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Abstract 
Curiosity motivates exploration and is beneficial for learning, 
but curiosity is not always experienced when facing the 
unknown. In the present research, we address this selectivity: 
what causes curiosity to be experienced under some 
circumstances but not others? Using a Bayesian reinforcement 
learning model, we disentangle four possible influences on 
curiosity that have typically been confounded in previous 
research: surprise, local uncertainty/expected information 
gain, global uncertainty, and global expected information 
gain. In two experiments, we find that backward-looking 
influences (concerning beliefs based on prior experience) and 
forward-looking influences (concerning expectations about 
future learning) independently predict reported curiosity, and 
that forward-looking influences explain the most variance. 
These findings begin to disentangle the complex 
environmental features that drive curiosity.   

Keywords: curiosity; learning; surprise; uncertainty; 
expected information gain 
 

Suppose you are a baker trying to figure out which of two 
new yeast strains (A or B) will more consistently produce 
delicious bread. Every night, you bake a loaf of bread with 
one of the two strains. But there’s a problem: one of your 
employees is careless, and sometimes they fail to clean the 
kitchen equipment properly. Undetected salt in the bowls 
contaminates the yeast, and the bread fails to rise properly. 
As a result, you don’t know whether a given loaf’s failure is 
due to the viability of the yeast strain, or to the carelessness 
of your employee.  

After a modest string of successes with strain A, you 
observe a failure with strain A—how curious are you to 
know whether your employee failed to clean the bowls 
properly? After a modest string of failures with strain B, you 
observe another failure with strain B—how curious are you 
now? Intuition suggests you may be more curious about 
your employee’s possible negligence in the first case. Why? 

Characterizing when and why we experience curiosity is 
valuable not only because of the link between curiosity and 
learning (e.g., Kang et al., 2009), but also because it sheds 
light more broadly on how our mental states, in interaction 
with our environment, motivate action. In the current 
research, we introduce a new paradigm for quantifying and 
dissociating the contribution of several factors to the 
experience of curiosity. Below, we review theoretical and 
empirical support for several candidate features that may 

explain the selectivity of curiosity before introducing our 
paradigm and two experiments that employ it. 

Potential Influences on Curiosity 
If the goal of curiosity is to guide an agent towards inquiry 
that will lead to learning (Berlyne, 1954; Loewenstein, 
1994), curiosity should be triggered by expectations about 
whether learning will occur as a result of pursuing inquiry. 
For example, if you were to investigate whether your 
employee cleaned the bowls on a given day, how much 
would you expect to learn about your employee’s actions 
(“local” anticipated learning, about the target of your 
question)? And how much would you expect to learn about 
the viability of the yeast strain (“global” anticipated 
learning, about your ultimate learning goal)?  

Research in neuroscience and developmental robotics has 
used measures of expected learning to generate theories of 
curiosity-driven learning (Friston et al., 2017; Oudeyer, 
Kaplan, & Hafner, 2007) and to test these theories in 
artificial agents (Macedo & Cardoso, 2012; Oudeyer et al., 
2007). One important example is expected information gain 
(Oaksford & Chater, 1994), which quantifies the expected 
reduction in uncertainty over a hypothesis space after 
receiving the answer to a particular query. Expected 
information gain has been used to model goal-directed 
exploration and question asking (Coenen, Rehder, & 
Gureckis, 2015; Markant & Gureckis, 2012; Rothe, Lake, & 
Gureckis, 2018; Ruggeri et al., 2016; Ruggeri, Sim, & Xu, 
2017), and recent work suggests that people experience 
more curiosity about the answer to a question when they 
expect it to teach them something new and valuable (Liquin 
& Lombrozo, 2020). Moreover, related work shows that 
learners experience curiosity about a given stimulus 
proportional to the probability of encountering that stimulus 
again in the future (Dubey & Griffiths, 2020).  

