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Article

Somatic CpG hypermutation is associated with
mismatch repair deficiency in cancer
Aidan Flynn1,2,3, Sebastian M Waszak 4,5,6✉ & Joachim Weischenfeldt 1,2,7,8✉

Abstract

Somatic hypermutation in cancer has gained momentum with the
increased use of tumour mutation burden as a biomarker for
immune checkpoint inhibitors. Spontaneous deamination of
5-methylcytosine to thymine at CpG dinucleotides is one of the
most ubiquitous endogenous mutational processes in normal and
cancer cells. Here, we performed a systematic investigation of
somatic CpG hypermutation at a pan-cancer level. We studied
30,191 cancer patients and 103 cancer types and developed an
algorithm to identify somatic CpG hypermutation. Across cancer
types, we observed the highest prevalence in paediatric leukaemia
(3.5%), paediatric high-grade glioma (1.7%), and colorectal cancer
(1%). We discovered germline variants and somatic mutations in
the mismatch repair complex MutSα (MSH2-MSH6) as genetic
drivers of somatic CpG hypermutation in cancer, which frequently
converged on CpG sites and TP53 driver mutations. We further
observe an association between somatic CpG hypermutation and
response to immune checkpoint inhibitors. Overall, our study
identified novel cancer types that display somatic CpG hypermu-
tation, strong association with MutSα-deficiency, and potential
utility in cancer immunotherapy.
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Introduction

Mutations in cancer genomes can be inherited or acquired
somatically during tumour evolution. The tumour mutation burden
(TMB) is the sum of somatic mutations that arose due to intrinsic
cell-type-specific mutational processes and exposure to endogenous
and exogenous mutagens (Pleasance et al, 2010). While most
cancers have modest TMBs, certain tumours can acquire a
hypermutator phenotype associated with higher TMB. Hypermu-
tated tumours are often distinguished through cohort-specific

outlier analyses, which have found hypermutator thresholds of
10–20 mutations per Mb (Campbell et al, 2017; Chalmers et al,
2017). In a recent pan-cancer whole-genome study of more than
2700 primary, treatment-naïve tumour samples, hypermutated
tumours represented 5% of all tumour genomes and contained
more than half of all the mutations (Alexandrov et al, 2020).
Hypermutated tumours are predictive of increased sensitivity
towards immune checkpoint inhibitors (ICI) (Samstein et al,
2019; Le et al, 2017; Rizvi et al, 2015), likely due to expressed
neoantigens that can be recognised through MHC class I
presentation on the tumour cells. Whether and to what extent
specific properties of hypermutated tumours predict response to
ICI is currently unclear.

Hypermutation can be caused by extrinsic mutagens such as UV
exposure in melanoma and tobacco exposure in lung cancer
(Alexandrov et al, 2013; Campbell et al, 2017). Intrinsic mutational
processes such as dysregulation of DNA damage response and
processing enzymes can act as cancer drivers to cause somatic
hypermutation. Error-prone DNA replication is a significant source
of mutations and is estimated to be associated with two-thirds of all
mutations in cancer genomes (Tomasetti et al, 2017). The canonical
DNA mismatch repair (MMR) pathway operates downstream of
the replication fork to correct mis-incorporated bases through the
activity of the MutSα complex proteins MSH2 and MSH6. The
MutLα complex proteins MLH1 and PMS2 are recruited jointly
with EXO1 to remove base-base mismatches and the surrounding
nucleotides (Kunkel and Erie, 2015). MMR deficiencies (MMRd)
are observed in both inherited and sporadic cancers and are
associated with a higher TMB.

MMRd causes not only somatic hypermutation but also leaves
characteristic patterns of mutations (often referred to as ‘mutational
signatures’) in cancer genomes (Alexandrov et al, 2013). MMRd has been
associated with several single-base substitution (SBS) signatures
(Alexandrov et al, 2020), including SBS 6, 15, 21, 26 and 44. Moreover,
several hypermutation-associated signatures have been identified, and
they are primarily thought to occur during DNA replication. In contrast,
the most dominant mutational signature across all cancer genomes is
SBS1, associated with C >T mutations at CpG dinucleotides, and is
thought to be caused by spontaneous deamination of 5-methylcytosine
(5mC). SBS1 is also termed ‘clock-like’ because it has been observed to
increase with age at diagnosis (Alexandrov et al, 2015). All cells
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experience spontaneous hydrolytic deamination of purines and
pyrimidines in a replication-independent manner, with a particularly
high rate of 5mC in a CpG sequence context (Bird, 2002). The majority
of CpG sites in the genome are methylated, and deamination of 5mC to
thymine causes G:T mismatches, which lead to C >T mutation during
DNA replication if not recognised and repaired byMMR. Repair of post-
replicated DNA lesions occurs through MMR of the newly synthesised
strand by leading and lagging-strand polymerases (Pol-ε and Pol-δ,
respectively, reviewed in (Cortez, 2019; Kunkel, 2009).

The alternate, non-canonical MMR (ncMMR) acts in a
replication-independent manner and was first identified in somatic
hypermutation of immunoglobulin genes (Martomo and Gearhart,
2006; Peña-Diaz et al, 2012) and also involved in repairing DNA
lesions in transcribed genes, facilitated by active transcription and
the histone modification H3K36me3 (Huang et al, 2018). Hydro-
lytic deamination of methylated Cytosine is usually repaired by the
error-free base-excision repair (BER) pathway involving the
glycosylase MBD4, but the repair intermediates can be 'hijacked'
by ncMMR, resulting in an error-prone repair process (Chen and
Furano, 2015; Fang et al, 2021). We and others have recently
demonstrated a genetic association between pathogenic germline
variants in MBD4 and somatic C > T mutations at CpG dinucleo-
tides in cancer (Sanders et al, 2018; The ICGC/TCGA Pan-Cancer
Analysis of Whole Genomes Consortium, 2020).

