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ABSTRACT

In this paper, we report new limits on 2lcm emission from cosmic reionization based on a 135
day observing campaign with a 64-element deployment of the Donald C. Backer Precision Array for
Probing the Epoch of Reionization (PAPER) in South Africa. This work extends the work presented
in Parsons et al. (2014) with more collecting area, a longer observing period, improved redundancy-
based calibration, improved fringe-rate filtering, and updated power-spectral analysis using optimal
quadratic estimators. The result is a new 20 upper limit on A%(k) of (22.4mK)? in the range 0.15 <
k < 0.5h Mpc™! at z = 8.4. This represents a three-fold improvement over the previous best upper
limit. As we discuss in more depth in a forthcoming paper (Pober et al. 2015), this upper limit
supports and extends previous evidence against extremely cold reionization scenarios. We conclude
with a discussion of implications for future 21cm reionization experiments, including the newly funded

Hydrogen Epoch of Reionization Array.
Subject headings:

1. INTRODUCTION

The cosmic dawn of the universe, which begins with
the birth of the first stars and ends approximately one
billion years later with the full reionization of the inter-
galactic medium (IGM), represents one of the last unex-
plored phases in cosmic history. Studying the formation
of the first galaxies and their influence on the primordial
IGM during this period is among the highest priorities in
modern astronomy. During our cosmic dawn, IGM char-
acteristics depend on the matter density field, the mass
and clustering of the first galaxies (Lidz et al. 2008),
their ultraviolet luminosities (McQuinn et al. 2007), the
abundance of X-ray sources and other sources of heat-
ing (Pritchard & Loeb 2008; Mesinger et al. 2013), and
higher-order cosmological effects like the relative veloc-
ities of baryons and dark matter (McQuinn & O’Leary
2012; Visbal et al. 2012).

Recent measurements have pinned down the bright end
of the galaxy luminosity function at z < 8 (Bouwens
et al. 2010; Schenker et al. 2013) and have detected a
few sources at even greater distances (Ellis et al. 2013;
Oesch et al. 2013). In parallel, a number of indirect
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techniques have constrained the evolution of the neutral
fraction with redshift. Examples include integral con-
straints on reionization from the optical depth of Thom-
son scattering to the CMB (Planck Collaboration et al.
2014, 2015), large-scale CMB polarization anisotropies
(Page et al. 2007), and secondary temperature fluctu-
ations generated by the kinetic Sunyaev-Zel'dovich ef-
fect (Mesinger et al. 2012; Zahn et al. 2012; Battaglia
et al. 2013; Park et al. 2013; George et al. 2014). Other
probes of the tail end of reionization include observa-
tions of resonant scattering of Lya by the neutral IGM
toward distant quasars (the ‘Gunn-Peterson’ effect) (Fan
et al. 2006), the demographics of Lya emitting galax-
ies (Schenker et al. 2013; Treu et al. 2013; Faisst et al.
2014), and the Lya absorption profile toward very dis-
tant quasars (Bolton et al. 2011; Bosman & Becker 2015).
As it stands, the known population of galaxies falls well
short of the requirements for reionizing the universe at
redshifts compatible with CMB optical depth measure-
ments (Robertson et al. 2013, 2015), driving us to deeper
observations with, e.g., JWST and ALMA to reveal the
fainter end of the luminosity function.

Complementing these probes of our cosmic dawn are
experiments targeting the 21 cm “spin-flip” transition of
neutral hydrogen at high redshifts. This signal has been
recognized as a potentially powerful probe of the cos-
mic dawn (Furlanetto et al. 2006; Morales & Wyithe
2010; Pritchard & Loeb 2012) that can reveal large-scale
fluctuations in the ionization state and temperature of
the IGM, opening a unique window into the complex
astrophysical interplay between the first luminous struc-
tures and their surroundings. Cosmological redshifting
maps each observed frequency with a particular emis-
sion time (or distance), enabling 21 cm experiments to
eventually reconstruct three-dimensional pictures of the
time-evolution of large scale structure in the universe.
While such maps can potentially probe nearly the entire
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observable universe (Mao et al. 2008), in the near term,
21 cm cosmology experiments are focusing on statistical
measures of the signal.

There are two complementary experimental ap-
proaches to accessing 21 cm emission from our cosmic
dawn. So-called “global” experiments such as EDGES
(Bowman & Rogers 2010), the LWA (Ellingson et al.
2013), LEDA (Greenhill & Bernardi 2012; Bernardi et al.
2015), DARE (Burns et al. 2012), SciHi (Voytek et al.
2014), BigHorns (Sokolowski et al. 2015), and SARAS
(Patra et al. 2015) seek to measure the mean brightness
temperature of 21 cm relative to the CMB background.
These experiments typically rely on auto-correlations
from a small number of dipole elements to access the
sky-averaged 21 cm signal, although recent work is show-
ing that interferometric cross-correlations may also be
used to access the signal (Vedantham et al. 2015; Presley
et al. 2015). In contrast, experiments targeting statisti-
cal power-spectral measurements of the 21 cm signal em-
ploy larger interferometers. Examples of such interferom-
eters targeting the reionization signal include the GMRT
(Paciga et al. 2013), LOFAR (van Haarlem et al. 2013),
the MWA (Tingay et al. 2013), the 21CMA (Peterson
et al. 2004; Wu 2009), and the Donald C. Backer Preci-
sion Array for Probe the Epoch of Reionization (PAPER,;
Parsons et al. 2010).

PAPER is unique for being a dedicated instrument
with the flexibility to explore non-traditional experimen-
tal approaches, and is converging on a self-consistent ap-
proach to achieving both the level of foreground removal
and the sensitivity that are required to detect the 21cm
reionization signal. This approach focuses on spectral
smoothness as the primary discriminant between fore-
ground emission and the 21cm reionization signal and ap-
plies an understanding of interferometric responses in the
delay domain to identify bounds on instrumental chro-
maticity (Parsons et al. 2012b, hereafter P12b). This
type of “delay-spectrum” analysis permits data from
each interferometric baseline to be analyzed separately
without requiring synthesis imaging for foreground re-
moval. As a result, PAPER has been able to adopt
new antenna configurations that are densely packed and
highly redundant. These configurations are poorly suited
for synthesis imaging but deliver a substantial sensitivity
boost for power-spectral measurements that are not yet
limited by cosmic variance (Parsons et al. 2012a, here-
after P12a). Moreover, they are particularly suited for
redundancy-based calibration (Wieringa 1992; Liu et al.
2010; Zheng et al. 2014), on which PAPER now relies
to solve for the majority of the internal instrumental de-
grees of freedom (dof). The efficacy of this approach was
demonstrated with data from a 32-antenna deployment
of PAPER, which achieved an upper limit on the 21 cm
power spectrum A?(k) < (41mK)? at k = 0.27h Mpc™*
(Parsons et al. 2014, hereafter P14). That upper limit
improved over previous limits by orders of magnitude,
showing that the early universe was heated from adia-
batic cooling, presumably by emission from high-mass
X-ray binaries or mini-quasars.

In this paper, we improve on this previous result using
a larger 64-element deployment of PAPER and a longer
observing period, along with better redundant calibra-
tion, an improved fringe-rate filtering technique, and an
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Fic. 1.— Antenna position within the PAPER-64 array. This
analysis only makes use of east-west baselines between adjacent
columns that have row separations of zero (black; e.g. 49-41, 41-
47, 10-3, ...) one in the northward direction (orange; e.g. 10-41,
3-47, 9-3, ...) or one in the southward direction (blue; e.g. 49-
3, 41-25, 10-58, ...). Because of their high levels of redundancy,
these baselines constitute the bulk of the array’s sensitivity for
power spectrum analysis.
updated power-spectrum estimation pipeline. The result
is an upper limit on A%(k) of (22.4mK)? in the range
0.15 < k < 0.5h Mpc™! at z = 8.4. This result places
constraints on the spin temperature of the IGM, and as
is shown in a forthcoming paper, Pober et al. (2015),
this supports and extends previous evidence against ex-
tremely cold reionization scenarios. In Section 2 we de-
scribe the observations used in this analysis. In Sections
3 and 4, we discuss the calibration and the stability of
the PAPER instrument. We then move on to a discus-
sion of our power-spectrum analysis pipeline in Section
5. We present our results in Section 6 along with new
constraints on the 2lcm power spectrum. We discuss
these results in Section 7 and conclude in Section 8.

2. OBSERVATIONS

We base our analysis on drift-scan observations with 64
dual-polarization PAPER antennas (hereafter, “PAPER-
64”) deployed at the Square Kilometre Array South
Africa (SKA-SA) reserve in the Karoo desert in South
Africa (30:43:17.5° S, 21:25:41.8° E). Each PAPER el-
ement features a crossed-dipole design measuring two
linear (X,Y) polarizations. The design of the PAPER
element, which features spectrally and spatially smooth
responses down to the horizon with a FWHM of 60°,
is summarized in Parsons et al. (2010) and Pober et al.
(2012). For this analysis, we use only the XX and YY
polarization cross-products.

As shown in Figure 1, PAPER-64 employs a highly
redundant antenna layout where multiple baselines mea-
sure the same Fourier mode on the sky (P12a; P14). We
rely on all 2016 baselines for calibration, but only use a
subset of the baselines for the power spectrum analysis.
This subset consists of three types of baselines: the 30-
m strictly east-west baselines between adjacent columns
(e.g. 49-41, black in Figure 1; hereafter referred to as
fiducial baselines), 30-m east-west baselines whose east-
ern element is staggered one row up (e.g. 10-41, orange
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F1Gc. 2.— The Global Sky Model (de Oliveira-Costa et al. 2008), illustrating foregrounds to the 21cm cosmological signal, with contours
indicating beam-weighted observing time (relative to peak) for the PAPER observations described in Section 2. The map is centered at

6:00 hours in RA.

in Figure 1), and those whose eastern element is one
row down (e.g. 49-3, blue in Figure 1). These baseline
groups consist of 56, 49, and 49 baselines, respectively.
We define a redundant group of baselines as being the
set of baselines that have the same grid spacing; base-
lines in each of the three redundant groups described
above are instantaneously redundant and therefore mea-
sure the same Fourier modes on the sky. Thus, within a
redundant group, measurements from baselines may be
coherently added to build power-spectrum sensitivity as
N rather than /N, where N is the number of baselines
added.