 If an agent is solely motivated to learn an accurate 
representation of the world,1 these forward-looking 
evaluations of future learning are likely to be the optimal 

                                                        
1 Of course, human agents surely have goals beyond just 

“getting the world right.” In fact, prior work has described an 
optimal policy for curiosity based on the premise that curiosity’s 
goal is to increase an agent’s ability to take the right actions 
(Dubey & Griffiths, 2020). As our experiments do not require 
participants to take actions, we only consider the goal of learning 
in the present research. 
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triggers of curiosity. For example, if your goal is purely to 
learn about your employee’s negligence, local anticipated 
learning describes the optimal policy for curiosity (assuming 
curiosity is followed by inquiry behavior). Likewise, if your 
goal is purely to learn the viability of your yeast strains, 
global anticipated learning describes the optimal policy for 
curiosity. However, instead of measuring these forward-
looking considerations directly, the bulk of previous 
empirical research has instead considered the association 
between curiosity and several backward-looking 
considerations, which compare one’s current situation to 
what one already knows based on prior experience. 

For, example, one plausible cause of curiosity is surprise 
or a violation of expectation (Berlyne, 1966; Stahl & 
Feigenson, 2015). Being curious after a prediction fails 
(e.g., that the bread with yeast strain A will rise well) makes 
sense insofar as the surprise signals some inaccuracy in 
one’s current beliefs, and thus pursuing inquiry will likely 
lead to future learning. Prior work finds that curiosity can be 
triggered by the recognition of errors in one’s own beliefs 
(Vogl et al., 2020), and relates the experience of curiosity to 
prediction errors encoded in the hippocampus and anterior 
cingulate cortex (Gruber & Ranganath, 2019). 

Another plausible cause of curiosity is uncertainty (which 
may be focused on local or global information, as for 
anticipated learning). Prior research has shown that local 
uncertainty is related to curiosity: for example, curiosity 
about the answer to a trivia question is related to how 
confidently the participant believes they know the answer 
(Dubey & Griffiths, 2020; Kang et al., 2009). Local 
uncertainty can also be objectively quantified and 
manipulated to influence curiosity (Kobayashi et al., 2019). 
However, prior research addressing global uncertainty as it 
relates to curiosity is sparse (cf. Markant, Settles, & 
Gureckis, 2016).  

These backward-looking considerations (surprise and 
uncertainty) are likely related to curiosity precisely because 
they are useful heuristic cues to when learning should occur 
as a result of inquiry. In the bulk of empirical research on 
curiosity, and perhaps in many real-world contexts, these 
potential precursors to curiosity are conflated. For example, 
in the case where a failure with yeast strain A is observed 
after a string of successes with the same strain, the failure 
violates your expectations, leads to local uncertainty about 
the source of the failure, leads to global uncertainty about 
the viability of the yeast strain, and leads to anticipated 
learning about both sources of uncertainty.  

Nevertheless, recent research (Liquin & Lombrozo, 2020) 
suggests that features like surprise, uncertainty, and 
expected learning explain unique variance in participant 
ratings of curiosity. Furthermore, more variance in curiosity 
ratings was explained by expected learning than by surprise 
or uncertainty, controlling for other possible precursors to 
curiosity. In these studies, however, surprise, uncertainty, 
and expected learning were based on participant report, so it 
is not clear what mathematical quantities these self-reports 
might track. In another study (Markant & Gureckis, 2014), 

forward- and backward-looking considerations were 
quantitatively disentangled, but these quantities were used 
to describe exploration in the service of an experimenter-
provided learning goal, rather than intrinsically motivated 
curiosity (see Gottlieb & Oudeyer, 2018). Additionally, this 
research only considered local uncertainty and global 
anticipated learning, and it did not consider whether 
multiple triggers could operate simultaneously. Thus, in the 
present research, we ask: Does curiosity track optimal 
forward-looking features and/or heuristic backward-looking 
features? And if both sets of triggers are at play, which 
explain the most variance in curiosity? 