Here, we undertook a pan-cancer mutation study of 30,191
cancer patients across 103 different tumour types to expand and
explore genetic associations with CpG-hypermutated tumour
genomes and the impact on driver genes during tumour evolution.
We examined the implications of somatic CpG hypermutation for
understanding the ‘clock-like’ mutational signature, the emergence
of driver mutations, and implications for patients treated with
immune checkpoint inhibitors.

Results

Discovery of a somatic CpG hypermutator
phenotype in cancer

Pan-cancer analysis of TMB has identified several histological types
with an increased incidence of hypermutated tumours (Campbell
et al, 2017; Chalmers et al, 2017). Yet, somatic hypermutation in a
CpG sequence context (i.e. CpG>TpG) has not been assessed across
paediatric and adult cancer types. To this end, we obtained somatic
mutations from 195 previously published exome and whole-
genome sequencing studies covering 105 histological subtypes
(Methods, Data ref: https://github.com/cBioPortal/datahub,
v2.11.0, Data ref: https://pedcbioportal.kidsfirstdrc.org, accessed
November 2019), the ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes (PCAWG) Synapse repository (Data ref: https://
www.synapse.org/#!Synapse:syn11801870, accessed November
2019; Data ref: https://dcc.icgc.org/pcawg, accessed April 2019;
Data ref: http://www.synapse.org/glass, data release version 2019-
03-28)). To avoid bias from small sample sets, we removed cohorts
with less than 20 samples where a cohort was defined as a group of
samples from the same study with a shared histological type and
sequencing method. The final dataset represented 58.8 million
somatic mutations across 30,950 tumour samples and 30,191
patients (Fig. 1A). To systematically identify tumours with CpG

hypermutation, we required that the tumour should be an upper
outlier in both the number of somatic mutations and the
proportion of mutations in a CpG context (Fig. 1A–C). We used
Tukey’s rule to identify hypermutated (HM) tumours within their
respective histological type and study (group outlier threshold,
Fig. 1B,C). In addition, we required outlier tumour samples to also
have a tumour mutation burden greater than the median across all
samples in the entire cohort (1.33 mutations/Mb), to prevent bias
toward cohorts consisting of tumours with a low average mutation
burden. Similarly, we used Tukey’s rule to compute an upper
outlier threshold for the proportion of C > T mutations in a CpG
context across all samples, which resulted in a global CpG
hypermutation outlier threshold of 0.60 (i.e. C > T mutations at
CpG per total number of mutations, Fig. 1B,C).

We identified 1914 (6.3%) patients with somatic hypermutation
(HM) across 93 cancer types based on these criteria. Of these, 76
patients across 23 cancer types fulfilled our requirements for a
somatic CpG hypermutation phenotype (HMCpG-Hi) (Fig. 1D;
Table EV1). We estimate that 1 in 397 cancer patients developed a
tumour with a CpG hypermutator phenotype. We next sought to
identify whether the CpG hypermutation phenotype was compa-
tible with any known SBS signatures. To this end, we separated the
cohort into HM tumours above and below our CpG outlier
threshold, HMCpG-Hi and HMCpG-Lo, respectively, and performed a
separate SBS mutational signature contribution analysis. Each
signature was compared to the official COSMIC mutational
signatures (Methods) using cosine similarity (a cosine score larger
than 0.9 is considered a perfect similarity (Degasperi et al, 2020;
Omichessan et al, 2019). Both groups were dominated by C > T
mutations, as expected. The HMCpG-Lo group was composed of
different signatures, none of which reached the cosine similarity
cut-off of 0.9 for a signature match (Fig. 1E iii-iv). The CpG
hypermutated tumours, on the other hand, displayed a strong
similarity to SBS1 (cosine 0.95). SBS1 is associated with
spontaneous deamination of 5-methylcytosine (5mC), resulting in
C > T substitutions, and we have recently associated SBS1 with
base-excision repair and MBD4-deficiency in pan-cancer studies
(The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
Consortium, 2020). We further confirmed somatic CpG hypermu-
tation in all 78 tumours (76 patients) using an independent
enrichment-based approach (Roberts et al, 2013; The ICGC/TCGA
Pan-Cancer Analysis of Whole Genomes Consortium, 2020)
(Fig. EV1; Table EV2). Having classified CpG hypermutated
tumours with a signature indistinguishable from the clock-like
SBS1, we next explored cancer type-specific patterns.

Somatic CpG hypermutation frequently occurs in
paediatric malignancies and colorectal cancer

We applied an exact binomial test to each histological type to assess
whether CpG hypermutation was observed more frequently than
expected. Of the histological types that reached significance, the
highest number of CpG hypermutation samples was detected in
colorectal cancer (1.1%, 18/1660) (Fig. 2A; Table EV1). This cancer
type is strongly linked with MMRd due to somatic or germline
mutations in MLH1, MSH2, MSH6, PMS2, and MLH1 promoter
hypermethylation, and enhanced levels of MMRd-associated
mutational signatures (e.g., SBS6). Brain tumours with a CpG
hypermutation phenotype (0.53%, 15/2727) were predominantly
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Figure 1. Discovery of somatic CpG hypermutation in cancer.

