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Abstract

Quantitative phase imaging (QPI) is a label-free, wide-field microscopy approach with significant 

opportunities for biomedical applications. QPI uses the natural phase shift of light as it passes 

through a transparent object, such as a mammalian cell, to quantify biomass distribution and 

spatial and temporal changes in biomass. Reported in cell studies more than 60 years ago, ongoing 

advances in QPI hardware and software are leading to numerous applications in biology, with 
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a dramatic expansion in utility over the past two decades. Today, investigations of cell size, 

morphology, behavior, cellular viscoelasticity, drug efficacy, biomass accumulation and turnover, 

and transport mechanics are supporting studies of development, physiology, neural activity, cancer, 

and additional physiological processes and diseases. Here, we review the field of QPI in biology 

starting with underlying principles, followed by a discussion of technical approaches currently 

available or being developed, and end with an examination of the breadth of applications in use or 

under development. We comment on strengths and shortcomings for the deployment of QPI in key 

biomedical contexts and conclude with emerging challenges and opportunities based on combining 

QPI with other methodologies that expand the scope and utility of QPI even further.

Graphical Abstract

Keywords

microscopy; quantitative phase imaging; holography; tomography; interferometry; phase retrieval; 
diagnostics; biophysics

Advances in microscopy have driven advances in biology and medicine by enabling 

visualization and greater perspectives on the machinery of life. In this review, we discuss 

advances in quantitative phase imaging (QPI), a label-free microscopy technique that 

measures fundamental cell properties and behaviors, including mass, mechanical properties, 

growth, and intracellular transport. We discuss the history of QPI, technical aspects of 

its applications, and emerging developments that will shape future applications of this 

technology for addressing opportunities and challenges in biomedicine.

QPI methods measure the phase shift of light as it passes through a transparent sample. This 

phase shift is caused by light slowing down as it passes through a material with a higher 

refractive index than water1 and can be written as

ϕ = 2π
λ ∫

z = 0

ℎ

n(z)dz (1)

where ϕ is the phase shift of light (in fractions of a wavelength) contributed by all elements 

in the sample of varying refractive index, n, through the height of the sample, h, in the z 
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direction. This measured phase shift is directly proportional to the dry mass content of a 

biological sample.2 Dry mass includes all mass excluding water and is therefore inclusive of 

biological macromolecules. For example, the increase of refractive index (real component) 

for a protein solution is proportional to the increase in protein concentration.3 The slope of 

refractive index versus mass concentration defines this relationship and is called the specific 

refractive increment.1,4 The average specific refractive increment, α, for the typical contents 

of mammalian cells, including proteins, nucleic acids, sugars, and lipids is ~1.8–2.0 × 10−4 

m3/kg,2,3,5 with a value of 1.85 × 10−4 m3/kg1 used as a typical choice that is correct to 

within ~6%.5 The cell dry mass, m, can then be calculated using the specific refractive 

increment, α, of a sample by2

m = λ
2πα∫ ϕdA (2)

where this integral is performed over A, the imaged area of the cell, and λ is the wavelength 

of light used for imaging. The ability of QPI to measure quantitative, biophysical features of 

the cell, such as mass, is central to its applications and potential in biomedicine.

Along with QPI, there are other widely used methods for leveraging the phase shift of light 

as it passes through a cell or other biological sample to generate image contrast. These 

include Zernike phase contrast microscopy6,7 and Nomarski differential interference contrast 

(DIC) microscopy.8 In phase contrast microscopy, a sample is illuminated with a limited 

spatial frequency range (background light). The refractive index distribution of nonuniform 

structures within cells then causes this background light to diffract and undergo a phase 

shift relative to the unperturbed background light. Both this diffraction and phase delay 

helps to generate contrast in the resulting image. As a result, even minute differences in 

refractive index translate into amplitude changes in the resulting image. In DIC microscopy, 

image contrast arises by splitting the incident light based on orthogonal polarization and 

introducing a small lateral shear of one polarization angle relative to the other using a 

Nomarski-modified Wollaston prism. Recombination of this polarized light after passing 

through the sample at a second Wollaston prism causes interference based on the relative 

phase shift between the two polarization angles. The image intensity in DIC microscopy, 

therefore, relates to the gradient of phase in the shear direction. Both phase contrast and 

DIC microscopy enable label-free measurements of cell shape and position. However, 

the intensity of images from phase contrast and DIC imaging do not linearly relate to 

the corresponding phase unless used as the basis for a phase retrieval method.9,10 As a 

result, and in contrast to QPI, phase contrast and DIC microscopy remain qualitative phase 

methods. As discussed further, the quantitative data available with QPI enable more precise 

statistical and incremental studies for probing biological mechanisms than are available with 

qualitative methods.

In this review, we introduce the fundamental problem of QPI and trace the development 

of methods to solve this problem (Figure 1a). With the ever-increasing availability of 

computational resources, these solutions have increasingly converged, leading to a number 

of key applications in quantitative biology and a dramatic increase in research interest in 
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QPI (Figure 1b). Finally, we conclude by discussing four key ongoing areas of QPI research 

that we believe will have the greatest influence in the future.

SOLVING THE FUNDAMENTAL PROBLEM OF QUANTITATIVE PHASE

QPI techniques seek to recover the phase shift of light that passes through a sample. 

However, conventional optical detectors recover only the amplitude of incident light, so 

additional optics and/or computations are necessary to recover phase shift information. 

This is the fundamental problem that all QPI methods must solve, which has stimulated 

the development of multiple QPI techniques. Here, we discuss the development of QPI 

in the context of these solutions, focusing on the four primary approaches that have had 

the largest impact on modern QPI methods and applications: interferometry,11,12 wavefront 

sensing,13,14 phase retrieval,15,16 and digital holography.17 While many of these approaches 

have integrated methods and concepts from electron, X-ray, and radio-wave techniques, here 

we use the term QPI to refer specifically to methods for phase retrieval based on visible 

light. We then discuss the convergence of these various techniques at the end of this section.

Interferometry.

One method for computing phase information is interferometry. In interferometry, light 

incident on a sample is split into two paths, a sample path and a reference path, before 

recombining at a detector (Figure 2a). The amplitude of the resulting interference image 

relates to the phase shift of light passing through the sample with respect to the reference 

path by constructive and destructive interference between the light from these two paths. 

Interferometry was invented by Albert Michelson and improved further in collaboration with 

Edward Morley and famously used for the Nobel prize winning 1887 Michelson–Morley 

experiment that provided evidence against the existence of the luminiferous aether18 (Figure 

1a). Major early improvements were the introduction of separate sample and reference 

cells in the Mach–Zehnder interferometer19 and use of thin calcite films faced at 45° to 

enable microinterferometry.20 These dual path interferometers were followed by common-

path interferometers where the reference beam and sample beam travel along the same 

path, reducing measurement sensitivity to vibration.21,22 A common-path interferometer 

microscope built by Dyson was used to image fixed biological specimens.23

The next major advance in QPI toward biomedical applications was the calibration of a 

specific refractive increment3 using varying specimen compositions29,30 that enabled the 

calculation of cell dry mass. The earliest applications of cell dry mass measurements 

with interferometry mostly focused on regularly shaped organisms such as yeast and 

bacteria to simplify calculations.31,32 Early work on irregularly shaped cells used multiple 

images to find the total projected area and average optical thickness, the product of which 

is proportional to total cell dry mass through the specific refractive increment.33 The 

integration of the scanning optical microspectrograph with the interference microscope 

increased resolution,34 although not to the level of modern systems.35 Other major 

improvements in interferometry focused on convenience for use in biological studies. This 

included a polarization interference microscope that replaced the partially silvered reflecting 

layers of earlier common path systems with a birefringent layer.20 The Baker interference 
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microscope, which was used widely on mammalian cells, is a polarizing microscope 

modified into a two beam interferometer.36,37 Additional improvements included the use 

of a warmed stage to measure live yeast38,39 or bacteria32 and the replacement of uneven 

mercury lamp illumination with fiber optics. Although the relationship between amplitude 

and phase in interferometric images is straightforward, the required phase reference 

increases the complexity and number of optical elements and increases susceptibility to 

vibrations40 and instability of a light source.41 Therefore, it was not until the introduction 

of digital cameras and image processing42,43 that interferometry provided reliable and 

reproducible quantitative data for internally complex mammalian cells.

Advances in a number of areas of interferometry-based QPI measurements benefit from 

the increasing use of computers. Automated image focusing has improved interference 

imaging accuracy and speed.44 Single-wavelength interferometry cannot distinguish 

adjacent imaging pixels with a phase difference exceeding one-quarter of a wavelength,2 

but substantially larger phase shifts can be accurately measured by digitally combining 

images taken at two wavelengths.45 Errors introduced from the unevenness of a reference 

surface can also be digitally corrected.46 Phase shifting interferometry, in which multiple 

interference images are acquired at subwavelength shifts in the reference relative to the 

sample path length, corrects error due to external disturbances.41 Applications of this 

approach with the required temporal and spatial resolution to study subtle changes in 

the shape of cancer cells require tight integration with computers for motion control and 

image processing.35 Automated cell segmentation enables interferometry to measure the 

growth of many cells simultaneously in uniform12 or mixed populations.47 Automated 

segmentation has also improved the application of phase unwrapping or removal of phase 

jumps of one wavelength (2π radians) created due to the inherent ambiguity in interpreting 

interferometry data, thereby reducing errors in dry mass measurements.48 Overall, computer 

control of interference microscopes and digital image processing of the resulting data has 

revolutionized this 100+ year old method and led to a convergence with other methods, as 

discussed below.

Digital Holography.

Digital holography directly descends from interferometry (Figure 1a) and also captures the 

interference between a reference and sample beam. However, unlike interferometry, digital 

holography does not typically require mechanical scanning of the resulting interference 

fringes. In digital holography, the interferogram is captured with a digital camera placed 

at a known distance in front of the image plane.49 This interferogram is analyzed using 

diffraction theory to reconstruct the complex object wavefront, including the phase shift and 

intensity modulation of light passing through the sample. Digital holography emerged from 

the establishment of holography by Gabor50 for which he won the Nobel prize in 1971.51 

Gabor’s work demonstrated that light from a point source interfering with secondary waves 

from light scattered by an object produces a negative photograph of a three-dimensional 

(3D) image. However, a conjugate image is also superimposed on the reconstructed image, 

resulting in ambiguity due to the presence of this twin image. It was later shown that use of 

an off-axis reference beam can separate the real and conjugate image.52–55 Marine plankton 
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provided an early application of live cells imaged using holography in a chamber with close 

proximity to a photographic plate.56

The use of digital cameras57–59 and numerical reconstruction60 has greatly improved the 

accessibility of holography. Since the 1970s, holography has been used extensively for cell 

imaging.61 Later, digital holography was introduced for 3D imaging enabling visualization 

of specimens with highly fluctuating phase profiles such as pollen.62 Initial applications of 

holography to quantitative phase measurements were restricted to measuring the refractive 

index distribution of inorganic materials,63. The broader application of digital holography to 

QPI was enabled by the development of efficient computational reconstruction of holograms 

in the early 2000s64 as well as developments in the field of electron microscopy.65 This led 

to digital holographic microscopy (DHM) of live neuron cells in culture with high phase 

accuracy.27 Improved computational resources sped up the hologram reconstruction process 

for applications such as mapping the refractive index of cells.66,67 Schlieren images were 

also generated from holography of patterns in inorganic materials,68 which were later used 

to measure optical thickness.69

DHM has been implemented in multiple hardware configurations.70 Of these, the Mach–

Zehnder interferometer19 is the most widely used (Figure 2b), although this approach 

has the same disadvantages of other double-path interferometers discussed previously. 

