
UCLA
UCLA Electronic Theses and Dissertations

Title
Improving Image Feature Detection and Classification in Low-Label Regime with Deep and
Classical Methods

Permalink
https://escholarship.org/uc/item/2w33b9hq

Author
Brown, Jason

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2w33b9hq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Improving Image Feature Detection and Classification

in Low-Label Regime with Deep and Classical Methods

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Jason Maxwell Brown

2024

© Copyright by

Jason Maxwell Brown

2024

ABSTRACT OF THE DISSERTATION

Improving Image Feature Detection and Classification

in Low-Label Regime with Deep and Classical Methods

by

Jason Maxwell Brown

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Andrea L. Bertozzi, Chair

In today’s world, data is fundamental to the growth of technology. However, it is very com-

mon that vast amounts of clean, well annotated data are unavailable and so there is a desire

for methods that can function with small amounts of labeled data. This includes methods

that utilize hand-crafted features and can be tuned manually for a dataset without having a

variety of samples, as well as machine learning methods that can succeed in a low label rate

regime by utilizing mutual information. This thesis discusses work involving hand-crafted

features and variational methods for image detection, segmentation, and classification of

shape-coded medical testing particles. Specifically, the Canny edge detector, Hough Trans-

forms, and snake active contours are used for the object detection and segmentation problem,

which offers a strong alternative to deep learning methods and has theoretical guarantees.

Furthermore, this thesis explores neural networks, graph-based learning, and active learning

methods that are robust to low label environments with applications in remote sensing and

hyperspectral data. These methods offer a natural fusion of deep learning methods with

transductive, variational label propagation. Altogether, these thesis offers a survey of image

ii

processing as a field and showcases a wide range of ideas that are all applicable for different

problems.

iii

The dissertation of Jason Maxwell Brown is approved.

Deanna Needell

Mason Alexander Porter

Jeff Calder

Andrea L. Bertozzi, Committee Chair

University of California, Los Angeles

2024

iv

To my friends, family, and mentors, who shaped me into the person I am today

v

TABLE OF CONTENTS

1 Introduction . 1

2 Traditional Image Processing with Applications to Particle Detection and

Classification . 9

2.1 Introduction . 9

2.2 Particle on a Chip . 10

2.2.1 Dataset . 11

2.3 Detection and Segmentation . 12

2.3.1 Background . 12

2.3.2 Circle Hough Transform . 14

2.3.3 Template Matching and Hough Transforms 15

2.3.4 Segmentation . 19

2.3.5 Convergence of Snake . 25

2.3.6 Detection Pipeline . 29

2.3.7 Experiments and Results . 31

2.4 Conclusion . 34

3 Review of Feature Extraction, Graph Learning, and Active Learning . . 36

3.1 Introduction . 36

3.2 Neural Network Encoders . 37

3.2.1 AutoEncoder . 37

3.2.2 Contrastive Learning (SimCLR) . 39

vi

3.3 Embedding Visualizations . 41

3.4 Graph Embedding . 43

3.5 Graph Based Semi Supervised Learning . 47

3.6 Active Learning . 52

4 Graph Active Learning with Applications to Synthetic Aperture Radar

Data . 57

4.1 Introduction . 57

4.1.1 Synthetic Aperture Radar . 57

4.2 Caesar Dataset . 59

4.3 MSTAR . 63

4.3.1 Previous and Related Work . 64

4.4 SAR Image Classification . 66

4.4.1 Caesar Results . 68

4.4.2 MSTAR Results . 69

4.5 Conclusion . 78

5 Deep Learning Techniques and Applications to Hyperspectral Imagery 81

5.1 Introduction . 81

5.1.1 Hyperspectral Data Review . 82

5.2 Dataset . 84

5.2.1 Calibration . 85

5.2.2 Data Preprocessing . 87

5.2.3 Data Exploration . 88

5.3 Methods . 90

vii

5.3.1 Partial Least Squares Discriminant Analysis 91

5.3.2 Nonlinear Dimensionality Reduction and Classifiers 91

5.4 Results . 93

5.5 Conclusion and Future Work . 95

6 Conclusion . 96

References . 99

viii

LIST OF FIGURES

1.1 Canny edge detector. (a) Generated, noisy image of annular square. (b) Canny edge

detector with no smoothing. (c) Canny edge detector with smoothing. 5

2.1 Example of an image from a mixed particle well with circular and square particles.

Two square particles can be observed in the upper right of the image whereas the rest

of the particles are circular. Particles on their side and various artefacts add noise to

detection. 12

2.2 Cropped images of particles. (a) Circle particle. (b) Square particle. (c) Square

template. © 2024 IEEE . 13

2.3 Demonstration of the Circles Hough Transform. Selecting four points on the edge, the

circle of radius r centered at those points intersects at the true centroid. 15

2.4 Principle of Merlin-Farber Algorithm. (a) An arrow represents an example template

and a reference point is marked as ”Center”. (b) Selecting an arbitrary edge point

allows a vector pointing to the reference to be constructed. (c) If the template were

rotated 180° and centered on the edge point, then the vector would point to the original

center location. 18

2.5 The Merlin-Farber Algorithm. (a) A given template is marked with four edge points.

(b) By rotating the template 180° and overlaying it, centered on the edge points, the

templates all intersect at the center of the arrow. The templates act as the votes from

the edge pixels. 19

2.6 A blurred white circle is used as an example to demonstrate the snake forces reaching

equilibrium. (a) The initial snake contour is shown in the green dashed line. The

balloon force is represented by the red arrows pointing outward, compelling the snake

to expand radially. (b) After expanding, the image forces will balance with the balloon

forces and convergence will reached just outside the circle. 23

ix

2.7 Functions from Example 2.3.2. (a) Step function, I. (b) Gaussian smoothed step

function, J . (c) Image force term JrJrr. 29

2.8 Flowchart for the procedure. (a) The original bright image before any processing has

been done. (b) The edges detected by the Canny edge detector. (c) The accumulator

matrix from the Merlin-Farber Algorithm. Note the brightest points in each image

correspond to the detected centroids for the shapes. The square accumulator matrix

has more noise indicated by greater overall brightness. (d) The circle accumulator

matrix from the circle Hough Transform. (e) The detected centroids after thresholding

the respective matrices and applying non-max suppression. The blue dot corresponds

to the square centroid and the red dots correspond to the circle centroids. (f) The

segmentation results. The circles are segmented from the knowledge of their radii and

the square is segmented with a snake. The initial curve for the snake is shown by the

green line and the final contour is shown in blue. © 2024 IEEE 30

2.9 Results applied to mixed particle wells that include both squares and circles, showing

performance in mixed particle wells. © 2024 IEEE 33

2.10 Results from the method applied to images that contain only squares and circles re-

spectively, showing independent performance for each particle type and robustness to

noise such as overlapping particles and fluid condensate. © 2024 IEEE 34

2.11 Results from the method applied to squares near the edge of the imaging well. Particles

which are largely obscured are not detected by the process. © 2024 IEEE 35

3.1 SimCLR framework. A sample image xi is augmented twice creating xi1 and xi2 .

These augmented images are pushed through an encoder network and a projection

head resulting in zi1 and zi2 . An objective of SimCLR is to maximize the similarity

between positive pairs such as these and minimize the similarity with the other samples

in the batch. 42

x

3.2 An example of how how data can be classified using Laplace learning. (a) Feature

vectors from two moons dataset with two labeled nodes represented as a red and blue

star. (b) A nearest neighbors search with k=15 has been used and the resulting edges,

with varying weights, are shown creating a graph. (c) The soft label predictions from

using Laplace learning are shown with colors indicating label prediction corresponding

to the classes from the red and blue stars. (d) The thresholded label predictions from

using Laplace learning. 52

3.3 Active learning process. (a) Initial graph with three labeled nodes (stars) and starting

predictions indicated by the colors red, blue and green. (b) The queried node is high-

lighted by the black circle. The acquisition function is margin uncertainty. (c) The

queried node is labeled and now represented as a blue star. The resulting predictions

are updated. 56

4.1 Different polarizations of SAR images taken from the Gaofen satellite [1]. Three ships

are seen in the lower left of the image in which (a) represents the hh channel and (b)

The hv channel. 60

4.2 Sample chip from Figure 4.1(a) with bounding boxes overlaid around the three ships. 61

4.3 Ship images sampled from a larger chip. (a) The original chip with the bounding boxes

for ships shown. (b) A cropped region surrounding the lower bounding box. (c) A

cropped region surrounding the upper bounding box. 62

4.4 Non-ship images samples from a larger chip. (a) The original chip with bounding boxes

for ships. (b) and (c) Cropped regions of land for the non-ship class that have sufficient

variation. 63

4.5 The magnitude (first channel) from three SAR images corresponding to different classes. 64

4.6 Two low dimensional embeddings of the VAE embedded Caesar dataset. (a) The UMAP

visualization. (b) The t-SNE visualiation. The purple samples correspond to the class

of ships and the yellow samples correspond to the class of non-ships. 69

xi

4.7 Results of running the active learning pipeline on the processed Caesar dataset. Mul-

tiple acquisition functions are shown in the legend. 70

4.8 Visualizations for the raw, un-embedded images. (a) The UMAP visualization of the

data. (b) The t-SNE visualization of the data. 73

4.9 Visualizations for the VAE encoded data. (a) The UMAP visualization of the data.

(b) The t-SNE visualization of the data. 73

4.10 Visualizations for the SimCLR encoded data. (a) The UMAP visualization of the data.

(b) The t-SNE visualization of the data. 74

4.11 Different training/testing splits for fitting SVM classifiers on SimCLR, VAE, and raw

image embeddings, averaged over 50 random partitions for each split, partitions ran-

domly generated (susceptible to large class imbalance/underepresentation at low label

rates). 76

4.12 Equal class SVM fitting (same number of points used for each class in fitting)

across different training/testing splits on SimCLR, VAE, and raw image embed-

dings, averaged over 50 random partitions for each split. 77

4.13 Accuracy of active learning with Laplace semi-supervised learning on SimCLR embed-

dings. (a) The encoder trained to 500 Epochs. (b) The encoder trained to 1000 Epochs.