PAPER-64 conducted nighttime observations over a
135 day period from 2012 November 8 (JD 2456240) to
2013 March 23 (JD 2456375). Since solar time drifts with
respect to local sidereal time (LST), this observing cam-
paign yielded more samples of certain LSTs (and hence,
sky positions) than others. For the power spectrum anal-
ysis, we use observations between 0:00 and 8:30 hours
LST. This range corresponds to a “cold patch” of sky
away from the galactic center where galactic synchrotron
power is minimal, but also accounts for the weighting of
coverage in LST. Figure 2 shows our observing field with
the contours labeling the beam weighted observing time
relative to the peak, directly over head the array.

The PAPER-64 correlator processes a 100-200 MHz
bandwidth, first channelizing the band into 1024 chan-
nels of width 97.6 kHz, and then cross multiplying every
antenna and polarization with one another for a total of
8256 cross products, including auto correlations. Follow-
ing the architecture in Parsons et al. (2008), this corre-
lator is based on CASPER'® open-source hardware and
signal processing libraries (Parsons et al. 2006). Sixteen
ROACH boards each hosting eight 8-bit analog-to-digital
converters digitize and channelize antenna inputs. New

16 http://casper.berkeley.edu

to this correlator relative to previous PAPER correlators
(Parsons et al. 2010), the cross multiplication engine is
implemented on eight servers each receiving channelized
data over two 10 Gb Ethernet links. Each server hosts
two NVIDIA GeForce 580 GPUs running the open-source
cross-correlation code developed by Clark et al. (2013).
Visibilities are integrated for 10.7 s on the GPUs before
being written to disk. All polarization cross-products are
saved, although the work presented here only made use
of the XX and Y'Y polarization products.

3. CALIBRATION

Foreground contamination and signal sensitivity repre-
sent the two major concerns for 21 cm experiments tar-
geting power spectrum measurements. Sources of fore-
grounds include galactic synchrotron radiation, super-
nova remnants, and extragalactic radio sources. In the
low-frequency radio band (50-200 MHz) where 21cm
reionization experiments operate, emission from these
foregrounds is brighter than the predicted reionization
signal by several orders of magnitude (Santos et al.
2005; Ali et al. 2008; de Oliveira-Costa et al. 2008; Jeli¢
et al. 2008; Bernardi et al. 2009, 2010; Ghosh et al.
2011). However, the brightest foregrounds are spectrally
smooth, and this provides an important hook for their
isolation and removal (Liu et al. 2009a; Petrovic & Oh
2011; Liu & Tegmark 2012). Unfortunately, interferom-
eters, which are inherently chromatic instruments, inter-
act with spectrally smooth foregrounds to produce un-
smooth features that imitate line of sight Fourier modes
over cosmological volumes (P12b; ?Morales et al. 2006;
Bowman et al. 2009a). One approach to solving this
problem involves an ambitious calibration and model-
ing approach to spatially localize and remove foreground
contaminants (Liu et al. 2009b; Bowman et al. 2009b;
Harker et al. 2009; Sullivan et al. 2012; Chapman et al.
2013). Perhaps the most impressive example of this ap-
proach is being undertaken by LOFAR, where dynamic
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FiGc. 3.— The stages of power-spectrum analysis. Black lines indicate data flow; red lines indicate Monte Carlo simulations used to
measure signal loss. Yellow boxes indicate stages that by construction have negligible signal loss. Signal loss in other stages is tabluted in

Table 1.

ranges of 4.7 orders of magnitude have been achieved
in synthesis images (Yatawatta et al. 2013), although
it is expected that additional suppression of smooth-
spectrum foreground emission will be necessary (Chap-
man et al. 2013).

The analysis for this paper employs a contrasting ap-
proach based on the fact that the chromaticity of an in-
terferometer is fundamentally related to the length of an
interferometric baseline. This relationship, known collo-
quially as “the wedge,” was derived analytically (P12b;
Vedantham et al. 2012; Thyagarajan et al. 2013; Liu et al.
2014a,b), and has been confirmed in simulations (Datta
et al. 2010; Hazelton et al. 2013) and observationally
(Pober et al. 2013; Dillon et al. 2014). As described
in P12b, the wedge is the result of the delay between
when a wavefront originating from foreground emission
arrives at the two antennas in a baseline. The fact that
this delay is bounded by the light-crossing time between
two antennas (which we call the “horizon limit” since
such a wavefront would have to originate from the hori-
zon) places a fundamental bound on the chromaticity of
an interferometric baseline. So far, PAPER has had the
most success in exploiting this bound (P14; Jacobs et al.
2015). In this analysis, we continue to use the proper-
ties of the wedge in order to isolate and remove smooth
spectrum foregrounds.

As illustrated in Figure 3, our analysis pipeline begins
by running a compression algorithm to reduce the vol-
ume of our raw data by a factor of 70. As described in
Appendix A of P14, this is achieved by first performing
statistical flagging to remove radio frequency interference
(RFTI) at the 60 level, applying low-pass delay and fringe-
rate filters that limit signal variation to delay scales of
|7| < 1us and fringe-rate scales of f < 23 mHz, and then
decimating to critical Nyquist sampling rates of 493 kHz

along the frequency axis and 42.9 s along the time axis.
We remind the reader that while information is lost in
this compression, these sampling scales preserve emission
between —0.5 < kH < 0.5h Mpc_1 that rotates with the
sky, making this an essentially lossless compression for
measurements of the 21 cm reionization signal in these
ranges.

After compression, we calibrate in two stages, as de-
scribed in more detail below. The first stage (Section
3.1) uses instantaneous redundancy to solve for the ma-
jority of the per-antenna internal dof in the array. In the
second stage (Section 3.2), standard self-calibration is
used to solve for a smaller number of absolute phase and
gain parameters that cannot be solved by redundancy
alone. After suppressing foregrounds with a wide-band
delay filter (Section 3.3) and additional RFI flagging and
crosstalk removal, we average the data in LST (Section
3.4) and apply a fringe-rate filter (Section 3.5) to com-
bine time-domain data. Finally, we use an OQE (Section
5) to make our estimate of the 21 cm power spectrum.

3.1. Relative Calibration

Redundant calibration has gained attention recently
as a particularly powerful way to solve for internal dof in
radio interferometric measurements without simultane-
ously having to solve for the distribution of sky bright-
ness (Wieringa 1992; Liu et al. 2010; Noorishad et al.
2012; Marthi & Chengalur 2014; Zheng et al. 2014; P14).
The grid-based configuration of PAPER antennas allows
a large number of antenna calibration parameters to be
solved for on the basis of redundancy (P14; P12a; Zheng
et al. 2014). Multiple baselines of the same length and
orientation measure the same sky signal. Differences be-
tween redundant baselines result from differences in the
signal chain, including amplitude and phase effects at-
tributable to antennas, cables, and receivers. Redundant
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calibration only constrains the relative complex gains be-
tween antennas and is independent of the sky. Since re-
dundant calibration preserves signals common to all re-
dundant baselines, this type of calibration does not result
in signal loss.

In practice, redundant calibration often takes on two
flavors: log calibration (LOGCAL) and linear calibration
(LINCAL) (Liu et al. 2010; Zheng et al. 2014). LOGCAL
uses logarithms applied to visibilities,

vij = g; 9iYi—j + N (1)
where g denotes the complex gain of antennas indexed by
1 and 7, and y represents the “true” visibility measured
by the baseline, to give a linearized system of equations

logvi; = log g; + log g; + logyi—j, (2)

In solving for per-antenna gain parameters with a num-
ber of measurements that scales quadratically with an-
tenna number, redundancy gives an over-constrained sys-
tem of equations that can be solved using traditional lin-
ear algebra techniques. While LOGCAL is useful for ar-
riving at a coarse solution from initial estimates that are
far from the true value, LOGCAL has the shortcoming
of being a biased by the asymmetric behavior of additive
noise in the logarithm (Liu et al. 2010).

LINCAL, on the other hand, uses a Taylor expansion
of the visibility around initial estimates of the gains and
visibilities,

vij = 90 Y9 Y 98 9 98 9y, (3)
where 0 denotes initial estimates and 1 represents the
perturbation to the original estimate and is the solutions
we fit for. Using initial estimates taken from LOGCAL,
LINCAL constructs an unbiased estimator.

Redundant calibration was performed using OMNI-
CAL'" — an open-source redundant calibration package
that is relatively instrument agnostic (Zheng et al. 2014).
This package implements both LOGCAL and LINCAL,
solving for a complex gain solution per antenna, fre-
quency, and integration. The solutions are then applied
to visibilities and the results are shown in Figure 4.

In addition to solving for gain solutions, OMNICAL
also characterizes the quality of the calibration parame-
ters by calculating the y? for every integration. As de-
fined in Zheng et al. (2014),

o a¥a.]2
Xzzzw, @)
j

where o2 is the noise in the visibilities. The y? measures
sum of the deviation of measured visibilities to that of
the best fit model derived from the LINCAL relative to a
noise model, and gives us a tool to use in order to check
the quality of our data. The number of dof, as defined
in Zheng et al. 2014, is given by

Nparameters (5)
= 2]\fbaselines - 2(Nantennas + Nunique baselines)7

dof = Nmeasurements -

and is effectively the number of visibilities for which y?
is calculated. If the data are noise-dominated, y?/dof
is drawn from a x2 distribution with 4 = 1 and ¢2 =

17 https://github.com/jeffzhen /omnical

2/dof. The calculated x?/dof for every frequency and
integration of a fiducial day of observation in this season
and for the fiducial power spectrum baselines is shown
in Figure 5, demonstrating the stability of the PAPER
instrument.

