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I. UNIFIED APPROACH TO UNCONSTRAINED MINIMIZATION 

II. GENERATION OF CONJUGATE. DIRECTIONS FOR 

UNCONSTRAINED MINIMIZATION WITHOUT DERIVATIVES 

Lawrence Nazareth 

Abstract 

Several important classes of algorithms for unconstrained 

m1nimizati~n, when applied to a quadratic function with Hessian A, 

may be regarded as being alternative ways to effect certain matrix 

factorizations of or with respect to A. This approach leads to 

a clear insight into the basic equivalence of many algorithms 

that are implemented in very different ways and which differ in 

their informational requirements. It also enables ttieir presen

tation within a unified framework. 

For the case when the Hessian is directly available, we 

discuss in detail an algorithm, termed Algorithm TC, which effects 

a particular decomposition of the Hessian. This consists of 

partially solving the.eigenproblem by tridiagonalizing the Hessian 

using orthogonal similarity transformations, and then obtaining 

the Cholesky factorization of the tridiagonal matrix. We call 

this the TC factorization. Successive steps of the two decompo~ 

.. ·sitions involved may be interleaved. Expressions. for successive 

' approximations to the inverse Hessian are developed. We show 

.also that successive approximations to the inverse Hessian are 

related through certain recurrence relations. 

One of our main reasons for developing this algorithm in 

detail is to demonstrate that important classes of algorithms 
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that employ only function values and first derivative·s (these 

include the Conjugate Gradient Algorithm, a large family of 

Variable Metric Algorithms and certain other Quasi~Newton Methods) 

·effect, implicitly, the same process when applied to a quadratic, 

but each in a different way. Our main theorem identifies a set 

of conditions under which different algorithms give identical 

iterates to the minimum of a quadratic. We also demonstrate 
\ 

that expressions for successive approximations to the inverse 

Hessian developed in Algorithm TC correspond exactly to expressions 

for successive approximations to the inverse Hessian given by a 

family of Variable Metric Methods. Further this family is 

related.to Huang's family of algorithms. This relationship is 

brought out during the development of recurrence relations for 

successive approximations to the inverse Hessian in Algorithm TC. 

Equivalent implementations exist for algorithms that do not 

require derivatives and we also show equivalences between certain 

transformed versions of the above algorithms. 

We discuss another important class of algorithms which we 

show corre~pond to alternative ways of effecting the QR (or Gram

Schmidt} factorization. The viewpoint adopted suggests some new 

implementations. 

In Part II, the second half of this dissertation, we take up 
I 

the development and.analysis of a particular technique for 

generating conjugate .search directions for unconstrained minimization 

without derivatives. This stems from two theorems proved by Powell. 

A particular version, which we consider in detail, is related to 

1i 
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the Jacobi eigenvalue process and the two processes, although 

different, help to illuminate one another. We study convergence 

of the search directions to mutual conjugacy and cases when cycling 

occurs. Our main result identifies a broad class of "cyclic 

patterns" for which convergence of the search directions to mutual 

conjugacy can be proven. This proof, suitably modified, carries 

over to the Jacobi process. 
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Chapter 1 

1.1 Introduction 

Algorithms for minimizing an unconstrained function usually 

work within the following general framework. An initial point 

is chosen from which a search is conducted along a suitably · 

chosen direction or set of directions. From the set of all points 

at which the function is evaluated during such a search, the point · 

where the function value is least is taken to be the new estimate 

of the minimum. We shall call this the current iterate and denote 
c it by x .. Fresh search directions are generated or the previous 

directions revised and the search procedure is repeated. Thus a 

sequence; of successive approximations to the minimum is obtained. 

The way in which the ~earch directions are updated and the 

information used in carrying out the revision, differ from algo

rithm to algorithm. Most successful algorithms use directions 

which are a function of, or satisfy certain properties with respect 

to, one or more of the following: 

• values of the function ¢(xc), at the current iterate 

xc. and one or more previous iterates. 

• the value and lengths (in some norm, usually the Euclidean) 

of the gradient vectors 'i7¢(xc) at the current iterate xc, and 

one or more previous iterates. 

• the Hessian A(xc), i.e., the matrix of second partial 

derivative~, at the current iterate xc. 

• the ~istances moved along each search direction during one 

or more previous iterations of the algorithm. 
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The gradient V¢(xc) 
. ;c 

and the Hessian A(x ) ·. are given by 

the second and third tenns of a Taylor series expansion of. ¢(x} 

about Xc, .,. e . . ' 

Usually an algorithm is designed to work well when applied 

to a q~a~ratic function $(x), given by I 

~~J(x) '(l.la) 

where 

a is a fixed constant 

b is a fixed vector 

and A is a constant symmetric positive definite matrix 

The algorithm is then stated in tenns which allow its application 

to general functions, satisfying certain conditions, e.g. see 

Kowalik and Osborne [1]. 

1.2 Overview of the Thesis 

This thesis is presented in two parts. 

1.2.1. In Part l we explore the principal approaches to solving 

th~ unconstrained minimization problem. 

ln the first chapter of Part I, certain fundamental relations 

that underlit' most of the algorithms of the field are presented in 

the form in which we shall use them later. 

Next, in Chapter 3, we review briefly some standard matrix 
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decompositions of Computational linear Algebra which we shall . 
' require and discuss how these correspond to methods for solving 

systems of equations and the syrrmetric algebraic eigenproblem. 

By identifying which of the fundamental relations of Chapter 2 

are employed in a particular unconstrained minimization algorithm 

and by manipulating these relations, we are then able to present, 

within a unified framework, several important classes of methods 

for finding the minimum of an unconstrained function and simulta-

neously to establish the connection with matrix decompositions 

and techniques of Computational linear Algebra. The principal 

aspects of this chapter (Chapter 4) are as follows. For the case 
. . . 

when the Hessian {s directly ~vailable we discuss, in detai19 an 

algorithm which effects a particular decomposition of the Hessian 

-- termed the TC factorization. This consists of partially solving 

the eigenvalue/vector problem by tridiagonalizing the Hessian 

using orthogonal similarity transformations and then obtaining the· 

Cholesky factorization of the tridiagona·l matrix. Successive 

steps o'f these two decompositions may be interleaved. Expressions 

for successive approximations to the inverse Hessian are developed . 

We show also, that successive approximations to the inverse Hessian 

are related through certain recurrence relations. 

Our purpose in introducing such a scheme, termed Algorithm TC, 

is not primarily to put forward yet another contender into the 

field (for the case when second derivatives are known). Our 

principal reason for developing this algorithm in detail is to 

demonstrate that important classes of algorithms that employ only 

function values and first derivatives (these include the Conjugate 
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Gradient algorithm. a large family of Variable Metric algorithms 

and certain other Quasi-Newton Methods) ~ffect, implicitly. the 

same process when applied to a quadratic, but each in a different 

way. This correspondence arises very naturally from a correspon-

dence i~ the relationships underlying each algorithn and~ unique

ness resul't associated with the tridiagonalization of a matrix. 

Our main theorem identifies a set of conditions under which 

different algorithms give identical iterates to the minimum of a 

quadratic. · We also demonstrate that expressions .for successive 

approximations to the inverse Hessian developed in Algorithm TC · 

correspond exactly to expressions for successive approximations 

to the inverse Hessian given by a family of Variable Metric Methods. 
. ' Further that this family is related to that of Huang [ 2], which 

we show ~ay be developed frpm the recurrence relations obtained 

during the discussion on Algorithm TC. We also show equivalences 

between certain transformed versions of these algorithms. 

We discuss in some detail another important class of algorithms 

which we show correspond to alternative ways of effecting the 

QR factorization. The viewpoint adopted suggeits some new imple-

mentations. 

We feel that the approach taken in Part I thus leads to 

several new insights into the basic equivalence of many algorithms 

that are implemented in very different ways and which differ tn 

their infonnational requirements. Our approach should help clarify 

understanding of the numerical behaviour of such algorithms and, 

in addition, it suggests other possible algorithms for unconstrained 

optimization. 
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1.2.2. In Part II of this thesis we take up the ·analysis of a 

particular algorithm for unconstrained ~inimization without use 

of derivatives. This algorithm is of the conjugate direction type. 

We reca 11 for the reader, that n . search directions (d1 , ... ,dn) 

are said to be conjugate with respect to a positive definite 

symmetric matrix A if and only if 

d.Ad. = 0 
1 J 

for all i 1 j 

The use of such directions in an unconstrained minimization 

algorithm stems from the following desirable property. For the 

quadratic !Ji{x) · (l.la), the minimum value will be reached by 

minimizing in sequence along n search directions that are 

mutually conjugate with respect to the Hessian A of !Ji(x). 

Powell's Method [ 3] seems to be· the most widely used 

algorithm for unc6nsttained mjnimization without derivatives. 

A set of n search directions is maintained. The algorithm 

carries out a series of minimal line searches used to revise the 

search directions; if the line searches are exact the algorithm, 

applied to a quadratic !Ji(x), will terminate with a set of con-

jugate directions, in a bounded number of steps. Since the minimum 

may thus be found by minimizing successively along each of these 

directions, we see that Powell's algorithm has what is commonly 

called a quadratic termination property. However the method has 

two disadvantages. The first is that there is a danger of linear 

dependence in the search directions even for a quadratic function, 

and precautions taken to ensure that the directions span the 

5. 



. complete space of variables often adversely affect the efficiency 

of the algorithm. The second disadvantage· is that generation of 

conjugate directions is, in general, tied to accuracy of the line 

searches. 

Brodlie's Method [ 4] gets around these difficulties. The 

search directions used are always orthogonal and there is there

fore. no danger of linear dependency. These directions are updated 

as the algorithm progresses so that they converge for a quadratic 

to a mutually conjugate set of directions, and this updating pro

cess is not dependent upon accuracy of line searches. Clearly the 

directions in Brodlie's algorithm are converging to the set of 

eigenvectors of A .. ·He proves that the algorithm, applied to the 

quadratic ~(x), exactly parallels a cyclic Jacobi eigenv~lue/ 

vector process in the sense that successive approximations to the 

set of eigenvectors are identical. 

Unlike Powell's Method, Brodlie's algorithm does not possess 

a quadratic termination property, though numerical evidence has 

shown it to be satisfactory in practic~. Seeking the set of eigen

vectors of A as Brodlie's algorithm does, would also seem unne

cessarily costly. The directions they define are unique when the 

eigenvalues of A are distinct. Afl we really want are directions 

mutually conjugate with respect to A. and such directions are 

not unique. 

In Part II we discuss an algorithm that relaxes the require

ment that an essentially unique set of directions be generated, but 

shares the advantages of Brodlie's Method. It is based upon a 

technique for generating conjugate directions that stems from two 

6 
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theorems proved by Powell [20]. These we shall· state precisely 

1 ater, but they may be surrmari zed as fallows. 

Suppose we are dealing with the quadratic· ~(x), whose Hessian 

is the positive definite symmetric matrix A. Powell's first 

theorem states that n linearly independent directions given by 

the columns of a matrix 0, each 'of unit length in the A-norm, 

are mutually conjugate with respect to A if and only if the 

abso 1 ute va 1 ue ,of the d.etermi nant of D (denoted by .6.0) is a 

maximum. This maximum may easily be shown to be . (M) -l/2. 

Jhe second theorem states that if D is postmult~plied by an 

orthogonal matrix n~ and each column of on renormalized to be 

of unit length in- the. A-nonn giving a new matrix o* ,_ then 

* 60 > 60 . 

. _ The fo 11 owing a 1 gorithm is suggested by these two theorems: 

A set of n search directions is maintained. At any iteration a 

search may be conducted in sequence along each of these directions 

and the 'current estimate of the minimum improved in some way. 

After normalizing each direction from tnformationgathered during 

the search (as we shall see in Chapter 5) the set of search direc

tions may be improved by postmultiplying by a suitably chosen ortho-
~ 

gonal transformation. This completes an iteration of the algorithm. 

Apart from some estimates of second derivatives and these only 

along the directions of search so as to perform the normalization, 

the use of explicit derivatives is avoided. An a)gorithm dev~loped 

along these lines has the advantages of Brodlie's Method. Thus 

linear independence of the search directions is preserved. Conver

gence of the search directions to mutual conjugacy is not linked to 
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accuracy of the line searches (but, as we shall discuss shortly, 

is dependent upon using appropriate orthogonal transformations). 

This algorithm sha~es with Brodlie's Method the disadvantage of 

not having a quadratic tennination property, but it does not 

_. insist upon convergence to an essentially unique set of directions. 

Let us denote the normalized search directions at the kth 

iteration by the columns of D(k) ahd the corresponding ortho-

gonal transformation by n(k)_ Our interest is in the choice of 

n(k) and in the convergehce of the columns of D(k) to mutual 

conjugacy for a quadratic. These are central issues. An algorithm 

developed along the above lines when applied to non-quadratic 

functions, must be capable of fast convergence in the neighborhood 

of a minimum, where the function is well-approximated by a quadratic. 

Thus we would like the columns of o(k) to converge to mutual 

conjugacy. This depends upon the choice of n(k)_ Unless these 

orthogonal transformations are chosen sensibly it is clear that 

convergence need not occur. For example, postmultiplying D(k) 

by a permutation matrix merely interchanges the search directions 

and f!D(k) does not increase. Furthermore although Powell's 

second theorem implies that f!D(k) (k = 1,2, ... ) is a bounded 

monotonically non-decreasing sequence, which must therefore 

necessarily tend to a limit, it does not follow that the limit 

equals (M)-l/2. A perverse choice of n(k) could cause o(k) 

to tend to a set of directions that are never arbitrarily close 

to mutual conjugacy .. The off-diagonal elements of [D(k)]TA[D(k)] 

which are a measure of how close to mutual conjugacy the directions 

D(k) are, could possibly cycle. Even if convergence to mutual 
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conjugacy occurs this need not, as we shall see, imply convergence 

to fixed directions. 

When n{k} is always selected from the set of plane rotation 

matrices we·discuss, in detail, the questions raised in the preceding 

paragraph. We s~ow that the above difficulties are related to, 

but distinct from, difficulties encountered in the Jacobi eigen

value process, and we compare and contrast the two processes at 

several points. By suitably modifying some of.the convergence 

proofs, we have been also able to use the underlying ideas to 

prove the convergence of the cyclic Jacobi process for a much 

larger class of cyclic patterns than has currentl~ appeared in the 

literature [ 5 ]. A detailed overview of the topics discussed in 

Part II is given in 5.6. 
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Chapter 2 

In this Chapter we present some simpleproperties of quadratics 

and certain fundamental relations that underlie most algorHhms 

for minimizing an unconstrained function. We discuss some of the 

consequences of these basic relations and how they suggest algo

rithms for unconstrained minimization that are in current use. 

This enables us to establish the notation and lay the ground

work, for the main results in Chapter 4. 

/ 

A. Terminology 

2.1 Definition of an n-search. Suppose that for a general func~ 

tion ~(x), a search along each of a set of n linearly indepen

dent directions (d
1

, ••• ,dn) is carried out. Let x1 be the 

initial point. Suppose that successive points x2,x3, •..• xn+l are 

generated with 

).i ~- 0 for all i (2.la) 

We sha 11 ca 11 such a search procedure an n-search. 

If, in addition, the search ~long each dire~tion d .. seeks 
1 

the minimum value of the function in that direction, we call the-

above search procedure a minimal n-search. 

Denote the gradient of ~(x) at x1 by 9; = g(xi) = V~(x 1 ). 

If after conducting an n-search, gn+ 1 is found to be zero. 

we say the n-search is terminal. 

10 
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B. Properties of Quadratics 

2.2.1. A Fundamental Relation. Consider the quadratic fu~ction 

given by 

,, ( ) . bT + 1 TA . ~X =a+ X ·~ X 

where' 

V~(x) = g(x) = b + Ax. 

If we conduct an n-search as defined in 2.1, we have, for 

i = 1, ... ,n, 

gi = b + Ax1 

gHl - g1 .;, A(xHl- x1) (2.2a) 

= ).1Adi by (2.1a}. 

Writing 

and 

we .may then.write (2.2a} as 

AD= YA-1 (2.2b) 

h -1 d . [ - 1 - 1] k h . . h f th were A.. =. 1ag .x1 , ..• ,.hn . We rna e t e convent1on ence or 

that small unsubscripted greek letters denote d{agona1 matrices. 

If the n-search is tenninal (i.e. if gn+l = 0}, this may be 

written as 

AD = GH (2.2c) 

where 

11 
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and 

-1 
1 -1 

1 -1 
H = . 1 • ). -1 

.. . 
l -1 

i.e. all elements 11.·. of the square matrix H, such .that i < j 
lJ 

or (i-j) ~ 2, are zero. 
i 

2.2.2. Minimum Value. The minimum value of 11J{x) is attained 

when Vll!(x) = 0, i.e. when 

-1 X = -A b (2.2d) 

2.2.3. Invariance of a Quadratic Under Linear Transformation. 

Suppose Q is a positive definite symmetric matrix (abbreviate'd 

henceforth as pds). The quadratic 

1s obtained from ll!(x) by the following change of variables: 

y = Q-lx. 

The minimum of ~(x) is attained at ij-lz~ where z is the 

point where 1/J(x) attains its minimum value. 

Also we write 

and 

- --1 
d = Q d 

g = V~(y) = Q{b + AQy) 

= Q(b+Ax) 

= Qg where g = V~{x) 

12 



We employ this notation in Chapter 4. 

C. Three Basic Relations 

Fundamental to minimization algorithms are the notions of a 

set··of directions being mutually conjugate, of a .line search along 

direction di being minimal, and of the directions di used in 

an n-seatch being linear combinations of the gradients at xi and 

at all previous iterates x1 ,x2, ••• ,xi-l" 

2.3 Conjugate Directions 

2.3.1. The non-zero directions D = (d1, ... ,dn) are said to be 

conjugate with respect to the positive definite,·symmetric (pds) 

matrix A, if and only if 

d~Ad. = 0 
1 J 

whenever i ; j • 

Thus any directions orthogonal in the norm defined by A are conju-
1 

gate directions. We may write the above relation as 

(CD) DTAD = diag[a.] = a 
1 

(2.3a) 

where a is a non-singular diagonal matrix with all positive 

elements. Recall the convention from 2.2.1 that small unsubscripted 

greek letters represent diagonal matrices. 

Examples of conjugate directions with respect to the pds 

matrix A are: 

a) If A= RTR is the Cholesky Decomposition of A, then 

13 
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Thus, (R-1) defines a set of mutually conjugate directions. 

b) Th~ matrix of column eigenvectors X of A satisfies 

where pi (1 = l, .•• ,n) are the eigenvalues of A1 Hence the 

eigenvectors are a set of mutually conjugate directions. Since 

these eigenvectors may also be chosen so as to satisfy ·XTX = I 

they are also conjugate with respect to the identity matrix I 

(i.e., orthogonal). 

2.3.2. If DTAD = a, then 

A-1 = Da-lDT 

= l(l)d.d! 
i ai . 1 1 

. (2 ~3b) 

2.4 Minimal line Search Relation 

· If we minimize a general function cp(x) . along direction 

di-l and the minimum is attained at x1 , then 

(MlS). (2.4a) 

where 

We call (2.4a) the Minimal line Search Relation, or the MlS Relation, 

for short. 

2.5 The Direttion-Gradtent Relation 

2.5.1. S_uppose each search direction d., employed in an n:..search, 
1 . 

is defined in terms which 'tmplicitly or explicitly make it a 

14 



linear combination of the gradients at x1 and at all previous 

points x1, ... ,x. 1• Then we have 
. 1-

D = GU 

where 
; . '; 

and 

U is an upper triangular matrix. 