The Present Research 
We present a paradigm and computational model that allows 
us to quantify and dissociate several factors that may drive 
curiosity in a value-learning context. Again, this is 
challenging because these quantities are often highly 
associated. In our example of baking—and in paradigms 
that have been used in prior work (Baranes, Oudeyer, & 
Gottlieb, 2015; Gruber, Gelman, & Ranganath, 2014; Kang 
et al., 2009; Kobayashi et al., 2019; Liquin & Lombrozo, 
2020)—these quantities hang together and cannot be easily 
disentangled. 

In our paradigm (based on Dorfman et al., 2019), 
participants observe a series of choices between two mines, 
which produce either rocks or gold. Outcomes (rocks or 
gold) depend in part on the underlying reward distribution 
of the mines (i.e., how likely the mine is to produce gold). 
However, outcomes are occasionally influenced by a latent 
variable: a bandit who steals the gold from both mines and 
leaves only rocks. Thus, a negative outcome (rocks) can be 
produced by either the mine’s failure to supply gold or by 
the bandit’s intervention. Participants rate their curiosity 
about whether the bandit intervened after observing each 
outcome. Using a Bayesian reinforcement learning model, 
we quantify four possible drivers of curiosity in the task: 
surprise, local uncertainty (which is also local expected 
information gain), global uncertainty, and global expected 
information gain. To preview our results, we find that all 
four features correlate with curiosity, but that the two 
forward-looking anticipated learning features explain the 
most unique variance. 

Computational Model 
To test the hypothesized determinants of curiosity, we 
extract multiple quantities from a Bayesian reinforcement 
learning model that tracks the probability of receiving rocks 
or gold from each of the two mines.2 For ease of exposition, 
we present the model for a single mine, noting that it is 
extended to two mines by separately tracking the evidence 
about each mine with a copy of the single-mine model. 

                                                        
2 The model is similar to that presented in Dorfman et al. (2019), 

but it represents exact posterior distributions over each mine’s 
reward probability, rather than an approximate posterior mean. 
This is necessary to derive the information-theoretic features. 
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The generative model is as follows. On each trial, 𝑡, the 
selected mine produces gold with probability 𝜃. However, 
with probability 𝜖, the bandit intervenes, stealing the gold. 
This intervention is modeled as a latent variable, 
 𝑍% ∼ Bernoulli(𝜖), where 𝑍% = 1 means the bandit 
intervened on trial 𝑡. Gold is only received when the mine 
produces it and the bandit does not steal it, thus the reward 
for the trial is distributed 𝑅% ∣ 𝜃, 𝑍% ∼ Bernoulli(𝜃(1 − 𝑍%)). 

We assume that 𝜖 is known (participants are told its 
value), but that 𝜃 must be estimated. We further assume a 
uniform prior on 𝜃 between 0 and 1. Unfortunately, the 
standard Beta-Bernoulli process does not apply in this case 
because of the bandit interventions, 𝑍%. However, the 
posterior can still be numerically computed by 
marginalizing over the sequence of interventions, 𝑧, 
𝑝(𝜃 ∣ 𝑟3:%) ∝67Bernoulli

%8⃗

(𝑧%; 𝜖)Bernoulli(𝑟%; 𝜃𝑧%). 

Although marginalizing over 𝑧 directly is intractable, this 
quantity can be efficiently computed by noting that it 
depends only on the number of times each possible 
combination of (r, z) occurs. We omit this derivation for 
reasons of space. We compute the normalizing constant by 
adaptive quadrature. 

On each trial, we extract four quantities: 
1. Reward prediction error (RPE) magnitude encodes 

the extent to which the observed reward on a given trial 
differs from the expected reward (i.e., surprise). It is defined 
|𝑅% − 𝑟%|, where we consider two definitions of the expected 
reward, 𝑟%. First, the true Bayesian expected reward is 
defined 𝑟%

bayes = 𝐸[𝑅%|𝑟3:%>3] = 𝑝(𝑍 = 0)𝜃%, where 𝜃% 	=
∫ 𝜃3C 𝑝(𝜃 ∣ 𝑟3:%>3)	𝑑𝜃 is the posterior mean estimate of 𝜃 
before seeing the current reward. We additionally consider a 
biased estimate that does not take into account the 
possibility of intervention, 𝑟%

bias = 𝜃%. Note that the latter 
most closely corresponds to the RPE in Dorfman et al.’s 
(2019) model of the task. 

