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The guiding principle for data stewardship dictates that data be FAIR: findable,

accessible, interoperable, and reusable. Data reuse allows researchers to probe data

that may have been originally collected for other scientific purposes in order to gain novel

insights. The current study reuses the Transforming Research and Clinical Knowledge

for Traumatic Brain Injury (TRACK-TBI) Pilot dataset to build upon prior findings and ask

new scientific questions. Specifically, we have previously used a multivariate analytics

approach to multianalyte serum protein data from the TRACK-TBI Pilot dataset to

show that an inflammatory ensemble of biomarkers can predict functional outcome at

3 and 6 months post-TBI. We and others have shown that there are quantitative and

qualitative changes in inflammation that come with age, but little is known about how this

interaction affects recovery from TBI. Here we replicate the prior proteomics findings with

improved missing value analyses and non-linear principal component analysis and then

expand upon this work to determine whether age moderates the effect of inflammation

on recovery. We show that increased age correlates with worse functional recovery

on the Glasgow Outcome Scale-Extended (GOS-E) as well as increased inflammatory

signature. We then explore the interaction between age and inflammation on recovery,

which suggests that inflammation has a more detrimental effect on recovery for older

TBI patients.

Keywords: leveraging data science for traumatic brain injury prevention, evidence based healthcare, precision

medicine, data sharing, aging, inflammation, proteomics, outcomes
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INTRODUCTION

As data science technologies rapidly advance, we are able
to collect, store, and leverage more clinical traumatic brain
injury (TBI) research data than ever before, opening new
opportunities for precision medicine in neurotrauma. For
example, machine learning has the potential to harness the full
information contained withinmedical records to place individual
patients into their own unique position in a multidimensional
outcome space for TBI (1, 2). However, in order to realize the
potential of biomedical “big-data,” there needs to be effective
data management and governance that will enable responsible
application of advanced analytics. In order to ensure that research
data can be optimally utilized and shepherded appropriately,
governance bodies have determined that biomedical data need to
be made FAIR: findable, accessible, interoperable, and reusable
(3). FAIR principles provide a roadmap for how data can be
shared and reused in a way that is beneficial to the data originator,
to the reuser, and ideally to the field as a whole. The end
goal of FAIR data is to crowdsource secondary analyses, power
machine-learning-based exploratory analyses, and accelerate
novel hypothesis generation. In addition, data reuse encourages
reproducibility and helps ensure that the scientific community
extracts as much information as possible from costly federal
investments in research dollars and data collection time (4–
6). The Transforming Research and Clinical Knowledge in
Traumatic Brain Injury (TRACK-TBI) study is an example of
early adoption of large-scale FAIR data sharing with the goal
of advancing knowledge discovery in clinical TBI (7–9). The
initial TRACK-TBI Pilot project generated a dataset of 586
subjects from three level 1 trauma centers that were deeply
phenotyped across 900+ variables spanning clinical variables,
biofluid biomarkers, imaging biomarkers, and neuropsychiatric
and cognitive outcomes. Primary analysis papers were purpose-
curated around specific hypotheses, resulting in 38 papers (as of
July 2021), and staged improvement in data curation quality over
time. Ultimately, the multidimensional curation across variables
began to reach sufficient maturity such that later versions of the

dataset were primed for advanced multidimensional analytics,
including application of machine learning and other artificial

intelligence tools to predict outcomes at the level of individual
subjects while taking into account ever larger numbers of

features (10–12). In addition, the TRACK-TBI Pilot gave rise
to an 18-center TRACK-TBI study that has generated 52 papers
(and counting).

The goal of the current study is to demonstrate the real-
world application of FAIR principles to TBI and expand
on prior findings by combining and reusing TRACK-TBI
Pilot data from two previously published studies (10, 11).
Prior work demonstrated that a multianalyte blood biomarker
panel correlates with TBI outcomes. Much of the variance
in blood biomarkers reflected inflammatory pathways, and
patients with higher pro-inflammatory expression were more
likely to have been diagnosed by neuroradiologists as having
at least one pathology on computed tomography scan (CT
positive) and performed significantly worse on the California
Verbal Learning Task and the Glasgow Outcome Scale-Extended

(GOS-E) than those expressing a less inflammatory expression
profile (10).