(A) A schematic of the workflow used for computing upper outlier thresholds for identifying samples with a high mutation burden and a high proportion of C > T mutations
in a CpG context (Np[C > T]pG). (B) A box and scatter plot showing the distribution of the proportion of mutations that were Np[C > T]pG for all samples in the cohort
with greater than ten mutations (n= 25,805). An outlier threshold was computed from the 75th percentile (0.305, median: 0.185) and interquartile range (0.193, data
range: 0–0.96) using Tukey’s fence (dashed red line). (C) An example calculation of the tumour mutation burden threshold for a single study (glioblastoma, TCGA-GBM,
n= 392) using Tukey’s fence (vertical dashed red line) and the application of the cohort-wide cutoff for the proportion of Np[C > T]pG mutations (horizontal dashed red
line). Red dots represent samples determined to be outliers by both thresholds. (D) Relative breakdown of the percentage of patients within the cohort separated by our
hypermutant (HM) cut-off (HM and non-HM, pink and grey section, respectively). HM patients are further divided by our global Np[C > T]pG outlier threshold (CpG-Hi
and CpG-Lo, dark red and red sections, respectively). (E) i and iii median relative contribution of the 96 trinucleotide substitutions for HMCpG-Hi and HMCpG-Lo tumours,
respectively, ii and iv Heatmap showing the cosine similarity score (CSS, white= 0, dark red= 1) of the mutational signatures in (i) and (iii) with the COSMIC signatures,
respectively. Numbers denote SBS signatures from 1 (top left) to 94 (bottom right). For boxplot, the black central band represents the median. The lower and upper hinges
represent the first and third quartiles, respectively. The whiskers represent the 1.5× interquartile range.
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contributed by paediatric and adult high-grade gliomas (HGG)
(1.2%, 14/1179) (Fig. 2B). While UV-mediated cutaneous mela-
noma is associated with a C > T mutagenesis signature distinct from
CpG hypermutations, a small subset of the more rare uveal
melanoma (UM) is associated with MBD4-associated CpG
hypermutations (Johansson et al, 2020) (Fig. EV2). Beyond those
cancer types traditionally associated with MMRd, we observed
several cases of somatic CpG hypermutation in leukaemia (0.55%,
15/2719) (Fig. 2A). Despite considerable metastatic samples in the
cohort (n = 493), the CpG hypermutator phenotype was predomi-
nantly observed in primary tumour specimens. While most of the
cancer types associated with CpG hypermutation occurred in
adults, paediatric cancers represented a significant enrichment
(odds ratio = 5.2, P = 3.4 × 10−7, Fisher’s exact test), in particular
paediatric HGG (1.7%, 7/402) and paediatric leukaemia (5.1%,

15/291, Fig. 2B). This data demonstrates cancer type specific
prevalences of somatic CpG hypermutation and a particular
enrichment in colorectal cancer, paediatric HGG, and paediatric
leukaemia.

MutSα-deficiency associates with somatic CpG
hypermutation in cancer

We next searched for gene alterations that might drive the somatic
CpG hypermutation phenotype. The ratio of non-synonymous (dN) to
synonymous (dS) mutations in a gene provides an established
surrogate measure of selection during tumour evolution. We
performed driver gene discovery for the entire cohort as well as
independently for samples which had been identified as (CpG)
hypermutators and restricted the analysis to previously established
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Figure 2. Pan-cancer prevalence of the somatic CpG hypermutator phenotype.
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cancer driver genes (Rheinbay et al, 2020) and DNA damage response
genes (Pearl et al, 2015). Positive selection in cancer can be inferred by
computing the dN/dS ratio while accounting for sequence context and
tumour mutation burden. As expected, we found known driver genes
to be associated with positive selection (dN/dS>1) for missense and
nonsense mutations in the entire cohort and hypermutators (Fig. 3A).
When exclusively focusing on somatic CpG hypermutators, we found
an elevated dN/dS ratio of 1.37 for missense and 1.56 for nonsense
mutations. This suggests that CpG hypermutators have a higher
proportion of non-synonymous mutations compared to tumours with
other forms of hypermutation and by inference, stronger signs of
positive selection.

We next analysed selection coefficients (dN/dS) for individual
driver genes. Among a list of known driver genes, somatic
mutations in the TP53 gene displayed the most significant signs
of positive selection across all hypermutators (q < 1e–16) (Fig. 3B;
Table EV3). Interestingly, we found a strong association between
somatic CpG hypermutation and alterations in both MMR genes
MSH2 and MSH6 (q = 4.77e–4 and q = 1.43e–5, respectively). In
contrast, both genes showed no signs of positive selection in
tumours with non-CpG hypermutator phenotypes (q = 0.15 and
q = 0.87, respectively). Moreover, we found 0.57% of TMB-Hi
tumours to have POLE hotspot mutation, but none in CpG
hypermutated tumours. However, mutations in the MutSα complex
(MSH2/MSH6) were enriched in CpG-HM compared to both
TMB-high (OR = 2.5, P = 0.001) and TMB-low tumours (OR = 48,
P < 2.2e–16). MSH2 and MSH6 form the MutSα heterodimer that is
associated with detecting mismatches and initiating mismatch
repair during replication. In contrast, somatic mutations in MLH1,
part of the MutLα complex component, showed significant signs of
positive selection in tumours with other forms of somatic

hypermutation (Fig. 3B). The DNA glycosylase MBD4 has been
previously associated with somatic CpG hypermutation in AML
and uveal melanoma (Sanders et al, 2018; The ICGC/TCGA Pan-
Cancer Analysis of Whole Genomes Consortium, 2020); however,
all patients developed tumours due to genetic predisposition. Our
driver analysis relied almost exclusively on somatic mutations and
could not detect germline MBD4 mutations as drivers of somatic
CpG hypermutation. These results suggest that somatic MBD4
mutations are rare in tumours with CpG hypermutation.

