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Abstract
Temperate phages are viruses of bacteria that can establish two types of infection: a lysogenic infection in which the virus
replicates with the host cell without producing virions, and a lytic infection where the host cell is eventually destroyed, and
new virions are released. While both lytic and lysogenic infections are routinely observed in the environment, the ecological
and evolutionary processes regulating these viral dynamics are still not well understood, especially for uncultivated virus-
host pairs. Here, we characterized the long-term dynamics of uncultivated viruses infecting green sulfur bacteria (GSB) in a
model freshwater lake (Trout Bog Lake, TBL). As no GSB virus has been formally described yet, we first used two
complementary approaches to identify new GSB viruses from TBL; one in vitro based on flow cytometry cell sorting, the
other in silico based on CRISPR spacer sequences. We then took advantage of existing TBL metagenomes covering the
2005–2018 period to examine the interactions between GSB and their viruses across years and seasons. From our data, GSB
populations in TBL were constantly associated with at least 2-8 viruses each, including both lytic and temperate phages. The
dominant GSB population in particular was consistently associated with two prophages with a nearly 100% infection rate for
>10 years. We illustrate with a theoretical model that such an interaction can be stable given a low, but persistent, level of
prophage induction in low-diversity host populations. Overall, our data suggest that lytic and lysogenic viruses can readily
co-infect the same host population, and that host strain-level diversity might be an important factor controlling virus-host
dynamics including lytic/lysogeny switch.

Introduction

Recent advances in metagenome sequencing have enabled
high-throughput exploration of the virosphere, leading to a

>200-fold increase in viral genomes available in databases,
and uncovering >1,000 new genus-level viral groups [1–4].
While these data provided numerous new insights into viral
genome diversity, most of these uncultivated viral genomes
are not associated with any host [5]. The scarcity of host
association for uncultivated viruses means that basic viral
ecology parameters, such as how many different viruses
infect a single host population and how the diversity of
virus and host populations change over time, are poorly
understood. Correspondingly, this limits our ability to fully
understand virus-host interactions in nature, and severely
hinders efforts to integrate viruses into ecosystem models.

For viruses infecting bacteria and archaea, viral infection
dynamics exist along a spectrum from highly lytic to
lysogenic and/or chronic [6]; highly lytic viruses undergo
viral replication and host lysis immediately, while temperate
viruses have a ‘latency’ period where the viral genome
reside in the host cell (‘lysogenic’ infection) before repli-
cation and host lysis. Many cultivated and uncultivated

* Maureen Berg
mberg@lbl.gov

* Simon Roux
sroux@lbl.gov

1 Joint Genome Institute, Berkeley, CA, USA
2 University of Wisconsin, Madison, WI, USA
3 University of California Berkeley, Berkeley, CA, USA
4 The Pennsylvania State University, University Park, PA, USA

Supplementary information The online version of this article (https://
doi.org/10.1038/s41396-020-00870-1) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00870-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00870-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00870-1&domain=pdf
http://orcid.org/0000-0002-0745-2742
http://orcid.org/0000-0002-0745-2742
http://orcid.org/0000-0002-0745-2742
http://orcid.org/0000-0002-0745-2742
http://orcid.org/0000-0002-0745-2742
http://orcid.org/0000-0002-3714-7124
http://orcid.org/0000-0002-3714-7124
http://orcid.org/0000-0002-3714-7124
http://orcid.org/0000-0002-3714-7124
http://orcid.org/0000-0002-3714-7124
http://orcid.org/0000-0003-2782-5988
http://orcid.org/0000-0003-2782-5988
http://orcid.org/0000-0003-2782-5988
http://orcid.org/0000-0003-2782-5988
http://orcid.org/0000-0003-2782-5988
http://orcid.org/0000-0002-8162-1276
http://orcid.org/0000-0002-8162-1276
http://orcid.org/0000-0002-8162-1276
http://orcid.org/0000-0002-8162-1276
http://orcid.org/0000-0002-8162-1276
http://orcid.org/0000-0002-5831-5895
http://orcid.org/0000-0002-5831-5895
http://orcid.org/0000-0002-5831-5895
http://orcid.org/0000-0002-5831-5895
http://orcid.org/0000-0002-5831-5895
mailto:mberg@lbl.gov
mailto:sroux@lbl.gov
https://doi.org/10.1038/s41396-020-00870-1
https://doi.org/10.1038/s41396-020-00870-1


phages seem to be temperate [7], however the ecological
and evolutionary mechanisms affecting these different
infection dynamics are still unclear. Specifically, one of the
most fundamental questions in viral ecology that remains
unanswered is which environments and/or life-history traits
select for more lytic or temperate viruses. This is an actively
researched and discussed topic, both in a viral ecology
framework [8–12], and a molecular biology framework
[13, 14]. Building from a combination of experimental
virus-host systems and whole-community studies, different
hypotheses about these ecological and evolutionary drivers
have been proposed. The “kill the winner” model places
importance on the lytic life stage of viruses, and proposes
that when a host is actively growing, host population
numbers increase, and thus lytic infections will be favored
over lysogenic infections [15]. In this scenario, lytic viruses
suppress host blooms, and maintain diversity in the host
population by preventing one host strain from out-
competing all others [9, 16]. These recurring lytic infec-
tions can significantly impact both host and virus genome
evolution, including through the formation of “genomic
islands” of high variability [17, 18]. When hosts are not as
readily available, lysogeny is seen as an “alternative” choice
in this model. Several studies similarly suggested that
lysogeny may be governed by broad environmental para-
meters such as trophic status and nutrient availability. For
example, lysogeny seems to be favored in environments
where bacterial productivity is low, or for hosts with vari-
able growth rates (“boom-and-bust” cycles), such as
pathogenic microbes or environments with strong seasonal
patterns [19–21]. In contrast, the “piggyback-the-winner”
model proposes instead that lysogeny is favored when hosts
are readily available [9, 10]. This may be advantageous in
environments with rapidly growing hosts, where the viruses
would profit more from lysogeny than from host lysis, for
example. This scenario reduces the amount of control
viruses could exert over bacterial abundance, and places
more importance on other types of host interactions, e.g.,
superinfection exclusion conferred by the lysogens [9].

The existence of such diverging hypotheses, both with
supporting data, reflects the complexity of virus-host
interactions and the limits of our current understanding. In
particular, the majority of the hypotheses put forward so far
have been based on community-wide measurements, which
average out differences between individual viruses and host
populations [7, 9]. In addition, most focus on ecophysio-
logical traits, such as host growth rate and nutrient avail-
ability, and only a few consider host and virus population
diversity, although virus-host coevolution mechanisms at
the strain level have been described [16, 17, 22]. In order to
expand our understanding of these host–virus dynamics,
high-resolution datasets that incorporate a variety of specific
host–virus pairs across time and environments are required.

In this study, we focus on uncultivated viruses infecting
green sulfur bacteria (GSB) in a model freshwater lake
(Trout Bog Lake, TBL) sampled from 2005 to 2018 by the
North Temperate Lakes Microbial Observatory. GSB are
anoxygenic photoautotrophic bacteria that can form massive
blooms in illuminated, low-oxygen, sulfidic waters, and play
a central role in global carbon and sulfur cycling [23–25].
Because GSB are strict anaerobes and many grow slowly,
direct isolation of GSB viruses in the laboratory remains
challenging. As a consequence, viruses infecting GSB have
yet to be formally isolated and identified, leaving their
diversity and impact on environmental GSB populations still
relatively unknown. Yet viruses likely influence bloom
dynamics of aquatic GSB populations, and may be important
agent of horizontal gene transfer (HGT), especially since
comparative genomics previously revealed an extensive
history of HGT across GSB [26, 27]. The predictable
dynamics of GSB in TBL with strong seasonal patterns and
high-density blooms forming in summer also make these an
interesting model system to explore the influence of envir-
onmental parameters, host productivity, and host life-history
traits on viral infection dynamics over multiple years.

