For the point source approximation of the modelled
foregrounds, the optimal weighting minimizing the errors due to
thermal noise in each gain solution is therefore also the identity
matrix. Because of its departure from identity weights, the Gaussian
weighting that we proposed in the previous section has the effect of
increasing thermal noise uncertainties in both the gains and the final
power spectrum estimate. In order to see how Gaussian weighting
increases the variance due to thermal noise in the gain solutions,
one can consider the fact that the variance of the gain solutions
goes as N−1

ant (equation 42). For a particular antenna gain, Gaussian
weighting reduces the effective number of visibilities whose noises
are averaged over in each gain solution so that the variance of
the antenna gain is now ∼n−1

eff rather than N−1
ant . In the weighting

schemes employed in Section 4.1, neff goes down by a factor of
order 1–10, remaining between 10 and 100 for LOFAR and the
MWA.

Assuming Gaussian errors, the covariance between the square of
two delay-transformed visibilities is given by

σ 2
αβ = 〈|Ṽα(τ )|2|Ṽβ (τ )|2〉 − 〈|Ṽα(τ )|2〉〈|Ṽβ (τ )|2〉

= (
PN

αβ + PR
αβ + PS

αβ

)2
, (53)

where PN
αβ ≡ 〈Ṽ N

α (τ )Ṽ N∗
β (τ )〉 is the covariance matrix of the ther-

mal noise component of delay-transformed visibilities and P
R(S)
αβ

are the covariances of the delay-transformed residual foreground
(signal) visibilities. While the residual foreground component can
contribute significantly, it is only of concern in the regions of
k-space where the amplitude of the foreground modelling noise
is comparable to or greater than the level of the 21 cm sig-
nal. Since we are interested in how the thermal noise increases
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Figure 4. Top: residual power spectra with each visibility weighted equally in determining the calibration solutions (W set to the identity matrix). Middle row:
the same but now weighting visibilities with a Gaussian function of baseline length (equation 52). Much of the EoR window is cleared of contamination from
calibration residuals. However, pronounced stripes of contamination still exist, especially for LOFAR and the MWA. These stripes arise from short baselines
formed from antennas involved in no other short baselines. In order to solve for both antenna gains, they must use information from long baselines, resulting in
significant chromaticity on the few short baselines to which the problematic antenna gains are applied. Bottom: flagging visibilities after calibration until all
gains participate in neff ≥ 2 baselines, we find the EoR window free of these stripes. To reiterate, solid lines demarcate regions where the fiducial EoR signal
is 1, 5 or 10 times the power of the calibration modelling error. The dashed diagonal line indicates the location of the wedge associated with the first null of
the primary beam; the solid line indicates the horizon wedge.

in the region of k-space where we have reduced foreground
bias to well below the signal level, we will focus our atten-
tion on the thermal noise component and ignore the sample
variance from modelling noise and signal for the remainder of
this discussion.

We may compute PN
αβ using equation (34) with C → N. Typ-

ically, thermal noise is uncorrelated between baselines so Ñαβ is
diagonal. In the absence of calibration errors, the covariance be-
tween the squares of different delay-transformed visibility prod-
ucts arising from thermal noise would therefore also be zero. The
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Figure 5. Top: cylindrically binned power spectra of calibration errors due to beam modelling errors at the level of 1 per cent in the main lobe and 10 per cent
in the side lobes (equation 49). Each visibility has been weighted equally in determining the calibration solutions. Bottom row: the level of cylindrically binned
power spectrum residuals from the primary beam modelling errors in the top row but now with calibration solutions derived from visibilities that are weighted
with equation (52). Short baselines contributing to antennas with neff ≤ 2 have also been flagged from the calibration fit. Weighting with a Gaussian is capable
of removing calibration modelling errors due to beam mismodelling at the level that we see in today’s experiments (Neben et al. 2015).

presence of calibration errors introduces additional components to
the thermal noise in all but the last term of equation (34) that are
correlated from baseline to baseline. For identity weights and a di-
agonal noise covariance, the off-diagonal terms in Pαβ go roughly
as ∼N−2

ant ∼ N−1
vis compared to the diagonal terms (which have the

order unity contribution that does not arise from calibration). Thus,
for α �= β, σ 2

αβ ∼ N−2
vis σ 2

αα and has, so far, been ignored in other
sensitivity calculations (e.g. McQuinn et al. 2006; Parsons et al.
2012a; Beardsley et al. 2013; Pober et al. 2014).

In order to obtain enough sensitivity for a detection, interfer-
ometry experiments are expected to perform spherical binning and
averaging in k-space to obtain power spectrum estimates, p̂A, whose
covariance we denote as �AB (denoting band powers with upper-
case Latin subscripts). The variance of a binned and averaged power
spectrum estimate with identity weights is given by

�AA = N−2
A

(∑
α∈A

σ 2
αα +

∑
α∈A

[ ∑
β∈A;α �=β

σ 2
αβ

])

∼ N−2
A

(∑
α∈A

σ 2
αα + NA

N2
vis

∑
α∈A

σ 2
αα

)
. (54)

Thus, the contribution to �AA from off-diagonal elements of the
noise covariance is subdominant to the contribution from diago-
nal elements as ∼NA/N2

vis, where NA is the number of visibilities
averaged within the Ath bin.

Non-uniform weighting in calibration decreases the effective
number of visibilities in calibration, increasing the off-diagonal
terms in equation (34). This in turn leads to an increase in the over-
all error bar on each spherically binned and averaged power spec-
trum estimate. We compute the degree to which Gaussian weighting
degrades sensitivity to the spherically binned power spectrum by
comparing �AA for both uniform and Gaussian weighting within
a single LST. While calibration correlates the noise on different
squared visibilities in the same power spectrum bin, we can mini-
mize the extra error by inverse-covariance weighting them before
averaging.