We measure a mean x2/dof of 1.9. This indicates
that the redundant calibration solutions, while a sub-
stantial improvement over the previous PAPER-32 cali-
bration (P14), do not quite result in residuals that are
thermal noise dominated. Possible sources of this excess
include instrumental crosstalk and poorly performing sig-
nal chains. While the latter will be down-weighted by
the inverse of the estimated signal covariance described
in Section 5, crosstalk is a defect in the data that must
be addressed. Crosstalk caused by the cross-coupling of
signals between antennas reveals itself as a static com-
plex bias to a visibility that varies on timescales much
longer than typical fringe rates. This effect skews the
distribution of the x? of the residuals away from 1. To
minimize crosstalk, we first use OMNICAL to solve for
antenna-dependent gains, and then average the residual
deviations from redundancy over 10 minute windows be-
fore subtracting the average from the original visibilities.
This crosstalk removal preserves signals common to re-
dundant baseline groups (such as the 21 cm signal). Un-
fortunately, it also preserves a term that is the average
of the crosstalk of all baselines in the redundant group.
This residual crosstalk is removed by a fringe-rate filter
later in the analysis.

3.2. Absolute Calibration

After solving for the relative complex gains of the an-
tennas using redundant calibration, an overall phase and
gain calibration remains unknown. We use the standard
self calibration method for radio interferometers to solve
for the absolute phase calibration. We used Pictor A,
Fornax A, and the Crab Nebula to fit for the overall
phase solutions. Figure 6 shows an image of the field
with Pictor A (5:19:49.70, -45:46:45.0) and Fornax A
(3:22:41.70,-37:12:30.0).

We then set our over all flux scale by using Pictor A
as our calibrator source with source spectra derived in
Jacobs et al. (2013),

S, = Si50 ¥ (m)av (6)

where S150 = 381.88 Jy £ 5.36 and @ = —0.76 + 0.01,
with 1o error bars.

To derive the source spectrum from our measurements,
we use data that have been LST-averaged prior to the
wide-band delay filter described in Section 3.3, for the
hour before and after the transit of Pictor A. We image a
30°x30° field of view for every frequency channel for each
10 minute snapshot and apply uniform weights to the
gridded visibilities. We account for the required three-
dimensional Fourier transform in wide field imaging by
using the w-stacking algorithm implemented in WSclean
(Offringa et al. 2014) although we note that the standard
w-projection algorithm implemented in CASA'® gives
similar performances as the PAPER, array is essentially
instantaneously coplanar. A source spectrum is derived
for each snapshot by fitting a two-dimensional Gaussian

18 http://casa.nrao.edu
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PAPER visibilities plotted in the complex plane before (left) and after (right) the application of the improved redundancy-

based calibration with OMNICAL (Zheng et al. 2014). All baselines in the array measured at 159 MHz for a single time integration are
plotted. Instantaneously redundant baselines are assigned the same symbol/color. The tighter clustering of redundant measurements with

OMNICAL indicates improved calibration.
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F1G. 5.— Log of x2 per degree of freedom of all baseline residuals
after the application of OMNICAL. The plot comprises a observa-
tions over one day, with a frequency resolution of 493 kHz and a
time resolution of 42.9 s.

to Pictor A by using the PyBDSM! source extractor.
Spectra are optimally averaged together by weighting
them with the primary beam model evaluated in the di-
rection of Pictor A. To fit our bandpass, we divide the
model spectrum by the measured one and fit a 9th or-
der polynomial over the 120-170 MHz frequency range.
Figure 7 shows the calibrated Pictor A spectrum and the
model spectrum from Jacobs et al. (2013). Also plotted
are the 1o error bars derived from the PyBDSM source
extractor and averaged over the multiple snapshots used
after being weighted by the beam-squared.

Fitting a polynomial to the bandpass has the potential
for signal loss which would include suppressing modes
that may contain the cosmological signal. In order to
quantify the signal loss associated with fitting a ninth
degree polynomial to the bandpass, we run a Monte Carlo
simulation of the effect the bandpass has on a model 21-
cm reionization signal. We construct a model baseline
visibility as a Gaussian random signal multiplied by the
derived bandpass for every independent mode measured.

Declination [deg]

125:00 110:00 95:00 80:00 65:00 50:00 35:00
Right Ascension [deg]

Fic. 6.— PAPER-64 image of a field including Pictor A and For-
nax A, with white circles indicating catalog positions (Jacobs et al.
2011). Image was synthesized with two hours of visibilities while
Pictor A was in transit and 53 MHz of instantaneous bandwidth
from 120 to 173 MHz. Image quality is limited by the redundant
configuration of the array (e.g. grating lobes as a result of periodic
antenna spacing, elongated lobes arising from poor uv-coverage in
the north-south direction). Nonetheless, this image demonstrates
accurate phase calibration over a wide field of view.

We calculate the total number of independent modes by
counting the number of independent uv-modes sampled
for the different baseline types over the two hour time
interval used to measure the bandpass. We average each
mode together and fit a 9th degree polynomial. Using
this as our measured bandpass for this simulated signal,
we finally compare the power spectrum from the output
of the simulated signal to the input power spectrum as a
function fo k-mode. We find that between —0.06 < k <
0.06, the width of our wideband delay filter described
below, the signal loss is less than 3% and at the mode

19 http:/ /www.lofar.org/wiki/doku.php?id=public:user_software:pybdsight outside the above limit is 2 x 1077%. We apply the
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F1G. 7.— Measured spectrum of Pictor A in Stokes I (blue) rel-
ative to its catalog value (black; Jacobs et al. 2013). Flux density
measurements are extracted from images of Pictor A, made inde-
pendently for each frequency channel in 10 minutes snapshots as
Pictor transits between hour angles of -1:49 and 1:10. Each mea-
surement is then divided by the PAPER beam model and averaged
to obtain the measured spectrum, which serves to characterize the
flux scale of the PAPER-64 observations. Error bars indicate 68%
confidence intervals, derived from the Gaussian fits in the source
extractor used to measure the flux density in PyBDSM, combined
from all snapshots.

latter correction factor for all modes outside the width
of the delay filter to the final power spectrum.

3.3. Wideband Delay Filtering

Before implementing our foreground removal tech-
niques, we combine the two linear polarizations for an
estimate of Stokes I as per Moore et al. (2013). Namely,
Stokes I can be estimated as

1
Vi = §(VXX + Vvy), (7)

where Vxx and Vi are the visibilities of the two linear
polarizations measured by the interferometer. There are
some important caveats to the estimate of Stokes I pro-
vided by Equation (7). One important caveat is that it
neglects the beam asymmetry between the two linear po-
larization states. This mismatch can cause polarization
leakage from Stokes Q into Stokes I, thus contaminating
our measurement of the power spectrum with any polar-
ized emission from the sky. This effect for PAPER, as
shown in Moore et al. (2013), leaks 4% of Q in to I in
amplitude (2.2 x 1072 in the respective power spectra).
We take the conservative approach and do not correct
for this effect, noting that the leakage of Q in to I will
result in positive power, increasing our limits.
Foreground removal techniques discussed in the liter-
ature include spectral polynomial fitting (Wang et al.
2006; Bowman et al. 2009a; Liu et al. 2009a), prin-
cipal component analysis (Paciga et al. 2011; Liu &
Tegmark 2011; Paciga et al. 2013; Masui et al. 2013),
non-parametric subtractions (Harker et al. 2009; Chap-
man et al. 2013), and inverse covariance weighting (Liu
& Tegmark 2011; Dillon et al. 2013, 2014; Liu et al.
2014a,b), Fourier-mode filtering Petrovic & Oh (2011),
and per-baseline delay filtering described in P12b. This
delay-spectrum filtering technique is well-suited to the
maximum redundancy PAPER configuration which is

not optimized for the other approaches where high fi-
delity imaging is a prerequisite. The delay-spectrum fore-
ground filtering method is described in detail by P14; its
application is unchanged here. In summary; we Fourier
transform each baseline spectrum into the delay domain

VT — /WyAuLje—ZﬂiTg X eQTriTl/dV (8)

=W, x A, x I, % 5(, — 1),

where A, is the frequency dependent antenna response,
W, is a sampling function that includes RFI flagging
and a Blackman-Harris tapering function that minimizes
delay-domain scattering from RFI flagging, and I, is the
source spectrum. In the delay domain, a point source ap-
pears as a -function at delay 74, convolved by the Fourier
transforms of the source spectrum, the antenna response,
and the sampling function. We note that the antenna
response effectively determines a finite bandpass, which
imposes a lower bound of 1/B & 10ns on the width of
any delay-domain convolving kernel. As per Parsons &
Backer (2009) and P14, we deconvolve the kernel result-
ing from W () using an iterative CLEAN-like procedure
(Hogbom 1974) restricting CLEAN components to fall
within the horizon plus a 15-ns buffer that includes the
bulk of the kernels convolving the J-function in Equa-
tion (8). To remove the smooth spectrum foreground
emission we subtract the CLEAN components from the
original visibility.

Applying the delay filter to fiducial baselines used in
the power spectrum analysis, foregrounds are suppressed
by ~4 orders of magnitude in power, or —40 dB of fore-
ground suppression, as seen in Figure 8. As discussed
in P14, there is a small amount of signal loss associated
with this filter. For the baselines and filter parameters
used, the loss was found to be 4.8% for the first mode
outside of the horizon, 1.3% for the next mode out, and
less than 0.0015% for the higher modes.

3.4. Binning in LST

After the wideband delay filter, we remove a second
layer of RFI which was overshadowed by the foreground
signal. RFI are excised with a filter which flags values
30 above the median using a variance calculated in a
localized time and frequency window.

We then average the entire season in LST with 43-
s bin widths, matching the cadence of the compressed
data. The full season was 135 days long; of these, 124
days were included in the average. We make two separate
LST-binned data sets, averaging every other Julian day
together to obtain an “even” and “odd” dataset. The use
of these two data sets allows us to construct an unbiased
power spectrum estimate.