To investigate viral infection dynamics of GSB in TBL, we
first used two complementary approaches to identify viruses
infecting GSB. We next followed newly-established virus-
host pairs across multiple years and seasons using bulk
metagenomes covering the 2005–2018 period to evaluate
patterns of infection rate and virus-host interactions at the
population level. Finally, we highlight through direct obser-
vation and theoretical modeling that host strain-level diversity
may be a critical parameter driving these virus-host dynamics.

Results and discussion

GSB abundance and targeted recovery in TBL

During the summer and early fall of 2018, TBL was sam-
pled on a nearly weekly basis to evaluated GSB abundance
and generate the metagenomic data introduced in this paper.
Two types of sampling were performed: one targeted GSB
by sampling specific depths of the water column (depth-
discrete) followed by Fluorescence Activated Cell Sorting
(FACS), and the other aimed to collect the entire microbial
community by sampling across the hypolimnion, i.e., the
bottom layer of the lake (standard bulk metagenomes from
integrated samples, see Methods and Fig. S1). Prior to
processing these samples, we first verified that we could use
FACS to robustly distinguish GSB from other microbial
cells based on autofluorescence using an existing freshwater
GSB isolate (Chlorobaculum tepidum, see Methods). Then,
the relative abundance of GSB in TBL was quantified using
FACS at individual depths (depth-discrete samples) across
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all sampling dates in 2018 (Fig. 1A, B). While other bac-
teria could potentially display fluorescence profiles similar
to GSB, targeted metagenomes sequenced from cells iden-
tified as “GSB-like” by FACS were near-exclusively com-
posed of GSB sequences (see below), supporting our use of
FACS data as a measurement for GSB abundance.

Early in the summer, we measured ~140,000 GSB cells/
ml, and GSB peaked in mid-August with 2.2 million GSB
cells/ml (32% of total cells screened). The overwhelming
majority of GSB cells were found right below the oxygen
barrier/chemocline (white line in Fig. 1A), consistent with
the anoxygenic photosynthetic metabolism of GSB. This
type of seasonal pattern for GSB has been observed in other
freshwater lake systems, including through 16S rRNA gene
amplicon sequencing data [28], where GSB were dominant
during the summer when the lake developed stratified layers.
For all timepoints for which depth-discrete samples were
available, we generated five replicates of GSB-targeted
metagenomes (5,000 GSB-like cells sorted based on size and
autofluorescence, see Fig. S2), along with two replicates of
non-GSB metagenomes (5,000 cells positive for DNA stain,
but negative for autofluorescence), from the depth at which
the GSB cell count was highest. In total, targeted metagen-
omes were generated from 14 sampling dates in 2018, and
one sampling date in fall 2017 (see Methods, Fig. S1).

Targeted metagenomes uncover two distinct GSB
populations

Bacterial genomes were binned from a combined assembly
of GSB-targeted metagenomes from each sampling date,

resulting in 14 sets of 2018 genome bins (one set per date).
Each sampling date included 1 or 2 nearly complete GSB
genome bins (completeness estimation: 97–100%, redun-
dancy estimate: 0–2%, Table S1), with no other taxa binned
in our sorted samples. Based on average nucleotide identity
(ANI) clustering, bins from all 14 sampling dates in 2018
were found to represent 2 distinct genomes, hereafter
designated as “GSB-A” and “GSB-B” (Table S2A). A
similar approach was used to generate GSB genome bins
from the 2017 depth-discrete targeted metagenomes
(a single depth and sampling date, Fig. S1).

Previous exploration of GSB community diversity in
lakes using methods such as amplicon sequencing and fin-
gerprinting also typically found only a few different GSB in
each location, suggesting that only a few dominant GSB
populations occur in a given environment [27–30]. When
placed in a phylogeny with known isolate genomes and
previously published TBL genome bins, both GSB-A and
GSB-B branched within the Chlorobiaceae family, and
tightly clustered with the previously described TBL GSB
genomes (Fig. 1C) [31]. ANI comparison confirmed that
both GSB genome bins recovered from targeted metagen-
omes were the same populations as those found in the bulk
metagenomes throughout 2005–2013 (ANI > 99.5%).
Notably, GSB-A corresponds to a GSB population that was
previously observed to undergo a genome-wide sweep
between 2005 and 2009 (Chlorobium-111 in ref. [31],
Table S2B, C).

Because we targeted the GSB maximum depth at each
time point (to sample the depth with maximum GSB con-
centration), targeted metagenomes were sequenced from

Fig. 1 Abundance and diversity of green sulfur bacteria (GSB) in
Trout Bog Lake. A An average of 3.7 million cells/ml were measured
per sample per date; shown is GSB abundance (% of total cells per
sample per date). Blue/red boxes are positioned at the specific depth
from which targeted metagenomes were sequenced, with colors cor-
responding to the detection of GSB-A (blue) and/or GSB-B (red) in
these targeted metagenomes. The white line represents the oxic/anoxic

barrier. B GSB cells were sorted using FACS, targeting green DNA
stain and red autofluorescence. C Phylogenetic tree based on DNA
sequence of rpoB (beta subunit of RNA polymerase) genes of GSB
from Trout Bog Lake and GSB isolate genomes; circles represent new
genome bins from our targeted metagenomics, and diamonds represent
previously published genome bins [31]; colors represent Genome B
(red) and Genome A (blue).
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different depths across 2018, highlighting differential dis-
tribution patterns for GSB-A and GSB-B (see Fig. 1A).
Specifically, GSB-A was only recovered at lower depths
(3–4 m) (with the one exception of the June 11th sampling
date, early in the summer), while GSB-B was recovered at
all sequenced depths, including higher in the water column
during the summer bloom (2.5–3 m, Fig. 1A, Table S1).
This suggests that the co-existence of these two GSB
populations in TBL is possibly linked to niche partitioning
along the water column, e.g., due to local biogeochemical
conditions and/or light regimes. This would be consistent
with the genomic differences between GSB-A and GSB-B,
which despite being classified as two closely related spe-
cies, display ~23% unique gene content with respect to each
other. This type of niche partitioning has been seen in GSB
before, with brown-pigmented GSB blooming deeper than
green-pigmented GSB [32, 33]; and this type of layering
can also be found within green-pigmented GSB, depending
on which specific pigments they produce [34]. Based on
pigment gene analysis, both our GSB populations appear to
be green-pigmented GSB, and both populations have an
intact bchU gene, while neither have bciD [35] nor cruB
genes [34]. It is unclear if they produce the same green
pigments, as the same set of pigment genes can be found in
both genomes, but the actual sequences of the bchU genes
are not identical between the two GSB. In any case, further
work is required to evaluate hypotheses about niche parti-
tioning specifically in these TBL populations.

