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amino acids from leaves of transgenic plants such as aspar-
tate, lysine, glycine, leucine and threonine with no changes 
in the amounts of methionine and α-ketobutyrate. In roots 
only glycine showed significant changes across all trans-
genic lines in comparison to wild-type plants. Transgenic 
plants expressing BlMGL and emitting DMS had less T. 
semipenetrans aggregation and more biomass than infected 
WT control plants, indicating that they may represent an 
innovative management alternative to pesticide/nematicide-
based remedies.

Keywords Brevibacterium · Methionine gamma lyase · 
Nematodes · Sulfur volatiles

Introduction

Citrus species are common hosts for many nematodes, of 
which the sedentary semi-endoparasite Tylenchulus semi-
penetrans (citrus nematode) is the most economically impor-
tant and abundant in agricultural soils. Unlike ectoparasitic 
nematodes that feed along the exterior of the root, endopara-
sitic nematodes enter the root tissue and become sedentary 
where they deliver an arsenal of secretions from esophageal 
gland cells via the stylet. Practical controls for nematodes 
are few and consist of amending soil with toxic substances 
such as anhydrous ammonia (Rodriguez-Kabana 1986) or 
methyl bromide (Zasada et al. 2010). Although effective, 
these treatments may be superficial, depending on the depth 
of the root system. Deep soil penetration of roots beyond the 
treatment zone causes relatively rapid reinfection. In Flor-
ida, uprooting, treating, and moving affected trees to unin-
fected soil has successfully diminished nematodes numbers; 
however, this procedure is costly. The emission of volatiles 
from vegetative root tissues is associated with the plant’s 
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innate defense mechanisms against pests. Certain classes 
of volatiles such as terpenoids or fatty acid derivatives can 
deter herbivore feeding (Howe and Jander 2008); however, 
the herbivore-deterring effects of sulfur volatile compound 
(SVCs) remain unclear. Diaphorina citri Kuwayama, a psyl-
lid that can carry Candidatus Liberibacter asiaticus (Las) 
and cause the disease Huanglongbing or citrus greening, was 
deterred by volatiles of alliaceous plants more than by vola-
tiles recovered from citrus leaves that did not contain SVCs 
(Rouseff et al. 2008). Gas chromatography (GC) coupled 
with detectors specialized to target sulfur volatiles showed 
that the seed of the Neem tree, Azadirachta indica (Meli-
aceae), produced di-propyl disulfide at levels of 75% of the 
total volatile profile (Balandrin et al. 1988). Foliar sprays 
of sulfur have been used for over a century to protect plants 
against pests and disease (Bloem et al. 2005). Foliar sulfur 
protects against pecan scab caused by the fungus Fusicla-
dium effusum (Wells et al. 2014), leaf spot of oilseed rape 
infected with Pyrenopeziza brassicae (Booth et al. 1991), 
and powdery mildew caused by the fungus Erysiphe necator 
that affects many fruits grown in humid conditions and mod-
erate temperatures, particularly grape (Kwasniewski et al. 
2014). By creating a synthetic version of the methionine-
gamma-lyase (MGL) gene from Brevibacterium linens and 
expressing it in Lactococcus lactis, a lactic acid bacterium 
used in milk and cheese processing, food researchers signifi-
cantly enhanced emission of SVCs for production of sulfur 
flavor compounds (Hanniffy et al. 2009). Recently, orthologs 
of the bacterial MGL gene were found in protozoa and in 
Arabidopsis thaliana and Solanum tuberosum, however, the 
Arabidopsis plants did not emit detectable SVCs, even after 
a 48-h treatment with an l-methionine solution (Goyer et al. 
2007). Two protein-coding genes with 72 and 74% similarity 
to AtMGL were present in the potato genome; however, no 
information is available regarding SVC production in potato 
(Huang et al. 2012). It is likely that the MGL enzyme is 
widespread in plants; a nucleotide BLAST search revealed 
genes with 70–80% identity to AtMGL in other plant species 
(LOC101263926 in Solanum lycopersicum, LOC100253026 
in Vitis vinifera, and LOC102609475 in Citrus sinensis).