We perform this averaging and report how the Gaussian down-
weighting of long baselines affects the thermal noise on the final
power spectrum estimate in Fig. 6. Because the covariance matrices
for HERA and the SKA are very large and would require significant
computation to invert, we only perform this calculation for LOFAR
and the MWA. We also assume that each power spectrum estimate
only incorporates visibilities outside of the wedge. The proportion
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Figure 6. The ratio between thermal noise errors on a spherically averaged
power spectrum estimate with Gaussian weighting and uniform weighting of
visibilities in calibration. We show this ratio for LOFAR where σw = 100 m
and the MWA with σw = 50 m. In both cases, the reduction in sensitivity
to the power spectrum is by a factor less than 2 for small k where the
interferometers have maximum sensitivity. Under the Gaussian weighting
scheme, antennas with fewer short baselines have increased thermal noise in
their gains. Increasingly large k-bins include larger numbers of visibilities
formed from antennas with fewer short baselines (small neff) that have large
increases in their thermal noise, leading to a trend of increasing sensitivity
loss with increasing k. Since the MWA has a narrower weighting function,
with σw = 50 m, this increase occurs faster than for LOFAR.

of long baselines that tend to be formed from antennas with smaller
neff increases with each k-bin. Hence, the decrease in sensitivity
increases with k. Since the MWA weighting function is more com-
pact, with σw = 50 m, the increase in the error ratio goes faster than
for LOFAR that has a wider weighting function with σw = 100 m.
Within the region that instruments are expected to be sensitive to the
21 cm signal, the error bars only go up by less than two. Gaussian
weighting increases the thermal noise in the power spectrum mea-
surement, but only by a level similar to intrinsic thermal noise that
would be present even if calibration were perfect. Gaussian weight-
ing can therefore allow us to circumvent the problem of foreground
modelling noise in calibration while only sacrificing a small amount
of sensitivity to the 21 cm power spectrum.

While baseline-dependent weighting is able to clear the EoR
window, it does not necessarily allow any instrument to work within
the wedge. Figs B1 and 2 show that this would still require superb
foreground models accurate to the 0.1 mJy level and modelling of
the primary beam to the 10−3 level in the main lobe and 10−2 level in
the side lobes. Until these milestones are achieved, extended arrays
will suffer a disproportionate reduction in delay power spectrum
sensitivity relative to compact arrays like HERA (Pober et al. 2014).

5 C O N C L U S I O N S

In this work, we derived expressions for the amplitude of the power
spectrum bias arising from the imprint of foreground modelling er-
rors on calibration. These expressions assumed that calibration er-
rors are small enough such that their solutions are obtained through
a linear set of equations, which is the case in the final stages of
iterative, sky-based calibration schemes when the errors in the fore-
ground model are small. Using these equations, we are able to
explain the amplitude of the biases that have been simulated for the
special cases of the MWA (B16) and LOFAR (Patil et al. 2016) and
to predict the amplitude of modelling noise in the power spectrum

for the SKA-1 and HERA (which does not actually rely on this ap-
proach). We performed this analysis in a variety of foreground and
beam modelling scenarios. We also use our formalism to determine
the dependence of modelling noise on the parameters of the array
and the accuracy of the calibration catalogue. These results do not
apply to the redundant calibration strategies used by HERA and PA-
PER, although errors introduced by deviations from redundancy still
have the potential to contaminate the window in a similar way. Our
analysis also reveals that noise bias exists in current power spectrum
estimates where separate calibration solutions are not obtained for
interleaved data sets. Whether this bias limits 21 cm experiments
requires further analysis but it can easily be avoided by obtaining
independent calibration solutions for cross-multiplied data.

This paper is aimed to illuminate the source of calibration errors
within the EoR window. In order to make our analysis analytically
tractable, we employed a number of assumptions. These include
assuming that the array is minimally redundant so that we can
ignore off-diagonal elements of the visibility covariance matrix,
and that the sources themselves are flat spectrum. A more signifi-
cant assumption that will not hold in many observing scenarios is
that we ignored the chromaticity of modelled foregrounds, which
holds approximately when the modelled fluxes are dominated by a
source at the phase centre that exceeds the flux of the next brightest
source by a factor of a few. We also assumed that our instruments
had Airy beams, that sources could be characterized down to a
fixed flux level across the entire sky, ignored ionospheric effects
and polarization (Sault, Hamaker & Bregman 1996; Jelić et al.
2010; Moore et al. 2013, 2017; Asad et al. 2015; Kohn et al. 2016)
which is especially severe on the large spatial scales (Lenc et al.
2016) that we suggest should be relied upon in calibration strate-
gies. Hence, specific quantitative predictions in this paper should
be regarded as accurate to within an order of magnitude and on the
optimistic side. In validating the design of future instruments, full
end-to-end simulations should be employed, though this is left to
future work.

