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BACKGROUND: For centuries, thinkers have
considered whether and how climatic condi-
tions influence the nature of societies and the
performance of economies. A multidisciplinary
renaissance of quantitative empirical research
has begun to illuminate key linkages in the
coupling of these complex natural and human
systems, uncovering notable effects of climate
on health, agriculture, economics, conflict, mi-
gration, and demographics.

ADVANCES: Past scholars of climate-society
interactions were limited to theorizing on the
basis of anecdotal evidence; advances in comput-
ing, data availability, and studydesignnowallow
researchers to draw generalizable causal infer-
ences tying climatic events to social outcomes.
This endeavor has demonstrated that a range
of climate factors have substantial influence on
societies and economies, both past and present,
with important implications for the future.
Temperature, in particular, exerts remarkable

influence over human systems at many social
scales; heat inducesmortality, has lasting impact
on fetuses and infants, and incites aggression

and violence while lowering human produc-
tivity. High temperatures also damage crops,
inflate electricity demand, and may trigger
populationmovementswithin and across natio-
nal borders. Tropical cyclones cause mortality,
damage assets, and reduce economic output for
long periods. Precipitation extremes harmeco-
nomies and populations predominately in agri-
culturally dependent settings. These effects are
often quantitatively substantial; for example,

we compute that temperature depresses cur-
rent U.S. maize yields roughly 48%, warming
trends since 1980 elevated conflict risk in Africa
by 11%, and future warming may slow global
economic growth rates by 0.28 percentage
points year−1.
Much research aims to forecast impacts of

future climate change, but we point out that
society may also benefit from attending to
ongoing impacts of climate in the present, be-
cause current climatic conditions impose eco-
nomic and social burdens on populations today
that rival in magnitude the projected end-of-
century impacts of climate change. For in-

stance, we calculate that current temperature
climatologies slow global economic growth
roughly 0.25 percentage points year−1, compa-
rable to the additional slowing of 0.28 percent-
age points year−1 projected from futurewarming.
Both current and future losses can theoret-

ically be avoided if populations adapt to fully
insulate themselves from the climate—why

this has not already occur-
red everywhere remains a
critical open question. For
example, clear patterns of
adaptation in health im-
pacts and in response to
tropical cyclones contrast

strongly with limited adaptation in agricultural
and macroeconomic responses to temperature.
Although some theories suggest these various
levels of adaptation ought to be economically
optimal, in the sense that costs of additional
adaptive actions should exactly balance the ben-
efits of avoided climate-related losses, there is
no evidence that allows us to determine how
closely observed “adaptation gaps” reflect op-
timal investments or constrained suboptimal
adaptation that should be addressed through
policy.

OUTLOOK: Recent findings provide insight
into the historical evolution of the global eco-
nomy; they should inform how we respond to
modern climatic conditions, and they can guide
howwe understand the consequences of future
climate changes. Although climate is clearly not
the only factor that affects social and economic
outcomes, new quantitative measurements re-
veal that it is a major factor, often with first-
order consequences. Research over the coming
decade will seek to understand the numerous
mechanisms that drive these effects, with the
hope that policy may interfere with the most
damaging pathways of influence.
Both current and future generations will

benefit fromnear-term investigations. “Cracking
the code” on when, where, and why adaptation
is or is not successful will generate major social
benefits today and in the future. In addition, cal-
culations used to design global climate change
policies require as input “damage functions”
that describe how social and economic losses
accrue under different climatic conditions, es-
sential elements that now can (and should) be
calibrated to real-world relationships. Designing
effective, efficient, and fair policies to manage
anthropogenic climate change requires that we
possess a quantitative grasp of how different in-
vestments todaymay affect economic and social
possibilities in the future.▪
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Two globes depict two possible futures for how the climate might change and how those
changes are likely to affect humanity, based on recent empirical findings. Base colors are
temperature change under “Business as usual” (left, RCP 8.5) and “stringent emissions mi-
tigation” (right, RCP 2.6). Overlaid are composite satellite images of nighttime lights with rescaled
intensity reflecting changes in economic productivity in each climate scenario.
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Social and economic impacts
of climate
Tamma A. Carleton1,2* and Solomon M. Hsiang2,3*†

For centuries, thinkers have considered whether and how climatic conditions—such as
temperature, rainfall, and violent storms—influence the nature of societies and the
performance of economies. Amultidisciplinary renaissance of quantitative empirical research is
illuminating important linkages in the coupled climate-human system.We highlight key
methodological innovations and results describing effects of climate on health, economics,
conflict,migration, and demographics. Because of persistent “adaptation gaps,”current climate
conditions continue to play a substantial role in shaping modern society, and future climate
changes will likely have additional impact. For example, we compute that temperature
depresses current U.S. maize yields by ~48%, warming since 1980 elevated conflict risk in
Africa by ~11%, and future warming may slow global economic growth rates by ~0.28
percentage points per year. In general, we estimate that the economic and social burden of
current climates tends to be comparable in magnitude to the additional projected impact
caused by future anthropogenic climate changes. Overall, findings from this literature point to
climate as an important influence on the historical evolution of the global economy, they
should inform how we respond to modern climatic conditions, and they can guide how we
predict the consequences of future climate changes.

D
oes climate affect our society?Or dohuman
willpower and ingenuity render climate
largely irrelevant to our affairs, as we over-
come environmental challenges with re-
silience and innovation? If climate affects

our lives, how much does it matter and why?
Thinkers have asked these questions for generations,
wondering whether climatic differences between
regions could be partially responsible for differ-
ences in politics, economies, and culture, and
whether large-scale social transformations, such
as the rise of golden ages and the fall of empires,
could be triggered by climatic changes. Over the
last decade, an innovative community of researchers
has taken a rigorous quantitative approach to these
questions—mixing data and methods from the
climate, social, and statistical sciences—making
unprecedented and exciting progress. In this article,
we review recent advances, findings, and open
questions in this emerging interdisciplinary field.
Our focus is recent progress, but consideration

of the social impact of climate is as old as the
academy. Aristotle developed a climate classifi-
cation system inwhich the tropicswere described
as an uninhabitable “torrid zone” (1), and Mon-
tesquieu argued that climate played a fundamen-
tal causal role in determining the structure and
prosperity of different societies (2). In the late 19th

century, theories on the impact of climate and
other geographical factors led to a collection of
ideas known as “environmental determinism,”
the notion that environmental conditions played
the primary role in shaping social, economic and
political outcomes,with little scope for leadership,
innovation, institutions, or social will to alter
societal trajectories. Some of these hypotheses were
invoked to justify European colonialism as re-
sponsible paternalism—colonial advocates argued
that climatically caused “morally inferior” charac-
ter traits could be remedied through oversight by
“advanced” societies that had already matured in
more conducive climes (3).
The association of environmental determinism

with colonial ambition had a chilling effect on
this line of research inmuch of the social sciences
during the late 20th century.Nonetheless, research
continued among engineers and ergonomists
interested in optimizing military and industrial
performance using laboratory experiments to test
the effects of environmental conditions on human
performance (4, 5).
Beginning in the 1970s, concern over booming

populations led to a blossoming of theoretical
work in resource economics. A key realization
was that environmental conditionsmight influence
economic performance and could be modeled as
“natural capital,” analogous to physical capital
(e.g., machines) or human capital (e.g., education),
and could be similarly developed or degraded (6).
At the turn of the 21st century, this economic

approach, supported by advances in computing,
led to the development of theoretical-numerical
“integrated assessment models” that provide
insights into how the global climate might be

managed to maximize future “global welfare”
under different assumptions (7–9). At the core of
these models are theoretical “damage functions”
that describe howglobalmean temperature trans-
lates into economic and social costs (10). Because
thesemodels arenowused to designglobal policies
(11, 12), much of the current empirical research
summarized here is framed as providing an
empirical basis for global climate policy calcu-
lations (13, 14).
A research agenda running parallel to climate

change policy design is aimed at understanding
how current climatic events, such as droughts or
tropical cyclones, shape social outcomes today, ir-
respective of possible future climatic changes.
This strand of work aims to minimize current
social costs of climate events and promote eco-
nomic development (15, 16), either by identifying
cost-effective risk-management strategies ormini-
mizing harm through reactive instruments or
policies, such as weather index insurance (17).
As with climate changemanagement, success in
this arena depends critically on our quantitative
understanding of the causal effect that climatic
conditions have on populations.

Quantifying climatic influence on
societies and economies

Recent advances in empirically measuring the
effect of climate on society have been rapid, cata-
lyzed by growth in computing power, access to
data, and advances in the statistical theory of
causal inference for non-experimental studies (18).
Progress has been particularly explosive over the
last decade,with exponential growth inpublication
volume due to innovations specific to studying
the climate-human system, such as newmethods
to map climatic data onto social data and the
development of spatiotemporal statisticalmodels.
For an in-depth treatment of the following
techniques and innovations, we refer readers
to reference (19).

Breaking down the problem

Climate is the joint probability distribution over
several weather parameters, such as temperature
or wind speed, that can be expected to occur
at a given location during a specific interval of
time (Fig. 1, A and B). To understand how altera-
tions in this distribution affect populations,
modern approaches separate the influence of cli-
mate into two pathways: through information
regarding what environmental conditions might
occur and through directly altering what ac-
tually happens (19). The “informational” pathway
operates because individuals’ expectations about
their climate (Fig. 1A) may change how they act;
for example, individuals who believe they live in
a rainy climate may purchase umbrellas. The
“direct” pathway operates because any change
in the probability distribution of weather events
must generate a change in the distribution of
events that individuals actually experience (Fig.
1B); for example, individuals who live in a rainy
climate will face rain more often. Informational
effects result from individuals preparing for a
distribution of weather events and corresponding
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direct effects that they expect. These adapta-
tions may alter the overall direct effect of specific
weather events (Fig. 1C)—for example, individuals
who own umbrellas may use them to stay drier
when an actual rainstorm occurs—a distinction
that can be accounted for when examining these
relationships empirically.
Figure 1 depicts these two ways that climate

and social outcomes are linked. Weather events
(Fig. 1B) are drawn from the probability distri-
bution that defines the climate (Fig. 1A). Each
event generates somedirect effect on a population,
where these direct effects can be described by a
dose-response function f(X) where specific “doses”
of a weather parameter X (e.g., rain) generate
“responses”within the population (e.g., getting
wet; see arrow fromFig. 1, B to D). This sequence
of direct effects combine with nonclimatic influ-
ences on the social outcome to produce the distri-
bution of observed social data (Fig. 1 D and E). If
the climate shifts (pink in Fig. 1A), this will alter
the distribution of weather (Fig. 1B) and its
corresponding social impacts. A direct effect
(e.g., experiencing more rainfall) occurs, but the
information effect (e.g., buying umbrellas) may
also cause populations to adapt such that the
structure of the dose-response function changes
(Fig. 1C), leading to a shift in the distribution of
outcomes that is a combination and interaction
of these two effects (Fig. 1E). The core of the
empirical challenge is to credibly reconstruct the
dose-response function for pairings of weather
variables and social outcomes, while simultane-
ously accounting for the possibility that adap-
tations alter this relationship.