The results displayed are averaged across 21 distinctly trained models with active learn-

ing applied to each model individually. Using 300 labels, the 500 epoch embeddings

achieved an average accuracy of 98.3% and the 1000 epoch embeddings achieved an

average accuracy of 99.2%. 79

4.14 Accuracy of active learning with Laplace semi-supervised learning on the VAE embed-

dings with the pretrained weights from Miller et al. [2]. With 300 labels, the highest

accuracy achieved is 94.2%. 79

xii

4.15 Direct comparison between the graph based active learning performance with the Sim-

CLR embeddings against the VAE embeddings. The SimCLR embeddings are trained

to 1000 epochs and averaged over 21 distinctly trained models, with the vertical bands

corresponding to one standard deviation in accuracy. 80

5.1 The imaging apparatus. Two light sources are used for illumination to minimize shad-

ows on the scrap samples and the camera is attached to a rail. © 2023 IEEE 85

5.2 A controlled environment of various types of plastic on a sheet of white paper. The

plastics have various colors and spectral signatures. © 2023 IEEE 86

5.3 Two scenes of mixed clutter. The materials present are annotated on the figures directly.

(a) Contains no plastic and is used for sampling the clutter materials. (b) Contains

plastic and is used for testing. © 2023 IEEE . 87

5.4 Spectral responses of manually selected pixels from Figure 5.2. The black spectra are

randomly selected pixels that are used to reflect pixel density. The red spectra are

shadows of the plastic on paper. The blue spectra corresponds to the background

paper. The green spectra corresponds to plastic pixels. (a) FX10. (b) FX17. 89

5.5 Binary classification on FX10 and FX17 images using four methods: PLS-DA (Partial

Least Squares Discriminant Analysis), MLP (Multilayer Perceptron), AE + GL (Au-

toencoder and Graph Learning), and CL + k-NN (Contrastive Learning and k-Nearest

Neighbors). In the first four columns, yellow pixels indicate a plastic classification. The

last column shows the approximate ”ground truth” areas where plastic was manually

placed.© 2023 IEEE . 94

xiii

LIST OF TABLES

4.1 Graph cut energy (GCE) and spectral clustering accuracy (SCA, given as a per-

centage) for SimCLR and VAE embeddings as well as raw flattened images, using

KNN graph with k = 20. 75

xiv

ACKNOWLEDGMENTS

First, I would like to thank my mentors, Andrea Bertozzi and Jeff Calder, who provided me

with invaluable support and guidance throughout my years as a graduate student. I would

also like to thank my collaborators, Bohan Chen, Harris Hardiman-Mostow, Adrien Weihs,

and Alyssa Arnheim for their assistance and support, as well as Kevin Miller, Bon-Soon Lin,

Kyung Ha, Bohyun Kim, and Jacob Moorman for their advice and helpful conversations.

I would like to thank my friends at UCLA, Yotam Yaniv, James Chapman, Michael

Johnson, Dominic Yang, Cameron Kissler, Allison Schiffman, and Aiofe O’Brien for getting

me out of the apartment and being an absolute pleasure to be around. Thank you also to

my long-time friends, Elliot Newman, Brent Giles, Devin Bruce, Michael McHugh, Roman

Schmelzer, Josh Brown, Alex Bice, and Kaj Jakobsen for always being around to talk and

have fun with. It is truly amazing and special that we’ve been able to remain close friends

for so long.

I would also like to specially thank my mother, father, and brother for always supporting

me, raising me, and giving me a home to come back to. Of course, I would also like to

especially thank Sara Chilimidos for her support throughout my entire endeavor. From the

pandemic to my defense and beyond, you have given me unparalleled support and I treasure

the time we have spent together. I love you all and I couldn’t have done it without you.

Chapter 2 is a version of [3] and is a joint work with Alyssa Arnheim and Professors Dino

Di Carlo and Andrea Bertozzi. Alyssa provided the experimental data that was examined and

Dino Di Carlo and Andrea Bertozzi supervised the project. Andrea Bertozzi helped suggest

methods and future directions. I personally researched and implemented the algorithms,

carried out the experiments, tuned the parameters, authored much of the text, and proved

the theoretical results.

Chapter 4 is a version of [4] and is a joint work with Riley O’Neill and professors Jeff

Calder and Andrea Bertozzi. Jeff Calder and Andrea Bertozzi proposed and supervised the

xv

project. Riley provided experiments that validated and measured the results. I contributed

to the tuning and design of the main algorithm, and I was responsible for much of the writing

and the results.

Chapter 5 is a version of [5] and is a joint work with Bohan Chen, Harris Hardiman-

Mostow, Adrien Weihs, and professors Andrea Bertozzi and Jocelyn Chanussot. Jocelyn

Chanussot proposed the problem and supplied the data and both Jocelyn Chanussot and

Andrea Bertozzi supervised the project. Bohan, Harris, Adrien, and I each contributed to

data exploration and classification using various methods.

The work done in Chapter 2 is based on research sponsored by Supported by Simons

Math + X Investigator Award number 510776 and NSF grant DGE-1829071. The work

in Chapter 5 is based on work sponsored by US National Science Foundation grants DMS-

2318817, DMS-2152717, DMS-1952339, and DMS-2027277. Both of these chapters contain

work published in IEEE.

In reference to IEEE copyrighted material which is used with permission in this thesis,

the IEEE does not endorse any of University of California, Los Angeles’s products or services.

Internal or personal use of this material is permitted. If interested in reprinting/republishing

IEEE copyrighted material for advertising or promotional purposes or for creating new

collective works for resale or redistribution, please go to http://www.ieee.org/publications

standards/publications/rights/rights link.html to learn how to obtain a License from Right-

sLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives of

Canada may supply single copies of the dissertation.

xvi

VITA

2014-2016 Mathematics Tutor, Sierra College.

2014-2016 AS-T (Mathematics) and AS-T (Physics), Sierra College.

2016–2019 Grader and Workshop Leader, California Polytechnic State University, San

Luis Obispo.

2019 B.S. (Pure Mathematics) and Minor (Physics), California Polytechnic State

University, San Luis Obispo. Awarded Outstanding Graduating Senior.

2019-2024 Teaching Assistant, Mathematics Department, University of California,

Los Angeles.

2021-2024 Research Assistant, Mathematics Department, University of California,

Los Angeles.

2021 Summer Associate, RAND Corporation.

PUBLICATIONS

J. Brown, A. Arnheim, A. L. Bertozzi, and D. D. Carlo, “Detection and segmentation

of shape-coded particles via Hough Transforms and snake active contours,” in 2024 IEEE

Southwest Symposium on Image Analysis and Interpretation (SSIAI). IEEE, 2024, pp. 85–88.

J. Brown, B. Chen, H. Hardiman-Mostow, A. Weihs, A. L. Bertozzi, and J. Chanussot, “Ma-

terial identification in complex environments: Neural network approaches to hyperspectral

xvii

image analysis,” in 2023 13th Workshop on Hyperspectral Imaging and Signal Processing:

Evolution in Remote Sensing (WHISPERS). IEEE, 2023, pp. 1–5

J. Brown, R. O’Neill, J. Calder, and A. L. Bertozzi, “Utilizing contrastive learning for graph-

based active learning of SAR data,” in Algorithms for Synthetic Aperture Radar Imagery

XXX, vol. 12520. SPIE, 2023, pp. 181–195.

xviii

CHAPTER 1

Introduction

In this thesis, we explore semi-supervised learning methods for image processing. These

methods are particularly valuable in addressing problems associated with limited training

data. In real world applications, acquiring large amounts of well-annotated labels can be

time-consuming or is infeasible due to insufficient data. For example, some datasets may

contain millions of samples such that labeling a portion of them would be prohibitive for a

human to do by hand. Other datasets may require expert knowledge in order to perform the

labeling, such as images taken with special cameras or medical images used by specialists.

Additionally, some datasets may be limited in scope, creating a bottleneck due to the in-

ability to acquire more data. This could include images of rare events or data that requires

significant time and effort to collect. In all of these cases, there are many viable methods for

image processing. In this thesis, we broadly examine both hand-crafted and deep learning

approaches.

For example, principal component analysis (PCA) and non-negative matrix factorization

(NMF) are linear dimensionality reduction methods that have been successful in learning

visual features in datasets. Given a collection of n images, X ⊂ Rm where each image has

m feature dimensions, principal component analysis finds k orthogonal vectors in Rm that

capture the most variance in the data. The data samples are often stacked into a matrix

X ∈ Rm×n such that each column corresponds to an image, allowing for further analysis.

For PCA, we assume that the rows of X have been centered about 0 by subtracting the

mean value of the row across the elements. Principal component analysis has a strong

1

correlation with singular value decomposition and the principal component vectors can be

interpreted as the left singular vectors of X. In practice, this is often how they are calculated

due to efficient implementation of the singular value decomposition [6]. Principal component

analysis has applications that extend far beyond imaging problems, but a notable application

has been in the classification of human faces. When trained on a dataset of human faces, the

resulting principal components are referred to as eigenfaces and contain information about

the primary facial features of humans [7]. Non-negative matrix factorization is also a linear

dimensionality reduction technique but instead solves the matrix factorization problem

minW,H ∥WH −X∥2 (1.1)

for W and H where X ∈ R+
m×n, W ∈ R+

m×k, and H ∈ R+
k×n. Here R+ is used to denote

the non-negative reals, hence the name non-negative matrix factorization. The matrix W

is referred to as the dictionary matrix and the matrix H is referred to as the coefficient

matrix, since the columns of (WH) are constructed as linear combinations of the columns

of W with coefficients from H. An algorithm was designed by Lee and Seung for efficiently

calculating W and H for the problem in Equation 1.1 as well as another divergence loss [8].

Non-negative matrix factorization has applications extending well beyond image processing,

but notably has also been used on human facial datasets similar to PCA [9]. For this

problem, the enforcement of non-negative dictionary vectors and coefficients means that the

learned features are significantly different than PCA, which allows for negative principal

components and relies on cancellation. The non-negativity constraint allows it to identify

more interpretable features, such as eyes, noses, and lips. Both PCA and NMF are considered

unsupervised techniques as they only require the data and no associated labels in order to

produce their features.

Signal processing is a distinct field but has many applications and interpretations in im-

age processing. The Fast Fourier Transform (FFT) is an incredibly powerful and significant

development that allows for efficient conversion of signals to the frequency domain [10]. This

algorithm, when applied to images using the 2D FFT, allows for the interpretation of images

2

in terms of their frequency components. High frequency components reflect fine details in the

image and may contain information about textures, for example. Low frequency components

vary more slowly in space and therefore contain more broad information about larger struc-

tures. Since images are two-dimensional, the orientation of objects within them affects the

direction of signals in the frequency domain. The Fourier Transform has many applications

for image processing, but a notable one was the development of the discrete cosine trans-

form for image compression [11]. Another technique related to signal processing involves

convolving images with task-dependent kernels. Convolving images with kernels, which in-

volves locally adding or differencing pixels, offers a straightforward interpretation. However,

the convolution theorem provides another perspective by relating these operations to the

image’s frequency components. The convolution theorem generally states that convolution

in the time domain is equivalent to a pointwise multiplication in the frequency domain. For

images, this means that blurring filters, which average local pixel intensity, act as low pass

filter in the frequency domain, smoothing out high frequency noise. In fact, natural blurring

in images resulting from lens effects are quite common and are observed in the microscopy

images in Chapter 2. There has been work using deconvolutions to undo the natural blur-

ring, but it is often difficult to estimate the amount of blurring in natural images [12]. As

a counterpart to blurring filters, edge detection filters, such as the Sobel filter, correspond

to high pass filters in the frequency domain and remove low frequency regions of relatively

constant pixel intensity. The Gabor filters are another notable family of filters that have

been used for texture detection [13].