Our calculations indicate that for current catalogue limits pre-
sented in Carroll et al. (2016), Hurley-Walker et al. (2017) and
Williams et al. (2016) both the MWA and LOFAR will observe an
EoR window that is heavily contaminated by chromatic calibration
errors due to unmodelled sources. Since the chromaticity of these
errors increases with the length of baselines involved in calibration,
removing inner baselines from calibration, as is required to avoid
signal loss with direction-dependent calibration (Patil et al. 2016),
will only exacerbate these chromatic errors and is probably the
source of the systematics floor observed by LOFAR in Patil et al.
(2017, these authors note that calibration errors as a likely culprit
but not that the use of long baselines is exacerbating the problem).
Our analytic treatment suggests that instead sky-based experiments
should use their short baselines to calibrate power spectrum data that
may preclude the direction-dependent approach to avoid signal loss
and will likely require more accurate models of diffuse emission.
LOFAR may also be able to reduce the amplitude of calibration
errors below the power spectrum, at large spatial scales, by averag-
ing over multiple fields of view (if its gains are temporally stable)
and/or by building a source catalogue complete down to ≈100 μJy
across the entire sky. Even if such a catalogue is constructed, beam
modelling precision will also need to be improved by an order
of magnitude over what has been achieved in the literature. The
large field of view on the MWA decreases the number of fields that
can be averaged over and increases the k‖ values contaminated by
modelling errors, making the path to remove this noise with extant
methods considerably more difficult than for LOFAR.
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Our analysis motivates a potential solution to the problem of mod-
elling noise in sky-based calibration. Since contamination within the
EoR window arises from the coupling of long baseline errors into
the calibration solutions on short ones, our proposed strategy is to
downweight the contribution of long baselines to the gain solutions
that are applied to short baselines. The linear least-squares estimator
formalism employed in this paper provides a natural framework for
incorporating such weights. Experimenting with a Gaussian weight-
ing scheme, we find that downweighting long baselines should allow
for both existing and future arrays to correct fine-frequency band-
pass structures without introducing chromatic sky-modelling errors.
While such weighting will increase the level of thermal noise present
in calibration solutions, we find that this noise increase will only
result in power spectrum error bars that are ≈1–1.5 times larger
than the case where all visibilities are weighted identically. This
method prevents calibration errors from limiting the foreground
avoidance approach, which seeks to detect the 21 cm signal within
the EoR window and thus requires the calibrated instrumental re-
sponse to be spectrally smooth. This method is not sufficient to
enable foregrounds subtraction, accessing the signal inside of the
wedge. Working within the delay wedge will require significant
improvements in foreground and primary beam modelling.
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Jelić V., Zaroubi S., Labropoulos P., Bernardi G., de Bruyn A. G., Koopmans

L. V. E., 2010, MNRAS, 409, 1647
Kazemi S., Yatawatta S., 2013, MNRAS, 435, 597
Kazemi S., Yatawatta S., Zaroubi S., Lampropoulos P., de Bruyn A. G.,

Koopmans L. V. E., Noordam J., 2011, MNRAS, 414, 1656
Kazemi S., Yatawatta S., Zaroubi S., 2013, MNRAS, 430, 1457
Kohn S. A. et al., 2016, ApJ, 823, 88
Lenc E. et al., 2016, ApJ, 830, 38
Liu A., Tegmark M., 2011, Phys. Rev. D, 83, 103006
Liu A., Tegmark M., 2012, MNRAS, 419, 3491
Liu A., Tegmark M., Morrison S., Lutomirski A., Zaldarriaga M., 2010,

MNRAS, 408, 1029 (L10)
Liu A., Parsons A. R., Trott C. M., 2014a, Phys. Rev. D, 90, 023018
Liu A., Parsons A. R., Trott C. M., 2014b, Phys. Rev. D, 90, 023019
McQuinn M., 2016, ARA&A, 54, 313
McQuinn M., Zahn O., Zaldarriaga M., Hernquist L., Furlanetto S. R., 2006,

ApJ, 653, 815
Mesinger A., Furlanetto S., 2007, ApJ, 669, 663
Mesinger A., Furlanetto S., Cen R., 2011, MNRAS, 411, 955
Mitchell D. A., Greenhill L. J., Wayth R. B., Sault R. J., Lonsdale C. J.,

Cappallo R. J., Morales M. F., Ord S. M., 2008, IEEE J. Sel. Top. Signal
Process., 2, 707

Moore D. F., Aguirre J. E., Parsons A. R., Jacobs D. C., Pober J. C., 2013,
ApJ, 769, 154

Moore D. F. et al., 2017, ApJ, 836, 154
Morales M. F., Hewitt J., 2004, ApJ, 615, 7
Morales M. F., Hazelton B., Sullivan I., Beardsley A., 2012, ApJ, 752, 137
Neben A. R. et al., 2015, Radio Sci., 50, 614
Neben A. R. et al., 2016, ApJ, 826, 199
Newburgh L. B. et al., 2014, Proc. SPIE, 9145 91454V
Offringa A. R. et al., 2016, MNRAS, 458, 1057
Oh S. P., Mack K. J., 2003, MNRAS, 346, 871
Paciga G. et al., 2013, MNRAS, 433, 639
Parsons A., Pober J., McQuinn M., Jacobs D., Aguirre J., 2012a, ApJ,

753, 81
Parsons A. R., Pober J. C., Aguirre J. E., Carilli C. L., Jacobs D. C., Moore

D. F., 2012b, ApJ, 756, 165
Parsons A. R. et al., 2014, ApJ, 788, 106
Patil A. H. et al., 2016, MNRAS, 463, 4317
Patil A. H. et al., 2017, ApJ, 838, 65
Patra N., Bray J., Roberts P., Ekers R., 2017a, Exp. Astron., 43, 119
Patra N. et al., 2017b, preprint (arXiv:1701.03209)
Pober J. C. et al., 2014, ApJ, 782, 66
Pober J. C. et al., 2016, ApJ, 819, 8
Prandoni I., Seymour N., 2015, Proc. Sci., Revealing the Physics and Evo-

lution of Galaxies and Galaxy Clusters with SKA Continuum Surveys.
SISSA, Trieste, PoS(AASKA14)067

