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ARTICLE

Divergent mutational processes distinguish hypoxic
and normoxic tumours
Vinayak Bhandari 1,2, Constance H. Li 1,2,3, Robert G. Bristow 4,5,6*, Paul C. Boutros 1,3,7,8,9,10,11* &

PCAWG Consortium

Many primary tumours have low levels of molecular oxygen (hypoxia), and hypoxic tumours

respond poorly to therapy. Pan-cancer molecular hallmarks of tumour hypoxia remain poorly

understood, with limited comprehension of its associations with specific mutational pro-

cesses, non-coding driver genes and evolutionary features. Here, as part of the ICGC/TCGA

Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole

genome sequencing data from 2658 cancers across 38 tumour types, we quantify hypoxia in

1188 tumours spanning 27 cancer types. Elevated hypoxia associates with increased muta-

tional load across cancer types, irrespective of underlying mutational class. The proportion of

mutations attributed to several mutational signatures of unknown aetiology directly associ-

ates with the level of hypoxia, suggesting underlying mutational processes for these sig-

natures. At the gene level, driver mutations in TP53, MYC and PTEN are enriched in hypoxic

tumours, and mutations in PTEN interact with hypoxia to direct tumour evolutionary trajec-

tories. Overall, hypoxia plays a critical role in shaping the genomic and evolutionary land-

scapes of cancer.
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Approximately half of all solid tumours are characterized
by low levels of molecular oxygen (hypoxia)1–4. Sub-
regions of hypoxia can result from disrupted oxygen

supply: irregular and disorganized tumour vasculature can reduce
oxygen availability5. Hypoxia can also be caused by changes in
oxygen demand: altered tumour metabolism6,7 can increase intra-
cellular demand for oxygen, potentially extending hypoxia sig-
nalling to liquid tumours. The adaptation of tumour cells to this
imbalance in oxygen supply and demand is associated with poor
clinical prognosis in several cancer types, attributed at least
in part to hypoxia-associated genomic instability and clonal
selection8–16.

Previous work has provided insight into the molecular origins
and consequences of tumour hypoxia and genomic instability.
Dynamic cycling of hypoxia can select for cells with TP53
mutations and for those that are apoptosis-deficient17,18. Indeed
mutations in TP53 occur at a higher frequency in hypoxic pri-
mary tumours of at least 9 types16. The abundance of proteins
involved in homologous recombination (e.g. RAD51) and non-
homologous end joining (e.g. Ku70) are reduced under hypoxia,
and these changes can persist for 2 days after reoxygenation19–21.
Genes central to efficient mismatch repair (e.g.MLH1 andMSH2)
are also downregulated under hypoxia22,23. Further, co-presence
of tumour hypoxia and high genomic instability14,15, specific
cellular morphologies like intraductal and cribriform carcinoma24

or specific mutations like loss of PTEN16, synergistically predict
for rapid relapse after definitive local therapy in some tumour
types, particularly prostate cancer. These data underscore the
relationship between hypoxia and DNA repair defects, and sug-
gest the tumour microenvironment applies a selective pressure
leading to the development of specific genomic profiles.

We previously evaluated the exomic and copy-number altera-
tion (CNA) consequences of tumour hypoxia across 19 cancer
types16. However, the influence of tumour hypoxia on pan-cancer
driver alterations, mutational signatures, and subclonal archi-
tectures remains unclear. To fill this gap, we calculated tumour
hypoxia scores for 1188 tumours with whole-genome sequencing
(WGS) and RNA sequencing, spanning 27 cancer types. Genome
sequencing data was aggregated by the Pan-Cancer Analysis of
Whole Genomes (PCAWG) consortium and generated by the
ICGC and TCGA projects. These sequencing data were re-
analyzed with standardized, high-accuracy pipelines to align to
the human genome (reference build hs37d5) and identify germ-
line variants and somatic mutations, as described previously25.
This sequencing data together with our high-quality hypoxia
quantitation represents a powerful hypothesis-generating
mechanism to suggest useful back-translational in vitro experi-
ments and better define the hypoxia-associated mutator pheno-
type across cancers. We associated hypoxia with key driver
alterations in coding and non-coding regions of the genome, and
find hypoxia is associated with specific mutational signatures of
unknown aetiology. We illustrate the joint impact of PTEN and
the tumour microenvironment in influencing the evolutionary
trajectory of tumours. Overall, these data highlight the genomic
changes through which hypoxia drives aggressive cancers.

Results
The pan-cancer landscape of tumour hypoxia. We compiled a
cohort of 1188 tumours from 27 cancer types via the PCAWG
Consortium. All samples had matched tumour and reference
normal WGS and tumour RNA sequencing data generated by the
ICGC and TCGA projects. WGS25 and RNA-sequencing26 ana-
lyses were systematically carried out by centralized teams with
consistent and high-accuracy bioinformatics pipelines. Normal
reference samples had a mean WGS coverage of 39 reads per

base-pair while coverage for tumour samples had a bimodal
distribution with modes at 38 and 60 reads per base-pair25. All
samples underwent an extensive and systematic quality assurance
process25.

We used linear mixed-effect models to associate hypoxia with
features of interest across cancers while adjusting for tumour
purity, age, and sex27,28. Cancer type was further incorporated as
a random effect in every model, allowing us to consider a
different baseline value for the feature of interest for each cancer
type. As a measure of effect size we report conditional R2 values,
denoted as R2

LMEM�C, which reflect the variance explained by the
fixed and random factors in each model29. We also report
marginal R2 values, denoted as R2

LMEM�M, which reflect the
variance explained only by the fixed factors29.