In this work, we engineered SVC emission in a commonly 
used citrus rootstock, Carrizo citrange vr. (Citrus sinensis L. 
Usb × Poncirus trifoliate L. Raf), by overexpressing BlMGL 
to reduce the typical symptoms caused by infestation of the 
nematode T. semipenetrans in root tissues.

Materials and methods

Care of Carrizo citrange plants

Wild-type Carrizo citrange (Citrus sinensis L. Usb × Pon-
cirus trifoliate L. Raf.) were grown from seed and Carrizo 

plants newly transformed with MGL were propagated veg-
etatively in a greenhouse at temperatures between 23 and 
35 °C. All plants were potted with UC Davis soil mix and 
20-10-20 fertilizer (20% N, 10% P, 20% K) to promote plant 
growth.

Construction of plant expression vectors

The 35S:MGL gene was synthesized by ATUM (Newark, 
California, USA) based on a sequence from plant codon 
optimization of Brevibacterium linens MGL. To develop 
an A. tumefaciens-containing 35S:MGL construct for plant 
transformation, a chemically synthesized, codon-optimized 
version of the MGL gene was obtained from ATUM in 
pJ201:26757. The MGL coding sequence was direction-
ally cloned using XbaI and BamHI into our CaMV35S 
cassette-containing vector, pDU09.043, such that the cod-
ing regions were downstream from the Cauliflower mosaic 
virus (CaMV) 35S promoter and upstream from an octo-
pine synthase gene (ocs) 3′-UTR regulatory region required 
for proper polyadenylation. The resultant cassette carrying 
MGL gene was inserted into our binary pDU99.2215 vector 
using AscI. This led to the new binary vector pDU09.043. 
The binary vector was introduced into a disarmed Agrobac-
terium strain (Dandekar et al. 2012) as described below to 
create functional plant transformation systems.

Preparation of A. tumefaciens cultures

Agrobacterium tumefaciens cells containing pDU09.043 
plasmid were grown on LB medium with 0.5 g NaCl, 0.5 g 
yeast extract, and 1 g tryptone per 100 mL water (pH 6.8 to 
7.0). KAN antibiotic was added for specificity to plasmid 
and bacterial selection. A frozen A. tumefaciens stock was 
used to inoculate a 2 mL starter with LB medium. Initial 
stock was then transferred to a 250 mL flask containing LB 
and subcultured for one day. To harvest the A. tumefaciens, 
the culture medium was centrifuged at 4000 rpm for 10 min 
at room temperature. The A. tumefaciens pellet was resus-
pended in buffer composed of 10 mM MES (500 mM stock 
at pH 5.6), 10 mM  MgCl2, and 150 µM acetosyringone in 
sterile water.

Agroinfiltration and leaf incubation

The prepared A. tumefaciens concentrate (35S:MGL) was 
diluted in buffer to an optical density of 0.5 at 600 nm and 
then kept in a darkroom for three hours, after which 0.01% 
(v/v) Silwet L-77 was added prior to vacuum infiltration. A 
50-mL Falcon tube was filled with 40 mL A. tumefaciens 
solution. A harvested Carrizo citrus leaf was slightly rolled 
and subjected to a vacuum treatment up to an absolute pres-
sure of 0.23 atm for 3 min. The infiltrated plant leaves were 
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allowed to air dry for about 15 min. Leaves were transferred 
to a sealed humidity box and incubated at 20 °C for several 
days in the dark. Subsequently, tissue was washed in liquid 
MS medium containing 500 µg/mL carbenicillin for 24 h to 
kill the bacteria and then plated basal end up in MS medium 
containing 0.5 mg/L NAA, 0.2 mg/L kinetin and 500 µg/
mL carbenicillin. After ~ 10 days, callus from the basal end 
was removed and transformants were selected using 100 µg/
mL KAN. Root growth was promoted using a medium con-
taining 1 mg/L NAA. Subsequently, small seedlings were 
transplanted into soil pots and acclimatized to growth cham-
ber conditions. DNA was extracted from transgenic plants 
obtained after acclimation using the Qiagen DNeasy Plant 
Mini Kit, (Qiagen, Valencia, CA). Plants with the correct-
sized PCR amplicon were sent for sequencing to check the 
presence of MGL transgene. Three MGL-positive plants 
were sequenced, confirmed and labeled MGL-1, MGL-2 
and MGL-6.