For edge detection, the Canny edge detector is one of the most popular choices [14]. The

detection involves multiple steps. First, the image is smoothed with Gaussian blurring. The

purpose of the blurring is to suppress noise but not degrade edges, so a specific Gaussian

kernel would be chosen on an application basis. Then, the image gradients are calculated

typically using methods like Sobel filters, as mentioned previously. Non-max suppression,

which is process to remove multiple detections, is applied to filter out spurious edges. At

3

this point, candidate pixels remain but they must be filtered for confidence. For this, two

thresholds are introduced: a low and a high threshold. Any pixels with a gradient magnitude

larger than the high threshold are high-confident edge pixels and all pixels with gradient

magnitude below the low threshold are not considered edge pixels. By a process called

hysteresis, all remaining candidate pixels above the low threshold are classified as edge

pixels if they are connected to a high-confident edge pixel. This way, the double threshold

can filter out isolated noise but preserve edges even if the edge has some regions of lower

confidence. We use the Canny edge detector on microscropy images in Chapter 2 to isolate

edges for detection purposes. The results of the Canny edge detector are shown in Figure

1.1 where different blurring and threshold values are applied. In Figure 1.1(a), a toy image

of an annular square is generated and subject to Gaussian noise and lighting artifacts, which

resembles those seen in data from Chapter 2. The image has pixel range between 0 and 1.

Figure 1.1(b) shows the results of applying the Canny edge detector with no blurring and

threshold values of 0.4 and 0.6 for the low and high thresholds respectively. Figure 1.1(c)

shows the effect of the Canny edge detector with σ = 3 corresponding to the blur value and

thresholds of 0.3 and 0.5 respectively. Blurring the image smooths the edges but also affects

their intensity, meaning different thresholds need to be chosen.

For local feature detection, there are a plethora of techniques that can be used. Template

matching is used for searching for a specific, known template within images [15]. Efficient

extensions of template matching include Hough Transforms, for ellipses or lines, and general-

ized Hough Transforms, discussed in Chapter 2. Other examples of techniques include blob

detection with Gaussians, corner detection with the Harris Operator, or feature detection

with SIFT (scale-invariant feature transform) [13].

The final family of image processing techniques we provide a brief overview of is varia-

tional techniques. Variational methods solve for a function via minimizing an energy function

which is often an integral over the function. Typically this will involve using calculus of vari-

ations to develop an Euler-Lagrange equation, which, upon solving, produces the minimizer

4

(a) (b) (c)

Figure 1.1: Canny edge detector. (a) Generated, noisy image of annular square. (b) Canny edge

detector with no smoothing. (c) Canny edge detector with smoothing.

[16]. An example of a variational problem is solving for the brachistochrone curve, which

is the curve by which a particle would descend most quickly under gravity. In the sense of

image processing, variational methods have seen great success. The Chan-Vese algorithm is

a hugely successful algorithm based on the Mumford Shah functional (a piecewise-constant

variant). It solves for a functional that best divides an image into two regions such that there

is uniformity across the regions. More specifically, they consider a level-set formulation to

minimize the following energy function over constants c1, c2 and curve C where µ, ν, λ1, λ2

are fixed hyperparameters and u0 is the image:

F (c1, c2, C) =µ · Length(C) + ν · Area(inside (C))

+ λ1

∫
inside (C)

|u0(x, y)− c1|2 dxdy

+ λ2

∫
outside (C)

|u0(x, y)− c2|2 dxdy.

(1.2)

We use variational methods in our work, such as snake active contours for image segmentation

in Chapter 2 and graph based Laplace learning in Chapters 4 and 5 [17, 18].

The last ten years have seen a skyrocketing improvement in image processing through

the modern development of deep learning techniques. These involve neural networks whose

5

efficiency is made possible by advancements in hardware, specifically in graphics processing

units (GPUs). Neural network methods caught many researchers’ attention when AlexNet

beat state of the art classification results on the ImageNet dataset in 2012 using convolutional

neural network layers [19]. Since then, convolutional neural networks have been a cornerstone

of image processing with many state of the art models seeing various applications. Before we

discuss some of these applications, we first introduce neural networks as a machine learning

model. Neural Networks are a class of machine learning models that have become prominent

in recent years [20]. Typically in machine learning, a model is trained with data to minimize

a loss function over that data. The model itself can have varying number of parameters that

are to be learned in the process of minimizing the loss. Although there are models that have

no learnable parameters, such as k nearest neighbors [21] which does not involve learning

parameters through training, most models, including neural networks, will have learnable

parameters. Neural Networks are a class of models that are built by sequentially stacking

neural network layers on top of each other. These layers represent function operations and

can include layers with learnable parameters, such as linear layers and convolutional layers.

Other layers, such as ReLU, softmax, and sigmoid layers, do not have learnable parameters

and are often called activation functions. The choices of the layer types, number of layers,

and the number of parameters in the layers are often tailored to specific tasks or datasets

and known as the architecture. Once a neural network is constructed, the parameters need

to be learned via the input data and the loss function. To do this, the training data is

passed through the neural network to generate an output which is used in the loss function.

Via a process called backpropagation, gradients derived from the loss function flow back

through the neural network from the final layers to the initial layers. As the layers receive

their gradients, the appropriate parameters are updated via gradient descent algorithms.

According to the universal approximation theorem, sufficient choices of layers, loss functions,

and training data allow neural networks to approximate any function with relatively high

degrees of accuracy [22]. Realistically, in order to achieve a well learned model, it is necessary

6

to design a neural network architecture that can appropriately model the function as well

as supply it with a sufficient amount of varied training data. Solving this problem while

training to minimize the size of the neural network as well as using as few training samples

as possible is a challenge that we explore.

An important consideration for neural networks is the amount of labeled data required to

train them. Typical convolutional neural networks used for classification will be trained with

a cross entropy loss function and full supervision. For the problems we be consider, full su-

pervision is often not practical or possible. Therefore we use unsupervised or semi-supervised

methods. Unsupervised machine learning methods are commonly used for learning features

about data, such as in dimensionality reduction or clustering. In Chapter 3 we discuss two

unsupervised neural network models that are used for learning features from images: the

autoencoder and SimCLR. For semi-supervised methods, many deep learning models will

incorporate a two term loss function where one term uses the supervised, labeled data and

the other term uses the unlabeled data [23]. These methods can be successful but disconnect

the labeled and unlabeled data. Transductive learning is a regime in which both the labeled

and unlabeled data is used simultaneously to make predictions. Intuitively these approaches

are able to leverage relational and geometric information between all of the data, which can

produce more holistic predictions. In our work, we discuss graph based Laplace learning

which is a transductive, variational, semi-supervised learning model that propagates labels

from labeled data to unlabeled data. The construction of a similarity graph between data

samples allows for an implicit consideration of relations and geometry in the features. Com-

bining this method with unsupervised neural network feature extraction is a very powerful

technique that is explored in Chapters 4 and 5.

In Chapter 2 we discuss traditional image processing techniques for image detection and

segmentation. Unlike most machine learning methods, these methods have no learnable pa-

rameters. They often utilize hand-crafted features that experts can tune manually for the

given task. The benefit of these methods is that if the user is aware of the conditions of

7

the data and there is sufficient uniformity, then very few data samples would be required

to tune the models by hand. In particular, Chapter 2 will detail methods for object de-

tection including the circle Hough Transform and generalized Hough Transforms as well as

an iterative segmentation technique known as snake active contours. These methods will

be reviewed, analyzed, and applied to a small dataset of custom made particles for medical

testing. In Chapter 3 we begin our transition away from traditional techniques and towards

the deep, machine learning techniques that have seen such prevalence in the recent years.

For the sake of image processing in the low label regime, we consider and explore techniques

for learning feature embeddings of images in the unsupervised regime. The methods we

review in this section are autoencoders in Section 3.2.1 and contrastive learning in Section

3.2.2. Moreover, we also introduce and develop graph-based semi supervised learning as

well as active learning in Sections 3.4, 3.5, and 3.6, which together with a trained feature

extractor can provide for a strong classification pipeline. In Chapter 4 we examine synthetic

aperture radar (SAR) datasets. First we introduce background on SAR data and then in-

troduce two datasets, where one is a simple user modified dataset and the other is a public,

benchmark dataset. These are remote sensing datasets and are often difficult to manually

label since they require domain specific knowledge. Using the methodology in Chapter 3, we

show strong classification performance on both of these datasets including state of the art

performance on the benchmark dataset. In Chapter 5 we examine hyperspectral data. We

include an introduction to hyperspectral data and many interesting applications in the field.

Unique for having detailed spectral information compared to normal images, this data, sim-

ilar to SAR data, is also difficult to manually label. We utilize similar methodology largely

introduced in Chapter 3 but with domain specific considerations in mind. We apply these

methods towards hyperspectral pixel classification for the detection of recycling material in

waste management. Chapter 6 serves as the conclusion to this body of work and summarizes

many of the significant results.

8

CHAPTER 2

Traditional Image Processing with Applications to

Particle Detection and Classification

2.1 Introduction

The work discussed in this chapter is largely adapted from the paper ”Detection and segmen-

tation of shape-coded particles via Hough Transforms and snake active contours”, published

in the Southwest Symposium on Image Analysis and Interpretation (SSIAI) in 2024 © 2024

IEEE [3]. Notably, Sections 2.3.4 and 2.3.5 contain new material that is not present in the

mentioned work. Additional details are present in the other sections as well. This discussion

on the broad topic of traditional image processing techniques focuses on image detection,

segmentation, and classification motivated by a particle microscopy dataset. This dataset

was made available by Professor Dino Di Carlo and fellow graduate student Alyssa Arnheim

and the contributions to the imaging problems were done with assistance of Professor Andrea

Bertozzi. My contributions include exploring image processing techniques, tuning methods,

writing code, performing experiments, and analyzing convergence properties. The problem

is introduced in Section 2.2 and more details on the dataset are provided in Section 2.2.1.

A background on related works and techniques is covered in Section 2.3.1. The detection

and segmentation of the particles as well as an analysis on the convergence of the segmen-

tation technique is discussed in Section 2.3. The conclusion and results from the work are

summarized in Section 2.4.