A third bin was routinely found in the 2018 targeted
metagenomes, however it was estimated to be only 20%
complete, i.e., it included very few to none of the expected
core bacterial genes. This third bin was clustered next to the
other two GSB bins when included into an rpoB phylogeny,
suggesting it also represented a GSB population (Fig. S3).
A similar genome was also binned in the 2017 targeted
metagenomes, but never in the bulk metagenomes from
2005 to 2013 even though read mapping revealed that the
corresponding sequences were present in those datasets at a
low relative abundance, suggesting that this third bin could
represent a distinct and rare GSB population. Considering
that we never recovered a complete genome from the third
bin, and that no viral contigs were found in this bin, only
GSB-A, GSB-B, and their associated viruses were further
analyzed.

Distinct GSB viruses are recovered from targeted
metagenomes and CRISPR matching

To identify viruses infecting GSB, we first used VirSorter to
detect viral contigs from the 2017 and 2018 GSB-targeted
metagenomes, and excluded putative contaminants based on
coverage patterns across replicates (see Methods). Across
all 14 sampling dates in 2018, we recovered 43

nonredundant predicted GSB viral contigs (clustered at 95%
ANI—80% alignment fraction, AF) (Table S3). While most
of these 43 viral sequences were short and could represent
decayed prophages or rare viruses that might be difficult to
assemble, we identified 11 complete or nearly complete
GSB virus genomes, on which we focused our analysis. Out
of the 11 viruses, 10 were identified as temperate (i.e., able
to enter a lysogenic cycle) because they encoded an inte-
grase gene and/or were assembled as an integrated prophage
within our GSB genomes. The other viral contig, CV-1–33,
did not contain an integrase gene, nor was it ever assembled
as integrated into the host genome, and thus is probably not
a temperate virus. This high number of prophages is in
contrast to a recent search which did not detect any
prophage in >80% of Chlorobi genomes, and only 1 in the
remainder [20]. It remains uncertain however, if this dis-
crepancy reflects a biological difference between TBL GSB
and isolated Chlorobium strains, or technical biases asso-
ciated with isolation or prophage identification.

Putative GSB viruses were also recruited from all
available TBL metagenomes from 2005 to 2018 by
matching spacers from the CRISPR arrays associated with
GSB-A and GSB-B to predicted viral contigs (see Meth-
ods). This yielded a total of 534 contigs, which were sub-
sequently clustered into viral OTUs (95% ANI and 85%
AF) to produce 45 nonredundant viral contigs (34 of the
contigs were >10 kb). Out of the 45 contigs, 6 matched
viruses recovered through GSB-targeted metagenomes (see
above). Overall, combining results from the flow sorting
method (targeted metagenomes) and the CRISPR spacer-
matching method resulted in 50 nonredundant GSB viruses.
Only one putative GSB viral sequence was described in the
past, identified as a virus infecting GSB based on metage-
nomic coverage, however it bears no similarity to the GSB
viruses identified here, either in flow sorting of from
CRISPR [27].

Comparative genomics of GSB viruses highlight
contrasting patterns of genome evolution

To situate these new GSB viruses within the global virus
diversity, we used a genome-based network analysis of their
shared protein content with vContact 2. The majority of the
new GSB viruses (45/50) were connected to the main
component of the network, confirming that these are likely
members of the Caudovirales order (Figs. 2, S4). However,
they formed novel clusters (approximately genus/subfamily
rank), which did not include any other reference sequences
beyond GSB viruses. This is consistent with the lack of
isolated GSB viruses, and the fact that viruses tend to
cluster by host groups (~phylum or class rank) in gene-
content-based networks [36]. Within the GSB viruses, most
sequences tend to cluster by themselves (as singletons),
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with two exceptions where distinct GSB viruses were
grouped in the same cluster (VC_1 and VC_2 in Fig. 2).

These two clusters of GSB viruses showed different
patterns based on shared gene content and host. In VC-2,
three genomes assembled from the 2018 targeted meta-
genomes were clustered with a 34–59% shared gene con-
tent; of the three, one was associated with GSB-A, while the
two others were associated with GSB-B, based on genome
binning and co-detection in read mapping analyses. Based
on their shared predicted gene content, the GSB viruses in
this cluster appear to be recently diverged and co-
diversifying each with a specific host population (Fig. 2).
Conversely, in VC-1, one genome assembled from the 2018
targeted metagenomes was clustered, based on shared gene
content, with one genome from the 2017 targeted meta-
genomes and one from the 2007 bulk metagenomes (Fig. 2).
Comparisons of these three cluster members revealed two
distinct regions of these viral genomes: a conserved region
with predicted structural genes such as capsid and tail
genes, and a variable region with mostly uncharacterized
proteins. Hence, these three distinct temperate viral gen-
omes likely represent different variants from the same
population with different relative abundance through the
years, consistent with an arms race dynamics [37]. This
pattern of highly variable regions across years is an
exception among GSB viruses: for the other three viruses
identified in the targeted metagenomes and discussed fur-
ther in this paper, identical or near-identical contigs (>95%

ANI over >85% AF) could be identified in the 2005–2013
bulk metagenomes (Fig. S4).

Overall, our identified GSB viruses are distinct from all
known viruses including one putative GSB virus from [27]),
may represent six putative new genera, and appear to be
genetically stable across decades except for one population
that showed large changes in a hypervariable region. It is
worth noting that, while both VC-1 and VC-2 have con-
served and variable regions, they differ in that VC-1 has
successive (but not co-occurring) variants within the cluster,
while VC-2 is made up of co-occurring variants that appear
to be relatively stable across time (Fig. S4). Further, for
sequences in VC-3 and VC-4, contigs with identical or
near-identical (>99%) on the viral regions could be
assembled from 2005 to 2013 metagenomes (Fig. 2), sug-
gesting these are also stable across time. This high degree of
genetic stability across decades was unexpected, as most
work on viral genome evolution has shown rapid genome
change (of varying degrees) across short time scales, similar
to what was seen in our VC-1 (which comprises virus CV-
1–33) [37–39]. Genetic stability may be temporarily
observed in the case of decaying prophages, i.e., prophages
that can no longer enter the lytic cycle and thus become part
of the host genome. However, in those instances, we would
expect to observe visible signs of prophage degradation
over the course of a decade such as gene loss and/or SNP
accumulation, instead of the high stability observed here
[40]. Hence, in the absence of such sign of prophage decay,

Fig. 2 Genomic diversity of Trout Bog Lake GSB-associated
viruses. Viral contigs from Trout Bog Lake (TBL) were clustered with
genomes from the NCBI Viral RefSeq database [82] as well as pre-
dicted GSB viruses from IMG/VR [5] and Lake Mendota viral contigs,
based on pairwise gene comparison. GSB viral contigs were derepli-
cated prior to clustering, so that only one copy of each genome was
included in the network. Individual viral contigs are colored according
to their origin (gray for sequences not from Trout Bog Lake, blue for
Trout Bog Lake contigs not associated with GSB, and red for Trout
Bog Lake contigs associated with GSB). The GSB-associated viral
contigs detected in the GSB-targeted metagenomes are highlighted

with a square shape. Network edges represent shared gene content
between viral contigs. GSB viral contigs clustered into four groups
(VC-1, -2, -3, and -4). VC-1 contains the three CV-1-33 variants; VC-
3 and VC-4 contain CV-1-51 and CV-1-4.2, respectively, plus a pre-
viously sequenced TBL metagenome viral contig from 2008. Pairwise
genome alignments are represented next to each cluster. Genome
alignments were generated using blastn, with green representing 100%
nucleotide alignment. Gene content is color-coded, and dashed lines
show regions where the host genome was found. All GSB viral contigs
from targeted metagenomes (red squares) are labeled with their host
(either “A” for GSB-A or “B” for GSB-B).
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we interpret these sequences as representing stable but
active (or activable) prophages.