We scored tumour hypoxia in all 1188 tumours using a trio of
mRNA-based hypoxia signatures from Buffa30, Winter31 and
Ragnum32 (Fig. 1a, Supplementary Fig. 1a, b, Supplementary
Table 1, Supplementary Data 1). Hypoxia scores from each of
these independent signatures were strongly correlated (ρ=
0.71–0.88, all p < 2.2 × 10−16, AS89; Supplementary Fig. 1c) and
consistently predicted squamous tumours of the lung (Lung-
SCC), cervix (Cervix-SCC), and head (Head-SCC) as the most
hypoxic (Supplementary Fig. 1d, e). Comparatively, chronic
lymphocytic leukaemias (Lymph-CLL) and thyroid adenocarci-
nomas (Thy-AdenoCA) were the least hypoxic, consistent with
previous16 reports (ρ= 0.94, p < 2.2 × 10−16, AS89; Fig. 1b,
Supplementary Fig. 1f, h). Remarkably, subsets of patients from
23/27 cancer types have tumours with elevated hypoxia (hypoxia
score > 0) and tumours consistently have elevated hypoxia
compared to normal tissues (Supplementary Fig. 2a–c).

Considering the strong agreement between the Winter, Buffa
and Ragnum hypoxia signatures (Fig. 1a, Supplementary Fig. 1c,
d), we used the Buffa signature for subsequent analyses. The Buffa
signature has been previously used for pan-cancer analyses and
shows results consistent with those from other signatures16. We
first assessed the degree of inter-tumoural heterogeneity in
hypoxia that lies within individual cancer types rather than
between them. Over 42% of the variance in hypoxia scores occurs
within individual cancer types, highlighting the microenviron-
mental diversity between tumours arising in a single tissue. This
variability in hypoxia score within cancer types was especially
elevated in some tumour types, particularly biliary adenocarci-
nomas (interquartile range, IQR= 43.0; Biliary-AdenoCA),
mature B-cell lymphomas (IQR= 36.0; Lymph-BNHL), lung
adenocarcinomas (IQR= 34.0; Lung-AdenoCA) and breast
adenocarcinomas (IQR= 32.0; Breast-AdenoCA). This was in
contrast to chronic lymphocytic leukaemias (IQR= 2.0; Lymph-
CLL) and prostate adenocarcinomas (IQR= 6.0; Prost-Ade-
noCA) where little inter-tumoural variability in hypoxia was
observed. The variability in hypoxia score was not significantly
associated with the median hypoxia score within cancer types
(ρ= 0.20, p= 0.30, AS89; Supplementary Fig. 2d) or with sample
size (ρ= 0.22, p= 0.27, AS89; Supplementary Fig. 2e). Overall,
extensive heterogeneity exists in hypoxia levels within and across
cancer types.

The genomic correlates of tumour hypoxia. To determine
whether genomic instability arising from specific mutational
classes is associated with hypoxia, we looked to identify hypoxia-
associated pan-cancer mutational density and summary fea-
tures33. As a positive control, we first considered the percentage
of the genome with a copy-number aberration (PGA), an engi-
neered feature that is a surrogate for genomic instability and is
associated with hypoxia across several tumour types16 (Supple-
mentary Fig. 2f). Indeed, in this diverse pan-cancer cohort,
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hypoxic tumours have elevated genomic instability while con-
trolling for cancer type, tumour purity, age and sex27 (p= 2.41 ×
10−8, R2

LMEM�M = 0.022, R2
LMEM�C = 0.57, linear mixed-effect

model; Fig. 2a).