9

2.2 Particle on a Chip

To tackle the issue of mass parallel medical testing, special microscopic annular particles

have been developed [24]. These particles serve as the solid surface for a particle-based

immunoassay, capable of trapping and detecting biomarkers of interest. The particles consist

of concentric polymer layers that have a hydrophobic outer layer and hydrophilic inner layer.

The inner layer traps the fluid containing the biomarkers and the outer layer prevents mixing

with other fluids in the well. The particles are manufactured with a 3D printed device to

co-flow four concentric streams of polymer precursors, which are polymerized with UV light.

The cross-sectional shapes, such as the squares and circles we examine, are designed with a

microfluidic nozzle design in the process [25]. Prior work using these particles reported the

detection of a heart failure biomarker across clinically relevant ranges [26]. High fluorescence

in the internal cavity of the particle indicates the presence of the biomarker.

Ideally, these particles would be used in multiplexed diagnostics, offering advantages

such as reduced reagent usage, enhanced accuracy through swarm-sensing, and paralleliza-

tion. These particles exhibit the capability to stabilize nanoliter aqueous droplets in the

inner annular region, facilitating signal amplification while maintaining independent particle-

based reactions. The resulting endpoint fluorescence of these droplets correlates with the

biomarker concentration in the patient sample, providing valuable information for disease di-

agnosis. Due to the intended swarm-sensing nature, it is vital to have an autonomous image

processing technique that is able to differentiate between particles in the imaging well. By

automatically detecting and separating the particles, researchers will be able to efficiently

and reliably determine the amount of fluorescence in each reaction, therefore determining

the presence of the desired biomarkers. In order to differentiate the particles within an

imaging well with an autonomous method, it is necessary to make the particles visually

distinct. We explore a shape distinction, wherein both circular and square shaped particles

can be used simultaneously. Each distinct shape can be assigned to different patients or

10

biomarkers, enabling the collection of more comprehensive information in each diagnostic

test. For this framework, we explore methods that can detect the distinct particle shapes

and, consequently, classify the particle as a circle or a square. Furthermore a segmentation

of the particles can be readily acquired. Our approach to this problem is covered in Section

2.3.

2.2.1 Dataset

The dataset consists of images with size of 2048x2048 pixels taken using a Nikon Eclipse

Ti2 microscope. The particles are photographed within the well of a 24-well plate. Images

are collected at 4x magnification and all bright-field images were captured using phase mi-

croscopy to accentuate the features of the particles. The images were taken in both a bright

field and dark environments. The bright field images allowed the particles in the imaging

well to be clearly observed with their distinct markings while the dark environment showed

little features other than fluorescence in particles with detected biomarkers. Together, the

bright field images would be used to spatially locate the particles and classify them based

on their distinctions, while the dark images are used to measure the fluorescence intensity,

which correlates to the amount of biomarker in the particle. For our work, we only use

the bright field images. Although it is possible to use the fluorescence in dark images to

locate particles, this method would be suitable only for training purposes, as non-fluorescing

particles would not be detectable in such conditions.

In this specific dataset, there are many features that make it notable and distinct which

influence our design choices in the future. First, it is important to note the significant cost,

in terms of both energy and time, required to generate and image batches of these parti-

cles. Because of this, the dataset is rather small, with the number of viable particles per

class numbering on the order of 50-150 particles. This already indicates that the viability of

machine learning techniques will be hampered, as the limited training data will likely cause

overfitting. Another notable feature of the dataset is that the particle’s shape and size are

11

Figure 2.1: Example of an image from a mixed particle well with circular and square particles. Two

square particles can be observed in the upper right of the image whereas the rest of the particles

are circular. Particles on their side and various artefacts add noise to detection.

generated with a relatively high degree of uniformity. This further supports the choice of us-

ing hand-crafted image processing features since we can reliably tune a model using very few

samples and be confident that the model will generalize well to unseen data. Unfortunately,

the nature of imaging particles in an aqueous solution under variable lighting conditions

introduces significant noise in the images. The noise includes overlapping particles, particles

that are on their side, liquid condensate, light and dark regions, and significant blurring.

2.3 Detection and Segmentation

2.3.1 Background

A recent, independent work uses deep learning methods for a similar problem, analyzing a

dataset with ten different particle shapes, each represented by approximately 102-152 sam-

12

(a) (b) (c)

Figure 2.2: Cropped images of particles. (a) Circle particle. (b) Square particle. (c) Square

template. © 2024 IEEE

ples [27]. A natural limitation of deep learning is the need for sufficiently large and varied

datasets to train on as well as substantial amounts of time and energy dedicated towards

annotating the datasets. Deep learning is known to produce variable results when a model

trained on one dataset is applied to another, especially under differing collection conditions.

Moreover, adversarial attacks on neural network models have shown that classification results

can often be sensitive to relatively imperceptible perturbations [28]. For this particular ap-

plication, the particles can be mass produced and delivered to laboratories that have different

configurations for lighting and imaging, making it difficult to develop uniform performance

bounds for detection. Instead, we consider a classical approach for identifying circle and

square particles, with similar performance to [27]. The benefit of this method is that it

can be be calibrated on a small number of images, adapted to many different laboratory

environments, and does not depend on deep learning hardware. The proposed method is

also constructed in a way that would allow for rigorous theory to be developed for parts of

the detection pipeline. We present some examples of such theory later in this chapter.

Our work is, in part, inspired by earlier work on blood cell segmentation. For example,

[29, 30] uses a k-means clustering on the pixel values to separate the blood cells from the

13

background followed by the watershed segmentation method. Another method [31] involves

the Canny edge detection method and shape geometry. For dispersion control of circular

particles [32], the circle Hough Transform has been used and compared with deep methods,

as well as the ellipse and line segment detector method [33]. Unlike some of the blood

cell datasets, the particles in our dataset are largely transparent (see Figures 2.2 and 2.1),

therefore requiring edge based methods. We combine the Canny edge detection [14] method

with both the circle Hough Transform [34] and the Merlin-Farber Algorithm [35], which is

a form of template matching [15]. After detection, we employ snake active contours [17, 36]

to segment the boundaries of the square-shaped particles. The Python code for our method

is available on GitHub1.

2.3.2 Circle Hough Transform

In this section, we provide a brief review of the circle Hough Transform, introduced by Duda

and Hart in [34]. The circle Hough Transform provides an efficient way to detect circles of a

specified radius, either known or estimated, from within an image. The idea of the method

is that if a circle is present in an image, then there will be edge pixels a distance of r from

the center of the circle. Thus, for each detected edge pixel in an image, we can track all

possible centroids that might correspond to that edge pixel. If there is a circle in the image,

then the circle’s centroid will be considered a viable candidate for a large number of edge

pixels. The process is demonstrated in Figure 2.3 where we see that four points taken from

the boundary of a circle all vote on the centroid of the circle.

To implement this process, we first generate an accumulator matrix, A, which tracks

potential centroids based on the votes from edge pixels. If we are only interested in detecting

circles with a centroid within the image, then we fix the size of A to be that of the original

image. Since we are only interested in processing edge pixels, we also use the Canny edge

1https://github.com/jasbrown96/ParticleDetectionSeg

14

https://github.com/jasbrown96/ParticleDetectionSeg

Edge
Center

Figure 2.3: Demonstration of the Circles Hough Transform. Selecting four points on the edge, the

circle of radius r centered at those points intersects at the true centroid.

detector algorithm to refine our original image down to simply edge pixels. For each detected

edge pixel, we increment the count for each entry in the accumulator matrix that is a distance

r from the pixel location, ensuring we remain within the matrix boundaries. After this

is done, the values in the accumulator matrix will be interpreted as ’votes’ for centroid

locations, representing the number of edge pixels that were a distance r away. We can then

threshold the votes and apply non-max suppression to determine actual centroids in the

image. Thresholding will set a criteria for what is considered a centroid detection and non-

max suppression is used to select the most confident detection in a local region, eliminating

redundant detections to produce a single value.

2.3.3 Template Matching and Hough Transforms

Template matching is a method to detect specific shapes in images. Given some image I(x, y)

and a template T (x, y), the simplest and straightforward way to proceed with the template

matching involves a cross-correlation of the template with the image

(T ⋆ I)(x, y) =
∑
xt,yt

T (xt, yt) · I (xt + x, yt + y) .

15

When the template aligns with the desired shape in the image, centered at some (x∗, y∗),

the value of (T ⋆ I)(x∗, y∗) will be large, indicating a strong match [15].

This approach is computationally time-consuming, does not benefit from sparsity in the

images, and generally may require many templates to account for shape, size, and orientation.

In our case, we are interested in using template matching to detect the square particles. We

can leverage some properties of the squares to alleviate the aforementioned downsides of

template matching.

First, we may assume that the square particles generally exhibit a high degree of unifor-

mity in terms of shape and size, as well as 90° rotational symmetry. These factors greatly

reduce the search space and allow us to use relatively few templates in the process. For the

work in this section, we use the template shown in Figure 2.2(c). Our template bank consists

of only 10 templates that uniformly span the 90°s of variation, providing uniform coverage

of all possible orientations. In other words, we use the template in Figure 2.2(c) as well as

9 other templates that are identical up to rotation. Moreover, the important, distinguishing

information in the particles is only in the outer edge, since their interior is largely trans-

parent. Similar to the circle Hough Transform, we first pass the image through a Canny

edge detector and then only consider template matching with the detected edges, ensuring

sparsity. Considering the sparsity of these images, we use the Merlin-Farber Algorithm for

the square particles, which greatly reduces the overhead cost of the cross correlation [35].

To describe the algorithm, we define the edges of the image as

E(x, y) =

1 (x,y) is an edge

0 otherwise

and the binary edge template T (x, y) defined similarly. Let (a, b) represent the reference

point for the template, which is typically the center of the template. For each edge in the

template, (x∗, y∗), we construct a vector, r(x∗,y∗) = (a−x∗, b− y∗), that points from the edge

to the reference location. The collection of these vectors can be used in a similar fashion

16

to the circle Hough Transform, where a given edge pixel can now vote in the accumulator

matrix towards a potential reference point.

To accomplish this, we consider the set of vectors that point from edge pixels to the

reference pixel to be R. When searching for the template in the edge image, each pixel votes

on the possible reference point by using the vectors in R. Figure 2.4 shows this process for

a single edge point. In Figure 2.4(a), we start with an arrow-shaped example template with

a reference point clearly marked and denoted as ”Center”. In Figure 2.4(b), an arbitrary

edge point is selected and the vector pointing from the edge point to the reference point is

shown. In Figure 2.4(c), we act as if we are viewing the edge information in the image. The

same vector that pointed from the edge point to the reference point is shown. Moreover,

this process gives intuition to the idea that if all of the vectors in R were added to the edge

point, the original template, rotated by 180°s, appears centered on the edge pixel. This

makes sense as the original template is generated by the vectors pointing from the center

to the edge. The flipped template is generated by rotating those vectors 180°s, effectively

reversing their direction from pointing to the edge from the center, to pointing to the center

from the edge.

