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Abstract. Poles of  a linear t ime-invariant system can be extracted from a matrix pencil constructed from the transient 
response o f  the system. Three subspace filtering techniques applicable to the matrix pencil method are presented briefly 
in a unified way. 

Zusammenfassung. Die Pole eines linearen, zeitinvarianten Systems lassen sich aus einem Matrixpencil gewinnen, der aus 
der Sprungantwort  des Systems konstruiert wird. Es werden in aller Kiirze drei Unterraum-Filtertechniken vereinheitlicht 
vorgestellt, die auf  diese MatrixpenciI-Methode anzuwenden sind. 

R6sum6. Les p61es d 'un  systbme lin6aire invariant dans le temps peuvent ~tre extraits de matrices "pencil" construites fi partir 
de la r6ponse transitoire du syst~me. Trois m6thodes de filtrage de sous-espace, applicable fi cette m&hode,  sont prdsentdes 
bri~vement et d 'une  manibre unifide. 

Key words. System identification, transient processing, matrix pencil, subspace decomposition. 

1. Introduction 

It is known that the transient  response o f  linear 

t ime-invariant  (LTI)  system can be generally 

described by 
d 

y ( t )  = ~ (b,,o+ tb~,~ +-  • • 
i i 

+ tmt~)-~b~,,,~;)_l) exp(s~t), (1.1) 

where re( i )  is the multiplicity o f  the pole s,, M = 

Yf~_~ re( i ) ,  which is the order  o f  the system or the 

total number  o f  poles, d is the number  o f  distinct 
poles. For  a defective system, re(i)  > 1 for at least 

• This work was supported in part by Aeritalia Corporation 
and by the Office of  Naval Research under  contract N00014-79- 
C-0598. 

one i. In matrix form, y ( t )  can be written as 

y ( t ) =  A ( t ) b ,  (1.2) 

where 

A ( t )  = [ A ~ ( t ) , . . . ,  A a ( t ) ] ,  (1.3) 

A i ( t )  = [ e x p ( s d ) , . . . ,  t ' ' '~'  I exp(sit)],  (1.4) 

b = [b~V,..., baT] v , (1.5) 

b T, = [ b,.o, . . . , b,.,,,,,,_t]. (1.6) 

The superscript  v denotes  the transposit ion.  Note  

that A ( t )  is completely determined by s;, d and 

re(i) .  Given A ( t ) ,  b can be obtained in a least 
squares sense by 

b =  A+y, (1.7) 
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where the superscript ÷ denotes the Moore-  
Penrose inverse [1] and 

A = [AT( to) , . . . ,  AT(tN | ) ] T ,  (1.8) 

y = [ y ( t o ) , . . . , y ( t N  ,)]v, (1.9) 

in which t o , . . . ,  ts_l can be any distinct sample 
times but N/> M. 

In this short paper, we will present that the 
parameters s~, d and re(i) can be obtained from 
a matrix pencil constructed from the uniformly 
sampled data yk =y(T~k). T~ is the sampling 
interval. In particular, three subspace filtering 
techniques proposed in [3, 7] are shown in a 
unified way. 

2. Matrix pencil method 
We define two matrices Yo and Y, as 

Yo=[Y, i YL _, --.  Yo] 

[ Yk I YL--~ " ' "  Yo ] 

J LYN 2 YN 3 " ' '  YN L J 
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( ( N - L ) x L ) ,  (2.1) 

Y1 = [.VL, YL-1, • • •, Yl] 

Y 1 YN-2 " " " YN-L 

( ( N  - L) x L), (2.2) 

Then the following 
can be shown (see 

(2.3) 

(2.4) 

where M < ~ L < ~ N - M .  
analytical decomposition 
Appendix A): 

Yo ~- ZLZR, 

Y1 = Z L Z Z R ,  

where ZL is a rank-M ( N - L ) x  M matrix, Z R a 

rank-M M x L matrix and Z the companion matrix 
. M 

of the polynomial ~m=o cm z-m with Co = 1. cm's are 
the M coefficients of the M-order  linear prediction 

equation of  Yk. 
It is known that Z has d distinct eigenvalues 

{z~=exp(s,T,), i=  l , .  . . ,  d}, each of algebraic 
Signal Processing 

multiplicity (AM) equal to re(i) and geometric 
multiplicity (GM) equal to one. It should be noted 
that Yo and Y~ have the same column space and 
the same row space, and each of them has the rank 
M, which implies that M can be estimated by the 
number of dominant singular values of Y0 and Y~ 

(e.g., see [4, 5]). 
In the following, we show three algorithms for 

extracting the poles zi (hence si, d and re(i)) from 
Yo and Y~, assuming M is known. 