Here we revisit these data and cross-curate them with age
demographics to determine the extent to which age moderates
the role of inflammation on recovery after TBI. As we and others
have shown in previous work, the body reacts differently to TBI
depending on age (13). Patients with TBI over the age of 40
are more likely to decline over the first 5 years after injury, and
those over 55 have an increased risk of developing dementia
and Parkinson’s disease (14–16). The patterns of expression for
inflammatory patterns in particular are sensitive to age as has
been in shown in both pre-clinical and clinical studies of TBI,
spinal cord injury (SCI), and stroke (17–21). Despite this, little
is known about the nature of the interaction between age and
inflammation on outcome after TBI.

The current data reuse study aims to first determine the
effect of age on outcome in the TRACK-TBI Pilot cohort. We
then sought to replicate the multivariate analyses of the protein
biomarker panel using improved techniques for handlingmissing
data and non-linear dimensionality reduction while verifying
that the biomarker profile is associated with functional outcome.
Finally, we explore the extent to which age moderates the
ensemble biomarker profile as a predictor of recovery after TBI.

METHODS

Data Reuse
The current dataset was created by merging and cross-curating
data from two previous subsets of the full TRACK-TBI Pilot
dataset that were used previously (10, 11). This dataset was
composed of TRACK-TBI participants (N = 586) aged 17+ years
who were enrolled between April 2010 and January 2011 from
three level 1 trauma centers in the United States. Assessment
of evidence for acute TBI within 24 h of injury by non-contrast
head CT was used as the primary inclusion criterion. Exclusion
criteria included non-fluency in English, contraindication to
MRI, pregnancy, and current incarceration/legal detention or
placement on psychiatric hold.

The current dataset utilizes only a small number of variables
that were drawn from the previously published data versions,
including age, presence of brain pathology on CT scan (CT
positive), proteomic blood biomarker panel used in Huie et al.
(10), and the GOS-E (3 and 6 months, Figure 1). This new
merged data version has been recorded as a branch in the
TRACK-TBI GitHub in order to capture this specific subset of
patients, raw variables, and derived variables in perpetuity. This
unique dataset version is available upon request.

Proteomics Panel
Blood samples were collected at <24 h of injury, and plasma
was prepared following TBI Common Data Elements
Biospecimens and Biomarkers Working Group guidelines.
Samples were centrifuged, aliquoted, and frozen at −80◦C for
batch processing. Frozen plasma samples were analyzed by
Myriad Rules-Based Medicine (Myriad RBM, Austin, TX) and
quantified using a multiplexed fluorescent immunoassay profile
(HumanMAP v2.0).
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FIGURE 1 | Patient selection. Flow diagram of the subset of patients from the

TRACK-TBI Pilot dataset that was reused in the current set of analyses.

CT Scan
A brain CT was performed on all patients within 24 h of their
arrival in the emergency department (ED presentation). CT data
collection and interpretation were performed in accordance with
TBI-CDE Working Group (22), with a blinded board-certified
neuroradiologist reviewing the de-identified, anonymized scans.
Rotterdam and Marshall scores were also determined. A positive
CT indicated any intracranial pathology as determined by
the neuroradiologist.

Outcome Measures
The GOS-E was used to assess overall functional disability at
3 and 6 months post-injury. For consistency with prior work
(10, 23), GOS-E scores were dichotomized in two ways: good
recovery (GOS-E > 4) vs. poor recovery (GOS-E ≤ 4) and
complete recovery (GOS-E= 8) vs. incomplete recovery (GOS-E
< 8). To determine if patients’ recovery improved between 3 and
6 months post-injury, a difference score was calculated (GOS-E
at 6 months – GOS-E at 3 months).