To explore other mechanisms of somatic CpG hypermutation,
we examined available germline (28/76), somatic mutations, and
gene expression in all tumours with a CpG hypermutator
phenotype (Figs. 4A–F and EV1). We grouped tumour samples
into those with a germline mutation, biallelic inactivation,
monoallelic inactivation, low gene expression, and no alteration.
Out of the ascertainable samples, we again found the MutSα
complex genes to be the most recurrently mutated genes in CpG
hypermutators, with 43% (32/76) of samples demonstrating a
deleterious alteration in DNA repair genes (Fig. 4C). Additionally,
we noted frequent low expression in the absence of MSH2
mutations (3/76, 4%), suggestive of previously reported epigenetic
silencing (Herman and Baylin, 2003). We found pathogenic
germline mutations in MSH2 (1/29), MSH6 (1/29), and MBD4
(3/29) and tumour loss of heterozygosity in 80% (4/5) of affected
cases. Moreover, we noted many HGG patients with germline
mutations in MMR genes (7/15 tumours had germline information
available). In 50% (3/6) of HGG patients and the paediatric HGG
patient (1/1) we discovered a pathogenic germline MMR gene
variant. Somatic CpG hypermutation and biallelic inactivation were
observed for MSH2 (5/76 tumours) and MSH6 (11/76 tumours),
supporting a strong genetic association between MutSα-deficiency
and somatic CpG hypermutation across cancer types.

Somatic CpG hypermutation is exclusively present at
relapse in paediatric leukaemia

Given our findings of somatic CpG hypermutation in many
paediatric cancers (Fig. 2), we examined the occurrence during
tumour evolution (diagnosis vs relapse) and across three cohorts
consisting of 124 paired paediatric ALL (pALL) patients (Li et al,
2020; Ma et al, 2015; Rokita et al, 2019). We found CpG
hypermutation in 6% (14/248) of pALLs; however, this was
exclusively seen at relapse (11%, 14/124 vs 0%, 0/124 at diagnosis)
(Fig. EV3C, E) (p = 8.3e–5). Therefore, we examined whether the
CpG hypermutator phenotype was associated with one of the
previously defined mutational signatures to understand better
whether the observed mutation spectrum resembles an endogenous
mutational process or one of the several treatment-associated
signatures (Alexandrov et al, 2013). In agreement with our pan-
cancer analysis (Fig. 1), relapse pALL showed almost exclusive
association with the endogenous mutational signature SBS1
(present in all relapse samples, with 11/14 of the samples being
exclusively attributable to SBS1 out of ascertainable SBS signatures,
Fig. EV3D). The relapse-specific CpG hypermutator phenotype was
associated with concordant somatic mutations in MMR genes in
79% (11/14) pALL patients. Interestingly, biallelic inactivation of
PMS2 was seen exclusively in two pALL cases with a CpG
hypermutator phenotype, and both events occurred only in the
relapse setting.
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Figure 3. Discovery of driver genes in cancers with somatic CpG
hypermutation.

(A) Quantification of selection during somatic tumour evolution (dN/dS ratio)
for all patients (n= 30,191), somatic non-CpG hypermutators (HMCpG-Lo,
n= 1914), and somatic CpG hypermutators (HMCpG-Hi, n= 76). Vertical lines
denote a 95% confidence interval. (B) dN/dS-based driver gene discovery in
tumours with somatic CpG hypermutation (y-axis) and other somatic non-CpG
hypermutators (x-axis). Colours label genes in specific DNA repair pathways.
See also Fig. EV1. P values are based on likelihood-ratio tests.
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Figure 4. MMR deficiency is associated with somatic CpG hypermutation in cancer.

(A) The number of single nucleotide variants found in each specimen on a log10 scale, and the 75th percentile for the respective cancer type is indicated by a white dot.
The relative proportion of each of the six transition and transversion events was calculated for each sample. (B) The proportion of somatic C > T mutations was further
divided into those occurring in an NpCpG sequence context and in other contexts. A white dot marks the 75th percentile of the proportion of C > T mutations at CpG sites
for the respective cancer type. (C) The presence of a genetic lesion (left column), copy number alteration (middle column), or relative reduction in z-scaled gene
expression values (right column) in members of the base excision and DNA repair pathways. Information about germline data availability is shown in (D), the age group in
(E) and microsatellite instability status in (F).
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Somatic CpG mutagenesis converges on TP53-deficiency

The most frequent somatic point mutations in TP53 result in C > T
mutations at CpG sites, representing about 25% of all TP53
mutations in cancer (Olivier et al, 2010; IARC TP53 Database).
This is notable since our driver analyses demonstrated that TP53
mutations are selected during the evolution of tumours with CpG
hypermutation. We thus hypothesised that somatic CpG hypermu-
tation might accelerate tumour evolution due to failure to maintain
methylated CpG sites in TP53. To this end, we analysed the
sequence context of 39,925 somatic TP53 mutations from the
GENIE database (R9, Jan 2021) (Bouaoun et al, 2016). In agreement
with previous studies, we found an 8–17-fold enrichment of
somatic C > T mutations at CpG dinucleotides in TP53 (Fig. EV4A).
In total, 33% of all TP53 mutations and 82% of recurrent hotspot
sites—defined as mutation sites representing 1% or more of all
TP53 mutations—are found at CpG dinucleotides (GENIE
database, Tables EV4, EV5). We next investigated whether tumours
with a CpG hypermutator phenotype tended to have higher rates of
somatic TP53 mutations that occur at CpG sites. For non-CpG
hypermutated tumours, we observed that 25% (203/806) of all
somatic non-synonymous TP53 mutations were C > T mutations at
CpG sites, consistent with the prior observed distribution (GENIE
database). In contrast, tumours with a CpG hypermutator
phenotype exhibited a three-fold higher rate of somatic C > T
mutations at CpG sites (75%, 33/44) (Fig. EV4B; Table EV4).