Mapping climate data onto
societies and economies

The first step in analysis is to collapse large
quantities of high-dimensional climate data into
measures that efficiently summarize the dimen-
sions of climate that are influential on specific
aspects of populations. This procedure is chal-
lenging because most weather data are collected
by physical scientists with the goal of answering
physical science questions, so existing structures
used to organize these spatially and temporally
varying data do not map directly onto social
systems. Often, devising a suitable approach for
“translating” physical data into a socially mean-
ingful measure X is the critical innovation that
allows researchers to study an entire class of
phenomena (19). For example, the construction
of data describing extreme heat-hours, measured
in units of “degree days” and properly aggregated
across space, led to strikingly consistent mea-
surement of the effect of temperature on crop
yields (20–23) and electricity demand (24, 25).
In another example, tropical cyclone track data
were converted into surface wind-exposure of
populations to understand the human and eco-
nomic damage of these storms (26). In other
work, researchers gain insight from developing
new measures of human exposure to the El
Niño–Southern Oscillation (ENSO) (27), drought
indices (28–30), daily temperature distributions
(31, 32), rainfall variability (33), crop exposure

to vapor pressure deficients (34), and trade or
neighbor network exposure to multiple varia-
bles (35–37).

Using research design to identify
causal effects

Once societally relevant measures of climate
exposureX are constructed, measuring the causal
effect of a weather event on a societal outcome
requires that we compare what actually occurred
to a counterfactual outcome that would have
occurred had the weather been different (18, 19).
For example, simply observing that 10 individuals
are admitted to a hospital on a hot day does not
imply all 10 admissions were caused by the heat;
it might be the case that nine of those individuals
would have gone to the hospital anyway, regard-
less of the temperature.
In an ideal experiment designed to measure

the effect of climate on a social outcome,wewould
take two populations that are identical in every
way and expose one to a “control” climate while
exposing the other to a “treatment” climate. The

control population serves as the counterfactual
for the treatment population, and the difference
in outcomes would be the effect of the climate
treatment. In general, this experiment is infeasible,
forcing researchers to rely on “natural experiments”
or quasi-experiments.
Early researchers, stretching back to Montes-

quieu, tried to approximate this ideal experiment,
implementing cross-sectional analyses in which
different populations inhabiting different climates
are compared to one another and their differences
are attributed to their climates. For example, a
researchermight observe that Nigeria has higher
crime rates and is hotter thanNorway, concluding
that higher temperatures lead to crime. This com-
parison and conclusion are flawed as there are
numerous dimensions along whichNorway and
Nigeria differ—such as geography, history, culture,
politics, social institutions—which make Nigeria
an unsuitable “treatment” comparison for a
Norwegian “control.” Some researchers have tried
to adjust their analyses to account for impor-
tant factors known to influence their outcome

aad9837-2 9 SEPTEMBER 2016 • VOL 353 ISSUE 6304 sciencemag.org SCIENCE

Fig. 1. Breaking down the influence of climate into analytical components. Climate affects the dis-
tribution of social outcomes by altering the distribution of weather events and how populations prepare and
respond to these events. (A) Climate is defined as a probabilitydistribution overweather events, such as the
distribution climate 1 (blue) characterizing the probability of the event climate variable = X, e.g., the like-
lihoodof a rainyday. climate 2 (pink) characterizes a climate distribution that is shifted to the right andmore
variable. (B) Weather events over time are realized from each climate, experienced by individuals on the
ground, and observed as time series. (C) Statistical analysis recovers “dose-response” functions f(X) that
describe social outcomes as a response to each weather “dosage.” If populations adapt to their climates
(climate 1 and climate 2), then theymay respond differently to physically similar weather events, producing
dose-response functions that differ [blue = f1(X), pink = f2(X)]—e.g., if individuals in rainy climates own
umbrellas, they may get less wet than populations in normally dry climes (who own few umbrellas) when
both populations experience a day with rainfall = X. (D) Mapping a sequence of weather events through
dose-response functions (gray dashed line) generates time series of social outcomes attributable to
climatological conditions, accounting both for different distributions of weather events and corresponding
adaptations. Signals in an outcome resulting from political, economic, cultural, and other drivers of
outcomesmight be superimposed on these time series (not shown). (E) Different distributions of expected
social outcomes can then be attributable to the two climates (outcome distribution 1 and outcome
distribution 2), e.g., how much individuals in each climate were soaked by rain over the course of a year.
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of interest, but formany complex social outcomes,
such as economic growth or civil conflict, it is im-
possible to know if all relevant factors have been
accounted for, and thus unknowable whether a
result is plausibly causal.
Recent work recognizes this weakness of cross-

sectional analysis and does not compare different
populations to one another. Instead, it leverages
the insight that the most comparable group for
a certain population is itself, at a moment earlier
or later in time. Thus, these longitudinal studies
follow individual populations over time and ex-

amine how they respond to changes in the cli-
matic conditions that they face. When using
this approach, researchers have confidence that
fundamental factors that influence societies, such
as geography and political institutions, are “held
fixed” because the population is not changing. In
essence, a population just before an event serves
as the “control” for that same population right
after the event “treatment.” Comparing outcomes
before and after the climatic event, while ac-
counting for secular trends, provides insight into
its effect.

In practice, this approach is complicated by
themultiplicity of states that exist forweather and
climate, andbecause societies experience constant
variation in both (as suggested by Fig. 1), it is
sometimes difficult to determine if an observed
social outcome is the result of current conditions
or of climatic events in the past. This challenge is
solved by deconvolution of the outcome as a series
of responses to continuous climatic conditions.
Having observed time series of climatic events
or “impulses” (Fig. 2A) and resulting outcomes
(Fig. 2, B to D), one can search for the charac-
teristic impulse-response function that best fits
howa single climatic event of unit “dosage” (Fig. 2E)
generates a response in the outcome (formally,
the impulse-response function describes inter-
temporal structure of the dose-response function).
Figure 2, F to H, displays the characteristic re-
sponses that would have been recovered from the
different types of outcome data in Fig. 2, B to D
(these simulated responses have been constructed
to illustrate three types of real behavior recovered
by previous studies).
Considering the different structures of these

responses is important for understanding the re-
sponse of social systems to different types of
climatic factors. For example, it has been shown
that extremeheat reduces the number of children
born exactly 9 months later but elevates births 11
to 13 months later, as some of the successful
conceptions that would have occurred during the
hot period, but did not, end up occurring in the
near future (38). In these cases, where climatic
events simply displace the timing of societal out-
comes (a pattern illustrated in Fig. 2G), changes
in the distribution of climatic events may have a
smaller net effect than one would predict if this
dynamic responsewerenot accounted for.Although
we do not illustrate it here, it is worth noting that
different locations in the dose-response function
(Fig. 1C) may have different dynamics over time
(Fig. 2)—for example, cold days cause delayed
excessmortality by causing individuals to become
ill (analogous to Fig. 2F), whereas hot days gener-
ate essentially all excessmortality immediately (39).

Using statistical results to translate
climate into outcomes

Once the full structure of a dose-response func-
tion, along with its dynamic properties, is identi-
fied for a specific population across different
weather and climate conditions, researchers can
simulate how a populationmight respond to dis-
tributions of weather events that differ slightly
fromhistorically experienced distributions (Fig. 2,
I and J)—with repeated simulations enabling prob-
abilistic assessment (Fig. 2, K to M). Gradually
distorting the climatological distribution ofweather
events in such calculations, while adjusting re-
sponse functions to account formeasured patterns
of adaptation, allows us to estimate how a shift in
the climate may translate into a shift in the dis-
tribution of expected social outcomes (19).

Effects of climate on societies

Recent application of the tools described above
demonstrate that societies are influenced by the

SCIENCE sciencemag.org 9 SEPTEMBER 2016 • VOL 353 ISSUE 6304 aad9837-3

Fig. 2. The dynamics of societal responses to climate determine how alterations to a climate in-
fluence social outcomes. Modern approaches “hold nonclimatic factors fixed” by studying a single
population over time and identifying social responses to sequential climatic events. Because societal re-
sponses may persist (or reverse) after a climatic event ends, continuing through another event that gener-
ates another overlapping response, a characteristic impulse-response function can only be recovered from
the original data by deconvolution. (A) Time series of a single population’s exposure toweather events each
period ofmagnitudeX, indicated as the height of bars (analogous to Fig. 1B). (B toD) Example time series of
three different social outcomes (solid line) that vary relative to baseline trends (dashed line) in response to
weather events in (A). (E) A characteristic single weather “impulse” of normalized magnitude. (F to H)
Characteristic impulse-response functions describing how each social outcome responds to the weather
impulse in (E), recovered fromdeconvolvingdata in (A) to (D). Impulse-responses illustrate different classes
of behavior: (F) persistent but decaying effects (e.g., cold-related mortality; see Fig. 4A); (G) “temporal
displacement” or “harvesting,” where delayed responses partially compensate for initial responses (e.g.,
heat effect on births; see Fig. 4C); and (H) permanent effects (e.g., cyclone effects on GDP; see Fig. 4D).
(I and J) Simulations of weather drawn from two distinct climate distributions. (K to M) Monte-Carlo
simulations of social outcomes based on sampling weather from climate distribution 1 [blue, from (I)]
and climate distribution 2 [pink, from (J)] and convolving these impulseswith the characteristic impulse-
response of of each social outcome from (F) to (H). Distributions of social outcomes under each
simulated climate are shown to the right of each panel (analogous to Fig. 1E).
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climate in numerous dimensions and at many
scales. Individuals face conditions that compromise
personal health, while entire trade networks or
countries can beweakenedunder adverse climate
variation. The linkages between individualswithin
societal groups can themselves even be fractured
by climatic conditions, triggering violence or
migrant flows, for example. We review major
findings at all these scales, examining effects on
human health, economic conditions, social inter-

actions (including violence), and demographic
responses (including migration).