Missing Values in Proteomics
Protein values were considered missing if they fell outside the
range of detection. A threshold formissingness for any biomarker
was then set so that if any particular protein was outside the limit
of detection for more than 50 patients (i.e., 30% missingness),
then that protein would be excluded from analysis. This
thresholding resulted in 15 biomarkers removed from analysis

due to missingness. Fifty-seven biomarkers were subsequently
included for analysis. For those remaining proteins, we then
applied a constant-value imputation approach: for protein levels
that were below the limit of quantification (LOQ), a value lower
LOQ× 0.5 was imputed using the LOQ of the respective protein.
For those above the LOQ, the upper LOQ value was used. By
removing high-missingness variables prior to imputation with
constant values, we reduce the likelihood of misrepresenting the
relationship between the measured proteins and injury outcome
that were the result from technical limitations of the assay.

Statistics and Data Visualization
All analyses were performed using the open-source programming
language R (24) (version 3.6.3). The tidyverse (25) R package
was utilized for dataframe manipulation and data wrangling. For
general data visualization and 3d surface plots, the ggplot (26)
and plotly (27) R packages were utilized. Missing data analysis
and visualization were generated using the naniar (28) R package.
After biomarkers that exceeded the threshold of missingness
were removed, the protein biomarker data were corrected for
batch effects by within-batch z-score standardization. Using
the “princals” function from the Gifi (29) R package, we then
performed non-linear principal component analysis (NL-PCA)
on the batch-corrected protein biomarker data to reduce high
dimensionality. Specifically, NL-PCA was performed to allow
for 2◦ splines and 57 total principal components (PCs) in the
solution (matching the 57 biomarkers used as input to the NL-
PCA). Permutation tests were then run using the syndRomics (30)
R package to identify the PCs with variance accounted for (VAF)
and standardized loadings significantly above chance (adjusted
p-value > 0.05). Bar maps were additionally generated using the
syndRomics R package. Hypothesis testing was conducted using
linear regression for continuous outcome variables or logistic
regression for dichotomized outcome variables, and Welch’s
unequal variance t-test for two group differences. Regression
models were produced using the “lm” and “glm” functions from
the stats (24) R package with additional type-III analysis of
variance (ANOVA) performed to derive significance of main
effects and interactions using the car (31) R package. To
determine the confidence interval of the marginal effect of P2
on the change in GOS-E outcome between 3 and 6 months post-
injury, we utilized the “deltamethod” function from themsm (32)
R package.

RESULTS

Age Correlates With Worse GOS-E
Outcome and CT-Positive TBI
The first aim was to determine whether age predicts CT
pathology and/or outcome on GOS-E at 3 and 6 months post-
injury. Results showed that the patient population with positive
CTs was significantly older than those who were CT negative
(Figure 2A, Welch’s t = 5.61, p < 0.01). Rotterdam scores also
differed significantly by age [Figure 2B, F(1,584) = 17.34, p <

0.001] as did Marshall scores [Figure 2C, F(1,584) = 18.25, p <
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FIGURE 2 | Age correlates with worse CT pathology. (A) Age is significantly higher in those with a positive diagnosis of CT pathology (Welch’s t = 5.61, p < 0.0). (B)

Age significantly differed across the six levels of the Rotterdam CT score [F (1,584) = 17.34, p < 0.001] and the (C) six levels of the Marshall CT score [F (1,584) = 18.25,

p < 0.001]. For both scores, the two highest scores (indicative of more severe injury) have a higher median age than all other CT scores.
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FIGURE 3 | Age correlates with worse outcome on GOS-E. Age differs significantly across the eight levels of the GOS-E at (A) 3 months [F (7,448) = 8.0, p < 0.001]

and (B) 6 months [F (7,407) = 5.66, p < 0.001]. (C) GOS-E was dichotomized as incomplete recovery (GOS-E score <8) vs. complete recovery (GOS-E score of 8).

Patients with complete recovery were significantly younger, at 3 months (Welch’s t = −2.34, p = 0.02), but not at 6 months (Welch’s t = −1.77, p = 0.08). (D) GOS-E

was dichotomized as poor recovery (GOS-E score of 4 or below) vs. good recovery (GOS-E score of >4). Patients with poor recovery were significantly older, at both

3 months (Welch’s t = −5.54, p < 0.001) and 6 months (Welch’s t = −4.80, p < 0.001).