We prefer to employ this in. the form 

(DGR) G = DR (2.5a) 

where R = u-l. U is invertible since the search directions 

d1 are linearly independent, and R is clea~ly also upper trian- ' 

gular. We call (2.5a) the Direction-Gradient Relation. In the 

fonn (2.5a) it may be interpreted as follows: each direction d. 
1. 

is a linear combination of g. and all previous directions 
1 

QG = DR (2.5b) 

D. Consequences of the Above Relations 

let us now consider the implications of combining two or more 

of the three basic relations discussed above. 
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A well known result when the Conjugate Direction relation and 

the MLS relation are combined is the following. 

2.6 Quadratic Termination Propert,x 

Suppose that a minimal n-search (~.1) is conducted, for the 

quadratic function w(x) = a + b1x +~TAx, along directions 

d1, ••• ,dn that are mutually conjugate with respect to A. Then, 

it fs well known that MLS (2.4a) may ~e strengthened to 

and so 

g~d. = 0 
1 J 

for a 11 1, j such that 1 ~ j < i < n+ 1 

gn+l = 0 • 

i.e. the minimal n-search is also terminal. 

It will be more useful to consider this in the form 

where 

and 

V is an upper triangular matrix. 

(2.6a) 

This result is well known; see, for example, Kowalik & Osborne [ 1 ]. 

It is used to prove the finite termination of several algorithms, 

when applied to a quadratic. 

2.7 Orthogonality 

The conditions that ensure the Quadratic Termination Property, 

which we have just discussed 1n 2.6, and the Direction-Gradient 
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relation, together imply that the columns of G are orthogonal. 

This follows from: 

Lemma 2.1. If a minimal n-search is conducted along directions 

that are mutually conjugate, and the directions 0 = (dl , •.. ,dn). 

and gradients G = (g1, •.. ,gn) satisfy G =OR, then GTG is a 

diagonal matrix, i.e. the columns of G are orthogonal. 

Proof. From 2.6 the conditions of the Lemma imply that 

(2.7a) 

Since G = OR we have that 

. GTG = VR. 

But VR is an upper triangular matrix and GTG is synunetric. 

Hence VR is a diagonal matrix, and therefore the columns of G 

are orthogonal. 0 

Corollary. If instead the condition QG =OR (cf. (2.5b)) replaces 

the condition G =OR in lemma 2.1, where Q is pds, then GTQG 

is a diagonal matrix. Thus the columns of G are now orthogonal 

in the metric defined by Q. 

E. Two Further Basic Relations 

The idea of developing successive approximations to the inverse 

Hessian underlies large classes of algorithms known as Variable 

Metric or Quasi-Newton Methods. In the next two sections we discuss 

this and develop the 'fundamental relations that are involved. 
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2.8 The Variable Metric Relation 

2.8.1 •. Suppose an n-search is conducted over a quadratic function 

ljl(x), and linearly independent directions (d1, ••• ,dn) are employed. 

Initially this is the only assumption we make about these directions. 

Suppose further that at the ;th step of the n-search, a non

s1ngular matrix Hi is maintained such that 

{VMR) 

where Di is the matrix (dl' ••• ,di-l) and Q is some pds 

matrix. 

(2.8a) 

Since Dn+l is a non-singular n x n ·matrix, we clearly have 

that Hn+l = A-l and the minimum value of 1lJ(x) is then given by ; 

-Hn+lgn+l" 

(Note that the n-search is !!9.1· 1 n genera 1 , termi na 1 , i.e. 

gn+l need not be zero.) We may thus regard Hi, i = 1,2, ••• ,n+l 
' as a series of successive approximations to the inverse Hessian, 

with H1 being some initial approximation Q and Hn+l = A-l 

The Hessi~n A in (2.8a} may not be·available explicitly. Since 

for a quadratic, A(xi+1-x1} = gi+1 -g1, we transform (2.8a) into 

an expression that does not explicitly ·involve A as follows: 

(VMR) (2 < i ~ n+l} ( 2. Bb) 

where 



and 

In this form only gradients at successive iterates are used. Using 

the theory of generalized inverses, see Adachi [ 6], it is possible 

to obtain a general expression for H. from its definition in the 
1 

form {2.8b). Furthermore it is possible to obtain a recursive 

exR_ression giving H.+l in terms of quantities derived from H., 
1 ·. 1 

S. and Y 
1
. • A 11 known methods' that use the VMR ( 2. 8a) emp 1 oy 

1 

special cases of these expressions. 

2.8.2. In the previous section (2.8.1) we have not specified 

how dl, ... ,dn are obtained, demanding only that they be linearly 

independent. One way of defining· the directions i:s as follows 

d. = -H.g. 
1 1 1 

(1 ~ i ~ n) . (2. Be) 

I 

Thus each search direction looks like a Newton step, but with the. 

approximation .Hi to the inverse Hessian replacing the exact 

inverse A- 1. 

Several algorithms develop the inverse Hessian using (2.8a or b) 

and (2.8c) and are able to minimize a quadratic in a finite numbe~ 

of steps. ~t most {n+l). Note that ·the use of (2.8c) is not 
I : , 

essential for finite termination. Num~rical difficulties often 

plague such algorithms, but their outstanding feature is that a 

minimal line search along each d. is not req~ired for finite termi-
1 

nation. Also, for some i it is possible that di = 0, i.e. it 

is possible for breakdown of the process to occur. 

2.8.3. More can be said when we impose the further requirement 
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that the search along each direction be minimal, i.e. that the 

n-search of the preceding section be, in fact~ a minimal n-search; 

we also assume that d1 f- 0, for all i; thenwe can easily show 

that the n-search is terminal, i.e. gn+l = 0. This follows from 

the next lerrma, a reformulatioh of a standard result. 

lenma 2.2. Consider a minimal n-search conducted for a quadratic 

lP(x) along the directions (d1, ... ,dn) defined by (2.8c) with 

Hi defined by (2.8a) or equivalently (2.8b}. Then the directions 

(d1, •.• ,d ) are mutually conjugate. n . . . 

Proof. - From (2 .Sa) we have 

Thus 

Then, from (2.8c) 

(2.8d) 

The pro()f is by induction. Assume that the first i -1 directions · 

(d1, ••• ,di_1), i.e. the columns of Di, are mutually conjugate. 

Since the searches are minimal, it then follows from the Quadratic 

Termination Property (2.6) applied to the set of directions 

(d1, ••. ,d1_1) that gTdj = 0 for all j < i. Thus from (2.8d} 

I 

Therefore (d1, ••. ,d1) are mutually conjugate, i.e. the induction 

hypothesis holds for Di+l" The result then follows by induction, 
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since g~d 1 = Q, implying that d1 and d2 are mutually 

conjugate. D 

That the minimal n-search using directions, obtained from 

(2.8a or b) and (2.8c) is terminal, i.e. gn+l = 0, th~n follows 

from the. Quadratic Terminatlion Property, since we have just shown 
I 

that these directions are conjugate. (Note that for termination 

of this n~search we need both conditions (2.8c) and minimal lin~ 

searches, in marked contrast to (2.8.1) and (2~8.2)). We shall 

call (2.8a), or its alternative form (2.8b), the Variable Metric 

Relation (VMR). 

2.9 The Quasi-Newton Relation 

Instead of defining H; by the Variable Metric Relation (2.8a) 

suppose we use instead only the relation obtained by equating the 

la,st column of th£: left hand side and right hand side of (2.8a), 

i.e. 
I 

(QNR) H • Ad . l = d . l (2 S.. i s_ n+ 1,1

) 

1 1- 1-
(2.9a) 

or alternatively 

(QNR) H • y . 1 = s . 1 ( 2 s_ i s_ n+ l) 
1 1-. 1-

(2.9b) 

where yi-l = (gi -g1_1) and s 1_1 = (x1 -xi-l). (2.9a or b) is 

known as the Quasi-Newton Relation (QNR). Again a general expression 

and a recursive r~lation may be obtained for H; which includes, 

as a subclass, the matrices defined by the Variable Metric Relation. 

Now, if we conduct a minimal n-search using directions defined by 
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(2.8c} and the Quasi-Newton Relation it will r:1ot necessarily follow 

that the directions are mutually conjugate. Furthennore, even 

·1f H., in the Quasi-Newton Relation, is chosen so that the 
1 ) 

directions di defined by (2.8c} are mutually conjugate, it does 

not appear to be true that H1 must then satisfy the Variable 

Metric Relation. 
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Chapter 3 

Some Useful Matrix Decompositions 

In this Chapter we review briefly some standard matrix 

decompositions, and how these lead to certain algorithms for solving 

systems of equations and the symmetric algebraic eigenvalue/vector 

problem. We shall require these in the next Chapter and they are 

collected here for easy reference. 

, . . ,. 
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A. Decomposition Related to the Solution of Sets of Linear Equations 

3.1 Triangular Factorization 

The fundamental fact behind direct methods for solving Ax = b 

is that under certain conditions (nonsingularprincipal submatrices) 

A can be uniquely factored as 

A = roo 
where 

"" l is unit lower triangular 

6 is diagonal 

0 is unit upper triangolar. 

The usual Gaussian Elimination algorithm implicitly yields. 

A = LU 

,.. """" where l=l and U=DU. SeeWilkinson[7]. 

When A 1s pds the necessary conditions are fulfilled and 

A= llT 

where l = Cfi112• This is the Cholesky factorization. 



3.2 QR Fa~torization 

Any non-singular matrix G can be decomposed as follows 

G = DR (3.2a) 

where 
. DT AD = a 

R is a unit upper triangular matrix, A is positive definite 

syrrmetric, and a = diag[ai]' using our convention that small. 

unsubscripted greek letters denote diagonal matrices. Thus the 

columns of D are orthogonal in the metric defined by a pds 

matrix A. The decomposition is essentially unique, Wilkinson [7]. 

(This is better known as the QR factorization but we have changed 

the notation for later convenience). 

(f) The above decomposition is implicitly what is obtained when 

carrying out the Gram-Schmidt Orthogonalization Process on the 

vectors defined by the columns of G. The standard relations of 

the Gram-Schmidt Process may be obtained by equating columns of 

the left hand side and right hand side of G = DR. If we denote 

h · th . .l f G. . b . G ( ) h 
~ e 1 co umn o . . y gi, 1 .e. = g

1
, .•• ,gn . we ave 

j-1 . ' 

d. = g. - ·I r .. d. 
J J . i=l lJ J 

{3.2b) 

where 
T T r

1
. = d.Ag./(d.Ad.) 
J 1 J 1 1 

being chosen to satisfy the relations d1Adj = 0 for i ; j. 

24 



(ii) Alternative ways of obtaining the QR factorization of a matrix 
. . 

A avoid the numerical inaccuracies of standard Gram-Schmidt. They 

are: 

a) Premultiplication by a series .of plane rotations, Given•s 

Method. 

b) Premultiplication by a series of elementary Hermitian matrices, 

Householder•s Method. 

For details see Wi 1 kin son [ 7 ] , Chapter 4. We stress that 

these are alternative realizations of the same basic relations. 

(iii) The Gram-Schmidt Process may be viewed as projecting at 

step ;, the vector g1 into a space orthogonal to that spanned 

by (Ad1, ... ,Ad1_1). Th1JS di is obtained by premultiplying' 9; 

by an orthogonal projection matrix, i.e. a symmetric matrix that 

satisfies the relation x2 = X. This orthogonal projection matrix 

may be written as 

+ where D1 is the nx(i-1) matrix (d1, ... ,d1_1) and (AD1) . 

is the generanzed inverse of (AD1), see Boullion & Odell [ 8 ]: 

Now, since (AD1) is ·of full column rank 

See, again, Boullion & Odell [ 8 ], page 11. Thus 

(3.2c) 

In recursive form this yields 
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(3.2d) 

The orthogonalizing process is thus given very simply by 

dl = gl 

d j = P j g j for a 11 j > 2 {3.2e) 

where 'pj is updated using (3.2c) or (3.2d). 

B. Decompositions Related to the Algebraic Eigenproblem 

3.3 Any symmetric matrix A can be decomposed into 

A = X~XT 
where 

and 

~ = diag[~ 1 ] is a diagonal matrix . 

X consists of the set of eigenvectors, the ;th column being the 

eigenvector corresponding to the eigenvalue ui. 

The Jacobi Method is one way of obtaining this decomposition. 

In it X is accumulated as a project of elementary rotations, the 

process being defined as 

A(l) =A 

A(k+l) ~ n~A(k)nk 

where the elementary rotation Qk is obtained as follows: Some 

rule is used to select a pair {p,q) of indices. Then 
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o . = (w(k)) k · st . 
such that 

w(k) = w(k) = cos e pp . qq . 

w(k) = -w(k) = sin e pq qp 

w!:) = 1 , s ~ p ~ q 

w(k} = 0 otherwise. st · ' 

e is chosen to satisfy 

2a(k) 
tan 2 a = ___,,.,..· ....,.p.._q"""-r,,..,..--

(a(k)_a(k}) 
pp qq 

and a~jk) is the · (i ,-j}th element of .A(k} • 
. 1 

If the rule is: 

(3. 3a. 1) 

. ( 3. 3a) 

(i) · choose (p,q) such that a(k) is the largest off-diagonal pq 
element we obtain the Classical Jacobi Process. Convergence is 

assured. 

(ii) choose (p,q) according to some cyclic pattern, we obtain the 

Cyclic Jacobi Process. 

(iii) choose (p,q) by rows or by columns-we obtain the Special 

Cyclic Jacobi Process. Convergence for this case has been proven, 

. see Forsythe & Henri ci [ 9 ] • 

For more details of the Jacobi Process see Wilkinson [ 7 l~ 

3.4 Reduction to Upper Hessenberg Fonn and Tridiagonal Form 

3.4.1. Any matrix A can be decomposed as follows 

(3.4a) 
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where Hu is unit upper Hessenberg and 8 = diag[Si]. These may 

also be written 

GTAG = 8 Hu 

GTG = a' 

If A is symmetric then 8 Hu must be symmetric as well as 

Hessenberg. Hence tridiagonal, which we shall denote by T, 

and 

(TF) 
GTAG = T 

GTG = 8 

and if A is positive definit~ then so is r~ We shall make 

extensive use of the tridiagonal factorization TF (3.4d) in 

Chapter 4. 

In subsequent sections we shall also need the.following 

uniqueness result: 

Lenma 3.1. 

(3.4b) 

(3.4c) 

(3.4d) 

are orthogonal matrices which have the same first column, say g1, 

and T1 and T2 are tridiagonal, then 

and T = 6 T 6 2 1 

where 6 = diag[6i], with . 6; = ±1 for all i. 

Proof. The proof is given in Wilkinson [ 7 ], page 352. (The proof 

breaks down if any ti+l,i = 0, in which case (in 3.4d) gi+l can 

be chosen to be an arbitrary vector orthogonal .to g1, .•. ,gi. For 
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our needs this will not present a difficulty, since when applying 

this result in Chapter 4 this case does not arise). We shall use 

the above uniqueness result to prove the equivalence of various 

methods of unconstrained minimization later in Part I. 0 

3.4.2. We shall also require the decomposition (3.4b) in the follow

ing form: reduce QAQ to unit upper Hessenberg form using trans

formations G whose columns are orthogonal in the Q-metric, 

where Q is some pds matrix 

G1QAQG = BHU 
G1QG = B 

(3.4e) 

If A 1s symnetric then' T = SHu is tridiagonal {since QT = Q) 

and again G is unique up to column signs. 

Writing G = QG where Q = Q2 this may be interpreted as 
. ~ 

reducing QAQ to unit upper Hessenberg (or tridiagonal form) 

using transformations G whose columns are orthogonal in the 

Euclidean metric. 

3.5 Methods for obtaining G and Hu (or T) are as follows: 

(1) Writing out (3.4a) as a set of recurrence relations, and 

assuming that the first column of G is specified to be g1, we 

obtain 

r 
Ag . = gr+l + r h;·. g . 

r . i=l r 1 
(3.5a) 

where hir' the (i ,r)th element of Hu, is chosen so that (3.5a) 

satisfies 
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(3. 5a. 1) 
i.e. 

This is known as Arnoldi's Method. Given a synunetric matrix we 

can tridiagonalize it using relations (3.5a), since tir = Sihir 

from C3.;4c). 

We shall also need the recurrence relations for the decompo

sition 9iven by (3.4e) and this is a convenient place to give them. 

These are obtained directly from (3.5a) by substituting QAQ for 
-

A and Qgr for gr, i.e. 

where .. 

r -
AQgr = gr+l + L h. g. 

i=l 1r 1 

and if ·A is syrm~etric, T 'is given by tir = Sinir· / 

(ii) (3.4b) may also be written as 

[GS-l/2]TA[GS-l/2J = 8-l/2Hu6-l/2 

[GS-l/2]T[GB-l/2] = I 

(3.5b) 

(3.5c) 

using our convention that B = diag[Bi]. Then' Gs~ 1 1 2 may be 

obtained as a product of plane rotations (Given's Method) or as a 

product of elementary Hennitian matrices (Householder's Method) by 
.. 

carrying out a series of elementary orthogonal similarity transfor-

mations on A, that finally reduce it to upper Hessenberg form, 

or tridiagonal form if A is symnetric. For details seeWilkinson 

[ 7 ] , Chapter 6. 
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Chapter 4 

AUnified Approach to Unconstrained Miriimization 

As noted in Chapter 1, the various algorithms of unconstrained 

minimization differ principally in the way the search directions 

are generated or updated. Many algorithms. when applied to 

quadratics, have the same underlying relations and, as we shall 

show, implicitly effect the same decomposition of or with respect 

to the Hessian. Such algorithms differ in the way the decomposi-
1 

tion is carried out, in much the same way as the Givens, Hbuse.;. 

holder or Gram-Schmidt methods all effect the QR factorization, 

but each in a different way. From a numerical standpoint, of 

course, these differences are significant but, in exact arithmetic, 

with certain initial conditions the same, they would all give 

identical results. The other principal factor that distinguishes 

one minimization algorithm from another is the informational 

requirements of an algorithm, e.g. some algorithms use no deriva-

tives, others ~o. 

Thus in our discussio-n, each algorithm that we consider 

here will be placed at a "point" determined by two sets ·of 

"co-ordinates" -- a) the information used and b) the underlying 

relations and matrix decomposition involved._ 

We refer the reader back_ to 1.2.1 for a detailed overview 

of th; s chapter. 

A. Methods That Use Second Derivatives 

We include in this section both methods that have available 

the Hessian A(xc) at the curr~nt iterate xc, through a.cess 
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to second partial derivatives, and methods that estimate the com-

plete Hessian at . . . 

c 
X , for example, by estimating second partial 

derivatives in the directions of the coordinate axes ei for all 

i and along (e.+e.) for all pairs i < j. 
. ' l J 

From this the Hessian 

at xc may be deduced. 

Afte~.briefly reviewing so~e of the important methods in this 
~ ~>. ~: 

area, we ·di-scuss in detail an algorithm that effects a ·particular 

decompositinn of the Hessian, namely tridiagonalization followed 

by Cholesky decomposition. Prior to introducing this algorithm 

we state our motivation for presenting it. 

4.1 Methods in this class are usually va~iants of Newton's Method, 

which employs the direction 

(4.la) 

where xc is the current iterate and gc the gradient at xc. 
I .· . 