Health impacts: Mortality

As individuals, each of us is constantly exposed
to temperature, and under extreme heat or cold,
our bodies struggle to successfully thermoregulate,
sometimes leading to severe cardiovascular, respi-
ratory, and cerebrovascular effects that can result
in death (40, 41). Both hot and cold environmental

temperatures increase death rates (Fig. 3, A
and B): In Delhi, deaths increase by 3.2% per °C
above 20°C (42), and in theUnitedStates, days above
90°F (32.2°C) and below 20°F (–6.7°C) increasemale
mortality rates by 2 and 1.4%, respectively (39).
Effects of high temperature are rapid and acute
but decay quickly, sometimes depressing mortality
in following days, as some of the same individuals
would have died in subsequent days had an extreme
heat event not occurred (39) (red line in Fig. 4A).

aad9837-4 9 SEPTEMBER 2016 • VOL 353 ISSUE 6304 sciencemag.org SCIENCE

Fig. 3. Empirical studies demonstrate that climate variables influence social
and economic outcomes in many sectors and contexts. (A to P) Examples of
dose-response functions estimating the causal effect of climatological events
on various social outcomes. Reproduced from authors’ original estimation;
titles list the outcome variable and location studied.Colors indicate categories
of outcome variables: red, mortality (44, 46); blue, cyclone damage to assets
(48, 116); green, agriculture (21, 153); teal, labor productivity (96, 97); yellow,

electricity (25); gray, aggregate economic indicators (32, 100, 125); orange,
aggression, violence, and conflict (27, 130, 134, 136); purple, migration (171).
Climate variables differ by study but include temperature, cyclone wind speed,
rainfall anomalies, and ENSO measures. Response functions only identify rela-
tive changes and are either normalized to “zero effect” at a designated climatic
event, such as a minimum valued outcome, or the sample mean of an out-
come. Shaded areas are confidence intervals, as computed by original authors.
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In contrast, cold days have delayed and smaller—
albeit enduring—effects lasting up to a month
as some individuals become ill, such as contracting
influenza, and fail to recover (blue line in Fig. 4A).
Evidence suggests that adaptations moderate

these direct mortality effects. For example, in the
United States,mortality fromextremeheat declined
80% over the course of the 20th century as air
conditioner adoption soared (43) (Fig. 5D). Re-
markably,mortality responses are highly consistent
across contexts, when “hot” and “cold” conditions
are defined relative to what populations are
accustomed to (44), suggesting that populations
cope with regional climates in a consistent way.
Anthropogenic climate change is projected to in-
crease heat-related mortality but decrease cold-
related mortality, redistributing mortality rates
across locations (45), but with an overall net in-
crease in total mortality rates (31, 46). In a cost-
analysis of climate change in theUnited States, these
deaths accounted for the largest share of losses
across all impacts (45). Effects of humidity ex-
acerbate thesepatterns (45,47), andmortality impacts
in poor agricultural contexts aremore extreme (46).
Climatic factors other than temperature also

influence mortality. Tropical cyclones directly

causemortality—for example, through trauma or
drowning—with immediate deaths in storms in-
creasing exponentially with wind-speed exposure
(48) (Fig. 3C). Populations regularly exposed to
storms appear to adapt somewhat, as their mor-
tality rates are lower than those of more naïve
populationswhen both experience physically com-
parable events (48) (Fig. 5A. However, these
immediate deaths may be minor in magnitude
compared to “economic” deaths that occur in
the wake of a cyclone (48, 49). For example, in
the Philippines, changing economic conditions in
the years after a cyclone lowers incomes and
corresponding spending on food and health care,
causing mortality among female infants roughly
15 times as high as direct mortality across all age
groups (49) (Fig. 4B). Extreme rainfall events
outside tropical storms also influence mortality—
in agriculturally dependent contexts, infants born
in arid areas face elevated risk of death when
exposed to droughts (46, 50), while flooding has
been linked to death throughout Europe (51).

Health impacts: Morbidity

Many injuries to human health caused by climate
are nonfatal. Onemeans of detecting these effects

is to measure the impact of climatic events on
hospital admissions. Admissions for respiratory
and cardiovascular diseases respond to temperature
similarly tomortality, with impacts at both high
and low daily temperatures (52, 53). The precise
spatial and temporal resolution of these hospital-
or city-level studies allows authors to account for
key temperature correlates, such as air pollution
and humidity, which also influence hospitaliza-
tions. This adjustment is important, as failing to
account for particulate matter and ozone may
exaggerate the effect of temperature by up to a
factor of 2 (52, 54). Even without hospital-level
data, evidence using cause-of-death records can
illuminate key morbidity effects; for example,
humidity is an important driver of influenza, a
notable cause of hospitalization and mortality in
temperate climates (55).
A major component of morbidity affected by

the climate is vector-borne disease. For example,
malaria anddengue fever infect about 200million
and 50 million people globally each year (56),
respectively, and the life-cycles ofmosquito vectors
transmitting these illnesses are strongly influenced
by climate. Temperature nonlinearly influences
the reproductionofparasites, extreme temperatures
lower mosquito survival rates, and open water
critical for mosquito breeding is constrained by
rainfall (57, 58). These climatic factors affect the
intensity of infection in areas wheremalaria and
dengue are already endemic (59), as well as affect
where the disease may spread to (60). These dy-
namics make measurement of climate-disease
interaction challenging: Some studies aim to
recover incidence as nonlinear functions of
temperature and rainfall (61, 62), while others
parameterize ecological models of vector trans-
mission, using model output as indices to predict
cases with data (63) or simulation (64). Anthro-
pogenic climate change is likely to shift dis-
ease ranges and increase exposure globally, but
changing temperatures, rainfall, and interven-
tion strategies complicate projections (60, 65);
more research in this area is needed to link cli-
mate, ecological models, and social data.

Health impacts: Early life

Climatic conditions experienced during early stages
of life can have outsized impact because altered
early development affects long-run health and
well-being (66). For example, in-utero exposure
to high temperatures can lower birthweight (67),
and exposure to tropical cyclones leads to a variety
of birth complications (68). Mechanisms explain-
ing these in-utero effects remain elusive, as it is
challenging to separate effects on gestational
length andnutrient accumulation (67), andbecause
climate shocks occurring at different points in the
gestational period likely operate through distinct
channels. For example, high temperatures at con-
ception lead to fetal losses that, through selection,
improve outcomes for babieswhodo survive (69),
whereas high temperatures in the third trimester
have unambiguously negative impacts (70).
Regardless ofmechanism, in-uterohealth insults

have later-life economic consequences, such as
lowered income (33, 70). In developing-country
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Fig. 4. Distinct dynamic characteristics of impulse-response functions uncovered in empirical
studies. Examples of impulse-response functions from studies identifying dynamic relationships between
climate variables and social outcomes, as illustrated schematically in Fig. 2, F to H. Vertical gray
shaded bars indicates the timing of a unit climate “impulse.” (A) Male mortality rates in the United
States increase on both hot and cold days, but hot-day responses rapidly decay and tend to be small
and negative for multiple weeks—indicating temporal displacement—whereas cold days generate a
more gradual and enduring mortality effect (39). (B) Tropical cyclones increase female infant deaths
but with a delayed effect that grows rapidly roughly a year after exposure (49). (C) Birth rates in theUnited
States fall 8 to 10 months after a hot day, but this decline is partially compensated for by an increase
during months 11 to 13 (38). (D) GDP in countries exposed to tropical cyclones falls gradually but
persistently during the 15 years following exposure (116).
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2nd

Fig. 5. Responses to physically similar events
in different contexts may indicate the presence
orabsenceofeffective adaptations.Comparison
of response functions over time and across space
can indicatewhere populations have been successful
in adaptation and where an “adaptation gap”might
persist. Global cyclone losses indicate adaptation:
(A) mortality rates increase with cyclone intensity
more in countries where average exposure (thin
vertical line) is lower (48) and (B) effects of cyclones
on GDP over time are most negative in countries
with the lowest levels of historical experience—
rank indicates quintile of exposure (116).Temperature-
inducedmortality in theUnitedStatesexhibits adapt-
ation: (C) locations that have hotter long-run climates
tend to have smaller effects (185) and (D) sensi-
tivities have declined over time (43). Maize yields
in the United States indicate limited adaptation:
(E) Hot and cool climates exhibit similar effects of
heat (21), and (F) yields are equally affected by rapid
and slow changes in temperature (23). Aggregate
incomeexhibits limited adaptation: (G) County-level
losses from high temperatures have not changed
over time in theUnitedStates (32), and (H) country-
level GDP reductions are slightly less severe in rich
nations than in poor countries but are not statisti-
cally different (100). Shaded areas are confidence
intervals, as computed by original authors.
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contexts, adverse rainfall in the year of birth
lowers adult female health outcomes and educa-
tional attainment (71), and droughts experienced
by toddlers lower childhood growth and educa-
tion (30, 72). These rainfall-related impacts likely
operate through agricultural income loss and
lowered nutrition; however, our understanding
of these channels is generally weak, and work is
needed to parse out direct physiological impacts
from economic factors and behavioral responses.

Economic impacts: Agricultural yields

Study of the direct effect of climate on economic
outcomes began in agriculture, where the impor-
tance of climatic factors is clearest (73). Despite
centuries of agricultural experience, a surprising
recent finding is the importance of temperature,
oftendominating rainfall, in the production of staple
crops (21, 74–76). Highly nonlinear yield losses on
the hottest days drive much of this effect (21) (Fig.
3E), a relationship recovered in the United States
(21), Africa (20), Europe (77), Southeast Asia (78),
and India (46, 79). Crops are most sensitive to
temperatures during specific phases of the growth
cycle (76, 78). Although temperature impacts gen-
erally outweigh those of rainfall, low and very
high total seasonal rainfall levels do damage
yields in many contexts (21, 33) (Fig. 3F), an effect
that is partially attenuated when water storage
and irrigation are widely available (76, 78, 80, 81).
Similarly, within a single growing season, farms
that experience a small number of extremely
rainy days suffer damaged yields, relative to the
same quantity of rain distributed evenly across
growing days (33). These various dose-response
functions have been recovered and replicated for
major global crops likemaize, rice, soy, andwheat,
but less is known about effects on regional crops
like millet and cassava—which can be critical in
poor rural regions—and specialty crops like fruits
and vegetables, with some notable exceptions
(20, 82, 83). A body of research in dairy science
suggests that both temperature and humidity non-
linearly affectmilk yields (84–86) while linearly low-
ering cattle pregnancy rates (87), but little is known
outside of highly managed livestock operations in
industrialized countries.
Effective adaptation to climate in agriculture

appearsmodest, as dose-response functions change
little across time and space (21, 88) (Fig. 5E), even
when warming effects are gradual (23) (Fig. 5F).
Furthermore, large but temporary climate events,
like theU.S. Dust Bowl, have had persistentmulti-
decadal impacts on farmvalues (89). These findings
contrast with historical narratives of farmer adapt-
ability, such as the 200-year-long spread of agri-
culture into previously nonarable land (90, 91)
and adjustment of cultivars in response to drought
(92). These two views of agriculture adaptability
remain unreconciled, and identifying obstacles to
adaptation, such as poor incentives (93) or high adap-
tation costs (88), are a critical area for future research.