0.001]: patients with higher scores (i.e., more severe injury by CT)
on both measures tended to be older.

Worse functional outcome as captured by lower GOS-E scores
was also correlated with older patient age at both 3 months
[Figure 3A, F(7,448) = 8.0, p < 0.001] and 6 months post-
injury [Figure 3B, F(7,407) = 5.66, p < 0.001]. Similarly, patients
with complete recovery at 3 months were significantly younger
(Figure 3C, Welch’s t = −2.34, p = 0.02), but not at 6 months
(Figure 3C, Welch’s t = −1.77, p = 0.08). When GOS-E was
dichotomized as poor recovery (≤4) or good recovery (>4), those
with good recovery were also significantly younger (Figure 3D)
at both 3 months (Welch’s t = −5.54, p < 0.001) and 6 months
(Welch’s t =−4.80, p < 0.001).

TBI Produces Multivariate Inflammatory
Profile
In order to reuse TRACK-TBI Pilot data to test whether age
impacts proteomic expression, we first sought to replicate and

improve upon prior multivariate proteomic analyses from this
dataset (10). While the prior analysis used a linear PCA with
optimal scaling, the current model used a non-linear approach
as well as handled missing data above and below the limit
of quantification differently than the prior published work
(see Methods). Here, a permutation test for significant PCs
was additionally used to objectively determine the number of
significant principal components. This permutation test of VAF
revealed that the first six PCs accounted for variance above
chance. A second permutation test of significant loadings found
that 33 proteins in PC1 and 35 proteins in PC2 loaded strongly
enough to be above chance (adjusted p-value < 0.05). Although
the VAF permutation determined that six PCs accounted for
variance above chance (Figure 4A), no further PCs after PC2
had a protein loading that was significant (Figure 4B), suggesting
that further analysis and interpretation should be limited to
PC1 and PC2 only. The first two PCs together accounted for
28.7% of the variance (16.4% variance accounted for in PC1
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FIGURE 4 | TBI produces multivariate inflammatory profiles. Non-linear PCA of multianalyte assay of 58 proteins. (A) Scree plot showing the proportion of overall

variance that was accounted for by each orthogonal PC. The first component (PC1) accounted for 16.5% of the variance, followed by 13.9% of variance accounted

for by PC2. There was a precipitous drop in variance accounted in PCs after PC2. (B) Matrix of the first seven PCs by 58 proteins. Heat map shows higher PC

loadings in red and lower PC loadings in blue. A biologically interpretable pattern of loadings was identified in PC2, with proteins that loaded strongly being

predominantly associated inflammation. (C) Permutation testing in PC2 indicated that the loadings for 36 of the 58 proteins were significantly above chance.

and 12.3% variance accounted for in PC2). PC2 revealed a
biologically interpretable loading pattern that strongly resembled
the pattern seen in Huie et al. (10). The proteins with the
strongest positive loadings on PC2 included pro-inflammatory
proteins IL-8, IL-6, TIMP1, and C-reactive protein, while those
that loaded in the opposite direction included anti-inflammatory
or protective proteins including apolipoproteins AI, AII, and CI,
as well as BDNF and serotransferrin (Figure 4C). Taken as a
whole, the pattern of strong loading proteins indicates a broadly
inflammatory profile, as seen in the previously published PCA of
the same protein assay (10).

Inflammatory Biomarker Profile Is
Associated With Poor Outcome and
CT-Positive TBI
The inflammatory biomarker profile revealed by proteomic PC2
is represented by PC scores for each patient, with higher scores
indicating a more inflammatory proteomic composition and

lower scores indicating an anti-inflammatory composition. Using
this score as an injury response measure, we then determined
whether patients with different outcomes expressed different
inflammatory biomarker values. Results showed that patients
with poor (GOS-E ≤ 4) recovery had significantly higher
inflammatory PC scores than those with good (GOS-E > 4)
recovery at both 3 months (Figure 5A, Welch’s t = −5.43, p
< 0.01) and 6 months (Figure 5B, Welch’s t = −5.46, p <

0.01). Similarly, patients with CT-positive TBI had significantly
higher inflammatory PC scores than those who were CT negative
(Figure 5C, Welch’s t = 10.53, p < 0.01). These findings replicate
those seen in Huie et al. (10).