Sporadic RFI events result in measurements that, in
any individual LST bin, deviate from the Gaussian dis-
tribution characteristic of thermal noise. To catch these
events, we compute the median of a LST bin for each
frequency and flag values 30 above the median, before
averaging. Since we are narrowing the distribution of vis-
ibilities about the median, the measured thermal noise
variance is not preserved under this filter. However, since
the central value is preserved, the expectation value of
the measured visibility in each LST bin is unchanged,
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Fic. 8.— Visibilities measured by a fiducial baseline in the PAPER-64 array, averaged over 135 days of observation. From left to right,
columns represent data that: (1) contain foregrounds prior to the application of a wideband delay filter or fringe-rate filtering, (2) are
fringe-rate filtered but not delay filtered, (3) are delay filtered at 15 ns beyond the horizon limit but are not fringe-rate filtered, (4) are both
delay and fringe-rate filtered, and (5) are delay and fringe-rate filtered and have been averaged over all redundant measurements of this
visibility. The top row shows signal amplitude on a logarithmic scale; the bottom row illustrates signal phase. Dashed lines indicate the
0:00-8:30 range in LST used for power spectrum analysis. The putative crosstalk is evident in the center panel as constant phase features
which do not fringe as the sky. The two right panels show some residual signal in the phase structure which is present at low delay. Away
from the edges of the observing band, over four orders of magnitude of foreground suppression is evident.

and there is no associated signal loss for power spec-
trum measurements. Moreover, because errors are es-
timated empirically through bootstrapping (see Section
5.4), the slight increase in measurement error associated
with truncating the tails of the Gaussian distribution are
naturally accounted for.

3.5. Fringe-rate Filtering

By averaging visibilities in time, we aim to maximize
sensitivity by coherently combining repeated measure-
ments of k-modes before squaring these measurements
and averaging over independent k-modes to estimate the
power spectrum amplitude. This is mathematically sim-
ilar to the more traditional process of gridding in the uv
plane, but applied to a single baseline. However, rather
than applying a traditional box-car average, we can ap-
ply a kernel — a so-called “fringe-rate” filter — that
weights different temporal rates by the antenna beam
corresponding to the parts of the sky moving at the same
rate.

For a given baseline and frequency, different parts of
the sky exhibit different fringe-rates. Maximum fringe
rates are found along the equatorial plane, where the ro-
tation rate of the sky is highest, and zero fringe rates
are found at the poles, where the sky does not rotate
and hence sources do not move through the fringes of
a baseline (Parsons & Backer 2009). Fringe rates are
not constant as a function of latitude. Bins of constant
fringe rate correspond to rings in R.A. and decl., where
the east—west projection of a baseline projected toward
a patch of the sky is constant. We use this fact in con-
junction with the root-mean-squared beam response for
each contour of constant fringe rate to construct a time
average kernel or “fringe-rate filter.”

As examined in Parsons et al. (2015), it is possible
to tailor fringe-rate filters to optimally combine time-
ordered data for power-spectrum analysis. Fringe-rate
filters can be chosen that up-weight points of the sky
where our instrument is more sensitive and down-weight
those points farther down in the primary beam, which
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are less sensitive. For white noise, all fringe-rate bins
will contain the same amount of noise, but the amount
of signal in each bin is determined by the primary beam
response on the sky. By weighting fringe-rate bins by the
rms of the beam response, we can get a net increase in
sensitivity.

Applying this filter effectively weights the data by an-
other factor of the beam area, changing the effective pri-
mary beam response?®, A(l,m) (Parsons et al. 2015). By
utilizing prior knowledge about the beam area, we are
selectively down-weighting areas on the sky contributing
little signal. This will result in a net improvement in sen-
sitivity depending on the shape of the beam and the decl.
of the array. For PAPER, this filter roughly doubles the
sensitivity of our measurements.

Generally, a fringe-rate filter integrates visibilities in
time. For a fringe-rate filter, fi., the effective integra-
tion time can be calculated by comparing the variance
statistic before and after filtering:

¢ ¢ Josdf 9)
int,after — 1nt,beforefaj2€ff2rdf7

where tin before 1S the integration time before filtering,
oy denotes the noise variance in fringe rate space and
the integral is taken over all possible fringe rates for a
given baseline and frequency. As discussed in Parsons
et al. (2015), the signal re-weighting associated with this
fringe-rate filter can be interpreted as a modification to
the shape of the primary beam.

For the fiducial baseline at 151 MHz, the integration
time, as given in equation (9), associated with an optimal
fringe rate filter is 3430s. The number of statistically
independent samples on the sky decreases from 83 to 1
sample per hour. As discussed in section 5.3, empirically
estimating a covariance matrix with a small number of
independent samples can lead to signal loss in the OQE.
In order to counteract the signal loss, we degrade the
optimal fringe-rate filter, as shown in Figure 9, to have
an effective integration time of 1886 s, increasing the
number of independent modes to 2 per hour. The fringe
rate filter is now sub-optimal, but is still an improvement
on the boxcar weighting as used in P14. As documented
in Table 1, the correction factor for the associated signal
loss of the filter we have chosen is 1.39.

We implement the modified filter on a per baseline ba-
sis by weighting the fringe-rate bins on the sky by the
RMS of the beam at that same location. In order to ob-
tain a smooth filter in the fringe-rate domain, we fit a
Gaussian with a hyperbolic tangent tail to this filter. In
addition, we multiply this response with another hyper-
bolic tangent function that effectively zeros out fringe
rates below 0.2mHz. This removes the slowly varying
signals that we model as crosstalk. We convolve the
time-domain visibilities with the Fourier transform of the
resulting fringe-rate filter, shown in Figure 9, to produce
an averaged visibility. The effect on the data can be seen
in Figure 8.

4. INSTRUMENTAL PERFORMANCE
4.1. Instrument Stability

20 The angular area in Equation (24) will reflect the new angular
area corresponding to the change in beam area.
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Fi1c. 9.— The optimal fringe-rate filter (orange) that and the
degraded fringe-rate filter (blue) actually used in the analysis at
151 MHz, normalized to peak at unity.

In order to build sensitivity to the 21 cm reionization
signal, it is critical that PAPER be able to integrate co-
herently measurements made with different baselines on
different days. Figure 10 shows the visibility repeatabil-
ity between baselines and nights as a function of LST.
Specifically, we histogram the real part of the visibilities
for all redundant fiducial baselines in a given LST bin for
foreground contained data. We see that for a given LST
bin, the spread in values over all the baselines is ~50 Jy
which corresponds with our observed T, ~500K. We get
more samples per LST bin in the range of 2-10 hr due to
our observing season, therefore the density of points in
this LST region is greater, as shown by the color scale.
This density plot shows that redundant baselines agree
very well with one another; OMNICAL has leveled the
antenna gains to within the noise.

Delving in a little deeper, we also examine the stabil-
ity in time for measurements in a particular LST bin.
In order to quantify the stability in time we extract one
channel for a given baseline for every observation day
and LST bin. We then Fourier transform along the time
direction for every LST bin and compute the power spec-
trum. As shown in Figure 11, for time scales greater than
one day, we see that signal variance drops by almost four
orders of magnitude, with the exception of an excess on
two-day timescales caused by the changing alignment of
the 42.9s integration timescale relative to a sidereal day.
The implication of this measurement is that, after cali-
bration, PAPER measurements are sufficiently stable to
be integrated coherently over the entire length of a 135
day observation. This implies day-to-day stability of bet-
ter than 1%, contributing negligibly to the uncertainties
in the data.

4.2. System Temperature

During the LST binning step, the variance of the visi-
bilities that are averaged together for a given frequency
and LST bin are recorded. Using these variances, we
calculate the system temperature as a function of LST,
averaging over each LST hour.

Tems = Tags/V2AL, (10)
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Fic. 10.— Histogram of the real component of all calibrated visibilities measured over 135 days with every redundant instance of the
fiducial baseline at 150 MHz. Color scale indicates the number of samples falling in an LST/flux-density bin. This plot serves to illustrate
the stability of the PAPER instrument and the precision of calibration. The temporal stability of a single LST bin over multiple days is

shown in Figure 11.
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FiG. 11.— Power spectrum of 135 days of time-series data con-
tributing to a single LST bin, illustrating the stability of measure-
ments over the observing campaign. Relative to the average value,
variation in the measured value across days (quantified by variance
as a function of time period) is orders of magnitude lower. The ex-
cess at two-day timescales is a beat frequency associated with the
changing alignment of integration windows in the correlator with
respect to sidereal time.

where Av is the bandwidth, ¢ is the integration time,
and T}5 is the RMS temperature, or the variance statis-
tic described above. Figure 12 shows the results of this
calculation. In this observing season, the system tem-
perature drops just below previous estimates as in P14
and Jacobs et al. (2015) of Tyys = 560K, at Tyys = 500K
at 160 MHz. However, this estimate is more consistent
with the results derived in (Moore et al. 2015), where
Tsys = 505K at 164 MHz. The change in the system
temperature can be attributed to the reduced range of
LST used in the calculation. We note that at 7:00 LST,
there is an increase in the system temperature due to the
rising of the galactic plane as seen in Figure 2.

When calculating the system temperature using the
variance in the visibilities for a given LST and frequency,
we take into account the fact that we flag 30 outliers from
the median. To calculate an effective correction factor to
account for the filtering, we assume the visibilities follow
a Gaussian distribution which would require a correction
factor of 1.34 for the removal of data points that are 3o
above the median. In other words, we are accounting for
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Fic. 12.— System temperature, inferred from the variance of

samples falling in an LST bin, averaged over one-hour intervals in
LST. The measured value in the 150-160 MHz range is consistent
with previous determinations of system temperature (Jacobs et al.
2015; P14).

the wings of the Gaussian that would contribute to the
variance in the visibility.

Previous estimates of the system temperature (P14;
Jacobs et al. 2015) relied on differencing and averag-
ing baselines, time samples, and/or frequency channels.
The relative agreement between these various methods
of estimating the system temperature provides a robust
measure of the system temperature of the PAPER in-
strument. Agreement between the instantaneous mea-
surements of the system temperature, the LST repetition
variance, and the predicted power spectrum noise level
(see below) indicates a robustly stable system with no
significant long term instability contributing appreciable
noise.

5. POWER SPECTRUM ANALYSIS

In this section we first review the OQE formalism, fol-
lowed by a walk-through of our particular applications of
the OQE method to our data. Finally, we discuss the ef-
fects of using an empirically estimated covariance matrix
in our analysis.