Direct algorithm [3] 

Yo can be numerically (e.g., using SVD [1]) 

decomposed into 

Yo = Yc YR, (2.5) 

where YL is a rank-M ( N - L ) x  M matrix (span- 

ning the column space of Yo) and YR a rank-M 
M x L matrix (spanning the row space of Yo). 
Specifically, YL=ZL Y and YR = Y-IZR,  where Y 
is an M x M nonsingular matrix (which can be 
arbitrary otherwise). Now the M x M matrix P~, 
defined by 

P, = YL Y, YR, (2.6) 

where YL = ( YE N YL)-I yEN and Y~ = 
yRH( YR YRH) - ' ,  becomes P, = Y- 'Z~ZLZZRZ~  Y = 
Y-1ZY.  Since P~ is a similar transform of Z, P~ 

has the same eigenvalues as Z, i.e., d distinct 
eigenvalues {z~[i= 1 , . . . ,  d} each of AM re(i) and 
GM one. 

Subspace estimation (SE) algorithm [7] 

Both Yo and Y~ can be alternatively numerically 
[ 1] decomposed into 

(2(N-L)xL) (2(N-L)xM) (MxL) 
(2.7) 

where 

span[xX~] = s p a n [ z Z z ]  = span[  yYl° ] ,  (2.8) 
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which indicates the subspace estimation process 
(for both Yo and 1"1) inherent in the SE algorithm. 
Since Xo = Z L X  and X~ = Z L Z X ,  where X is an 
M x M nonsingular matrix, the M x M matrix P2, 

defined by 

P2 = X o X , ,  (2.9) 

+ H - I  H where Xo = (Xo Xo) Xo,  becomes P2 = 
X - i Z~  Z L Z X  = X -  ~ZX. Therefore, P2 is similar to 

Z and has d distinct eigenvalues {z;li = 1 , . . . ,  d} 
each of  AM m(i )  and GM one. Xo and Xt are a 
pair of  compressed matrices from Yo and Yt unless 
L = M .  

Subspace estimation and subspace fitting (SESF)  

algorithm [7] 

Further matrix compression can be made on Xo 

and X, before retrieving the poles. Since Xo and 
Xl should have the same column space, there exist 

two M x M nonsingular matrices To and T, such 
that 

X o T o -  X ,  T, =0,  (2.10) 

which indicates a subspace fitting process inherent 

I T ° ] c a n  in the SESF algorithm. Numerically [1], T, 

be the M non-principal right Singular vectors of  

[Xo, Xi]. From (2.10), ToT[  ~ = X o X I .  Hence, the 
M x M matrix p~, defined by 

P~ = TOT[', (2.11) 

is P2 and has d distinct eigenvalues {zili  = 

1, . . . ,  d} each of  AM m ( i )  and GM one. 

3. Discussions 

In the matrix pencil method, L is a free para- 
meter subject to M <~ L <~ N - M. A proper value 
for L should be such that the column (or row) 
space of  Yo and Y, has the largest dimension so 
that the maximum noise components fall into the 
noise subspace (which is automatically discarded 
in the numerical computations of the above three 
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algorithms). But for ~N ~< L ~< ~N, the robustness 
of  the estimated poles to noise is relatively 
invariant [2,3]. On the other hand, a large 
dimension of  Yo and Y~ implies that more compu- 
tations are needed in performing subspace filtering. 
It is clear that the three algorithms are in increasing 
order of  computation. Consistent with Roy's 
observation [7] for wave direction finding, we 
found [2] that for estimating poles from transient 
responses, the extra computation used in the SESF 
algorithm makes it the most robust to noise. But 
for SNR above a threshold, the three algorithms 
are equally accurate [2]. 

If the signal is known to be oversampled, the 
matrix pencil method can be modified [2] to yield 
more accurate poles than the well-known Prony's 
method, without using subspace filtering. 

Comparing to the SVD Prony's method [5, 6], 
the matrix pencil method has been shown in [3] 
to be more efficient in computation as well as more 
robust to noise. 

Finally, we mention that the above matrix pencil 
approach is a special case of  using a set of matrices 

as defined in the following: 

Yo.G = [YL-G Y L - G - I  " " " Y O ] ,  

Yt.G =[YL-G+t YL-G " ' "  Yl], 

Y~.c =[y£ y£ , • " " YG], 

where L -  M + 1/> G/> 1. These matrices can be 
analytically decomposed into 

Yo.G = ZLZRc ,  

YI,G = Z L Z Z R G ,  

Yc, c = Z L Z ~ Z R c ,  

where ZRG is a rank-M M x ( L -  G +  1) matrix. It 
is clear that the previous three algorithms can be 
applied to any pair in the matrix set 

{ YO.G, Y I . G  . . . . .  YG.G} to extract the poles {zili  = 

1 , . . . ,  d}. However, an efficient way of utilizing 

the whole matrix set { Y ~ . G I i = 0 , 1 , . . . , G ;  
Vol. 21, No. 2. October I ~ 0  
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G =  1 , 2 , . . . ,  L - M + I }  to yield better estimates 
of {z, li = 1 , . . . ,  d} has not yet been found. 

Appendix 

Since Yk is the transient response of an order-M 
LTI system, Yk satisfies, for a unique set of 
coefficients c.~'s, 

where 

Z =  

References 

- c~  1 

- c 2  1 

".. 

- c  M 

(A.5) 
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m=l  

or, equivalently, 

M 
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