Grafting of wild‑type scion in MGL rootstock

BlMGL-expressing lines MGL-1, MGL-2 and MGL-6 
served as rootstocks and were grafted with wild-type com-
mercial Valencia orange scions. Wild-type Carrizo root-
stock was grafted with Valencia orange scion and used as 
a control. Grafting was performed with a razor cut in the 
node region of both plants, which were joined together 
with rooting powder and sealed with parafilm. Grafting was 
judged successful after 3–4 months when full development 
and viable Valencia citrus branching occurred. A 6-mm 
plug was used to cut 6-mm diameter circles of leaf tissue 
weighing ~ 2.5 g that were placed in a 20-mL clear glass 
crimp-top deactivated vial (Restek) for solid phase micro-
extraction (SPME) coupled with gas chromatography sulfur 
chemiluminescence.

Amino acid and alpha‑keto acid analysis

Twenty mg (± 5) of fresh Carrizo citrus leaf and root tissue 
was harvested and frozen in liquid nitrogen. Samples were 
ground by mortar and pestle and placed in an Eppendorf 
tube. An extraction solution of methanol, chloroform, and 
water (5:2:2, v/v/v) was degassed with pressurized nitrogen 
and set in a cooling bath at − 18 to − 22 °C. After grinding, 
1 mL pre-chilled extraction solution was added to each sam-
ple with care to prevent partial thawing. All samples were 
chilled on ice, vortexed 10 s, shaken on an Oribital Mixing 
Chilling/Heating plate for 6 min at 4 °C and centrifuged at 
14,000 rcf using a 5415 D centrifuge. The supernatant was 
removed and divided into two 500-µL portions, one of which 
was saved as a backup. One 500-µL portion was dried in 
the Labconco Centrivap cold trap concentrator to complete 

dryness and then submitted for derivitization (Weckwerth 
et al. 2004).

Transcription analysis using RT‑qPCR

The first step for RT-qPCR analysis was to extract RNA from 
leaf and root tissue of transformed Carrizo and untrans-
formed, wild-type control plants, performed according to 
manufacturer’s direction using the Qiagen RNeasy Plant 
Mini Kit designed for obtaining RNA for cDNA synthesis 
(Qiagen, Valencia, CA). DNase treatment and cDNA synthe-
sis were completed using protocols described in the manu-
facture manual QuantiTect Reverse Transcriptase (Qiagen, 
Valencia, CA). For optimal PCR efficiency, RT-PCR primers 
for MGL and ELF-1α (reference gene) were designed with 
the aid of Primer3 (http://www.frodo.wi.mit.edu/cgi-bin/
primer3/primer3www.cgi) and are listed in supplemental 
data.

SsoAdvanced Universal SYBR Green Supermix (Bio-
Rad, Richmond, CA) was used with StepOnePlusTM Real-
Time PCR 48 well System (Applied Biosystems, So. San 
Francisco, CA). A five-point standard curve with cDNA 
amounts ranging from 0.625 to 10.0 ng was built for the 
MGL and ELF-1α primer sets, with amplification efficiency 
of 100.6 and 102.5%, respectively. Reactions for leaf sam-
ples were analyzed with a total cDNA quantity of 6.25 ng 
per reaction and three technical replicates and three biologi-
cal replicates were performed for all. Amplifications were 
performed using standard amplification conditions: two min 
at 50 °C, 10 min at 95 °C, and 40 cycles of 15 s at 95 °C and 
60 s at 60 °C. Changes in BlMGL gene expression relative to 
ELF-1α expression were assessed as described (Schmittgen 
and Livak 2008).

Solid phase microextraction (SPME) coupled with gas 
chromatography sulfur chemilluminescence detection