5.1. Review of OQFs

We use the OQE method to estimate our power spec-
trum as done in Liu & Tegmark (2011), Dillon et al.
(2013), Liu et al. (2014a), Liu et al. (2014b), and Trott
et al. (2012). Here we briefly review the OQE formal-
ism with an emphasis on our application to data, which
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draws strongly from the aforementioned works, but also
relies on empirical techniques similar to those used in
P14. The end goal of this analysis is to estimate the
21 cm power spectrum, Py (k), defined such that

(Ty(k)T5 (K')) = (2m)°6" (k — K') P (), (11)

where Ty (k) is the spatial Fourier transform of the bright-
ness temperature distribution on the sky, () denotes an
ensemble average, and 6P is the Dirac delta function.

In order to make an estimate of the power spectrum
in the OQE formalism, one begins with a data vector x.
This vector could, for example, consist of a list of bright-
ness temperatures on the sky for an imaging-based data
analysis, or (in our case) a list of measured visibilities.
We form the intermediate quantity,

1
(joz = 5XTC?1Q04071X - baa (12)

which will be needed to form the OQE of our power spec-
trum. Here, C = (xx') is the true covariance matrix of
the data vector x, Q, is the operator that takes visibil-
ities into power spectrum k-space and bins into the ath
bin, and b, is the bias to the estimate that needs to be
subtracted off. In general, Q,, represents a family of ma-
trices, one for each k bin indexed by a. Each matrix is
defined as Q, = 8872’ i.e., the derivative of the covari-
ance matrix with respect to the band power p,. The
bandpower p, can be intuitively thought of as the value
of the power spectrum in the ath k bin. Therefore, Q.
encodes the response of the data covariance matrix to
the ath bin of the power spectrum.

The bias term b, in Equation (12) will include contri-
butions from both instrumental noise and residual fore-
grounds. Their presence in the data is simply due to the
fact that both contributions have positive power. One
approach to dealing with these biases is to model them
and to subtract them off, as is suggested by Equation
(12). An alternate approach is to compute a cross-power
spectrum between two data sets that are known to have
the same sky signal but independent instrumental noise
realizations. Labeling these two data sets as x; and x5
and computing

1

do = 5X]C7'QaC 'xr, (13)
one arrives at a cross-power spectrum that by construc-
tion has no noise bias. There is thus no need to explicitly
model and subtract any noise bias, although any resid-
ual foreground bias will remain, since it is a contribution
that is sourced by signals on the sky, and therefore must
exist in all our data sets.

The set of §,s do not yet constitute a properly nor-
malized estimate of the power spectrum (as evidenced,
for example, by the extra factors of C~1). To normalize
our results, we group the unnormalized bandpowers into
a vector q and apply a matrix M (whose exact form we
specify later), so that

p =Mq (14)

is a normalized estimate P of the true power spectrum
p- We emphasize that the vector space that contains q
and p is an “output” vector space over different k-bins,
which is separate from the “input” vector space of the
measurements, in which x and C reside.

To select an M matrix that properly normalizes the
power spectrum, we must compute the window function
matrix W for our estimator. The window matrix is de-
fined such that the true bandpowers p and our estimates
p of them are related by

p = Wp, (15)

so that each row gives the linear combination of the true
power that is probed by our estimate. With a little al-
gebra, one can show that

W = MF, (16)
where

1
Fop = §tr(c_1QaC_1Q5)7 (17)
which we have suggestively denoted with the symbol F
to highlight the fact that this turns out to be the Fisher
information matrix of the bandpowers. In order to inter-
pret each bandpower as the weighted average of the true
bandpowers, we require each row of the window func-
tion matrix to sum to unity. As long as M is chosen in
such a way that W satisfies this criterion, the resulting
bandpower estimates p will be properly normalized.
Beyond the normalization criterion, a data analyst has
some freedom over the precise form of M, which effec-
tively also re-bins the bandpower estimates. One pop-
ular choice is M = F~! which implies that W = 1.
Each window function is then a delta function, such that
bandpowers do not contain leakage from other bins, and
contain power from only that bin. However, the disad-
vantage of this becomes apparent if one also computes
the error bars on the bandpower estimates. The error
bars are obtained by taking the square root of the diag-
onal of the covariance matrix, which is defined as

% = Cov(p) = (pp') — (b)(D)". (18)
Since p = Mq, it is easily shown that
> = MFM'. (19)

The choice of M = F~! tends to give rather large error
bars. At the other extreme, picking Mug < 603/Faa
(with the proportionality constant fixed by our normal-
ization criterion) leads to the smallest possible error bars
(Tegmark 1997), at the expense of broader window func-
tions. In our application of OQEs in the following sec-
tions, we will pick an intermediate choice for M, one that
is carefully tailored to avoid the leakage of foreground
power from low k£ modes to high & modes.

5.2. Application of OQF

Here we describe the specifics of our application of the
OQE formalism to measure the power spectrum. Doing
so requires defining various quantities such as x, C, Q,
for our analysis pipeline.

First, we consider x, which represents the data in our
experiment. Our data set consists of visibilities as a func-
tion of frequency and time for each baseline in the array.
In our analysis, we group the baselines into three groups
of redundant baselines (described in Section 2), in the
sense that within each group there are multiple copies
of the same baseline. In the description that follows,
we first estimate the power spectrum separately for each
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group. Power spectrum estimates obtained from the dif-
ferent redundant groups are then combined in a set of
averaging and bootstrapping steps described in Section
5.4. Note that because our data have been fringe-rate
filtered in the manner described in Section 3.5, we may
reap all the benefits of coherently integrating in time sim-
ply by estimating the power spectrum for every instant
in the LST-binned data before averaging over the time-
steps within the LST-binned day (Parsons et al. 2015).

For the next portion of our discussion, consider only
the data within a single redundant group. Within each
group there are not only multiple identical copies of the
same baseline, but in addition (as discussed in Section
3.3), our pipeline also constructs two LST-binned data
sets, one from binning all even-numbered days in our ob-
servations, and the other from all odd-numbered days.
Thus, we have not a single data vector, but a whole fam-
ily of them, indexed by baseline (i) and odd versus even
days (r). Separating the data out into independent sub-
groups allows one to estimate cross-power spectra rather
than auto-power spectra in order to avoid the noise bias,
as discussed in the previous section. The data vectors
take the form

Vm: (Vla t)
X'r‘i (t) — V”(VQ, t) , (20)

where V" (v, t) is the visibility at frequency v at time t.
Each data vector is 20 elements long, being comprised of
20 channels of a visibility spectrum spanning 10 MHz of
bandwidth centered on 151.5 MHz.

Having formed the data vectors, the next step in Equa-
tion (12) is to weight the data by their inverse covari-
ance. To do so, we of course require the covariance ma-
trix C, which by definition, is the ensemble average of
xx', namely C = (xx'). Unfortunately, in our case the
covariance is difficult to model from first principles, and
we must resort to an empirically estimated C. We make
this estimation by taking the time average of the quantity
xx! over 8.5 hr of LST, estimating a different covariance
matrix for each baseline and for odd versus even days.
While an empirical determination of the covariance is
advantageous in that it captures features that are diffi-
cult to model from first principles, it carries the risk of
cosmological signal loss (Switzer & Liu 2014). We will
discuss and quantify this signal loss in Section 5.3.

To gain some intuition for the action of C™! on our
data, let us examine the combination

Zri _ (Cri)—lxri (21)

for select baselines. This is a crucial step in the analysis
since it suppresses coherent frequency structures (such as
those that might arise from residual foregrounds). Note
that the inverse covariance weighting employed here dif-
fers from that in P14, in that P14 modeled and included
covariances between different baselines, whereas in our
current treatment we only consider covariances between
different frequency channels. Figure 13 compares the
effects of applying the inverse covariance matrix to a
data vector that contains foregrounds (and thus contains
highly correlated frequency structures) to one in which
foregrounds have been suppressed by the wideband de-
lay filter described in Section 3.3. In the figure, the top

row corresponds to the data vector x" for three selected
baselines in the form of a waterfall plot of visibilities,
with frequency on the horizontal axis and time on the
vertical axis. The middle section shows the empirical es-
timate of the covariance by taking the outer product of x
with itself and averaging over the time axis. Finally, the
last row shows the results of inverse covariance weight-
ing the data, namely z"*. In every row, the foreground-
dominated data are shown in the left half of the figure,
while the foreground-suppressed data are shown in the

right half. _
Consider the foreground-dominated x"* in Figure 13,
and their corresponding covariance matrices.  The

strongest modes that are present in the data are the
eigenmodes of the covariance matrix with the largest
eigenvalues. Figure 14 shows the full eigenvalue spectrum
and the four strongest eigenmodes. For the foreground-
dominated data, one sees that the eigenvalue spectrum
is dominated by the first few modes, and the correspond-
ing eigenmodes are rather smooth, highly suggestive of
smooth spectrum foreground sources. The application
of the inverse covariance weighting down-weights these
eigenmodes, revealing waterfall plots in the bottom row
of Figure 13 that look more noise-dominated. With the
foreground-suppressed portion (right half) of Figure 13,
the initial x™ vectors already appear noise dominated
(which is corroborated by the relatively noisy form of
the eigenvalue spectra in Figure 14). The final z"* vectors
remain noise-like, although some smooth structure (per-
haps from residual foregrounds) has still been removed,
and finer scale noise has been up-weighted.