Traditionally, DHM requires spatially and temporally coherent laser light, leading to 

speckle noise. However, a number of white light and incoherent DHM alternatives are 

available, including spatial light interference microscopy (SLIM), a combination of digital 

holography and Zernike’s phase contrast microscopy.71 By processing a hologram of the 

3D specimen wavefront, DHM also allows computational refocusing for the evaluation and 

standardization of QPI methods, discussed in more detail below.

Of note, DHM loses resolution with removal of the twin-image generated by in-line 

holography using the sideband technique72 and through sideband filtering and cropping 

in the Fourier domain during hologram reconstruction in off-axis holography.65 This 

loss of resolution of the reconstructed phase can be compensated by using higher 

numerical aperture and magnification objectives for imaging,73 at the expense of obtaining 

fewer imaging pixels of phase data relative to other methods, such as phase shifting 

interferometry. Overall, DHM has high temporal resolution74 and can be used for accurate 

phase measurements due to typically high signal-to-noise ratio in the reconstructed phase 

images.75

Wavefront Sensing.

Wavefront sensing refers to approaches that seek to recover the aberrations in a wavefront 

caused by phase delays within a sample. Important wavefront sensing methods include 

Shack–Hartmann wavefront sensing76 and Ronchi sensing.77 Of these, the Shack–Hartmann 

wavefront sensor is the most commonly used version, with construction that uses either an 

array of evenly spaced holes or a lens microarray for improved image quality. Either of these 

arrays creates a pattern of focused light spots on the camera sensor.78 Aberrations in the 

light wavefront causes these spots to move, allowing reconstruction of the total phase shift 

through the sample.
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The earliest work in wavefront sensing used lateral shearing interferometry.77,79 Lateral 

shearing wavefront imaging is similar to Nomarski DIC imaging in that the incident wave 

shears into two identical but tilted wave fronts that then interfere. The resulting single-

direction phase gradient from lateral shearing interference data lacks the necessary gradient 

information to generate a complete two-dimensional (2D) phase-field and thus requires the 

use of multiwave interferometry techniques80 that generate more than one gradient direction. 

Numerical reconstruction of the wavefront is possible, with such methods developed in 

1986.81 However, this method is computationally intensive and was later used in practice 

on images captured using a three-wave shearing interferometer configuration.82 Typical 

wavefront sensors lack the resolution needed for imaging cells. Quadriwave lateral shearing 

interferometry (QWLSI) uses a modified, micro-fabricated Hartmann mask, resulting in 

a pattern of dark spots that measures phase gradients along perpendicular directions,83 

allowing the measurement of both intensity and phase (Figure 2c). Importantly, this mask 

enables high-resolution images to support the live cell application of wavefront sensing in 

measurements of phase using QWLSI on erythrocyte cells.84

Wavefront sensing has multiple advantages, such as higher sensitivity, speed, and temporal 

resolution with less complex instrumentation than typical interferometry methods.14 

Importantly, wavefront sensing techniques do not require a reference arm14 and therefore 

are less affected by vibrations and other disturbances than double-path systems. Wavefront 

sensing typically also uses single image acquisition, resulting in high potential temporal 

resolution.85 However, this approach has a trade-off with lower spatial resolution, as the 

light from each phase measurement spot is spread over many pixels on a digital camera 

sensor. Similar to DHM losing resolution due to sideband cropping in Fourier space during 

imaging and reconstruction,86 this loss can be compensated for by using a higher NA 

objective for imaging.73 Diffraction limited resolution in QWLSI can, therefore, be achieved 

in high magnification imaging, enabling phase sampling at double the diffraction limit and 

satisfying the Nyquist criteria.87 Thus, wavefront sensing is a good choice for imaging 

high-speed cell dynamics requiring accurate phase information, but has the downside of 

lower spatial resolution. Theoretically single cell imaging with QWLSI phase images using 

an ideally matched reference image should result in flattened background, but there are often 

residual optical aberrations after reference subtraction88 requiring a low degree polynomial 

fitting to flatten the image background for accurate biomass measurements.75 In practice, 

these can result due to deviations in focal plane when screening across large surfaces or 

using multiwell plates, when changing media levels over the course of an experiment, or 

when using a previously acquired phase reference to enable faster imaging. Although other 

QPI methods like DHM can be improved with similar fitting procedures,89 background 

fluctuations (when present) and an inherent amount of both spatial and temporal noise due 

to the recovery of phase by numerical integration can impact cell segmentation. Overall, 

however, this approach can achieve high accuracy for measurements of the dry mass of cells, 

even at high cell densities.90

Phase Retrieval Algorithms.

Phase retrieval refers broadly to noninterferometric methods that computationally 

reconstruct the phase shift from a sequence of intensity images taken under varying 
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conditions. The primary advantage of phase retrieval methods is that they can be performed 

using simpler optical systems or used to enhance the performance of more complex optical 

systems. Phase retrieval methods can be classified as either iterative or deterministic.91 

Iterative methods use iterative computation to satisfy constraints in object and Fourier space 

between intensity images at the sample and detector plane to resolve the phase problem.92 

Iterative methods of phase retrieval were originally developed for electron microscopy 

to reconstruct the wavefront propagation between image and diffraction planes from the 

corresponding amplitude images.93 The Gerchberg–Saxton (GS) algorithm was a widely 

used iterative phase retrieval method. The GS method iteratively approximates both source 

(e.g., illumination) and target (e.g., image) intensities and complex phase distributions from 

measured intensity images of the source and target. However, the GS algorithm typically 

requires a large number of iterations and can become stuck at local minima and therefore not 

converge on the real phase solution.94 This was addressed by the introduction of the steepest 

gradient search94 and input-output methods.95 One common implementation of iterative 

phase retrieval is in Fourier ptychography.96–98 Ptychography was developed to solve the 

phase problem in electron diffraction measurements.99 Fourier ptychography recovers high 

spatial resolution (or large field of view) phase information at the object plane from a 

series of intensity images, such as at varying angles, resulting in data from which a higher 

spatial frequency image can be reconstructed.100,101 Fourier ptychography has also been 

used to visualize the 3D structures from light scattering signals102 or complex transmittance 

functions.98

Deterministic methods directly solve for phase images without iteration, enabling real-time 

phase imaging. One commonly used approach is based on the transport of intensity (TIE) 

equation which relates phase data at the in-focus plane to the axial derivative of intensity 

distribution.103 The TIE equation was proposed based on conservation of energy and 

describes the transport of energy in an optical field.16 TIE methods can be used along 

with other phase retrieval algorithms to improve image quality.104 Differential phase contrast 

(DPC) microscopy, another commonly used deterministic imaging method, evolved from the 

idea of contrast enhancement by asymmetric illumination.105 In DPC microscopy, multiple 

images of the specimen are obtained at different angles of half-plane illumination to recover 

phase information106 (Figure 2d). In this way, DPC imaging is similar to Schlieren imaging 

in which half-plane illumination is used to remove half the spatial frequencies from the 

intensity image in one direction, giving phase gradients in orthogonal dimensions.107 The 

earliest work on DPC imaging used a half-plane electron source in a scanning transmission 

electron microscope108 and was later applied to imaging with visible light109 and applied to 

increase contrast in images of fixed cells.110

In contrast with interferometric methods, phase retrieval is typically less costly or uses more 

widely available optics, such as DIC,111 phase contrast,112,113 or custom-made imaging 

systems.15 This is because phase retrieval algorithms eliminate the use of a reference based 

on knowledge, or approximation, of the optical transfer function of the imaging system.114 

Phase retrieval is also possible with partially coherent light sources.115–117 However, the 

requirement of multiple images as inputs for phase retrieval methods lowers the imaging 

temporal resolution compared to interference and wavefront sensing methods.75 The use of 

iterative algorithms for phase retrieval also increases the overall workflow time.
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As a primarily computational method, phase retrieval has benefited greatly from advances in 

computing power. The practical application of phase retrieval for QPI therefore began in the 

1990s with extensive use of computing resources.118,119 Advances in optical systems further 

enhanced phase retrieval QPI, including the use of color-multiplexing to obtain phase data 

from a single image,120 lens-less phase retrieval with super-resolution reconstruction,121 and 

volumetric holography using asymmetric illumination.122 Looking forward, phase retrieval 

stands to benefit greatly from future advances in computation. This is especially evident in 

recent applications of machine learning, where phase retrieval is possible without an optical 

physics model.123,124 A possible limitation that needs addressing as this field moves forward 

is that with more computation, more noise tends to occur. Additionally, the more opaque the 

method, the harder it is to track down sources of error, a particular concern with machine 

learning approaches. Overall, however, these advances, combined with the ability to work 

with data acquired from diverse sets of optical approaches, points toward a larger role for 

phase retrieval methods in the future of QPI.

Comparison and Evaluation of QPI Methods.

Each lineage of QPI methods has advantages and disadvantages compared to one another, 

which have diminished in magnitude over time from technological advances and verified 

standardizations. Briefly summarizing the four QPI lineages described above: interferometry 

is accurate but sensitive to reference arm noise; wavefront sensing has good temporal 

resolution and no reference arm, but has low spatial resolution; phase retrieval provides a 

large field of view and higher spatial resolution, but has low temporal resolution; and DHM 

has high temporal resolution but, as an interferometric approach, is susceptible to noise from 

a reference arm.

A number of technical improvements address key limitations of these four QPI lineage 

approaches. For example, adapting DPC microscopy to work with multicolor illumination 

instead of separately imaging individual illumination patterns125–128 achieved temporal 

resolution as high as 100 frames per second (fps).129 A high-speed interferometry 

method using a diffraction grating generated a temporal resolution of 104 fps.128 Recent 

developments in DHM systems enabled removal of a reference arm, for instance, by using 

a self-referencing module.130 It was shown that holography could mathematically retrieve 

phase using single intensity images through an illumination control without a reference.131 

The use of coherent and partially coherent illumination can also help to reduce noise in 

QPI. Coherent illumination, such as from a laser, while useful for generating interference, 

has a disadvantage of being sensitive to noise from system optics, especially speckle 

noise.132 Use of partially coherent illumination, such as from an LED or lamp, can eliminate 

these artifacts, at the cost of a moderate increase in difficulty aligning the optical system. 

Sub-Rayleigh resolution has been achieved by adjusting the illumination source.133 Mach–

Zehnder interferometry has been adapted for biosensing within microchannels, increasing 

sensitivity.125,126

Another approach to generate improvements in QPI is to combine principles from different 

QPI lineages. For example, interferometry using a diffraction grating in a Mach–Zehnder 

system can eliminate the need for a reference arm and increase phase sensitivity, by reducing 
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measurement noise.127 The use of iterative phase retrieval algorithms on single-shot 

holograms also enables the 3D reconstruction of QPI images without needing a reference 

standard.92 Applying iterative phase retrieval algorithms to holographic techniques has also 

increased spatial resolution.134 The same iterative phase retrieval method has also been 

successfully applied to transport of intensity algorithms using holographic microscopy135 to 

improve image quality.136 The transport of intensity equation can be used to capture 3D QPI 

images at the diffraction limit using an electrically tunable microlens array, similar to that 

used in wavefront sensing, thereby significantly increasing temporal resolution.137

The software package used for assessing QPI measurements is another key system 

consideration. Some QPI approaches have available commercial analytic packages including 

those from Wyko Corporation, Phasics Corporation, Phase Holographic Imaging (PHI), Inc. 

and other vendors, whereas some analytical packages are custom-coded in MATLAB or 

Python. The choice of commercial versus custom-written software is critical for individual 

use cases, as custom software may be more flexible, at the cost of additional complexity. 

Table 1 summarizes the available software, for example, methods from the four QPI lineages 

discussed in this review.