To implement the Merlin-Farber Algorithm, we first create an accumulator matrix to

keep track of the votes from the edge pixels, similar to the circle Hough Transform. Then

we rotate our template by 180°s. This rotated template is used as a mask and added to

the accumulator matrix wherever an edge pixel is detected. This process is outlined in

(Algorithm 1) and visually shown in Figure 2.5.

For the sake of our work, the Merlin-Farber Algorithm described previously is sufficient.

However, within the broader image processing community, the generalized Hough Transform,

introduced by Ballard, is often considered superior due to its enhanced efficiency [37]. In

the Merlin-Farber Algorithm, the edge pixels vote for the reference point based on all of the

vectors collected from the template. In large or high resolution templates, this set of vectors

can be quite large and it may require processing a large number of votes.

17

Center

Edge

(a)

Center

Edge

(b)

Edge

Center

(c)

Figure 2.4: Principle of Merlin-Farber Algorithm. (a) An arrow represents an example template

and a reference point is marked as ”Center”. (b) Selecting an arbitrary edge point allows a vector

pointing to the reference to be constructed. (c) If the template were rotated 180° and centered on

the edge point, then the vector would point to the original center location.

Algorithm 1 Merlin-Farber Algorithm

Input: The edges, E ∈ {0, 1}n1×m1 , and a template T ∈ {0, 1}n2×m2 .

Output: The accumulator matrix A ∈ Rn1×m1 .

Rotate the template, T, by 180°s.

Initialize empty, padded accumulator matrix A.

For each (i,j) such that E(i,j)=1

Update accumulator matrix:A(i− n2
2 : i+ n2

2 , j−m2
2 , j+m2

2)+=T

Remove padding from A

The generalized Hough Transform reduces the number of vectors used in the voting

process, reducing computation. The generalized Hough Transform has an additional step

where an R-table is constructed. For each edge pixel in the template, the vector pointing to

the reference point and the image gradient at that point are recorded in the R-table. The

image gradient is essentially used to keep track of the orientation of the edge pixel with

respect to the reference point. In this R table, rotations can be built in by rotating the edge

gradient and stored vector respectively. Scaling can be more easily built in by scaling the

18

(a)

Center

(b)

Figure 2.5: The Merlin-Farber Algorithm. (a) A given template is marked with four edge points.

(b) By rotating the template 180° and overlaying it, centered on the edge points, the templates all

intersect at the center of the arrow. The templates act as the votes from the edge pixels.

size of the vectors in R. In practice, when an edge pixel is detected in an image, its image

gradient is matched in the R table and the corresponding vectors that are associated with

the edge gradient will be used for voting. By using the image gradients to filter out vectors

for the voting process, the voting requires less computations and therefore is quicker and

more efficient. Future work could develop this method for a more optimized approach to

particle detection.

2.3.4 Segmentation

Once the particles have been detected and the centroids located, the next step is to segment

the particles. For the circles, segmentation is quite straightforward since the radius is deter-

mined during the detection process, where a range of radii are swept over and checked for

best match. Implicitly, a segmentation is found by simply selecting all of the pixels that are

19

a radius’s distance away from the located centroid.

For the square particles, more work is required. Although the Merlin-Farber Algorithm

does give insight into the boundary of the particle, there is less uniformity in the square

particles and the orientations may not line up exactly. For these reasons, we look for a

method that offers higher precision and adaptability. We consider the variational segmen-

tation method known as snakes, which are active, edge-based contours that iterate until

convergence [17]. Snakes are initialized to some task-dependent curve and then automati-

cally evolve during an energy minimization process. The energy in this variational problem

can be interpreted as a cost or penalty on a given snake curve, and that by minimizing the

energy or cost, we are locally adapting the snake to achieve desirable properties. In a snake,

there are several energy terms, often grouped into internal, external, and image energy terms,

shown in Equation 2.1 here [38]

Esnake =

∫ 1

0

Eintern (x)ds+

∫ 1

0

Eextern (x)ds+

∫ 1

0

Eimage (x)ds. (2.1)

The internal energy terms control the stiffness and tension of the snake, which are reg-

ularization terms to ensure smoothness and tightness of the curve. The external energy

is useful for certain applications where the user of the snake might manually influence the

snake and attract or repel it from certain regions. The image energy contains the terms that

use the image information and control the attraction to edges, lines, and termination. For

our problem, we are not interested in using an external energy as the process is autonomous

and does not involve any operator management. For the image energy, we only consider

the edge functional although we note that further tuning with the termination energy term

could potentially lead to stronger results.

Here we introduce the internal and edge energy terms for a snake contour, x(s, t) :

[0, 1]×R+ → R2 that depends on a space and time parameter and a given image I(x, y). We

use periodic boundary conditions on our snake, ensuring it is a closed curve, to segment the

particles. Thus we require that x(0, t) = x(1, t). The following terms represent the internal

20

and edge energy respectively:∫ 1

0

Eintern (x)ds =

∫ 1

0

a(s) |xs(s)|2︸ ︷︷ ︸
Tension

+ β(s) |xss(s)|2︸ ︷︷ ︸
Stiffness

ds

∫ 1

0

Eedge (x)ds = −w

2

∫ 1

0

∣∣∣∣∂I∂x
∣∣∣∣2 ds

(2.2)

where a(s), b(s), and w are hyperparameters controlling the tension, stiffness, and edge

attraction. Usually a(s) and b(s) are constant, so in the future we just use a(s) = α
2
and

b(s) = β
2
. When we refer to derivatives with respect to curves, we are referring to the

image gradient (or Hessian) evaluated at the curve. In this sense, the edge energy tracks the

magnitude of the image gradient along the curve and by minimizing the expression, we are

attempting to locally maximize the size of the image gradient along the snake. We choose

to exclude the line energy term that attracts the snake to light or dark regions, since the

boundary of the square may have both light and dark intensities depending on the direction

of the light source and shadows (see Figure 2.2(b)).

The internal energy for the snake controls the length and smoothness of the contour.

Since |xs(s)|2 can be interpreted as the square magnitude of the ’velocity’, the tension term

prevents the snake from stretching too far. The second derivative term |xss(s)|2 can be

interpreted as the square magnitude of ’acceleration’ and minimizing this term can prevent

sharp corners from appearing.

In order to locally minimize the total energy function

E(x) =

∫ 1

0

α

2
|xs(s)|2 +

β

2
|xss(s)|2 −

w

2

∣∣∣∣∂I∂x
∣∣∣∣2 ds (2.3)

we use gradient descent. For details on taking the derivative in a calculus of variations sense,

we refer to Section 4.2 in [38]. The resulting updates for the gradient steps, with step size

of δt, are

δx = −δt (−w∆I∇I − ax′′ + βx′′′′) (2.4)

where ∆I is the Hessian matrix representing the second derivative of the image with respect

to the curve and∇I is the image gradient with respect to the curve. From this interpretation,

21

we can see that convergence will be achieved when the gradient is 0, which corresponds to

the Euler-Lagrange equation

−w∆I∇I − ax′′ + βx′′′′′︸ ︷︷ ︸
Energy Gradient

= 0. (2.5)

The terms in the Euler-Lagrange equation, as well as those in the gradient descent formula,

can be interpreted as energy forces that compel the snake to evolve in a certain direction,

guiding it towards a local energy minimization. So a curve that solves the snake problem

can be either thought of as locally minimizing an energy function or reaching an equilibrium

between the forces, which is the interpretation we use in our analysis [36].

Normally, these snakes, as introduced by Kass [17] and discussed above, will contract

and converge on edges. However, proper convergence to the target particle requires the

initial curve for the snake to be outside of the particle. This means convergence becomes

challenging when particles overlap or are adjacent, introducing additional edges that may

attract the snake. To solve this problem, we use balloon snakes, introduced by Cohen [36]. A

balloon force on the snake is an additional force term that dictates whether the curve should

expand or contract. With this additional force term, we can choose initializations for the

snake to be within the particle and allow the snake to expand outwards and converge from

within, minimizing the influence of noise. The initialization for the snake is chosen to be a

circle centered on the square particle with radius large enough to exclude the inner annuli

but small enough to stay within the particle. Due to the uniformity of the particles, this is

easily achieved.

The balloon force is expressed as a modification on the image force as seen here

F = kn(s)− k1
∇P

|∇P |
(2.6)

where P = −
∣∣ ∂I
∂x

∣∣2 and n(s) is the normal direction to the curve. The motivation provided

by Cohen for this force is that by choosing k to be a positive constant, we are adding a

force that expands the closed curve x outwards, ballooning it. In order for convergence

22

(a) (b)

Figure 2.6: A blurred white circle is used as an example to demonstrate the snake forces reaching

equilibrium. (a) The initial snake contour is shown in the green dashed line. The balloon force is

represented by the red arrows pointing outward, compelling the snake to expand radially. (b) After

expanding, the image forces will balance with the balloon forces and convergence will reached just

outside the circle.

to be reached, the balloon force will need to eventually reach equilibrium with the image

force, so it’s recommended to choose k and k1 to be approximately of the same order with

k slightly smaller than k1 to ensure that the balloon force does not push the snake past

all edges. We expect that for a positive balloon force, the snake will converge just outside

of the target edge, as the image force will need to be contractive for cancellation. This is

visually demonstrated in Figure 2.6. The equilibrium of forces is represented by the following

equation, where all forces are balanced and sum to zero:

−kn(s)− k1
∆I∇I

|∆I∇I|
− ax′′ + βx′′′′′ = 0. (2.7)

Thus far, we have been following Cohen’s details regarding the balloon force, but we

23

note that the above expression normalizes the edge force and simply sets it to some constant

k1. This may be undesirable since it provides a constant force towards the edges, regardless

of their magnitude. For some applications, this may be desirable, but we instead consider

the equation without the normalization on the the edge intensity since we desire that the

snake ignores weak edges and clings to the more intense edges we assume will be the particle

boundaries. We return the hyperparameter w from Equation 2.3 to replace the normalized

image force:

−kn(s)− w∆I∇I − ax′′ + βx′′′′ = 0. (2.8)

Similar to the method used for the standard snake formulation, we use gradient descent

but adapted with the extra balloon force term. Gradient descent would give updates as

δx = −δt (−kn(s)− w∆I∇I − αx′′ + βx′′′′) . (2.9)

The next challenge is in balancing the hyperparameters for the coefficients in the above equa-

tion. In a practical sense, the dataset we are working with has variable lighting conditions

so the edge intensities will be varied. Notably, we are concerned with balloon forces that

are too large, pushing the snake outside the particle, or too small, allowing for convergence

on the inner annuli or noise. To solve this, we fix the internal and image energy parameters

and use an adaptive search to tine-tune the balloon force for each of the particles, ensuring

that the area enclosed by the snake is near the estimated area of the square particles. We

know the approximate size of the square particles and can calculate the area enclosed by the

snake by using methods such as the shoelace formula or other similar formulas [39]. Simply,

if the area enclosed by the snake is too large, we reduce the balloon force and if the area

enclosed by the snake is too small, we increase the balloon force until we reach a certain

number of iterations or the area is acceptable. We reason that if there is an interval of

acceptable balloon force coefficients, k, then a simple binary search would find a value of k

in the interval since we would be able to identify k values that are too large or small. To

24

provide some level of justification for the convergence of the balloon snake, we consider a

simplified case below and show convergence for the snake under certain conditions.