Age Moderates the Effect of Inflammation
on Outcome After TBI
To determine whether the association between inflammation
and outcome is affected by age, we first asked whether there
is an overall association between age and the multivariate
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FIGURE 5 | The inflammatory biomarker profile is associated with poor outcome and CT pathology. Individual PC scores for each patient that were generated from

the inflammatory second PC, in which higher values are indicative of higher pro-inflammatory expression. Inflammatory PC scores were significantly higher in patients

with poor recovery (GOS-E ≤ 4) vs. good (GOS-E > 4) recovery, at both 3 months (A, Welch’s t = −5.43, p < 0.01) and 6 months (B, Welch’s t = −5.46, p < 0.01).

(C) Patients with positive diagnosis on CT pathology had significantly higher PC2 inflammatory scores (Welch’s t = 10.53, p < 0.01).

inflammatory biomarker panel. We found that age significantly
correlates with inflammatory PC score, with a higher score
(indicating a more pro-inflammatory profile) as patient age
increases (Figure 6A, R2 = 0.062, p < 0.01). Next, the goal was
to determine whether age interacts with the inflammatory PC
score on GOS-E outcome. There was no significant interaction
between age and inflammatory PC score for good/poor or
complete/incomplete GOS-E recovery at either 3 or 6 months.
Interestingly, there was a significant interaction between age
and inflammatory PC score on the change in GOS-E between
3 and 6 months (age × PC score, LR chi-square = 5.31, p
= 0.02) even after controlling for CT positivity. To better
understand the nature of this interaction, we explored how
the effect of inflammation on GOS-E improvement might
differ across age. Figure 6B shows a decrease in the slope of
the relationship between inflammatory PC score and GOS-E
improvement as age increases. This finding suggests that in
younger patients, an improvement in GOS-E is associated with

increased inflammation; conversely, increased inflammation in
older patients is associated with less robust recovery between 3
and 6 months post-injury.

DISCUSSION

This work aimed to illustrate the utility of data reuse for insight
discovery. The governing principles of data management and
stewardship are based on data being FAIR: findable, accessible,
interoperable, and reusable. By harmonizing subsets of data
from previously published work, there is an opportunity to
test new hypotheses, improve on prior techniques, and gain
knowledge that may otherwise be missed. The reuse of data in
new ways also accelerates the process of discovery, allowing for
novel recombination of data that maximizes the return on the
costly investment of data collection and curation. The reuse and
recombination of shared data will ultimately bring light to the
“long tail of dark data” (5, 10).
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FIGURE 6 | Age moderates the effect of inflammation on outcome after TBI.

(A) Age significantly predicts inflammatory PC score (R2
= 0.062, p < 0.01),

indicating greater multivariate inflammatory protein expression as age

increases. (B) Visualization of the interaction between age and inflammation on

improvement in GOS-E score from 3 to 6 months post-injury. The Y-axis

represents the slope value of the effect of inflammatory PC2 score on change

in GOS-E score. The negative relationship between slope value and age

indicates that as age increases, the relationship between inflammation and

improvement in recovery becomes more negative. This finding suggests a

more detrimental relationship between inflammation and recovery for older TBI

patients.