Dynamics of CRISPR spacer acquisition and
maintenance are highly variable between viruses

Most (26) of the 45 viral OTUs detected in 2005–2013
based on CRISPR matches were not detected in 2018, either
in targeted or bulk metagenomes (Figs. 3, S5, S6). A tem-
poral comparison of viral contig coverage and the acquisi-
tion of their respective spacers revealed multiple instances
of decline in virus coverage following spacer acquisition,
suggesting successful defense by the host population
against these infections (Figs. 3, S5, S6). However, we also
observed a variety of other CRISPR-virus dynamics within
our relatively simple host–virus system: viruses with no

spacers (CV-1-51), viruses with unique/different spacers
recovered each year (CV-2-6), viruses present for many
years before spacers can be detected (mg13_3-398034),
viruses that are found long after their spacers are no longer
detectable (mg05_20-709165), spacers that are retained
even after the virus seemingly disappears (mg18_1120), and
viruses that disappear after the presence of spacers
(mg088_83) (Figs. 3, S5, S6). Such diversity of CRISPR-
virus dynamics in this one system suggests that spacers may
have different levels of efficacy within a single host and
different frequency within a host population, consistent with
a distributed immunity model [41]. Eventually, these com-
plex population-level interactions influenced by CRISPR
spacer acquisition and viral infection dynamics (e.g., inte-
gration of prophages in the host genome) likely explain our
observation that individual virus-host pairs can be

Fig. 3 Long-term dynamics of GSB-associated viruses CRISPR
spacers in TBL. A Shown are a subset of viral contigs identified
through GSB CRISPR spacer matching, plus the identified GSB viral
contigs through FACS flow sorting. A complete version of the heat-
map is available as Supplementary Fig. S6. The four viral contigs
discussed further in this manuscript are labeled in bold; variants of
CV-1-33 are labeled as *EV in bold. (left) Black squares are used to
signify which contigs were found in the targeted metagenomes

(miniMG), and which contigs were recruited through CRISPR spacer
matching. (center) Normalized coverage for each sample across all
contigs; white space represents insufficient or no coverage for that
contig/sample. (right) Shown are the number of unique CRISPR
spacers detected in each year. B Shown are the same coverage values
for GSB viral contigs, plus white with black circles that represent the
presence of one or more CRISPR spacer(s) matching this virus in the
corresponding samples.
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associated with a broad range of CRISPR dynamics. This is
also consistent with previous studies of virus-host model
systems, which indicated that CRISPR-based immunity
could be incomplete if based on only one of a few spacers,
and that virus-driven host phenotype alteration may influ-
ence infection dynamics at the population level [42].

The fact that different GSB viruses are identified through
targeted metagenomes and CRISPR spacer matching high-
lights how these two approaches are complementary, as
they reflect different infection status (Fig. 3). While
CRISPR-based recruitment identified many putative GSB
viruses, most did not seem to represent ongoing, ecologi-
cally relevant infections but instead reflected past infections,
as these spacers did not match to any recently recovered
GSB virus (based on de novo assembly and read mapping,
Figs. 3, S5). Conversely, viral sequences identified in tar-
geted, flow-sorted metagenomes represent “in-cell” viruses,
including integrated prophages not targeted by CRISPR-
Cas systems, although this method may be less suitable for
very rare (i.e., low rate of infected cells) or transient (i.e.,
short in-cell time) infections. Together these two approa-
ches are thus highly complementary, identified dozens of
viruses infecting GSB over a 13-year time period, and
revealed these GSB populations were often simultaneously
infected with >15 viruses at a single time point (Figs. 3, S5).
Admittedly however, both approaches would not include
most extracellular viruses, for which viral metagenomes
generated from the same samples would be ideally required.

Auxiliary metabolic gene identification in GSB
viruses

Auxiliary metabolic genes (AMGs) are host genes found in
bacterial viruses that can modulate host cell metabolism
during infection, usually to increase the efficiency of viral
replication. This phenomenon has been observed in many
bacteria, including e.g., cyanobacteria, where some viral-
encoded proteins are used during infection to maintain host
cell photosynthesis capacity [43]. In GSB, comparative
genomics previously revealed an extensive history of HGT,
with the sox cluster for thiosulfate utilization as a well-known
example [26]. It is thus possible that GSB viruses carry
AMGs, in particular ones involved with sulfur metabolism.

Overall, we found no clear evidence for AMGs in any of
the TBL GSB viral genomes. Specifically, none of the
sequences identified as a putative GSB virus through tar-
geted metagenome or CRISPR match included a predicted
gene that could confidently be linked to a cellular metabo-
lism. Since most (>60%) of putative GSB virus genes were
not or poorly annotated however, it is possible that some
GSB viruses do encode genuine AMGs, but further
experimental characterization of these unknown genes will
be required to identify these.

Host–virus temporal dynamics differ across GSB
populations in TBL

Mapping reads from individual bulk metagenomes to the new
GSB genomes and GSB viruses assembled from targeted
metagenomes enabled a more detailed investigation of the
temporal dynamics of GSB and their viruses in TBL.
These data provide a unique look at virus-host dynamics, as
these data cover more than 10 years, and represent one of the
longest running datasets currently available to investigate
viral–host dynamics in natural systems. Based on read map-
ping, GSB-A was present in all years dating back to 2005,
and was, until 2018, the dominant host population (Figs. 4A,
S7). Its associated viruses (CV-2-6 and CV-1-51, both inte-
grated prophages) appear to be present at a low relative
abundance in 2005, and based on coverage, became pervasive
in 2007, seemingly infecting every member of the host
population from this date on. While both host and viruses
decreased in abundance in 2018 relative to previous years,
they were still abundant as judged by coverage (>40×; ~32%
of GSB reads in 2018 were GSB-A) and showed the expected
increase in summer compared to spring samples correspond-
ing to the GSB bloom. While this long-term virus-host sta-
bility was unexpected, as viruses are often thought of as fast-
evolving, recent work done in marine systems also showed
long-term stability in viral communities, resulting in long-
term virus-host co-existence [38]. The mechanisms for this
stability are likely different however, as those coastal marine
systems seem to rely on perpetually changing minor variants
(Red Queen Hypothesis [44]), while no evidence of such an
arms race was observed in TBL GSB-A viruses: the coverage
of both host and viruses were nearly identical, no change in
viral genome content was observed, and no CRISPR spacers
targeting these GSB-A viruses were detected.