Remazeilles M., Dickinson C., Banday A. J., Bigot-Sazy M.-A., Ghosh T.,
2015, MNRAS, 451, 4311

Rogers A. E. E., Bowman J. D., 2008, AJ, 136, 641
Sault R. J., Hamaker J. P., Bregman J. D., 1996, A&AS, 117, 149
Sullivan I. S. et al., 2012, ApJ, 759, 17
Thyagarajan N. et al., 2013, ApJ, 776, 6
Thyagarajan N. et al., 2015, ApJ, 804, 14
Thyagarajan N., Parsons A., DeBoer D., Bowman J., Ewall-Wice A., Neben

A., Patra N., 2016, ApJ, 825, 9
Tingay S. J. et al., 2013, PASA, 30, 7
Trott C. M., Wayth R. B., 2016, PASA, 33, e019
Trott C. M., Wayth R. B., Tingay S. J., 2012, ApJ, 757, 101
Trott C. M. et al., 2016, ApJ, 818, 139

MNRAS 470, 1849–1870 (2017)

http://www.skatelescope.org/wp-content/uploads/2013/03/SKA-TELSKO-DD-001-1_BaselineDesign1.pdf
http://www.skatelescope.org/wp-content/uploads/2013/03/SKA-TELSKO-DD-001-1_BaselineDesign1.pdf
http://www.skatelescope.org/wp-content/uploads/2013/03/SKA-TELSKO-DD-001-1_BaselineDesign1.pdf
http://arxiv.org/abs/1701.03209


1866 A. Ewall-Wice et al.

van Haarlem M. P. et al., 2013, A&A, 556, A2
Vedantham H., Udaya Shankar N., Subrahmanyan R., 2012, ApJ, 745, 176
Wang X., Tegmark M., Santos M. G., Knox L., 2006, ApJ, 650, 529
Wieringa M. H., 1992, Exp. Astron., 2, 203 (W92)
Williams W. L. et al., 2016, MNRAS, 460, 2385
Zaldarriaga M., Furlanetto S. R., Hernquist L., 2004, ApJ, 608, 622
Zheng H. et al., 2014, MNRAS, 445, 1084
Zheng H. et al., 2017a, MNRAS, 464, 3486
Zheng H. et al., 2017b, MNRAS, 465, 2901

A P P E N D I X A : TH E I M PAC T O F R E D U N DA N C Y

Throughout this paper, we ignored the impact of redundancy be-
tween visibilities, letting Rαβ be diagonal when calculating mod-
elling noise. However, redundancy is significant in highly compact
arrays, such as HERA. Here we argue that the impact of redundancy
on the modelling noise levels, calculated in this work, is to multiply
the overall noise level by a factor of order unity, which only has a
small effect on the extent of contaminated modes in k-space. We
also verify this argument with a numerical calculation.

When C is diagonal, the sum in equation (35) is only over terms
with γ = δ. The existence of redundant baselines introduces non-
negligible off-diagonal terms in the visibility covariance matrix R.
For each γ = δ term in the non-redundant sum, we can consider the
additional summands, with γ �= δ that are introduced for each ii/jj
term and ij/ji term. We start with ii/jj.

For a fixed baseline γ that involves antenna i, there will be at
most ∼Nant additional baselines that are redundant with γ and do
not involve gain i. From equations (39) and (40), the weighting of
the covariance between two different baselines in which only one
involves antenna i goes as ∼N−3

ant . Thus, the presence of redundancy
adds no more than ∼Nant terms involving antenna i but not antenna
j and vice versa, for each ii summand in equation (35). Multiplying
this overall factor of N−2

ant by Nant to account for the Nant different
ii sums leads to a contribution to the noise amplitude of the order
of ∼N−1

ant , similar to the level of the noise without redundancy. As
a result, redundancy changes the modelling error amplitude by a
factor of order unity in the diagonal terms. Next, we consider the ij
terms in equation (35).

For a given γ and i �= j, there will be at most ∼Nant redundant
baselines that do not involve the ith or jth gains, causing the weight-
ing of each unique variance term to go as N−3

ant rather than N−4
ant

in the non-redundant case. Since there are ∼N2
ant unique baselines

that do not involve i or j, the overall sum of these terms goes as
N−1

ant . As a result, the ij terms in equation (35) will have a similar
magnitude as the ii/jj terms but the overall impact on the amplitude
of the modelling noise described in equation (35) still changes the
amplitude by a factor of order unity.

We confirm these arguments with a numerical comparison be-
tween the amplitude of the modelling noise with and without re-
dundancy taken into account for two redundant arrays of 91 and 331
hexagonally packed 14 m apertures and Smin equal to the naturally
weighted confusion limit. We compute the off-diagonal elements
of R by numerically computing the beam integral in equation (5)
for all Rαβ with Airy beams and perform the full matrix inversions
prescribed in equations (16) and (17). We compare our results to
the same calculation where all off-diagonal elements of R are set
to zero (Fig. A1) and find that the difference in amplitude is essen-
tially a factor of order unity, leading to a negligible increase in the
effective kmin

‖ . This calculation confirms our argument for HERA-
scale arrays.

Figure A1. We compare the amplitude of modelling noise on a short base-
line when R is assumed to be diagonal (orange line) and the off-diagonal
terms of R are explicitly included for a 91-element (dashed lines) and 331-
element (solid lines) hexagonally packed array of 14 m apertures. We find
that even in a maximally redundant array, the effect of redundancy is to
change the overall amplitude of the modelling noise by a factor of a few.
This only has a small impact (�10 per cent) on kmin

‖ , the smallest k‖ where
the 21 cm signal (black line) dominates over the modelling noise, as com-
puted from equation (51) that ignores the effect of redundancy.