Economic impacts: Labor supply
and productivity

Agricultural effects cannot explainmany patterns
in the overall economic response to climate, leading

to the hypothesis that effects on labor are anoth-
er important channel of influence (26). A growing
body of evidence now supports this theory (94).
Heat stress can lower work intensity (95), reduce
cognitive performance (96), and voluntarily shorten
workhours in sectors of the economymost exposed
to outdoor temperature, such as construction and
agriculture (97) (Fig. 3, G and H). Impacts on
manufacturing production have been identified
in both high- and low-income contexts (98, 99),
although understanding the full impact of this
effect ismade challenging by reallocation of labor
within an economy (35). Patterns in the overall
macroeconomic responses to temperature (dis-
cussed below) are consistent with labor effects
playing an important role (26, 32, 100) (Fig. 3, J
to L), where individuals are each affected mod-
estly but a large number of affected individuals
might generate substantive aggregate impacts on
output, and possibly on growth (100). Theory
suggests that labor productivity losses might
be exacerbated by market reactions that reduce
the intensity of labor used in economic activities
(101) and slowdownstreamproduction (102). Invest-
ments in climate control for work environments can
offset some of these labor productivity effects
(98), but at substantial cost, such as expenditures
on energy.

Economic impacts: Energy supply
and demand

The relationship between climate and energy is
unique. Energy systems are directly affected by
climate—high temperatures provoke demand
surges while straining supply and transmission—
and they also serve a critical role supporting
adaptation by enabling cooling, heating, irriga-
tion, trade, and so forth. Simultaneously, energy
use is the largest contributor to anthropogenic
climate change.
The effect of temperature on energy demand is

highly nonlinear.Households and firmsuse energy
heavily for indoor climate, based on the weather
and available infrastructure (103, 104). Almost
universally, energy demands fall with rising cool
temperatures and increase steeply at high temp-
eratures, leading to a U-shaped relationship
(Fig. 3I) (24, 31, 105). Investments in new energy-
intensive infrastructure, such as heaters, may
respond to climatemore slowly as households and
industry adopt expensive technology based on their
beliefs about their climates. Evidence from the
United States (106), Mexico (105), and China (107)
indicates that electricity demands on hot days rise
fastest in locations that tend to be hot, pre-
sumably becausemore buildings in these locations
have air conditioners that are all used simulta-
neously on hot days.
Engineeringmodels andsimple thermodynamics

suggest that electricity supply and transmission
systems should suffer efficiency losses at high
temperatures (108), but these effects are empir-
ically challenging to measure in the presence of
fluctuating demand. Evidence indicates that
river-water temperatures can influence electric-
ity prices (109), nuclear power capacity utiliza-
tion may fall with high temperature (110), and

droughts can shift generation away from hydro-
power and toward carbon-intensive fuel sources
(111, 112), but it is unclear whether these findings
generalize.
Projections under climate change generally

indicate that energy demand will grow on net,
even though fewer days will require energy for
heating. Sensitivity tohigh temperatureswill likely
grow as air conditioner use expands owing to
improvements in technology, rising incomes,
and investments specifically motivated by war-
ming (105, 107). These investments may affect
energy prices by substantially elevating peak
demand (45), but better understanding of these
issues is required to support long-term energy
planning.

Economic impacts: Trade

The current structure of the global economy
represents a spatial equilibrium in which the
location of populations and sites of economic
production are all determined by the functioning
and friction of markets through which individu-
als trade with one another and the factors that
make locationsmore or less productive. Analyses
of climatic influence onmigration can be inter-
preted as a reallocation of labor across these
locations, perhaps in response to changing eco-
nomic conditions, which we discuss below. Yet,
given an approximately fixed distribution of pop-
ulations across locations, climate may also affect
how populations decide to tradewith one another.
For example, global wind patterns and ocean cur-
rents have strongly influenced patterns of trade
historically because of the role these factors play
in the cost of shipping along different routes
(113, 114). High temperatures that reduce produc-
tivity lower the quantity of goods exported from a
country, both in agriculture (36) and manufac-
turing (115), and cyclone strikes that lower na-
tional incomes tend to reduce imports (116). In
large integrated trade networks, the spatial dis-
tribution of climatic conditions can affect market
prices (45, 117), presumably through effects on
both supply costs and demand, and should the-
oretically determine the location of different eco-
nomic activities (118, 119).
These reallocations across space and time can,

in some contexts, mitigate the direct damages of
climate. For example, outdoor labor supply shifts
to cooler hours of the day during heat waves
(97), water storage weakens the link between
rainfall and agricultural productivity (81), unskilled
labor moves from agriculture to manufacturing
when crops are hit by high temperatures (35),
and grain inventories adjust to smooth weather
impacts on farm profits (36). However, these ad-
justments may be limited—historical evidence of
intertemporal substitution isminimal for aggregate
incomes (32, 100) and cyclonedamages (116), and in
the future, sequential periods of similar extreme
conditionsmaymake such reallocations over time
more difficult. Reallocation across space may also
be constrained in the future—current simulations
disagree as towhether adjustment of trade patterns
under climate change will dampen or amplify its
overall social costs (45, 119, 120). Investigation of
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substitution patterns across both space and time
is a key area for future work.

Economic impacts:
Economy-wide effects

Rather than examining individual or sectoral
responses to climate, an alternative “top down”
approach examines how themacro-economy as
a whole responds to climatic conditions. This
approach is usually implemented by examining
total income or gross domestic product (GDP)
per capita as the outcome of interest. Recent
work has shown that low rainfall slows national
incomes greatly in Africa (121, 122), ENSO modu-
lates a see-saw–like oscillation in total agricultural
income between tropical and temperate countries
(123), tropical cyclone strikes slow GDP growth for
roughly 15 years in proportion to the intensity of
the storm (116) (Fig. 4D), and temperatures have a
nonlinear effect on economic production, such
that output is maximized around 13°C (100) (Fig.
3, J to L). The roughly linear effects of cyclones and
nonlinear effects of temperature at themacro level
are fully consistent with the structure of effects
measured inmicro-level analyses (32,49, 124, 125).
Determining the persistence of these GDP losses
is important because enduring losses may accu-
mulate and compound, leading to larger long-run
losses (100, 116)—this could occur if climatic events
alter investment behavior (100) or capital de-
preciation (45, 126). However, existing data and
approaches have had difficulty constraining the
overall persistence of these effects (100, 127).
Perhaps remarkably, effects of temperature and

cyclones are globally generalizable in the sense
that they have been recovered using subsamples
of data from around the world, including both
rich and poor countries (32, 100, 116, 125). Early
analyses focused on large negative effects of tem-
perature on GDP in poor countries (26, 128),
although later studies demonstrated that almost
identical responses appeared in rich countries as
well (32, 100) (Fig. 5H). This finding—in conjunction
with the result that the effects of temperature on
income in theUnited States remained essentially un-
changed from 1960 to 2010 (32, 100) (Fig. 5G) and
gradual warming has effects identical to those
of short-lived warming (128)—leads naturally to
the conclusion that effective adaptation to tem-
perature, at the macro level, is limited. Across a
variety of contexts, once temperatures are higher
than the optimum, each increase in temperatures
by 1°C lowers economic production by roughly
1 to 1.7%. The single finding that suggests some
effective adaptation at the macro level is that
cyclone-prone countries experience GDP losses
(per cyclone)much smaller than countries where
storms are infrequent (116) (Fig. 5B).

Social interactions: Women and girls

Under economic pressure from climate, the terms
and bargaining positions in personal relationships
may change. These bargaining interactions are
often gender-based, causing women and girls to
experience these changes differently. For exam-
ple, in sub-Saharan Africa, evidence suggests
somewomen suffering income shortfalls during

drought engage in “transactional” intercourse,
leading to increased probability of HIV infection
(129); in the Philippines, female infants con-
ceived after a tropical cyclone have elevated risk of
mortality (Fig. 4B), particularly if they have older
brothers (49); and in Indonesia, girls born in
drought years exhibit lower long-run health and
education, as diminished family resources aremore
often allocated toward investment in boys (71).

Social interactions: Interpersonal
violence and aggression

Evidence from numerous contexts repeatedly
finds that interpersonal violence increases with
temperatures and sometimes low rainfall (130, 131).
This response manifests in low-level aggression,
such as horn honking (132), antisocial behavior
toward service employees (133), and the use of
profanity in social media (134) (Fig. 3M), as
well as in outright violence, such as retaliation
in sports (135) and violent crimes: rape, mur-
der, robbery, and assault (136–138) (Fig. 3N).
The effect of temperature is strikingly linear with
almost no delay, suggesting it might be driven by
a physiological mechanism (139–141). Effects of
rainfall on interpersonal violence appear pri-
marily in some poor agricultural contexts, such
as rural India (138, 142, 143) and Tanzania (144),
suggesting that damage to agricultural yields
may be a mediating factor.

Social interactions: Intergroup violence

Climatic conditions also influence relationships
between groups, changing the risk of large-scale
conflict (130, 131). Cold events during cold epochs,
such as feudalEurope anddynastic China (145–148),
or periods of low rainfall (149–151), produced
instability andupheaval—probably related to crop
failures. During the modern warm period, hotter
conditions increase collective violence in settings
as diverse as insurgency in India (152), land in-
vasions in Brazil (153), and civil war intensity in
Somalia (154). This relationship is linear, with
violence rising roughly 11% per standard devi-
ation in temperature, exhibits some evidence of
adaptation through rising incomes (155), and
has an unknown mechanism (131). Rainfall ex-
tremes also increase intergroup conflict in agri-
cultural contexts (28, 121, 153, 156), as does El
Niño (27) (Fig. 3O).

Social interactions: Institutional
breakdown and state failure

Governing institutions may falter under suffi-
ciently strong climatological stress. Patterns such
as the forcible removal of rulers (157–160) can be
tied to fluctuations in climate, but attributing
societal collapse to climate is more difficult be-
cause there are fewer events. Nonetheless, sev-
eral historical cases are compelling, such as the
collapse of the Akkadian (161), Mayan (162), and
Angkor (163) empires, dynastic changes in China
(164), and major transitions in Europe (165).