The direction de may be obtained by inverting A(xc) or by 

solving the set of equations 

This solution is obtained in two principal ways.·' 

The first and. most natural class of methods uses the triangular 

factorizations of Chapter 3. Thus Fiaccio and McCormick [10] 

factorize A(xc) into coc1 and solve (C6CT)dc ~ -gc (note that 

the columns of. c-l are conjug~te d{rections). Matthew and Davies 

(11] factorize A(xc) into the LU fac~rization and solve. Since 
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for general functions A(xc) may be indefinite, precautions. to 

prevent numerical instability are also built into these algorithms.· 

The second class of methods employs the Orthogonal Decomposi

tions of Chapter 3, 3.3. The method of Greenstadt [12] carries out 

the decomposition 

where 

XTA(xc)X = ll 

xTx =-I 

(A(xc)]-1 = Xu~lxT = f ultix1· 

I( t 
~' \t 

{4~1b) 

t . 
The Jacobi Method 3.3 mal\be used to obtain this. Alternatively 

. . .\ ·. \{ . . : . . c· 
th1s decomposition may be c~rried o'ut by first reducing A(x ), 

. . . ' J . ' 
which is always symnetric, to tridjagonal form T as in 3.4 and r r · 
then obtain the eigenvalues ~nd e1~envectors of T and hence 

'· ~' 
~ ~ -

those of A{xc). Again precaution~' are built in to prevent 

numerical instability when any u1 is small, since it is entirely 

possible that the Hessian at a particular iterate xc may be 

very ill-conditioned, although at the minimum itself, say z, 

A(z) is well conditioned. 

4.2 Algorithm TC. In this section we propose a method .intermediate 
. . . 

between the above two classes of methods. Our motivation for 

introducing it is twofold. It_ does not appear in the literature 

and this variant should, in most cases, be much faster than Green

s.tadt' s a 1 gori thm. However our pri nci pa 1 reason for deve 1 oping 

and exploring this algorithm in detail is for reasons of exposition. 
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I. 

We claim that the decomposition involved, tridiagonalization followed 

by Cholesky factorization is, in some sense, fundamental. Many 

algorithms, as we shall show later (in particular the conjugate 

gradient and a class of variable metric methods implicitly effect 

the same decomposition of the Hessian, each in a different way. 

We refer the reader also to our overview in 1.2.1. 

In describing this algorithm we shall, for simplicity, denote 

the Hessian at the current iterate by the symnetric matrix A and 

henceforth we drop the superfix c denoting the current ierate. 

The A 1 gorithm: 

(i) Reduce A to tridiagonal form T, see (3.4d) of Chapter 3. 

We shall insist that the first column of G be g1, the gradient 

at the current iterate, and use equations {3.5a) to complete the 

decomposition. This decomposition is essentially unique. At the 

(j-l)th st~ge of this reduttion we shall therefore have obtained 

the first j columns of G, i.e., (g1, .•. ,gj) and the first 

(j-1) columns of T. 

(;;) Next carry out the Cholesky factorization of the symmetric 

tridiagonal matrix T 

where R is unit upper triangular ahd all elements rij such that 

(j-i) ~ 2 are zero; a= diag[ai] is a diagonal matrix. 

Now it is not necessaryto perform step (ii) only after 

completing step (i). As the elements of T are generated in step 

34 



. -

(t) we can also carry out successive stages of the Cholesky Decom

position. We enlarge on this in the next ·sect~ on 4.3. · 

(Hi) If at any stage, the Cholesky factorization breaks down 

(which could happen if A is not positive definite) then we only 

carry (i) to completion omitting further stages of (i;). Then, 

once the tridiagonal form T has been found, the standard Green

stadt procedure [12] is followed by obtaining the eigenvalue and 

vectors of T. The search direction for a Newton step is then· 

given by (4.la) and (4.lb). 

(iv) If, however, the Cholesky factorizat.ion is successful (and 

if A is positive definite it will be) then the decomposition 

effected is 

T . T 
G AG = R aR 

G1G = B 

which we call the TC factorization • 

.The inverse Hessian is given by 

(4.2a) 

{4.2b) 

The search direction d= -A-1g1 for a Newton step is thus 

d = -G(R-l)a-l{R-l)TGTgl {4.2c) 

= -GR-la-l(R-l)T(gigl)el 

where e1 is the first column of the unit matrix. This ;s equi

valent to solving the equations 
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T T T R aRy = G gl = {g1g1)e1 · (4.2d) 
d = -Gy 

Clearly we could have a substantial saving over Greenstadt's 

algorithm which must compute the eigenvalues and vectors, at every 

stage. 

Definition. For later reference we define D = GR-l, from ~hich 
-1 -1 T ;t follows that A = Da 0 • 

4.3 Development of the Inverse 

We discuss in detail the development of the inverse Hessian 

(4.2b) for Algorithm TC and in particular we develop ~xpressions 

for successive approximations to A-1. Our motivation for doing 

this is that \'/e wish to demonstrate later the close tie-in between 

these expressions and expressions for successive approximations to 

A'-1 obtained by Variable Metric Algorithms. 

The development is in foi,Jr stages: a) we obtain expressions 

for successive a'pproximations to R in {4.2a), b) we deduce 

expressions for successive approximations to -1 R , c) we develop 

expressions for successive approximations Hi to A-l and d) we 

develop recurrence relations for Hi. 

4.3.1; Successive Approximations to R 

As noted in step (ii) of Algorithm TC we need not wait until 

the t~idiagonalization and Cholesky factorization are complete to 

develop R. Intermediate stages of R may be developed in parallel 

with the determination of the matrix T. 
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·. . 

At stage (j-1) of Algorithm TC we have (g1,.,. ,gj L the 

first j columns of G, and (t1, •••• tj_1) the first (j-1) 

columns of T. Since the tridiagonal matrix T is symmetric we 

therefore also know the value of the element t (in the (j-1) ,j 
jth column of T). 

37 

We write out the elements of the .. jth principal leadingsubmatrix 

. Tj of T as follows: 

where 

T. = 
J 

T 
{j) 

tll tl2. 
t2l t22 t23 

t32 t33 t34 

t(j~J),(j-2) t(j~l),(j-1) t(j-1). ,j 
. . (j) 

t. c·-,> -r . J, J . 

is an arbitrary unknown parameter and a 11 the other 

elements are known. The Cholesky factorization of this is of the 

form 

(4.3a) 

where Rj is a unit upper triangular (j xj) matrix with all 

elements rij' (j-i) ~ 2, being zero, and v(j) is another 

arbitrary parameter. In the Cholesky factorization R. is entirely J . 

dependent upon the known e 1 ements of. T j, i.e. , T (j), 'the. (n ,n) 

element. does not affect any of Rj's elements. The unknown .para

meter -r(j) only affects the last element of the diagonal matrix 



diag(ap··••aj-1'-)j)) .. This is therefore givf!nbyanother arbi

trary non-zero parameter, denoted by v(j). Clearly Rj is the 

(j x j) · leading principal submatrix of R. · 

At the next iteration we know (g1, ... ,gj+1) and 

(tp···•tj). Now we deduce the Cho1esky factorization of Tj+l 

from that of ·T., where 
J 

tll tl2 

t2l t22 t23 

t32 t33 t34 

Tj+1 must be factored into 

., 
I tj,{j-l) tjj tj,(j+l) 

. (j+l) 
t(j+1),j t 

Noting that R is tridiagonal and employing (4.3al we may write 

this as 

J r al. R~ f 
0 .• a. 1 

J I - I 

I 
I 
1-
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0 -- -Rj J-

Tj+l 
I a.l I r .. +1 = -1- - Jl- -1- J•J.,. - - - - - - - ·- - - - - - - - - - -

0 
I I 

1 I ( '+l) 0 
I 1 I r '+1 . I lv J I - J ,J -I I I I 

Equating the {j,j) element 

2 r. . 
1
a. 1 + a. = t .. J,J- J- '· J JJ 

.. 
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yielding . 

2 . 
aj = t 'j . - a .. 1 r. . 1 ·• J J- J ,J-

' ( 4. 3b) 

Also 

yielding 

rj+l j = tj+l ./(t .. - a .. 1 r~ . 1) 
t ,J . J J J- J ,J-

(4 .3c) 

4.3.2. Successive Approximations to R-l 

Bcause Rj+l is unit upper triangular the inverse is given by 

R-1 I .· -1 . 
j . I -R. P. 

J J 
-1 I . (4.3d) . Rj+l = - r - - - -·' 

' 
0 I 1 

I 

where 

Pj = (O,O, ••. ,O,rj,j+l)T = (rj,j+l)ej 

and ej is the jth. column. of the identity matrix,· I. 

Thus Rj!1 may 'thus also be updated as the iteration progresses~ 

4.3.3. Successive Approximations to A-l 

· Using the results of the previous section let us now develop 

an expression for successive approximations to the inve.rse Hessian 

A-l. Later in Section 4.10 we show an exact correspondence between 

·these expressions developed here and ~xpressions for· successive 

approximations to A-l given by a class of variable metric algorithms. 
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At stage (j-1) of Algorithm TC we have partially achieved 

the decomposition (4.2a). The known elements of RTCLA are given 

by (4.3a). It is therefore quite natural to consider the following 

approximation to the inverse. 

-1 I 
al I 

-1 -1 I . _;1 T I 0 R. Rj J a I -j-1 

Hj G o(j) I GT {4.3e) = I 
- - - - - - - - - - .- - ~ - - - -

I 
0 I Lj+l - I 

I 

where Li+l is an a_rbitrary pds matrix of appropriate dimension 

and o(j , the inverse of )j) (v(j) ~ 0), is another arbitrary 

parameter. From (4.3d) 

I 

-1 II -1 R. -R. P· 
J I J J 

I 
T -

0 I 1 
I - - - - -

: 1 
I 
I 

• -11 . 
. a. I 
- J T - - ... 

:a(j+l}J 

0 -

I 
I 
I 
I 
I 0 
I "" GT 
I 
I 

- r 
I 
llj+2 
I 

In order to facilitate comparisons we partition G as G = (Gj,Fj+l), 

Gj = (9p···•gj}, Fj+l = {gj+l•···•9n). Then 

(4 .3e.l} 



and 

I -1 I 
I al I 

-1 I -1 R. -R. p. I 0 
1 J I J J • -11 

= (G ·1 g. l) I . aj I 
J J+ --- r--- ----- -~---

0 I 1. . 0 1

1

6{j+l} 
- I 

I 
. 1-1 I 
R. · I 0 

J I 
I . --- -~--

T T-ll 
-pjRj · I l 

G~ 
J 

(4.3f) 

4.3.4. Recurrence Relations for H. 

We wish to develop a recurrence relation relating Hj+l and 

Hj. There are sever a 1 ways of doing this. ~le discuss one of them. 

To this end let us require that, for all j, L.+l be the diagonal 
. J 

matrix 

( 4.3f .1) 

where y(i) for all i is an arbitrary parameter and y(i) > 0. 

Then we obtain: 

o o . I 
HJ.+

1 
- HJ. = GJ.Rj-1 • • o1 R ~-l G ~ ----- -1---- J J 

: aj 1_c5 (j) 

(J+l) -1 T T T-1 1 - c5 [G .. R. p.g.+l +g.+lp.R. G.] 
J J J J J J J J . 

+ (cS(j+p -y(j+l))gj+1gi+l (4.3g) 
I . 

The recurrence relations for j = 1,2, ••• ,n have 2n arbitrary 
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(1) . (n) . {1) · {n) parametersgivenby.o , ..• ,6 andy , ... ,y ... The rela-

tions may be manipulated further by introducing H. into the RHS 
.i J . . . 

as follows: From (4.3e.l) and (4.3f.1) 

Substituting into {4.3g) we obtain 

. . .· . 0 : 0 l'-1. 
· · -1 I . J T T Hj l - H. = G .R. · - - - - T - - - . - R. G. . . + J J J -1 {j) J J 

0 Ia. -o . J . 
I . 

(4.3h) 

o(j+l) -1 . T . TT-l T 
- · ('+l)[G.R. p.g.+1H.+H.g.+1p.R. G.] 

y J . J J J J J J .J J J J 

where 

Using the definition for 0 at the end of the previous section, 
...;1 . . . 

i.e., D ~ GR we have: 

. ' -1 
d. = G.R. e. 

J J J J 

where ej is the jth column of the unit matrix. Then writing 

,. 

(4.3h) becomes 
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T 
H • +l - H . = d j d j - c5 ( j ) d d ~ + q ( j + l ) [ H . g . g ~ H . ] 
J · J aj j J . J J+ 1 J+ 1 J 

(j~l) T · T 
+ r [djgj+lHj + Hjgj+ldj] (4.3i). 

From (4.3e.l) we also get 

(4.3i.l) 

Therefore we see that (4.3i) may be put into the form 

/ 

_ (j+l) T (j+l} ) T HJ.+l- H.+ p d.d. + q H.(g.+1-g. (g.+.1-g.) H. J J J . J J J J J J 

(j+l)[· · T · T· + r · dj(gj+·l-g .. ) H.+H.(g.+1-g.)d.] 
J J . J J J J 

( 4. 3j) 

where 

p(j+l),. q{j+l) and r(j+l) are' scalar parameters such 

that (4.3j} for j = 1,2,~ •• ,n has altogether 2n degrees of 

freedom. This is by virtue of the 2n parameters c5(l), ••• ,o<n) 

and yCl>, .•. ,y(n) being arbitrary. Expression {4.3j) is related 

to the updating formulae for the variable metric family defined 

by Huang [ .2] in the form stated by Powell [13]. We thus see a 

connection betweet:~ Algorithm TC and Variable Metric Algorithms, 

and we discuss this agai.n later. 

4.4 Algorithm T-TC (a transformed version of Algorithm TC) 

For purposes of comparison later in this chapter, we consider 
I 

here a slightly different version of Algorithm TC. 
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Given the Hessian A and apds matrix Q, consider Algorithm 

TC to be carried out using QAQ instead of A, and transformations 

G whose columns are now orthogonal in the Q-metric. Thus at 

Step (i) of Algorithm TC, instead of relations (3.4d), namely 

GTAG = T 

G1G = B = diag[Bl' •.. ,B
0

] 

we use relations (3.4e), namely 

G1QAQG = T 

GTQG = a 

We insist.as before that the first column of G be g1 and 

continue the decomposition using relations (3.5b) in place of. 
i 

(3.5a}. The remaining steps of Algorithm T-TC are as before.· 

Since Q is pds we can always find a syrrmetric matrix Q 

·such that Q = 62. We may then write the above relations as 

(QG)T(OAQ)(QG) = r = RTaR 

(QG) 1 (QG) = B ' . 

Suppose we are working with thequadratic·· llJ(x) ~ a+b1x+~xTAx. 

These relations may then be interpreted ~s tridiagonalizing the 

Hessian of a transfonned quadratic ~{y) = a+ (Qb)Ty +}yTQAQy 

(cf. 2.2.3), using transformations (QG) whose columns are 

orthogonal in the Euclidean metric. 

Successive approximations 
A ~1 
H. to the inverse A 

1 
in 
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Algorithm T·TC are defined analogously to (4.3e) by· 

I 
- I 

-·T·ll 
• --1 - R . I - 0 T 

0 j - 1 -- J I - G Q _ 

6(jJ I 
• - • • - • r - -

0 IL~ 
- I J+l 

I 
I 

The relation between this transformed version of Algorithrn.TC, a 

transformed version of the Conjugate Gradient algorithm and a class 

of Variable Metric Algorithms will be discussed later. 

\ 
B. Methods That Use First Derivatives and Function Values 

The Classical Method here is the Cauchy Method which uses 

search directions given by the direction of steepest descent, i.e., 

the negative gradient vector. This method often has an unacceptably 

slow rate of convergence. 

Our principal thesis fn this section is that a large body of 

algorithms which require function values and gradients may be 

regarded, when applied to the quadratic w(x), as being different 

methods for effecting one of two important decompositions of A 

namely either the QR factorization (cf. 3.2) or the Tridiagonal

Cholesky factorization (cf. 4.2}. 

8.1 Methods Using QR 

4.5 Basic Algorithms 

The first class of methods we shall consider are based upon the 
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QR factorization. This class of methods is distinguished by not 

requiring minimal line searches. An n-search strategy is employed 

{cf.-2.1). Each search direction dj is generated as a linear 

·combination of the gradient gj -at xj and all previous directions 

d 1 .~ •• ,dj-l' i.e., the Direction-Gradient relation (2.5) is 

satisfied. Furthermore d. is required to be conjugate to all . J 

previous search.directions, d1 , •.• ,dj-l" Assuming no g1 

{i = l, ... ,n) · vanishes, i.e., that premature termination does not 

occur, then this class of methods, when applied to a quadratic, 
. I 

uses the relations 

G = DR 

DTAD = a (4.5a) 

AD = Y), -l 

where a= diag[a
1

] and A-l = diag[A-~]. The third relation 

comes from properties of quadratics discusser in 2.2 and since 

minimal line searches are not used the step length may be predeter-

mined, e.g~ A. = 1 
1 

for a 11 i. Recall that 

Y = {g2-gl' ..• ,gn+l-gn). The first'two relations are seen to be 

identical to those involved in a QR factorization (see 3.2). 
. . 

These relations (4.5a) may be written as 

G = DR 

YTD = diag[a.A.] = aA 
1 1 

(4.5b) .. 

Taking R to be unit upper triangular the recurrence relations 

(3.2b) of 3.2, which are an alternative expression of the above 

relations, now become 
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. · (4.5c) 

where 

and 

· .. whenc·e the n-search directions may be generated. For a quadratic 

we obtai.n directions d1 that are A_-orthogonal or conjugate ·. · 

with respect to A. ·From (2.3b) we have 

(4.5c.1) 

with a1 = (yid1) p.1• Thus for a quadratic we have (n+l) step 

convergence. 

In implementing the -above all the possibilities considered 

in the discussion on the QR factorization (3.2) are now available 

to us. 

Thus, we may minimize unconstrained functions using an 

algorithm built around (4.5c} and (4.5c.l) which we shall call 
( . 

Gram-Schmidt Minimization. For implementations that use explicit 

projection matrice·s see Powell [14] or Zoutendijk [15]. In this 

case the process takes the form given by (3.2e}, namely 

di = P.g. . 1 1 
i > 1 ( 4. Sd) 
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... ,_. 

where P
1 

= I and Pj is updated usfng (3.2c) or {3.2d). Toge-
-1 ther with the relation AD = VA · , namely 

P.+·l =Pi- P.Ad.dTAP./(dTAP.Ad.) 
1 1111 1"1 1 

(4. 5d .1) 

d . d -1 an A . = Y·A· . . 1 1 1 

. . . 

4.6 QR On a Transformed Quadratic. 

Now if there exists an initial pds approximation to A-l, 

say Q = ij2, there are good reasons for working with the trans

formed quadratic ~(y) = y + (ijb)1y +~T (QAQ)y of 2.2.·3. In this 

case we would be dealing with a function whose Hessian is close 

to the unit Matrix and thus very well conditfoned. Moreover, the 

first direction of search which is along with direction of steepest 

descent is then close to the optimum direction used in the Newton 
. . I . : 

Method. Writing 

- - - I 
G = (g1, ••• ,gn): where 

- - I 
D = (d1 , ••• ,dn) 
- - -A = QAQ 1 where 

\; 
I 

the!relations (4.5a) beco~e 

-· G = DR 
-r-- -· D AD = ex 

Afi = v~-l 

9; = V'~(y) 
I 

-2 Q = Q .. 