2. Local uncertainty/Local expected information gain 
(EIG) encodes both uncertainty and anticipated learning 
about the target of curiosity, which in our case is the 
presence of the bandit, 𝑧%. We define local uncertainty as the 
entropy of the predictive distribution, 𝐻(𝑍% ∣ 𝑟3:%) =
−𝑧%log𝑧% − (1 − 𝑧%)log(1 − 𝑧%) where 𝑧% = 𝑝(𝑍% = 1 ∣
𝑟3:%) = ∫ 𝑝3C (𝑍% = 1 ∣ 𝜃, 𝑟%)𝑝(𝜃 ∣ 𝑟3:%)	𝑑𝜃 is the conditional 
probability of the bandit having intervened on this trial 
given the just-observed reward and the history of previous 
rewards. We define local EIG as the expected reduction in 
entropy in the predictive distribution, 𝐻( 𝑍% ∣∣ 𝑟3:% ), after 
observing the value of 𝑧%. Because observing the value of 𝑧% 
would reduce entropy to zero, local EIG is exactly equal to 
local uncertainty. 

3. Global uncertainty describes uncertainty about 
variables other than the immediate target of curiosity. Here, 
we focus on uncertainty about the reward probability of the 
selected mine. This is defined 𝐻(𝜃 ∣ 𝑟3:%) = −∫ 𝑝3C (𝜃 ∣
𝑟3:%)log(𝑝(𝜃 ∣ 𝑟3:%)). 

4. Global expected information gain (EIG) describes 
expected learning about the reward probability of the 
selected mine. Formally, it is the reduction in entropy of the 
posterior distribution of 𝜃 after observing the value of 𝑍%, 
∑ 𝑝8∈{C,3} (𝑍% = 𝑧 ∣ 𝑟3:%)𝐻(𝜃 ∣ 𝑟3:% , 𝑍% = 𝑧) − 𝐻(𝜃 ∣ 𝑟3:%). 

While RPE magnitude and global uncertainty are 
backward-looking in nature (concerning beliefs based on 
prior experience), global EIG is forward-looking 
(concerning expectations about future learning). Local 
uncertainty and local EIG are equivalent, and thus confound 
forward- and backward-looking considerations. While RPE 
magnitude, local uncertainty/EIG, global uncertainty, and 
global EIG are related to each other, as a mathematical 
consequence of the model, they can be partially 
disentangled.  

Experiment 1 
Method 
Participants Participants were 101 adults (ages 20-71, M = 
36) recruited from Amazon Mechanical Turk to complete an 
~11-minute study in exchange for $1.40. Participation was 
restricted to MTurk workers in the United States who had 
completed at least 1000 prior tasks with a minimum 
approval rating of 99%. All participants successfully passed 
two attention checks. Three additional participants who 
rated their curiosity as zero on all trials were excluded. 

 
Procedure Participants were instructed that they were 
supervising a team of miners, with the goal of learning how 
to get as much gold as possible from a set of two mines. On 
each trial, participants would observe their miners dig in one 
of two mines, then observe the outcome (rocks or gold). 
Participants were told that a bandit intervened to steal the 
gold from both mines on 30% of trials, so they would 
receive rocks on those trials. Participants were required to 
correctly answer two comprehension questions. During the 
main task, after observing each mine choice and outcome, 
participants dragged a slider to rate their curiosity: “How 
curious are you about why this outcome occurred (i.e., about 
whether or not the bandit intervened)?” The slider ranged 
from 0 (not at all curious) to 100 (very curious) and its 
initial position was set to 50. After 50 trials, participants 
answered two multiple-choice attention check questions. 
Finally, participants provided their gender and age. 