Polystyrene beads are a widely used phase calibration standard for many QPI methods138,139 

and have been used with DHM,140 QWLSI,14 and DPC141 techniques. However, there is 

variability in the refractive index of polystyrene,142 and typically large refractive index 

differences between polystyrene beads relative to cell culture media, combined with sharp 

“imaging edges” of these round beads, can lead to phase unwrapping artifacts that are 

not usually encountered with live cell samples. Potential phase unwrapping artifacts using 

polystyrene bead calibration standards can be mitigated by, for example, mounting the 

beads within material with a closer refractive index.139,143 However, this approach also 

moves the calibration data range further from actual cell imaging conditions, which could 

impact experimental accuracy. Red blood cells have also been used as a phase calibration 

standard in the development of QPI methods because of their availability and fairly uniform 

shape and size.12,144 Typically, nondiseased RBCs show a population dry mass variation 

of ~15%.145 However, as a biological sample, this can be more challenging to work with 

than an inanimate calibration standard. A number of studies have used USAF resolution 

test targets that are readily available because of their wide use in calibrating imaging 

systems.138,146 However, these standards are typically used for calibrating intensity images 

and are made of thin metal films, meaning that they do not function as pure phase objects. 

A phase specific calibration standard for QPI was developed and used in a comparison 

with atomic force microscopy (AFM), which showed that QPI has nanometer sensitivity 

over a wide range of spatial frequencies.97 A 3D phase “phantom” that captures subcellular 

features of cells for calibration in 3D QPI methods has also been demonstrated,147 however 

further development and characterization of widely accessible standards is needed to support 

continued advances in QPI.

Critical Performance Metrics for QPI.

Quantitative comparison of QPI systems can be performed using a number of critical 

performance metrics that define the quality of images and data provided by QPI. These 
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include accuracy, signal-to-noise ratio (SNR), phase measurement sensitivity, and both 

spatial and temporal resolution of the resulting QPI data.

Accuracy indicates the ability of the combined microscopy method and reconstruction 

algorithm to compute the expected phase shift of a calibration sample. Accuracy can be 

computed from differences in the computed phase shift (ϕMeasured) to the expected phase 

shift (ϕActual):

Accuracy = ϕMeasured − ϕActual

ϕActual
× 100% (3)

Background standard deviation quantifies the phase image reconstruction accuracy as well 

and is calculated as standard deviation of the segmented blank spaces in phase images or 

reference phase images.88 The background standard deviation can then be used to estimate 

the SNR as the absolute mean phase signal (|φ|) over the standard deviation of the measured 

background (σ):142,148

SNR = φ
σ (4)

SNR is used to define image quality when analyzing images for measuring physical 

quantities, e.g., phase shift, optical volume, or cell mass.

The peak spatial SNR of phase images (PSNR) is another metric used to measure the quality 

of reconstructed images. Unlike SNR, PSNR is not affected by image intensity rescaling.149 

PSNR can calculated as150

PSNR = 10 × log10
R

MSE (5)

where R is the maximum fluctuation in the image, and MSE is the mean squared error 

between the reconstructed image and the reference. The error in phase is the standard 

deviation of the phase signal to the mean of phase signal subtraction.88

Noise in QPI measurements can be reduced, increasing the SNR, by increasing the number 

of measurements. This is especially important when using coherent illumination.75 Sources 

of noise may include temporal and spatial variations along with fluctuations over repeated 

measurements.151 These combined sources of noise may account for <1% to 5% of total 

biomass measured, depending on the magnification of the measurement.151 This noise 

also contributes to the overall phase measurement sensitivity of a system, which can be 

quantified by the Cramér–Rao bound algorithmic sensitivity and experimental sensitivity of 

the system.152

The theoretical spatial resolution of a QPI system can be determined from the objective 

numerical aperture (NA) and illumination (NAi) as
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r = 1.22λ
NA+NAi

(6)

where r is the spatial resolution limit of the system, with low specimen contrast or 

improper illumination lowering this value. Spatial resolution also becomes diffraction 

limited when using a high NA imaging objective. A phase signal must be sampled at twice 

the diffraction limit of the system to satisfy Nyquist criteria, thereby yielding diffraction 

limited resolution.87 This means two features in a sample separated by the diffraction limit 

will be captured by two separate phase imaging pixels.

In order to obtain phase data, all methods trade some imaging performance, which can 

limit the achievable spatial or temporal resolution. DHM requires cropping in the Fourier 

domain86 (Figure 2b), while wavefront sensing requires integration over multiple pixels 

(Figure 2c), with data processing via cropping in Fourier space as well.83 This means for a 

given camera sensor size (e.g., 1 megapixel), the resulting number of phase pixels will be 

lower for DHM or wavefront sensing, though the diffraction limit can be achieved with such 

methods, at the cost of fewer phase pixels and a smaller field of view available for viewing 

the sample. However, methods that use the full resolution of the camera sensor typically 

trade away some temporal resolution by requiring multiple exposures to reconstruct a single 

phase image. For example, in phase shifting interferometry (Figure 2a) up to nine images 

are acquired with small shifts of the path lengths of the reference arm relative to the sample 

arm in order to reconstruct a single phase image. Typical phase retrieval methods require 

multiple image acquisitions as well. For example, four images are required to reconstruct a 

single phase image in DPC microscopy (Figure 2d).

A summary of critical performance metrics, including the reported accuracy, SNR, 

resolution, and background standard deviation, for the discussed QPI modalities is 

summarized in Table 1.

Impact of Image Focus Position on QPI Performance.

A key factor influencing performance of 2D QPI methods is the focal position or location 

of the image plane along the optical axis, used for capturing phase images. QPI images 

taken out of focus show up to a 40% difference in measured optical volume differences 

for uniform microspheres, and QPI images of cells can show up to a 25% decrease in 

measured biomass compared to in focus QPI images.143 For 2D QPI, more planar adherent 

cells show greater measurement robustness with imperfect focal position relative to rounded 

cells, although there can be a significant difference in QPI dry mass data due to focus 

position even for flatter, adherent cells.151 This dependence on focal position illustrates the 

importance of getting this parameter correct. A key parameter to consider for correct focal 

plane imaging is the depth of field (DFD), computed as171

DFD = λ n − NAi
2

NA × NAi
(7)

where n is the refractive index of the material between the objective and sample. A larger 

depth of field can introduce errors due to dust and debris above or below the sample,151 
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whereas a smaller depth of field increases the sensitivity to out of focus imaging. Overall, 

the importance of focal position imaging necessitates the use of algorithms to determine the 

correct focal position for accurate and reproducible QPI data collection.

Selection of an appropriate algorithm and metric for optimal focusing, or autofocusing 

during automated image acquisition, depends on the QPI imaging modality. For example, 

in interferometric systems with a low coherence light source, such as phase shifting 

interferometry, focus can be achieved by maximizing the contrast of the interference fringe 

intensity as the focal position is adjusted.172,173 Maximized fringe contrast results in a 

minimized optical path difference between the sample and reference light paths of an 

interferometer. The use of an external focusing tool such as a digital video disc pickup 

head can also be applied to determine optimal focal position of both reference and sample 

arms.173 External focusing tools are not limited for use to interferometry and can also be 

used for optimizing the focal imaging plane in other QPI modalities, such as using a laser 

focusing device to determine the optimal focal imaging plane in wavefront sensing QWLSI 

systems.85

All QPI imaging modalities, including noninterferometric methods such as wavefront 

sensing and phase retrieval, can make use of more conventional autofocusing techniques 

based on image features. Focus optimizing algorithms are evaluated by their unimodality 

(focus functions require a singular peak), accuracy (the focus function extremum should 

match the location of best focus), robustness (the extremum of the focus function should be 

a sharp peak), and range (focus function should have a smooth, broad tail to enable focusing 

over a wide range).174 For example, two focus functions that performed well in approaching 

these desired qualities were a differentiation based method, such as the squared gradient 

(SG), and a Laplacian (LA) focus method:174

SG = ∬
image

∂g(x, y)
∂x

2

dxdy (8)

LA = ∬
image

∂2g(x, y)
∂x2

2

dxdy (9)

where g is the gray scaled image value measured as a function of spatial position, x and 

y. Faster wavefront sensing autofocusing algorithms have also optimized for the Tamura 

coefficient (TC)175,176 defined as

TC = σ(g)
g (10)

where σ(g) is the standard deviation of the grayscale intensity, and g is the average grayscale 

image intensity. Reported DHM focus methods have also maximized image sharpness using 

the weighted spectral analysis (SPEC) and cumulated edge detection by gradient calculation 

(GRA):177
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SPEC = ∑
u, v

log 1 + FB(g)(u, v) (11)

GRA = ∬
image

∂g(x, y)
∂x

2

+ ∂g(x, y)
∂y

2

dxdy (12)

where FB(g)(u, v) is the band-pass filtered Fourier transform of the grayscale image, g, 

summed over the Fourier domain coordinates, u,v.

Additionally, by capturing a hologram that reflects the complex optical field, DHM enables 

numerical refocusing after image acquisition. This approach can be used to adjust for 

optical aberrations and enlarge the depth of examination178 without the need for additional 

mechanical scanning. The range for which the refocusing distance produces accurate 

information is defined by179,180

Δz ≪ DFD (13)

where Δz is the distance of refocusing and DFD is defined in eq 7.

There are many autofocus algorithms for numerical refocusing including those that 

use amplitude,182 sparsity,183,184 a correlation coefficient,185 and other properties186 to 

determine optimal focus in DHM. One example of a DHM numerical refocusing metric 

that achieves the desired properties of a focal position algorithm is the DarkFocus (DF) 

metric,181 which optimizes for the sharpness of images as

DF = var(∇ U(z) ) (14)

where var is the variance operator and U(z) is the complex optical field calculated for a 

focal distance, z. However, these methods of refocusing may suffer errors when applied 

to nonideal situations, such as using coherent light based algorithms for an extended 

or spatially incoherent light source,179 and thus must be tailored for specific DHM 

applications.

Computational Convergence.

Starting in the early 2000s, QPI began to rely increasingly on digital image acquisition 

and data processing, with the field also advancing from creative method combinations that 

were emerging from multiple technical lineages. For example, SLIM combines principles 

of digital holography with phase contrast methods,71 and QWLSI combines the principles 

of wavefront sensing with interferometry and phase retrieval algorithms.14 The combination 

of DHM with principles from lateral shearing interferometry addresses the twin image 

problem,187 and this combined approach can reconstruct optimally sampled QPI data.188 

Further improvements in computation and machine learning are enabling approaches 

analogous to QWLSI using unstructured, random phase masks. These exciting developments 

point toward the future of QPI with increasing availability of computational resources and 

algorithms, including creative applications of machine learning, which will further advance 

quantitative studies in biology and medicine.
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ADVANCES IN QUANTITATIVE BIOLOGY

As QPI approaches have advanced, so too have QPI applications. One advantage of QPI is 

that it is label-free. Therefore, QPI can study cell behavior with minimal impact, a leveraged 

feature in a number of biological applications. As summarized above, there are also a 

number of additional label-free microscopy approaches, including the more widely used 

methods of phase contrast and DIC microscopy. The primary advantage of QPI over these 

other approaches, however, is that, in contrast to phase contrast or DIC microscopy, the data 

contained in each pixel of a QPI image are a quantitative measure of the phase delay of light 

as it passes through that portion of a sample. Measurement of this phase delay can utilize 

any of the approaches already discussed above. Once captured, analysis of this phase data 

can provide quantitative insights into numerous biological processes and systems. Here we 

summarize key advances in the application of QPI to quantitative studies in biology, ranging 

from applications that quantify the behavior of individual cells to emerging opportunities in 

clinical diagnostics.

QPI Applications Using Measurements of Cell Mass or Growth Rate.