2.3.5 Convergence of Snake

In this section, we prove conditions on the balloon force that guarantee a snake can converge

in a simple case of a circular initialization converging to a circular image. For an image,

I, energy parameters w, α, β consistent with Equation 2.3 and a given balloon force k, con-

vergence is reached when equilibrium is obtained in the forces, seen in Equation 2.8. Since

there may be a range of balloon force values that give convergence, we frame the proof in

such a way as to provide bounds for k. It is worth noting that we do not expect the snake

to converge directly to the edge, but rather slightly outside the edge, since the expanding

balloon force equalizes with the contracting image and internal forces.

Theorem 1. Let I(r) : [0, 2] → [0, 1] be a C2, radially symmetric image as a function of

the distance from the origin. Let x :
[
0, 1

]
× R+ → R2 be a snake curve with initialization

x(s, 0) = r(cos(s), sin(s)) where 0 < rin < r < rout. Let 0 < w,α, β be hyperparameters

corresponding to the edge energy, tension, and stiffness terms respectively from equation 2.9.

Then the curve x(s, t) will converge to a circle of radius req satisfying rin < req < rout via

gradient descent from 2.9 if the balloon force parameter k satisfies

−wIrIrr(rin) + (α + β)rin < k < −wIrIrr(rout) + (α + β)rout.

Proof. First, we provide a brief justification that all of the image forces in the gradient:

kn(s)− w∆I∇I − αx′′ + βx′′′′ (2.10)

act in the radial direction, where the derivatives on I are with respect to the curve x and the

derivatives on x are with respect to the spatial parameter. The image is radially symmetric,

so ∆I∇I is only nonzero along n(s), the outward pointing normal vector. Also, for a circular

25

snake with radius r(t),

x′′ = −r(t)n(s) and x′′′′ = r(t)n(s). (2.11)

Therefore, because of preservation of radial symmetry in gradient descent, we can instead

express the equation of the snake as

x(s, t) = r(t)n(s) (2.12)

where the time derivative of r(t) is given by

r′(t) = −k − wIrIrr(r(t)) + (α + β)r(t). (2.13)

This proof now consists of two claims. First, we show that the gradient is negative when

r(t) = rin, corresponding to the snake expanding, and also the gradient is positive when

r(t) = rout, corresponding to the snake contracting.

When r(t) = rin, we have assumed that −wIrIrr(rin)+(α+β)rin < k. So when r(t) = rin,

r′(t) = −k − wIrIrr(rin) + (α + β)rin < 0. (2.14)

Since this gradient is negative, then r(t) will increase under gradient descent and the snake

contour will expand.

When r(t) = rout, we assumed that k < −wIrIrr(rout)+ (α+β)rout. So when r(t) = rout,

r′(t) = −k − wIrIrr(rout) + (α + β)rout > 0. (2.15)

Since this gradient is is positive, then r(t) will decrease and the snake contour will

contract. Since the snake will expand when r(t) = rin, contract when r(t) = rout, and is

initialized with initial radius r satisfying rin < r < rout, then the radius of the snake is

trapped between the boundaries. The region between rin and rout is an absorbing set. Since

I is a C2 function, this region would contain some value req such that

−k − wIrIrr(req) + (α + β)req = 0. (2.16)

26

With gradient descent minimizing the magnitude of the of the gradient, the snake would

converge to such an req.

The first thing to note about this proof is that we assumed that the snake was already

initialized within the local well for convergence. In practice, we expect to initialize our snake

with a radius smaller than rin and let the balloon force and image energy term draw the

snake into the absorbing set. Another important feature to recall is that with the balloon

force, we do not expect to converge directly to the edge in the image, as the direct edge of

the image would correspond to IrIrr = 0 rather than the condition in Equation 2.16. Below

we consider two separate examples which illuminate characteristics of the snake equation.

Example 2.3.1. First, we consider the ordinary differential equation outlined in Equation

2.13, with the assumption that the image term were absent or otherwise IrIrr = 0. This

would allow the differential equation to simplify to

r′(t) = (α + β)r(t)− k. (2.17)

If α+ β = 0, then the balloon force is the only remaining force and the snake would expand

or contract indefinitely, based on the sign of k. Assuming α + β > 0, this equation has

solutions of the form r(t) = k
α+β

+ ce(α+β)t for some constant c. Convergence, however, is

reached when r′(t) = 0, which occurs when

r(t) =
k

α + β
. (2.18)

This is the radial value at which the balloon force and the regularization forces come to a

balance naturally on their own. Given the radial formulation posed in Theorem 1, this will

also result in a circular snake.

If the radius of the initialized snake is not exactly k
α+β

, then the initial condition would

result in some nonzero c in Equation 2.17. If c > 0, then the radius of the snake is larger

than equilibrium and r′(t) > 0 would cause gradient descent to contract the snake. Similarly,

27

when c < 0, we see that the snake would expand. Thus, whether the snake is initialized with

a radius value too small or large, it will converge to the equilibrium radius of k
α+β

.

Example 2.3.2. The second example we consider is a step function blurred by a Gaussian

kernel for smoothness. Assume that the radial image I(r), defined by a step function with

an edge at r = 1 is given by:

I(r) =

0 if r < 1

1 if r ≥ 1

. (2.19)

Applying Gaussian smoothing via convolution will produce

J(r) =

∫ ∞

−∞
I(τ)G(r − τ)dτ (2.20)

where

G(r) =
1√
2πσ2

e
−r2

2σ2 (2.21)

is a Gaussian function with σ being the standard deviation. Because I is the step function

and G is symmetric, we see that

J(r) =

∫ ∞

−∞
I(τ)G(r − τ)dτ

=

∫ ∞

1

G(r − τ)dτ

=

∫ r−1

−∞
G(τ)dτ.

(2.22)

With this blurred image, we now apply the fundamental theorem of calculus to get the first

and second derivatives

Jr(r) = G(r − 1) and Jrr(r) = Gr(r − 1). (2.23)

Therefore, the product of the first and second derivatives is

JrJrr(r) = GGr(r − 1) =
1− r

2πσ4
e−

(r−1)2

σ2 . (2.24)

28

(a) (b) (c)

Figure 2.7: Functions from Example 2.3.2. (a) Step function, I. (b) Gaussian smoothed step

function, J . (c) Image force term JrJrr.

The functions I, J , and JrJrr are visually plotted in Figure 2.7. JrJrr(r) has a local

extrema at r = 1±
√
2σ2

2
with corresponding values

JrJrr(1−
√
2σ2

2
) =

√
2

4πσ3
√
e

and JrJrr(1 +

√
2σ2

2
) =

−
√
2

4πσ3
√
e
. (2.25)

Treating these extremal values as rin and rout from Theorem 1 and assuming 0 < w,α, β

are fixed hyperparameters corresponding to the edge energy, tension, and stiffness terms

respectively from equation 2.9, then this region would act as a potential well for any snake

with balloon force values, k satisfying

−w

√
2

4πσ3
√
e
+ (α + β)(1−

√
2σ2

2
) < k < w

√
2

4πσ3
√
e
+ (α + β)(1 +

√
2σ2

2
). (2.26)

2.3.6 Detection Pipeline

The process for detecting and segmenting the circle and square particles is shown in Figure

2.8 and outlined here:

1. Canny Edge Detector: First we apply the Canny edge detector to the images with

a pre-chosen low and high threshold that strike a balance between preserving edges and

removing noise.

29

Figure 2.8: Flowchart for the procedure. (a) The original bright image before any processing has

been done. (b) The edges detected by the Canny edge detector. (c) The accumulator matrix from

the Merlin-Farber Algorithm. Note the brightest points in each image correspond to the detected

centroids for the shapes. The square accumulator matrix has more noise indicated by greater overall

brightness. (d) The circle accumulator matrix from the circle Hough Transform. (e) The detected

centroids after thresholding the respective matrices and applying non-max suppression. The blue

dot corresponds to the square centroid and the red dots correspond to the circle centroids. (f) The

segmentation results. The circles are segmented from the knowledge of their radii and the square

is segmented with a snake. The initial curve for the snake is shown by the green line and the final

contour is shown in blue. © 2024 IEEE

2. Circle Hough Transform: Next, we apply the circle Hough Transform with a prede-

termined threshold and search over known radiuses for the circles to identify circle centroids

and radii.

3. Merlin-Farber Algorithm: Then, we use the template bank for square particles with

the Merlin-Farber Algorithm on the edge image to detect the centers of the squares (as

detailed in Algorithm 1).

30

4. Post Process Peaks: To post process, we first apply non-max suppression and enforce

that centroids of any detected squares or circles are separated by a fixed distance correspond-

ing to the radius of the particles. Secondly, if a particle is detected as both a square and

circle, we default to the circle classification due to greater uniformity of the circle particles

and lower error in the circle Hough Transform.

5. Segment: For the squares, we initialize a circular snake about the centroid with a radius

large enough to exclude the inner annular region. We use a positive edge attraction and

adaptive balloon force to ensure that the area of the snake is within tolerance of the square.

For the circles, we use the radii returned from the circle Hough Transform to select the

correct pixels.

2.3.7 Experiments and Results

Recall that one of the motivations for choosing the discussed methods, as opposed to deep

learning methods, was the limited availability of data. With that in mind, the dataset

available with square and circular particles for hyperparameter tuning and testing is relatively

limited. We choose 15 images that contain combinations of square and circular particles

under various conditions to tune hyperparameters and use five additional images for testing.