We then considered the association of hypoxia scores with 14
other metrics of the mutation density of CNAs, structural variants
(SVs) and single nucleotide variants (SNVs) using linear mixed-
effect models (Fig. 2a, Supplementary Fig. 2f, Supplementary
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Fig. 1 The pan-cancer landscape of tumour hypoxia. We quantified tumour hypoxia in 1188 independent tumours spanning 27 different cancer types.
a Hypoxia scores for 27 types of cancer, based on the Buffa mRNA abundance signature. Cancer types are sorted by the median hypoxia score (horizontal
black line) for each cancer type. Each dot represents one tumour. Sample sizes for each cancer type are listed near the bottom along with the percent of
tumours that have elevated hypoxia (hypoxia score > 0). The variability in hypoxia within cancer types was measured by the interquartile range (IQR),
shown along the bottom. The IQR was particularly high in biliary adenocarcinoma (IQR= 43.0; Biliary-AdenoCA), lymphoid B-cell non-Hodgkin’s
lymphomas (IQR= 36.0; Lymph-BNHL), lung adenocarcinoma (IQR= 34.0; Lung-AdenoCA) and breast adenocarcinoma (IQR= 32; Breast-AdenoCA). By
contrast, chronic lymphocytic leukaemia (IQR= 2.0; Lymph-CLL) and thyroid adenocarcinoma (IQR= 11.0; Thy-AdenoCA) showed less variance in
hypoxia score. b Analysis of hypoxia between 16 comparable cancer types in PCAWG and TCGA (Spearman’s ρ, AS89). Dots represent the mean of the
scaled median hypoxia scores from three different mRNA-based hypoxia signatures. Error bars represent the standard deviation of the scaled median
hypoxia scores. Overall, the pan-cancer quantification of hypoxia between the PCAWG and TCGA datasets shows strong agreement.
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Fig. 2 The genomic correlates of tumour hypoxia.We associated tumour hypoxia with mutational density and summary features, a, and driver mutations,
b, across 27 cancer types using linear mixed-effect models. Hypoxia scores for all 1188 tumours are shown along the top. a Elevated tumour hypoxia was
strongly associated with more deletions, elevated PGA, smaller CNAs, and a higher number of SNVs per megabase (n= 1188 independent tumours).
Bonferroni-adjusted p-values are shown on the right. b We tested if driver mutations (e.g. any of SNV, CNA, SV or a compound event with more than one
type of mutation) were associated with hypoxia in 1096 independent tumours with driver mutation data. Tumours with mutations in BCL2 showed lower
levels of hypoxia while patients with mutations in TP53 showed remarkably elevated tumour hypoxia. Other driver mutations associated with elevated
hypoxia include the oncogene MYC and the tumour suppressor PTEN. FDR-adjusted p-values are shown along the right. SV structural variant; PGA
percentage of the genome with a copy-number aberration; CNA copy-number aberration; SNV single nucleotide variant; H-H head-to-head; T-T tail-to-tail.
All associations were modelled using linear mixed-effect models while adjusting for cancer type, tumour purity, age and sex.
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Tables 2, 3). The strongest single correlate of tumour hypoxia was
the total number of deletions, where patients with elevated
hypoxia had more deletions (p= 1.11 × 10−10, R2

LMEM�M = 0.023,
R2
LMEM�C = 0.59, linear mixed-effect model). Elevated numbers of

other SVs such as duplications (p= 2.94 × 10−4, R2
LMEM�M =

0.0084, R2
LMEM�C = 0.60, linear mixed-effect model) and trunca-

tions (p= 3.29 × 10−3, R2
LMEM�M = 0.0062, R2

LMEM�C = 0.60, lin-
ear mixed-effect model) were also associated with high hypoxia,
and we confirmed this within individual cancer types (Supple-
mentary Fig. 3a). Other features associated with elevated hypoxia
include smaller CNAs (p= 3.51 × 10−3, R2

LMEM�M = 0.0065,
R2
LMEM�C = 0.59, linear mixed-effect model) and more SNVs/

Mbp (p= 5.55 × 10−3, R2
LMEM�M = 0.0054, R2

LMEM�C = 0.60, lin-
ear mixed-effect model). Since mutational density features can be
correlated, we wanted to further test if SNVs per megabase were
independently associated with hypoxia after adjusting for the total
number of deletions. We created a linear mixed-effect model
associating hypoxia with the number of SNVs per megabase while
adjusting for cancer type, age, sex, tumour purity and the number
of deletions. We also created a second model which lacked our
feature of interest, SNVs per megabase, and compared the two
models using an ANOVA (see the “Methods” section). The p-
value for this comparison was 0.011, suggesting that the number
of SNVs per megabase are associated with hypoxia independent
of the number of deletions (and other potential confounders
included in the models). Overall, hypoxia is associated with
increased numbers of most types of somatic mutations.

Considering the strong association of hypoxia with mutational
density, we next looked to determine if these were only general
effects or selectively affected specific genes or chromosome
regions. We leveraged a catalogue of 653 driver mutations25, with
CNA, SV and SNV data available for 1096 patients. In cases where
a patient had multiple mutations in the same gene (e.g. a CNA and
an SNV) we denoted these as compound events. We again used
linear-mixed effect models to associate hypoxia with each driver
feature across cancers (Fig. 2b). Adjusting for cancer type, tumour
purity, age and sex, 10 driver events were associated with hypoxia
across cancers (FDR < 0.10, linear-mixed effect models; Supple-
mentary Fig. 2f, Supplementary Table 4). Tumours with mutations
in BCL2 (FDR= 7.56 × 10−15, R2

LMEM�M = 0.045, R2
LMEM�C =

0.62, linear-mixed effect model) showed lower levels of hypoxia
compared to those without. All alterations of BCL2 in this
cohort were SVs, so it is important to note that this association
could not be identified from previous exome-sequencing data.
Similarly, mutations in the tumour suppressor TP53 were
associated with elevated hypoxia across cancers (FDR= 1.97 ×
10−12, R2

LMEM�M = 0.043, R2
LMEM�C = 0.59, linear-mixed effect

model), consistent with previous descriptions of hypoxia-
mediated selection of TP53-mutated cells17 and elevated hypoxia
in breast cancers with TP53 mutations16. We also confirmed
this association within individual cancer types (Supplementary
Fig. 3b). Mutations of the oncogene MYC (FDR= 1.07 × 10−4,
R2
LMEM�M = 0.016, R2

LMEM�C = 0.60, linear-mixed effect model)
and tumour suppressor PTEN (FDR= 1.50 × 10−2, R2

LMEM�M =
0.0098, R2

LMEM�C = 0.59, linear mixed-effect model) were also
associated with elevated hypoxia. Alterations in mitochondrial
genes34 were not significantly associated with tumour hypoxia
(Supplementary Fig. 3c). Thus, hypoxia is associated with both
broad elevation of mutation density of most types of somatic
variation, along with a consistent signature of alterations in
oncogenes and tumour suppressors across cancers.