In contrast, GSB-B was overall less abundant, with
reliable coverage (>10×) only achieved in 2005, 2018, and
some samples in 2007. While it was not the dominant GSB
population for most of the years covered by our data, it was
clearly more abundant than GSB-A in 2018 (Figs. 4A, S5).
Similar to GSB-A, GSB-B is also associated with an inte-
grated prophage (CV-1–4.2). However, unlike the pro-
phages that infect GSB-A, CV-1-4.2 was substantially less
covered than its host GSB-B at most time points (15 times
less on average for dates when the virus was detected),
likely infecting only a subset of the population (Fig. 4A).
The other GSB-B virus (CV-1-33) displayed a strikingly
different virus-host dynamic than all the other GSB viruses
we observed, with large peaks in abundance compared to its
host in 2007 and 2018. We interpret these abundance peaks
where the coverage of the virus vastly exceeds the coverage
of the host as reflecting the presence of multiple copies of
the viral genome in individual host cells and/or the presence
of encapsidated genomes in the sample stemming from e.g.,
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virus particles stuck onto cell clumps, which would both be
signs of ongoing viral replication and lytic infections. It is
notable that CV-1-33 is also the only virus that shows high
mutation/recombination rates with a clear hypervariable
region (see above and Fig. 2), which would be consistent
with a lytic virus engaged in an “arms race” with its host.
These data also confirm that virus-host association based on
relative abundance correlation could be efficient for pro-
phages but may misinterpret the dynamics of lytic viruses
(Fig. 4), as predicted by theoretical models [45].

At the community level, a mix of persistent viruses
(repeatedly detected across seasons and years) and transient
viruses (detected in only one or a few time points) have been
reported in marine systems [46–48] and in lakes [1, 49];
however, the ecological and evolutionary drivers of virus
persistence are still unclear. Here, our data show that the
viral community associated with individual host populations
can include both persistent and nonpersistent viruses. In
addition, while persistent viruses tend to be associated with
lysogenic infections, CV-1-33 was notable as a persistent
virus predicted as lytic, displaying molecular arms race
dynamics, and prevalent enough to be detected in targeted
metagenomes. This suggests that the two strategies may
enable virus persistence: successful arms race leading to
multiple virus variants appearing and disappearing through

the years, and long-term stable co-existence of temperate
viruses with their hosts. The fact that both strategies were
detected in closely related GSB species in the same envir-
onment (TBL) with similar host growth dynamics and
nutrient availability suggests that other factors may drive the
success or failure of these different virus strategies.

Genome-wide sweep affected one GSB population
and its associated viral populations

As previously reported in ref. [31], GSB-A went through a
genome-wide sweep (i.e., an event where a genotype within
the population increases in frequency to reach nearly 100%
and becomes fixed, reducing population diversity to nearly
zero) in 2007, leading to a stark reduction in population
diversity (Fig. 4B). The same pattern could be observed
here for the associated viruses, which both underwent a
clear genome-wide sweep (Fig. S8). In 2018, we are able to
see some higher level of population diversity compared to
2013 in terms of single nucleotide variants, especially in the
viruses (Figs. 4B, S9), suggestive of an ongoing slow
diversification process. Viral infections could have been a
possible cause of the genome sweep seen in GSB-A,
because we can see an increase in prophage abundance
concomitant with a decrease in GSB-A population diversity

Fig. 4 Relative abundance and population diversity of GSB hosts
and viruses in Trout Bog Lake (2005–2018). A Normalized abun-
dance (log-scale) of GSB-A and associated viruses (top) and of GSB-B
and associated viruses (bottom); only samples with reads mapping to
at least 25% of the genome are shown (Fig. S7), grey-scale boxes
represent season of each sample. For 2018, coverage values are from
standard bulk metagenomes, not from the targeted metagenomes.
B Difference between observed and expected nucleotide diversity for
GSB-A (top) and GSB-B (bottom). Because observed nucleotide
diversity will be impacted by coverage depth (Supplementary Fig. S8),
expected values of nucleotide diversity were calculated using a
regression of observed nucleotide diversity and raw (not normalized)

coverage across all samples. Bars show standard deviation, and yellow
shaded region denotes time period during genome sweep. C Propor-
tion of SNPs for which the dominant allele changes between years for
GSB-A and associated viruses (top) and for GSB-B and associated
viruses (bottom). For diversity and SNP assessments, samples were
pooled per year, and years were excluded from analysis if there was
less than a 10× coverage for each SNP; yellow shaded region denotes
time period during genome sweep; gray region represents years with
low coverage, thus not enough data for accurate SNP analysis.
Although one targeted metagenome was generated in 2017, no bulk
metagenome was available for this year, and it is thus not included in
these analyses.

M. Berg et al.



(Fig. S9). On the other hand, the genome sweep may have
provided the appropriate conditions for the GSB-A viruses
to attain high levels of abundance if these two viruses
happen to infect the strain of GSB-A that became dominant
after the sweep, reminiscent of the “piggyback-the-winner”
hypothesis [9]. For GSB-B, we were not able to reliably
ascertain population diversity in 2012, 2013, and most of
2009 because of a low coverage depth, however neither
GSB-B or its associated viruses seemed to undergo a gen-
ome sweep comparable to GSB-A (Fig. 4B).

In addition to estimating microdiversity within GSB hosts
and their associated viral populations each year, we also
looked at the turnover between populations each year by
calculating the proportion of SNPs for which the dominant
allele changed between years. This was calculated similar to
our standard SNP calculations, but instead of looking at
overall SNPs density across all samples, pairwise compar-
ison of years was computed with samples per year pooled.
By looking at turnover in the GSB populations, we can
estimate how similar (or dissimilar) a given population is
compared to the population in the year before or after. In
GSB-A, we see a similar pattern as the within-sample
nucleotide diversity, with higher SNP turnover between 2005
and 2007, and between 2013 and 2018 (Fig. 4C), suggesting
that the GSB populations within these time periods were less
similar than between 2007 and 2013. Between 2007 and
2013, the same clonal GSB-A population dominated every
year, as little-to-no SNP changes between or within years
were observed. For the GSB-A associated viruses, we see
greater turnover between years than we saw in the host
between 2005–2007 and 2013–2018, however, between
2007 and 2013, turnover in the viruses is at a similar near-
zero level as seen in the host genome (Fig. 4C). Notably, the
vast majority of the SNPs observed (98%) corresponded to
synonymous mutations, further suggesting these viruses are
not “decaying prophages”, i.e., these are not inactive viruses
progressively degrading in the host genome, as already
suggested based on gene content (see above). In GSB-B, we
were only able to calculate turnover between 2005–2007,
2007–2008, and 2007–2018 due to a low coverage in the
other years, but GSB-B population overall showed a higher
turnover compared to GSB-A (Fig. 4C). Notably, SNP
turnover in CV-1-33 were not restricted to the “variable”
region but also included SNPs in conserved genes. CV-1-33
is thus a uniquely dynamic genome, both at the gene content
level (gene replacement from year-to-year) and SNP level
(allele turnover in conserved genes) (Fig. 4C).

Contrasting host population-level diversity may
drive viral infection dynamics

Although GSB-A and GSB-B grow under similar ecological
conditions and harbor similar genomes (Table S2), these

two hosts appear to experience different types of viral
infections. GSB-A is associated with persistent prophages
with high prevalence rate (infecting nearly 100% of the host
population), while GSB-B is associated with two different
viral types: a rare prophage infecting a subset of the
population, and a (likely) lytic virus with a rapidly evolving
genome. Because GSB-A went through a genome-wide
sweep, which resulted in decreased population diversity, we
hypothesized that host population diversity could explain
this difference in infection types, especially as it could
impact the resistance potential of each host population. For
clonal or nearly clonal host populations such as GSB-A in
TBL, where the dominant strain is infected by a virus, the
probability of a resistant strain appearing would be initially
low because there are few uninfected hosts with potential
for resistance in the population. From the virus perspective,
the most successful strategy once most of the host popula-
tion has been infected would thus be a long latent/lysogenic
cycle that sustain a stable co-existence of virus and host. In
contrast, a primarily lytic virus would likely remove a
substantial portion of the host population, and a resistant
host strain would eventually arise despite the host popula-
tion being originally clonal [50].