With intuition established for the behavior of C~1, we
may group our identical baselines into five different sets
and average together z" vectors for baselines within the
same set. That is, we form

o= 3 (C) X (22)
€A

where A ranges from 1 to 5 and indexes the baseline set.
At this point, we have 10 weighted data vectors z (5
baseline sets, each of which has an even day and odd day
version) for every LST-binned time-step. As discussed
in the previous section, instrumental noise bias may be
avoided by forming cross-power spectra rather than auto-
power spectra. Generalizing Equation (13) to our present
case where we have 10 different data vectors, we have

(ioz = Z ZTATQaZSBa (23)
A,B,r,s
r#s,A#B
so that auto-power contributions from identical base-
line groups or identical even/odd indices never appear.
Residual foreground bias will remain in Equation (23),
but in order to avoid possible signal loss from an overly
aggressive foreground bias removal scheme, we conserva-
tively allow the foreground bias to remain. Since fore-
ground power will necessarily be positive, residual fore-
grounds will only serve to raise our final upper limits.
In order to implement Equation (23), it is necessary to
derive a form for Q, = 9C/Ip,. To do so, we follow the
delay spectrum technique of P12a, where it was shown
that

A2 )2X2Y

P(kr) = (% OB

(Vi(t, )V} (¢, 7)), (24)
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Fic. 13.— Visibilities before (top row) and after (bottom row) inverse covariance weighting. Signal covariance (middle row) is esti-
mated empirically, averaging over LST. The three left/right columns show visibilities from three different baselines in a redundant group

before/after delay filtering, respectively.

where V;(t,7) is the delay transform of baseline visibil-
ities given by Equation (8), X and Y are the constants
that convert from angles and frequency to the co-moving
coordinate, respectively, {2 is the power squared beam
(see Appendix B of P14), B is the bandwidth, A is the
spectral wavelength, and kp is Boltzmann’s constant.
This suggests that in order to estimate the power spec-
trum from visibilities, one only needs to Fourier trans-
form along the frequency axis (converting the spectrum
into a delay spectrum) before squaring and multiplying
by a scalar. Thus, the role of Q, in Equation (23) is
to perform a frequency Fourier transform on each copy
of z. It is therefore a separable matrix of the form
Q. = m,m],, where m,, is a complex sinusoid of a spe-
cific frequency corresponding to delay mode . We may
thus write

qo = Z z:rmamLzSB. (25)

A,B,r,s
r#s,A#B

With an explicit form for Q,, one now also has the nec-

essary ingredients to compute the Fisher matrix using
Equation (17).

Having computed the .8, we group our results into
a vector §. This vector of unnormalized bandpowers is
then normalized to form our final estimates of the power
spectrum p. As noted above, the normalization occurs
by the M matrix in Equation (14), and can be any ma-
trix of our desire. Even though the choices of the nor-
malization matrices described above have certain good
properties, e.g. small error bars or no leakage, we opt
for a different choice of window function, as follows. We
first reorder the elements in q (and therefore in F, M,
and P for consistency) so that the k-modes are listed in
ascending order, from low k to high k, with the excep-
tion that we place the highest £ bin third after the lowest
two k bins. (The reason for this exception will be made
apparent shortly). We then take the Cholesky decompo-
sition of the Fisher matrix, such that F = LL', where
L is a lower triangular matrix. Following that, we pick
M = DL~ !, where D is a diagonal matrix chosen to ad-
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Fic. 14.— Eigenvalue spectrum of covariance matrices (left)
empirically estimated from visibilities before (blue) and after
(green) delay filtering. The four strongest eigenmodes of the fil-
tered/unfiltered data are plotted on the top/bottom panels on the
right, respectively.

here to the normalization constraint that W = MF has
rows that sum to unity. In this case, the window func-
tion matrix becomes, W = DL'. This means that W is
upper triangular, and with our ordering scheme, has the
consequence of allowing power to leak from high to low
k, but not vice versa. Since our k axis is (to a good ap-
proximation) proportional to the delay axis, foregrounds
preferentially appear at low k£ because their spectra are
smooth. Reducing leakage from low &k to high &k thus
mitigates leakage of foregrounds into the cleaner, more
noise-dominated regions. Additionally, our placement of
the highest k£ bin as the third element in our reordering
of p prevents leakage from this edge bin that will con-
tain aliased power. Figure 15 shows the resulting window
functions.

Our choice of normalization matrix also has the attrac-
tive property of eliminating error correlations between
bandpower estimates. Using Equation (19), we have that

¥ = DL 'LL'L™'D = D2 (26)

The error covariance matrix on the bandpowers is thus
diagonal, which implies that our final data points are
uncorrelated with one another. This stands in contrast
to the power-spectrum estimator used in P14, where the
Blackmann—Harris taper function induced correlated er-
rors between neighboring data points.

5.3. Covariance Matriz and Signal Loss

We now discuss some of the subtleties associated with
empirically estimating the covariance matrix from the
data. Again, the covariance matrix is defined as the en-
semble average of the outer product of a vector with it-
self, i.e.,

C = (xx), (27)

where x is the data (column) vector used in the analysis.
In our analysis, we do not have a priori knowledge of
the covariance matrix. and thus we must resort to em-
pirical estimates (Dillon et al. 2015). As we have alluded

ky[h Mpc"]

-0.4 -0.2 0.0 0.2 0.4
Ey [h Mpc_L]

F1G. 15.— The window function matrix W, as defined in Equa-
tion (15). The i*? row corresponds to the window function used in

the estimate of the power spectrum for the i*" k-mode. Color scale

indicates log;y W. The inset plot illustrates the window function
along the dashed line in the upper panel. As described in Sec-
tion 5.2, M in Equation (16) has been chosen so that each window
function peaks at the waveband while achieving a high degree of
isolation from at lower k-modes that are likely to be biased by
foregrounds.

to above, we replace the ensemble average with a time
average that runs from 0 to 8:30 LST hours.

Since the OQE method for power spectrum estimation
requires the inversion of C, it is crucial that our empir-
ically estimated covariance be a full rank matrix. With
our data consisting of visibilities over 20 frequency chan-
nels, the covariance matrix is a 20 x 20 matrix. Thus,
a necessary condition for our estimate to be full rank is
for there to be at least 20 independent time samples in
our average. As noted in Section 3.5 the fringe-rate filter
used corresponds to averaging time samples for 31 min-
utes. Over the LST range used in this analysis, this cor-
responds to roughly 20 statistically independent modes
in our data after fringe-rate filtering. We therefore have
just enough samples for our empirical estimate, and in
practice, our covariance matrices are invertible and allow
OQE techniques to be implemented.

Another potential problem that occurs from empiri-
cally estimating covariances is that it leads to models
of the covariance matrix that over-fit the noise. In this
scenario, the covariance matrix tells us that there may
be modes in the data that should be down-weighted, for
example, but if the empirical covariance estimates are
dominated by noise, these may just be random fluctua-
tions that need not be down-weighted. Said differently,
the weighting of the data by the inverse covariance is
heavily influenced by the noise in the estimate of the co-
variance matrix and thus has the ability to down-weight
valid high-variance samples. Over-fitting the noise in this
manner carries with it the possibility of cosmological sig-
nal loss. This seems to contradict the conventionally
recognized feature of OQEs as lossless estimators of the
power spectrum (Tegmark 1997). However, the standard
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F1G. 16.— Recovered power spectrum signal as a function of
injected signal amplitude. Shaded regions indicate the range in
measured amplitude of power spectrum modes in Figure 18. Er-
ror bars indicate 95% confidence intervals as determined from the
Monte Carlo simulations described in Section 5.3. Because the re-
covered signal amplitude is a monotonic function of the injected
signal amplitude, it is possible to invert the effects of signal loss in
the measured power spectrum values to infer the true signal ampli-
tude on the sky. Over the range of powers measured, the maximum
correction factor Pi,/Pout is less than 1.02 at 97.5% confidence.
The transition to significantly higher correction factors at larger
signal amplitudes occurs as the injected signal dominates over the
foreground modes present in estimates of the data covariance.

proofs of this property assume that statistics such as C
are known a priori, which is an assumption that we are
violating with our empirical estimates.

In order to deal with possible signal loss, we perform
simulations of our analysis pipeline, deriving correction
factors that must be applied to our final constraints. We
simulate visibilities for Gaussian temperature field with
a flat amplitude in P(k) that rotates with the sky, which
is fringe-rate filtered in the same way as the data for
our fiducial baselines. This signal is processed through
our pipeline, and the output power spectrum compared
to the input power spectrum, for various levels of input
signal amplitude. We repeat this for 40 sky realizations
at each signal level. Figure 16 shows the resultant sig-
nal loss associated with estimating the covariance matrix
from the data. Error bars were obtained through boot-
strapping.

As a function of the increasing input amplitude of the
simulated power spectra, we find that the ratio of out-
put power to input power decreases, which we interpret
as signal loss through the use of our empirical OQE of
the power spectrum. However, since the transfer func-
tion through this analysis is an invertible function, we
can correct for the transfer by using the output value
to infer a signal loss that is then divided out to obtain
the original input signal level. In Figure 16, we see that
deviations from unity signal transfer begin at power spec-
trum amplitudes of 107mK?(h~" Mpc)?. For the range of
output power spectrum amplitudes in our final estimate
of the 21 cm power spectrum (Figure 18), we show that

signal loss is < 2% at 95% confidence.

TABLE 1
SIGNAL LOSS VERSUS ANALYSIS STAGE

Analysis Stage Typical Loss Maximum Loss
Bandpass Calibration < 2x10~"% 3.0%
Delay Filtering 1.5 x 1073%  4.8%

Fringe-rate Filtering 28.1% 28.1%
Quadratic Estimator < 2.0% 89.0%
Median of Modes 30.7% 30.7%

As shown in Table 1, the signal loss we characterize for
quadratic estimation of the power spectrum band pow-
ers is tabulated along with the signal loss associated with
each other potentially lossy analysis stage (see Figure 3).
We correct for the signal loss in each stage by multiply-
ing the final power spectrum results by the typical loss
for each stage, except for modes within the horizon limit
and immediately adjacent to the horizon limit, where we
apply the maximum signal loss correction to be conser-
vative.

5.4. Bootstrapped Averaging and Errors

When estimating our power spectra via OQEs, we gen-
erate multiple samples of the power spectrum in order to
apply the bootstrap method to calculate our error bars.
In detail, the power spectrum estimation scheme pro-
posed above requires averaging at several points in the
pipeline:

1. Visibilities are averaged into five baseline groups
after inverse covariance weighting (see Equation

(22))

2. Power spectrum estimates from each of the three
redundant baseline types (described in Section 2)
are averaged together.