Extraction and analysis of SVCs in wild-type and transgenic 
Carrizo lines were adapted from a previous method for 
analysis of sulfur-containing volatiles in beer (Miracle et al. 
2005). The SPME fiber 50/30 μm divinylbenzene/carboxen/
polydimethyl-siloxane (DVB/CAR/PDMS) was exposed for 
30 min to the headspace of a 20-mL clear glass crimp-top 
deactivated vial (Restek) containing either 2.5 g leaf disks 
obtained from whole leaves with a core borer ~ 6 mm in 
diameter, or 1.5 g scissor-cut root tissue, at room tempera-
ture. Adsorbed volatiles were then desorbed into a 5890 HP 
GC (Hewlett Packard/Agilent, Little Falls, DE) equipped 
with a J&W GS-GasPro PLOT column (60 m × 0.32 mm; 
Agilent, Folsom, CA) connected to a Sievers 355 sulfur 
chemiluminescence detector (Agilent). The GC was set 
for splitless injection with an inlet temperature of 250 °C 
and using a 0.7 mm i.d., deactivated glass SPME injection 

http://www.frodo.wi.mit.edu/cgi-bin/primer3/primer3www.cgi
http://www.frodo.wi.mit.edu/cgi-bin/primer3/primer3www.cgi
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liner (Supelco, Saint Luis, MO). The split flow was opened 
3 min following the injection and closed again 10 min after 
injection. A volumetric flow of 3 mL/min using helium as a 
carrier gas was used with a constant column head pressure 
of 150 kPa. The oven temperature program started with an 
initial setting of 40 °C followed by an immediate ramp of 
10 °C/min to 260 °C, followed by a hold of three min. The 
SCD burner temperature was 800 °C with a hydrogen flow 
rate of 100 mL/min and an air flow rate of 40 mL/min. The 
SCD pressure was six Torr with the controller at 200 Torr.

A SPME fiber blank was analyzed in the beginning of 
each day to ensure the fiber was clean. Chemical standards 
(methanethiol, dimethyl sulfide, dimethyl disulfide and 
dimethyl trisulfide, purchased from Sigma Chemical Co., 
St. Louis, MO) were extracted and injected periodically as 
described above for peak identification by retention time. 
The detector was periodically conditioned as recommended 
by the manufacturer to avoid loss of sensitivity.

Tylenchulus semipenetrans inoculation

Three MGL-expressing Carrizo lines and one wild-type 
control were tested for tolerance against a population of 
Tylenchulus semipenetrans isolated from the Kearney Ag 
Research and Extension Center (UCKARE) in Parlier CA. 
Seven to 13 clones were made for each line used in the anal-
ysis. The plants were of uniform size with the same explant 
initiation date. Carrizo plants were placed in 2.5-L plastic 
pots filled with 2 L soil mixture. The plants were kept in the 
greenhouse in a completely randomized design at 22 cm2 
spacing on aluminum tables with an extruded mesh top. 
Plants were inoculated with 4 g infected soil with ~ 2300 
nematodes/g to reach a total of 9300 nematodes per pot.

The ambient temperature mean was 25 °C and the range 
was 24 to 36 °C after 120 and 240 days. The soil had a mean 
temperature of 23.6 °C and a range of 13.5 to 37.7 °C after 
120 and 240 days. Irrigation was supplied by hand wand 
every third day with ~ 0.5 L water per pot. More frequent 
irrigation was applied to individual plants as needed. Mira-
cle Gro was applied at the label rate of 4 g/L and 500 mL 
solution was used per plant at 75 and 120 days after trans-
planting. Two foliar sprays of acetamiprid 70% WP with a 
0.3 g/L solution were applied to control sucking insects at 30 
and 60 days after planting. Weeds were rare and hand-pulled.

Nematode infection was quantified 120 and 240 days 
after inoculation. Each plant and its roots was separated 
from the soil by washing with a hand nozzle within a spe-
cialized basket lined with a 1 cm2 mesh screen to capture 
breakaway roots. Fresh root biomass was weighed and a 
10–20 g diced root sample was placed into a mist-chamber 
for 5 days with intermittent misting to extract nematodes 
from within the roots. Extracted nematodes were identified 

as T. semipenetrans and quantified using a dissecting micro-
scope at ×40 magnification.

Statistical analysis

Statistical data analysis was performed using two-tailed Stu-
dent t test and Tukey’s test in order to determine significant 
differences between wild-type and the three transgenic lines 
for each type of analysis (amino acids, blMGL gene expres-
sion, DMS amount, T. semipenetrans population, root sys-
tem biomass and total biomass).

Results

Expression of BlMGL in Carrizo citrange leaf and root 
tissue

MGL expression was detected in leaf and root tissue of trans-
genic plants, while no expression of MGL was observed in 
non-transgenic WT control plants. MGL expression in trans-
genic citrus leaves was 1981- to 2752-fold greater than in 
non-transgenic leaves. In root tissue, MGL expression was 
115- to 454-fold greater in transgenic lines (Fig. 1).