Demographic effects: Migration

Humanmobility is likely an important strategy
to copewith climatic changes, but it is challenging

to characterize as climate appears to have two
opposing influences: Deteriorating economic
conditions and safety motivate migration while
simultaneously undercutting household resources
needed tomigrate (166, 167). Net effects aremixed;
for example, urbanization and outmigration from
agriculturally dependent areas may increase as
temperatures hit crop-damaging levels and
moisture declines (89, 168–172) (Fig. 3P), but
nonagricultural workers in Mexico move in re-
sponse to temperature more rapidly than farm
laborers (173), and some of the poorest coun-
tries show no emigration response (167). In
Africa, flows from urban to foreign locations
appear responsive toweather (174), butU.S.-bound
migration from urban Mexico is unaffected by
heat waves (175). Climatological natural disasters
that influence incomes, such as hurricanes and
flooding, appear to have limited impact on total
migration in low-income contexts (171, 176, 177)
and cause simultaneous inflow and outflow of
migrants in the United States (178, 179). Overall,
the wide-ranging climatic effects on migration
are not well understood and remain an area of
active investigation.

Demographic effects: Population
structure and growth

Because climatic events affect subgroups within
a population differently, such as women or the
poor, it is thought that repeated exposure of the
populationmay gradually distort its demographic
structure. For example, recent findings suggest
that male fetuses are less likely to survive chal-
lenging climatic events, such as extreme heat,
leading to disproportionately female cohorts of
surviving infants born just after hot years (69, 180).
Demographic distortions may also occur through
nonfatalmechanisms, such as the disproportionate
migration of wealthy older individuals away from
U.S. counties struck by cyclones simultaneous with
the movement of young and low-income indi-
viduals into these same counties (178, 179). These
seemingly small individual effects might grow to
be substantial after repeated exposure, but the full
scale and scope of climatological influence on equi-
libriumdemographic structure remain unknown.
New findings also suggest that overall popu-

lation growth may be directly influenced by the
climate throughaltering sexual behavior or fertility
rates. Birth rates are abnormally lower 9 months
after extreme heat events in both sub-Saharan
Africa (69) and the United States (38) (Fig. 4C), al-
though identifying the mechanism driving this
effect is challenging. Remarkably, these results ap-
pear to explain a large fraction of birth seasonality
across climates, and projections for the United
States suggest thatwarmingwill reduce birth rates
3% (38).

Attributing current and future
effects of climate

The results above describe the structure of the
dose-response functions that govern how pop-
ulations respond to individual climatic events,
where these relationships were isolated from
data containing overlapping signals of numerous

aad9837-8 9 SEPTEMBER 2016 • VOL 353 ISSUE 6304 sciencemag.org SCIENCE

RESEARCH | REVIEW

 o
n 

Se
pt

em
be

r 8
, 2

01
6

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fro

m
 

http://science.sciencemag.org/


SCIENCE sciencemag.org 9 SEPTEMBER 2016 • VOL 353 ISSUE 6304 aad9837-9

Table 1. Attribution of climate impacts.

Study Social
impact

Sample
region

Sample
period

Effects of current
climate distribution

Effects of climate
trends to date

Future impacts of
climate change

Agriculture
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Auffhammer
et al. 2012
(76)

Rice yield India 1966–2002 Between 1966 and 2002,
trends in temperature,
monsoon characteristics,
and rainfall lowered yields
by 5.7% on average

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Lobell and
Field 2007
(197)

Major crop
yields

Global 1961–2002 By 2002, trends in
temperature since 1981
caused annual losses
of 40 megatons or
$5 billion

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Lobell et al.
2011 (184)

Major crop
yields

Global 1960–2008 Between 1980 and 2002,
trends in temperature
and precipitation lowered
maize and wheat yields
by 3.8 and 5.5%; rice and
soy were unaffected

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Schlenker
and Lobell
2010 (20)

Major crop
yields

Sub-
Saharan
Africa

1961–2007 Predicted climate change‡

by 2050 lowers annual
yields by 22% for maize,
17% for sorghum and millet,
18% for groundnut, and
17% for cassava

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Schlenker
and Roberts
2009 (21)

Maize yield Eastern
USA

1950–2008 Relative to an optimal season
at 29°C, realized temperatures
lower annual yields by 48% on
average*

Predicted climate change†

by 2100 lowers annual
yields by 63 to 82%

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Welch et al.
2010 (78)

Rice yield South Asia 1979–2004 Between 1979 and 2004,
trends in temperature and
solar radiation lowered
yield growth by 0 to 0.76%

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Income
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Burke et al.
2015 (100)

Income Global 1960–2010 Relative to each country’s optimal
annual temperature, realized
temperatures lower the annual
global growth rate by 0.25
percentage points on average*

Between 1980 and 2010,
trends in temperature
lowered the annual global
growth rate by 0.002
percentage points on
average*

Predicted climate change§

by 2100 lowers global
GDP by 23% and between
2010 and 2100 lowers the
global annual growth rate
by 0.28 percentage points
on average

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Deryugina
and Hsiang
2015 (32)

Income USA 1969–2011 Relative to each county’s optimal
annual temperature, realized
county temperatures lowered
the U.S. growth rate between
1970 and 2011 by 1.69
percentage points on average

Predicted climate change§

by 2100 lowers the U.S.
annual growth rate by
0.06 to 0.16 percentage
points

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Hsiang and
Jina 2014
(116)

GDP growth Global 1950–2008 Relative to a world without cyclones,
realized cyclones lowered the
global annual growth rate
between 1970 and 2008 by 1.27
percentage points

Predicted climate change‡

by 2090 induces damages
valued at $9.7 trillion in net
present value

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Zhang et al.
2016 (125)

Total factor
productivity
(TFP)

China 1998–2007 Relative to a full year at 50° to
60°F, realized temperatures
lower TFP by 31% on
average*

Predicted climate change†

by 2050 lowers annual
TFP by 4.18%

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Continued on the next page
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sequential climatic events. By mapping distribu-
tions of multiple climatic events back onto these
empirically recovered dose-response functions,
we can reconstruct distributions of predicted
outcomes attributable to these weather distri-
butions (as illustrated in Figs. 1 and 2). Compar-
ison of outcome distributions resulting from
different climatologies allows us to estimate the
first-order effects of any arbitrary change in the
climate (19). In principle, with sufficient infor-
mation on patterns of adaptation to climate (i.e.,
the “informational” channel that caused the dose-
response function in Fig. 1C to change), these
comparisons can account for the full range of adap-
tations observed in the real world; although in
practice, such adjustments tend to be relatively
minor (45, 48, 88, 181), in part because they are
mathematically second-order (19, 48), a notion
that is consistent with observation that the in-
formational effect tends to bemodest in magni-
tude across numerous contexts (23, 32, 136, 182),
especially once the costs of adaptive adjustments
are accounted for (19, 88).
By using this approach to “reconstitute” distri-

butions of impacts from climate, researchers are

now beginning to provide first-order answers to
three questions that originally motivated this
research agenda: How much does the current
climate affect outcomes that we observe in the
current world? How much has recent warm-
ing affected outcomes? And how are projected
changes in the climate expected to alter social
outcomes?

The current climate

Most analyses do not explicitly report howmuch
the distribution of a social outcome examined is
driven by climatic factors, but such results are
implicitly computed and relied upon in every
deconvolution or regression analysis, and esti-
mating the total effect of current climate distri-
butions provides perspective on the magnitude
of contemporary impacts. In column 5 of Table
1 we tabulate estimates from studies that do
report such results, as well as compute some
new estimates based on reported values and
available data. To compute the total effect of
the current climate, one can use the sample of
data analyzed and the empirical relationship re-
covered by the analysis to (i) compute the dis-

tribution of outcomes predicted by the current
distribution of climatic events; and (ii) compare
this to the distribution of outcomes obtained if
the same population were exposed to their best
possible environmental conditions continuously,
where “best possible” is based on the nature of
the estimated empirical relationship (see sup-
plementary materials for details). Essentially,
to create this benchmark we imagine a world
in which climate could be managed as other
aspects of societies and economies are, such as
the allocation of law enforcement or capital in-
vestments. For example, in their analysis of the
effect of ENSO on civil conflict, Hsiang et al. (27)
estimate average conflict rates predicted by his-
torical ENSO conditions and compare them to
conflict rates that would be predicted if the world
were to experience La Niña–like conditions, the
climate state with least conflict, continuously.
This thought experiment is clearly impossible to
confirm, as societies cannot uniformly be exposed
to an optimal climate; however, it is a useful and
precisely defined benchmark for considering the
overall magnitude of effects resulting from ob-
served climates.
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Study Social
impact

Sample
region

Sample
period

Effects of current
climate distribution

Effects of climate
trends to date

Future impacts of
climate change

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Health
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Anttila-Hughes
and Hsiang
2012 (49)

Mortality
rate, total
deaths

Philippines 1950–2008 Realized typhoon-induced
“economic” deaths account
for 13% of the overall infant
mortality rate

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Burke et al.
2015 (129)

HIV rate Sub-
Saharan
Africa

2003–2009 Rainfall shocks account for 14
to 21% of cross-country
variation in HIV prevalence

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Deschênes and
Greenstone
2011 (31)

Mortality rate,
energy use

USA 1968–2002 Relative to a full year at 50° to
60°F, realized temperatures
increase mortality rates by
11.2% and energy use by
29% on average*

Predicted climate change†

by 2100 increases annual
mortality rates by 3%
and energy use by 11%

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Conflict
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Burke et al.
2009 (183)

Civil conflict Sub-
Saharan
Africa

1981–2002 Relative to each country’s
optimal annual temperature,
realized temperatures
increase annual incidence
of war by 29.3% on average*

Between 1981 and 2006,
trends in temperature
increased the annual
incidence of war by
11.1% on average*

Predicted climate change‡

by 2030 increases annual
incidence of war by 54%

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Hsiang et al.
2011 (27)

Civil conflict Global 1950–2004 Relative to the optimal state,
realized ENSO conditions
had a role in 21% of all
civil conflicts between
1950 and 2004

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Ranson 2014
(136)

Violent crime USA 1980–2009 Relative to each county’s
optimal monthly temperature,
realized temperatures increase
crime rates by 6.1% for rape,
2.4% for murder, and 3.6%
for aggravated assault on
average*

Predicted climate change‡

between 2010 and 2099
increases total crime cases
by 180,000 for rape,
22,000 for murder, and
2.3 million for aggravated
assault

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

*New calculation generated either from reanalysis of the authors’ data, or from analysis of statistics provided in the authors’ paper. See supplementary materials for
detailed descriptions of each calculation. †‡§Climate change impacts are predicted using the Intergovernmental Panel on Climate Change A1F1†, A1B‡, or RCP 8.5§ future
climate change scenarios.
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In general, modern climates have substantial
influence on social and economic outcomes. For
example, historical temperatures in the United
States are estimated to currently suppress maize
yields by roughly 48% relative to ideal growing
conditions (21); raise average murder rates by
2% and assault rates by 4% relative to the coolest
conditions experienced in each county andmonth
(136); increase residential energy consumption
by 29% and elevate mortality rates by 11% on
net (31); and reduce GDP growth by roughly 1.7
percentage points year−1 (32). Temperatures con-
tribute to 29% of civil conflicts in sub-Saharan
Africa (183), and 13% of infant mortality in the
Philippines is attributable to tropical cyclones
(49). Globally, ENSO has elevated civil conflict
rates by 21% relative to constant low-conflict con-
ditions (27), while temperature and tropical cyclo-
nes reduce global economic growth by roughly
0.25 and 1.3 percentage points year−1, respec-
tively (100, 116).