The results of this data reuse reproduced and expanded
on prior work showing that recovery after TBI is often age
dependent. We found that patients who exhibited complete
recovery (GOS-E = 8) at 3 and 6 months after TBI were
significantly younger than those with incomplete recovery.
Similarly, those with a GOS-E of 4 and below were significantly
older than those with a GOS-E > 4. Of course, the likelihood
of confounding comorbidities is greater as age increases, and
older age in and of itself may not be a causal factor. We and
others have previously shown that even when controlling for
possible confounders, poor outcome becomes more likely with
age. Gardner et al. showed that for those over 55, moderate to
severe TBI significantly increases the risk of developing dementia,
and for those over 65, even mild TBI increased this risk. This
result was seen despite adjustments for common predictors and

compared the TBI patients to non-TBI trauma controls, rather
than the general population, to account for the possibility of
reverse causality (e.g., early stage dementia leading to TBI in the
first place) (15). Similarly, de la Plata et al. found that greater
decline (as measured by the Disability Rating Scale) was seen
in older TBI patients compared to younger TBI patients (14).
Importantly, they noted that although age was a significant factor
in decline after TBI, a relatively small proportion of the variance
in the Disability Rating Scale was explained by age alone and
that other factors and comorbidities may have a greater influence.
Nevertheless, a large body of work has made it clear that age is an
important factor that must be accounted for to understand the
trajectory of recovery after TBI, especially since the elderly make
up the highest proportion of TBI-related hospitalizations (33).

Given the prominent roles of both age and inflammation on
TBI prognosis, we sought to understand how these important
factors may interact to affect recovery. We found that even
when controlling for CT positivity, there remained a significant
interaction between age and the multivariate inflammatory
profile on improvement in GOS-E over time. Interestingly, this
interaction appears to be characterized by a decrease in the value
of the slope of the relationship between inflammation and GOS-
E improvement across ages (Figure 6B). This finding suggests
that for younger TBI patients, an increase in inflammation
is associated with greater functional improvement, while in
older patients, increased inflammation tends to predict less
improvement. Previous work supports the notion that the effect
of inflammation on recovery may be age dependent. Pre-clinical
study of age and inflammation found that the infiltration of
inflammatory macrophages to the central nervous system (CNS)
after experimental TBI was significantly increased in older
animals relative to younger animals (34). Similarly, we found
that in a TBI aging model, age-dependent inflammation was
a significant contributor to cognitive impairment (17). Recent
work using deep machine learning has derived an algorithm that
uses inflammatory biomarkers to determine one’s “inflammatory
age,” based on the idea that the increase in chronic inflammation
is an inevitable consequence of aging (35). This concept is related
to the notion of “immunosenescence,” the dysregulation of
immune function due to aging (36, 37). From this perspective, the
immune challenge presented by a TBI in aging patients may work
to undermine recovery by inducing detrimental inflammation
that is not as easily resolved as in younger patients.

It is important to note that the interaction between age and
inflammation on recovery found here was highly variable, as
seen in the wide confidence intervals in Figure 5B. Thus, it is
likely that a number of other confounders may account for the
large amount of variance observed. For instance, given that the
interaction of inflammation (measured within 24 h of injury)
with age appears to have an affect on the course of recovery from
3 to 6 months, another source of variance may be the regulation
of the inflammatory proteomic response over time.

Future studies will be needed to determine the static and
dynamic mitigating factors that are likely at work. Similarly, as
with many clinical datasets, generalization may be limited by
blind spots of underrepresented groups among those enrolled,
including those patients who did not warrant ED assessment at a
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high-level trauma center. It is also worth noting that although the
unsupervised, data-driven approach of non-linear PCA revealed
a predominantly inflammatory “identity” on PC2, the limitations
of the assay were such that other proteins that would typically be
candidate biomarkers for inflammation were found to be among
the 15 proteins that were outside the level of detection, including
TNF alpha, IL1-B, and macrophage inflammatory protein alpha.
Thus, future work that is meant to specifically target the role of
inflammation will require a more hypothesis-driven approach,
with the a priori selection of biomarkers specific to inflammation.
This kind of limitation may be typical for data reuse in the future
and should be recognized and addressed: in the repurposing of
prior data, there exists a possibility that the data may not always
be ideal for comprehensively addressing a scientific question.
But as long as the methodology and results are rigorous and
transparent, building upon such findings can be undertaken in
good faith.
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