In contrast, for populations with higher levels of strain
diversity such as GSB-B, there is likely an existing pool of
strains with potential for resistance. For this population,
instead of stable prophages, we observe either a “rare”
prophage, or a rapidly changing lytic virus that would be
consistent with ongoing kill-the-winner/Red Queen type
dynamics. Hence, in higher-diversity host populations, the
most successful strategy for viruses could be lytic or short
lysogenic infection cycles, leading to more replication
events and a more diverse viral population. Temperate
viruses infecting these higher-diversity host populations,
while less successful (in terms of relative abundance and
infection rate), could still be stably associated with a subset
of the host population as observed here in the GSB-B virus,
CV-1-4.2.

Theoretical model suggests low host population
diversity favor lysogenic infections

To examine the potential for these scenarios to occur under
different conditions, we adapted an existing theoretical
model [6] to consider the relationship between lysogeny,
induction rate, and host resistance/susceptibility. As a first
step, we were interested in identifying conditions that would
allow for maximum lysogeny (i.e., majority of the host
population are lysogenized), versus those favoring lytic
activity (see Methods). While our model does not include a
direct measurement for diversity, we used the initial abun-
dance of lysogenized host cells as a simple proxy. Indeed,
the genome-wide sweep in GSB-A was associated with an
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increase in the percentage of lysogenized cells, and while we
can’t distinguish if one directly caused the other, a popula-
tion bottleneck event could lead to a higher frequency of
lysogenized cells (Fig. S9). Meanwhile, our model allows
for hosts to transition from susceptible to resistant, but not
from lysogenized to resistant, so resistance would have a
greater chance to arise in a diverse population with a lower
initial proportion of lysogenized hosts because there is a
greater proportion of hosts that could become resistant.

Across the full landscape of induction rate and initial
lysogen ratio, our model broadly recapitulates known virus-
host dynamics. Most scenarios leading to a high rate of
lysogens (dark blue region in top panel of Fig. 5A), i.e., a
complete or near-complete infection of the host population
at the end of the simulation, started from high (40% or
higher) initial rates of lysogeny (Fig. 5A, y-axis). However,
this final lysogen rate was also dependent on induction rate
(x-axis on Fig. 5A). If the induction rate was too low, then
lysogenic infection rate decreases due to prophage decay.
On the other end, higher initial lysogen ratio are associated
with low decreased lysogen ratio and increased resistant
host density (Fig. 5A). This suggests that there is a tipping
point in this model, where a sufficiently high induction rate
will allow the virus-host dynamics to enter into predator-
prey/Red Queen dynamics leading to lower final lysogen
ratios.

We can further examine these virus-host dynamics by
modeling individual vignettes with specific conditions that
attempt to mimic those from two of our GSB viruses, and
deduce the possible scenarios that gave rise to the virus-host
dynamics observed in TBL. We first verified that our model
recovered expected predator-prey dynamics for lytic viruses
by testing a case similar to CV-1-33, a virus with low
latency (i.e., mostly lytic) and ~50% infection rate
(Fig. 5B). Here we see expected cyclical dynamics for
viruses, resistant hosts, and susceptible hosts, consistent
with the relative abundance patterns observed for CV-1-33
(Fig. 5B). Next, we used this model to investigate the
conditions that may enable the long-term maintenance of a
stable prophage like CV-1-51. CV-1-51 infects most (if not
all) of the GSB-A population, and has remained stable for
over 10 years. In this scenario, we modeled a low induction
rate, and started the time course with an initial lysogen/
susceptible host ratio of 30%. For the 9 months over which
the model was run, we find a slow but steady increase in
lysogenized host cells, and no significant rise of resistant
host cells (Fig. 5B). Similar results were obtained for the
same induction rate and a higher ratio of lysogen hosts, as
could have occurred following the genome sweep observed
in GSB-A (Fig. 5A). Hence, with low levels of induction,
and especially following a genome-wide sweep which
would have increased its prevalence, CV-1-51 can be

Fig. 5 Theoretical modeling of virus-host dynamics with varying
host population diversity. A Relationship between induction/lysis
rate, initial ratio of lysogenized host cells, and either final infection rate
(top) or resistant host density (center). Combintion of induction rate
and initial ratio of lysogenized host similar to CV-1-51 and CV-1-33
GSB viruses are labeled on the plot, and used to generate the vignettes

in the right panel; (bottom) shows a summary schematic of the above
plots and the corresponding virus-host dynamics; the “optimal” con-
ditions maximize the amount of hosts a given virus can infect.
B vignettes for CV-1-51-like (left) and CV-1-33-like (right) dynamics;
population density for each respective group (see legend and Methods)
are plotted on a log10-scale against time (x-axis, 9 months total).
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maintained within a near-clonal host population without
viral genome decay nor triggering a rise in host resistance.
While more sophisticated mechanisms for this type of sta-
bility may exist, such as density dependence induction rate
[51], we did not find evidence of those mechanisms
occurring here, and our model suggests that this type of
stability is possible even without those.

Conclusion

In this study, we characterize viruses infecting GSB in a
model freshwater lake. By leveraging the unique auto-
fluorescence of GSB cells, we sorted GSB cells using
FACS, and sequenced these “targeted metagenomes” to
identify GSB-specific viruses. These targeted metagenomes
allowed us to observe cell-associated viruses, and ecologi-
cally relevant ongoing infections. Overall, this newly
developed method recovered novel viruses with a host
context at high (population-level) resolution. These new
host-contextualized viruses in turn enabled a re-analysis of
time series bulk metagenomes to investigate virus-host
interactions across seasons and years in a model freshwater
lake. For one virus persistent through multiple years (CV-1-
33 infecting GSB-B), we observed temporal dynamics and
microdiversity patterns consistent with a “kill-the-winner”
dynamic. However, for a closely related host population,
viruses persisting throughout multiple years seem to be
instead temperate and consistent with a “piggyback-the-
winner” dynamics (CV-1-51 infecting GSB-A). A theore-
tical model of these infections suggest that host population
diversity may be a critical factor driving these virus-host
interactions by influencing the potential for resistance in
each host population. “Piggyback-the-winner” strategies
would be more successful when prophages with low
induction rates are able to spread through low-diversity host
populations and infect all members of the dominant strain,
while “kill-the-winner” dynamics would more frequently
occur in high-diversity host populations which include a
subset of resistant cells. Consequently, the optimal latency
time decision of viruses would in turn depend partly on the
host population diversity, with long-latency prophages
favored in low-diversity host populations. This would be
consistent with the link between lysogeny and host life-
history traits, as lysogeny-associated traits such as “patho-
genicity” or “boom-and-bust” life cycles are also associated
with population bottlenecks, and could also explain the
imperfect linkage between lysis-lysogeny rate and broader
ecological parameters such as host abundance, nutrient
availability, and growth rate. While this study focuses on
one environment, two specific host populations, and their
“in-cell” viruses, it would be of interest to verify if the
general patterns observed also hold true for other GSB

populations in other lakes, and for other bacterial popula-
tions with varying growth cycles and dynamics.