Hypoxia-associated mutational signatures. Previous work has
used nonnegative matrix factorization to identify distinct

mutational processes in cancer cells from endogenous and exo-
genous agents35. To identify hypoxia-associated mutational pro-
cesses, we tested if hypoxia score was associated with the proportion
of mutations attributed to each mutational signature using linear-
mixed effect models. Of the 65 single base substitution (SBS) sig-
natures tested, nine showed differential activity in hypoxic tumours
compared to non-hypoxic ones, while controlling for cancer type,
tumour purity, age and sex (FDR < 0.10, linear mixed-effect models;
Fig. 3a, Supplementary Table 5). Of these, six were more active and
three less active in tumours with elevated hypoxia. Since previous
work has shown that DNA repair is impaired under hypoxia, it
was not surprising to observe that a higher proportion of
mutations were attributed to SBS3 (related to defective homologous
recombination-based repair) in tumours with elevated hypoxia
score (FDR= 1.98 × 10−3, R2

LMEM�M = 0.016, R2
LMEM�C = 0.60,

linear-mixed effect model). Further, SBS6 (FDR= 1.98 × 10−3,
R2
LMEM�M = 0.0086, R2

LMEM�C = 0.61, linear-mixed effect model)
and SBS21 (FDR= 4.31 × 10−2, R2

LMEM�M = 0.0051, R2
LMEM�C =

0.61, linear-mixed effect model), both related to defective DNA
mismatch repair, had a higher proportion of attributed mutations
with increasing hypoxia. A lower proportion of mutations were also
attributed to SBS1, previously related to the deamination of 5-
methylcytosine, with increasing hypoxia (FDR= 8.33 × 10−8,
R2
LMEM�M = 0.033, R2

LMEM�C = 0.61, linear-mixed effect model).
Intriguingly, hypoxia was also associated with a number of SBS

signatures with unknown aetiology (Fig. 3b). The strongest of
these was SBS5, where elevated hypoxia was associated with a
significantly lower proportion of mutations attributed to the
signature (FDR= 1.43 × 10−6, R2

LMEM�M = 0.022, R2
LMEM�C =

0.59, linear-mixed effect model). A significantly lower proportion
of mutations were also attributed to SBS12 with increasing
hypoxia score (FDR= 4.31 × 10−2, R2

LMEM�M = 0.0066, R2
LMEM�C

= 0.60, linear-mixed effect model). In contrast, a higher propor-
tion of mutations were attributed to SBS17a (FDR= 4.80 × 10−3,
R2
LMEM�M = 0.0072, R2

LMEM�C = 0.61, linear mixed-effect model)
and SBS17b (FDR= 2.83 × 10−3, R2

LMEM�M = 0.079, R2
LMEM�C =

0.61, linear mixed-effect model) with increasing hypoxia.
Analysis of small insertion and deletion (ID) signatures

illustrated a similar story. Of the 17 ID signatures analyzed, the
activity of 5 were associated with tumour hypoxia scores while
controlling for cancer type, tumour purity, age and sex (FDR <
0.10, linear mixed-effect models; Fig. 3b, Supplementary Table 6).
Of these, 3 were more active in tumours with elevated hypoxia
while 2 were less active in them. The defective homologous
recombination signature ID6 (FDR= 5.76 × 10−5, R2

LMEM�M =
0.015, R2

LMEM�C = 0.60, linear mixed-effect model) and defective
DNA mismatch repair signature ID2 (FDR= 7.06 × 10−3,
R2
LMEM�M = 0.011, R2

LMEM�C = 0.61, linear mixed-effect model)
had a higher proportion of attributed mutations as hypoxia score
increased. Several signatures with unknown aetiology were
also significantly associated with hypoxia score, including ID5
(FDR= 1.54 × 10−3, R2

LMEM�M = 0.016, R2
LMEM�C = 0.60, linear

mixed-effect model) and ID9 (FDR= 7.06 × 10−3, R2
LMEM�M =

0.0068, R2
LMEM�C = 0.60, linear mixed-effect model). These data

suggest that oxygen levels play a direct or indirect role in the
accumulation of specific mutations in cancer cells that are
reflected by these signatures.

The subclonal hallmarks of tumour hypoxia. State-of-the-art
methods for subclonal reconstruction rely on WGS data36,
making the PCAWG dataset ideal for understanding the evolu-
tionary pressures imposed by hypoxia. We and others have
shown that some mutations consistently occur early during
tumourigenesis while others occur later and that hypoxia is
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associated with CNAs occurring early in localized prostate
cancer16,37,38. To explore if this interaction between the tumour
microenvironment and mutational landscape exists more broadly
in cancer, we assessed if hypoxia was related to the number of
clonal or subclonal mutations across 1188 tumours from 27
cancer types38. Clonal mutations are common to all cells in a
tumour while subclonal ones are only present in a subpopulation
of cells. We found that elevated hypoxia was significantly asso-
ciated with an increased number of clonal alterations across
cancers (Bonferroni-adjusted p= 4.65 × 10−3, R2

LMEM�M =
0.0074, R2

LMEM�C = 0.60, linear mixed-effect model; Fig. 4a,
Supplementary Table 7), particularly clonal SVs (p= 1.17 × 10−5,
R2
LMEM�M = 0.013, R2

LMEM�C = 0.60, linear mixed-effect model).
In contrast, tumour hypoxia was not significantly associated with
the number of subclonal alterations (Bonferroni-adjusted p=
0.28, R2

LMEM�M = 0.0039, R2
LMEM�C = 0.60, linear mixed-effect

model; Fig. 4a). Further, consistent with findings in prostate
cancer16, hypoxia was not associated with the number of sub-
clones detected (Bonferroni-adjusted p= 0.14, R2

LMEM�M =
0.0051, R2

LMEM�C = 0.60, linear mixed-effect model; Fig. 4a).
These data suggest that hypoxia applies a selective pressure on
tumours during their early evolution, prior to subclonal
diversification.