Somatic CpG hypermutation is associated with response
to checkpoint inhibitor therapy

MMRd and microsatellite Instability (MSI) are approved biomar-
kers for immune checkpoint inhibitors ICI treatment of advanced
or recurrent solid tumours (Food et al, 2018), and it has been
proposed that MSH2/MSH6 mutations can also be used as a
biomarker for predicting response to ICI (Sahin et al, 2019).
Patients with a TMB of at least ten coding mutations per megabase
(TMB-Hi) are approved by the FDA for ICI treatment. Using this
established TMB cutoff, we investigated whether our CpG
hypermutator threshold would enable further stratification of
patients. To this end, we leveraged a large clinico-genomic cohort
of 1661 ICI-treated patients with advanced cancer (Samstein et al,
2019) and separated patients into tumours with high TMB (using
the FDA-approved cut-off of ≥10 coding mutations/Mb), CpG
hypermutators (≥10 coding mutations/Mb and CpG>TpG muta-
tion rate >0.60), and low TMB (<10 coding mutations/Mb). We
identified a somatic CpG hypermutator phenotype in 1.1% (19/
1661) of tumours (Fig. 5A; Table EV5), and a strong enrichment of
mutations in the MutSα complex genes (MSH2/MSH6) in tumours
with a somatic CpG hypermutation phenotype (53%) relative to
tumours with a high (12%, OR = 8.5, P = 2.7e–5) and low TMB
(0.9%, OR = 113, P = 2e–14) (Fig. 5B). Moreover, somatic CpG
hypermutation accounted for a high proportion of colorectal
cancers, bladder cancers, esophagogastric cancers, and head & neck
cancers, and gliomas (Fig. 5C). Finally, we assessed whether
somatic CpG hypermutation has predictive relevance for ICI
therapy (PD-1/PDL-1, CTLA4, or both). Unadjusted and adjusted
Cox proportional hazards regression models demonstrated
improved clinical outcomes of ICI-treated patients that presented
with either a CpG hypermutation phenotype (HR 0.27, 95%-CI

0.07–0.70, P = 0.01) or high TMB (HR 0.58, 95%-confidence
interval [CI] 0.49–0.70, P < 0.001) (Figs. 5D and EV5A). We also
found patients with a CpG hypermutator phenotype to be
associated with improved survival when compared to patients with
TMB-Hi (HR = 0.33, 95%-CI = 0.1–1.1, P = 0.07, Fig. EV5B). We
note that somatic CpG hypermutators exhibit a particularly high
TMB (42.3 mutations/Mb, Fig. 5E) and, in line with our discovery
cohort, a high prevalence of MSH2/MSH6 mutations, two
previously described predictive biomarkers of ICI therapy response
that might explain our observed association between ICI therapy
response and CpG hypermutation status. Together, these results
validate our pan-cancer observations that CpG hypermutation has
the highest prevalence in colorectal cancer and glioma, is
genetically linked to MSH2/MSH6-deficiency, and highlights a
potential predictive relevance for ICI therapies.

Discussion

Recently, interest in understanding the origin of somatic hyper-
mutation has increased due to the clinical utility of tumour
mutation burden (TMB) as a biomarker for ICI (Le et al, 2015).
Using an objective criterion to discover somatic CpG hypermuta-
tion in cancer, we identified that 3.4% of all tumours with a
hypermutation phenotype display somatic CpG hypermutation.
Our results revealed that somatic CpG hypermutation is seen in 1%
of colorectal cancer patients and expanded our knowledge about
somatic hypermutation phenotypes in gastrointestinal tumours. A
high prevalence in colorectal cancer patients is noteworthy
considering the recent addition of colorectal adenomas to the
tumour spectrum of individuals with very rare biallelic loss-of-
function germline variants in MBD4 and a somatic CpG
hypermutation phenotype (Palles et al, 2022). We further found a
high prevalence of somatic CpG hypermutation in paediatric HGG
(1.7%) and paediatric ALL (5.1%). Previous studies described CpG
hypermutation in MBD4-deficient early-onset AML (Sanders et al,
2018), and our study further expands it to paediatric ALL and
paediatric-type diffuse high-grade gliomas. We demonstrate that
both somatic and germline mutations in the mismatch repair
complex MutSα (MSH2 and MSH6), and to a very limited extent
MutLα (PMS2 and MLH1), are strongly associated with somatic
CpG hypermutation. MLH1-mutant tumours can also acquire a
high proportion of C > T mutations at CpGs (Németh et al, 2020),
although this was not linked to a hypermutation phenotype. MLH1
is frequently silenced by promoter hypermethylation (Cancer
Genome Atlas Network, 2012), which we corroborate in several
tumours using gene expression (Fig. 4). We note that this is likely
to be an underestimate of the true rate of MLH1 promoter
hypermethylation. Paediatric-ALL was the only tumour type with
somatic, relapse-associated PMS2 mutations. This pattern suggests
that PMS2-mutated paediatric ALL are ‘primed’ to undergo
therapy-related somatic CpG hypermutation.

We find that somatic CpG hypermutation accelerates a signature
resembling the ‘clock-like’ mutational signature SBS1, often used to
time the number of cell divisions (Alexandrov et al, 2015). Our
findings may, therefore, have direct implications for the utility of
this ubiquitous and endogenous mutational signature as a
mutational 'clock' since tumours with MBD4, MSH2 or MSH6
mutations will lead to an overestimation of mutational age when
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compared to BER/MMR-proficient tumours. This also suggests that
MutSα-mutated tumours display the unrepaired and potentially
complete spontaneous deamination rate of 5-methylcytosine and
that the MMR machinery plays a pivotal role in the repair at these
sites, potentially guided by MBD4 for strand-discrimination in non-
replicating dsDNA (Chen and Furano, 2015; Fang et al, 2021).