In the space of the original variables with 
- -l-gi = (Q) 9; {cf. 2.2.3) these become 

d = Qd. i 1 

(4.6a) 

and 
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QG = DR 

DTAD = a 
AD = n -l 

The recurrence relations given by (4.6a) are 

dl = gl 
- - j-1_ 
d. = gJ - I ri .a. 
J 1=1 J 1 

where-

and those given by (4.6b} are 

dl '= Qgl 
. j-1_ 

d. = Qg.-- I r .. d1 J J i=l 1J 

where 

(4.6b} 

(4.6c) 

(4.6d} 

An n.:.search that starts at a particular point x1, and 

employs directions d1, •.• ,dn successively generated by using 

{4.6d) together with some predetennined set of step lengths A;• 
--1 

i = 1i ••• ,n ·is equivalent to an n-~earch starting at Q x1 
and using directions d1, ••• ,dn generated from (4.6c} with A; 

the same. Successive iterates x1, ••• ,xn and y1, •.. ,yn obtained 

by these two processes satisfy y. = Q-1x .• A Gram-Schmidt 
1 1 

minimizing algorithm for :the transformed quadratic would use 

relations (4.6d). 

49 



4.6.1. QR Using Orthogonal Projection Matrites 

Now two distinct classes of methods come from the use of 

orthogonal projection matrices in expressing the above basic 

relationsh;ps. 

An important class of methods, see Hestenes [16], Powell [13] · 

is the following. Assume that we are working with the transformed 

quadratic ~(y), using relations (4.6a). · Each gradient g1 is 

projected.into the subsp~ce orthogonal to (j~ 1 , ••• ~j~i-l) using 

the orthogonal projectorldenoted by. P .. This orthogonal projector, 
. i , 

from (3.2c) applied to ; (y), is given by · 

- -- -- T -- -1 -- T P1 = I- (AD1)[(ADi) (AD;)] (AD1) 

= I - Q(AD1)[(ADi)TQ(ADi)]-1 (AD;)Tij 

The process (cf. (4.5d)) is therefore: 

- -
dl = gl 

d
1 

= P.g. for all 
. , , 

·-

(4.6e) 

(4.6f) 

The recursive relation for P1 is obtaine~ from (3~2d) applied 
: \ . . 

to ~(y) using d. = Q-ld. and A= QAQ , , 
- - T -- T -- -

' Pi+l = P1 - P1QAd .d .AQP .j (d .AQP .QAd.) 
·. ',,,,,, (4.6g) 

where ~l = I. S.ubstit~t.l.·ng• for d
1
• =Q--1d

1
• d - ·o we an gi = . g1 

have that (4.6f) becomes 

d,- c Qgl 

d1 = (OPiO)gi 
(4.6h) 
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· A •• • A 

W~ftfng P1 • (QP1Q) we have P1 • Q and in fts final form the 

process may be described by 

1 > 1 - . (4.6i) 

where from {4.6e) and (4.6g), for all 1 ~ 2 

( 4 .6j) 

end 

(4.6k) 

The lost relation is particularly interesting because comparing 

(4.6k) and (4.5d.l) shows that they are identical. Thus, the 

recurrence relation for the projector is invariant. oh1y the 
. . A . . 

fn1tfal matrices Pj and Pj differ since Pj -= I whereas 
A 

pj • Q. 

Sfnce A is not available explicitly we will, as before 

employ the relation AD= VA-l in developing Pi with a predeter

mined set of steps A; (where usually we take At • 1 for all i). 

4.6.2. QRUs1ng Alternative Orthogonal Projection Matrices 

The other class of methods using orthogonal projectors effect 

the relations (4.6b) and (4.6d) as follows: 

Relation (4.6d) may be regarded as premultiplying each g1 
by some pds matrix Q and then projecting Qg1 into a sub~pace 

orthogonal to (Ad1, .•• ,Adi·l) using an orthogonal projector P~. 

This is from {3.2d) 
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w;th P~ = I and the process is given by 
1 

dl = Qgl 

* 
(4.6R.) 

d. = P.Qg. for all i > 2 
1 1 1 

together with the relation AD = VA-l; ·. usually A, = 1 
1 

I 
.I 

for all 

In the light of our pr~vious discussion we know that the 

directions generated by {4.6i) and {4.6R.) rriust be identical. 
I 

However, all we can say about the relationship between the two 

projectors is that 

(P~Q,. P. )g. = 0 
1 1 1 

Because Q must be u~ed explicitly at ~ach iteration. (4.6R.) is 

not as attrattive a process as (4.6i). 

We have seen above several possible implementations each 

giving a different algorithm for effecting a QR factorization. 

For a quadratic in exact arithmetic with the same initial starting 

point and the same step length A. at corresponding iterates, . 1 

the Gram-Schmidt minimizing algorithm using (4.6d), the Hestenes 

type algorithm using (4.6i) and the algorithm given by {4.6i) 

would generate identical directions and give identical iterates 
I 

to the minimum. Their numerical behavior in finite precision 

arithmetic may, of course, be quite different and is worthy of 

further study. 

This completes our discussion of .methods that u~e the QR 

factorization. 

i. 
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8.2 Methods'Ustng TC 

We must now justify our claim that a sec<?nd important class 

of algorithms that uses first derivative and funct1on value infor-
. ' ' 

mation may be 'regarded as implicitly carrying out a tridiagonali-

zation followed by Cholesky factorization of A, when applied 

to the quadratic ~{x). 

4.7 Properties of Four Fundamental Relations. Three Theorems. 

In this section, as a first step, we study purely algebraically 

the properties of four fundamental relations. These results 

enable u~ to prove our main. theorem in Part I, which identifies 

a set of conditioffiunder which different algorithms .give identical 

iterates ·to the minimum of a quadratic. We use this theorem in 

subsequent sections. 

Theorem 4.1. Consider non-singular matrices satisfying the 

relations 

(FR) 

G = DR 

DTAD =a 

AD= GH 

GTG = 8 

{4.7a) 

where H is an upper Hessenberg matrix, R an upper triangular 

matrix and a and f3 are diagonal matrices. 

Then H and R must be bidiagonal and 
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where T is tri d i agona 1. We sha 11 henceforth ca 11 (4. 7a) the 

Four Relations (FR). 

Remark 1. An instance of the above four relations is obtained by/ 

augmenting (4.5a) with the additional requirements that the columns 

of G be orthogonal and that gn+l = 0. The latter condition 

implies that the third relation of (4.5a) may be written AD= VA-l 

= GH (cf. 2.2.1). 

Proof. Since we have 

0T = (RT)-lGT 

(R1)""1G1AD =a 

(RT)-1G1GH = a 

H = a-1R1a 

, 

' 

Since R1 is lower triangular and H is upper Hessenberg, H 

and R1 are both of the fonri 

X 
X X 

X X 0 

0 

X X 
X • 

X 
X X 

X X 

Substituting for 0 in o1AD = a, we obtain 

Hence (4.7a.l) 
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where RTaR 1s a tridiagonal matrix denoted by T. 0 

Remark 2. H = (hij)' R = (rij) and T = (tij). If hi+l ,i ~ 0 

for all i, then from the relation 

it follows that ri,i+l ~ 0, for all 1. This in turn implles 

that ti,i+l ~ 0, for all i. 

Corollary. If, i.nstead, the. four relations are given by 

then 

-

-QG = DR 

DTAD = a 
AD= GH 

G1QG : a 

where T is also tridiagonal. 

(4.7b) 

(4.7b.-1) 

An instance of (4 .. 7b) is obtained for (4.6b) with the addi-

tional requirements that the columns of G be orthogonal in the 

Q-metric and that gn+l = 0. 0 

Note. Relations (4.7a.1) are precisely the TC decomposition {4.2a). 

Theorem 4.2. Suppose there are two different sets of non-singular 

matrices G1, o1, R1 & H1 and G2, o2, R2 & H2 satisfying 

(4.7a) and thus (4.7a.l) by Theorem 4.1. Also let the first column 
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of Gl and G2 both be g1• i.e._, G1e1 = G2e1 = g1. Assume 
1 2 1 

hi+l,i 'I 0 and hi+l,i 'I 0 ·for all 'i, where Hl = (hij) and 

H2 = (h~j). 
Then o2 = o1w where w = diag[wi] is a diagonal matrix. 

Proof. From (4.7a.1) 

T -G1AG1 - T1 and G~AG2 = T2 
and 

T G1G1 = B and G~G2 =y 

From the uniqueness result, Lemma 3.1 of 3.4 and Remark 2 above, 

we have 

and 

Writing. y-112oa+l/2 =A, we have 

Now .. 

Gl = G0 
T1 = ATzA 

where R1 and R2 are upper triangular. Thus 
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assuming R1 and R2 are invertible, which will certainly be 

true if o1 and o2 are non-singular. Since the left hand side 

in the above relation is lower triangular and the right hand side 

57 

is upper triangular each must be a diagonal matrix say, diag[w.] = w. 
1 

Then 

[AR~r1 Ri = w 

R1 = wR~ 

Thus 

which implies that · 

D~ = n1w (4.7c) 

The directions defined by the ;th columns of o1 and .02 are 

therefore multiples of each other. 

Corollar,x. A similar result holds if we replace, in Theorem 4. 2, 

the conditions (4.7a) by (4.7b), namely the conditions for the 

Corollary to Theorem 4.1. 

Using the preceding Theo~ems we derive our main result: 

Theorem 4.3. Consider .the class of algorithms that satisfy the 

following conditions: 

(1) When applied to a quadratic'each generates in general a 

set of n mutually conjugate directions (d1, ••• ,dn) used in a 



minimal n-search, starting from a given initial point x1. 

(ii) Implicitly or explicitly di is a linear combination of 

-91. ••••• g i 

-directions 

given. 

(or stated alternatively of g. 'and all previous 
- 1 

di, ... ,di_1) for i = 1,2, ... ,n, and d1 = g1 

Then, for a quadratic, all algorithms in this class generate 

an identical ~et of iterates x1, ..• ,xn,xn+l to the minimum~ 

Proof. From condition (i) above the Quadratic Termination Property, 

cf. 2.6 is satisfied, i.e., GTD = V, -where V is upper triangular. 

By (ii) the Direction-Gradient relation, G = DR, holds. Thus 

LE!11111a 2.1 implies that the gradients G = (g1 , ••• ,gn) satisfy 
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A consequence of the Quadratic Termination Property is that the n 

search terminates. Also A.; ; 0 for all i. _Thus, for a quadratic,

the relation AD= GH always .holds _(2.2.1), and hi+l,i 'I 0 for 

all i. 

Therefore the conditions (4.7a) are all satisfied._ As proved in 

Theorem 4.2 any two sets of directions 01 = (d~, ..• ,d~) and 
2 2 o2 = (dl' ... ,dn) satisfying (4.7a) must be such that 

d
2i = wd 1 1 ' 

i = 1,2,.~.,n ahd wi are scalars.-

Then clearly a minimal n-search that uses any set of directions 

for which (4.7a) holds will generate a unique set of iterates to 

the minimum of a quadratic. 



Corollary. The result can easily be generalized to cover the 

case when condition (11) above, namely the relation G = DR is 

replaced by the more general relation QG = DR, where Q is pds. 

Each Q. will determine a class of algorithms. From condition (i) 

we shall have GTD = V. Thus GTQG = 6 and the uniqueness of 

the search directions up to multiplication by scalars then follows 

from the Corollary to Theorem 4.2. 

4.8 The Conjugate Gradient Algorithm 

The relations underlying the Conjugate Gradient Algorithm 

applied to a quadratic 1jJ(x), essentially amount to (4.7a). Thus, 

this algorithm uses a minimal ·· n-search strategy in which the 

directions di are linear combinations of gi and all previous 

directions. This 1s precisely the Direction Gradient Relation and 

R is taken to be unit upper triangular. The directions generated 

are conjugate. Since line searches are minimal, from the Quadratic 

Tenn_ination Property, gn+l = 0 and thus the basic relation for 

a quadratic {2.2b} may be written as AD = GH. Finally, by Lemma 2.1 

the columns of G are orthogonal. (Alternatively as described by 

Beckman [17], the Conjugate Gradient Algorithm may be viewed as 

performing two interleaved Gram-Schmidt orthogonalization processes. 

When his discussion is transformed into matrix notation it can be 

reduced to conditions (4.7a)). 

It follows, therefore, from the preceding theorems that the 

Conjugate Gradient algorithm implicitly effects the TC factorization 

and that there is a close correspondence between the Conjugate 

Gradient Algorithm and Algorithm TC of 4.2. In~eed, if we consider 
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the latter as generating n directions given by GR-l, then these 

directions will be multiples of those generated by the Conjugate 

Gradient Algorithm. 

The standard recursion defining the Conjugate Gradient Process 

is easily deduced from the four relations and is gi.ven by 

(4.8a) , 

where II liE denotes the Euclidean norm. 

After n iterations of this process (assuming no prior 

termination) we have a set of conjugate directions. 

elements (d.Ad.) for all. 
1 1 . 

can be estimated to be 

Hence, we may obtain ah .estimate of ~he inverse to" be 

n 
Q = \ -1 d.d: 

!. a. 1 1 · 
i=l 1 

and this estimate will be exact for a quadratic. 
I 

Also, the 
T -1 

(d~y.)>.. = 
1 1 1 

4.9 Conjugate Gradient Algorithm on a Transformed Quadratic 
I . . 

I 

This leads us to suggest that for the s~bsequent n iterations 

we work with the transformed quadratic_ ljl(y) of 2.2.3. The equa~ 

· tions underlying this process are then 

-
G = DR 

DTAO = ; 

AD = GH 

GTG = B 

(4.9a) 
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or in the space of the original variables 

AD = GH 

G1QG = B 

(4.9b) 

Then from the Corollaries to Theorems 4.1, 4.2 and.4.3 it follows 

that there is a close correspondence between this algorithm and 

Algorithm T-TC of 4.4. 

The recursion relations defining this Conjugate Gradient 

Process are given by relation (4.8a) applied to $(y) 

- 2 
- - lgriE -
d = g . + d r r 1- 82 r-1 

·· gr+l E 

where U BE denotes the Euclidean norm. Whence 

lg 12 
d = Qg + r Q d 
r r lg a2 r-1 

r..;lDQ 

. where 0 OQ denotes the· norm defined by psdmatrix Q. However, 

having to store Q explicitly negat~s some of the advantag~s of 

the Conjugate Gradient Algorithm. 

4.10 Methods That Employ the Variable Metric Relation 

We now show that a large class of algorithms using the variable 
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4 

metric relation 2.8 may also be regarded as effecting a TC Decom-

position. We show further that successive approximations to the 

inver.se Hessian of a quadratic obtained by these algorithms 

correspond to those obtained by Algorithm TC. 

Variable Metric Algorithms (VMA's) use an n-search 1strategy 

whereby the search directions d1 , ..• ,dn are generated and the 

inverse Hessian A-l developed in successive stages, for 

i = l, ••• ,n as follows 

(VMA) 
~(i)d~ = H.g. 

1 1 1 

H.Ad. = d. 
1 J J 

{4.l0a) 
for all 

where H1 = Q a pds matrix and 6 ( i) is an arbitrary parameter 

which we have explicitly extracted from di. Usually Hi is 

defined by a recurrence relation. (We also refer the reader to 

the discussion ih 2~8). 

An important and widely used class of VMA's imposes the 

further requirement that the line searches be minimal. Our interest 

is in this case. Then from LeiTI11a 2.2, for a quadratic ~P(x), the 

Variable Metric Relation <:ombined with minimal line searches 

implies mutual conjugacy of the search directions. 

Further. we temporarily restrict attention to members of the 

class of Variable Metric algorithms for which Q = l, ·the identity 

matrix and which generate directions implicitly or explicitly 

satisfying the Direction-Gradient relation G = DR. The latter 

condition may easily be verified for many known algorithms from 

the recurrence relations that they use to define H .. Such 
1 
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algorithms then generate directions D = (d1, .•• ,dn) and gradients 

G = (g1' ••• ,gn) that obey all the conditions of Theorem 4.3 (or 

equivalently the Four Relations (4.7a)), and are thus members of 

the class of algorithms identified in that Theorem. Clearly then 

they implicitly effect the TC decomposition, and generate the same 

iterates to the minimum of a quadratic as any other member of the 

s-ame class that starts from the same initial point x1. 

Since the conditions of Theorem 4.3 are equivalent to FR 

(4.7a) we seek to derive an expression for Hi that is consistent 

with FR (4.7a). This shows precisely the extent to which VMA's 

can differ when applied to quadratics. 

Theorem 4.4. Consider the class of Variable Metric Algorithms 

VMA (4.10a) that generate directions and gradients satisfying the 

·four relations 'FR (4.7a). namely 

G = DR 

DTAD =a 

AD = GH 

GTG = S 
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when applied to a quadratic, & R is unit upper triangular. Then any VMA 

in this class gives successive approximations Hi to the inverse 

Hessian- A..:1 that must satisfy 

-1 
R 

H; = G f 

- - - - - - - - - - -
( 4.1 Ob) 



; 

where Ri is the ith leading principal submatrix of R, o(i) 

is an arbitrary parameter, ~nd Li+l is an arbitrary pds matrix. 

Proof. In order to avoid possible confusion of notation we point 

out th~t in this proof H. re~resents th~ ith approxim~tion to 
1 

th~ inverse Hessian whilst H stands for the upper Hessenberg 

matrix in the above relations; 

(1) From VMA {4.10a) 

H.ADE. l = DE. l 
1 1- 1-

where Ei-l = (e1,e2, ••• ,ei_1) and 

identity matrix. Thus 

(;;) Similarly 

(iii) Combining (i) and {ii) 

e. is the jth column of the 
J 

= GR-lE. 
,-1 

-1 
= GR E. l 

1-

-l = R E. l ,_ 
-1 = R E. l ,_ 

from FR {4.7a} 

since H = B-lRTa 

from Theorem 4.1 

from VMA (4.10a} 

since 

where 6(~) = ~{i)ls .. Since R is unit upper triangul~r 
1 --

' 
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( T T )-1 ( T)-1 Note that E.R E. =E. R E .. 1 1 1 . 1 
There are standard fonnulae for exhibiting the full set of 

solutions to these overdetermined equations 

_ -1 . -1 -1 ( i ) · T ( T)-1 
1
. } ( T) X- R Eid1ag[a1 , ••• ,ai-l'~ · ](Ei R Ei 0 + Z 1-EiEi 

where Z is an arbitrary matrix. We want symmetric solutions. 
-1 . Tidying up and wrfting R1 = R E1 we obtain 

0 

0 
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when. Li+l is an arbitrary positive definite syrrmetric matrix (since we· 

want the left hand side to be symmetric and positive definite). 

Now G1G = B • B-lGT = G-l. Hence 



( 

· R1 d1ag[a1 , ••• ,ai_1,o ]{Ri) . [ -1 . . -1 - -1 { i) T -1 

H = G 
i 0 

0 l ·T 
G. (4.10c) 

li+l 

0 

Comparing (4.10c) with the ith approximation to the inverse 

in Algorithm TC shows that they are identical. The subsequent 

analysis of 4.3 is therefore applicable here and, in particular, 
I 

we can identify two recurrence relations for Hi given by {4.3g) 

and {4.3j) respectively. The latter we have observed is related 

to the family of Huang in the form given by Powell [13]. 

We see that the recurrence relation {4.3g) suggests another 

variable metric updating technique. ·.This is the updating formula. 

H.+l =H. + _l d.d~- o{j)d.dt 
J. J aj J J J J 

(j+l) . T 
- y 9j+lgj+l 

2 
Bgj+lnE 

where rj+l,j = 2 may be absorbed into the arbitrary 
UgjUE 

parameter o(j+l). 

4.11 Discussion and Removal of Restriction Q = I 

There is however a strong argument in favor of Huang•s 

{4.10d) 

relation, namely {4.3j) versus (4.10d). To see this let us work 

with the transformed quadratfc ~(y) given by x = Qy for some 

pds matrix Q :: Q2, cf. 2.2.3. Denoting successive approximations 
-

to the inverse Hessian by Hi the variable metric algorithms 
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considered in this section are defined by 

-Hl II I 

ii g- = 6<na. i i . 1 

and satisfy the conditions of the Corollary to Theorem 4.3 or 

equivalently the conditions (4.7b} and (4.7b.l). In the space of 
- - - - -1 the original variables we have, using g. = Qg. and d. = (Q) d. 