Next, we assessed if the mutational background of a tumour
together with its oxygenation level was linked to its evolutionary
trajectory. We previously demonstrated that patients with
hypoxic polyclonal prostate tumours with loss of the tumour
suppressor PTEN tend to have a poor prognosis16. Indeed,
here we observed a significant interaction between tumour
hypoxia and loss of PTEN in predicting subclonal architecture
(pinteraction= 8.39 × 10−3, R2

LMEM�M = 0.60, R2
LMEM�C = 0.87, lin-

ear mixed-effect model; Fig. 4b). Specifically, tumours with both

of these features tend to have a polyclonal architecture across
cancers. The downstream impact of this interaction between the
genome and the tumour microenvironment was observed in RNA
data: tumours with both altered PTEN and elevated hypoxia had
the lowest abundance of PTEN mRNA (p= 4.63 × 10−14,
R2
LMEM�M = 0.054, R2

LMEM�C = 0.47, linear mixed-effect model;
Fig. 4c). Thus, the evolutionary trajectory of a tumour may be
driven by the presence of a mutation in a specific microenviron-
mental context (Fig. 4d).

Discussion
Hypoxia is a feature of many solid and liquid tumours and is
associated with aggressive disease. We calculated hypoxia scores
for 1188 tumours from 27 cancer types and showed the vast
heterogeneity that exists in this microenvironmental feature
within and across cancer types. This reinforces previous pushes
for careful patient selection in prospective trials of hypoxia-
targeting agents16.

For the first time, we characterized the pan-cancer whole-
genome correlates of tumour hypoxia. We show the broad
influence of the hypoxia-associated mutator phenotype: ele-
vated hypoxia is associated with increased mutational load
across all mutational classes (i.e. CNAs, SVs and SNVs). This
supports previous in vitro work that demonstrated the con-
textual synthetic lethality of PARP inhibition in cells with
defective DNA repair due to hypoxia39. Regarding this co-
occurrence of genomic instability and hypoxia, our group16 and
others40 have previously described this metabolic reprogram-
ming as a series of distinct genomic alterations. This is sup-
ported by our finding that alterations in TP53, MYC and PTEN
are more common in tumours with elevated hypoxia across
cancers. Supporting these findings, previous in vitro work has
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shown that heterogeneous populations of cells where a small
subpopulation have mutant TP53 can rapidly expand under
cycling hypoxia to become the major subpopulation due to
deficient apoptosis and selection17. We have also previously
shown that tumours with TP53 mutations have elevated
hypoxia within individual breast cancer subtypes, confirming

that this association is not simply reflecting previously descri-
bed molecular subtypes16.

Our study cannot conclusively say whether hypoxia exerts a
selective pressure that enriches for specific genomic alterations or
if these genomic changes directly result in hypoxia. Experimental
studies of single genes support that both effects may contribute to
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the associations we describe17,22,41–43. While we have not speci-
fically included in vitro experimental validation data in this
report, we and others have previously validated associations first
revealed by analysis of mRNA-based hypoxia signatures. For
example, our group previously described microRNA-133a-3p as a
hypoxia-associated miRNA in prostate cancer based on mRNA
signature-based associations across multiple independent data-
sets16. We went on to validate that microRNA-133a-3p was
indeed induced under hypoxia in multiple prostate cancer cell
lines and confirmed its capacity to modulate cell proliferation and
invasion. Similarly, Ye et al. applied hypoxia signatures to 10
independent datasets of cell lines and primary tumour fragments
under hypoxia and normoxia44. These 10 datasets represented
seven cancer types and within each dataset samples under
hypoxia showed higher hypoxia scores compared to normoxic
samples. Further, they generated predictions of drugs that would
be more or less potent under hypoxia and validated four
drug–hypoxia interactions in vitro. These data illustrate that
hypoxia signatures applied to large cohorts of primary tumours
can generate reliable hypotheses, many of which have been vali-
dated in controlled systems. However, some aerobic cancer cells
may also mimic the biological state of hypoxia (i.e., pseudohy-
poxia) and this may affect signature-derived hypoxia estimates.
Further, while pimonidazole (which was used to develop the
Ragnum hypoxia signature32) reflects oxygen tensions below 10
mmHg (1.3% O2), it is difficult to directly relate hypoxia signature
scores with oxygen tension45. Overall, hypoxia signalling can be
distinct from microenvironmental hypoxia and this remains a
critical caveat of this study.