The refractive index of a material is related to its mass through a quantity called the specific 

refractive increment.5 For cells, a typical average value is 1.8–2.0 × 10−4 m3/kg.2,3,5 The 

phase shift measured by QPI is the integral of the difference in refractive index between 

a cell and its surroundings through the thickness of a cell’s projected area. The measured 

phase shift of a cell is proportional to the mass of the cell’s contents excluding water, 

which is the dry mass of the cell. This provides a quantitative measure of cell size, 

which can provide valuable information on cell viability, growth over time, replication, 

and function. Measuring cell volume is an alternative method to cell mass quantification 

that can be used to measure cell growth.189 However, measurements of cell volume 

typically require a simplifying assumption about cell shape (e.g., spherical mammalian cells, 

rod-shaped bacterial cells) and cell volume changes depend upon intra- and extracellular 

osmolality, which can be unrelated to internal dry mass amounts.190 By contrast, dry mass is 

independent of osmolality and instead depends upon the balance of biosynthetic (anabolic) 

and degradative (catabolic) processes within a cell. In the early- to mid-1950s, several 

investigators began using QPI to measure the absolute total dry mass of live eukaryotic 

cells, including measurements of mass throughout the cell cycle4,29,30,38,191 (Figure 3). 

Additionally, repeated QPI measurements of dry cell mass over time can provide dry mass 

accumulation or loss rates to quantify cell growth12,190,192–196 (Figure 3), or the decrease 

in mass that occurs during cell death.163,197–201 Below, we discuss example applications 

of QPI measurements of cell mass and growth in studies of basic biological processes, 

including in immunology and in the behavior of neurons.

Applications of QPI to Studies of Cell Growth and Associated Biological Processes.

Several example studies discussed here demonstrate the utility of QPI measurements for 

providing insight into the regulation of cell size, growth, and additional fundamental 

biological processes. In studies of cell size regulation, QPI measurements during fibroblast 

cell spreading revealed that the spread area is actively regulated by an undefined mechanism 

that adjusts the total area of spreading proportionally to the total cell mass.202 Separately, 
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dry mass quantification using SLIM during the cell cycle showed that osteosarcoma cells 

exhibit a mass-dependent growth that was best approximated by an exponential rather than 

a linear model of cell growth.192 More precise QPI measurements of cell mass revealed 

oscillations in growth rate that were previously unappreciated, suggesting that a pure 

exponential model of cell growth is insufficient to explain the regulation of mammalian 

cell growth.88

The impact of extracellular perturbations on cell size and growth have also been interrogated 

by QPI. For example, changes in available glucose,194 or the addition of small molecule 

inhibitors such as tunicamycin to induce cell stress,12 led to reproducible, QPI-quantifiable 

changes in cell dry mass and growth rate as indicators of cellular responses. These study 

results led to the use of QPI as a label-free method for screening different stimulants or 

inhibitors. Examples include QPI-based screens for agents that cause changes in cell growth 

rate and cytotoxicity.12,160 QPI has also been applied to study the influence of mechanical 

properties of the extracellular matrix on growth rate, migration, and metastatic potential 

of melanoma cells.203 Long-term SLIM studies of cell growth in epithelial and fibroblast 

cocultures examined the influence of cell clusters on neighboring cells, with a few clusters, 

termed “influencer clusters”, showing a strong correlation between growth rate and distance, 

with potential implications for organogenesis and cancer cell metastasis.203

QPI has also enabled studies of the impact of genetic mutations on cell growth. For 

example, QPI tracked the growth and division of primary human melanocytes for 30 

days in culture.204 Results showed that a proliferative arrest associated with oncogene 

expression, previously thought to be caused by G0 cell cycle phase senescence, was 

a reversible and conditional mitotic arrest, an observation subsequently validated using 

clinical specimens. QPI also confirmed the impact of transcription factor YAP expression 

in HEK293 cells as a potential coordinating mechanism between cell and tissue size.205 

Additionally, QPI helped to demonstrate utility for assessing whether different cell states, 

and transitions between cell states, alter the absolute dry mass or dry mass accumulation 

or loss rates of cells. One study quantified cell dry mass partitioning between daughter 

cells during and following cytokinesis and showed that mass asymmetry present at the 

time of cleavage furrow formation persisted through cytokinesis.11 Addition of cytoskeleton-

disrupting agents with differing mechanisms of action, including latrunculin A, blebbistatin, 

nocadozole, and cytochalasin B increased the number of daughter cell pairs exhibiting 

asymmetric dry mass partitioning. This suggested an absence of an active mass partitioning 

mechanism after cleavage furrow positioning and the requirement for mass adjustments 

by dynamic changes in cell growth rate, and/or cell cycle time, over the succeeding cell 

cycle. The lineage nondirected differentiation of human pluripotent stem cells (hPSCs)206 

was also interrogated using QPI measurements of absolute dry mass and changes in 

growth and mass redistribution rates prior to and following the induction of differentiation. 

Study findings included that hPSCs grow at a consistent, exponential rate independent 

of colony size, with coordinated intracolony mass movement ceasing with the onset of 

differentiation. In contrast, growth and proliferation rates decreased by only ~15% during 

early differentiation despite global changes in gene expression and energy metabolism, 

suggesting that the regulation of mass and proliferation are independent of pluripotency 

during early differentiation.
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Applications of QPI to Studies of Immune Cell Behavior.

QPI measurements have also been used to gain insights into the functions of cells of the 

mammalian immune system. At the cellular level, the adaptive immune response requires 

rapid, massive cell growth to support the generation of both effector and long-lived memory 

cells. QPI, therefore, is well suited to studying the regulation and features of this process. 

For example, QPI measures of dry mass changes in a binary cytotoxic T lymphocyte (CTL) 

– cognate cancer-cell killing assay were illuminating. Study results revealed that the cancer 

cell mass decreased 20–60% over 1–4 h during a successful CTL attack, with a 4-fold 

increase in CTL mass accumulation rate at the start of killing and a 2–3-fold increase in 

CTL absolute mass relative to the mass of unresponsive T cells.47 These results provide a 

kinetic, quantitative assessment of CTL activation in tumor cell killing and, potentially, a 

relatively rapid way to identify specific, activated patient-derived T cells for applications 

in cancer immunotherapy. Furthermore, QPI measurements of reconstituting donor T cells 

following hematopoietic stem cell transplantation showed mass changes correlated with 

immune reconstitution within the first few weeks post-transplant, a finding which could 

guide the withdrawal of immunosuppressive drugs and reduce the likelihood of graft-versus-

host disease or cancer relapse.207

In studies of B lymphocytes, QPI measurements also uncovered rapid mass accumulation 

and cell proliferation within the first 24 h of B cell activation accompanied by sustained 

AMP-kinase activation in the absence of energetic stress, an unexpected result because 

AMP-kinase activity strongly opposes anabolism and constrains mass accumulation in most 

biological contexts.208 QPI was also used to measure variability in naïve B cell size and 

partitioning of mass between daughter cells during B cell expansion, providing support for 

an in silico model suggesting that intrinsic biological noise plays a key role in determining 

the extent of B cell proliferation, which ultimately determines which cells contribute to an 

immune response.209

Applications of QPI to Measure Neuron Behavior.

Neuron growth and behavior is yet another impactful area for QPI applications. Many 

studies would benefit from imaging with a label-free method that avoids phototoxicity 

and photobleaching from long duration fluorescence imaging. As an example, label-free 

QPI separately quantified neuronal body (soma) and projection (neurite) masses, which 

showed that most mass accumulation during a 5 d in vitro neuronal differentiation protocol 

goes toward the production of additional neurite connections rather than strengthening of 

existing connections.210 The process of neuronal branching has also been quantified using 

QPI plus machine learning as an alternative to fluorescent staining.211 The high sensitivity 

of QPI has been leveraged to track the transport of individual vesicles within neuronal 

processes.212 QPI has also been applied to measure long-term (~1 min) responses of neurons 

to stimulation related to transmembrane ion fluxes213 as well as short-term (~0.1 ms)88 

fluctuations in neuron shape during neuronal spikes.128

Applications of QPI in Measuring the Physical Structure of a Cell.

In addition to measuring total cell mass, QPI can also measure the distribution of dry mass 

within cells. This enables QPI applications that measure the structural features of individual 
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cells and use this information to inform physical models. For example, a recent study 

showed that the morphological differences in retinal nuclei of mice correspond to a pattern 

of nuclear architecture common to other nocturnal mammals.214 Specifically, adult mouse 

retinal cells showed a spatially organized nuclear refractive index pattern, which contrasted 

with a more dispersed refractive index pattern uncovered in diurnal pig or immature mouse 

retinal cells. Simulations of light transmission found that the refractive index pattern in 

mouse retinal cells more effectively focused light and reduced scattering, suggesting a 

potential role in enhancing nocturnal vision. This result generated much discussion on the 

role of refractive index patterns in the nucleus. The appearance of a large phase shift through 

cell nuclei supports a physical model of a reduced nuclear refractive index,215 which has 

been validated in other studies reporting a lower refractive index in nuclei than in the 

cytoplasm.216–219 These results were further supported by 3D QPI results that also showed a 

lower nuclear refractive index outside of the nucleolus.220,221

Applications of QPI in Studies of Intracellular Transport.

Intra- and intercellular transport of biomaterials are required for cell growth and function, 

with patterns of transport providing information on cell behavior, disease states, and 

cellular responses to changing environmental conditions. Two relatively common, non-QPI 

methods for studying cellular transport employ fluorescent labels typically attached to 

biomolecules, or to introduced particles, coupled with live cell imaging,222,223 and label-free 

techniques, such as DIC microscopy.224 Imaging of fluorescently tagged markers provides 

a high degree of specificity, and can be quite sensitive, but suffers the disadvantages of 

photobleaching, limiting transport study times, phototoxicity, which can induce cell stress 

and modify cell behavior, and autofluorescence, which excitation or emission filters may 

not completely remove.225 These imaging limitations are irrelevant for QPI, although 

there is a loss of biomolecule specificity and sensitivity.224 As discussed previously, QPI, 

unlike DIC and phase-contrast imaging, also quantifies the dry mass of cells and some 

tracked intra- and intercellular components, such as lipid droplets, revealing that lipid 

trafficking motion ranges from subdiffusive to active transport.226 As a label-free method 

that provides additional quantitative data on cell behavior, QPI is a good option to consider 

for measurements of intracellular transport.

Imaging interferometry coupled to finite element analysis measured the intracellular 

transport of dry mass in fibroblasts at low resolution and showed that the kinetic energy 

of intracellular motility can be several hundred times greater than the kinetic energy of 

cellular translocation across a surface.227 Recent improvements in image processing speed 

and methods are helping to increase the scope of intracellular transport studies available to 

QPI platform methods. For example, SLIM measured the label-free diffusion of organelles 

and vesicles in hippocampal neurons and cardiomyocytes using a Laplace operator, with 

extended transport study time enabling extraction of diffusion coefficients.212 SLIM also 

revealed the 3D time series movement of dry mass in neurons. Results were analyzed using 

dispersion-relation phase spectroscopy, a method to measure the spatiotemporal decay of the 

autocorrelation signal of phase,212 and revealed differences between transport in neuronal 

bodies and neurites, and also between longitudinal and transverse trafficking orientations.228 

Additional SLIM platform studies were inconsistent with purely passive diffusion and 
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suggested advective transport of cargo within neuronal dendrites, also using the dispersion-

relation phase spectroscopy analytic technique.212 A holo-tomographic version of QPI 

combined with epifluorescence examined mitochondrial network and lipid droplet dynamics 

inside HeLa endocervical carcinoma cells. Features uncovered included the shape and 

dry mass dynamics of lipid droplets, endocytic structures, and a multiorganelle spinning 

phenomenon whose underlying mechanism remains undefined.229

An alternative to QPI tracking of individual particles is phase correlation imaging. 