1 , 1 1 

,.. 

-
H II I 1 . 

(ijii Q)g = ~(i}d 
i i i 

and writing Hi= QHiQ· we have 

-

(4.1lb) 

Since H. is defined by.the recurrence relations (4.3j} applied 
J 

to ~(y) 

_ - (J}- -r (J)- - - - - · r HJ.+l - H. + p d .d. + q H. (gj+l-g. )(g "+l-g.) H · J JJ J .· J J •J J 
(j) - - - r- - - - -r 

+ r [d. (g "+l-g.) H.+ H. (g "+l-g. )d ·] JJ J J JJ JJ. 

(4.11c). 

,.. 
it is easy to see that Hi is given by 

(4.1ld) 
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-.·: -. ,· 

-
i.e., apart from the initial Hl = Q. the recurrence relation 

.... 
defining H. 

J 
is invariant. This property is not shared by the 

relation form (4.10d) 
.... 

in the which for Hi is 

j+l~ - T T o r.+l .[d.g.+1Q+Qg.+1d.] J ,J J J J. J 

{4.lle) 

I 
Directions generated by a VMA using {4.llb) and (4.1ld or e) 

,/" 
satisfy the Direction-Gradient relations QG = DR. The Corollary of 

Theorem 4.3 implies that Algorithm T-TC, the transformed Conjugate 

Gradient Algorithm of 4.9 and the Variable Metric Algorithms given 

by (4.llb} and (4.lld or e) just discussed, are therefore closely 

interrelat~d, and generate search directions d. that are scalar 
1 

I 

multiples of each other. 

4.12 Quasi-Newton Methods 

Quasi-Newton Methods employ the relations and results of 2.9 

instead of those of 2.8. These relations define a more general 

class of algorithms than thos~ of 2.8. For example, since the 

Quasi-Newton Relation + Minimal Line Searches do not necessarily 

imply the Variable Metric Relation, algorithm~ within this class 

do not necessarily have the Finite Termination Property. However, 

many such algorithms, e.g. s~e Broyden [18], when applied to a 

quadratic, may be shown to satisfy the conditions of Theorem 4.3. 

The close correspondence between such algorithms and those of 
I 

previous sections of this thesis then fo 11 ows from Theorem 4. 3. 

This completes our discussion on methods that use first 

derivatives and function values. 
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/ C. Algorithms That Do Not Require Derivatives 

So far most of the algorithms we have considered have effected 

explicitly or implicitly either the LU factorization, ~he QR factori

zation or the TC factorization. The tridiagonalization involved 

in th~ last of these three corresponds to a partial solution of· the 

algebraic eigenproblem for the Hessian of a quadratic (cf. Givens 

or Householder's Method discussed in Wilkinson [7]). In this 

section, after briefly mentioning some standard. methods, we discuss 

an algorithm/ of Brodlie, for unconstrained minimization without 

use of derivatives, that corresponds to a complete solution of the 

algebraic eigenproblem. Brodl;e proves that his algorithm for a 

quadratic is an exact parallel of a cyclic Jacobi Method applied 

to the Hessian, but his algorithm is described in t~rms which allow 

its application to general functions. We describe the principal 

steps of his algorithm and make an observation which Brodlie seems 

not to have mentioned, which permits a slightly different imple-
' 

mentation of his algorithm. This observation also enables us to 
. - . . 

suggest algorithms that parallel other techniques for partially 

solving the eigenproblem and thus complete the unifying thread 

which we have attempted to draw between the numerous algorithms in 

the field of unconstrained minimization~ 

4.13 Direct Search Methods, e.g. Rosenbrock [19], the cyclic 

co-ordinate ascent method and the method of Powell [ 3] are well 

known algorithms in this area. These methods maintain a full set 

of n-search directions which are revised as the algorithm progresses. 

This cyclic co-ordinate ascent method and Rosenbrock's method 
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maintain a set of n orthogonal directions; the former always 

searches in fixed directions parallel to the n co-ordinate 

axes, whilst the latter revises the orthogonal sea.rch directions. 

~~Powell's algorithm when applied to a quadratic, the directions 

are updated s~ as to converge to a set of mutually conjugate 

directions in a fini~e number of steps. In order to /generate 

such directions it is necessary to perform minimal line searches. 

There is also a danger that these n search directions can become 

linearly ~ependent and the precautions necessary to prevent this 

often adversely affect the efficiency of the procedure. Brodlie 

[ 4] has suggested a method which maintains an orthogonal set of 

n directions at any iteration, and these are updated so as to 

also ensure convergence, for a quadratic, to a mutually conjugate 

set. Thus his method converges to directions D such that 

DTD = I 

DTAD = diag(lli) 

This, of course, is an infinite process and if lli 

these directions, clearlg·the eigendirections of A, 

(4.13a) 

are distinct 

are unique. 

We see that more work is being done than is necessary, since all 

that is required for conjugacy is a set of directions orthogonal 

in the A metric; this set of directions is by no means unique. 

However, by maintaining orthogonal search direction, there is no 

danger of the directions becoming linearly dependent. Furthermore, 

this technique of updating the directions does not require minimal 

line searches. The method he uses for updating the search directions 
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is as follows. Suppose that the search directions are 

o(k) = (dik). · ·d~k)) at some stage of the algo.rithm and the 

current estimate of·the minimum is x(k). 

Algorithm B: 

1) Select a pair (p,1q) according to some _cyclic pattern C. 

ii) Approximate the function ¢(x) restricted to the subspace . ' 

·. spanned by d~~) and d~k). by the following quadratic 

.. 

A A 

where b is a 2-element vector and H is a 2 x 2 matrix. The 

constants ;, b and H may be determined by fitting ¢(k) to 

six function values in the subspace spanned by d~k) and d~k), 
no more than three of which may be colinear. Further function 

evaluations may be performed in this two-dimensional search 

process. · 

iii) ··. Take (k+l) 
X .· to be the point at which the function had 

its least value in the two-dimensional search process, in step {ii). 

iv) Revise the directions by 
\ 

d(k+l) = d(k) cos e + d(k) sine 
p p q 

d(k+l) = -d(k) sin e + d(k) cos e 
q p ' . q 

(4 0 13b) 

d(k+l) = d(k) for all J .-:j. p, q . 
J ' J 

e is chosen so that d{k+l) 
. p ' 

d{k+l) lie along the principal 
q ' 

axes of the quadratic, i~e., 
' ' . 

;... . .,... 
if H = (hij) is the Hessian of "{k) 

<P 
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l 

then 

The above constitutes an iteration of the algorithm and Brodlie 

shows· that when the algorithm is applied to a quadratic function 

11J(x) =a +bx+}<TAx, the successive. approximations to the set of 

eigenvectors are identical to those given by a cyclic Jacobi 

Method (with cyclic pattern given by C) applied to the Hessian 

A~ He implements a particular-choice of C, chosen in a subtle 

way, so that no search direction ~ominates in any portion' of a 

cyclic pattern. 

4.14 The following observation suggests an alternative method 

~o the one that Brodlie uses to update his search directions. 

Estimates of second derivatives along the directions d~k), 

and d(k) + dq(k) are easily obtained. For a quadratic lJI(x) p . 

this detennines the values of the following three elements of 
·Tr-.· 

o(k) AD(k): the (p,p)th, (q,q)th and (p,q}th. The first two, 

d(k)Ad(k) and d(k)Ad(k) 
p .· p q q , 

derivative estimates along 

derivative estimates along 

are obtained directly from the second 

d(k) and d(k)_ Also from second 
p q 

d(k) + d(k) we have 
.p q 

whence the (p,q)th element is given by 

d(k)Ad(k) == Jct(d(k)+d(k))A(d(k)+d(k))- d(k)Ad(k)- d(k)Ad(k)} 
p q 2 p q p q p p q . q . 

( 4 .14a) 
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By the.Jacobi rule 3.3 the angle of rotation in the (p;q) plane 

needed to reduce the (p,q)th element to zero is given by e where 

(4. 14b) 

Thus, in Brodlie's algorithm we may carry .out the above procedure 

in place of step ii) and perform the revision in step iv) using 

expressions (4.13b) but with e calculated as in (4.14b). 

The above idea also suggests other possible algorithms based 

upon the Arnoldi, Givens or Householder methods for finding the 

tridiagonal reduction of a matrix, see 3.5. In the above variation 

of the Brodlie algorithm, at any iteration k only a single off 
. T 

diagonal ele~ent d~k)Ad~k) of o(k) AD(k) is estimated, in 

order to perform a revision of the search directions. The new 

search directions are then revised by 

where n(k) was an elementary rotation in the · (p,q) plane with 

angle given by e in (4.14b). In an analogous fashion we may 

develop a procedure based upon a tridiagonal reduction. At any 

iteration k, only cer·tain elements of D(k)TAD(k) need be 

estimated, namely, those that determine the transformation needed 

to revise the current directions. We close with the suggestion 

that it should be possible to devise algorithms for unconstrained 

minimization without derivatives which, for a quadratic ~(x), 

parallel the tridfagonalization of the Hessian coupled with Cholesky 
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factorization in much the same way as Brodlie's algorithm parallels 

a cyclic Jacobi process, and to describe these algorithms in a 

form that permits application to general functions. Such algorithms 

would for a quadratic then be equivalent to Algorithm TC of 4.2; 

but would differ significantly in implementation in that, at any 

iteration, only certain elements of o(k)AD(k) (usually a single 

column) need be estimated. When applied to a non-quadratic function 

they would thus be quite different from Algorithm TC. 
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Part II 

Generation of Conjugate Directions for 

gnconstrained Minimization without Derhatives 



- " 

Chapter 5 

The algorithm that we discuss and analyse in Part II of this 

thesis was introduced in 1.2.2. As noted there, it stems from 

two theorems proved by M.J.D. Powell [20]. 

5. 1 Powell' s Theorems 

We use the notation 60 to mean the absolute value of the 

determinant of the matrix D. 

Theorem 5.1 (Powell, 1964). Given a quadratic function 
·, 

liJ(x) =a +b1x+~TAx where A is positive definite and syrrmetric 

(pds), let (d
1

, ••• ,dn} be any set of n directions satisfying 

the normalization conditions 

i = 1 , 2, ... ,n , (S.la) 

i.e., df are defined to be of unit length in the A-norm. If 

D is the matrix whose columns are the directions (d1, ... ,dn), 

then the maximum value of 60 is attained if and only if the 

directions di (i = l, ..• ,n) are mutually conjugate. D 

Theorem 5.2 (Powell, 1972). Let (d1, .•• ,dn) be any set of n 

directions normalized to satisfy (5.la). Let D be the matrix 

whose columns are·the directions (d1, •.• ,dn)• and let n be any. 

orthogonal matrix. 

Let the columns of the matrix D given by D = on, define 

a new set of directions {d1, •• qdn). 

Normalize each of the directions d1 so that each is of unit 
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length in the A-norm, thus obtaining directions di and matrix 

D* = (dl, .•• ,d~), where 

Then 

t:JJ* > flO (S.lb) 

where , fl is defined as above. 0 

For proofs of these theorems we refer the reader to Powe 11 [20] . 

. ·The first theorem may be interpreted as follows: Consider 

the vectors d
1 

= Rdl for all i, where A= RTR is the Cholesky. 

factorizatio~ of the pds matrix A. The ordinary volume spanned 

by the columns of the matrix 6 = {a
1

, ••• ,dn} is given by aD 
"' {see Franklin [21]). By Hadamard's Inequality this volume 60 

"' _is a maximum if and only if the vectors di are orthogonal. But 

since R is fixed 60 = (flR){flO) is a maximum if and only if 60 

is a maximum, and from the definitions of d. and R, the direc-. ~ . . 1 . 

tions ai are orthogonal if and only if the directions di are 

mutually conjugate. Thus, flO is a maximum if and only if the 

directions di are mutually conjugate. The maximum possible value 

of D is given by 

flO = (flR)-l = (flA)-l/2 
max (S.lc) 

Since 60 is a measure of closeness to mutual conjugacy of 

normalized search directions di, the second theorem states that 

the normalized directions di are at least as close to mutual 

·, . 
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conjugacy as are the nonnalized directions di. 

5.2 N.onnalization 

Suppose (dp···,dn) are a set of unnonnalized search 

.directions at the current iterate c 
X • (We shall henceforth 

denote unnonnalized directions by di and nonnalized directions 

by di.) In order to satisfy the normalization condition (S.la) 
-T - 112 each direction d

1 
must be divided by (d

1
Ad

1
) , its length 

in the A-nann. For a quadratic w(x) this may be obtained by 

estimating the value of the second derivative of ljl{x) at xc 

in the direction di since: 

and 

Thus 

c - c c --T _ 'IIJ(x +>.d.) - 21jJ(x ) + w(x ->.d
1
.) 

d.Ad = · 1· · ·. , i . 
>. 

Similar results hold approximately for a general smooth function 

~(x) with A replaced by A(xc) and 0 < I. << l. 

5.3 The Resulting Algorithm and Questions to be Discussed 

The algorithm derived from these two theorems is as follows: 

A set of n search directions is maintained. At any iteration a 

search is' conducted in sequence along each direction of this set, 

and the current estimate of the minimum improved in some way. It 
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is an easy matter to estimate second derivatives along each direction. 

Thus each direction may be normalized and the set of search directions 

revised by post-multiplying by a suitably chosen orthogonal trans

formation. This completes an iteration of the algorithm~· 

We shall denote the unnormalized search directions at the start 

of iteration k: by the columns of [i{k), ·the normalized search 
' 

directions at the kth iteration by the columns of D{k) and the 

·orthogonal transformation used during the ith iteration by n(k)_ 
. T 

In general, knowledgeof the off-diagonal elements of D(k) AD(k) 

is not explicitly available without further work and we do not 

therefore assume this knowledge in determining which orthogonal 

transformation n(k) to use in the updating process at the kth 

iteration. Later we shall discuss why it might be worthwhile to 
. T 

estimate one or more off-diagonal elements of D(k) AD(k). 

As pointed out in Chapter 1, 1.2.2, when an algorithm 

developed along the lines suggested by Powell's theorems is applied 

to a quadratic function ~(x), convergence of the search directions 
. o{k) to mutual conjugacy is not assured. The optimal choice of · 

T 
o(k) to be used to update D(k) are the eigenvectors of D(k) AD(k). 

These are expensive to obtain. A more reasonable approach, and 

one that is in accordance with the methods of Computational Linear 

Algebra (cf. the methods of Givens or Householder) would be to 

restrict attention to a class of orthogonal transformations, hope

fully well chosen, from· which n(k) at ,each iteration is selected. 

Certain questions then ~rise quite naturally. Suppose that at each 

iteration an arbitrary orthogonal transformation from this class 

is used to revise the search directions. Provided that no search 
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direct~on is neglected, will convergence of the search directions 

to mutual conjugacy with respect to A (the fixed Hessian of ~~J(x)) 

always occur? ·If not, can cases be exhibited for which one obtains . . . . 

non-convergence or cycling? Can convergence always be assured by 

judiciously choosing, at each iteration, an orthogonal transfonna

tion from the class? Do we get convergence to fixed directions 

or merely to some set of directions that are mutually conjugate? 

What is the ultimate rate of convergence? Settling these questions 

is crucial to understanding the algorithm's behaviour, particularly. 

its local behaviour in the neighborhood of a minimum, where it 

will be well approximated by a quadratic. whenever cp{x) is smooth 

there. 

5.4 The Algorithm Ar'ising From Use of Plane Rotations 

Let the orthogonal transfonnation n(k) be selected from the 

class of plane rotations, cf. {3.3a.l). This seemed to us a 

worthwhile context withinwhich to investigate some of the above 

questions for severa 1 reasons: 

a) It is a natural choice, particularly in the light of 

the discussion on Brodlie's Algorithm in 4.13. 

b) Proofs of convergence of the search directions to mutual 

conjugacy for this case could help illuminate the Jacobi eigenvalue 

process. In fact, it turned out tha.t with suitable alterations, 

the proofs of convergence obtained (see Chapter 8) could be used 

to show the convergence of the cyclic Jacobi process,for a much 

largerclass of cyclic patterns than has currently been proved in 

the 1 i terature [ 5 ] . 
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c) An inve~tigation of the algorithm for plane rotations 

could help in understanding the behaviour of and the difficulties 

one might encounter~ with an algorithm that uses a more general 

class of orthogonal transformations. 

We mentioned in Chapter 1 that under this restriction on 

n(k), · the -~esulting algorithm is related to, but in many respects 

different from the Jacobi eigenvalue process. Let us examine this 

further. 

Suppose we are dealing with a quadratic function w(x) and 

are given at a typical step k, a set of search directions 

d{k>, ... ,d~k) normalized to be of unit length in the A-norm. The 

magnitude of the off-diagonal elements of D(k)TAD(k) indicate 

how close the columns of D(k) are to mutual conjug-acy. 

Now, revising o(k) at iteration k, by means of a plane 

rotation through dngle e, say in the (p,q) plane, gives 

unnormalized directions o(k+l) satisfying 

~(k+l) = d(k) cos B + d(k) sine 
p p q 

~(k+l) = -d(k) sine+ d(k) cos e (5.4a) 
q p q 

~(k+l) = d(k) for all r r p or q . 
r r 

At iteration k~ only directions d~k) and d~k) are 

altered and all other directions are unchanged. The best e to 

choose is the angle that makes d(k+l) and d(k+l) conjugate. 
p q T 

This is the requirement that the (p,q)th .element of o(k) AD(k) 

be reduced to zero and, analogously to (3.3a) this angle is given by 

80 



(5.4b) 

Since d{k) 
p 

minator = 0. 

and d~k) are both normalized to unity, the deno

lhus, always e = ±~/4 unless d{k)Ad{k) = 0, in p q 
which case any. e will do. 

We note that knowledge of the magnitude ·of d(k)Ad(k} is 
p q 

not needed. 

Thus, revising the search directions at iteration k corres-

ponds to post-multiplication by a member of the two element set 

of fixed matrices {Upq'U~ql where 

and the submatrix 

Let 

upq = {uijl 

u1i = 1 for all i ~ p or q 

u •. = 0 
lJ 

for all {i ,j) ~- (p,q) 

or (q,p} and i ~ j 

T s = {Upq'upq: V(p,q) s.t. 1 ~ p < q ~ n} 

(5.4c) 

(5.4d) 

(5.4e} 

The natural choice would then be to select n(k} at each 

iteration from this set. 

Drawing an analogy with the Classical Jacobi eigenvalue 

· process would suggest that, at each iteration, one choose the 

81 



pair (p,q) to be revised that corresponds to the maximum off-
T . 

diagonal element of o(k) AD{k). From a practical standpoint 

however, this is not feasible since H assumes knowledge of all 

off~diagonal elements of o(k)TAD(k). Since the ~essian A is 

not known explicitly, the estimation of all off-diagonal elements 

of D(k)TAD(k) requirres a large number of function evaluations. 

Also, such a selection rule could result in certain search direc-

tions being neglected during a large number of iterations. We 

would prefer that the pairs (p;q) be selected iri some fixed 

order. Henceforth we consider the Cyclic Selection Rule which 

selects successive members of a cyclic pattern, i.e., a permutation 

of the n(n-1)12 pairs {1,2),(1,3), ... ,(1,n),(2,3), ... ,(2,n), 

•.• ,(n-l,n). A sweep of n(n~l)l2 iterations completes a_cycle, 

and a fresh cycle is then started. In this case, knowledge of 

off-diagonal elements of the Hessian A is not required, either 

for the choice of the pair to be revised or, as we saw above, for 

the orthogonal transfonnation to be used in revising this pair. 