 
Stimuli Participants were randomly assigned to one of four 
sequences of 50 choices and outcomes. These sequences 
were generated randomly with the following constraints: (1) 
one mine was selected on approximately 60% of trials; (2) 
on exactly 30% of trials, an agent intervened and rocks were 
received; (3) on the remaining 70% of trials, a reward was 
drawn based on the underlying probability 𝜃J of the chosen 
mine, with 𝜃J set at 30% for one mine and 70% for the other 
mine. Across these sequences, the bivariate Pearson 
correlations between the four quantities of interest was 
moderate (ranging between -0.61 and 0.70). 
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Results 
For all analyses, curiosity was z-scored within participants, 
so that scores reflected the curiosity experienced by a given 
participant relative to their baseline level of curiosity and its 
variance across the task.  

First, we examined the relationship between curiosity and 
RPE magnitude, local uncertainty/EIG, global uncertainty, 
and global EIG. For RPE magnitude, we considered both 
the true Bayesian RPE that considers the probability of 
intervention, and the biased RPE that only considers the 
inferred reward probability of the chosen mine. A series of 
linear regression models were fit, with each quantity as a 
predictor in a single model (Figure 1). Curiosity was 
positively associated with Bayesian RPE magnitude, β = 
0.03, 95% CI [0.001, 0.06], t(5048) = 2.06, p = .04 (R2 = 
.001), biased RPE magnitude, β = 0.39, 95% CI [0.37, 0.42], 
t(5048) = 30.29, p < .001 (R2 = .15), local uncertainty/EIG, 
β = 0.40, 95% CI [0.38, 0.43], t(5048) = 31.12, p < .001 (R2 
= .16), global uncertainty, β = 0.17, 95% CI [0.15, 0.20], 
t(5048) = 12.54, p < .001 (R2 = .03), and global EIG, β = 
0.55, 95% CI [0.53, 0.58], t(5048) = 47.08, p < .001 (R2 = 
.31). Interestingly, the biased RPE magnitude measure was 
more strongly related to curiosity than the Bayesian RPE 
magnitude measure. However, the correlations between 
biased RPE magnitude and local uncertainty/EIG (r = 0.11), 
global uncertainty (r = 0.27), and global EIG (r = 0.70) were 
numerically larger than the same correlations for Bayesian 
RPE magnitude (r = -0.61, r = 0.21, and r = 0.19, 
respectively). Thus, the stronger link between biased RPE 
magnitude and curiosity may be accounted for by its 
stronger association with other predictors of curiosity.  

Subsequently, we tested whether each quantity explained 
unique variance in curiosity. To do so, we fit two regression 
models predicting curiosity with all four quantities as 
predictors. In one regression model, Bayesian RPE 
magnitude was used to capture surprise, while biased RPE 
magnitude was used in the second model. In the first model, 
Bayesian RPE magnitude, β = 0.13, 95% CI [0.08, 0.17], 
t(5045) = 5.92, p < .001, local uncertainty/EIG, β = 0.29, 

95% CI [0.24, 0.33], t(5045) = 11.90, p < .001, and global 
EIG, β = 0.38, 95% CI [0.34, 0.42], t(5045) = 19.18, p < 
.001, all explained unique variance in curiosity. The effect 
of global uncertainty was marginally significant, β = 0.02, 
95% CI [-0.001, 0.05], t(5045) = 1.90, p = .06. The model 
explained 33% of the variance in curiosity.  

In the second model (Figure 2), biased RPE magnitude, β 
= 0.10, 95% CI [0.07, 0.14], t(5045) = 5.85, p < .001, local 
uncertainty/EIG, β = 0.20, 95% CI [0.17, 0.23], t(5045) = 
13.82, p < .001, global uncertainty, β = 0.03, 95% CI [0.004, 
0.05], t(5045) = 2.27, p = .02, and global EIG, β = 0.37, 
95% CI [0.33, 0.41], t(5045) = 18.32, p < .001, all explained 
unique variance in curiosity. This model also explained 33% 
of the variance in curiosity.  