BlMGL‑expressing lines emit DMS in leaf and root

All three transgenic lines produced and emitted a single, 
sulfur-containing volatile, DMS, from leaves, while no sul-
fur-containing volatiles could be detected in wild type Car-
rizo (Fig. 2a). DMS was the only sulfur-containing volatile 
detected in roots of line 6 while lines 1 and 2 where errone-
ously destroyed and unavailable for sampling. No sulfur-con-
taining volatiles were detected in wild type roots (Fig. 2b).

Analysis of BlMGL expression and the concentrations 
of selected amino acids and α‑ketobutyrate in those 
tissues

We assessed the impact of introducing BlMGL on the con-
centrations of selected amino acids and α-ketobutyrate in 
leaves and roots of transgenic Carrizo plants. Since cysteine 
was under the limit of detection in all lines, cysteine-glycine 
served as an indicator of cysteine concentration. While some 
significant differences was observed in the concentrations 
of some amino acids (aspartate, lysine, glycine, leucine and 
threonine) in transgenic leaf tissue, there were no consist-
ent patterns allowing us to determine the effect, if any, of 
BlMGL expression in transgenic lines. Methionine concen-
trations were not altered in the leaves of transgenic lines, 
suggesting that BlMGL activity does not deplete the pool 
of this amino acid in this tissue. Moreover, there were no 
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differences in α-ketobutyrate concentrations, the precur-
sor for isoleucine and a byproduct of the MGL pathway 
(Table 1).

While there were significant differences in the concentra-
tions of aspartic acid, lysine, leucine, threonine, methionine 
and cysteine-glycine in transgenic root tissue compared to 
WT root tissue, there were no consistent patterns allowing 
us to determine the effect, if any, of BlMGL expression in 
transgenic lines and only glycine showed significant differ-
ences across all transgenic lines (Table 2).

BlMGL expression and the density of T. semipenetrans 
in the Carrizo root zone

No difference was observed between the growth of the trans-
genic rootstocks grafted with wild-type scion (MGL:WT) 
and the growth of the wild-type rootstock with wild-type 
scion (WT:WT) control. No DMS emission were detected 
in scion leaves 4 months after grafting; suggesting that DMS 

does not cross the graft junction and emission is localized in 
transgenic tissues (data not shown). Wild-type and BlMGL-
expressing Carrizo plants were grown in soil infested with a 
controlled nematode load. 240 days after inoculation, the T. 
semipenetrans density around the WT roots was significantly 
greater than in BlMGL-expressing lines (Fig.  3), while 
root biomass (Fig. 4) and total plant biomass (Fig. 5) were 
reduced significantly in WT plants compared to BlMGL-
expressing lines. Although this trend was also detected 
120 days post inoculation, the differences at this sampling 
time were not statistically significant.

Discussion

A reduction of nematode presence has been known from a 
long time to be correlated with the increased concentration 
of molecular hydrogen sulfide in the soil (Rodriguez-Kabana 
et al. 1965). The increase of hydrogen sulfide in the soils of 
rice cultivation suggest that sulfur-related compounds may 
be effective in control soil-borne pathogens. The fumigation 
with dimethyl disulfide (DMDS) was effective in control-
ling some nematode including T. semipenetrans in Thomson 
Seedless grapevines (Cabrera et al. 2014) with no observed 

Fig. 1  Relative BlMGL gene expression in Carrizo a leaf and b root 
tissue. Vertical bars represent expression relative to a non-transgenic 
WT control with a value of 1 (n = 3)

Fig. 2  Effect of BlMGL expression on dimethyl sulfide production in 
Carrizo a leaf and b root tissue. n.d not detected; n = 3
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phytotoxic effects. DMDS has the benefit to have no negative 
effects on ozone protection. The action of this compound is 
on mitochondrial respiration though the block of cytochrome 
oxidase activity (Auger and Charles 2003).