A P P E N D I X B : T H E P O I N T SO U R C E
A P P ROX I M AT I O N FO R M O D E L L E D
F O R E G RO U N D S

For analytic tractability, we assumed that the modelled compo-
nent of foregrounds was well characterized by a flat-spectrum point
source at zenith, whose visibilities are achromatic. Throughout the
paper, the rest of the unmodelled foregrounds considered in our cal-
culations were not assumed to be a single point source and are char-
acterized by chromatic visibilities (see Sections 2.1.1 and 2.1.2).
In this appendix, we explore the consequences of relaxing this as-
sumption.

A significant consequence of the foregrounds not being dom-
inated by a single point source at the phase centre is that for a
fixed frequency, yα’s amplitude will vary significantly from base-
line to baseline, often approaching zero where source fringes de-
structively interfere. As a result, Cov[ cα

yα
,

c∗
α

y∗
α

] can vary rapidly in
frequency where yα approaches zero. Thus, any weighting scheme
that does not take these nulls into account will experience calibra-
tion error chromaticity in large excess of what we have found so
far.

Instead, it is typical for calibration solutions to be obtained for
each frequency through inverse-covariance weighting. Since the
thermal noise covariance matrix is usually proportional to the iden-
tity, per-frequency inverse-covariance weights are proportional to
|yα|2. Under this scheme, we may employ a weights matrix that is
frequency dependent,

Wαα → W′
αα = Wαα|yα(ν)|2, (B1)

which leads  and � to be frequency dependent as well and we
can no longer separate them from C̃ in the delay transform. The
delay-transformed visibility in equation (25) becomes

Ṽα ≈
∫

dνe2πiντ
[
yα

(
η̃′

i + η̃′
j + iφ̃′

i − iφ̃′
j

)
+ cα

]
, (B2)
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Figure B1. Comparisons between calibration modelling noise with realistic modelled foregrounds (grey lines) and the point source foregrounds used throughout
this paper (black lines) with (solid) and without (dashed) Gaussian baseline weighting for two different LSTs and baseline lengths on the MWA from 10 MHz
noise equivalent bandwidth centred at 150 MHz. The red line denotes the amplitude of the H I power spectrum generated with 21CMFAST. We find that fully
modelled foregrounds change the overall amplitude of the calibration noise since the amplitude of a particular modelled visibility does not necessarily equal
the amplitudes of every other modelled visibility. Chromatic yαs also introduce some additional spectral structure that results in a larger width of calibration
errors in k‖. The overall impact on the LoS mode where modelling noise bias falls below the 21 cm signal is only of the order of 10 per cent with Gaussian
weighting.

where every term, including yα , is a function of frequency. The
expectation value for the delay-transformed product of Ṽα with its
complex conjugate to second order in c/ y (equation 28) is now

Pαβ =
∫

dνdν ′e2πiτ (ν−ν′)[yαy∗
β

〈
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iη
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〈
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∗
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], (B3)

where every complex conjugated quantity is a function of ν ′ and
every non-conjugated quantity is a function of ν. Since the weight
and design matrices are no longer frequency independent, second-
order moments cannot be separated into frequency-dependent and
frequency-independent components as we did with the point source
approximation. In order to compute Pαβ , we must calculate all
second-order moments with a given source model and design matrix
and take the Fourier transforms.

For realistic yα , we use simulations of point source foregrounds
obtained from the PRISIM software package (Thyagarajan et al. 2015)
for the MWA-128T array layout with antennas modelled as 4 m
diameter dishes. For each 100 kHz channel over a 20 MHz band, we
use a weights matrix W ′

αα(ν) = Wαα|yα(ν)|2 and compute the two-
dimensional Fourier transform in equation (B3) to obtain Pαα for
several baselines. We take the MWA to be pointing at a declination
equal to its latitude of −26.◦701 (Tingay et al. 2013) at LST=0 and
4 h. We run two different simulations, one in which Wαα is set
to unity (and the weights matrix W′

αα = Wαα|yα|2) and the other
where Wαα is given by equation (52) with σw = 50 m.

In Fig. B1, we show the amplitude of calibration modelling noise
on a short (8 m) and long (174 m) MWA baseline with and without

fully modelled foregrounds for several different LSTs. In all cases,
we see that the fully modelled foregrounds extend the width of the
foreground noise to larger k‖, something we would expect to occur
with the additional spectral structure they introduce. In addition,
the amplitude of the modelling noise is modified since the mul-
tiplication by the modelled foregrounds on a particular baseline,
yαy∗

β (equation B3), does not necessarily cancel out the modelled
foregrounds in the numerator of each summed 〈cγ c∗

δ 〉/(yγ y∗
δ ) as

they do when yα is constant. Despite these differences, we find that
over the range of LSTs and baselines studied, the overall impact on
the minimal LoS wavenumber of modes that can be observed at a
particular uv point is only of the order of ≈10 per cent. Thus, the
approximation of the modelled foregrounds as a point source at the
phase centre does not have a significant impact on a range of modes
that are masked by foreground modelling errors.