Diving into the mutational processes related to hypoxia, we
confirmed that several SBS and small indel signatures related to
impaired DNA repair were associated with hypoxia. This raises
the potential confounder that because hypoxic tumours have
more mutations, we have more power to detect related mutational
signatures. However, we demonstrated that hypoxia is indeed
strongly associated with many mutational signatures with
unknown aetiology, particularly SBS5, which is found in nearly all
cancer types. Modelling these associations in vitro is particularly
difficult and these data provide a high confidence measure of the
mutational signatures that may be directly or indirectly driven by
tumour oxygen levels. It is difficult to disentangle the timing of
these events: whether a specific driver mutation gives rise to a
specific mutational signature or if these are separate processes.
Better mapping of the evolutionary timing of hypoxia will be
particularly important in addressing this question and the advent
of hypoxia signatures may facilitate future studies in this area.

We observed a significant association between elevated hypoxia
and the number of clonal mutations. This supports the idea that
hypoxia is an early event in cancer, as we have suggested pre-
viously16, and other models that link hypoxia to genomic
instability and downstream clonal selection20,42. Previous work
has also demonstrated that patients with allelic loss of PTEN and
elevated hypoxia rapidly relapse after definitive treatment for

localized prostate cancer16. Here, we showed that tumours with
alterations in PTEN and elevated hypoxia are enriched for a
polyclonal tumour architecture. This illustrates the joint influence
of the tumour mutational landscape and microenvironment in
guiding evolutionary trajectories across cancers. Further, these
data suggest that increased subclonal diversification may be a
novel route via which PTEN drives aggressive tumour pheno-
types, in concert with tumour hypoxia, and this can be better
defined with future back-translational in vitro experiments. The
PCAWG dataset is the largest publicly available pan-cancer
dataset to date and this limits our ability to validate our dis-
coveries in independent datasets. Ultimately, it will be necessary
to validate our findings in large, independent cohorts. Hypotheses
generated here, particularly those around hypoxia and tumour
evolution, will require long term, systematic in vitro modelling
and will be the subject of future studies. Overall, this work shows
that a hypoxic tumour microenvironment is associated with
specific mutational processes and distinct somatic mutational
profiles, and may direct the subclonal architecture of cancers.

Methods
Pan-cancer hypoxia scoring. Hypoxia scores were calculated for all 1188 tumours
with mRNA abundance data (FPKM with upper-quartile normalization) using
mRNA-abundance-based signatures of tumour hypoxia developed previously by
Winter et al.31, Buffa et al. 30 and Ragnum et al. 32, as described previously14,16

(Supplementary Data 1). Briefly, patients with the top 50% of mRNA abundance
values for each gene in a signature were given a score of +1. Patients with the
bottom 50% of mRNA abundance values for that gene were given a score of −1.
This was repeated for every gene in the signature to generate a hypoxia score for
each patient, and this process was repeated for each of the three signatures used in
the study. High scores suggest that the tumour was hypoxic and low scores are
indicative of normoxia.

Hypoxia score comparison. To compare hypoxia scores generated by the different
signatures, the median hypoxia score was calculated for each of the PCAWG cancer
types based on each signature. The median hypoxia scores from each signature
were then scaled from +1 to −1 using the plotrix package (v3.7). Scaled median
hypoxia values for the PCAWG cancer types were also compared to scaled median
hypoxia values from previously published16 TCGA data between comparable
cancer groups. The groups compared are as follows (PCAWG cancer type and
TCGA cancer type): Bladder-TCC and BLCA; Breast-AdenoCA and BRCA;
Cervix-SCC and CESC; CNS-GBM and GBM; ColoRect-AdenoCA and COAD-
READ; Head-SCC and HNSC; Kidney-RCC and KIRC; Liver-HCC and LIHC;
Lung-AdenoCA and LUAD; Lung-SCC and LUSC; Ovary-AdenoCA and OV;
Panc-AdenoCA and PAAD; Prost-AdenoCA and PRAD; Skin-Melanoma and
SKCM; Thy-AdenoCA and THCA; Uterus-Adeno and UCEC. Of the 27 cancer
types in PCAWG, 11 (Cervix-AdenoCA, Stomach-AdenoCA, Eso-AdenoCA,
Breast-LobularCA, SoftTissue-Leiomyo, Lymph-BNHL, SoftTissue-Liposarc, Bili-
ary-AdenoCA, Kidney-ChRCC, CNS-Oligo and Lymph-CLL) did not have hypoxia
data from comparable cancers in TCGA and were not used for the comparison16.
For Spearman’s correlations, p-values were calculated using algorithm AS89.

Tumour vs. normal hypoxia comparison. Previously calculated pan-cancer
tumour hypoxia scores were gathered for 7791 independent tumours from 19
cancer types based on the Buffa hypoxia signature16. Hypoxia scores were then
calculated for all normal tissue samples related to the 19 cancer types with hypoxia
scores (n= 640 independent normal tissue samples). Tumour hypoxia scores were
compared to normal tissue hypoxia scores for each tissue type where at least 15
normal tissue samples were available (Mann–Whitney U-test). A total of 5649