These results suggest that surprise, local uncertainty/EIG, 
and global EIG, as captured by an optimal model of 
learning, all explain unique variance in participant reports of 
curiosity. Global uncertainty, while positively related to 
curiosity in isolation, explained less variance in curiosity (if 
any) when accounting for the other measures. When 
accounting for all other measures, there was little difference 
in the extent to which Bayesian RPE magnitude and biased 
RPE magnitude predicted curiosity. Regardless of how RPE 
is defined, however, the EIG features explained most of the 
unique variance in curiosity (32.5% for a model with only 
EIG features vs. 33% for the full model). 

We calculated variance inflation factors (VIFs) for the 
simultaneous regression models above. The VIF estimates 
how much the variance of a given coefficient is inflated due 
to multicollinearity between predictors in a model, and thus 
can inform whether the null effect found for global 
uncertainty is a Type II error. For the model where global 
uncertainty did not reach significance, the VIF for global 
uncertainty was 1.12 (a VIF over 10 is taken as indicative of 
serious multicollinearity). This indicates that the null result 
is unlikely to be due to multicollinearity. 

 
Discussion 
The results of Experiment 1 reveal several insights about the 

Figure 1: Relation between each quantity and curiosity (z-scored within participants). Each point represents one 
curiosity rating from a given participant on a given trial. For ease of visualization, curiosity values greater than 4 or 

less than -2.5 are not plotted (0.2% of all data). 
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determinants of curiosity. First, surprise, local 
uncertainty/EIG, global uncertainty, and global EIG can be 
operationalized and partially separated based on a Bayesian 
reinforcement learning model. Moreover, unique variance in 
curiosity is explained by these measures (with the possible 
exception of global uncertainty). RPE magnitude and global 
uncertainty are purely backward-looking in nature, while 
global EIG is purely forward-looking in nature—allowing 
us to conclude that both forward- and backward-looking 
considerations are associated with the experience of 
curiosity.  

While these findings are suggestive, the sequences of 
choices and outcomes presented to participants have some 
properties that may have made them poorly suited to test the 
role of these measures in predicting curiosity. In particular, 
all sequences (unintentionally) began with definitive 
evidence that one mine had a reasonably high probability of 
reward and the other had a lower probability of reward. As a 
result, there were few trials in which global uncertainty was 
high, and there were few trials in which biased RPE 
magnitude and global EIG were moderate (Figure 2). We 
thus attempted to replicate our results in Experiment 2 using 
a new set of observations and rewards, which capture a 
fuller and more naturalistic range of these measures of 
interest. 

Experiment 2 
In Experiment 2, we presented participants with sequences 
of observations sampled from the participant data from 
Experiment 1 of Dorfman et al. (2019). In this prior 
experiment, participants’ task was to select between the two 
mines on each trial. Each time gold was received from a 
mine, the participant’s bonus payment increased by a fixed 
amount; each time rocks were received from a mine, the 
participant’s bonus payment decreased by the same fixed 
amount. Thus, participants’ goal was to learn about the 
mines in order to maximize long-run rewards. In addition to 
providing a more complete range of model estimates across 
all trials, this has the additional benefit of providing us with 

more ecologically valid data sequences (generated by 
humans rather than sampled randomly). 
 
Method 
Participants Participants were 99 adults (ages 22-62, M = 
36) recruited from MTurk, as in Experiment 1. Four 
additional participants were excluded for failing to pass two 
attention checks. Two additional participants who rated their 
curiosity as zero on all trials were excluded. 
 
Procedure The procedure matched that of Experiment 1. 
 