Table 1  Amino and keto acid 
analysis of leaf tissue from WT 
and BlMGL-expressing Carrizo 
lines

The concentrations of metabolites that differed significantly from the WT are denoted by an asterisk (n = 3, 
p < 0.05, two-tailed Student t test)

WT MGL-1 MGL-2 MGL-6

Aspartic acid 19,883 ± 343 17,517 ± 2419 18,169 ± 3644 31,332 ± 2412*
Lysine 835 ± 18 630 ± 36* 919 ± 37 2784 ± 405*
Glycine 31,433 ± 5569 6080 ± 810* 5083 ± 1697* 29,058 ± 2647
Leucine 861 ± 61 757 ± 35 1232 ± 94* 12,808 ± 57*
Threonine 3668 ± 264 2740 ± 216 2087 ± 62* 6375 ± 451*
Isoleucine 5292 ± 2960 8251 ± 1180 3110 ± 1880 8328 ± 926
Methionine 131 ± 17 107 ± 23 135 ± 10 139 ± 37
Cysteine–glycine 220 ± 15 399 ± 187 314 ± 71 578 ± 165
α-Ketobutyrate 1.2 ± 0.3 2.0 ± 0.4 1.5 ± 0.1 1.9 ± 0.4

Table 2  Amino and keto acid 
analysis of root tissue from WT 
and BlMGL-expressing Carrizo 
lines

The concentrations of metabolites that differed significantly from the WT are denoted by an asterisk (n = 3, 
p < 0.05, two-tailed Student t test)

Compound average WT MGL-2 MGL-4 MGL-6

Aspartic acid 62,678 ± 4544 98,051 ± 13,431 105,960 ± 1901* 61,644 ± 4991
Lysine 11,953 ± 406 8719 ± 1413 10,698 ± 1264 6707 ± 275*
Glycine 5176 ± 524 10,580 ± 1434* 10,978 ± 941* 7450 ± 299*
Leucine 8633 ± 363 2798 ± 352* 8714 ± 573 3563 ± 157*
Threonine 7847 ± 592 3369 ± 463* 6847 ± 126 4407 ± 274*
Isoleucine 7659 ± 1287 7861 ± 1309 6466 ± 3427 3040 ± 1354
Methionine 550 ± 16 356 ± 72 695 ± 42 273 ± 14*
Cysteine–glycine 1112 ± 5 1224 ± 36 786 ± 48* 999 ± 7*
α-Ketobutyrate (ppm) 1.51 ± 0.24 2.12 ± 0.23 2.53 ± 0.43 2.04 ± 0.33
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Our results offer the first evidence that expression of 
BlMGL in planta leads to DMS emission from leaves and 
roots. We believe DMS emission alone helps to reduce T. 
semipenetrans populations in soil since amino acid analy-
sis offer no consistent patterns amongst transgenic and WT 
plants and account for reduced nematode populations or 
reduced plant biomass. These data agreed previous pub-
lished findings on the use of soil-incorporated different 
plant material to control soil-borne pathogens (Wang et al. 
2009). These authors observed a reduction of T. semipen-
etrans in the soil linked with the production of methyl sulfide 
and dimethyl sulfide. The incorporation of plant emitting 
methyl sulfide and dimethyl disulfide decreased the presence 
of the parasitic nematodes. Our results confimed previous 
published data that showed how dimethyl disulfide biosyn-
thesized by soil bacteria, could have a reduction effects on 
nematode population in the soil (Gu et al. 2007). A syner-
gistic action of these sulfide compounds with non-volatile 
compounds derived by glucosinolate has been hypothesized 
to increase the control of soilborne pathogens (Wang et al. 
2009).

The detection of DMS as the only sulfur-containing vola-
tile compound produced by BlMGL-expressing transgenic 
Carrizo plants was an unexpected result, since previous 
studies reported DMDS, likely from the auto-catalytic reac-
tion of DMS to DMDS. To our knowledge, DMS emission 
in plants is rare and only reported in a few halophyte species 
that produce high concentrations of dimethylsulfoniopropi-
onate (DMSP), the precursor for DMS in these plants (Yoch 
2002). However, it is unlikely that Carrizo plants started 
producing DMSP as a result of BlMGL introduction. The 
sensitive, sulfur-containing volatile detection system used 
in our study (SPME-GC-SCD) has been used previously 
for analysis of numerous SVCs in plant tissues and wines 