Fig. 4 The subclonal hallmarks of tumour hypoxia.We associated tumour hypoxia with features related to the subclonal architecture of 1188 independent
tumours from 27 cancer types using linear mixed-effect models. a Hypoxia scores are shown along the top while Bonferroni-adjusted p-values are shown
on the right. Hypoxia was not associated with the number of subclones in the tumour but elevated hypoxia was associated with a higher number of clonal
mutations. b We also observed a significant interaction between hypoxia and altered PTEN where tumours with both of these features were particularly
likely to be polyclonal. c The mRNA abundance of PTEN is modulated by both PTEN mutational status and tumour hypoxia. Tumours with altered PTEN and
elevated hypoxia have the lowest abundance of PTENmRNA. mRNA abundance is reported as FPKM with upper-quartile normalization. A Tukey box plot is
shown. Box plots represent the median (centre line) and upper and lower quartiles (box limits), and whiskers extend to the minimum and maximum values
within 1.5× the interquartile range. All associations were modelled using linear mixed-effect models while adjusting for cancer type, tumour purity, age and
sex. d Altered PTEN and hypoxia may drive subclonal diversification. Many primary tumours have elevated hypoxia due to increased demand or decreased
supply of oxygen. Tumours with elevated hypoxia tend to have altered PTEN. Elevated hypoxia and altered PTEN may drive subclonal diversification and
poor outcomes.
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independent tumours and 625 independent normal tissue samples were evaluated
in the comparisons.

Linear mixed-effect models. We used linear mixed-effect models to associate
hypoxia with features of interest (e.g., PGA, TP53 mutational status, etc.) across
cancers using the lme4 package (v1.1-17). For each feature of interest, we compared
a full model (i.e., a model with the feature of interest) to a null model (i.e. a model
without the feature of interest) using an ANOVA to determine if hypoxia was
significantly associated with the feature of interest across cancers. A generic
example of this is shown below with Eqs. (1) and (2):

full ¼ hypoxia � featureþ purity þ ageþ sexþ 1 cancerjð Þ ð1Þ

null ¼ hypoxia � purity þ ageþ sexþ 1jcancerð Þ ð2Þ
All models were adjusted for tumour purity, patient age and sex27,28. Cancer type
was incorporated as a random effect in every model. This allowed us to consider a
different baseline value for the feature of interest for each cancer type. For each
model a conditional R2 value is reported (R2

LMEM�C) which reflects the variance
explained by the fixed and random factors29. We also report marginal R2 values for
each model (R2

LMEM�M) which reflect the variance explained by the fixed factors
only29. R2

LMEM�C and R2
LMEM�M values were calculated as described previously29.

All model diagnostics were done using the DHARMa package (0.2.0) which
uses a simulation-based approach to create standardized residuals46. For each
model, scaled residuals were generated using the simulateResiduals function. The
full model was used as the input for fittedModel parameter and 1000 simulations
were run. For correctly specified models, the scaled residuals were expected to be
uniformly distributed and this was verified for each full model. We also compared
the standardized residuals to the rank transformed predicted values to assess
deviations from uniformity for each full model.

Mutational density analysis. Previously published data for 15 mutational density
and summary features were downloaded for 1188 tumours33. We used linear
mixed-effect models to associate each feature with hypoxia score across cancers
and compared each full model with a null model. Cancer type was incorporated as
a random effect in each model while tumour purity, age and sex were incorporated
as fixed effects. Tumours belonging to cancer types with fewer than 15 samples
were excluded from the analysis. A Bonferroni p-value adjustment was applied to
the p-values from linear mixed-effect modelling since fewer than 20 tests were
conducted. All models were adjusted for tumour purity based on previously
published purity data33. The full model for evaluating PGA is shown below as an
example as follows:

fullPGA ¼ hypoxia � PGAþ purity þ ageþ sexþ 1jcancerð Þ ð3Þ
To assess if SNVs per megabase were independently associated with hypoxia

after adjusting for the total number of deletions we created two linear mixed-effect
models. The full model associated hypoxia with SNVs per megabase while
adjusting for cancer type, age, sex, tumour purity and the number of deletions (Eq.
(4)). For comparison, a null model was created without our feature of interest,
SNVs per megabase (Eq. (5)). The two models were compared using an ANOVA.

full ¼ hypoxia � SNVs permegabaseþ purity þ ageþ sex

þ total deletionsþ 1jcancerð Þ ð4Þ

null ¼ hypoxia � purity þ ageþ sexþtotal deletionsþ 1jcancerð Þ ð5Þ

Driver mutations analysis. Data for driver mutations was first summarized at the
gene level for 1096 tumours with previously published driver mutation data25. For
each of the 653 driver features, we summarized if a patient had an SNV, CNA or
SV. Some tumours had more than one type of event in a gene (e.g. a CNA and an
SNV) and these events were classified as compound events. We then used linear
mixed-effect models to associate the mutational status of each gene with hypoxia
score and compared each full model with a null model. Cancer type was incor-
porated as a random effect in each model while tumour purity, age and sex were
incorporated as fixed effects. The driver mutation analysis did not specifically
consider the type of mutation in the gene and only considered if the gene had a
mutation or was wildtype. Tumours belonging to cancer types with fewer than
15 samples were excluded from the analysis. An FDR adjustment was applied to the
p-values from linear mixed-effect modelling. The full model for evaluating PTEN is
shown below as an example as follows:

fullPTEN ¼ hypoxia � PTENþ purity þ ageþ sexþ 1jcancerð Þ ð6Þ

Mutational signature analysis. Previously published data for mutations attributed
to various specific signatures was downloaded for 1188 tumours35. For each
tumour, we calculated the proportion of total mutations attributed to each
mutational signature. The proportion of mutations attributed to each signature
were calculated by dividing the number of mutations attributed to each signature
by the total number of mutations in the tumour. We used linear mixed-effect
models to associate the proportion of mutations attributed to each signature with