Stimuli Participants were randomly assigned to one of eight 
sequences of choices and outcomes. Using the data from 
Dorfman et al. (2019), we selected eight sequences of 
choices and outcomes generated by the 72 participants in the 
adversarial condition (where a bandit was the intervening 
agent; there were also two additional intervening agents in 
their experiments) of their Experiment 1. The four quantities 
of interest were modestly correlated across these sequences 
(ranging between -0.70 and 0.64). 

Results 
As in Experiment 1, we first examined the association 
between curiosity and each of the four quantities of interest, 
with each quantity serving as a predictor in a separate 
regression model (Figure 1). Curiosity was positively 
associated with biased RPE magnitude, β = 0.27, 95% CI 
[0.25, 0.30], t(4948) = 20.06, p < .001 (R2 = .08), local 
uncertainty/EIG, β = 0.52, 95% CI [0.49, 0.54], t(4948) = 
42.59, p < .001 (R2 = .27), global uncertainty, β = 0.15, 95% 
CI [0.12, 0.17], t(4948) = 10.40, p < .001 (R2 = .02),  and 
global EIG, β = 0.47, 95% CI [0.45, 0.50], t(4948) = 37.87, 
p < .001 (R2 = .22). However, curiosity was negatively 
associated with Bayesian RPE magnitude, β = -0.23, 95% 
CI [-0.26, -0.20], t(4948) = -16.55, p < .001 (R2 = .05). 
Again, the contrast in results between the biased and 
Bayesian measures of RPE magnitude may be accounted for 
by the correlations between the RPE measures and the other 
quantities of interest. While biased RPE magnitude was 
positively associated with local uncertainty/EIG (r = 0.19), 
global uncertainty (r = 0.23), and global EIG (r = 0.56), 
Bayesian RPE magnitude was negatively associated with 
both local uncertainty/EIG (r = -0.70) and global EIG (r = -
0.13), two of the strongest predictors of curiosity.  

Subsequently, we fit two regression models including all 
four measures as predictors (one using Bayesian RPE 
magnitude as a measure of surprise, and the other using 
biased RPE magnitude). In the model using Bayesian RPE 
magnitude, all measures but global uncertainty explained 
significant variance in curiosity; Bayesian RPE magnitude: 
β = 0.16, 95% CI [0.12, 0.20], t(4945) = 7.88, p < .001, 
local uncertainty/EIG: β = 0.53, 95% CI [0.48, 0.58], 
t(4945) = 24.48, p < .001, global EIG: β = 0.16, 95% CI 
[0.12, 0.20], t(4945) = 8.29, p < .001. This model explained 
31% of the variance in curiosity. Notably, when controlling 
for the other quantities, the association between Bayesian 

Figure 2: Partial regression plots showing the association 
between each quantity (using biased RPE magnitude) and 
curiosity (z-scored within participants), holding the other 

quantities fixed at their means. The marginal density of the 
quantity of interest is depicted above each plot. 
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RPE magnitude and curiosity was positive.  
In the model using biased RPE magnitude (Figure 2), a 

similar pattern of results was found; biased RPE magnitude: 
β = 0.11, 95% CI [0.08, 0.14], t(4945) = 7.58, p < .001, 
local uncertainty/EIG: β = 0.40, 95% CI [0.36, 0.43], 
t(4945) = 24.80, p < .001, global EIG: β = 0.16, 95% CI 
[0.12, 0.20], t(4945) = 8.11, p < .001. This model explained 
31% of the variance in curiosity.  

Again, the strength of the association between each of the 
two measures of RPE magnitude and curiosity was similar 
when controlling for all other quantities. Additionally, the 
EIG features explained the majority of the variance in 
curiosity ratings (30% for a model with only EIG features 
vs. 31% for the full model). The VIF for global uncertainty 
was 1.16 in both models, suggesting that its failure to reach 
significance was unlikely to be due to multicollinearity. 