Materials and methods

DNA sampling and sequencing

TBL is located in Vilas County, Wisconsin, USA, and is
surrounded by a Sphagnum mat that supplies large amounts
of terrestrially derived organic matter to the lake, leading to
darkly stained water and greatly attenuated light penetra-
tion. The lake mixes twice per year (spring and fall) but
thermally stratifies strongly in the summer. It has a max-
imum depth of 7 m, surface area of ~11,000m2, and a mean
pH of 5.1 [52]. Dissolved oxygen is typically below
detection in the hypolimnion (lower layer of water in a
stratified lake) between ice thaw (early May) and fall mix
(mid-November) ([52], https://lter.limnology.wisc.edu/resea
rchsite/trout-bog); these yearly temperature changes along
with other major biogeochemical parameters can be seen in
Fig. S2.

Two different types of samples were collected during
June-October 2018: (1) depth-integrated water samples
were collected onto filters (see below) from the hypo-
limnion layer (as defined by the temperature gradient) at 14
different time points, and DNA was purified from these
filters using the FastDNA Spin kit for Soil (MP Biomedi-
cals, Santa Ana, CA), with minor modifications to the kit
protocol, as described previously [52]; (2) depth-discrete
water samples were collected at specific depths throughout
the water column at 14 different time points (Table S4),
preserved in glyTE (1 ml of sample for 0.1 ml Gly-TE
buffer), and were counted and sorted using flow cytometry
(see below). Details about the sample types and depths can
be found in Fig. S1 and Supplementary Table S4. Both
types of samples were filtered onto a 0.2-μm pore-sized
polyethersulfone filters (Supor 200, Pall, Port Washington,
NY), without pre-filtration to ensure a consistent sampling
protocol through the entire time series, prior to storage at
−80 °C. Specifically, depth-integrated samples were kept
cold at 4 °C for ~1 h, and frozen at −20 °C after filtration
(due to field sampling limitations). These samples were then
transported to Madison, WI, USA on dry ice and transferred
to −80 °C as soon as possible, and always within 2 months.
Depth-discrete samples used for cell sorting were instead
transferred immediately to dry ice and shipped overnight to
JGI for processing (see below).

For the depth-integrated samples (i.e., “bulk” metagen-
ome), one library from each sample was prepared following
standard KAPA kit protocol. 10 ng of Genomic DNA was
sheared to 300 bp using the Covaris LE220 and size
selected with SPRI using TotalPure NGS beads (AMPure
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XP, Bechman). The fragments were treated with end-repair,
A-tailing, and ligation of Illumina compatible adapters
(IDT, Inc) using the KAPA Standard Library Creation kit
(KAPA Biosystems) and five cycles of PCR was used to
enrich for the final library.

For the depth-discrete samples (i.e., “targeted” meta-
genomes), Nextera XT v2 (Illumina) sequencing libraries
were generated from 5,000 sorted cells following multiple
displacement amplification (MDA) [53]. Five libraries of
sorted GSB, i.e., pigmented cells that were stained by
SYBR Green (Invitrogen) (488 nm excitation; 530 nm
emission) and emitted autofluorescence >750 nm after
excitation with 642 nm laser (Fig. S10), and two additional
libraries of sorted nonpigmented cells were sequenced for
each sample. Sorted cells were amended with glycerol (6%
final concentration) to protect them from unintended lysis
during the freeze/thaw process, and stored at −80 °C while
awaiting MDA. Prior to amplification, cells were pelleted
by centrifugation at 6350 × g for 1 h at 10 °C, inverted and
centrifuged at 7 × g for 5 s to remove supernatant, and
amplified by MDA at 45 °C for 16 h using EquiPhi29 DNA
polymerase (ThermoFisher Scientific) following the pro-
tocol described in ref. [54]. Paired-end sequences of 2 ×
150 bp were generated for all libraries on the NovaSeq
platform (Illumina). Metagenomic sequence reads are
publicly available on the JGI IMG portal and NCBI SRA
(Table S5).

GSB cell flow cytometry cell sorting

Benchmarking for this protocol was performed on cultures
of C. tepidum. Briefly, the influx cell sorter (BD Bios-
ciences) was prepared following the protocol for single-cell
genomics outlined in [55]. However, instead of sorting
individual cells, five pools of 5,000 sorted GSB cells and
two pools of nonpigmented cells were sorted into reaction
wells from each depth-discrete sample. GSB were identified
as pigmented cells that were stained by SYBR Green
(Invitrogen) (488 nm excitation; 530 nm emission) and
emitted autofluorescence >750 nm after excitation with 642
nm laser [56, 57], whereas the nonpigmented cells were
identified as those stained by SYBR Green and lacking
autofluorescence (Fig. S10). Sorted cells were amended
with glycerol (6% final concentration) and stored at −80 °C
while awaiting MDA.

Data processing and genome binning

For depth-discrete water samples (hereafter “targeted meta-
genome”), each dataset was subsampled to 60 million total
reads per sample using BBMap reformat function [58]. For
each sampling date, reads from the five replicates were pooled
and coassembled using SPAdes (v3.10.1, --phred-offset

33 -t 16 -m 120 --sc --careful -k 25,55,95–12 [59]). For each
coassembly, both positive and negative cell fractions were
read-mapped to the contigs using Bowtie2 with default
parameters [60]. To remove any cross-talk contamination
during sequencing, only contigs that had at least 10× higher
coverage in the positive fraction (compared to the negative
fraction) were kept for downstream analysis. After filtering,
contigs for each coassembly were binned based on CON-
COCT clustering using Anvi’o v5.5 [61] and bin quality was
determined using CheckM [62]. Once binning was complete
for each coassembly, all bins were pooled and dereplicated
using dRep with default parameters [63]. The dereplicated
genome set was used as the representative genomes across all
samples in 2018. Both depth-integrated and depth-discrete
metagenomes were read-mapped to these representative
genomes using Bowtie2, and coverage data was extracted
using Anvi’o v5.5 [61].

GSB genome bin annotation

TBL GSB genome bins were annotated using Prokka
(v1.13.4, --metagenome, [64]). Genes for pigment bio-
synthesis (bchU, cruB, bciD) were identified in the GSB
metagenomes both through gene annotation (using Prokka,
see above) and blastp matching to known GSB pigments
genes [34, 65–67]. CRISPR arrays were predicted using
CRT1.2 [68], with default parameters. Predicted arrays were
manually inspected to make sure that repeats were all
exactly of the same length, identify arrays with identical
repeats within and between bins, and check the presence of
nearby Cas genes when enough of the neighboring region
was assembled.

Virus identification and characterization

To identify potential viral contigs, contigs from all 14 2018
co-assemblies of sorted cells and all bulk metagenome
assemblies were analyzed by VirSorter 1.0.5 [69]. Briefly,
VirSorter looks for hallmark viral genes (e.g., tail proteins,
terminase, capsid protein) and enrichment of viral-like
genes in the contigs provided, and ranks the contigs based
on these characteristics along with matches to known viral
genomes. Sequences identified by VirSorter in categories 1,
2, 4, and 5, were manually curated (by looking at genome
structure and content for known viral genes), and genuine
viral contigs from each coassembly were pooled and dere-
plicated (using dRep [63],) to produce a representative set
of potential GSB viruses. Genome figures for viral genomes
were generated using EasyFig (v2.2.2, [70]), with the
annotations produced from VirSorter. Viral contigs covered
at >5× in at least 50% of replicates of a set of GSB-targeted
metagenomes (i.e., one sampling date) were considered as
GSB viruses.
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To identify contigs from putative GSB viruses using
matched CRISPR spacers, all metagenomes were first pro-
cessed with the Crass assembler (v0.3.12) [71], to broadly
assemble CRISPR arrays. Then, the repeats predicted for
the Crass-assembled arrays were compared to the repeats
identified in CRISPR arrays predicted in both GSB genome
bins (see above), and Crass-assembled arrays with repeats
identical to one of the GSB arrays were considered as
“GSB-encoded” arrays. Spacers associated with these GSB-
encoded arrays (Table S6) were gathered and compared to
all viral contigs identified across all metagenomes (see
above) using blastn with options optimized for short
sequences (“-dust no -word_size 7”). Predicted viral contigs
showing at least one match to a GSB-associated spacer (0 or
1 mismatch across the whole spacer length) were selected as
“candidate GSB viruses”.