hypoxia score and compared each full model with a null model. Cancer type was
incorporated as a random effect in each model while purity, age and sex were
incorporated as fixed effects. Tumours belonging to cancer types with fewer than
15 samples were excluded from the analysis. An FDR adjustment was applied to the
p-values from linear mixed-effect modelling. The full model for SBS1 is shown
below as an example as follows:

fullSBS1 ¼ hypoxia � SBS1þ purity þ ageþ sexþ 1jcancerð Þ ð7Þ

Subclonality analysis. Previously reported38 subclonal reconstruction data was
used to summarize the number of clonal and subclonal mutations in all 1188
tumours. We used linear mixed-effect models to associate the number of these
timed mutations with hypoxia score and compared each full model with a null
model. Cancer type was incorporated as a random effect in each model while
purity, age and sex were incorporated as fixed effects. Tumours belonging to cancer
types with fewer than 15 samples were excluded from the analysis. A Bonferroni
adjustment was applied to the p-values from linear mixed-effect modelling since
fewer than 20 tests were conducted.

The number of subclones was calculated for all 1188 tumours based on the
number of clusters of cells identified in each sample. A linear mixed-effects model
was used to associate the number of subclones with hypoxia score and this model
was compared to a null model. Cancer type was incorporated as a random effect
while purity, age and sex were incorporated as fixed effects. Tumours belonging to
cancer types with fewer than 15 samples were excluded from the analysis. The full
model for associating the number of subclones with hypoxia score is shown below
as follows:

fullsubclones ¼ hypoxia � subclonesþ purity þ ageþ sexþ 1jcancerð Þ ð8Þ
Patients with only one identified cluster of cells were defined as monoclonal and
patients with more than one identified cluster of cells were defined as polyclonal37.
Hypoxia scores were median dichotomized to classify patients as hypoxic or
normoxic. To test for an interaction between tumour hypoxia and PTEN
mutational status in selecting for a particular subclonal architecture, we used linear
mixed-effect models together with an ANOVA. An interaction model was first
created where the relationship between the hypoxia scores and PTEN mutational
status was modelled as an interaction (Eq. (9)). An additive model was also created
where the relationship between hypoxia scores and PTEN mutational status was
modelled in an additive manner (Eq. (10)):

interaction ¼ clonality � hypoxia � PTEN þ purity þ ageþ sexþ 1jcancerð Þ
ð9Þ

additive ¼ clonality � hypoxiaþ PTEN þ purity þ ageþ sexþ 1jcancerð Þ
ð10Þ

The two models were compared using an ANOVA to test if hypoxia scores
significantly interact with PTEN mutational status. Tumours belonging to cancer
types with fewer than 15 samples were excluded from the analysis. The full
model diagnostics were carried out using the DHARMa package, as
described above.

All data analysis was performed in the R statistical environment (v3.4.3). Data
visualization was performed using the BPG package47 (v5.9.1). Figures were
compiled using Inkscape (v0.91).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Aligned sequencing data, somatic and germline variant calls, single nucleotide variants,
indels, copy-number alterations, structural variants, mutational signatures, subclonal
reconstructions, transcript abundances and other core data generated by the PCAWG
Consortium are described here25 and available for download at dcc.icgc.org/releases/
PCAWG. Additional information on accessing the data, including raw read files, can be
found at docs.icgc.org/pcawg/data. In accordance with the data access policies of the
ICGC and TCGA projects, most molecular, clinical and specimen data are in an open tier
which does not require approval for access.

To access potentially identifiable information, such as germline alleles and underlying
sequencing data, researchers will need to apply to the TCGA Data Access Committee
(DAC) via dbGaP (dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page= login) for access to the
TCGA portion of the dataset, and to the ICGC Data Access Compliance Office
(DACO; icgc.org/daco) for the ICGC portion of the dataset. To access somatic single
nucleotide variant data derived from TCGA donors, researchers will also need to obtain
dbGaP authorization.

The analyses in this paper used several PCAWG datasets that were derived from the
raw sequencing data and variant calls. The individual datasets are available at Synapse
(synapse.org) and are denoted with accession numbers starting with syn. All of these
datasets are also mirrored at dcc.icgc.org. The datasets encompass: clinical data for each
patient, including information about age and sex (syn10389158, dcc.icgc.org/releases/
PCAWG/clinical_and_histology); histopathology data for each tumour (syn10389164,
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dcc.icgc.org/releases/PCAWG/clinical_and_histology); mRNA abundance data for each
tumour (syn5553991, dcc.icgc.org/releases/PCAWG/transcriptome/gene_expression);
driver mutations for each tumour spanning all classes of variants (syn11639581, dcc.icgc.
org/releases/PCAWG/driver_mutations); single base substitution and small indel
signature exposures for each tumour (syn8366024, dcc.icgc.org/releases/PCAWG/
mutational_signatures); subclonal architecture, tumour evolution and tumour purity data
for each tumour (syn8272483, dcc.icgc.org/releases/PCAWG/subclonal_reconstruction).

Code availability
The core computational pipelines used by the PCAWG Consortium for alignment,
quality control and variant calling are available to the public at dockstore.org/search?
search= pcawg under the GNU General Public License v3.0, which allows for reuse and
distribution. Code specific to this manuscript is available upon request.
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