Discussion 
Experiment 2 replicates many of the results of Experiment 
1, using a naturalistic set of human-generated choice data 
that captures a fuller range of the model-predicted 
quantities. Again, we found that RPE magnitude, local 
uncertainty/EIG, global uncertainty, and global EIG were 
significantly related to curiosity in isolation. Together, all 
but global uncertainty—also a weak predictor of curiosity in 
Experiment 1—explained unique variance in curiosity.  

General Discussion 
In the present research, we developed a paradigm that 
quantifies and dissociates the influence of surprise, local 
uncertainty/EIG, global uncertainty, and global EIG on 
curiosity. We found that curiosity was independently 
associated with both RPE magnitude (a backward-looking 
consideration) and global EIG (a forward-looking 
consideration) in both Experiments 1 and 2. Additionally, 
local uncertainty/EIG, which conflates backward- and 
forward-looking evaluations was a strong predictor of 
curiosity. Interestingly, and in contrast with previous 
research on goal-directed exploration (Markant & Gureckis, 
2014), forward-looking considerations (local/global EIG) 
explained a far larger proportion of the variance in curiosity 
than did backward-looking considerations. However, local 
uncertainty/EIG conflates forward- and backward-looking 
considerations, and thus it remains to be determined whether 
its association with curiosity is accounted for by the 
forward- or backward-looking component. 

Our model does not explicitly define an optimal policy for 
curiosity, but rather defines an optimal policy for learning. 
However, under the assumption that a curious agent is 
motivated to learn, local EIG and global EIG define 
potential optimal policies for curiosity. Despite the success 
of these measures in describing participants’ curiosity, it 
remains possible that curiosity is best described by another 
goal that was not considered in the present research. For 
example, recent research (Dubey & Griffiths, 2020) has 
proposed that a rational curious agent should be curious 
about the stimuli in their environment that maximally 

increase the value of their total body of knowledge for 
facilitating future action. Though participants in our task 
were not responsible for any action, they may have 
nonetheless taken their goal to be future choices between the 
two mines, in which case local/global EIG are not 
necessarily the optimal policies for curiosity. Whether a 
corresponding policy describes curiosity ratings better than 
local or global EIG is a question for future research. 

Several additional limitations of these studies must be 
addressed. First, it was not possible to manipulate RPE 
magnitude, local uncertainty/EIG, global uncertainty, and 
global EIG completely independently because, while the 
correlations between these variables were moderate, the 
variables are non-linearly related. Thus, we cannot make 
strong claims about the causal influence of any single 
variable. It also remains an open question whether and when 
these four precursors to curiosity come apart in real-world 
contexts. Additionally, participants did not have the 
opportunity to make choices (i.e., dig in a particular mine) 
or to attempt to satisfy their curiosity (e.g., look for signs 
that the bandit had intervened), both of which would likely 
inform the experience of curiosity. 

Finally, we have not considered all possible precursors of 
curiosity in the present research. In particular, there are 
several definitions of surprise (for a review, see Munnich, 
Foster, & Keane, 2019): surprise may be determined by the 
presence of a low probability event (Reisenzein, 2000), the 
extent to which one has difficulty explaining an event 
(Foster & Keane, 2015; R. Maguire, Maguire, & Keane, 
2011) or by the extent to which one sees patterns where they 
expect noise (P. Maguire et al., 2018). In addition, we have 
not captured all definitions of curiosity. While we focus on 
state curiosity in response to external stimuli, other research 
has explored individual differences in trait curiosity (e.g., 
Litman, 2008). It remains an open question whether 
participants in our task vary in trait-level curiosity, and 
whether this variation affects the determinants of state-level 
curiosity. 

Despite these limitations and open questions, the present 
research introduces a novel paradigm for studying curiosity 
and identifies several partially separable influences on 
curiosity. Curiosity was predicted by both backward-
looking influences (concerning beliefs based on prior 
experience) and forward-looking influences (concerning 
expectations about future learning). These findings help 
reduce our uncertainty about curiosity, while pointing to 
new research directions where we can gain additional 
information. 
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