A P P E N D I X C : E X P R E S S I O N S FO R S E C O N D
M O M E N T S O F D E L AY-T R A N S F O R M E D
C A L I B R AT I O N E R RO R S

In this appendix, we derive the approximate expressions for
the second moments that we use to go from equation (28) to
equation (34). To derive equations (29) through (33), we first note
that

Cov[Re(c), Re(c)ᵀ] ≈ 1

2
C,

Cov[Im(c), Im(c)ᵀ] ≈ 1

2
C. (C1)

This assertion is true for thermal noise, n, since both the real and
imaginary components of the thermal noise are given by identi-
cal, zero-mean normal distributions. We need to only show that
this assertion holds for the unmodelled foregrounds r . We start by
writing

Cov[Re(r), Re(r)ᵀ]αβ

∝
∫

d� cos

(
2πνbα · ŝ

c

)
cos

(
2πν ′bβ · ŝ

c

)
|A(ŝ)|2
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= 1

4

∫
d�[e2πi(νbα+ν′bβ )·ŝ/c + e−2πi(νbα+ν′bβ )·ŝ/c]|A(ŝ)|2

+1

4

∫
d�[e2πi(νbα−ν′bβ )·ŝ/c + e−2πi(νbα−ν′bβ )·ŝ/c]|A(ŝ)|2, (C2)

where we dropped the multiplicative instrument-independent terms
in the covariance (equations 5 and 6) in favour of a proportionality
sign. All of the terms in equation (C2) will integrate to zero unless
|bα ± bβ | � dant (less than one fringe fits within the primary beam
main lobe), which is only true if bα ≈ ±bβ , where the negative case
causes exponential terms in the first line of equation (C2) to be non-
zero and the positive case causes the second line to be non-zero. We
may choose baseline indexing such that we never have bα ≈ −bβ ,
by having antenna numbers increase with increasing E-W and than
N-S position. With this indexing,

Cov[Re(rα), Re(rβ )]

∝ 1

4

∫
d�[e2πi(νbα−ν′bβ )·ŝ/c + e−2πi(νbα−ν′bβ )·ŝ/c]|A(ŝ)|2

= 1

4
[Cov(rα, r

∗
β ) + Cov(r∗

α, rβ )]. (C3)

For beams that are symmetric around the phase centre, Cov[rα, r
∗
β ]

is real and Cov[rα, r
∗
β ] = Cov[r∗

α, rβ ], proving our assertion that

Cov[Re(rα), Re(rβ )] = 1

2
Rαβ . (C4)

A very similar set of steps with identical assumptions yields

Cov[Im(rα), Im(rβ )] = 1

2
Rαβ . (C5)

Next, we show that

Cαβ � 〈cα〉〈c∗
β〉. (C6)

This can be seen by writing the product of the averages

〈cα〉〈c∗
β〉 =

∫
d�e−2πiνbα ·ŝ/cA(ŝ)〈I (ŝ)〉

×
∫

d�′e2πiν′bβ ·ŝ/cA(ŝ′)〈I (ŝ′)〉 (C7)

both integrate to zero when bα/β � dant and 〈I (ŝ)〉 is smooth as a
function of position (which is typically true of foreground residuals
and signal).

We can now show derivations for equations (29) through (33).

C1 Derivation of equation (29)

We start on the left-hand side with

〈η̃′
i η̃

′∗
j 〉 =

∫
dνdν ′e−2πiτ (ν−ν′) [[Cη]ij + 〈ηi〉〈η′∗

j 〉]
≈ S−2

0 iγ 
ᵀ
δj

∫
dνdν ′e−2πiτ (ν−ν′)Cov[Re(cγ ), Re(cδ)]

= S−2
0

2
iγ 

ᵀ
δj

∫
dνdν ′e−2πiτ (ν−ν′)Cγ δ(ν, ν ′)

= S−2
0

2
iγ 

ᵀ
δj C̃γ δ. (C8)

In going from the first to the second line, we threw away the product
of the means (equation C6). Going from the second to the third line,
we used equation (C4).

C2 Derivation of equation (30)

Following the same procedure for equation (29),

〈φ′
i φ̃

′∗
j 〉 =

∫
dνdν ′e−2πiτ (ν−ν′) [[Cφ]ij + 〈φi〉〈φ′∗

j 〉]
≈ S−2

0 �iγ �
ᵀ
δj

∫
dνdν ′e−2πiτ (ν−ν′)Cov[Im(cγ ), Im(cδ)]

= S−2
0

2
�iγ �

ᵀ
δj

∫
dνdν ′e−2πiτ (ν−ν′)Cγ δ(ν, ν ′)

= S−2
0

2
�iγ �

ᵀ
δj C̃γ δ. (C9)

C3 Derivation of equation (31)

Starting with the left-hand side of equation (31),

〈c̃αη̃∗
i 〉 = S−1

0

2

∫
dνdν ′e−2πi(ν−ν′)τiγ 〈cα(cγ + cγ ∗)〉

≈ S−1
0

2
iγ

∫
dνdν ′e−2πi(ν−ν′)τ Cα

γ (ν, ν ′)

= S−1
0

2
iγ C̃α

γ . (C10)

To go from the first to second line here, we used the fact that
〈cαcγ 〉 ∝ ∫ d�e−2π ŝ·(bαν+bβν′)/c|A(ŝ)|2, which, as discussed above,
integrates to zero for bα/β � dant.