Climate change to date

Only a few agricultural studies estimate the social
effect of recent already-observed anthropogenic
climate trends. In Table 1, column 6, we show
that, relative to an unchanged climate, trends in
various climatic variables that occurred at the
end of the 20th century have lowered rice yield
growth rates in South Asia by up to 0.76% an-
nually (78) and reduced global maize and wheat
production 3.8% and 5.5%, respectively, whereas
global gains and losses for soy and rice roughly
balance one another out (184). Based on calcu-
lations using data from (100) and (183), we esti-
mate that warming trends since 1980 have slowed
global average GDP growth by 0.002 percent-
age points per year and increased the incidence
of civil conflict in Sub-Saharan Africa by ~11%
(see supplementary materials for details).

Future climate change

Projected impacts of future “business-as-usual”
climate changes, relative to a counterfactual of no
climate change, are generally much larger than
impacts of warming that have already occurred
and tend to be comparable to the baseline impact
of climate on social and economic outcomes today
(Table 1, column 7). For example, crop yields in
Africa are likely to decline 17 to 22% for maize,
sorghum, millet, and groundnuts by 2050 (20);
yields formajor crops in theUnited States are likely
to decline 15 to 20% by 2050 (21, 23, 45) and 63 to
82% by 2100 (21, 45), although accounting for
estimated effects of CO2 fertilization may keep
expected losses nearer to 15% (45). Projected es-
timates suggest that armed conflict in Africamay
rise roughly 50% by 2030 (183), while violent and
property crimes in theUnited Statesmay increase
roughly 3 and 1%, respectively (45, 136). Warming
by end of century is projected to increase U.S.
mortality rates 3 to 9% and electricity consumption
11% (31, 45). The growth rate of overall economic
production is projected to fall roughly 0.12 per-
centage points year−1 in theUnited States (32) and
0.28 percentage points year−1 globally (100) during
the next century owing to the effects of rising

temperature, with additional projected losses
due to cyclones costing roughly $9.7 trillion dollars
in present discounted value (116). Notably, these
impact projections are all constructed on the basis
of historically observed responses to environmental
conditions, and the actual impact of future changes
might be less disruptive if, for example, adaptive
technologies improve dramatically in the future.
Alternatively, future impacts could be worse than
described here if current adaptive strategies, such
as irrigationusing fossil aquifers, are unsustainable
or societal responses become highly nonlinear
once the environment shifts to conditions beyond
recent experience.

Critical challenge: Understanding
“adaptation gaps”

Overall, new empiricalmeasurements suggest that
current climatic conditions impose substantial
economic and social burdens on modern popu-
lations and that future climate change will
further increase these ongoing costs consider-
ably. These losses could be avoided, in theory,
if populations could costlessly and fully adapt
to these dimensions of their climate—why this
has not occurred to date remains an important
open question, with potentially large gains for
both present and future populations should it
be solved.
Given information on the climatically de-

termined probability distribution of potential
weather events, populations may take actions
or make investments that will reduce the in-
fluence of these events when they actually oc-
cur. As depicted in Fig. 1, this adaptation can
be detected implicitly by observing how the
dose-response function linking climate varia-
bles to outcomes changes. More highly adapted
populations will have flatter responses (48),
such that changes in climatic variables have less
influence on an outcome. An alternative approach
to detecting adaptation is explicit measurement
of outcomes that are themselves thought to be
adaptations, such as investing in crop switch-
ing after a drought (89). Notably, measurement
of adaptation using either approach is made
possible by the use of intertemporal changes
in climatic variables, whether over short time
scales (e.g., days) or long time scales (23) (e.g.
decades)—and we note that in contrast to wide-
ly cited heuristics, short-term weather variation
can be used to exactly measure the influence of
long-term climate changes under the right con-
ditions, even when populations adapt to knowl-
edge of their climate (19).
Comparison of adaptation results across differ-

ent sectors reveals striking dissimilarities: In
some cases, adaptation appears remarkably effec-
tive at minimizing damages, whereas in other
cases,we observe essentially no adaptation, leading
to seemingly costly “adaptation gaps.”For example,
populations regularly exposed to cyclones experi-
ence substantially smaller losses than naïve pop-
ulations when exposed to physically similar events
(48, 49, 116) (Fig. 5, A and B). Similarly, mortality
on hot days in hot climates is lower than in similar
populations in cooler climates (44, 185) (Fig. 5C),

and heat-relatedmortality has declined over time
with rising availability of air-conditioning and
other technologies (43) (Fig. 5D). In sharp con-
trast, violence and crop yields in hot and cool
locations respond almost identically to temper-
ature in the United States (21, 136) (Fig. 5E), and
the temperature sensitivity of agriculture (23), crime
(136), and economic productivity (32, 100) has
changed little overmultiple decades, even though
populations are presumably innovating and ad-
justing to climate over this time period (Fig. 5, F
and G). At a global scale, it has been widely hy-
pothesized that wealthy populations will adapt
effectively to future climate changes because they
have greater resources, have access to wider
arrays of technology, and tend to have stronger
governments (8, 186, 187), but data from the
present largely suggest that overall economic ac-
tivity in wealthy countries actually responds to
temperature (in percentage terms) similarly to
economic activity in poor countries (Fig. 5, G
and H)— although there is suggestive but statis-
tically insignificant evidence thatwealthy countries
might be adapting slightly more effectively. In
puzzling incongruity, wealthy countries appear
substantially more adapted than poor countries,
in terms of some outcomes, to tropical cyclones
(48) and ENSO (27).
To date, it is not well understood why popu-

lations adapt so effectively in some dimensions
with respect to certain aspects of the climatewhile
entirely failing to adapt in other contexts. Existing
evidence suggests that high costs of adaptation
(48, 88, 105), incentives to adapt (48, 93), limited
access to credit for financing adaptations (46),
limited rationality when planning for future risks
(16, 188), incorrect or limited information about
the benefits of adaptation (89, 189), perverse poli-
tical incentives (190, 191) or weak government
institutions (187, 192), constraints to sharing risk
among individuals and groups (193), and access
to technologies (90, 185) might play substantial
roles, although existing evidence is primarily sug-
gestive as it relies on cross-sectional associations.
To better understandwhat constrains adaptation,
future work will likely need to exploit natural
experimentswhere specific potential constraints
(or costs) are exogenously eliminated; if the link
between an outcome and climate disappears, it
can bemore confidently inferred that the altered
constraint was playing a critical role in limiting
adaptation (43, 152).
It is theoretically possible that existing adaptation

gaps are “economically optimal” in the sense that
the costs of additional adaptive actions and in-
vestments exactly balance their benefits, which
are avoided climate-related social losses (48).Many
patterns of adaptation described above seem
qualitatively consistent with this notion of op-
timality; for example, cyclone-prone locations
benefitmore from investments in cyclone shelters
because they are used more often, so cost-benefit
analyses would predict more shelters in locations
that are more cyclone-prone. However, many pat-
terns seem inconsistentwith optimality, such as the
persistent sensitivity of crop yields to temperature
(23, 182), but could be reconciled as optimal if
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adaptation technologies are extraordinarily costly.
In general, there is no quantitative evidence that
allows us to determinehow closely current adap-
tation gaps reflect optimal investments or are
bound at suboptimal levels by the market failures
and other constraints described above.
Because the persistence of adaptation gaps has

such large impacts on current and futurewell-being
around the globe, understanding its cause is likely
themost pressing current research question. Iden-
tifying the causes of these gaps and determining
whether they are optimal is critical for designing
policies that can support and accelerate adapta-
tion in the numerous contexts where it lags. For
example, if current adaptation gaps are optimal,
then policy should focus on improving the cost-
effectiveness of adaptation technologies (48) rather
than on correctingmarket failures. Such policies,
if carefully designed and effectively implemented,
could both substantially benefit current gener-
ations that presently suffer large economic and
social burdens from themodern climate, and also
benefit future generations that would otherwise
continue bearing these burdens along with all ad-
ditional costs of climate change.