This method measures the temporal decorrelation time of QPI collected data based on 

fluctuations of cell refractive index as an indicator of intracellular mass transport. A549 lung 

carcinoma cells were imaged using SLIM and treated with an actin polymerization inhibitor, 

cytochalasin-D, which showed only small local effects, but also uncovered a distribution 

of correlation times that is qualitatively different for quiescent and senescent cells, without 

cell labeling, providing a creative method for identifying quiescent versus senescent cells 

within a cell population.230 Another application of phase correlation imaging revealed 

that intracellular mass transport rates were significantly different for osteoblast cells with 

different levels of migratory capacity.231 Studies of aggressive, highly metastatic HeLa cells 

using SLIM and dispersion-relation phase spectroscopy revealed that mass transport in the 

cytoplasm was mainly active (ballistic, directed), compared to the nucleus which showed 

active and passive (diffusive) components, with faster mass transport in the cytoplasm than 

the nucleus.232

Applications of QPI to Cell Migration Assays.

QPI provides a label-free alternative method to DIC or phase contrast microscopy for 

conventional cell motility or wound healing assays. An advantage of QPI in this application 

is that it additionally captures quantitative information on other cell features. For example, 

a commercially available digital holographic cytometry version of QPI was equipped with 

semiautomated image acquisition, segmentation, and analysis software. Measurements of 

melanoma cell motility and metastatic potential were highly accurate in a comparison with 

field-standard measures of wound healing, transwell migration, and invasion assays, with the 

added benefits of identifying rare hypermotile metastatic cells and an ability to distinguish 

motility from cell division associated cell displacement.233 Measurements of cell mass and 

morphology with the same system could similarly track kinetic epithelial-to-mesenchymal 

cell transitions in heterogeneous cultures.234 Finally, optical diffraction tomography, a 

3D, label-free QPI-based imaging method, was used to study and quantify the dynamics 

of NIH3T3 cell migration in a wound healing assay, revealing single cell resolution of 

subcellular structure behavior and transport that underlies the mechanisms involved in gap 

closure and closure rate, with potential implications for pharmaceuticals development or 

repurposing.235

Applications of QPI for Measuring Biophysical Cell Properties.

QPI can measure the distribution of mass within a cell, including mass due to structural 

elements such as the cytoskeleton, and how this distribution changes over time. It 

is, therefore, possible to extract information about the biophysical properties of single 

cells,230–232 such as effective cell stiffness and cell viscosity, from QPI data. These 
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viscoelastic properties, in turn, underlie cell structure, movement, and function and 

have increasingly served as biomarkers for diseases,236 cell states,237 and biological 

transitions.238 A standard method for measuring cell viscous and elastic properties is 

to examine stiffness and elastic, dissipative responses to an applied stress. Numerous 

physically interactive methods have evolved to make such measurements, including by cell 

deformation using an AFM,239,240 or by using external and intracellular introduced probes, 

as in particle tracking microrheology.240–242 The use of probes243 and applied stress,244 

however, can affect cell behavior and impact measurements of cell viscoelasticity. Thus, the 

use of noninteractive techniques, such as those based on QPI, could circumvent or at least 

minimize these potential confounding influences.

QPI measurements of viscoelasticity divide into two main categories: (1) static 

measurements based on the spatial distribution and structure of mass within cells, 

including the cell cytoskeleton, and (2) dynamic measurements of changing cell mass 

distributions based on the temporal redistribution of mass. Early QPI dynamic measurements 

of viscoelasticity utilized sustained and rhythmic, temporal actuation and relaxation of 

magnetic beads as a form of spherical indenter, to induce local, transmitted stress on 

fibroblasts and observe the resulting mass redistribution and cell stiffening over time.35 

Actuated magnetic beads and QPI measurements also probed different cell types with and 

without cytoskeletal disruptions244 (Figure 4a), whereas an optical stretching method was 

also applied in conjunction with DHM to examine differentiating bone marrow precursor 

cells for changes in subcellular structure and refractive index.245 A key disadvantage in 

these studies, however, is that they required the use of non-native probes. By contrast, 

probe-independent, noncontact studies of RBCs used QPI to measure fluctuations in 

cell shape, coupled to a mechanical model of the relatively simple discoid structure of 

RBCs. This method was then used to quantify changes in RBC membrane shear, area, 

and bending moduli during transitions from discoid to abnormal echinocyte and spherical 

shapes, with potential implications for circulation and oxygen delivery to tissues246 (Figure 

4b). However, this method requires a mechanical model, which in this case is limited to 

enucleated RBCs. More recent noncontact studies linked static QPI measurements of mass 

distribution in nucleated cells to spatial disorder strength, a measure of mass organization 

within cells including the cytoskeleton (Figures 4c), to HT-29 colon cancer cell shear 

stiffness247 and the elastic moduli of two breast cancer cell lines (MCF-7 and BT-474 

cells)248 as well as observe changes in the cell cytoskeleton under applied electrical 

fields.249 Dynamic QPI measurements of mass redistribution rates for MCF-7, BT-474, 

and HeLa cells quantified both cell stiffness and elastic moduli during growth (Figure 

4d) and during an epithelial-to-mesenchymal cell state transition.250 Combined, these and 

future studies suggest a powerful and emerging opportunity for QPI to quantify cellular 

biophysical and biomechanical properties that traditional biochemical, molecular, and cell 

biology measurements alone cannot provide.

QPI Applications in Screening and Drug Sensitivity Measurement.

There are a growing number of emerging applications for QPI in clinical studies for which 

quantitative and label-free measurements of individual cells and cell clusters provides 

significant advantages. Current work is mainly at the level of technology development, 

Nguyen et al. Page 20

ACS Nano. Author manuscript; available in PMC 2023 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



applications and validation stages (Figure 5). QPI properties such can be used to categorize 

specific cellular states (Figure 5a) and are validated (Figure 5b) to determine viability 

in screening for these states. One major direction under development for QPI screening 

is measurements of cell dry mass changes in response to therapeutic agents (Figure 5c). 

Changes in dry cell mass detected by QPI has been used to measure single tumor cell 

sensitivity to cancer therapeutics.251 The range of applications shown includes evaluating 

mitotic inhibitors with different mechanisms of action,252 examining the rate and extent 

of cancer cell escape and regrowth following senescence induction,253 and uncovering the 

response heterogeneity of a mixed sensitive and resistant cancer cell population to specific 

drug treatment.85 Because QPI can track the kinetics of dry mass growth responses of 

individual cells or clusters of cells within large populations of cells over time, heterogeneous 

cell responses to therapeutics are readily identified. For example, rare drug-resistant diffuse 

large B cell lymphoma (DLBCL) cells within a population of DLBCL cells sensitive to 

a PI3-kinase inhibitor, idelalisib, were identifiable by continued mass accumulation and 

could, in concept, be isolated and recovered for further studies85,251,254 Preclinical dry 

mass accumulation rate studies using patient derived xenografts predicted drug sensitivity 

for triple negative breast cancers, providing a potential QPI application for drug selection 

in personalized oncology253,255 (Figure 5c). A separate drug screening in breast cancer 

study applied QPI to capture drug sensitivity that was consistent with findings from current 

standard approaches, as well as multiple additional physiologically relevant parameters that 

characterized cell responses to therapy.256 As discussed above, QPI measured viscoelasticity 

can differentiate between epithelial and mesenchymal states,250 a state transition that is 

a cardinal feature of cancer cell metastasis, and phase correlation imaging discriminated 

between quiescent and senescent cells, with potential implications for drug resistance and 

tumor reemergence.230

QPI Morphological Applications in Diagnostics.

Measurements of cell morphologies and disease states provides another emerging clinical 

application of QPI (Figures 5a,d). Anatomic pathologists have long used changes in 

cellular morphology and tissue architecture to diagnose disease, as changes in morphology 

represent changes in cell state and function, for example, plasma membrane blebs can 

indicate dynamic cytoskeleton-regulated cell protrusions in apoptosis, cytokinesis, and cell 

movement.257 Accordingly, diagnostic applications of QPI focus on cell state to provide a 

diagnostic tool with early attempts using features from QPI images to screen for cancerous 

tissue.258 QPI tissue spatial correlation, a measure of refractive index map correlation length 

that may represent nanoscale cell morphology in fixed tissue samples, provided a biomarker 

that distinguished between malignant and benign breast cancer biopsy samples.259 When 

combined with dry mass measurements, QPI identified and classified different kinetic states 

for a population of melanoma cells in culture.260 In applications with RBCs, morphology 

studies using QPI identified Plasmodium falciparum infection of RBCs261 and suggested 

the possibility that QPI measurements of cell membrane dynamics could identify additional 

pathologies that cause or accompany other human diseases260,261 (Figure 5a). QPI using 

white light interferograms with red, green and blue wavelengths separated electronically 

helped determine morphological features of RBCs,262 as did using DHM with data 

clustering and discriminant analysis.263 “Real-time” QPI measurements of blood samples 
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have been demonstrated, utilizing parallel computing strategies to calculate diagnostically 

relevant cell parameters without storing phase images, allowing for smaller electronic 

storage and data transmission requirements, which could benefit remote diagnoses of RBC 

diseases.264 QPI has also been used to measure morphology changes in HTori thyroid cells 

during treatment with plasma from a nanosecond dielectric barrier discharge,265 changes 

in macrophages from chemically induced apoptosis and dynamic phagocytosis,201 and for 

sperm selection for bovine in vitro fertilization.266 SLIM and tissue spatial correlation 

analysis was used to assess breast cancer fixed tissue microarrays and showed a 94% 

sensitivity and 85% specificity for cancer detection267 (Figure 5d), independent of tissue 

staining quality.

ONGOING DEVELOPMENTS

Quantitative Phase Tomography.

The transition from generating 2D quantitative phase images to tomographic images 

that capture the 3D structure of specimens is an ongoing development in QPI. While 

3D imaging is fairly common with fluorescent biomarkers using confocal or widefield 

microscopy and digital image processing reconstruction,268 the use of fluorescence tags 

has disadvantages that include photobleaching and phototoxicity with increased imaging 

time.269 Imaging based on the inherent contrast provided by natural variation in refractive 

index eliminates these label-related problems. Tomography refers to the stacking of 2D 

planes or images acquired at multiple imaging angles to reconstruct 3D structures of 

specimens called tomographs. Although the principle of interferometric tomography was 

proposed in the 1960s270 and experimentally demonstrated in the 1980s,271 tomographic 

image reconstruction was too computationally intensive to be routinely used for QPI until 

decades later.272 Reconstruction of quantitative phase tomography from scattering images 

of polystyrene beads using Mach–Zehnder interferometry,273 and then polystyrene foam 

from DHM images was demonstrated,274 followed by measurements of the 3D refractive 

index and the absorbance profile of optical fibers using phase retrieval and tomographic 

reconstruction275 (Figure 6a).