Omitting Gaussian blurring prior to the Canny edge detector will cause noise to be

sharper and thus more prevalent in the edge detection. Despite this, we prioritize the de-

tection of the particle images and so choose to omit Gaussian blurring. For the Canny edge

detector, we use a sigma value of 0, low threshold of 100, and high threshold of 150. Setting

Canny thresholds too low can introduce excessive noise, greatly increasing the computational

cost for the Merlin-Farber Algorithm and necessitating further tuning of the thresholds for

the object detection. A downside of using higher thresholds is that particles in darker regions

of the images are less prominent and their edges may be undetected. Failure to detect the

edges will lead to a failure to detect with the edge based object detection methods. For the

circle Hough Transform, we use the Sci-Kit image library and a threshold of 0.25 [40]. We

31

search over circles with radius between 120 and 130 pixels.

In order to use the Merlin-Farber Algorithm for the square particles, we need to generate

various templates that we expect to match with. We use the template seen in Figure 2.2(c)

as the guideline and then nine rotated variants of the template with rotation spacing of

10°, utilizing the 90° rotational symmetry in the squares. More templates would improve

accuracy but increase computation time. Similarly, decreasing the number of templates

would decrease the computational time, but would also decrease the accuracy by potentially

missing particles with specific orientations. With these 10 references, we use a threshold of

60 to indicate a detection of a square. In the non-max suppression, we select the greatest

peaks and enforce a distance of 150 pixels between peaks, roughly correlating to the radius

of the particles. The snakes for the square particles are initialized as circles centered on the

detected centroid with a radius of 110 pixels. We use α = 0.03, β = 10, γ = 0.001, and

w = 1.5 as the snake parameters from Equation 2.3 and begin the balloon force search with

k = 0.003, where γ is the parameter corresponding to the time step in the gradient descent.

The code for the snake active contour is based on the implementation from scikit [40], so the

experimental parameters may not have a one-to-one correspondence with their discussion.

For example, the internal force appears dependent on the number of nodes used to discretize

the snake; increasing the number of nodes will smooth the snake and decrease the magnitude

of the derivatives. For these experiments, we use 400 nodes in the snake. The upper and

lower limits for the allowed snake area is 58000 and 54500 square pixels respectively. If the

area of the converged snake is too small, we increase the value of k until it is too large and

then perform a binary search. We similarly modify the value of k if the snake area is initially

too small.

We note that in these experiments, particles near or on the boundary were not included

for detection and segmentation purposes. In the 20 image dataset, we count that there are

62 reasonably identifiable square particles and 49 reasonably identifiable circle particles. Our

method correctly detects and segments 59 of the square particles and 40 of the circle particles.

32

(a) (b)

Figure 2.9: Results applied to mixed particle wells that include both squares and circles, showing

performance in mixed particle wells. © 2024 IEEE

There are no false positives, which is ideal for medical testing. The false negatives all occurred

on darkened regions of the images, likely resulting from a failure in edge detection.

Figures 2.9, 2.10, and 2.11 show an overlay of the detected centroids and segmentations

for six notable images that were chosen to showcase various conditions. In Figures 2.9(a) and

2.9(b), the images contain a mixture of the circles and squares demonstrating differentiation

between types. Figures 2.10(a) and 2.10(b) showcase non-mixed particle detection from

images that have many particles. In these images, particles are adjacent to one another and

experience noise effects such as overlapping particles and fluid condensate as well as lighting

variations. Figures 2.11(a) and 2.11(b) show particles on the edge of the imaging well that

are obscured and thus are very difficult to detect due to low contrast. In summary, although

some of the particles are not detected, a large amount of them are despite the presence of

noise in the image. Moreover there are no mis-classifications, which indicates a high precision

score and is ideal for the application purpose.

33

(a) (b)

Figure 2.10: Results from the method applied to images that contain only squares and circles

respectively, showing independent performance for each particle type and robustness to noise such

as overlapping particles and fluid condensate. © 2024 IEEE

2.4 Conclusion

The problem of detecting and segmenting the mixed particles under various lighting condi-

tions is quite challenging. This presentation of classical techniques for solving the problem

not only automates the process of detecting and segmenting the particles, but is done in a

fashion that is interpretable and allows for simple calibration of parameters for the instru-

ment being used, which is often not possible with deep learning techniques. Further work

would consider additional particle morphologies to increase the scalability of the method, as

well as methods to increase robustness to noise and the extreme lighting conditions found

near the edge of the imaging wells. We would also explore the Ballard Hough Transform

which could reduce the computational cost of the detection algorithm.

34

(a) (b)

Figure 2.11: Results from the method applied to squares near the edge of the imaging well.

Particles which are largely obscured are not detected by the process. © 2024 IEEE

35

CHAPTER 3

Review of Feature Extraction, Graph Learning, and

Active Learning

3.1 Introduction

In this chapter, we transition from the classical methods explored in the previous section to

methods that utilize deep neural networks and graph learning. Our focus is on unsupervised

neural network encoders, particularly useful in scenarios with a low label rate. These neural

networks will be paired with a graph-based semi-supervised learning methods.

The first section of this chapter establishes a classical and well known neural network

feature extraction architecture, known as autoencoders, as well as their slightly modified

version the variational autoencoder. We note that there are popular linear feature extraction

techniques such as principal component analysis and non-negative matrix factorization [9],

but the nonlinearity of neural networks allows the models to learn much more complex

features. Then, we discuss a more recent contrastive learning architecture known as SimCLR

[41]. After reviewing these methods, we discuss Laplace learning [18], a graph based semi-

supervised learning method that will be used to propagate labels through the latent space,

as well as active learning, which is a machine learning regime designed for optimal annotated

data usage.

36

3.2 Neural Network Encoders

In this section, we review two popular unsupervised neural network architectures that act as

image encoders. Both of these architectures will use similar neural network layers, namely

convolutional and linear layers, but will be structured very differently and have significantly

different loss functions, which influences the way the models encode their data.

3.2.1 AutoEncoder

Autoencoders are a class of neural networks that are designed to perform dimensionality

reduction by using an encoder, bottleneck, and decoder [42]. The purpose of the encoder is

to receive high dimensional data, such as images, and meaningfully transform the data into a

lower dimensional encoding. For images, the encoder is often a sequence of convolutional lay-

ers, max pooling layers, and ReLU layers. The bottleneck represents the layers that operate

on the low dimensional encodings and is commonly a sequence of linear and ReLU layers. We

call sequences of linear and activation layers (usually ReLU) multi-layer perceptrons moving

forward. The decoder receives the output from the bottleneck and increases the dimensions

back to the original size of the data. While the encoder normally uses convolutional layers,

which typically decrease the dimensionality of the data, the decoder will often use transpose

convolutional layers which act similarly but increase the dimensionality of the data.

In training, autoencoders encode data samples to a low dimensional latent representation

and then decode the latent representation to recover the original data samples. A viable loss

function that can be used, for example, is the mean squared error between the original image

and the reconstruction. By enforcing this pipeline, the encoders are implicitly learning the

most important features of the data. This is because in order for the decoder to successfully

decode the original data samples, enough information must be preserved in the encoding

process for accurate reconstruction. This intuition informs design choices in the network,

implying that for an autoencoder to succeed, the encoder must be appropriately designed

37

to learn the data’s features, the bottleneck must be large enough to store critical informa-

tion, and the decoder must be capable of accurately reconstructing the original data. If

any one of these networks fails or are insufficiently designed, then the entire autoencoder

will perform poorly. In practice, one wants to encode the data in the smallest dimension

possible while preserving a sufficient amount of information from the sample. The purpose

of autoencoders, as mentioned, is typically for dimensionality reduction. This means that

once the autoencoder is trained, the decoder and potentially the bottleneck layers are dis-

carded and the encoder is instead used for some other task. The decoder, which generates

data from encodings, is trained only on the embeddings from the specific autoencoder and

thus doesn’t have much use elsewhere. Its purpose was simply to enforce that the encoder

preserved information in the encoding.

Variational autoencoders (VAEs) are a modification of traditional autoencoders that can

act as a generative class of neural networks [43, 44]. The main distinction between a VAE

and a standard autoencoder is that a VAE attempts to regularize the latent space of the

encodings by treating the latent space as a Gaussian distribution. The bottleneck includes

the reparameterization step, which typically consists of a multi-layer perceptron tasked with

learning the mean and standard deviation from the image. Beyond the bottleneck step,

the decoder network will attempt to rebuild the original image based on the mean and

standard deviation passed from the bottleneck layer. When properly trained, the decoder

network of a VAE can generate new images from samples of the latent space due to the

enforced regularization in the training process. For the purposes of feature extraction, we

still instead focus on using the encoder network to retrieve the latent representations of

images in our dataset. The regularization of the encodings in the latent space adds additional

smoothness to the encodings, whereas the latent space of a traditional autoencoder will likely

be discontinuous and not smoothly vary between samples.

38

3.2.2 Contrastive Learning (SimCLR)

An alternate neural network approach to VAE feature extraction is a recently popularized

learning framework known as contrastive learning. Contrastive learning uses labeled data

and trains an encoder to minimize the distance in the latent space between samples from

the same class and maximize the distance between samples of different classes. The images

that are designated as similar samples are called positive pairs whereas the images that are

designated as dissimilar are denoted negative pairs. The term contrastive learning comes

from comparing and contrasting images to learn distinctions and features [45]. Training the

encoder to minimize the contrastive loss is a pretext task, as in application we are often using

it simply as an encoder for other tasks. This pretext task promotes learning of visual features

and enforces a latent space that clusters or separates features by their perceived similarity.

Recently, Chen et al. [41] published a seminal work on self-supervised contrastive learning

for visual representations, introducing a novel framework known as SimCLR. SimCLR is

self-supervised, meaning the labels attributed to the data samples are assigned by the model

for learning purposes. In this way, SimCLR is effectively unsupervised since no ground truth

labels are required for training.

Given a batch of n images, a series of augmentations are performed on each image

to produce two distinct versions, resulting in 2n augmented images from the batch. For

an image xi, the augmentations will produce two augmented images that we call xi1 and

xi2 respectively. The underlying heuristic for SimCLR is that since these two augmented

samples, xi1 and xi2 , were both derived from the same image, xi, then they should be

considered positive pairs and all of the other 2(n− 1) augmented images in the batch should

be considered negatives. To quantify the similarity between the features extracted from two

images, u and v, Chen [41] uses the cosine similarity function:

sim(u, v) = uTv/||u||||v||. (3.1)

39

For a given positive pair, xi1 , xi2 , the loss from sample xi1 is defined to be

li1 = −log
exp(sim(xi1 , xi2)/τ)∑N

k=1

∑2
j=1 1[k ̸=i]exp(sim(xi1 , xkj)/τ)

(3.2)

where τ is a temperature parameter that must be fine tuned and controls the relaxation for

the similarity function. The loss, summed over an entire batch, is called NT-Xent, which

stands for normalized temperature-scaled cross entropy loss. In summary, the loss for a

batch of n samples is

L =
1

2n

n∑
i=1

[li1 + li2].