Deficiency in MMR has been linked with accelerated mutagen-
esis preferentially in early-replicating and gene-rich regions of the
genome (Supek and Lehner, 2015). The MMR complex is recruited

to chromatin via the interaction of MSH6 with SETD2 and the
H3K36me3 histone modification (Li et al, 2013). The vast majority
of the 28 million CpG dinucleotides in the human genome are
methylated in normal cells, and methylated CpG sites are thought
to primarily act by repressing nearby gene expression via
modulation of transcription factor binding (Lea et al, 2018; Yin
et al, 2017). Hence, MMR genes play a crucial function in repairing
spontaneous 5mC deamination events and keeping the epigenome
functional and dynamic.
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Figure 5. Somatic CpG hypermutation and response to immune checkpoint inhibition.

(A) Presence of somatic CpG hypermutation across 1,661 ICI-treated advanced cancer patients. (B) Enrichment of somatic MMR gene mutations in CpG-hypermutant
tumours. Statistical significance was assessed using a Fisher’s exact test (** denotes P < 0.01, *** denotes P < 0.001). MutSα-MutLα: CpG hypermutation vs TMB-low,
P= 3.4e–14; CpG hypermutation vs TMB-high, P= 1.5e–4; MutSα: CpG hypermutation vs TMB-low, P= 2.0e–14; CpG hypermutation vs TMB-high, P= 2.7e–5; MutLα: CpG
hypermutation vs TMB-low, P= 0.15; CpG hypermutation vs TMB-high, P= 1.0. (C) Frequency of CpG hypermutation across cancer types. (D) Kaplan–Meier overall
survival curve of 1,661 ICI-treated patients stratified by low TMB, high TMB, and CpG hypermutation. Statistical significance was assessed using the Cox proportional
hazards regression model. (E) Elevated TMB in CpG-hypermutant tumours. TMB-low, N= 1173; TMB-high, N= 469; CpG hypermutator, N= 19; Statistical significance was
assessed using the Mann-Whitney U test (***P < 0.001). CpG hypermutator vs TMB-high, P= 4.4e–4. For boxplot, the black central band represents the median. The lower
and upper hinges represent the first and third quartiles, respectively. The whiskers represent the 1.5× interquartile range. ***, P < 0.001.
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Our results also suggest that MutSα-deficiency is linked with an
accelerated somatic mutation rate at cancer driver hotspots within
TP53. We hypothesise that CpG hypermutation may bias the
somatic mutational landscape, which can cause the selection of
somatic driver mutations at methylated CpGs and within key
protein domains such as the TP53 DNA binding domain. Our
findings provide a potential explanation for why TP53 mutations
showed the most significant association with the CpG hypermuta-
tion phenotype, even though TP53 is not directly linked with
mismatch repair. Moreover, somatic mutations in TP53 and MSH2
have been shown to act synergistically to promote tumour
development (Toft et al, 2002), potentially bypassing p53
checkpoints and allowing increased genomic instability. Our study
provides a model of tumour evolution whereby MSH2 or MSH6-
deficiency triggers unrestricted mutagenesis at methylated CpGs
during the pre-malignant phase of tumour evolution and that the
highly sequence-specific CpG hypermutator phenotype converges
on TP53 hotspot driver mutations and malignant transformation or
relapse due to TP53-deficiency.

Finally, we find that adult cancer patients with a somatic CpG
hypermutator phenotype show an improved clinical outcome after
immune checkpoint inhibition, also after accounting for the overall
tumour mutation burden. A recent case study reported an
exceptional response to ICI in a patient with uveal melanoma,
biallelic loss of MBD4, and a somatic CpG hypermutation
(Rodrigues et al, 2018). The improved response of CpG hypermu-
tators to ICI may be due to an increased somatic mutation rate in
CpG hypermutators and an increased proportion of non-
synonymous mutations. In addition, we speculate that additional
properties could be involved, attributed to the distribution of
5mCpG sites in the human genome. For example, removal of
methylated CpGs (to TpGs) may cause a general de-repression of
enhancers and thus dysregulation of gene expression and activation
of endogenous retroviruses. This could activate the immune
response by activating endogenous interferon-based immune
responses and/or the expression of novel neoantigens. Combining
epigenetic drugs and immunotherapy is gaining increasing
momentum (Villanueva et al, 2020). For example, 5-aza (5-aza-2-
deoxycytidine) has been shown to induce the expression of dsRNA,
which can induce a viral mimicry that activates an immune
response (Liu et al, 2018; Roulois et al, 2015). Also, it was
previously demonstrated that different DNA repair deficiencies
drive distinct mutational dynamics during tumour evolution with,
for example, POLE-deficiency causing early bursts of hypermuta-
tion. In contrast, MMRd drives late bursts of hypermutation in
gastrointestinal and CNS tumours (Campbell et al, 2017; Chalmers
et al, 2017). This kinetic hypermutation model suggests that
somatic CpG hypermutation might continuously generate neoanti-
gens. In contrast, other sources of hypermutation (such as UV
light) might produce neoantigens during an early phase of tumour
evolution. While our findings point to the potential utility of CpG
hypermutation phenotype in the stratification of patients for ICI
therapy, the number of CpG hypermutator patients in the ICI-
therapy cohort was modest, and we acknowledge that expanded
and diverse clinical cohorts will be needed to validate and extend
our findings.