Whereas 2D QPI measures the integral of Δn, the refractive index of the sample relative 

to the surrounding media through the thickness of the sample in each imaging pixel, 

quantitative phase tomography maps Δn within each voxel. Advances in tomography 

have focused on increased precision and accuracy of 3D refractive index mapping 

using DHM assisted tomography276 (Figure 6b). Tomography has also been developed 

from phase shifting interferometry,277 and light-emitting diode (LED) array microscopy, 

which forms the basis of DPC phase reconstruction.98,278 LED array systems are 

capable of an impressive 0.25 s acquisition time, made possible with optimized sample 

illumination279 (Figure 6c). Another method for acquiring tomographic images for use in 

image reconstruction is by acquisition of holographic phase images at a series of angular 

projections using illumination with a rotating fiber optic, resulting in a 1 Hz imaging rate.280 

Further advances in this direction also enable high resolution image reconstruction using 

low numerical aperture intensity images as an alternative method.281 Intensity diffraction 
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tomography using annular LED illumination has improved imaging speed and achieved 

diffraction limited resolution as well.282

A promising application of tomographic QPI to measure subcellular structures is the 

interrogation of biomolecular condensates, which are membrane-less organelles or organelle 

subdomains that have been implicated in a wide range of cell behaviors including bone 

metastasis283 and autophagy.284 This process of intracellular phase separation was examined 

by 3D QPI with identification confirmed by fluorescence.285 Future applications of QPI 

tomography includes combinations with other QPI data analysis methods to reveal the 

essential biological mechanism(s) behind these structures. Another promising application of 

QPI tomography is the measurement of mass within multicellular specimens, such as whole 

animals277 (see in vivo section, below), or 3D organoids that are often used as in vitro 
models of development or disease.286 Gradient light interference microscopy developed by 

combining aspects of DHM, DIC microscopy and low coherence interferometry enables 

3D imaging of samples ranging from single cells to intact embryos for measurements of 

internal structures and their evolution in time.287 Optical projection tomography uses DHM 

and analyzes movies of flowing samples to acquire images at multiple angles, resulting 

in reduced imaging time and a noninvasive solution for phase measurements of RBC 

aggregation,288 an offshoot of which is called limited-angle holographic tomography. White 

light diffraction tomography performed by deconvolution of QPI stacks generates high-

resolution QPI data of intracellular structures.220 Quantitative oblique back-illumination 

microscopy (qOBM) enables tomography of a wide range of samples, from thick highly 

scattering286 to opaque289 samples, by using multiple scattering paths generated within 

the sample to create an effective light source deep within the sample despite illuminating 

the sample in epi-mode. Overall, these selected example applications and approaches in 

quantitative phase tomography show that the ability to view and quantify sample features 

in 3D is very powerful with further studies codifying metrics for comparison.290 Since 

quantitative phase tomography is another QPI approach that relies heavily on computation 

for generating and processing 3D data, this area will continue to benefit from ongoing 

advances in computing power and analytic software.

QPI in Tissues and In Vivo.

There are ongoing efforts to apply QPI to tissue slices and the in vivo environment to limit 

the confounding effects of studying cell behavior in vitro (Figure 7). However, there exist 

several roadblocks to fully realizing this goal, including light scattering of thick samples, 

phase unwrapping errors due to long optical path lengths through thick tissues, and the 

small size of microscopes needed for imaging inside living organisms. One approach is to 

continue modifying techniques that have already been adapted for in vivo imaging for phase 

retrieval. A key example of this approach is the use of optical coherence tomography (OCT). 

OCT and its’ high speed variants291 are low-coherence interferometry methods that leverage 

low temporal coherence to exclude scattered light outside a tissue slice of interest, coupled 

with backscattering of light, to image cross-sectional areas of tissues in situ.292,293 An early 

approach added phase retrieval to OCT to enable QPI of human cheek cells294 (Figure 7a) 

and isolated chicken cardiomyocytes.295 Phase-sensitive OCT has also been extended into 

in vivo imaging of the human retina296 and its associated motion.297 However, despite great 
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improvements in phase stability, there is a still often a need for either manual or automatic 

phase unwrapping to correct for phase errors with this emerging technique.

The most definitive application of in vivo QPI has been DHM imaging of red blood cells 

(RBCs) in microcapillaries within the mesentery of live mice298 (Figure 7b). By using 2D 

holograms from different angles, Sung et al. was able to reconstruct a 3D tomogram via 

optical diffraction tomography.299 This method of in vivo QPI however is constrained to 

areas that are sufficiently thin or near the surface of the animal. Another adaptive approach 

is to use QPI methods developed in an in vitro setting to address issues of light scattering 

in thick samples and phase unwrapping and then translate them for in vivo imaging through 

miniaturization. This has led to attempts to miniaturize certain platforms, such as diffraction 

phase microscopy (DPM), into an endoscope (i.e., eDPM),300 or to making a fiber optics 

based qOBM system.301 Demonstrations of these techniques have so far been limited to ex 
vivo imaging. The eDPM system has been used to measure stained white blood cells300 

and a similar holographic endoscope method was applied to mouse esophageal tumor 

samples,302 whereas the fiber optics qOBM imaging system has examined gliosarcoma cells 

from excised and formalin-fixed rat brain tissue301 (Figure 7c). Overall, work so far in this 

area points toward a bright future of applying various in vitro quantitative phase approaches 

to studies of mass regulation, biophysics, and the building of diagnostics based on QPI 

measurements of cells in vivo.

Multimodality Approaches.

A key advantage of QPI is that it is label-free and captures data on all components that 

contribute to cell mass. However, a related limitation is that QPI data are not specific 

for any individual component of the cell. Therefore, a number of approaches and studies 

have combined QPI with other imaging modalities to learn more about cell structure and 

behavior (Figure 8). Two of the most promising connections are the combination of QPI 

with fluorescence detection through the tagging of specific molecules and the combination 

of QPI with vibrational spectroscopy, for label-free measurements of chemical composition 

within the cell.

Early combinations of fluorescence detection methods with QPI approaches303 (Figure 8a) 

to interrogate RBCs measured physical and optical thickness,304 resolved substructures 

within cells,305 and identified and characterized the mass distribution of subcellular 

components303,306 (Figure 8). These initial approaches demonstrated QPI identification 

and measurement of different subcellular components within a cell that were manipulated 

to fluoresce. Fluorescence combined with QPI has also been used to segregate different 

populations of cells in a mixed culture experiment,85 track the behavior of rare 

subpopulations of primary human cells ex vivo,204 or to determine different cell states250 

concurrently with mass accumulation and mass density measurements from niche cell 

populations. Dual fluorescence plus QPI combinations have also enabled biomechanical 

interrogations of cell responses to optical tweezers307 and dual traction force and growth 

measurements.308 The combination of SLIM and an epifluorescence traction stress imaging 

method, Hilbert phase dynamometry,309 was used to study mesenchymal stem cell growth 

and differentiation into osteocytes and adipocytes. Results showed that during osteogenesis 
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and adipogenesis, greater force is exerted by these cell types on their growth substrates 

than by mesenchymal stem cells, which develop the least force and show the lowest growth 

rate.308

In general, combined 3D QPI/3D fluorescence techniques can differentiate subcellular 

components while rendering a map of cell refractive index312 and identifying the refractive 

index of subcellular regions.313 Combined 3D fluorescence detection and refractive index 

tomography on cells with fluorescently labeled nuclei, mitochondria, and actin enabled 

registration of the refractive index profile with the labeled subcellular components.314 

Optical diffraction tomography has also been used in combination with 2D fluorescence 

to validate measurements of lipid content.312 Moving toward the acquisition of functional 

data from 3D structure, studies using combinations of refractive index tomography with 

fluorescence subdiffraction microscopy enable concurrent studies of cell biophysical 

properties and biochemical functions.305,310 Further advances include high-speed correlative 

3D QPI/3D fluorescence techniques310 (Figure 8b), which have evolved to enable 200 Hz 

imaging of 4D maps of cell structures.315 With the addition of machine learning, more 

advances are possible due to the vast amount of morphological and molecular data collected 

by dual fluorescence QPI combination modalities, thereby enabling more complex analyses.

Another multimodal approach of interest is the combination of QPI with molecular 

vibrational spectroscopy to measure chemical composition311 (Figure 8c). Extracting 

chemical composition from QPI alone has been attempted as quantitative phase spectroscopy 

(QPS), but with limited success. QPS uses phase measurements over a range of wavelengths 

to estimate the component distributions in samples. This approach has been applied to 

measure hemoglobin316 or BSA317 concentrations in solution, and has been applied to 

measure healthy317 and diseased318 RBCs. This approach has also been extended to 3D 

tomography.319 However, using this approach to decipher more complex cellular contents 

is limited by the relatively small variation in phase delay of biomolecules in visible light. 

Molecular vibrational spectroscopy techniques generate vibrational spectra of molecules 

measured from their linear absorption and inelastic light scattering.320 These vibrational 

spectra are dependent on the chemical structure and environmental interactions of the 

molecules and thus can provide information on the chemical composition of materials. 

Raman spectroscopy, which is a type of vibrational spectroscopy, relies upon the inelastic 

scattering of photons to determine the vibrational modes of molecules, allowing for the 

detailed identification of chemical composition. However, use of scattering spectroscopy 

methods may generate an issue with limited signal in applications with live cells. 

Overcoming this limitation typically requires either high illumination power, which induces 

phototoxicity, or metal probes for surface enhanced Raman, which can foul in solution 

environments. Nonetheless, label-free identification of chemical compositions within cells is 

an ideal complement to the less specific biomass information obtained with QPI.

Dual modality QPI plus molecular vibrational spectroscopy has been applied with 

a mid-infrared light source to characterize specific molecular contents with cellular 

mass distributions.311 Raman spectroscopy has been applied to characterize both the 

morphological dry mass and chemical composition within cells.321 Combined Raman QPI 

approaches have also examined dry mass, mass density, and protein and lipid composition 
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under ultraviolet radiation,322 and with the help of machine learning classified normal and 

cancerous tissues.323 Combining QPI with molecular vibrational spectroscopy enables the 

examination of chemical composition and biomass kinetics (Figure 8c) to further dissect 

core biological mechanisms and processes.

Brillouin microscopy is a noninvasive, label-free microscopy method to measure viscoelastic 

properties of cells and tissues324 that has also been combined with QPI. Brillouin 

microscopy uses inelastic scattering to determine the viscoelasticity of heterogeneous 

materials of known density and refractive index. Brillouin microscopy was combined 

with optical coherence tomography to study biomechanical properties in tissues, including 

stiffness, elasticity and structural changes in embryos.325,326 Brillouin microscopy has also 

been combined with optical diffraction tomography and fluorescence microscopy to measure 

the refractive index, density and elasticity of specific fluorescently labeled structures inside 

cells.327 QPI Brillouin approaches have also been used to measure cell softening during 

transmigration.328

As a label-free method based on brightfield microscopy, QPI can be added to other 

microscope imaging modalities beyond fluorescence and vibrational imaging methods. For 

example, quantitative label-free imaging with phase and polarization, a combination of 

defocused QPI and polarization microscopy, can measure volumetric phase, retardance and 

orientation, which is useful for studying structures in cells and tissue slices.329 There is, 

therefore, a broad potential future for multimodality work in biological and potential clinical 

applications of QPI.

Machine Learning.