Discussion

The endeavor to understand the impact of cli-
mate on society is unlocking promise. Climate
has imposed varied environmental constraints
on humanity formillennia, and new understand-
ing provides insight into the role of climate in
global historical development. More urgently,
current climatic conditions and variations are
constantly shaping and reshaping human well-
being today, thus understanding these processes
allow us to better prepare for and respond to the
climate that we experience now. Finally, design-
ing effective, efficient, and fair policies tomanage
anthropogenic climate change requires, critically,
that we develop a quantitative grasp of how dif-
ferent investments todaymay affect economic and
social possibilities in the future.
Advances in data, computing, andmethods have

triggered rapid progress in our ability to empiri-
callymeasure how climatic conditions affect human
well-being and productivity around the world. Al-
though climate is clearly not the only factor that
affects social and economic outcomes, quantitative
measurements reveal that it is amajor factor, often
with first-order consequences. Notably, these re-
sults suggest that the magnitude of influence that
current climatic conditions have on social out-
comes is generally comparable to (and sometimes
larger than) the projected effects of future warm-
ing. Collectively, these findings suggest that
both local climatic conditions and the state of
the global climate can be thought of as forms of
“natural capital” that play an important role in
supporting human welfare and are inputs to
economic production.
An insight that emerges from these findings is

the notion that current climate patterns may be
an important source of inequality. Populations
endowed with different distributions of climatic
conditions face different environmental constraints
that may lead to different distributions of out-

comes. In a thought experiment where we hold
all other factors constant, these recent findings
directly suggest that hotter locations with more
extreme rainfall patterns and more major dis-
turbances, such as ENSO and tropical cyclones,
will generally face additional health costs, lower
productivity, and additional economic costs, greater
population movement, and higher rates of vio-
lence. To first order, this idea is broadly consist-
ent with cross-sectional patterns (194); however,
as described earlier, it is not yet possible to ensure
that the “all other factors constant” assumption
holds when comparing outcomes across differ-
ent populations, so we cannot directly test these
cross-sectional predictions empirically. Nonethe-
less, such inferences, with important repercus-
sions for present and future inequality, would
follow logically from these results.
Projections of climate changes based on these

empirical results also inform questions of in-
equality, as predicted future impacts are highly
unevenly distributed across locations, often be-
cause the effects of climate are nonlinear and
different populations have different baseline cli-
mates, such that incremental warming has het-
erogeneous effects. For example, warming is
expected to increase productivity in cool loca-
tions while decreasing productivity in warm
locations, leading to projections where current
patterns of inequality increase, sometimes dra-
matically (32, 45, 100).
Recent advances in this literature point toward

two areas of future work with important policy
consequences. First, “cracking the code” on when,
where, and why adaptation is or is not successful
promisesmajor social benefits. New evidence sug-
gests that (i) there are some cases where popula-
tions are able to adapt such that they partially
neutralize the effects of climate; (ii) there aremany
cases where adaptation does not occur; and (iii)
the social and economic benefits of successful, low-
cost, and widespread adaptation are potentially
very large for both current and future populations,
especially inmany low-income countries. Under-
standing what causes this “adaptation gap” can
help policy address it; for example, if adaptation
technologies are expensive (48, 88), then policy
should focus on their research and development.
Second,models used to understand the costs and
benefits of different global climate change policies
take as inputs various “damage functions” that
describe how social and economic losses accrue
under different future climate change scenarios
(11). Historically, these damage functions were
theoretical constructs whose structureswere based
on modeling intuition informed by some data
(10, 195), but the recent explosion of empirical
work suggests that these global policy models can
now be calibrated to real-world relationships that
characterize the many social impacts of climate
(45, 196).
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Computations for climate impact attribution (Table 1)

Most entries in Table 1 were taken directly from the text of individual studies (see foot-

note in table). Here we describe novel calculations for values in cases where attribution

was not done by the authors, but either original data were available or summary statistics

and estimation results reported in the original study were sufficient to calculate attribution

values. In all cases, even when analyses examine the impacts of multiple different climate

variables, our calculations focus on temperature. We take this approach because the mag-

nitude of the effect of temperature dominates in most studies included in the table, and

because historical and future trends in temperature are much more certain than are trends

in other climate variables.
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1 Effects of the current climate distribution (Table 1, Col-

umn 5)

Our general approach to compute the total impact of the current climate distribution is the

same for all studies. We take the following steps:

1. Calculate ŷactual

: Apply the estimated empirical relationship in each study the ac-

tual climate observed in the authors’ data, predicting outcomes under actual climate.

2. Calculate ŷoptimal

: Apply the estimated empirical relationship in each study to

some “optimal” counterfactual climate, predicting outcomes under a counterfactual

climate.

3. Compare: Calculate ŷactual � ŷoptimal, normalizing the difference by predicted

levels of outcomes under the “optimal” counterfactual climate.

For example, with linear models we set optimal temperature to be the minimum tem-

perature experienced for a given panel unit (Figure 1 A), and for quadratic response func-

tions we set optimal temperature to be the temperature for a given panel unit that maxi-

mizes the predicted level of the social outcome (Figure 1 B). For binned models we set the

optimum temperature to be the omitted bin value.

It is important to note that while we describe these computations from the point of

view of an “optimal” temperature versus the actual realized temperature, it is equivalent to

think of this exercise as the value of fully adapting to temperatures within a population’s

historical experience. That is, predicted outcomes for a population continuously experi-

encing an optimal temperature are equivalent to those realized under a flat dose-response

function, where changes in temperature have no impact on social outcomes.
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Figure 1: Identifying optimal counterfactual temperatures with (A) a linear dose-response
function and (B) a quadratic dose-response function.

Calculation details for each study marked with (⇤) in Column 5 of Table 1 are analyzed

are below.

1. Schlenker & Roberts (2009) - Maize yields in the U.S. (1). We reanalyze the

authors’ original data using their main degree-days specification, for maize yields

only, where i indicates county, s indicates state, and t indicates year:

log(yield

it

) = �1DD0�29+�2DD

>29+�1precipit+�2precip
2
it

+c

i

+d

s

⇥t+d

s

⇥t

2
+"

it

Where DD0�29 and DD

>29 are growing season degree days as described in (1) with

a single threshold value of 29�C, precip
it

is total precipitation, c
i

are county fixed

effects, and d

s

⇥ t and d

s

⇥ t

2 are state-specific time trends.

We estimate ˆ

�1 = 0.00019 and ˆ

�2 = �0.006, consistent with the authors’ origi-

nal result. We use these coefficients to recover predicted values for every county-
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year observation using observed values of DD0�29 and DD

>29, and exponenti-

ate these values to obtain predicted levels of yields in units of bushels/acre; this

is ŷ

actual

it

. We then compute the counterfactual damage value ŷ

optimal by setting

DD0�29 = 184 ⇥ 29 and DD

>29 = 0, since in ref. (1) there are 184 days in the

growing season for maize and because 29�C is the optimal growing season temper-

ature based on the estimated response function (1). Conceptually, this simulation

mimics an experimental setting in which maize is grown in a greenhouse where

temperature is set at 29�C continuously throughout the growing season.

We calculate the difference in damages between counterfactual and actual climate

distributions as ˆ

�y

it

= ŷ

optimal

it

� ŷ

actual

it

= ŷ

optimal � ŷ

actual

it

, where the last equality

comes from the fact that optimal climate is 29�C for all counties in all years so that

predicted outcomes under optimal climate do not change over space or time. In

each year, we normalize this damage by the level of predicted yields in the optimal

climate, to get the ratio �̂y

it

ŷ

optimal

, which is the fraction of potential optimal yields that

are lost annually due to realized climate. Our reported value is the weighted average

of this ratio, where weights in each year across counties are the county’s area planted

to corn:

fractional yield losses =

1

⌧

X

t

2

4
P

i

�̂y

it

ŷ

optimal

⇥ A

itP
i

A

it

3

5

Where A
it

is the area planted to maize in each county-year, and ⌧ is the total number

of years in the panel (1950-2005). This value is the average (across all counties and

all years in the sample) share of optimal bushels/acre that are lost each year due to
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realized temperatures.

2. Burke et al. 2009 - Civil conflict in Sub-Saharan Africa (2). We reanalyze the

authors’ original data using their Model 3, for war incidence only:

war incidence

it

= �1Tit

+�2Tit�1+�1precipit+�2precipit�1+�X

it

+c

i

+d

i

⇥t+"

it

Where i indicates country, t indicates year, T is annual average temperature, precip

is total precipitation, X includes all controls in Model 3 in ref. (2), and d

i

⇥ t are

country-specific time trends.

From this estimated relationship (we estimate ˆ

�1 = 0.0489 and ˆ

�2 = 0.0206,

consistent with the authors’ original result), we follow a similar process as for

Schlenker & Roberts, but set the optimal temperature in the counterfactual (called

T

optimal

i

) as the minimum temperature each country is observed to experience in

the sample, since the estimated relationship in Burke et al. is linear (see Figure

1 A). We calculate ŷ

actual

it

=

ˆ

�1T
actual

it

and ŷ

optimal

it

=

ˆ

�1T
optimal

i

. The differ-

ence in war incidence between actual and counterfactual climate distributions is

ˆ

�y

it

= ŷ

actual

it

� ŷ

optimal

it

= ŷ

actual

it

� ŷ

optimal

i

. While the model includes lags, be-

cause the lag coefficient is often large but never statistically significant, and does not

change the magnitude of the contemporaneous coefficient (either in our reanalysis

or in Burke et al.’s reported results), we report estimates using the contemporaneous

effect only.

To normalize these damages, we need to calculate the baseline risk at the optimal

(within-country minimum) temperature. This is not straightforward, because the

fixed effects estimation identifies only the slope, and not the level, of the linear
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response function. To calculate baseline risk, we exploit the fact that the OLS hy-

perplane passes through the sample mean. Because this is a linear model, we can

back out the level of y predicted at T optimal

i

as ȳ
i

� ˆ

�1 ⇥ (

¯

T

i

� T

optimal

i

), as shown

in Figure 1 A. Using this normalization, relative damages in each country-year are
�̂y

it

ȳ

i

��̂1⇥(T̄
i

�T

optimal

i

)
, where ȳ

i

and ¯

T

i

are mean war incidence and mean annual temper-

ature over the sample for country i. Because this is a linear probability model, when

this denominator value is predicted as negative, we set it to zero. Our reported value

is the average increase in the annual incidence of war under realized temperatures,

relative to baseline risk under optimal temperatures:1

fractional excess war risk =

P
i

P
t

ˆ

�y

it

T ⇥
P

i

h
ȳ

i

� ˆ

�1 ⇥ (

¯

T

i

� T

optimal

i

)

i

3. Ranson 2014 - Crime in the U.S. (4). We reanalyze the author’s original data for

rates of rape, murder, and aggravated assault using a linear approximation of the

author’s nonparametric regression on monthly average maximum temperature, as

the estimated nonparametric responses in the original paper are very close to linear

over most of the support (e.g. see Figure 3 panel n in the main text). We follow a

nearly identical procedure to that discussed above for Burke et al. 2009. We include

lags, as Ranson does, county-by-month-of-year (c
im

) and county-by-year (d
it

) fixed
1Note that we do not take the ratio before averaging because the denominator is zero for some countries.