C4 Derivation of equation (32)

Following the same steps used for equation (31),

〈c̃αφ̃∗
i 〉 = S−1

0

2i

∫
dνdν ′e−2πi(ν−ν′)τ�iγ 〈cα(cγ − cγ ∗)〉

≈ iS−1
0

2
�iγ

∫
dνdν ′e−2πi(ν−ν′)τ Cα

γ (ν, ν ′)

= S−1
0

i

2
�iγ C̃α

γ . (C11)

C5 Derivation of equation (33)

We may show this last identity by expanding the real and imaginary
components of c,

〈η̃′
i φ̃

′∗
j 〉 = S−2

0

∫
dνdν ′e2πi(ν−ν′)τiγ �

ᵀ
δj 〈Re(cγ )Im(cδ)∗〉

= S−2
0

4i

∫
dνdν ′e2πi(ν−ν′)τiγ �

ᵀ
δj 〈(cγ + cγ ∗)(cδ − cδ∗)〉

≈ 0. (C12)

We obtain the last line approximately equal to zero due to the fact
that 〈(cγ + cγ ∗)(cδ − cδ∗)〉= 〈cγ cδ〉+ 〈cγ ∗cδ∗〉+ 〈cγ cδ∗〉− 〈cγ ∗cδ〉.
The first two terms evaluate to zero since they involve integrals over
e±2πiŝ·(bγ ν+bδν

′) and the last two terms are equal to each other so
they subtract to give 0.

A P P E N D I X D : C O M P O N E N T S O F � A N D �

F O R N O N - R E D U N DA N T, U N I F O R M LY
W E I G H T E D C A L I B R AT I O N S O L U T I O N S

In this appendix, we derive equations (36) and (37) that are valid
when the weights matrix is equal to unity. While of limited appli-
cability, they provide us with insight into the scaling of modelling
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noise with properties of the source catalogue and array and allow us
to identify the degree to which any visibility covariance contributes
to the covariances of gain solutions.

D1 Equation (36)

We wish to evaluate

iγ = [(AAᵀ)−1Aᵀ]iγ . (D1)

We start with (AAᵀ)ij . Evaluating this matrix product for a non-
redundant array is straightforward since each element is given by
the dot product of the ith column of A with the jth column. Since
a given column is equal to unity at the indices of visibilities in
which that antenna participates and zero otherwise, the dot product
of columns is equal to Nant − 1 if i = j and equal to unity if i �= j,

AAᵀ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Nant − 1 1 1 . . . 1

1 Nant − 1 1 . . . 1

1 1 Nant − 1 . . . 1

...
...

...
. . .

...

1 1 1 . . . Nant − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D2)

AAᵀ can be decomposed into the sum of a diagonal matrix and a
matrix formed from an outer product,

AAᵀ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Nant − 2 0 0 . . . 0

0 Nant − 2 0 . . . 0

0 0 Nant − 2 . . . 0

...
...

...
. . .

...

0 0 0 . . . Nant − 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 1 1 . . . 1

1 1 1 . . . 1

...
...

...
. . .

...

1 1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (D3)

and thus can be inverted using the Sherman–Morrison formula,

(AAᵀ)−1
ij =

⎧⎪⎪⎨⎪⎪⎩
1

Nant − 2

[
1 − 1

2(Nant − 1)

]
i = j

−1

2(Nant − 1)(Nant − 2)
i �= j .

(D4)

We can now evaluate (AAᵀ)−1
ij (Aᵀ)j γ , which is the sum of the

entries in the ith row of (AAᵀ)−1 that correspond to antennas
that participate in the γ th baseline. If i ∈ γ , we add an entry
in (AAᵀ)−1 where i = j to an entry where i �= j. If i �∈ γ , we
add two entries in (AAᵀ)−1 where i �= j. For these two cases,
we get

iγ = [(AAᵀ)−1Aᵀ]iγ =

⎧⎪⎨⎪⎩
1

Nant − 1
i ∈ γ

−1

(Nant − 1)(Nant − 2)
i �∈ γ,

(D5)

which completes the proof.

D2 Equation (37)

We begin evaluating �iγ = (BB
ᵀ)−1B

ᵀ with the product (BB
ᵀ)ij ,

which is the dot product of the ith column of B with the jth column.
Each ith column contains Nant − 1 non-zero rows that are 1 when
the ith antenna is the non-conjugated participant in the baseline and
−1 when the antenna is the conjugated participant. The last row of
B is composed entirely of ones. Thus, the dot product of any column
with itself is Nant and the dot product of a column with any other is
equal to zero. Thus,

(BB
ᵀ)ij =

{
Nant i = j

0 i �= j
, (D6)

whose inverse is trivial. (BB
ᵀ)−1

ij (Bᵀ)j γ is the sum of each element
of the ith row of (BB

ᵀ)−1 that participates in the γ th visibility. Since
(BB

ᵀ)−1 is diagonal, this sum is only non-zero when i = j. If i is
the non-conjugated antenna in the visibility, then B

ᵀ multiplies by
1 and if i is the conjugated antenna in γ , B

ᵀ multiplies by −1. We
obtain

�iγ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Nant
γ = (i, ·)

− 1

Nant
γ = (·, i)

0 i �∈ γ

, (D7)

completing our proof.