Machine learning has propelled many recent advances in QPI, such as improving phase 

reconstruction for QPI images, improving segmentation and tracking for processing QPI 

data, and improving data labeling and classification (Figure 9). In terms of preprocessing, 

machine learning can help improve the reliability of phase reconstruction algorithms. Most 

work applying machine learning to QPI uses convolution neural network (CNN) variants, 

such as UNet.330 CNN is well suited for phase recovery as it considers multiple pixels 

in the process of data condensation, unlike perceptron models that use individual pixel 

input.331 For example, in the area of phase retrieval, machine learning has been used 

to reconstruct TIE results with a single intensity image, and can eliminate errors arising 

at the boundaries of images during TIE reconstructions as well as reduce the impact 

of noise.123 Machine learning can also benefit wavefront sensing.331,332 For example, a 

diffuser can be used to generate random speckles that then work as a wavefront sensor, 

when combined with a neural network trained on phase objects.333 Phase unwrapping is 

often an issue in interferometric methods,48 and a one-step correction for phase unwrapping 

errors has therefore been introduced using machine learning methods.334 Holographic image 

reconstruction has also been performed from single intensity images using machine learning, 

with validation on pap smears and human tissue samples.124

Machine learning is also helpful in QPI data postprocessing steps. Here, CNNs are the most 

widely used approaches as well. Machine learning networks have been designed to segment 

microscope images,335 and process cell tracking data, counting, and characterization.336 
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Machine learning algorithms on unlabeled QPI images can compute or false-colorize 

staining patterns created by computer labeling of different organelles and components within 

cells. For example, machine learning can be used to identify lipid droplets in unlabeled 

QPI images.337 A related machine learning approach, called PhaseStain, was developed for 

label-free staining of QPI images.338 This method was extended for real-time staining and 

classification of sperm cells,339 identification of cells from subcellular components,340 and 

generation of pseudofluorescence images from label-free QPI data.338,341 The change in 

dry mass of subcellular structures has been measured over time using phase imaging with 

computational specificity, which segments QPI data with machine learning approaches.342

One especially promising application of machine learning methods for QPI studies is in the 

classification and identification of cells and tissues. Classification schemes using machine 

learning algorithms can help reduce the time and labor involved in traditional pathology, 

while the label-free nature of QPI simplifies data collection. Statistical classification 

from QPI data was demonstrated using basic feature recognition algorithms for the 

classification of microorganisms.343,344 Similar classification schemes were later improved 

using machine learning approaches.345,346 Machine learning has since been used with QPI 

data for classifying specific cell death pathways;347 categorizing the health and quality 

of human spermatozoa for in vitro fertilization;348,349 screening RBCs for hematologic 

disorders350,351 including sickle cell disease352 and malaria;353 and identifying and 

classifying microorganisms.354 In cancer studies, machine learning has been applied to 

QPI data for scoring cancer cells as epithelial or mesenchymal in origin,355 phenotypic 

profiling of cancer and noncancer cell lines,356 as a diagnostic tool in pancreatic cancer,357 

and to quantify dynamic responses of melanoma cells to therapy260 (Figure 9d,e). Machine 

learning with QPI in combination with data from additional techniques helps increase 

the accuracy of classification, as it increases the number of data inputs into selected 

classification methods. For example, QPI, fluorescence, and Raman spectroscopy have been 

combined as inputs into a machine learning algorithm to detect macrophage activation.358 

Raman imaging and QPI combined with machine learning has also been applied to 

recognize stages of B cell acute lymphoblastic leukemia.359 Overall, machine learning is 

poised to play an ever-increasing role in both the generation and interpretation of QPI data, 

and has already touched upon nearly every major application of QPI.

CONCLUSIONS AND PERSPECTIVE

QPI is an approach with a long history. However, the last two decades have seen great 

leaps in both the abilities and applications of QPI. The rapid recent development of QPI 

is from impressive advances in image processing capabilities enabled by digitalization 

and increasing computational power (Figure 1a). This development and application of 

computational tools has substantially increased the utility and power of QPI in its 

application to biomedicine and permitted the development and commercialization of prebuilt 

and user-friendly QPI platforms. Consequently, recent years have witnessed a surging 

interest in QPI, coupled to a dramatic increase in QPI enabled publications and discoveries 

(Figure 1b). This marked expansion of QPI applications is also being fueled by leveraging 

machine learning approaches and is increasingly impacting areas that are beginning to 

include disease diagnoses and measurements of biological state transitions. While exciting, 
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this recent and rapid adoption of QPI platforms and associated published studies has also 

highlighted the dearth of standardization tools and practices beyond the adaptation of 

polystyrene beads143 as phase standards. Developing and circulating such tools will be 

critical for reproducible studies and validation of future QPI-based diagnostics and other 

applications.

Current areas of QPI utility include studies of cell size and its regulation, cellular diagnostics 

and screens, and biomechanics and biophysics. One key strength of QPI approaches 

includes label-free classification of key cellular behaviors such as programmed cell death 

pathways, differentiation, cell cycle progression, and immunological responses. Assessing 

these behaviors in the context of changes in biomass density, morphology, transport, 

and viscoelastic properties provides a deeper understanding of adaptations during cell or 

organismal life. A second key strength is the ability to study single cells or individual 

cell clusters over long periods of time. As techniques in single cell profiling continue 

development resulting in increasing reports on molecularly distinct subpopulations of cells, 

QPI provides a platform for assessing distinct phenotypes and behaviors within these 

heterogeneous populations. Further development of multimodal approaches will be critical 

for merging the observations made using single cell molecular profiling with QPI single cell 

phenotyping.

Finally, although there have been a large number of studies pointing toward clinical utility 

of QPI, this approach is ready for more robust validation and testing with clinical samples. 

As a label-free approach that can quantify multiple physiologically relevant parameters 

describing the behavior of living cells, QPI is well positioned to work with clinical samples. 

QPI therefore has the potential to enable a wide range of clinical applications in functional 

and diagnostic medicine, both as an addition to current approaches that rely on staining 

and as an independent ex vivo approach. Further work is therefore needed to build on the 

demonstrated capabilities of QPI to translate this technology to clinical utility and ultimately 

to improve the standard of patient care.
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VOCABULARY

Phase (of light)
Property that, along with amplitude (intensity), wavelength (color), and polarization, defines 

light as an electromagnetic wave. Shifts in phase occur from a delay in propagation speed, 

such as when light passes through a sample of higher refractive index

Quantitative phase imaging (QPI)
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Method in which the phase shift of light as it interacts with matter is measured. This 

provides measurements of the integrated refractive index through a sample’s optical 

thickness at each imaging pixel

Interferometry
Method in which source light is split into a sample and reference beam, then recombined at 

or before a detector, generating interference patterns. This method can be applied to acquire 

QPI data

Digital holography
Method in which a hologram is captured on a digital imaging sensor using an interferometer. 

The resulting digital hologram enables reconstruction of QPI data

Wavefront sensing
Method that measures aberrations in the wavefront of light due to the distribution of phase 

shifts caused by interaction with a sample, typically without the need for the reference beam 

used in interferometry

Phase retrieval
A class of methods in which intensity images, often with some perturbations such as partial 

defocusing, chromatic aberrations, or partial illumination, coupled with knowledge of the 

optical transfer function, enables reconstruction of the distribution of phase shifts through a 

sample

Quantitative phase tomography
Method to measure the three-dimensional distribution of phase shifts within a sample. 

Returns measurements of average refractive index within each imaging voxel
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Figure 1. 
QPI has undergone a steady increase in interest driven by advances in different fields of 

optics. (a) Schematic of four main QPI approaches with interferometry (green timeline), 

holography (red timeline), wavefront sensing (orange timeline), and phase retrieval 

algorithms (light blue timeline) are indicated. These methods have improved extensively 

over time with the emergence of greater computational resources (thick black line). The 

improved efficiency of computational resources led to technical advances in QPI that 

include quantitative phase tomography (magenta timeline), in vivo QPI (dark blue timeline), 

multimodal approaches (brown timeline), and machine learning methods (yellow-green 

timeline). (b) The growth in interest and advances in QPI over time depicted by the number 

of publications on Web of Science using search terms “Quantitative Phase Imaging” or 

“Quantitative Phase Microscopy” by year.

Nguyen et al. Page 48

ACS Nano. Author manuscript; available in PMC 2023 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Examples of the four primary QPI lineages shown in Figure 1. (a) Michelson interferometry 

uses the interference between light beams passing through a sample and a reference to 

generate an interferogram that encodes phase information in the image amplitude (e.g. ref 

12). The number of visible interference fringes generated depends on the optical setup 

and coherence of the light source, with low coherence light sources (e.g., white light)24 

producing fewer visible fringes than highly coherent lasers.25 An in-focus interferogram is 

then used to generate the phase image, and, in phase shifting interferometry, the reference 

and sample path lengths are adjusted in steps, e.g., with a piezo, to shift the fringes by a 

fraction of a wavelength.26 (b) DHM computationally reconstructs the phase image from an 

interferogram obtained using an interferometer.27,28 Here, a Mach–Zehnder interferometer 

with a slightly off-axis reference beam is used to avoid the twin image problem, where 

the image and its conjugate sit on top of one another. (c) Wavefront sensing with QWLSI 

uses a diffraction grating that captures gradients in phase shift as local distortions in the 

resulting intensity grid pattern on the camera sensor.14 A comparison of sample images 

to a reference wavefront image is used to determine the wavefront distortion due to the 
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sample itself, with numerical integration to recover phase. (d) Differential phase contrast 

(DPC) microscopy, a deterministic phase retrieval method, images a sample using half-circle 

patterns of illumination that extend beyond the microscope objective numerical aperture. 

Light refraction through the sample then causes intensity increases (or decreases) in 

one-half-circle image and decreases (or increases) in image intensity with the opposing 

half-circle pattern. The normalized difference between these two images approximates the 

gradient of phase along one axis.15 Multiple pairs of images are collected, and the phase is 

numerically reconstructed.
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Figure 3. 
Evolution of complexity and information content from QPI measurements of cell dry mass 

and mass distributions within living cells. Representative images and data analyses are 

shown in a time series. (a) QPI film image of Tradescantia bractea pollen grain (top) along 

with QPI pollen grain dry mass measurements (bottom, upward arrowheads are no sucrose 

estimates and downward arrowheads show measurements within a 5% sucrose solution) and 

volume (circles) during different phases of development. Adapted with permission from ref 

191 .Copyright 1954 Company of Biologists Ltd. (b) QPI of chicken fibroblasts with dry 

mass densities ranging from 0.01 (darkest gray) to 0.6 (white) pg/μm2(top), processed to 

measure spread area relative to total cell mass (bottom). Adapted with permission from 

ref 202. Copyright 1995 Company of Biologists Ltd. (c) QPI of human H929 multiple 

myeloma cells (top) showing computationally processed data that simultaneously captures 

drug responses of hundreds of single cells, shown as initial cell mass versus normalized 

changes in mass during drug treatment (bottom). Adapted and data set with permission 

from ref 12. Copyright 2011 Elsevier. (d) High-resolution QPI of a human buccal epithelial 

cell (top) and an example of changes in dry mass of HeLa cells undergoing apoptosis 

triggered by exposure to cytotoxic paclitaxel (bottom). Adapted with permission under 

Creative Commons Attribution (CC BY) license from ref 163. Copyright 2017 Springer 

Nature.
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Figure 4. 
QPI biomechanics measurement evolution. (a) Early QPI biomechanical analyses required 

physical perturbations, such as actuation of a magnetic bead indenter on NIH3T3 fibroblasts 

(top) or HeLa carcinoma cells to extract Young’s modulus (E; bottom). Adapted with 

permission from ref 244. Copyright 2008 IOP Publishing Ltd. (b) Detailed mechanical 

modeling from contactless measurements of biomechanical properties of red blood cells 

(RBCs; top left) using natural fluctuations in phase caused by membrane motion (top 

right) captures mechanical property variations (bottom) for populations of normal (DC), 

spiculated (EC), and spherical (SC) shaped RBCs. Adapted with permission from ref 246. 