Overall, our analysis of whole exomes and genomes from over
30,000 cancer patients and 100 cancer types revealed MMR-
associated somatic CpG hypermutation as a distinct hypermutator

phenotype, most prominently in colorectal cancer, paediatric high-
grade glioma, and paediatric leukaemia. We also demonstrate that
MMR-associated somatic CpG hypermutation is compatible with
an acceleration of the ubiquitous clock-like mutational process
SBS1 and that CpG-hypermutant tumours converged on TP53-
deficiency. Finally, our results suggest that immune checkpoint
inhibitors benefit patients with a somatic CpG hypermutation
phenotype.

Methods

Datasets

Preprocessed somatic mutation data were obtained from a total of
459 independent studies through the cBioPortal DataHub and data
portal, the GLASS Consortium Synapse repository, and additional
publications (Ma et al, 2015; Li et al, 2020) (see also Table EV6).
The datasets contained a combination of whole-genome, exome,
and panel sequencing data aligned against either GRCh37 or
GRCh38. All panel-based datasets and any samples marked as
derived cell lines in their meta-data were excluded from further
analysis. To homogenise the remaining data, the liftOver package
for R was used to convert all coordinates to GRCh38. Where
mutation consequence annotation was not supplied, missing
information was amended using SNPeff v4.3r (Cingolani et al,
2012) for SNVs and InDels. Where available, gene-level copy
number and RNA-seq gene-expression data were obtained from
each source. The clinical annotation for histological type supplied
with each dataset was manually reviewed to create a uniform label
set across all datasets using the OncoTree classification system
version oncotree_2020_02_01 (Kundra et al, 2021) (Table EV7).
Patients with an annotated age of less than 18 years were marked as
paediatric cases. Where an included patient was represented by
more than one sample, a single sample was chosen to represent the
patient in the outlier threshold determination. In cases where a primary
and metastasis pair was present, the primary was used, when annotation
was unavailable or multiple primary samples were present a sample was
selected at random. When all samples available for a patient were
annotated as metastases or relapse/recurrence then the patient was
excluded (n = 526) from the outlier threshold determination but
included in subsequent outlier detection. Any cohorts with less than
20 representative samples were excluded from the analysis, where a
cohort is defined as specimens from a single study with a shared
histological type and sequencing method.

Identification of CpG hypermutator samples

Samples exhibiting both high total mutation burden and high
proportional mutation burden at CpG sites were identified by outlier
analysis using Tukey’s rule (Fig. 1). First, we grouped the cancer samples
by study, histological type, and sequencing method (WGS and WES).
Next, the 75th percentile (Q3) and interquartile range (IQR) for the
number of somatic mutations were computed for each group. Samples
with 1.5 times the IQR greater than Q3 (Outlier-Threshold =Q3+ 1.5
(IQR)) were considered outliers. To compute the CpG mutation burden
outliers, we first used SomaticSignatures (v2.22) (Gehring et al, 2015) to
determine sequence contexts at somatic mutations. The 75th percentile
and IQR for CpG-mutation-proportion were next calculated across
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the whole cohort, and a cohort-wide outlier threshold was
determined as above. CpG hypermutators were classified based
on the following criteria, (i) mutation burden outlier (Tukey’s
method), (ii) C > T mutations at CpG-sites greater than the cohort-
wide threshold (0.6), and (iii) tumour mutation burden greater
than the median across all samples in the entire cohort (1.33
mutations/Mb). (the full code to compute CpG hypermutation is
provided, see the Data availability section). The term HMCpG-Hi

will be used throughout the manuscript to indicate tumours with a
somatic CpG hypermutator phenotype. HMCpG-Lo will be used to
describe a high mutation burden without enrichment of somatic
mutations at CpG sites. To calculate a uniform tumour mutation
burden, mutation calls were restricted to a minimal set of exome
regions (https://bitbucket.org/cghub/cghub-capture-kit-info/src/
master/BI/vendor/Agilent/whole_exome_agilent_1.1_refseq_plus_
3_boosters.targetIntervals.bed). In the comparative analysis of CpG
hypermutators to the FDA-approved TMB burden, CpG hyper-
mutators were computed requiring ≥10 coding mutations/Mb and
CpG>TpG mutation rate greater than 0.6. We applied P-MACD
(Roberts et al, 2013) using default parameters for nCg and rCg
models (The ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium, 2020) to obtain minimum estimates of
mutation loads associated with an nCg-specific mutagenic
mechanism (https://github.com/NIEHS/P-MACD). The P-MACD
approach estimates the enrichment and mutation load of a
suspected specific mutational process based on prior mechanistic
knowledge about mutation motifs (Np[C > T]pG with N = A or C
or T or G; Rp[C > T]pG with R = C or T) associated with somatic
CpG mutagenesis. The nCg model includes all CpG sequence
contexts for estimating CpG mutagenesis. The rCg model accounts
for a subset of all CpG sites and was designed to exclude potential
impacts of UV mutagenesis on our CpG hypermutator estimates
given that the UV-associated mutational signature 7 (Alexandrov
et al, 2013) includes two CpG sites (Cp[C > T]pG and Tp[C > T]
pG). No blinding was performed in our analyses.

Driver enrichment analysis

Identification of driver genes enriched in hypermutated samples
was performed using the dNdScv package for the R statistical
framework (Martincorena et al, 2017) using the default parameters.
Mutation positions were converted to GRCh37 using the liftOver
package before analysis. Somatic TP53 mutations were downloaded
from the International Agency for Research on Cancer (IARC)
TP53 database (R20, July 2019). TP53 hotspots were defined as
those representing 1% or more of the total population of mutations
observed in the Genomics Evidence Neoplasia Information
Exchange (GENIE) data in the IARC database.