Taxonomic classification of predicted GSB viruses

For taxonomic affiliation, all viral contigs identified
(including the ones not associated with GSB) with a length
≥10 kb were pooled with reference genomes from NCBI
RefSeq (v93, filtered to include only genomes from bac-
terial and archaeal viruses), along with viral sequences
from the IMG/VR database with a predicted GSB host [5],
prophages predicted in GSB genomes from the IMG
database [72], sequences predicted with VirSorter (cate-
gories 1/2/4/5), and viral sequences ≥10 kb identified in
metagenomes from Lake Mendota (predicted with Vir-
Sorter as for TBL metagenomes, see above). The addi-
tional datasets beyond RefSeq were included to try to
ensure a large representation of sequences from freshwater
viruses and/or putatively associated with GSB. This set of
viral genomes and contigs was first dereplicated (95%
ANI, 85% AF) using MUMMER 4.0.0b2 [73]. The
resulting dataset was then used as input to build a genome
network based on shared gene content using vContact 2
([74], using diamond [75] for all-vs-all protein compar-
ison, MCL for protein clustering [76], and ClusterOne for
genome clustering [77]. The resulting network was
visualized using Cytoscape [78].

Time series dynamics

Depth-integrated samples (referred to as “bulk metagen-
omes” here) were previously taken from TBL in 2005,
2007–2009, and 2012–2013 [31]. In order to conduct a time
series analysis of GSB and their viruses, reads from those
samples were mapped to both the representative GSB
genome set and the representative GSB virus set (see above)
using Bowtie2. Coverage data was extracted using Anvi’o
v5.5 [61].

SNP identification and analysis

SNPs were identified using Anvi’o v5.5 [61]. Only SNPs
with at least 10× coverage in each sample (Fig. 4A) or year
(Fig. 4B, C) were retained for analysis. Allele frequencies
were rarified to a depth of 10, also for each sample/year, and
SNPs were filtered again to exclude those SNPs whose
dominant allele frequencies were now 1. Nucleotide diver-
sity (Pi) was calculated for each SNP, values were summed
(per sample), and divided by genome size. SNP turnover
was calculated in a similar way by comparing combined
allele frequency of individual years to each other.

Virus-host model

The virus-host model used here was based on [6], with p
(prophage decay rate, h−1) and cost (growth cost) as addi-
tional parameters, and includes the following nonlinear
ordinary differential equations:
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S, R, L, and V denote the densities of susceptible cells,
resistant cells, lysogenic cells, and virus particles per ml,
respectively. N denotes the total density of cells, i.e., S+
R+ L. The parameters similar to [6] include b (maximal
cellular growth rate, h−1), K (carrying capacity, ml−1), φ
(adsorption rate, ml/h), d (cellular death rate, h−1), β (burst
size, number of virus particles), m (virion decay rate, h−1),
and n (induction rate, h−1). Additional parameters are
μR (mutation rate from susceptible to resistant, h−1),
μS (mutation rate from resistant to susceptible, h−1),
p (prophage decay rate, h−1), r (effect of resistance on cell
growth), and cost (effect of lysogeny on cell growth). Cell
death (unrelated to phage infection) was kept identical
across all cell types. The adsorption of virus particles to
susceptible and lysogenic cells was also kept identical, with
the latter being an evolutionary dead-end (i.e., no new
lysogenic cells or virus particles are produced from these
events), and the adsorption to resistant cell was considered
as null (i.e., the resistance was assumed to arise from an
absence of adsorption of the virions to the resistant
host cell).
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The two parameters varying between computations were
n (induction rate) from 1 × 10−6 to 1 and the initial pro-
portion of lysogenic cell from 0 to 100%. The initial
number of cells was set at 1 × 104 ml−1 based on the flow
cytometry counts of GSB for the first samples in our 2018
time series, while the maximum carrying capacity K was set
at 3 × 106 based on the maximum count of GSB throughout
the 2018 time series (see above). The initial number of viral
particles was set at 1 × 104ml−1 (i.e., a virus to host ratio of 1).
Additional simulations were run with an initial number of viral
particles of 1 × 105ml−1 and 1 × 106ml−1, and the same
dynamics and patterns were observed as the ones presented in
Fig. 5. Growth rate and washout rate were set at 0.02 and
0.005, respectively, based on previous measurements of growth
for Chlorobiales strains in the laboratory [79]. These growth
and washout rates enabled the formation of GSB blooms, i.e., a
cell concentration increase from 1 × 104 to 3 × 106, in
~6 weeks, as observed in TBL. This growth rate, correspond-
ing to a doubling time of ~35 h, is relatively low compared to
most other bacteria, but is consistent with growth rates of
known Chlorobiales strains both in laboratory cultivation and
in the environment [79].

No measurement could be made or obtained from the
literature for the other parameters, which were thus set to
standard values as follows: Burst size, adsorption rate, and
viral decay were set based on [6], i.e., β= 50, φ= 6.7 × 10
− 10ml h−1, and m= 1/48 h−1, which correspond to stan-
dard phage infection dynamics. This virion decay rate of
~0.015 is within the range of values previously observed in
freshwater systems, although decay rate has not been mea-
sured for GSB phages specifically [80, 81]. Prophage decay
rate p was set at 1 × 10−5 h −1 corresponding to ~ 0.05% of
prophage loss per generation at the maximum growth rate of
0.02 h−1. Mutation rate from susceptible to resistant (μR)
and from resistant to susceptible (μS) was arbitrarily set at
1 × 10−6 to ensure a constant pool of both susceptible and
resistant host cells in the system. Finally, the adjusting
parameter for lysogenic growth rate was set at 0.99 to
reflect the added energetic cost of the integrated prophage,
and the adjusting parameter for resistant cells growth
rate was set at 0.90 to allow for the establishment of typical
prey-predator dynamics for high induction rate (i.e., lytic
phages).

Simulations were run separately for a combination of
lysis rate (30 values from 1 × 10−6 to 1 evenly distributed
on a base-10 log-scale) and initial proportion of lysogenic
cells (0–100% by increment of 5%) for 6570 h, i.e.,
~9 months, corresponding to a full seasonal bloom of GSB
as observed in our time-series. Since we do not have any
data about host cell and virus:host dynamics during the time
between blooms, i.e., late fall, winter, and early spring, for
which we do not have samples, we opted to not run the
model across multiple years. Infection rate and resistant host

density data were compiled from the second half of each
simulation (i.e., the last 3285 h), i.e., after the initial growth
of the GSB population and once the bloom was established.
For Fig. 5, the minimum value of each parameter (infection
rate and resistant host density) across the second half of
each simulation is used in the heatmap, to avoid biases
linked to short peaks of infection or resistance.
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