APPENDI X E: A SI MPLI FI ED EXPRESSIO N
FOR MI NI MAL ACCESSI BLE LOS MODES

In this appendix, we derive equation (51) from equation (42) with
the additional assumptions that the array has a Gaussian beam with
standard deviation σ b = ελ0/dant and that its antennas are arranged
in a Gaussian configuration with standard deviation σ ant. We also
ignore the contribution from thermal noise, which integrates down
with time, and assume that C = R. We first compute C̃δδ(τ, τ ) for a
Gaussian beam

C̃δδ(τ, τ ) = σ 2
r

∫
dνdν ′

∫
d�e2πiτ (ν−ν′)e−2πibδ ·ŝ(ν−ν′)/c|A(ŝ)|2

≈ σ 2
r

∫
dνdν ′

∫
d�e2πiτ (ν−ν′)e−2πibδ ·ŝ(ν−ν′)/ce−s2/2σ 2

b

≈ σ 2
r B

∫
d�ν

∫
d�e2πiτ�νe−2πibδ ·ŝ�ν/ce−s2/σ 2

b

≈ σ 2
r B

c

bδ

√
πσb exp

(
− c2τ 2

b2
δσ

2
b

)
. (E1)

To derive the last line, we used the flat-sky approximation, let-
ting the angular integral run over infinity. We also approximate the
bandwidth as infinite. Thus,

〈C̃δδ〉i∈δ ≈ σ 2
r cB

√
πσb

〈
1

bδ

exp

(
− c2τ 2

b2
δσ

2
b

)〉
i∈δ

. (E2)

Since the chromaticity increases monotonically with increasing
baseline length and the antennas with the largest numbers of short
baselines are at the centre of the array, the minimal kmin

‖ accessible
by an interferometer will occur on a short baseline formed from two
antennas near the core of the array. With the core antenna positions
equal to ri ≈ 0 so that bδ = |r i − rk| ≈ rk , the average of a function
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of the length of baselines that a core antenna participates in is equal
to the average of that function over antenna positions

〈C̃δδ〉i∈δ ≈ σ 2
r cB

√
πσb

〈
1

rk

exp

(
− c2τ 2

r2
k σ 2

b

)〉
rk

. (E3)

We can compute this average analytically if the antennas are dis-
tributed as a Gaussian with standard deviation σ ant,〈

1

rk

exp

(
− c2τ 2

r2
k σ 2

b

)〉
rk

= 1

2πσ 2
ant

∫
d2rkr

−1
k e

− c2τ2

r2
k

σ2
b

− r2
k

2σ2
ant

=
√

π

2

1

σant
exp

(
−

√
2cτ

σbσant

)
. (E4)

It follows that for i and j antennas close to the core, the averages
over baselines evaluate to

〈C̃δδ〉i∈δ ≈ 〈C̃δδ〉j∈δ ≈ σ 2
r cB

π√
2

σb

σant
exp

(
−

√
2cτ

σbσant

)
. (E5)

Thus, for two core antennas with Gaussian beams in a Gaussian
antenna distribution, the contamination from calibration errors in
equation (42) reduces to

Pαα − C̃αα ≈ 2σ 2
r B

c

Nant

π√
2

σb

σant
exp

(
−

√
2cτ

σbσant

)
. (E6)

The minimal delay where the signal can be measured, τmin, is set
by where the calibration noise passes below the signal. Thus, we
obtain τmin by setting equation (E6), multiplied by the prefactors in
equation (26) that convert from Jy2 Hz2 to mK2 h−3 Mpc3 equal to
the 21 cm power spectrum,

P21 ≈
(

λ2
0

2kB

)2
X2Y

Bpp�pp

(
Pαα(τmin, τmin) − C̃αα(τmin, τmin)

)
≈
(

λ2
0

2kB

)2
X2Y

Bpp�pp

√
2πσ 2

r B
c

Nant

σb

σant
exp

(
−

√
2cτmin

σbσant

)
,

(E7)

and invert it,

τmin ≈ σbσant√
2c

log

(
λ4

0X
2Y

√
2πσ 2

r cσb

4k2
BP21�ppBppNantσant

)

= ε√
2ν0

σant

dant
log

(
λ4

0X
2Yσ 2

r Bν0

Bpp2
√

2k2
BNantεP21

dant

σant

)
. (E8)

Using the fact that kmin
‖ = 2πτmin/Y , we arrive at equation (51),

kmin
‖ = ε

√
2π

Yν0

σant

dant
log

(
λ4

0X
2Yσ 2

r Bν0

Bpp2
√

2k2
BNantεP21

dant

σant

)
. (E9)

Checking this approximate expression against direct calculation for
arrays with Gaussian beams using equation (34) yields an accuracy
of ≈10 per cent, even in arrays that are not strictly Gaussian such as
the MWA, LOFAR and HERA where σ ant is the standard deviation
of the non-Gaussian antenna distribution.

The primary shortcoming of equation (E9) is that it assumes a
Gaussian primary beam that only accounts for the delay at which the
contamination from the main lobe falls beneath the signal. Since
side lobes can easily enter at the �5 per cent level, it is possible
for them to contaminate the EoR window at much larger k‖ than
the kmin

‖ predicted in equation (E9). While the contribution of side
lobes for different baselines will fall at different delays and will not
add coherently when averaging over the antenna distribution, we
can assume that they add directly to obtain a conservative upper
bound on when their contribution will affect kmin

‖ . If the side lobes
added directly in the antenna average, then their contribution to
the amplitude of foreground residuals would be of the order of f 2

sl

the level of the foreground residuals at zero delay, where fsl is the
ratio between the gain of the side lobe and the gain at boresight.
A conservative estimate of when side lobes are at the level of the
21 cm signal can be obtained by setting the right-hand side of
equation (E7) at zero delay multiplied f 2

sl equal to the 21 cm power
spectrum,

P21 ≈ f 2
sl

(
λ2

0

2kB

)2
X2Y

Bpp�pp

√
2πσ 2

r B
c

Nant

σb

σant

≈ f 2
sl

(
λ2

0

2kB

)2
X2Y

Bppπ

√
2πσ 2

r B
c

Nant

dant

εσantλ0
. (E10)

We use this condition to denote the white dashed region of parameter
space in Fig. 3 where side lobes may render the predictions of
equation (51) inaccurate.
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