Survival analysis of response to ICI

We performed a survival analysis based on 1661 patients in the MSK-
IMPACT immunotherapy study using Kaplan–Meier estimates and log-
rank tests (Samstein et al, 2019). We used the FDA-approved cut-off of
≥10 mut/Mb, which includes all non-synonymous coding SNVs with a
VAF >5% (Chalmers et al, 2017; Food et al, 2018) and separated patients
into hypermutators (≥10 mutations/Mb, 'TMB-Hi') and non-
hypermutators (<10 mutations/Mb, 'TMB-Lo'). Hypermutator tumours

were further separated into TMB-HiCpG-Hi and TMB-HiCpG-Lo cases
based on the median proportion of somatic C > T mutations at NpCpG
sites.

Data availability

All data used in this publication was obtained from publicly
accessible data sources (see Materials and methods). Data from the
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium
may be subject to a data access control policy and require a data
access agreement. The computer code for the identification of CpG-
hypermutant tumours produced in this study is available in the
following repository: - Computer Code: Bitbucket (https://
bitbucket.org/weischenfeldt/cpghm_publication_code).

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44320-024-00054-5.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00054-5.
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Expanded View Figures

Figure EV1. P-MACD CpG mutation load estimates in HM tumours and MMR gene mutations in CpG hypermutated tumours.

(A) %nCg (with C > T) mutation load (min. estimate) derived for 1938 hypermutant (HM)-tumours using the P-MACD pipeline and stratified by tumours with somatic
CpG hypermutator status (HM;CpGlo, n= 76 and HM;CpGhi, n= 1860). See Methods for more details about the nCg model. (B) nCg vs rCg (r = A or G) min. mutation
load estimates from P-MACD in CpG hypermutated tumours. See Methods for more details about the nCg and rCg model. (C) The distribution of mutation consequences
for deleterious genomic alterations observed in core mismatch repair genes within CpG hypermutated samples. (D) Theoretical proportion of non-synonymous mutations
(vertical axis) for each dinucleotide context (horizontal axis) based on codon usage for each amino acid, showing no bias towards non-synonymous mutation of codons in
C>TpG context (orange colour). For boxplots, the black central band represents the median. The lower and upper hinges represent the first and third quartiles,
respectively. The whiskers represent the 1.5× interquartile range.
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Figure EV2. Outlier analysis of skin and uveal melanoma.

Outlier analysis was performed on the 2018 TCGA (A) skin cutaneous melanoma (n= 406) and (B) uveal melanoma (n= 80) cohorts by applying Tukey’s fence to
identify high mutation load tumours and the cohort-wide cutoff for C > T@CpG proportion (see Fig. 1). Tumours exceeding both thresholds were considered CpG-
Hypermutators (red dots). For boxplots, the black central band represents the median. The lower and upper hinges represent the first and third quartiles, respectively. The
whiskers represent the 1.5× interquartile range.
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Figure EV3. Relapse-specific somatic CpG hypermutation in paediatric ALL.

Outlier analysis identified somatic CpG hypermutation in 14 paediatric acute lymphoblastic leukaemia. (A) The total number of somatic mutations found in each specimen.
The 75th percentile for paediatric ALL in the cohort is marked by green dots. (B) The relative proportion of each of the six transition and transversion events, the
proportion of C > T mutations were further divided into those occurring in a CpG context and in other contexts. Grey dots mark the 75th percentile for the proportion of
mutations in a CpG context for paediatric ALL in the cohort. (C) Mean signature exposure was determined using the sigfit algorithm and COSMIC v3 mutational
signatures. Signature assignment was not possible in many primary specimens due to low mutation load. (D) Genetic lesions (left column) and copy number alterations
(right column) in members of the MMR pathway. (E) Mutation data were available from samples taken at the initial presentation (light blue), and after relapse (dark blue)
Samples from a single patient are indicated by a linking line.
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Figure EV4. Somatic CpG hypermutation is associated with TP53 hotspot mutations.

(A) Observed/expected ratio of somatic mutations in trinucleotide contexts of the TP53 gene. TP53 mutation data were obtained from the GENIE database. The expected
frequency for each mutational context was computed by determining the context for each mutation site and alternate-allele combination registered in the GENIE database,
the sum of somatic mutations within each context was then expressed as a proportion of the total number of distinct TP53 mutations in the GENIE database (n= 1467). The
observed frequency was computed as per the expected, however, each mutational site and the alternate-allele combination was counted once for each sample in which the
mutation was observed in the GENIE database. The result was expressed as a proportion of the total number of TP53mutations observed in the GENIE database (n= 39,925).
(B) Pie-chart of synonymous versus non-synonymous/deleterious SNVs in tumours with the CpG hypermutation phenotype and other somatic hypermutation phenotypes.
Colours denote C > T mutations at CpG sites (orange), non-C > T mutations at CpG sites (purple) and all other mutations at non-CpG sites (grey).
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Figure EV5. Forest plot for Cox proportional hazards model of overall survival in ICI-treated cancer patients.

(A) Multivariate Cox proportional hazards model for overall survival for all patients. BLCA: P= 4.5e–4; BRCA: P= 2.4e–6; CUP: P= 7.7e–5; EGCA: P= 5.3e–6; GLIOMA:
P= 1.4e–5; HNCA: P= 8.6e–6; NSLC: P= 4.8e–8; COMBO: P= 1.7e–4; TMB-high;CpG-low: P= 2.7e–9. Error bars, 95% confidence interval. (B) Multivariate Cox
proportional hazards model for overall survival for TMB-high patients and cancer types with somatic CpG hypermutators. MEL melanoma, BLCA bladder cancer, BRCA
breast cancer, CUP cancer of unknown primary, CRC colorectal cancer, EGCA esophagogastric cancer, GLIOMA glioma, HNCA head and neck cancer, NSCLC non-small
cell lung cancer, RCC renal cell carcinoma, TMB tumour mutation burden. Error bars, 95% confidence interval.
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