Thus, the interpretation of our final number is the cumulative elevated risk due to temperature, as a percent
of the cumulative risk at the optimal temperature, accumulated across all countries in the sample. This is
analogous to the “Annual Conflict Risk” (ACR) measure used in Hsiang, Meng & Cane (2011) (3), i.e.
average probability of war in a randomly selected country.
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effects. Following Ranson, we weight the regression by county population.

crime rate

imt

= �1Ti,m,t

+�2Ti,m�1,t+�1precipi,m,t

+�2precipi,m�1,t+c

im

+d

it

+"

it

Where i indicates country, m indicates month-of-year, t indicates year, T is monthly

maximum temperature, and precip is total monthly precipitation. We estimate that

ˆ

�1,rape = 0.028,

ˆ

�1,murder

= 0.0028,

ˆ

�1,assault = 0.351. In this calculation, we de-

fine optimal temperature as each county’s minimum value of observed maximum

temperature for each month over all years of the sample, because the observations

are at the county-month level (e.g. county i will have a January optimal that is dis-

tinct from its July optimal). We also account for cumulative effects of the contem-

poraneous and one-month-lagged temperature effect, as these lagged variables are

often statistically significant in both our reanalysis and in Ranson’s original study.

Thus, each month’s optimal temperature exposure is the current month’s optimal

temperature in addition to the previous month’s optimal temperature. We use the

same normalization discussed above to get the average risk of crime, relative to the

level of crime predicted at each county’s minimum temperature. We population

weight this average to generate an estimate of the excess crime risk for an average

American:

fractional excess crime risk =

P
t

P
i

�̂y

i,m,t

⇥ w

i,m,t

⌧ ⇥
P

i

⇣
(ȳ

i,m,t

� [�̂1(T̄i,m,t

� T

optimal

i,m,t

) + �̂2(T̄i,m�1,t � T

optimal

i,m�1,t )])⇥ w

i,m,t

⌘

Where ⌧ is the total number of monthly observations in the panel and w

i,m,t

is the

population weight.2

2As with our calculation for Burke et al. (2009), note that here we do not take the ratio before averaging
because the denominator is zero for some counties.
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4. Burke et al. 2015 - Global GDP growth (5). We reanalyze the authors’ original

data using their preferred specification:

g

it

= �1Tit

+ �2T
2
it

+ �1precipit + �2precip
2
it

+ c

i

+ d

i

⇥ t+ d

i

⇥ t

2
+ "

it

Where g
it

is growth in GDP per capita in country i and year t, T
it

is country average

annual temperature, precip
it

is total country annual precipitation, c
i

are country

fixed effects, and d

i

⇥ t and d

i

⇥ t

2 are country-specific quadratic time trends. We

estimate ˆ

�1 = 0.127 and ˆ

�2 = �0.00049, consistent with the authors’ original result.

To get an optimal temperature for each country, we use T optimal

i

= argmax

T

it

:t2S

h
ˆ

�1Tit

+

ˆ

�2T
2
it

i
,

where S is the set of years included in the original data. This value T optimal

i

is the ob-

served temperature for country i that minimizes growth rate damages, given the es-

timated relationship (see Figure 1 B). We compute ĝactual
it

=

ˆ

�1T
actual

it

+

ˆ

�2(T
actual

it

)

2

and ĝ

optimal

it

=

ˆ

�1T
optimal

it

+

ˆ

�2(T
optimal

it

)

2. The difference in growth rates between

counterfactual and actual climates is then ˆ

�g

it

= ĝ

optimal

it

� ĝ

actual

it

.

This ˆ

�g

it

is the difference growth rates across the two climate scenarios, measured

in GDP per capita for each country-year. We transform this value into total dollars

by multiplying by the level of GDP per capita (Y
it

) and the population (pop
it

) in

country i and year t; we then sum to get global losses in dollars in year t:

unearned dollars of global GDP

t

=

X

i

ˆ

�g

it

⇥ Y

it

⇥ pop

it

We average across all years and divide by global GDP in each year to get the average

change in the global growth rate:

8



Avg growth rate adjustment =

1

⌧

X

t

unearned dollars of global GDP

t

global GDP

t

=

1

⌧

X

t

"P
i

ˆ

�g

it

⇥ Y

it

⇥ pop

itP
i

Y

it

⇥ pop

it

#

5. Deschenes & Greenstone 2011 - Mortality and energy consumption in the U.S.

(6). We do not have access to the original data, so we compute the effects of climate

using the summary statistics and coefficient estimates reported in the paper. The

authors use the binned temperature specifications shown below (where superscripts

m and e indicate the mortality and energy regression coefficients, respectively). Let

˜

T

j

= 1(T 2 ⌦

j

), where ⌦j

= [Tj

,

¯

T

j

) – that is, ˜T
j

is an indicator function equal to 1

if temperature is in the set [Tj

,

¯

T

j

), and ˜

P

k

is defined analogously for precipitation:

mortality rate

it

=

X

j

�

m

j

˜

T

itj

+

X

k

�

m

k

˜

P

itk

+ c

m

i

+ d

m

t

+ �

m

st

+ "

m

it

log(energy demand

st

) =

X

j

�

e

j

˜

T

stj

+

X

k

�

e

k

˜

P

stk

+X
st

�

e

+ c

e

s

+ �

e

dt

+ "

e

it

Where c

i

are county fixed effects, �
st

are state-by-year fixed effects, �
dt

are census

division-by-year fixed effects, and X
st

is a vector of state-level covariates, including

population and GDP (see Deschenes & Greenstone (2011) for details).

We use summary statistics on the average annual number of days that temperature

falls into each bin across all panel units, as well as the estimated coefficients for each

bin, to compute the total effect of climate. The number of days in each bin are taken

from Figure 1 in Deschenes & Greenstone (2011). Note that because these average
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values are population-weighted across all the county-year observations in the sam-

ple, our estimates of the average excess mortality risk and excess energy demand

will both be population-weighted averages. The mortality coefficients ˆ

�

m

j

are taken

from Figure 2 and the residential energy use coefficients ˆ

�

e

j

are from Figure 3. Be-

cause the energy demand specification is log-linear, we report the log-transformation

of the cumulative damages from days in every bin to get the average percent change

in energy consumption due to temperature:

fractional change in energy demand = exp

 
X

j

ˆ

�

e

j

⇥ ˜

T

j

!
� 1

Where ˜

T

j

is the mean value of ˜

T

j

across the sample. Mortality rates are not logged

in the authors’ specification. Thus, we compute the cumulative impacts across all

bins, relative to the the predicted level at the optimum. As above, we estimate the

predicted level of mortality at the optimum using the fact that the OLS hyperplane

passes through the sample means.

fractional excess mortality risk =

P
j

ˆ

�

m

j

⇥ ˜

T

j

y �
P

j

ˆ

�

m

j

⇥ ˜

T

j

Where y is the average mortality rate in the sample. As the original article did not

provide the mean all-age mortality rate, we download the publicly available version

of the outcome data and multiply each age-specific mortality rate in these data by

the age-group population weights used in the original article to get a mean mortality

rate of 859 per 100,000.
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6. Zhang et al. 2016 - TFP in China (7). We follow an identical approach as above

for energy consumption in Deschenes & Greenstone, as we do not have access to the

original data and Zhang et al. use a binned temperature response function with the

log of TFP on the left hand side. We use summary statistics for the average number

of days in each bin shown in Figure 2, and TFP coefficients from Figure 4 of the

original article. We calculate total losses of TFP as a percent of optimal:

fractional reduction of TFP = exp

 
X

j

ˆ

�

j

⇥ ˜

T

j

!
� 1

2 Effects of climate change to date (Table 1, Column 6)

Very few papers in the literature conduct warming-to-date attribution exercises. Nonethe-

less, for two papers where we have sufficient data, we compute estimates for the effect of

warming temperature trends since 1980, following the approach outlined in (8) and (9).

We do not consider trends in any other variables, although some other papers do report

impacts of trends in variables such as precipitation (8) or pollution (10).

The approach outlined below to compute the total impact of recent warming trends is

analogous to that employed above to measure the impact of the current climate distribution.

Now, however, our two quantities are ŷactual – the predicted social outcome under actual

climate (including any warming that has occurred) – and ŷdetrended – the predicted social

outcome under a counterfactual de-trended climate, where warming trends are removed.

We then compare the difference between these quantities and normalize in an identical

manner to the calculations in Section 1 of this supplement.
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1. Burke et al. (2009) - Civil conflict in Sub-Saharan Africa (2). These data are

country-year observations covering the years 1980-2006. For each country in the

data, we estimate a linear trend in average annual temperature and predict temper-

atures in each year, calling these predicted values T

⇤
it

. E.g., denote the predicted

country-level temperature in country i during 1981 using this linear fit as T ⇤
i,1981.

We then create a de-trended temperature residual for every country-year as follows,

which is normalized to temperature in 1981 (see Figure 2):

T detrended

it

= T

it

� T

⇤
it

+ T

⇤
i,1981

1980 2010
Time

T

1965

T_detrended
T_actual

T*

1995

Figure 2: Identifying counterfactual de-trended temperatures

We predict conflict levels using actual and de-trended temperature, using the co-

efficient estimates from our re-analysis of the originally reported empirical model.

Excess conflict risk due to the trend, relative to the de-trended counterfactual, is the

difference between these two predictions, which simplifies to ˆ

�y

it

=

ˆ

� ⇥ (T

it

�

T detrended

it

). Integrating over countries and years provides total additional risk
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born due to recent warming. We report this number as a percent change relative to

the total risk in the de-trended climate (recall Figure 1 A) and report the following

total damages due to recent warming, relative to a counterfactual de-trended climate,

as:

excess conflict risk from warming =

P
i

P
t

ˆ

�y

it

P
i

P
t

h
ȳ

i

� ˆ

�1 ⇥ (

¯

T

i

� T detrended

it

)

i

Note that the values we report are averages over the 20+ years of warming in the

sample obtained from Burke et al. (2009). Comparing outcomes just for years at

the end of the sample leads to higher estimated impacts of warming, as the trend has

been generally linear since 1980.

2. Burke et al. (2015) - Global GDP growth (5). These data are country-year

observations covering the years 1960-2010. We estimate country-specific linear

trends in temperature only using data after 1980 (inclusive) to generate T

⇤
it

and

T detrended

it

, as above. We then calculate ˆ

�g

it

=

h
ˆ

�1T
actual

it

+

ˆ

�2(T
actual

it

)

2
i
�

h
ˆ

�1T detrended

it

+

ˆ

�2(T detrended

it

)

2
i
.

As described in Section 1.4 of this supplement, we transform this value into total

dollars of GDP, averaged across all years, and divide by global GDP in each year to

get the average damages to the global average income growth rate:

Avg growth rate adjustment from warming =

1

⌧

X

t

unearned dollars of global GDP

t

global GDP

t

=

1

⌧

X

t

"P
i

ˆ

�g

it

⇥ Y

it

⇥ pop

itP
i

Y

it

⇥ pop

it

#
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Again, note that the values we report are averages over the damages each year from

1980 to 2010.
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