Copyright 2010 National Academy of Sciences, U.S.A. Scale bar = 1.5 μm. (c) QPI phase 

(top-middle) of more complex cells HT-29 wild-type and shRNA (top left), HT-29 with 

CSK shRNA-mediated knock down (top middle), A431 epidermoid carcinoma control (top 

right) and cytochalasin D treated A431 (middle left) cells, and A549 lung adenocarcinoma 

cells (middle right) used to compute a mean phase disorder strength, related to intracellular 

cytoskeletal structure and independent measurements of shear stiffness (bottom). Adapted 

with permission from ref 247. Copyright 2017 Elsevier. (d) Time lapse QPI data (top) 

showing the redistribution of mass within single cells and cell clusters, which provides both 

resistance to deformation and decay terms. These terms were validated by comparisons 

with AFM measurements of stiffness (bottom left) and viscosity (bottom right) for MCF-7 

and BT-474 breast carcinoma cells, and for HeLa endocervical carcinoma cells, treated 

with different concentrations of cytochalasin B. Adapted with permission under Creative 

Commons Attribution (CC BY) license from ref 250. Copyright 2020 Springer Nature.
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Figure 5. 
Progress toward QPI clinical applications as a screening and selection tool for treatments, 

and as a diagnostic tool to identify healthy versus diseased states. (a) Specific QPI features 

can identify disease or changes from a healthy or control state. For example, QPI measured 

differences in RBC membrane fluctuations at 37 and 41 °C in vitro can distinguish between 

healthy and ring, trophozoite, or schizont diseased states with P. falciparum parasitic 

infection. Adapted with permission from ref 261. Copyright 2008 National Academy of 

Sciences, U.S.A. (b) Once QPI features of interest are identified, validation is sought with an 

independent, orthogonal method, if available. For example, shown here is an area under the 

curve (AUC) or receiver operating characteristic (ROC) plot of the true positive (sensitivity) 

versus false positive (specificity) rate determining malignance from hematoxylin and eosin 

counter-stained tissue biopsy. This previously validated method is used to validate QPI 

determined malignant state for breast tissue biopsies. Adapted with permission under 

Creative Commons Attribution (CC BY) license from ref 267. Copyright 2018 Springer 

Nature. (c) Validation of a QPI measured feature in a specific context can broaden its utility. 

For example, validation of QPI measured changes in growth rate was successfully applied 

to identify effective treatments from a pool of candidate agents against carboplatin-resistant, 

patient-derived xenograft HCI09 breast carcinoma cells. Adapted with permission under 

Creative Commons Attribution (CC BY) license from ref 253. Copyright 2019 Elsevier. 

(d) Example of QPI as a diagnostic tool, with spatial light interference microscopy (SLIM; 
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middle and right columns) identification of benign (top row) versus malignant (bottom 

row) glandular tissue, validated by pathological classification of hematoxylin and eosin 

stained biopsy material (left column). Adapted with permission under Creative Commons 

Attribution (CC BY) license from ref 267. Copyright 2018 Springer Nature.
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Figure 6. 
Progress in QPI tomography from applications with static optical fibers to multicellular 

organisms. (a) QPI tomography analysis of cross sections of optical fibers (top). A common 

feature of QPI tomography is recovery of the 3D refractive index distribution, rather 

than the integrated refractive index through the sample thickness, as in 2D QPI. This is 

shown by the refractive index distribution measured as a line profile through the sample 

(bottom). Reproduced from ref 275. Copyright 2000 Elsevier. (b) QPI tomography of 

single cell protozoan, Hyalosphenia papilio, with refractive index reconstructions shown 

as different 2D slices. Adapted from ref 276. Copyright 2006 The Optical Society. 

(c) Multiplexed intensity diffraction tomography of multicellular Caenorhabditis elegans 
embryos. Shown are in-focus refractive index (top row) and depth-coded projections of 

volumetric reconstruction (bottom row). Red and orange arrows indicate developmental 

stages of the embryos. Individual developing tissues, the buccal cavity (white box), intestine 

(blue box), and native bacteria (blue arrow), are visible. Reproduced with permission from 

ref 279. Copyright 2019 The Optical Society.
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Figure 7. 
Progression of in vivo QPI approaches. (a) Sample preparation for an in vivo technique 

called spectral-domain optical coherence phase microscopy (SD-OCPM; top) which 

generated optical path difference maps for human epithelial check cells (bottom). Adapted 

from ref 294. Copyright 2005 The Optical Society). (b) Diagram of live mouse heating 

stage setup for in vivo QPI (top). Representative QPI data from a live mouse mesentery 

showing mouse microvasculature represented as optical phase delay maps reconstructed 

from holograms (bottom). Adapted with permission under Creative Commons Attribution 

(CC BY) license from ref 298 . Copyright 2016 Springer Nature. Scale bar = 10 μm. 

(c) Schematic of a fiber-based quantitative oblique back-illumination microscopy (qOBM) 

platform for imaging tumor tissue in excised rat brain (top), thereby generating QPI images 

from deconvolution of intensity images (bottom). Adapted from ref 301 . Copyright 2021 

The Optical Society. Scale bar = 50 μm.
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Figure 8. 
Examples of the opportunities available from coupling QPI with additional imaging 

modalities. (a) QPI of kidney cells paired with fluorescence detection enables the 

identification and quantification of dry mass changes, represented by phase shifts, within 

subcellular regions (right), such as the nucleus, identified by Hoechst staining (bottom 

left). Reproduced with permission from ref 303. Copyright 2006 The Optical Society. (b) 

Enhanced fast image acquisition of dual 3D fluorescence (top right) and refractive index 

measurements from tomographic QPI (top left). This accelerated approach provides the 

necessary capture speed in image scanning to reconstruct 3D tomograms of A549 cells 

for both fluorescence (bottom right) and QPI (bottom left) measurements from z-step data 

Adapted with permission from ref 310. Copyright 2017 The Optical Society. (c) Molecular 

vibrational spectroscopy paired with QPI of COS7 cells (top left) examined for molecular 

signatures, such as CH2 (top center) and peptide bending (top left), corresponding to 

subcellular phase shifts within the nucleus (orange), cytoplasm (blue), relative to empty 

space control (gray) (bottom). Reproduced with permission from ref 311. Copyright 2020 

The Optical Society..
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Figure 9. 
Machine learning has been applied to all three stages of a typical QPI processing and 

analysis pipeline: (1) computation of phase data, (2) labeling of phase images, and (3) 

feature-based cell classification. (a) Phase image reconstruction from a single overfocus or 

under-focus image using deep learning and TIE algorithm. The error of phase calculation 

using the combined deep learning TIE method is under 0.06 π for the ‘Network+’ 

learning-based method using one overfocus image and the ‘Network-’ method using an 

under-focus image when compared to the ground truth calculated from three images using 

TIE. Reproduced with permission from ref 123. Copyright 2020 Elsevier. (b) PhaseStain is 

a digital staining method developed using deep learning on holographic microscopy images, 

to perform virtual staining of tissues from label-free QPI images. The stained images 

produced are similar to histological staining observed under a brightfield microscope. (c) A 

zoomed-in view comparing the liver tissue section stained using PhaseStain and Masson’s 

trichrome staining. Reproduced with permission under Creative Commons Attribution (CC 

BY) license from ref 338. Copyright 2019 Nature. (d, e) Machine learning to classify 

cell states during the epithelial-to-mesenchymal transition (EMT). M-phase, pro-apoptotic, 

and growth-arrested cell states occurring during EMT can be distinguished from untreated 

control cells using machine learning, utilizing cell features identified from QPI. Reproduced 

with permission under Creative Commons Attribution (CC BY) license from ref 260. 

Copyright 2017 Springer Nature.

Nguyen et al. Page 58

ACS Nano. Author manuscript; available in PMC 2023 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nguyen et al. Page 59

Ta
b

le
 1

.

E
xa

m
pl

e 
M

et
ho

ds
, K

ey
 B

en
ef

its
, P

er
fo

rm
an

ce
, a

nd
 S

of
tw

ar
e 

fo
r 

D
if

fe
re

nt
 Q

PI
 L

in
ea

ge
s

L
in

ea
ge

E
xa

m
pl

e 
m

et
ho

ds
K

ey
 im

pr
ov

em
en

ts
Te

m
po

ra
l 

re
so

lu
ti

on
B

kg
 s

td
 d

ev
A

cc
ur

ac
y

SN
R

So
ft

w
ar

e

In
te

rf
er

om
et

ry
M

ic
he

ls
on

 in
te

rf
er

om
et

er
, 

M
ac

h–
Z

eh
nd

er
 in

te
rf

er
om

et
er

, 
B

ak
er

 in
te

rf
er

om
et

er

Ph
as

e 
sh

if
tin

g 
in

te
rf

er
om

et
ry

 m
et

ho
d

10
0 

fp
s,

13
8  

25
0 

fp
s15

3
0.

04
341

2%
,15

3  
0.

5%
15

2
Pe

ak
 S

N
R

 <
 3

015
4

W
yk

o 
V

is
io

n 
so

ft
w

ar
e35

,1
55

D
ig

ita
l 

ho
lo

gr
ap

hy
Sa

m
e 

as
 in

te
rf

er
om

et
ry

, 
re

co
ns

tr
uc

tio
n 

in
 a

dd
iti

on
Se

lf
-r

ef
er

en
ci

ng
 

m
od

ul
e,

13
0  

le
ss

 
su

sc
ep

tib
le

 to
 n

oi
se

10
6  

fp
s74

4 
nm

, P
ol

yc
hr

om
at

ic
 

D
H

M
15

6
0.

3%
15

7
Pe

ak
 S

N
R

 <
 

55
,15

0  
SN

R
 <

 
10

15
8

H
ol

oS
tu

di
o 

(H
ol

om
on

ito
r, 

ph
i)

,15
9  

K
oa

la
 (

Ly
nc

ee
 

te
ch

),
16

0  
Py

th
on

17

W
av

ef
ro

nt
 s

en
si

ng
L

at
er

al
 s

he
ar

in
g 

in
te

rf
er

om
et

ry
, 

Q
W

L
SI

In
cr

ea
se

d 
sp

at
ia

l 
re

so
lu

tio
n

10
4  

fp
s12

8
0.

88
 n

m
,88

 0
.3

815
1  

nm
2%

 (
1 

nm
 

se
ns

iti
vi

ty
)14

SN
R

 <
 8

16
1

Ph
as

ic
s,

14
 M

A
T

L
A

B
16

2

Ph
as

e 
re

tr
ie

va
l 

al
go

ri
th

m
s

It
er

at
iv

e 
al

go
ri

th
m

s:
 D

ef
oc

us
 

m
et

ho
ds

 (
G

S 
al

go
ri

th
m

, 
hy

br
id

 in
pu

t-
ou

tp
ut

 a
lg

or
ith

m
, 

ot
he

rs
),

 F
ou

ri
er

 p
ty

ch
og

ra
ph

ic
 

m
ic

ro
sc

op
y

D
et

er
m

in
is

tic
 m

et
ho

ds
: T

IE
, 

D
PC

In
cr

ea
se

d 
te

m
po

ra
l 

re
so

lu
tio

n
10

0 
fp

s12
9

1.
81

 p
g16

3
0.

1–
0.

216
4

SN
R

 <
 6

,16
5,

16
6 

SN
R

 <
 1

00
16

7
Py

th
on

,16
8  

Im
ag

eJ
,16

8 

M
A

T
L

A
B

16
9,

17
0

ACS Nano. Author manuscript; available in PMC 2023 August 23.


	Abstract
	Graphical Abstract
	SOLVING THE FUNDAMENTAL PROBLEM OF QUANTITATIVE PHASE
	Interferometry.
	Digital Holography.
	Wavefront Sensing.
	Phase Retrieval Algorithms.
	Comparison and Evaluation of QPI Methods.
	Critical Performance Metrics for QPI.
	Impact of Image Focus Position on QPI Performance.
	Computational Convergence.

	ADVANCES IN QUANTITATIVE BIOLOGY
	QPI Applications Using Measurements of Cell Mass or Growth Rate.
	Applications of QPI to Studies of Cell Growth and Associated Biological Processes.
	Applications of QPI to Studies of Immune Cell Behavior.
	Applications of QPI to Measure Neuron Behavior.
	Applications of QPI in Measuring the Physical Structure of a Cell.
	Applications of QPI in Studies of Intracellular Transport.
	Applications of QPI to Cell Migration Assays.
	Applications of QPI for Measuring Biophysical Cell Properties.
	QPI Applications in Screening and Drug Sensitivity Measurement.
	QPI Morphological Applications in Diagnostics.

	ONGOING DEVELOPMENTS
	Quantitative Phase Tomography.
	QPI in Tissues and In Vivo.
	Multimodality Approaches.
	Machine Learning.

	CONCLUSIONS AND PERSPECTIVE
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Table 1.