3. Power spectrum estimates from each LST are av-
eraged together.

With the bootstrapping technique, we do not directly
perform these averages. Instead, one draws random sam-
ples within the three-dimensional parameter space spec-
ified above, with replacement, until one has as many
random samples as there are total number of parame-
ter space points. These random samples are then propa-
gated through the power spectrum pipeline and averaged
together as though they were the original data. This
forms a single estimate (a “bootstrap”) of P(k). Re-
peating random draws allows one to quantify the inher-
ent scatter—and hence the error bars—in our estimate
of P(k). When plotting A?(k) = k3P(k)/2m? instead of
P(k), we bin power falling in +k and —k, and so we addi-
tionally randomize the inclusion of positive and negative
k bins.

We compute a total of 400 bootstraps. In combining
independent samples for our final power spectrum esti-
mate, we elect to use the median, rather than the mean,
of the samples. One can see the behavior of both statis-
tics in Figure 17, where we show how the absolute value
of A?(k) integrates down as more independent samples
are included in the mean and median. In this plot, one
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F1Gg. 17.— Absolute value of the cumulative mean (left) and median (right), as a function of number of modes of the power spectrum
band power for k| modes ranging from —0.49 (red) to 0.44h Mpc~?! (violet). Here, modes are defined as samples from different redundant
baseline groups and LSTs. This Allen variance plot shows modes averaging down as the square root of number of modes combined until a
signal floor is reached. The difference in behavior between the mean and median is an indication of outliers in the distribution of values,
likely as a result of foreground contamination. We use the median in the estimation of the power spectrum in Figure 18, along with a
correction factor compensating for the difference between the mean and median in estimating variance.

can see modes integrating down consistent with a noise-
dominated power spectrum until they bottom out on a
signal. In the noise-dominated regime, the mean and the
median behave similarly. However, we see that the me-
dian routinely continues to integrate down as noise for
longer. This is an indication that the mean is skewed
by outlier modes, suggesting variations beyond thermal
noise. The magnitude of the difference is also not consis-
tent with the Rayleigh distribution expected of a cosmo-
logical power spectrum limited by cosmic variance. For
a Rayleigh distribution, the median is In2 ~ 0.69 times
the mean. Instead, we interpret the discrepancy as a
sign of contributions from foregrounds, which are neither
isotropic nor Gaussian distributed. Since median pro-
vides better rejection of outliers in the distribution that
might arise from residual foreground power, we choose to
use the median statistic to combine measurements across
multiple modes. As listed in Table 1, we apply a 1/In2
correction factor to our power spectrum estimates to in-
fer the mean from the median of a Rayleigh distribution.

6. RESULTS
6.1. Power Spectrum Constraints

To summarize the previous section, we follow the power
spectrum analysis procedure outlined in Section 5.2, we
incoherently combine independent power spectrum mea-
surements made at different times and with different
baseline groups using the median statistic. As described
in Section 5.4, we bootstrap over all of these independent
measurements, as well as over the selection of baselines
included in the power spectrum analysis for each base-
line group, in order to estimate the error bars on the
spherically averaged power spectrum P(k), where posi-
tive and negative k| measurements are kept separate for
diagnostic purposes. In the estimation of the dimension-
less power spectrum A%(k) = k3P (k) /272, the folding of

+k) is handled along with the rest of the bootstrapping
over independent modes. Finally, the measured values
for P(k) and A?(k) are corrected for signal loss through
all stages of analysis, as summarized in Table 1.

The final results are plotted in Figure 18. For the
first two modes outside of the horizon where A2(k) is
measured, we have clear detections. We attribute these
to foreground leakage from inside the horizon related to
the convolution kernels in Equation (8) (either from the
chromaticity of the antenna response, or from the inher-
ent spectrum of the foregrounds themselves). Somewhat
more difficult to interpret are the 2.40 excess at k =~
0.30h Mpc™! and the 2.90 excess at k ~ 0.44h Mpc™!.
Having two such outliers is unlikely to be chance.

In examining the effects on the power spectrum of
omitting various stages of analysis (see Figure 19), we
see a pronounced excess in the green curve corresponding
to the omission of crosstalk removal in fringe-rate filter-
ing. While the signal is heavily attenuated in the filtering
step, it remains a possibility that the remaining detec-
tions are associated with instrumental crosstalk. We do
note, however, that the qualitative shape of the excess
in the crosstalk-removed data does not appear to match
that of the crosstalk-containing data.

Another likely possibility is that the signal might be
associated with foregrounds. Foregrounds, which are not
generally isotropically distributed on the sky, are likely
to be affected by the spatial filtering associated with
fringe-rate filtering, whereas a statistically isotropic sig-
nal is not. Indeed, we see that excesses in many modes
measured with using the P14-stype time-domain filtering
(blue in Figure 19) decrease significantly using the im-
proved fringe-rate filter. As discussed in Parsons et al.
(2015), the normalization applied to Qeg for fringe-rate
filtering correctly compensates for the effect of this fil-
tering on power-spectral measurements of a statistically
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F1G. 18.— Measured power spectrum (black dots with 20 error bars) at z = 8.4 resulting from a 135 day observation with PAPER-64.

The dashed vertical lines at 0.6h Mpc~! show the bounds of the delay filter described in Section 3.3. The predicted 2o upper limit in
the absence of the a celestial signal is shown in dashed cyan, assuming Tsys = 500K . The triangles indicate 2 o upper limits from GMRT
(Paciga et al. 2011) (yellow) at z = 8.6, MWA (Dillon et al. 2014) at z = 9.5 (magenta), and the previous PAPER upper limit (P14) at
z = 7.7 (green). The magenta curve shows a predicted model 21 cm power spectrum at 50% ionization (Lidz et al. 2008).
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Fic. 19.— Diagnostic power spectra in the style of Figure 18 illustrating the impact of various analysis stages. The blue power spectrum
uses the P14 fringe-rate filter combined with crosstalk removal. Green illustrates the result using the improved fringe-rate filter, but without
crosstalk removal. A power spectrum derived without the application of OMNICAL is shown in orange. Black includes improved fringe-rate
filtering, crosstalk removal, and OMNICAL calibration; it is the same power spectrum shown in Figure 18.
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Fi1c. 20.— Posterior distribution of power spectrum amplitude
for a flat A%(k) power spectrum over 0.15 < k < 0.5h Mpc~1!
(solid black), assuming Gaussian error bars. The blue and orange
vertical lines correspond to the 1o and 20 bounds, respectively.

isotropic Gaussian sky signal. We can surmise from
any significant change in amplitude of the excess under
fringe-rate filtering that it arises from emission that vi-
olates these assumptions. We conclude, therefore, that
this excess is unlikely to be cosmic reionization, and is
more likely the result of non-Gaussian foregrounds. As
discussed earlier, one possible culprit is polarization leak-
age (Jelié¢ et al. 2010, 2014; Moore et al. 2013), although
further work will be necessary to confirm this. The inter-
pretation of the signal as polarization leakage is, however,
rather high to be consistent with recent measurements
in Stokes Q presented in Moore et al. (2015), where the
leakage is constrained to be < 100 mK* for all k.

That the excesses at k ~ 0.30 and 0.44h Mpc™! are
relatively unaffected by the filtering could be an indi-
cation that they are more isotropically distributed, but
more likely, it may mean that the simply arise closer to
the center of the primary beam where they are down-
weighted less. Both excesses appear to be significantly
affected by omitting OMNICAL calibration (orange in
Figure 19). This could be interpreted as indicating the
excess is a modulation induced by frequency structure
in the calibration solution. However, OMNICAL is con-
strained to prohibit structure common to all baselines,
so a more likely interpretation is that this faint feature
decorrelates without the precision of redundant calibra-
tion. To determine the nature of these particular ex-
cesses, further work will be necessary.

In order to aggregate the information presented in the
power spectrum into a single upper limit, we fit a flat
A?(k) model to measurements in the range 0.15 < k <
0.5h Mpc™'. We use a uniform prior of amplitudes be-
tween —5000 and 5000 mK?, and assume measurement
errors are Gaussian. Figure 20 shows the posterior dis-
tribution of the fit. From this distribution, we determine
a mean of (18.9 mK)? and a 20 upper limit of (22.4 mK)?

The measured mean is inconsistent with zero at the
4.70 level, indicating that we are detecting a clear power
spectrum excess at k > 0.15h Mpc ™.

We suspect that the excess in our measured power

spectrum is likely caused by crosstalk and foregrounds.
We therefore suggest ignoring the lower bound on the
power spectrum amplitude as not being of relevance for
the cosmological signal. On the other hand, since fore-
ground power is necessarily positive, the 20 upper limit
of (22.4mK)? at z = 8.4, continues to serve as a con-
servative upper limit. This significantly improves over
the previous best upper limit of (41 mK)? at z = 7.7
reported in P14. As we show below and in greater detail
in Pober et al. (2015), this limit begins to have implica-
tions for the heating of the IGM prior to the completion
of reionization.

6.2. Spin Temperature Constraints

In this section, we examine the implication of the mea-
sured upper limits on 21cm emission in Figure 18 on the
spin temperature of the 21cm line at z = 8.4. In a forth-
coming paper (Pober et al. 2015), we conduct a thorough
analysis of the constraints that can be put on the IGM
using a simulation-based framework. As a complement
to that more thorough analysis, we focus here on a sim-
pler parameterization of the shape of the 21lcm power
spectrum signal.

The brightness temperature of the 21lcm signal, 67},
arising from the contrast between the cosmic microwave
background, T’,, and the spin temperature, Ty, is given
by

0Ty = L-T, (1—e") = L-T,
1+2 1+2

where temperatures are implicitly a function of redshift
z, and the approximation holds for low optical depth, 7.
The optical depth is given by (Zaldarriaga et al. 2004)

S 3CSE,A10HHI
- 16k2TLH (2)

where Aq is the Einstein A coefficient for the 21cm tran-
sition, nyy is the density of the neutral hydrogen, H(z)
is the Hubble constant, x g is the neutral fraction of hy-
drogen, ¢ is the local baryon overdensity, v is the rest
frequency of the 21cm transition, and the remainder are
the usual constants. Plugging in the cosmological pa-
rameters from Planck Collaboration et al. (2015), we get

6Ty ~ To T (14 0) &, (30)
where { =1 —T.,/T, and Ty = 26.7mK+/(1 + z)/10.