(Herszage and Ebeler 2011). It is unlikely that other SVCs 
were missed by our analysis. In contrast to BlMGL in bac-
teria, we could not detect MeSH, the precursor to DMS, 
and we hypothesize that DMS was therefore produced by 
an unknown, yet efficient, enzymatic thiol methylation of 
MeSH in planta. Thiol methylation activity has been studied 
in glucosinolate-producing plants, which can form MeSH by 
methylation of HS- via an S-methyl methionine-dependent 
halide/bisulfide methyltransferase. The best-studied thiol 
methyltransferase (TMT) is in cabbage, where thiocyanate, 
HS- ions and organic thiols can be methylated by TMT. Het-
erologs of this enzyme were found in 118 species and are 
thought to be involved in elimination of phytotoxic halide 
and HS-ions (Attieh et al. 1995). A blast analysis showed a 
putative thiol methyltransferase in Citrus sinensis (acces-
sion number XM 006493073.1) with 61% identity at the 
protein level to the well-characterized cabbage TMT; how-
ever, this enzyme has not been characterized and whether 
these enzymes can use MeSH as a substrate to produce 
DMS is still unclear. The metabolism of the amino acids 
isoleucine, threonine, and methionine is interconnected in 
plants, since both methionine-gamma-lyase and threonine 
deaminase provide the isoleucine biosynthesis substrate 
α-ketobutyrate (Joshi et al. 2010). In potato, silencing the 
two StMGLs increased the methionine-to-isoleucine ratio 
(Huang et al. 2012). This and other studies suggest that 
MGL plays a subordinate role to production of isoleucine, 
since α-ketobutryate is a precursor for isoleucine. While 
there were some differences in threonine concentrations in 
leaf and root tissues of transgenic lines, there were no clear 
patterns to determine what effect, if any, BlMGL has on 
these plants. Surprisingly, we found no change in isoleucine 
concentrations in leaf or root tissue of transgenic plants com-
pared to WT, which correlated with no significant change 
in the precursor α-ketobutyrate (Tables 1, 2). Further meta-
bolic profiling is necessary to confirm the impact of BlMGL 
expression on plant amino acid metabolism. Unexpectedly 
we did not observe any changes in methionine production 
due to transgenic expression of BlMGL. This evidence does 
not agree with the differences observed in enzymatic activi-
ties involved in sulphur metabolism occurred in transgenic 
potatoes (Rinder et al. 2008). Transgenic potatoes with 
changes in  H2S have been obtained with possible increased 
resistance to biotic stresses (Bloem et al. 2011).

The Citrus Carrizo genotype is typically used as a root-
stock in commercial orchards because it provides resistance 
to blight, citrus tristeza virus, Phytophthora and other nema-
todes with the exception of T. semipenetrans (Niles et al. 
1995). Our transgenic, BlMGL-expressing Carrizo plants 
showed tolerance to T. semipenetrans and may represent 
a promising strategy to lessen dependence on pesticidal/
nematicidal remedies. Fumigation of cultivated soils for 
reducing soilborne pathogens is commonly used to obtain 
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a good level of crop quality and yields of many crops in 
narrow rotation systems (Wang et al. 2009). However, these 
practices had high detrimental effects such as increasing 
the production costs, threatening the soil ecosystem and 
negatively affecting air pollution. Fumigants are not spe-
cific compounds targeting a wide range of soil organisms, 
including those beneficial for crops and they raised health 
concerns for humans. These suspected effects caused the ban 
of methyl bromide and an increase of environmental regula-
tions on fumigant compounds. The use of repeated applica-
tion of metam sodium is required (Di Primo et al. 2003) 
rendering these practices highly not friendly for the environ-
ment. Our results propose a possible transgenic solution for 
reducing the use of fumigants against nematodes although 
the public concerns with transgenics will be expected. To 
decrease the risk of negative impacts of GMOs, such as the 
uncontrolled flow of transgenes via pollen or seed, we pro-
pose a transgenic rootstock strategy that will allow reducing 
the spread of transgene in the environment. High-throughput 
proteomic platforms have been used to analyze simultane-
ously thousands of proteins in plant tissues (Martinelli et al. 
2016). This type of approach can be used to analyze scion 
and rootstock tissues close-by the graft union in order to 
detect how much transgenic protein may be delivered by the 
rootstock into the scion.
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