This is in marked contrast to Brodlie's algorithm 4.13. 

5.4.1. The algorithm .outlined in 5.3 then specializes to 

Algorithm C below, whose kth iteration initiated with a set of 

directions -(k) -(k} (dk ,i •• ,dn ) is as follows: 

Algorithm C: 

i) Choose a pair (p,q) (called the current ~ir) according 

to some cyclic pattern. 

ii) Condutt ~linear search, not necessarily minimal, in 

sequence along the pth and qth search directions. Improve the 
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, ..... 

estima~e of the minimum in some way. Nonmalize these two direc

tions by estimating the second derivative along each direction . 

d~ring.the search· (as discussed in 5.2) thus obtaining directions 

d(k) and d(k). All other directions remain unaltered. 
p ·q . 

iii) Postmultiply the matrix whose columns consist of the set 

of search directions by n(k) = Upq or u!q thus revising the 

search directions. This gives Airections 

d(k+l) = ~d(k) + d(k)) 
p l'l p q 

d ( k+ 1) = l( ±d ( k) + d ( k ) ) . 
q l'l p q . 

and all other directions remain unaltered. Then start iteration 

(k+ 1). 

The algorithm is initiated with·a set of linearly independent 

directions d~n, ... ,d~l) .. and terminates using, at step ii), some 

suitable criterion based upon change in current estimate of the 

minimum value and change in function valu~ at this estimate during 

a complete cycle. See e.g. Brodlie [ 4 ]. 

Remarks 

l. Note that at the· start of any iteration the set of search 

dir~ctions need not be of unit length in the A-norm, when Algorithm 

C is applied to the quadratic 1JJ(x) = a+ bTx+ }xTAx. After. step fi) 

the pth and qth directions are normalized to unit length but 

this property is again destroyed after revising them at step iii). 

We return to this in the next section 5.4.2. 
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2. A more general algorithm would search, in step ii) along 
' 

several directions, and employ, in step iii), a broader ~et of 

orthogonal transformations. A generalization of (5.4d) to the case 

when four directions are updated at any iteration, would post

multiply these, for example, by the matrix 

1 1 ·1 1 

1 1 1 -1 -1 

4 1 -1 -1 1 (5.4f) 

1 -1 1 -1 

This matrix is a typical member of a class of matrices defined 

analogously to (5.4d) and (5.4e)~ The generalization to the case 

when any even number of vectors are updated is clear~ We shall 

return briefly to· such transfonnations later. 

3. Our definition of Algorithm C has been influenced by the 

assumption that, in general, the off-diagonal elements of T ·. 
D(k) AD(k) are not available. In particular, note that in 

Algorithm C directions that are already conjugate will, nevertheless, 

be revised. We may amend step iii) of Algorithm C so that a 

mutually conjugate current pair of directions are left unchanged 

using considerations discussed in 4.14; namely, after obtaining 

d(k+l) we could estimate Ud(k+l)ll . Then d(k)Ad(k) could be 
p P A . p q. 

deduced from ( 4. 14a). If this is zero then the ori gina 1 directions 

d(k) and d(k) could be left unchanged, since they are already p q 

conjugate. We take this up again in Chapter 7. 
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5.4.2. Two Perspectives on Algorithm C 

Consider Algorithm C applied, to the quadratic ~(x}. Let 

the columns of D(k} = (d~k}, •.. ,d~k}) represent the normalized 

set of sea~ch directions at the start of iteration k, and D(l) 

the initial normalized set of search directions. As discussed in 

Remark 1 above, these are not explicitly maintained by Algorithm C 

at the start of any iteration. We introduce them for the purpose 

of analysts and during subsequent analysis we shall usually work 

with the normalized search directions. Let us postulate also a . . . - . ( 

diagonal normalizing matrix represented by N(k) which restores 

the search directions at the end of any iteration k, to unit 

length in the A-norm. Again, Algorithm C does not do this 

explicitly. 

Then the normalized directions, at the start of iteration k, 

are given by the columns of D(k) 

where n(k) is the orthogonal transformation employed by the 

algorithm at iteration k. 

(5.4g) 

We saw from Powell's first theorem that when l!D(k) is a 

maximum, the columns of D(k) are conjugate .. The magnitude of 

the off~diagonal elements of the following matrix A{k) also indi

cate how close to mutual conjugacy the search directions are: 

. A{k) = D(k)AD(k) 
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= N ( k- l ) n ( k -1 ) T ••. N ( l )n { 1 ) T D { l ) TAD { l ) n ( 1 ) N ( l ) ... n ( k-1 ) N ( k -_1 ) . 

(5.4h) 



Algotithm C may be regarded as implicitly effecting a con

gruence transformation of A, through a sequence of similarity 

transformations using elements from the set S and diagonal con

gruence transformations for the normalization. In the Jacobi 

eigenvalue process there are no normalizing factors but the analogy 

with the Jacobi process defined in 3.3 is apparent. 

A second perspective would be to consider the process as 

carrying out a sequence of orthogonal linear combinations in the 

following way: At iteration k, take a pair of directions d(k) 
p 

and (i(k) and normalize them to be of unit length in the A~nonn, 
q 

thus obtaining d~k) and d~k). Then replace d~k) and d~k) 

by vectors ,in the direction of their suin and difference~ These 

lie in the plane spanned by d(k) and d(k) and correspond to 
p q 

the diagonals of the rhombus they define. All other directions 

are untouched. 

Q(k) e U or 
pq 

This is, of course, ~ostmultiplication by 
T upq· It is interesting to note that for a positive 

definite symmetric matrix A, the Jacobi Process for solving the 

eigenproblem may be viewed as a series of revisions of pairs of 

directions currently approximating the eigenvectors. However, 

since these directions are not normalized, the columns of the 

current approximation to the matrix of eigenvectors will not necessa

rily be of the same length, in the A-norm. Thus in revising any 

pair the angle a given by (5.4b) need not be ±n/4, since now 

the denominator in (5.4b) need not vanish. In particular, to 

determine e it will be necessary to know the off-diagonal elements 

of A(k). 
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5.4.3. Basic Relations of the Algorithm 

After carrying out the kth iteration of Algorithm c, with 

(p,q) the current pair we have: · 

(5.4i) 

where both upper or both lower signs are taken together. Als6 

l. d(k+l) = d(k) for all r 'I p or q . 
r r 

Given any such r, we have 

I ~~k+l ,~~d~ k+ 1 >I = 
.. · .. 

~d~k+l)Ad~k+l)l = 

(d (k) Ad (k)±d(k) Ad (k)) /{ ~d (k)±d(k) ~ ) 
p r q r p . q A (5.4j) 

( +d ( k_) Ad ( k ) +d ( k ) Ad ( k ) ) / ( II +d ( k ) +d ( k ) n ) 
p r q r . p q IIA 

Definition l. We call jd~k)Adjk)l the weight of pair (i,j) 

at iteration k. Note that in defining the weight we are using 

the normalized search directions. 

Definition 2. If (p,q) is the current pair at the kth iteration, 

tnen for any r 1 p or q, we say that (p,r} and (q,r} are 

linked during the ~th iteration. 

5.5 Interpretation of Convergence 

We want· A(k) in (5.4h) to converge to the unit matrix I, 

whence D(k) must tend, as k + ~, to a matrix ~hose columns are 

mutually conjugate. Henceforth when we say that the set of search 

87 



directions converge to mutual conjugacy we mean that A(k)-+ I. 

This does not imply that the search directions converge to a fixed 

set of mutually conjugate directions. To make this clear let us 

consider a cyclic Jacobi process applied to the Hessian A of the 

quadr~tic ~(x) (and assume that A has dist~nct eigenvalues) .. 

Then 'the eigendi rections defined. by the set of eigenvectors are 

unique. By taking a sufficiently large number of steps one can 

ensure that two consecutive iterations of this Cyclic Jacobi Process 

give approximations to the eigendirections that are arbitrarily 

close to each other and to the fixed set of unique eigendirections 

of A. Brodlie's algorithm will converge to this set of directions. 

In contrast, if Algorithm C is applied to this quadratic 1/J(x), 

the sets of search directions in two consecutive iterations can 

. differ substantially for any A(k) arbitrarily close to the 

identity matrix I. Two directions d(k) and d(k) satisfying 
p q 

ld(k)Ad(k)l = E 0 < E << 1 are nevertheless replaced by direc-
. p q ' 

tions that ~ould make an angle of as much .as n/4 with the original 

.directions. The final directions obtained will depend upon the 

initial directions and the complete sequence of n(k) used. One 

can only state with assurance that o(k) tan be made arbitrarily 

close to the class of mutual~y conjugate directions whenever 

A(k)-+ I. 

These observations are not influenced by changing step iii) 

6f Algorithm C so that already conjuriate directions are not revised 

as discussed in Remark 3 above. There will still always be somt• 

current pair (p,q) during the course of the iteration for which 

d(k)Ad(k) is non-zero, though perhaps arbitrarily small. 
p q 
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5.6 Overview 

We study the questions raised at the end of 5.3 within the 

context of subsequent sections. 

·we saw in 5.4~1 that the subset of plane rotations given by 

S (5.4e) arises very naturally. In the next chapter we show 

that given an arbitrary cyclic pattern there must always exist 

a sequence of orthogonal transformations n(k) chosen from S 

such that the search directions converge to mutual conjugacy. 

Then, in Chapter 7, we show·that there are certain cyclic patterns 

for· which a misguided policy for choosing the orthogonal transfer-· 

mation at each iteration from S can lead to cycling of the elements 

of A. The proofs and examples are sensitive to changes in the 

definitionof the algorithm but various versions that we consider 

are all shown to have associated difficulties when seeking to 

ensure convergence of the search directions to mutual conjugacy. 

By considering, in Chapter 8, a restricted class of cyclic patterns 

P we get around these difficulties and a proof of convergence of 

the search directions·to mutual conjugacy is given; We have also 

used the ideas underlying these proofs to show the convergence 6f 

the cyclic Jacobi process for a large class of cyclic patterns. 

See [ 5 ]. We close with a discussion on ultimate rate of conver

gence, and the use of more general classes of orthogonal transfer-

mations. 
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Chapter 6 

The next theorem claims the existence of certain s~quences 

of orthogonal transformations chosen from S, that ensure conver

gence of o(k). It is non-constructive in the sense that since 
. T 

~ff-diagonal eleme~ts of o(k) AD(k) are not available, the 

theorem does not enable one to know, beforehand, whether a parti

cular policy for choosing n(k) will succeed in generating a 

mutuallY conjugate set of directions. 

Theorem 6.2. Consider Algorithm C applied to the quadratic ~{x) 

·using an arbitrary cyclic pattern. Then there must always exist 
(1) (2) (k) a sequence of orthogonal transformations n ,n , ... ,n , .•. 

(~ith g(k) either Upq or U~q when (p,q) is the current 

pair) for which the search directions converge to a set of mutually 

conjugate directions. 

We shall need the following two simple lemmas: 

Lemma 6 .. 1. 

such·that 

( i) 

(ii) 

Given search directions 

I d ( k ) Ad { k ) I > ll 
P r ...,.. 

(p,q) is the current pa1r. 

d(k)_ 
p . , 

d(k) and 
q 
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Then for at least one of the matrices Upq and u;q we must have 

Proof. From the basic relations f6r Algorithm C {5.4j) 

ld(k+l)Ad(k+l)l = l<d.(k)Ad(k)±d{k)Ad(k))j(ud(k)±d(.k)ll >I· (6.2a) 
p r p r, q .. r up .q A 



Now 

ld(k) ± d(k)u < 2 
a p q DA -

Thus by choosing ~/k) so that both terms in (6.2a) have the same 

sign it follows that 

Using the terminology introduced in 5.4.3 for. this transfor

mation the weight on (p,r) is at most halved after iteration k. -- . 

Corollary. If the weight on pair (p,r) exc~eds p and the pair 

(p,q) is revised, then after the revision the weight on at least 

one of the pairs (p,r) and (q,r) must exceed. p/2, for any 

(k) T 
n e {Upq'upq}. 

lerrma 6. 2 .· Suppo$e at iteration t the current pair is (p ,r), 

n(t) e {U uT } and jd(t)Ad(t)l = y Then 
pr' pr p · r · 

where tJl(t) denotes the absolute value of the determinant of D(t). 

Proof. From Theorem 5.2 

liD(t+l) = 2liD(t)j[(Ud(t}+d(t}ll }(lld(t)_d(t}l1 }] 
. p r A p r 'A 

= 2liD(t}j[(2+2d(t)Ad(t))l/2(2-2d(t}Ad(t))l/2] 
p r p r 

= liD(t)/(l-y2)l/2 0 
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Using these two 1 enmas the Proof of Theorem -6.2 is as fallows: 

Consider ~ sequence of orthogonal transformations 

n< 1l,n(2), ... ,n(k), .... At iteration k the orthogonal transfor

mation Jk) is either Upq or U~q if the current pair is (p,q). 

From Theorem- 5.2, the successive values ~o(k) form a 

monotonically non-dec-reasing sequence for which (M)-l/2 is an 

upper bound. Therefore ~o(k} 'must tend to a limit. 

Suppose ~o(k) + (M)-l/ 2 - o as k + co, 0 < o < 1. There 

must exist B ~ 0 such that at any iteration k, 

for some pair (i,j) dependent on k. If this were not true 

Ao(k) could be made arbitrarily close to (M)-112• - Also given 
(k) - l/2 £ (0<£<<1) take k suchthat ~D >(M)- -o-£, 

for all k > K. 

Consider, therefore, Algorithm C at the start of a cycle of 

iteratiDns and suppose that the number of previous iterations 

exceeds K. From the above discussion, there must be some pair 

say- (p,r) -for which ld(k)Ad(k) I > B. 
P r -

Proceeding through this cycle of iterations suppose that at 

any iteration k: 

(i) the current pair includes neither of the indices p nor 

r. Then 

(ii) the current pair includes either p or r. Without 

loss of generality take the current pair to be (p,q). Then by 

Lerrma 6.1, 
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ld(k+l)Ad(k+l)l > B/2 
P r . -

· (6.2c) 

for at least one member of Upq or U~q· Carry out iteration k, 

with n(k) replaced by this member and continue. 

Proceeding in this way the pair (p,r) must be encountered 

before the end of the cycle, say at iteration t. We must have 

where M = 2(n-l) is th~ number of pairs which includes either 

p or r. 

Then from Lenma 6.2, 

Since 

it follows that 

Taking· · 

we must have 

Thus by replacing certain members (at step (ii) above) of the 
(1) (2) (k) . original sequence n ,n , ...• n , ••• , we have obta1ned search 

directions which are closer to mutual conjugacy than any set of 
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directions generated by the original sequence, even in the limit. 

Since the above argument holds for .!!Jl. sequence of orthogonal 

transformations, there must exist a sequence for which the search 

directions generated converge to mutual conjugacy. 0 
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Chapter 7 

£ycling in Algorithm C 

We now consider the question of whether the search directions 

generated by Algorithm C must always converge to mutual conjugacy 

or whether there exist cyclic patterns and sequences of orthogonal 

transformations chosen from S for which the search directions 

do not converge. 

We exhibit examples which demonstrate that a misguided policy 

for choosing the orthogonal transformations can lead to cycling 

of the elements of D{k)TAD{k). Some of these examples are related 

to examples published by Hansen [22] for the Jacobi eigenvalue 

process, but cycling in Algorithm C has certain distinctive fea~ 

tures not shared by the Jacobi process. 

· 7.1 . Example of Cycling 

Given a quadratic function in fou~ variables, let us seek 

its minimum using Algorithm C, with cyclic pattern 

(2,3),{1,4),(1,3),(2,4),(1,2),(3~4), ... 

Suppose that the initial normalized search directions 
.. {1) : (1) 
d1 , ... ,d4 satisfy 

with (2,3) the current pair. 

1 0 X 0 

0 1 0 X 

X 0 1 0 
0 X 0 1 

Use the following sequence of orthogonal transformations 

(7.la) 
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chosen from the set S: 

(7. 1 b) 

' ' : ~ I . 

These a~~·then repeated in sweeps off 12 iterations. 

Thu~ after one iteration the second and third directions are 

revised using the orthogonal matrix u23 and the trivial normali

~ation performed. 

1 xl 0 xl 

A (2) 
T 1 1 1 

0 0( 2} AD( 2) X X = = 
x1 -x1 0 1 

1 0 
1 1 X -X 

where 1 
= x/12 and ( 1,4} is now the current pair. X 

We find that after six iterations 

1 0 X 0 

A ( 7) = D (7} TAD ( 7} · = 0 1 0 -x 
X 0 1 0 (7. 1c} 

0 -x 0 1 

and after 12 iterations 

Therefore the search directions generated by the sequence 

(7.lb) do not converge to mutual conjugacy. 

Note however that D(l) and D(lJ} may be distinct. It 

is possible that the search directions will also cycle. 
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7.2 Generalization 

We may extend the policy for choosing Q(k). in step iii) of 

Algorithm c so that directions that are already conjugate may, 

but need not be revised, cf. Remark 3, 5.4.1. It is then not 

difficult to construct examples of cycling similar to the above 

example, for any cyclic pattern containing the subsequence 

(i,j),(1,m),(j,1),(i,m),(i,1),(j,m) (7.2a) 

,Initial normalized search directions are chosen such that 

= X, with all other pairs of directions 

mutually conjugate. 

When any me~ber of the cyclic pattern not in the above sub

sequence is the current pair, then use g(k) = I. Such pairs 

remain conjugate throughout. Orthogonal transformations for pairs 

that are in (7.2a) are chosen analogously to the s~quence of 

·transformations (7 .lb}. 

7.3 Cycling When Already Conjugate Pairs Must Not __ BeRevised 

Search dire-ctions d~k) and d~k} that are already conju

gate are revised, nevertheless, when (p,q) is the current pair 

in the example of 7.1. This feature of the example is somewhat 

unsatisfactory, although it may be justified on the grounds that 

the necessary information is not available to Algorithm C prior 

to the revision of these directions. However, as noted in Remark 3. 

so. that we .go to 
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of Algorithm C, 5.4.1, step iii) may be extended 

the'additional expense of estimating d(k)Ad(k) p q , and if d~k)Ad~k) = 0, 

the: pth and qth directions are not revised. 



The example given in Table 7.1 which is extracted from a 

comptuer run. is therefore somewhat more satisfactory. The initial 

matrix used is a particular instance of an initial matrix of the 

form 

1 0 xl 0 

A (1) = 0 1 0 X 2 (7.3a) 
xl 0 . 1 0 

0 x2 0 1 

0 < x1 ~ 1, 0 < x2 < 1, x1 and x2 are close to one another~ 

x1 ~ x2 and o << x1 or x2. Using the same sequence of ortho

gonal transformations (7.lb) as before, we see from Table 7.1 that 

after 12 iterations, the improvement in overall conjugacy is very 

small :and no current pair is strictly conjugate. The matrix 
T 

oClJ) AO(lJ) is also of the form (7.3a}. After another 12 itera
T 

tions o(2S) A0(2S) is again of this form, and during the remainder 

of the run this phenomenon repeated itself every 12· iterations. 
T 

This is of course not conclusive evidence that o(k) AO(k) does 

not converge to the identi:ty matrix but we believe this to be the 

·case. Starting from a general expression of the form A(l) above 

and examining the algebraic expressions for successive matrices 

A(k) supports this belief. 