If the spin temperature is larger than T.,, we get the
21 cm signal in emission with respect to the CMB, and
& ~ 1. However, if T} is less than T, 07}, is negative and
& can potentially become large.

As in P14, we consider a “weak heating” scenario
in which Ty is coupled to the gas temperature via the
Wouthuysen-Field effect (Wouthuysen 1952; Field 1958;
Hirata 2006), but little heating has taken place prior to
reionization, so that Ty < T’,. In this scenario, because
we have assumed little heating, we can approximate £ as
having negligible spatial dependence, and therefore TZ¢?
becomes a simple multiplicative scalar to the 21cm power
spectrum:

T, (28)

(29)

AZy (k) = T8 (2) A (k), (31)

where A2(k) is the dimensionless HI power spectrum.
As shown in P14, the maximum value of the prefactor
in Equation (31) is given by a no-heating scenario where
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FiG. 21.— Constraints on the 2lcm spin temperature at z = 8.4, assuming the patchy reionization model in Equations (31) and (33),

which hold in the limit that Ts < TcumB.-

the spin temperature follows the kinetic gas temperature,
which is held in equilibrium with the CMB via Compton
scattering until zqe. A~ 150 (Furlanetto et al. 2006) and
then cools adiabatically as (1 + z)2. In this case, £ is
given by
f—1- 1+ 24ec ~_ 150 .
142 1+2
At z = 8.4, this corresponds to a minimum bound on the
spin temperature of Ty > 1.5 K.

We can now flip this argument around and, for a mea-
sured upper bound on A3, (k), we can use models for
A2(k) in Equation (31) to place a bound on Ty. We con-
sider a class of “patchy” reionization models (P12a;P14)
which approximates the ionization power spectrum as
flat between minimum and maximum bubble sizes, knin
and kmax, respectively:

A% (k) = (zmr — 2fi)/ 10 (kmax/kmin)- (33)
For combinations of kni, and kpax, we determine the
minimum spin temperature implied by the 2¢ 21 cm
power spectrum upper limits shown in Figure 18. Figure
21 shows the results of these bounds for neutral frac-
tions of zy; = 0.1, 0.3, 0.5, 0.7, and 0.9. In almost all
cases (excepting xpy = 0.1,0.9 for kyy, < 0.1 Mpe™),
we find that T, 2 3K, indicating that our measurements
are inconsistent with the spin temperature being coupled
to a kinetic temperature governed strictly by adiabatic
expansion.

Our results become more interesting in the range of
kmin ~ 0.1 and k. ~ 30 representative of fiducial sim-
ulations (Zahn et al. 2007; Lidz et al. 2008). For neutral
fractions of 0.3, 0.5, and 0.7, we find that Ty 2 4K.
Pober et al. (2015) improves on these results by using
a simulation-based framework, rather than relying on
coarse parametrizations of the power spectrum shape.
They compare the limits they find to the amount of heat-
ing possible given the currently observed star formation
rates in high-redshift galaxy populations (Bouwens et al.
2014; McLeod et al. 2015) and assumptions about the re-
lationship between star formation rates and X-ray lumi-
nosities (Furlanetto et al. 2006; Pritchard & Loeb 2008;
Fialkov et al. 2014). Assuming the midpoint of reioniza-
tion lies close to z = 8.4 (a reasonable assumption given

(32)

that Planck Collaboration et al. 2015 suggests a mid-
point of z = 8.8), both the bounds found in this paper
and Pober et al. (2015) show evidence for heating that
places constraints on the possible values for the star for-
mation rate/X-ray luminosity correlation given certain
models of the star formation rate density redshift evo-
lution. We refer the reader to Pober et al. (2015) for a
detailed examination of these results.

7. DISCUSSION

The improvement in our results over those in P14 are
the result of four major advances:

1. the expansion of PAPER to 64 antennas doubled
our instrument’s power spectrum sensitivity,

2. using OMNICAL for redundant calibration signif-
icantly improved the clustering of measurements
over the previous implementation of LOGCAL used
in P14,

3. fringe-rate filtering further improved power spec-
trum sensitivity by ~50% and suppressed system-
atics associated with foregrounds low in the pri-
mary beam, and

4. moving from a lossless quadratic estimator target-
ing difference modes in redundant measurements
to an OQE (with carefully calibrated signal loss)
significantly reduced contamination from residual
foregrounds.

Figure 19 illustrates the effect of some of these advances
on the final power spectrum. Other important advances
include the use of the median statistic to reduce the im-
pact of non-Gaussian outliers in power-spectral measure-
ments, and the use of a Cholesky decomposition of the
Fisher information matrix to help reduce leakage from
highly contaminated modes within the wedge.

These new techniques and improvements to calibration
have reduced the measured bias in nearly all wavebands
by an order of magnitude or more. The use of OMNICAL
to accurately calibrate the relative complex gains of the
antennas has shown to be a major improvement to the
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data-reduction pipeline. The accuracy and improvement
of this calibration brings redundant baselines into im-
pressive agreement with one another (see Figures 4 and
10), and provides important diagnostic information for
monitoring the health of the array, flagging RFI events,
and otherwise assessing data quality. Fringe-rate filter-
ing, which is described in greater depth in (Parsons et al.
2015), is also proving to be a flexible and powerful tool
for controlling direction-dependent gains and improving
sensitivity.

As sensitivity improves, it will be possible to determine
more accurately than Moore et al. (2015) what the ac-
tual level of polarized emission, and thus leakage, may
be. Independent fringe-rate filtering of the XX and YY
polarizations prior to summation has the potential to
better match these polarization beams and further sup-
press the leakage signal if the polarized signal turns out
to be significant.

The end result is a major step forward, both for PA-
PER and for the field of 21cm cosmology. While we have
not yet made a detection of the 21lcm cosmological sig-
nal, our limits are now within the range of some of the
brighter models. As discussed in Pober et al. (2015), an-
other order-of-magnitude improvement in sensitivity will
make 21cm measurements highly constraining.

8. CONCLUSIONS

We present new upper limits on the 21 cm reionization
power spectrum at z = 8.4, showing a factor of ~4 im-
provement over the previous best result (P14). We find
a 20 upper limit of (22.4mK)? by fitting a flat power
spectrum in a k range from 0.15 < k < 0.5h Mpc™! to
the dimensionless power spectrum, A2(k), measured by
the PAPER instrument. We coarsely show that these
upper limits imply a minimum spin temperature for hy-
drogen in the IGM. Although these limits are dependent
on the model chosen for the power spectrum, we use a
patchy reionization model to show that limits of Ty > 4 K
are fairly generic for models with ionization fractions be-
tween 0.3 and 0.7. A more detailed analysis of the im-
plied constraints on spin temperature using semi-analytic
reionization/heating simulations is presented in a forth-
coming paper (Pober et al. 2015).

The power spectrum results that we present continue
to be based on the delay-spectrum approach to fore-
ground avoidance presented in P12b and first applied in
P14. The application of a delay filter over a wide band-
width continues to be one of the most powerful tech-
niques yet demonstrated for managing bright smooth-
spectrum foregrounds. In this paper, we extend the
analysis in P14 with improved fringe-rate filtering, im-
proved redundant calibration with OMNICAL, and with
an OQE that, while not perfectly lossless, is more adept
at down-weighting residual foregrounds. The combined
effect of these improvements leaves a power-spectral mea-
surement that is not consistent with zero at the 4.70-
level, which we expect is a result of contamination from
crosstalk and foregrounds. With the expansion of PA-
PER to 64 antennas, the extended 135 day observing
campaign, and the added sensitivity benefits of fringe-
rate filtering, combined with the optimization of antenna
positions in PAPER for highly redundant measurements,
this thermal noise limit is beginning to enter the realm

of constraining realistic models of reionization.

Forthcoming from PAPER will be two seasons of ob-
servation with a 128-element array. Following the same
analysis as presented here, that data set is expected to
improve over the PAPER-64 sensitivity by a factor of
~4 (in mK?), with the potential for another boost to
sensitivity should the new 16-m baselines provided in
the PAPER-128 array configuration prove to be usable.
There also remains the potential for further improve-
ments to sensitivity through the use of longer baselines,
if foregrounds can be managed effectively. As has been
done recently for PAPER-32 (Jacobs et al. 2015; Moore
et al. 2015), future work will also extend PAPER-64 anal-
ysis to a range of redshifts and examine the power spec-
trum of polarized emission.

With recent breakthroughs in foreground management,
the sensitivity limitations of current experiments are be-
coming clear. Although collecting area is vital, as dis-
cussed in Pober et al. (2014), the impact of collecting
area depends critically on the interplay of array config-
uration with foregrounds. Despite a large spread in col-
lecting areas between PAPER, the MWA, and LOFAR,
in the limit that foreground avoidance is the only viable
strategy, these arrays all deliver, at best, comparable low-
significance detections of fiducial models of reionization.
To move beyond simple detection, next-generation in-
struments must deliver much more collecting area with
very compact arrays.

The Hydrogen Epoch of Reionization Array (HERA)
and the low frequency Square Kilometre Array (SKA-
Low) are next generation experiments that aim to make
significant detections of the 21 cm power spectrum and
begin characterizing it. SKA-Low has secured pre-
construction funding for a facility in western Australia.
HERA was recently granted funding for its first phase
under the National Science Foundation’s Mid-Scale In-
novations Program. HERA uses a close packing of 14-m
diameter dishes designed to minimize the width of the
delay-space kernel A, in Equation (8). Sensitivity fore-
casts for a 331-element HERA array and SKA-Low show
that they can deliver detections of the 21cm reionization
signal at a significance of 390 and 210, respectively, using
the same the conservative foreground avoidance strategy
employed in this paper (Pober et al. 2014). HERA is the
natural successor to PAPER, combining a proven exper-
imental strategy with the sensitivity to deliver results
that will be truly transformative for understanding of
our cosmic dawn.
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