Whilst for the cyclic Jacobi process, examples related to those 

in 7.1 have been demonstrat.ed by Hansen, we have not come across 

related examples of the form discussed in this section. · Indeed, 

Hansen has proved that for a 4 x 4 matrix, no such example exists 

for the cyclicJacobi process. 
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Table 7.1 
T 

Only superdiagonal elements of o(k) AD(k) are shown. The 

underlined element is the current pair. 

1 

. 2 

3 

4 

5 

-·-- -- --- -- - -- I I 

' 0. • 41 .015 I 

1... I 
.... .015 .39 I 

.... 
I .... .... 0 . .... 

.... _---

l u23 

------------------
1 ' 
I -,29211 ,28776 .015 
I~ 

0. 
I 

, 27786 I 
t 

• 27373 : 1 u~:--- ---
~-------- ---------
1 -.40609 .01 0. : 
I -

0. -. 01 I 

I 

.39409 : ..... _____ _ 

t ulJ 

,- - - - - - - - - - - - - - - - - - -, 
1 - , 28860 0, - • 28007 I 

~ ' - -.28572 -.01 I 
I 1 u~: -·- :~~2~ ~ 

I I 

I -.006 0. 
-.39613 

-, 40413 I -
l.. .. 

0. 

-. -.006 : 
--------

---------
6 

7 

8 

9 

JO 

I~ --"" ----- - - -- - ---I 

I -.Q ,27927 -.28491 I 

~ I 

' ' ~, 28095 . -, 28663 I ..... .... 
.... -. 006 

1 u34 

~------ -----------1 
: .... -. 0 .39774 -. 00400 : 

-.. .._, .004 -.40255. I 
.... 

• 0 I 
...... __ -- ---

1 U~3 
r - - - - - - ~ - - - - ·- - -- -~ 

1 , 28069 • 28]8] -. 004 I 
I I 

0, -,28408 I 

•'.... . 28521 I 

1
-. ...;._ -...: .- -. ~ .;.1 

ul4 

----------------1 
I , 39855 -. 00240 0. 

I 

0. -.00240 I 
I 

,40175 I 

1
---- -- ---
u13 

1- - - .,.. - - - - - - - - - - - - - - - . 
. I 

I .28148 -.00000 -.28374 1 

l I 
,28216 -,00240 I 

- .28442 ; . 
-1 ·- - - - - - - -

tu~4 



11 

12 

~- --- -- - - - - - - --- - - -- I 

I -.00160 -.00000 -.39919 1 

-·--.- I 

'- . • 40111 • 00000 I 
I 

.00160 I 1 ui~- ---- ---
.- - -- - - - -· - - - - - - - - -I 

I • 00000 . 28386 -. 28250 I 

.28340 
I 

.28205 1 
. I 

;.00160 I 

~- - - - - - - "":" - - - - - - -- - I 

13 I • 00000 .40079 . 00096 I 
,. -1 

• 00096 • 39951 1 

0. I 

-------
I 

u23u14···U12u34 
I 

I y 
I I 

19 I 0. . 40000 .-. 00026 I 

25 

I. 

-'" .... • 00026 
I 

-. 40031 I 
..... I 

-.00000 I ...... ,. _____ _ 
I 
I 
I 

u~3u14 • • ·u{2u34-
I . . 
I 

--- - - - - y_ -- --
I I 

I 0. ·.40020 .00006 I 

.00006 .40011 I 
. .._ 

I ... .._ 
.00000 I .._ 

..... ______ 
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7.4 Discussion 

7.4.1. Implications of Above Examples for a Threshold Polifl 

We saw in the previous section that the policy for choosing 

n(k) in Algorithm C could be extended, so that directions d~k) 
and . d~k) are revised -only if they are not already conjugate. 

The example of Table 7.1 then lends credence to the belief that 

the directions still need not converge to mutual conjugacy. The 

implications of this example may be carried a step further. 

The above extension is a particular case of a threshold 

policy using a zero threshold level. In general the threshold 

level may be a positive number t,- 0 < t < 1. In this case only . T - -
off-diagonal elements of· D(k) AD(k) are annihilated that are at 

\least as large as t, in absolute value. The threshold Jaco-bi 

process, which can be shown to always converge, uses such a policy. 

Successive ·thresholds of 2-3, 2-6, 2~ 10 , 2-18 , T, T, ••• ,T, ••• 

have been suggested, where T representsthe smallest positive 

number that can be stored. -See Wilkinson [ 7 ] , page 277. Similarly 

a threshold level may be associated with each cycle of Algorithm C, 

which is then extended as follows: 

During iteration k within this cycle with, say, {p,q) 

the currsnt pair, at additional expense estimate d!k)Ad!k), as 

discussed in Remark 3 of Algorithm c_, 5.4.1. If ld(k)Ad(k) I < t p q 

then the search directions d~k) and d~k) are not revised. 

The threshold levels are decreased after each iteration and with 

a well chosen threshold policy convergence can be established. 

The example of Table 7.1 then illustrates the pitfalls of 
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a bad choice of initial and subsequent threshold 1evels. If 
-3 -4 .-5 -6 successive threshold levels of 10 ,10 ,lu ,10 ,T,T, ••• are 

.taken, then the search directions will not necessarily conve~ge-to 

mutual conjugacy, whereas a threshold beginning with 10-l will 

permit rapid convergence. 

7.4.2. Certain Factors Upon Which Earlier Results Depend 

The proofs of Theorem 6.2 and the examples of 7.1-7.3 are 

dependent ~pon the use of both positive and negative plane rotations 

through ~/4 as equally valid choices of the orthogonal transfor

mation nk. Both Theorem 6.2 and the examples of cycling would 

be invalidated by changing the policy for choosing n(k) at 

step iii) of Algorithm C to allow only> positive (or only negative) 

rotations through ~/4. 

However, even for the policy n(k} = u 
pq' an example exists 

for which there is no improvement in overall conjugacy during a 

single complete cycle. We refer the reader back to 7.1, where it 

may be seen from (7. lc} that for the cyclic pattern (7.lb), 

Note however that for this policy for choosing n(k) the cycling 

of off-diagonal elements of A(k) does -not persis~. During one 

of iterations 7,8, ... ,12 there will be a substantial improvement 

in overall conjugacy and we have not found an example for which 

A(k} does not ultimately converge to mutual conjugacy for the 

po 1i cy n ( k) = U • 
pq 
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The observations of the previous paragraph hold true for a 

zero thresho 1 d version of A 1 gori thm c (i.e. · t = 0 for every 

cycle) which uses· any cyclic pattern containing a subsequence of 

the form 

(i ,j) ,(R.,m) ,(R.,j),{i ,m) {7.4a) 

i.e.; it is easy to construct an example (in a similar manner to 

that of 7.2) for which the policy g{k) = Upq gives an arbitrarily 

small increase in 6D(k) during one complete cycle of iterations 

·and no current pair is mutually conjugate during this cycle. This 

means that most of the weight associated with off~diagonal elements 
T 

of o(k) AD(k) is pushed round ahead of the current pair during 

this cycle. For this reason proofs of convergence of o(k) to 

mutual conjugacy using an arbitrary cyclic pattern are difficult 

-to obtain, even for the simple policy g(k) = Upq (with the 

revision being optional if d~k}Ad~k) = 0). 
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Chapter 8 

Convergence Proofs for a Restricted Class of Cyclic Patterns 

In Theo~em 6.2 we showed that when Algorithm C is applied 

to a quadratic and uses an arbitrary cyclic pattern, there must 

exist a sequence of orthogonal transformations chosen from the 

set S (cf. (5.4c)) for which o(k) converges to mutual conjugacy. 

We noted that Theorem 6.2 did not however prove that a particular 

policy for choosing the orthogonal transformations would lead 
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to convergence of the search directions to mutual conjugacy. In 

Chapter 7 we gave examples of cyclic patterns for which either conver~ 

gence does not occur or else proofs of convergence are difficult 

to obtain. In this chapter we show that convergence of the 

search directions to mutual conjugacy can be prov.en for all cyclic 

patterns within a certain class P, under any of the several 

different policies for choosing n(k) discussed in Chapter 7. 

The motivation behind choosing this class P is to exclude 

patterns containing a subsequence of the fonn (7 .4a) ... Note, 

however, that this class P does not include all cyclic patterns 

which don't contain a subsequence (7.4a). The definition of 

class P characterizes a subset of such patterns.· 

8.1 Definition of the Class of Cyclic Patterns P 

8.1.1. The class P of cyclic patterns is defined r·ecursively 

using the following procedure: 
\ 

Procedure P: 

Step A: Given a set of directions G, partition them into two 



groups G1 and G2• If G contains only a single member, stop. 

Step B: Form a list L of pairs as follows: 

Either (i) Pick one member of the first group G1 and pair 

it with every member of the second group G2 
takan in any order. Repeat until all members of 

G1 are exhausted. 

or (ii) Carry out (i) with G1 and G2 interchanged. 

Step C: Repeat recursively Steps A and B using the set of 

directions G1 (in place of G) and put all pairs obtained at 

the head of list L. 

Step D: Repeat recursively Steps A and B using the set of directions 

G2 {in place of G) and put all pairs obtained at the tail of 

list L. 

If we initiate Step A above with directions d1,d2, ... ,dn 

then Procedure P defines the class of cyclic patterns P. An 

example of a cyclic pattern obtained is given in Figure 8.1, using 

seven directions. If all pairs of directions in this example are 

written as in Figure 8.2, then the cyclic pattern defined in the 

example is given by taking each pair of Figure 8.2 in the order 

determined by the number associated with it. 

Consider the first partitioning of the example, i.e., 

G1 = {d1,d2,d3,d4J and G2 = {d5,d6,d7}. Referring to Figure 8.2 

all pairs with both members in G1 are contained in triangle T1. 

All pairs.with both members in G2 are contained in triangle T2. 

All pairs with one member in G1 and the other in G2 are ~iven 
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by rectangle R. Forming the list L corresponds to doing Step B(i), 

i.e., corresponds to picking one row of rectangle R and taking 

all pairs in it in any order, then doing this in sequence until 

a 11 rows of R are exhausted. The process is then repeated recur

sively within triangles r1 and T2• Thus another rectangle is 

identified within T and this time Step 8 (ii) is used namely, with 

selection by columns. The procedure terminates when no further 

pairs can be formed. 
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Figure 8.1 

Example Illustrating Procedure P 

Pattern defined 

[ ( 1 ,2) ( 1 ,4) ( 2 ,4) ( 2,3) ( 13) ( 34) ( 26) ( 25) ( 27) •.• ( 46) ( 45) ( 47) (56) ( 67) (57) l 

Figure 8.2 

R 
I . 

1 (1,2); 5 (1,3) 2 (1,4) 13 (1,5) 14 (1,6) 15 (1,7) 

:4.. 3 8 7 9 {2,3) .(2,4) (2,5) (2,6) {2,7) 

- - -.. 6 ( 3 ~4) 1 0 ( 3' 5) 12 ( 3 '6) 11 ( 3 t 7) 

17 (4,5) 16 {4,6) 18 (4,7) 

19 (5,6) 21 (5,7) 

20 (6,7) 



8. 1.2. Remarks on Class P 

Remark 1. It may easily be verified that class P includes 

cyclic patterns in which pairs are taken sequentially by rows, 

i.e., in the order {1,2).{1,3), ..• ,(1,n),{2,3),(2,4), ... ,(2,n), 

{3,4), ..• ,(3,n), ... ,(n-l,n) or sequentially by columns, i.e., 

in the order· (1,2),(1,3),(2,3),{1,4),{2,4),{3,4),(1,5), ... , 

{4,5),{1,6), ... ,(1,n), ... ,{n-l,n) (These are called special 

cyclic orderings in the context of the Jacobi process). 

Remark 2. We point ~>Ut that. the _class of cyclic patterns defined 

by Procedure P would be no more general if, at Step A of that 

procedure, the directions are subdivided into any two disjoint 

·subsets instead of merely being partitioned. For ~xample, in 

Figtire 8.1, suppose we had subdivided {d1,d2,d3, ... ,d7J into 

{d1,d6,d7,d4J and {d2,d3,d5J. instead of partitioning into 

{d1 ,d2,d3,d4} and {d5,d6,d7J with the list L being then 
• formed as in Step B. Now precisely the same list would be· 

obtained by initially permuting the directions and then partitioning. 

This argument may be applied at every stage of the example in 

Figure 8.1. It then becomes apparent that a cyclic pattern obtained 

by subdividing into subsets at Step A of Procedure P may also be 

. obtained by applying Procedure P to some permuted set of the 

original directions. 

Remark 3. A greater degree of generality ..'!2_ obtainable if, when 

forming the list L in Step B of Procedure P, we select pairs 

partly by rows and partly py columns. For example, we might pick 
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pairs in the order given in Figure 8.3 below, which should be 

compared with Figure 8.2. We see that the pairs in rectangle R 

are chosen, in Figure 8.3, in an ord~r that cannot be obtained 

using Step£ of Procedure P. It is possible to g~neralize St~p B 

of Procedure P and thus obtain a more general class of cyclic 

patterns than class P. This more general class would still 

exclude sequences (7.4a}. We only prove convergence here for 

cyclic patter·ns given by class P. Our proofs may be extended to 

cover the above more general class of cyclic patterns and this is 

detailed in [ 5 ] . 

Note, again that the cylic patterns defined by an extended 

version of Procedure P still need not embrace every cyclic pattern 

that does not contain a subsequence of the fonn (7.4a}. 

Figure 8.3 

. 
5 (1,3} 2 (1,4} 9 (1,5} lO (1,6}:12 (1,7} R 

'· 3 · (2,4)· 8 (2,5} 7 (2,6} :11 (2,7) ________ ....__ ---

(3,4) 18 (3,5): 13 (3,6) 14 (3,7} 
I 

( 4 • 5 ) : 16 ( 4 , ~ } 1 5 ( 4 ,7 ) 

19 21 (5,7) 
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8~2 Proof of Convergence 

We now set out to prove convergence of the search directions 
; 

to mOtual conjugacy using cyclic patterns in P. 

We have ~ot been able to avoid a certain degree of technical 

complexity in this proof. Therefore, to help guide the reader, 

its principal features are first outlined here! 

The proof is by contradiction. Suppose when Algorithm C is 

applied to a quadratic ljJ(x) = a+ bTx +~TAx, the search direc

tions D(k) do not converge ~o mutual conjugacy for some cyclic 

pattern e P. Since, from Powell's second theorem. (cf. 5.1) AD(k) 

is a monotonically non-decreasing bounded sequence, it must tend 

to a limit as k + oo. 

Now, {AA)-l/2 is the absolute value of the determinant of 

any matrix whose columns form a normalized set of mutually conju

gate directions, by Powell's first theorem (cf. 5.1). Since we· 

are assuming that the search directions given by columns of D(k) 

do not converge to mutual conjugacy, AD{k) must tend to some 

limit strictly less than {Mf1' 2 say {Mf112 ;;. o where . o > 0. 

It is quite clear that there must exist a number 8 > 0 

such that at any iteration there is always some pair of directions 

with weight (recall terminology introduced in 5.4.3) at least as 

great as 8, i.e., if this pair is {ll,v) then !d(k)Ad{k) I > 8. 
ll \) -

(With A fixed, this 8 is dependent only on· o) •. If there was 

no such B then AD(k) could be made arbitrarily close to {M)-112 

contraqicting our assumption. 

Let us also assume that a sufficiently large number of itera

tions have been carried out so that AD{k) ~ (AA)-1l 2 - o- e: for 
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some positive e: as small as we wish, and that we are at the star·t 

of a fresh cycle of iterations. 

Some pair must have weight at least as great as 8, as we 

have argued above. 1f. we ~ claim that in proceeding through 

this cycle of iterations (using of course a cyclic pattern in P) 

we must come across some current pair, say (p,q}. with weight 

~ M(n}8, where . M(n} is a fraction dependent only on n, then 

we are practically home, because when pair (p,q} is revised we 
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can obtain a contradiction to our assumption that L\D(k) -+- (M)-112-o. 

To obtain this contradiction we use the above assumption that 

L\D(k) _:: (M)-112 - o·- e:. Taking e: sufficiently small we can 

appeal to Lemna 6.2 to show that after revising the current pair 

(p,q) ,;we must have L\D(k) > (6Ar1l 2 - o. o 

Most of our effort therefore goes into showing the above 

claim namely, if some pair at the start of a cycle of iterations 

has weight at least as large as 8, then at some point during 

the cycle, using a pattern e P, we must come across a current 

pair with weight~ M(n)8. We prove a series of lemmas leading to 

this result. Before each lemma we try to give some motivation for 

it. 

Theorem 8.1. Suppose Algorithm Cis applied to a quadratic and 

uses some cyclic pattern e P. The current pair (p,q), at 

iteration k, is selected according to this cyclic pattern, with 

n(k) either U or uTpq (if d(k)Ad(k) = 0 the directions pq p q 

may either be revised or left unaltered). 

Then the search directions given by the columns of D(k) 



converge to mutual conjugacy, as k ~ ~. 

To prove this theorem we shall need the following notation aryd 

several lemmas. 
' 

Notation. 

(i) When it is unnecessary to specify the iteration number 

associated with a set of search directions, we shall denot~ the 

ith direction in the set by d~ ) and the matrix whose columns 

form the set of directions by D( ). 
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( i i) () () {) () Given a set of search directions dh ,dh+l': .• ,d1 , ... ,dm 

figure 8.4 develops the notation for certain sets of pairs of 

these directions. This notation will help simplify the proofs below. 

) 



Figure 8.4 

Notation 

a[h,1] · B[h,1,m] 

l<h,h+l) {h,h+2) ... (h,1-nJI<h,1) (h,1+1) .· (h,1+2) 

(h+1 ,1) (h+1 ,1+1) (h+1 ,1+2) 

(1-1,1) 

a[h,1] = {(h,j): h < j < 1} 

a[h,1,m] = {(h,j): 1~j ~ 1+m} 

(1-1,1+2) 

{1,1+2) 

(1+1,1+2) 

y(h,1,m] = {(i ,j): (i < j) & (h< i < 1+m) & (1~j~1+m)J 

Y[h,1,m] = a[h,1] u B[h,1,m] u y[h,1,m] 

Z[h,1,m] = B[h,1,m] u y[h,1,m] 

Figure 8.5 

[ p,r II (p,g) ·I 
I (r,g) I 
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(h ,1+m) ·I 

(h+1,1+m) 

(1-1 ,1+m) 

(1,1+m) 

(1+1,1+m) 

(1+m-1 ,1+m) 



The following simple lemma will prove useful later. 

leritna 8. 1. Cons.ider normalized search directions 

(k+m) (k+m) (k+m) dh , ... ,d1 •... ,d1+m obtained after (m+l) iterations 

of Algorithm C. These (m+l) iterations consist of successively 

revising pairs from the list (h,t),(h,t+l), ... ,(h,t+rn), i.e., 

from set B[h,t,m] in Figure 8.4. . ) 

let us assume that during these iterati~ns no current pair 

had weight exceeding 1/2 (recall definition of weight in 5.4.3); 

suppose further that for some pair (A,p) e Y[h,t,m] we have 

· ld(k+m)Ad(k+m) I > o (0 < o < 1) 
A P . 

Then prior to carrying out these (m+l) iterations (i.e., 

at iteration k) there must have been a pair (~,v) e Y[h,t,m] 

for which 

Proof. Suppose at some iteration the cu_rrent pair is (h,q). By 

assumption . I 

Thus 

(8.2a) 

With (h,q) the current pair, consider two linked pairs 

(h,r) and (q,r) each having weight not exceeding w. Then from 
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the basic relations of Algorithm C (cf. (5.4j)) together with 

(8.2a) above, it is obvious that after revising (h,q}, the 

weight on neither of the two linked pairs (h,r) and (q,r) can 

exceed 2w. 

Suppose therefore initially at iteration k for all 

(i,j) e Y[h,t,m] 

) 

After one iteration no pair can have weight exceeding 

o/2m. Similarly after (m+l) iterations no pair can have weight 

exceeding o. This contradicts our assumptions. 

Therefore there must exist a pair (JJ,v), at iteration k,. 

for which 

An intuitive explanation of the next lemma is as follows: 
I 

Suppose the current pair at the kth iteration of Algorithm C 

is (p,q). Consider two linked pairs (q,r) and (p,r) such 
' 

that the weight on (q,r) is at least E and that on (p,r) is· 

at most E/2. Then after revising {p,q) the weight on (q,r) 

must be at least E/4, i.e., not all of the weight can be drawn 

off from ( q, r). 

lemma 8.2. Suppose at iteration k of Algorithm C the current 

pair is (p,q) and 
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If 

(0 < E ~ 1) 

ld(k)Ad(k) I _< e:/2 then after revising (p,q) 
P r 

Proof. Very similar to that of Lemma 6.1 and therefore omitted .. 0 

Referring to Figure 8.5, Lemma 8.2 states that under certain 

specified conditions, the weight on (q,r) cannot all be trans

terre~ to _ _(p,_r) .J'{hen revising the current pair (p,q). The 

following lemma is a generalization of this.· Referring to Figure 8.4 

.. it says that und~r certain specified conditions the total ~eight 

on Z[h,R.,m] cannot all be transferred to a[h ,R.] by successively 

revising pairs in S[h,R.,m]. 

Lemma 8.3. ·Given a set of search directions 

suppose that for some pair (\,p) e Z[h,R.,m] 

(k) (k) (k) 
dh ,, .. ,d.R. , ..• ,d.R.+m 

0 < E < 1 (8.2b) 

Suppose that (m+l) further steps of Algorithm Care carried 

out, using successive pairs (h,R.),{h,R.+l), ... ,(h,R.+m) (i.e., 

successive pairs from set S[h,R.,m]). 

Then there exist non-zero fractions K1(m), K2(m) and K3(m) 

which depend only upon m, and are monotonically non-increasing 

with m such that: 
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If 

then at least one of the following two statements is true: 

{i) ·There exists a pair (~,v) e y[h,1,m] such that 

I 
d ( k+m) Ad ( k+m) 1· > K ( m) e: 
~ v - 2 .. 

(ii) Some current pair during these (m+l) iterations has 

weight_:: K3(m)e:. 

Proof. With h and 1 fixed, let us use induction on m. 

Suppose the lemma is true for all values up to (m-1). We 

must show it to be true for m. 

1. If .p < m in (8.2b), then using the induction hypothesis 

and noting that the elements of y[h,!,m-1] are unaffected by 

revising pair {h,m), we see that the lemma holds with 

i = 1 ,2,3 . 

2. If p = m, then after revising pairs {h,1), ... ,{h,1+m-l) 

the weight of some element in column 1+m, the last colurini of 

Figure 8.4, must exceed e:/2m. This follows from the Corollary 

to Lemma 6.1. 

2.1 If this element is {h,1+m), then (i) holds in the 

statement of Lemma 8.3 with K3(m) = l/2m. 

2.2 Suppose not. Say then that this element is , (i ,1+m) 

where h < i < 1+m. 
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2.2.1 After revising (h,t+m) suppose the weight on 

(i,t+m) > 
4
1(..£.). Then {i) holds in Lemma 8.3 with 

- 2m 

K
2

(m) = l/2m+2• 

2~2.2 Suppose the assumption in 2.2.1 does not hold, 

i.e., after revising {h,t+m) suppose 

It then follows from Lemma 8.2 that prior to revising 

{h,t+m) the weight on pair {h,i) must have been 

> J,c..£). From Lemma 8.1 it follows that at the start of -2 2m 

the proc:ess (i.e., at iteration k) some element in 

Y[h,t,m] has weight> J.{..£.)-1 . This pair must be in 
- ~ m m 2 2 . . 2m+l Z[h,t,m] provided we define K1{m) = K1 {m~l)/2 . 

It follows from the induction hypothesis that after 

revising {h,R.}, ••• ,{h,t+m-1) at_.least one of the 

following two statements must be true: 

{i) for some {~,v) e y(h,t,m-1} 

{ i i ) some current pair has weight ~ K3 (m-1 )( 2~+ 1 } . 
2 

I 

Furthermore the pairs in y{h,R.,m-1} are unaffected 

when revising the pair (h,t+m}. 

3. We see therefore for all cases in 1 and 2 above, that suitable 

118 



" 

·. :(~ . 
- r.;~:., .. · 

K1(m) = 
K1(m-1) 

22m+1 

~(m) = 
K2(m-l) 

22m+l 

K3(m-1) 
K3(m) = 

22m+l 

4. To complete the argument by induction wemust show that 

Lenma 8.3 is true when m = 0. Suppose some element in Z[h,R.,O] 

has weight~ e:. If this is the current pair then the lemma holds 

with K3(o) = 1. If not, then by setting K1 (0) = l/2 and 

~(0) = l/4 we see that Lemma 8.3 is equivalent, for this case, to 

Lenma 8.2. Therefore Lemma 8.3 holds for m = 0. 

This ~ompletes the inductive argument. 

. {k) . {k) (k) Corollary. The dwections dR. ,dR.+l , •.. ,dR.+m may be permuted 

. arbitrarily. It is clear therefore that Lemma 8.3 holds with the 

pairs in S[h,R.,m] revised in any order. 
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Figure 8.6 

Further Notation 

(h,R.-1) (h,t) (h,t+1) 
{ h+ 1 , R.-1 ) { h+ 1 , R. ) ( h+ 1 l H 1 } 

T 1 (t-2 ,t+ 1} 

(t-1,t+1} 

X[a,b] = {(i,j)l a~ i < j ~ b} 

R = R[h,t,m] 

(h,t+m) 
(h+1,t+m) 

(R.-2,t+m) 
(t-, 1 ,t+m} 

(R.,R.+m) 

R[h,t,m] = {(i ,J)I (i < j) & (h~ i ~t-1) & (R.~j ~t+m)} 
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Lenrna 8.3, we noted, was a generalization of Lenma 8.2. The 

next lerrrna is a generalization of Lemna 8.3. Referring to Figure 

8.6 and using the notation developed there, Lemma 8.4 states that 

under certain' specified conditions the total weight on pairs in 

Z[h,1,m] (corresponding to triangle . T2 and rec~angle R) 

cannot all be transferred to pairs in X[h,1-l] (corresponding to 

triangl~ T 1) by revising pairs in rectangle R taken in sequence 

by rows. Note that it is our choice of P which permits the use 

of these sets Z and X. 

lemma 8.4. Given directions (k) (k). (k) dh , ••• ,d1 •... ,d1+m suppose 

that for some (A,p) e Z[h,1,m] 

Suppose that (1-h)(m+l) further steps of Algorithm C 

are carl~ied out, using pairs selected in sequence by rows from 

R[h,1,m], i.e., using successive pairs (h,1), ... ,(h,1+rn),{h+l,1), 

••• ,(h+l,1+m). •.• ,(1-1,1), ••• ,(1-1 ,1+m). 

Suppose that for all {i,j) e X[h,1-l] 

(8.2d) 

Then at least one of the following two statements is true: 

(i) At the end of this process some pair (~,v) e X[1,1+m] 
·1-h has weight ~ K2(m) £. 

( i i) Some current pair during the above (1-h )(m+ 1) iterations 

·has weight~ K3(m)K2(m) 1-h-l£. 
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Proof. With ~ .and m fixed, the proof is by induction on h. 

Suppose the lemma is true for directions d~+1 , ... ,di ) , .. '. ,di+~· 
( ) ( ) ( ) We must show it to be true for directions dh ~dh+1 , ... ,d~ , 

dt.) .. 
···• t+m·· 

Consider revising pairs (h,~),(h,~+l), •.. ,(h,R.+m). 

By assumption all pairs in X[h,R.-1] satisfy (8.2d). 

Thus, since K2(m) ~ 1, all pairs in set a[h,R.] have weight 

< K1(m)e:. 

I 

true. 

Then by Lemma 8.3 at least one of the following statements is 

(a) some element in . y[h,R.,m] has weight ~ K2(m}e: 

(b} some current pair has weight ~ K3(m)e:. 

Now, if (b) holds then for d~ >, ... ,di~ statement (if) of 
·. . ~-h-1 

Lemna 8.4 is true since K3(m) ~ K3(m)[K2(m)] . Suppose 

therefore (b) does not hold. Then (a) must hold. Furthermore no 

pair in X[h+l,~-1] is affected when revising pairs in B[h,R.,m] 

s i nee directions d~+ i, ... ,d L i remain unaltered. Theri, by the 

induction hypothesis, one of the following two statements is true: 
\ ' 

(i) at the end of the process some pair (~:v) e X[~.~+m] 

has weight~ K2(m)R.-h-l(K2(m)e:); 

(if} .some current pair has weight~ K3(m)K2(m)R.-h-2(K2(m)e:). 

Therefore in all cases Lemma 8.4 is true for directions 
( ) ( ) ( } 

dh , ... ,dR. , .•• ,dR.+m' 

To complete the inductive argument, we need only observe that 

for directions dL? ,di ) , ... ,di+~ Lemma 8.4 is equivalent to 

Lemma 8.3 and therefore the induction hypothesis holds for h = ~-1. 0 



.~·,...,, 

Corollary l. Giyen two sets of directions G1 = {d~ ), .. .,diJ} 

and G2 = {di ), ... ,dl~} form a list of pairs L as in Step B(i) 

of Procedure P. Then Lemma 8.4 holds when successive pairs from 

R[h;R.,m] are revised in sequence given by list L. This follows 

inmediately from application of the above proof to an appropriately 

permuted set of initial directions and use of the Corollary to 

Lenma 8.3. 

Corollary 2. A similar result to Lemma 8.4 holds when the pairs in 

rectangle R[h,R.,m] of Figure 8.6 are selected in sequence given 

by a list L fonned as in Step B(ii) of Procedure P. 

Lenma 8.5. Consider Algorithm C applied to a quadratic using a 

cyclic pattern e P. Assume we are at the start of a fresh cycle 
(k) (k) of iterations, with search directions d1 , .•. ,dn such that 

r 

for some pair (A,p) e X[l,n] 

(8.2e) 

Then there exists .a non-~ero function M(n) dependent only 

on the number of directions,such that some current pair {p,q} 

has weight satisfying 

.. 

Proof. The proof is by induction on the number of directions. 

Suppose Lemma 8.5 is true for up to (n-1} directions. We must 

show it to be true for n directions. 
r 
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Consider the first partition used to define the cyclic pattern 
0 0 () () () () employed. Say 1t 1s {d1 , ... ,dR.-l} and {dR. , •.. ,dn }. 

1. SUppose' some element in X[l,R.-1] has weight exceeding 

(8.2f) 

where I= R.(R.-l)/2. 

Then by the induction hypothesis some current pair has weight 

~ M(R.-l){K1 (n-R.)[K2 (n~R.)]R.- 2/2I}E. 

Thus Lenma 8.5 is true with 

2. Suppose therefore that no element in X[l,R...:.l] · has weight 

> w as defined by (8.2f). After revising all elements in X[l,R.-1] 

in sequence given by the cyclic pattern, no element in X[l ,R.-1] 

has weight~ K1 (n-R.)[K2(n-R.)Jt;..2E. This follows from Lemma 8.1. It 

·.·follows also that the pair (>.,p) in (8.2e) must bee Z[l ,R.,n-R.]. 

Then by Lemma 8.4, one of the following two statements is true: 

(i) after revising all elemen.ts in R[l,R.,n-R.] in sequence 

given by the cyclic pattern, some element in X[R.,nJ has weight 
R.-1 

~ [K2(n-R.)] c; 

(ii) some current pair has weight~ K3 (n~R.)[K2 (n-R.)]R.- 2E. 

2.1 If (ii) holds then Lenma 8.5 is true with 

2.2 If (i) holds, then by the induction hypothesis applied 
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to the directions d~ >, ... ,d( ) some current pair has 
~ n . 

weight_:: M(n-R.+l )[K2 {n-R.)]~-le:. Again Lemma 8.5 holds with 

3. Therefore taking 

where N = n{n-1)/2. covers all cases in 1 and 2 above. We see that 

Lemma 8.5 is true for n directions. 

4. Trivially the lemma holds for two directions, with M(2) = 1,. 

completing the proof by induction. 

Proof of Theorem 8.1. Using Lemma 8.5, the proof of Theorem 8.1 is 

straightforward. 

Suppose the search directions do not converge to a mutually 

conjugate set. 

Using an identical argument to that used in the proof of · 

Theorem 6.i, as k + ~ 

{~ > 0) 

Given e: such that · 0 < e: << 1 let ~o(k) > {~- 1 '2-o-e:) 

forall k>K. 

We are assuming that the search directions do not converge to 

a mutually conjugate set. So, again using an identical argument 

to that employed in Theorem 6.2, there exists a > 0 such that 

at any iteration k, some pair (i,j) dependent on k, has weight 
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exceeding a. 
Assume also we are at the start 'Jf a fresh cycle. Proceeding 

through a complete cycle of n(n-l}/2 iterations it follows from 

Lemma 8.5 that some current pair, (p,q) has weight~ M(n)B = y 

say, at iteration t. 

Then, using lemma 6.2 

~D(t) ~-1/2~0-E 
= (1-y2)1/2 > (1- ·i> 1/2 

If E is chosen so that 

then 

This contradicts our assumption that ~o(k) -+ M.-1/ 2 - o. 

Therefore the. n search directions d~ ) , .•. ,d~ ) must 
. . 

converge to a mutually conjugate set. 0 

8.3 Extensions 

We shall not tax the reader's patience any further save to 

point out that in lemma 8.5, pairs in R[h,£,m] may be successively 

revised, using a more general rule for forming the list l than 

that used in Step B of Procedure P. A typical example of such a 

list was introduced earlier i~ Figure 8.3. Thus proofs of conve~

gence,may be obtained for a more general class of cyclic patterns 

that, includes as ~subset the class P considered here. This will 

be examined in more detail in [ 5 ]. 
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Chapter 9 

9.1 Discussion of Ultimate Rate of Convergence 
and Other Classes of Orthogonal Transformations 

The derivation of the fixed set of plane rotations S used 

in Algorithm C applied to quadratic ljl(x) requires that all 

, search directions be normalized to be of the same length in the 

A-norm. This leads to an attractive and simple way to revise the 

search directions that does not require explicit use of the off

diagonal elements of D{k)TAD(k). 

Let us now assume that for the cyclic_pattern used the search 

directions do indeed converge to mutual conjugacy, and study the 

rate of convergence. 

After the iteration has progressed sufficiently, so that ~he, 

off-diagonal elements of D{k)TAD{k~ are O{E) for some small 

E > 0, consider a pair {p,r) that has just been revised so 

that its weight, which was O{E), is reduced to zero. Let us 

investigate the extent to which the weight on {p,r) can build 

up again when, later ~n the cycle; some other pair involving 

either p or r is revised. Without loss ofgenerality say that 

the first such pair is 

diately after revising 

(p,q). Then the weight on 
T {p,q), using Upq• is 

{p,r) imme-

(9.la) 
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where we may assume that the iteration has progressed sufficiently 

so that ~d~ j + d~ )~A~ l. 
The weight on (p,r) . has built up again to O(E), the reason 

for this being that d~ ) and d~ ) are replaced by conjugate 

directions very different from the original ones. We must curb 

this bufidup in order to obtain a rate of convergence that is 

ultimately quadratic, i.e., we must modify the rule for revising 

the current pair, so that they are replaced by mutually conjugate 

directions close to the original directions. Thus .in the later 

stages of a convergent iterative process defined by Algorithm C, 

when the set of search directions have become close to mutual 

conjugacy, it might be worthwhile to incur the additional expense 

of estimating d~k)Ad~k) for the current pair (p,q), as outlined 

in Remark 3, 5.4.1. Once d~k)Ad~k) is available, this opens 

up a Pandora's box of possible ways to revise the search directions. 

We do not wish to study this in detail here, but in order briefly 

to consider the implications, let us look at the following technique. 

After a certain number of iterations of Algorithm C using the 

fixed :set S, change the rule for revising the current pair as 

follows: Renormalize the pth and qth directions to be of 

different lengths in the A-norm (say lengths 1 and 2), and 

revise these directions using a plane rotation given by (5.4b), 

namely, 

tan (9. lb) 
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where d(k) and d{k) 
. p q represent the renormalized directions. 

Now the denominator in (9.lb) does not vanish. We see that tan 2e 

is O(d~k)Ad~k)) and the revised directions are given by 

a<k+U = d(k) 
p p 

a< k+ n = d < k > 
q p 

cos e - d(k) sin e 
q 

sin a + d(k) cos e 
q 

(9.lc) 

r· 
Assuming convergence, then after the elements of o(k) AD(k) 

have become O(e:), !sin e1· is also O(e:). By an argument 

analogous to the one used in obtaining (9.la) we find that the 

build up of weight of the revised pair (p,r) is now 

O(ld~ )Ad~ )lls.in el) and this is O(e:2). A formal argument 

establishes that during a complete cycle of iterations the buildup· 

remains O(e:2) and we thus have an ultimate quadratic rate of 

convergence of the search directions to mutual conjugacy. 

Ultimatequadratic convergence of the cy'clic Jacobi process 

applied to a matrix A with distinct eigenvalues is proven by a 

similar technique. An important difference betwee,n the two pro

cesses, however, is that we can always bound e by ensuring that .· 

the denominator in (9.lb) does not vanish. In the Jacobi process 

renonnalizations ar~ not possible, because they would change the 

eigenvalues of A and thus e can only be bounded when the diagonal 

el~nts of A(k) in 3.3 converge to distinct values, i.e., when 

the eigenvalues of. A are distinct. Thus Brodlie's algorithm, 

which exactly parallels the cyclic Jacobi process, can only be 

. proven to have ultimate quadratic convergence of the search direc

tions when the eigenvalues of the Hessian A of ~(x) are distinct, 
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whereas a process as we have outlined above, would have ultimate 

quadratic convergence to mutual conjugacy reg~rdless of the multi-

plicity of the eigenvalues of A. 

We have seen why it niay profitable to switch in later stages 

·of tti~ iteration from using fixed matrices chosen from S to using·. 

more=ge~eral plane rotations. We close with some brief comments 

on other classes of orthogonal transformations that might be used. 

As noted inRemark 2 of Algorithm C, 5.4.1 the set S can 

be generalized, (504f) being a typical example for the case when 

four directions are simultaneously revised. Let us represent the 

class of such matrices, when n directions are ~imultaneously 

revised, by S[n] where n is even. Thus S = S[2]. 

By taking products of certain matrices in S one may obtain 

matrices in S[n]. For example, a matrix in S[4) is given by 

the product 

corresponding to the ordering (1,2)(3,4)(1,3)(2,4). This is of 

the form (7.4a). From the discussion of cycling in Algorithm C 

this implies that when using orthogonal transformations chosen from 

S[n] convergence of the search directions to mutual conjugacy need 

not occur. Also the conclusions arrived at earlier about ultimate 

rate of convergence apply to any fixed class of orthogona·l matrices. 

The use of classes of orthogonal transformations given by S[n] 

may, however, lead to fewer normalizations and hence fewer function 
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responsibility for the accuracy, completeness or usefulness of an·y 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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