As stated, SimCLR is self-supervised and therefore uses no ground truth, labeled infor-

mation regarding the samples. The success of SimCLR largely stems from the choice of

augmentations which can make samples from the same class more indistinguishable from

each other, preventing the model from separating them in the latent space, while still being

differentiable from samples from other classes, allowing the model to separate them. Al-

though proper augmentations can help, the model will still attempt to repel samples from

the same ground truth class in the latent space. This is undesirable, but with full knowledge

of all of the ground truth labels, all samples from the same class can be considered positive

samples, attracting them in the latent space, whereas all samples from other classes can be

effectively repelled. A supervised variant, known as SupCon, was developed by Prannay et

al. and modifies SimCLR to use labeled information in this manner [46]. With this frame-

work, it may not even be necessary to use a two-view approach, wherein each sample is

augmented in two distinct ways to form pairs. The supervised loss is

Lsup
out =

∑
i∈I

Lsup
out ,i =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)
(3.3)

where P (i) ≡
{
p ∈ A(i) : ỹp = ỹi

}
is the set of indices of all positive samples, sharing the

same ground truth label. SupCon also shows state of the art results on the ImageNet dataset

and can show consistent outperformance over cross-entropy loss frameworks [46]. We use

SupCon in Chapter 5 to learn features for pixel spectra in hyperspectral imagery.

40

Now we discuss the network architecture in order to properly utilize the SimCLR frame-

work for learning visual features. Assuming we have the augmented batch of 2n images,

{x11 , x12 , ..., xn1 , xn2}, each one of these images will be passed through the first phase of the

encoder. The encoder will transform a sample xij into a feature embedding denoted as hij .

Afterwards, a projection head, which is typically a shallow multi-layer perceptron with one

or two hidden layers will be used. The projection head transforms a feature embedding hij

to a new space where the outputs are denoted as zij . Afterwards, the NT-Xent loss function

is evaluated on the projected features zij and the encoder and projection head networks are

simultaneously updated towards minimizing the loss. An outline of the SimCLR framework

is shown in Figure 3.1. After having trained the neural network on a given dataset, the

projection head is often discarded as the purpose of the SimCLR framework is to simply

train the encoder to produce stronger embeddings. The projection head is primarily used to

strengthen the learning rate and improves the robustness of the encoder network [41].

The key to a successful application of SimCLR is in the choice of the transformations

or data augmentations that one wants the model to be invariant to, which should resemble

what one expects to see within the dataset. For example, in a typical image dataset, we

expect the network to be invariant to augmentations such as rotation, reflections, crops, color

jitter, and other noise effects that can be emulated with artificial transformations. These

transformations still preserve the class structure of the image and therefore, via training,

we are enforcing that the network becomes invarient to these transformations. SimCLR has

demonstrated state of the art performance on ImageNet and numerous other datasets, by

generating latent space embeddings that separate well under linear classifiers [41].

3.3 Embedding Visualizations

In this section we provide a brief review of two popular data visualization algorithms. When

using a feature extraction methods to encode data, it can often be difficult to understand

41

Figure 3.1: SimCLR framework. A sample image xi is augmented twice creating xi1 and xi2 .

These augmented images are pushed through an encoder network and a projection head resulting

in zi1 and zi2 . An objective of SimCLR is to maximize the similarity between positive pairs such

as these and minimize the similarity with the other samples in the batch.

42

how the samples are being embedded in the latent space relative to one another, especially

if the latent space is still above two or three dimensions, beyond our ability to effectively

visualize in plots. Fortunately, there are popular methods that can reduce high dimensional

data to two dimensions, allowing quick and easy interpretation of similarities and relative

locations of embeddings by humans. We use these embeddings to verify the effectiveness of

particular neural network encoder models in Chapter 4.

A classic method to visualize the data in two dimensions is to use a t-SNE visualization

[47], which stands for t-Distributed Stochastic Neighbor Embedding and is an extension of

Stochastic Neighbor Embedding [48]. The principal idea of the t-SNE method is to compute

pairwise probabilistic similarities in the high-dimensional space that normalized for density

and then minimize an energy functional over embeddings in a lower dimension that pre-

serve the pairwise similarities. This method is widely used and produces very interpretable

visualizations.

Another, more recent method is UMAP [49], which stands for Uniform Manifold Ap-

proximation and Projection. Like t-SNE, UMAP computes pairwise distances in the high

dimensional space and attempts to preserve the pairwise distances in the lower dimensional

space. The fundamental concepts of UMAP, however, are rooted in algebraic topology and

topological data analysis and involve creating a similarity graph from the high dimensional

features. Notably, UMAP often runs faster than t-SNE and may scale better for larger

datasets.

3.4 Graph Embedding

Given a feature extraction method, we can view images as vectors embedded in Rd, a much

lower dimensional space than the raw data. At this point, there has been no effort made to

classify the data. Because we are in the low label rate regime, we are interested in utilizing

transductive, semi-supervised learning models, which are models that use both labeled and

43

unlabeled data simultaneously to make predictions on the unlabeled data. In order to do so,

we create a similarity graph, which contains only the relational information from the data.

A graph is a mathematical structure containing nodes and edges. We can write a graph

as G(X,W) where X denotes the nodes and W denotes the edge weights between the nodes.

In the context of image embeddings, the set X corresponds to the image samples and W is an

(often symmetric) matrix where Wi,j ≥ 0 represents the similarity between image samples.

In order to construct this graph, we first need a similarity metric w(xi, xj) that meaningfully

captures similarity in the latent space. Desirable properties for the similarity metric include

returning large values when the samples are near each other in the latent space and small

or negligible values when the samples are distant. To emphasize locality in the latent space,

we use the following similarity function

wij = e−4||xi−xj ||2/dk(xi)
2

(3.4)

where dk(xi) represents the distance between xi and its kth nearest neighbor [2]. The neg-

ative exponential term promotes locality, enforcing that distant samples have a very small

similarity. The term dk(xi)
2 in the denominator is a normalization term for the graph con-

struction that reduces the edge weights for nodes that are located in very dense regions,

where the kth nearest neighbor is relatively close and thus dk(xi)
2 is small. This can reduce

overdependence on on these highly centralized nodes [50]. The metric for measuring distance

can, however, be domain dependent. For example, there has been much success using the

cosine distance for applications to hyperspectral imagery and we will use it for works in this

thesis [51, 52, 53]. The choice to use an angular metric is also reinforced by the SimCLR

paper, which uses cosine similarity in Equation 3.1 [41]. The cosine distance for two vectors,

xi and xj, is

d (xi,xj) = 1− cos(θ) (3.5)

where θ is the angle between the vectors. A common way to calculate the cosine distance

is to use the standard Euclidean distance after normalizing the feature vectors first. To

44

show equivalence, up to constant factor, between normalized Euclidean distance and cosine

distance, we show the following:

2(1− cos(θ)) = 2(1− xi · xj

∥xi∥ ∥xj∥
)

= 2− 2
xi · xj

∥xi∥ ∥xj∥

=
∥xi∥2

∥xi∥2
+

∥xj∥2

∥xj∥2
− 2

xi · xj

∥xi∥ ∥xj∥

=
xi

∥xi∥
· xi

∥xi∥
+

xj

∥xj∥
· xj

∥xj∥
− 2

xi

∥xi∥
· xj

∥xj∥

= (
xi

∥xi∥
− xj

∥xj∥
) · (xi

∥xi∥
− xj

∥xj∥
)

=

∥∥∥∥ xi

∥xi∥
− xj

∥xj∥

∥∥∥∥2

.

(3.6)

For large amounts of data, it is important to take into account the amount of computa-

tional cost required for the graph. If the graph is constructed from n data samples, then the

adjacency matrix, W , would be a dense n × n matrix. If we need to create the adjacency

matrix often, perhaps in each batch of a training cycle, or if n is very large, it becomes

very expensive to perform the pairwise distance calculations repeatedly. Moreover, even if

a dense adjacency matrix were computed, it could still be expensive to perform repeated

matrix multiplications or inversions which may be required for later tasks. For this reason,

we seek a way to reduce the memory size of the matrix W . The first method we discuss is

to use a sparse formulation and the second is to use a low rank approximation.

For the sparse approximation, we only include the k largest similarities for each sample,

for some value k, and exclude the other pairwise comparisons, setting their edge weights zero.

In order to find the largest similarities, we need to use an approximate nearest neighbors

search algorithm. We use Annoy [54] (Approximate Nearest Neighbors Oh Yeah) and find

the nearest k neighbors using the Euclidean distance after normalizing the features (for

cosine distance). This immediately reduces the cost of constructing the matrix, W , as the

number of pairwise comparisons is reduced from n2 to n× k where k << n. With W being

45

sparse, this allows for sparse implementations using the scipy sparse matrix library, leading

to more efficient storage, and sparse operations, minimizing unnecessary computations [55].

Alternatively, low rank approximations can be used for the construction of the weight

matrix. As opposed to sparse approximations, low rank approximations work by constructing

smaller matrices that, when multiplied, recover the original matrix with minimal information

loss. For the Nystrom approximation [56], we begin by taking some small random subset of

the samples that we intend to use for generating the adjacency matrix. From this subset,

we use interpolation to approximate the rest of the adjacency matrix. If our dataset has n

samples and our random subset has m samples, then we can construct the adjacency matrix

A ∈ Rm×m between just the samples in the subset and we can construct the adjacency matrix

B ∈ R(n−m)×m between the selected samples and the rest of the samples. Assuming without

loss of generality that the random subset of samples is the first m samples, our weights

matrix W would be

W =

 A B

BT C

 (3.7)

where C ∈ R(n−m)x(n−m) represents the intra-weights of the remaining data points not in

the random subset. The matrix of approximate eigenvectors Ū is given by the Nystrom

Extension to be

Ū =

 U

BTUλ−1

where U is the matrix of true eigenvectors and λ is the matrix of eigenvalues [56]. From this,

the approximate version of W would be

Ŵ = ŪλŪT

=

 A B

BT BTA−1B

=

 A

BT

A−1

A
B

 .

46

Essentially, the missing block of data, C, is approximated with BTA−1B. Some more work is

done beyond this point to ensure that the eigenvectors represented in Ū are orthogonalizedm

which is omitted here. Using the Nystrom low rank approximation has proven to be effective

for approximating the symmetric graph Laplacian, a matrix derived from the adjacency

matrix discussed in Section 3.5, for classification of high dimensional data [57, 58, 59].

3.5 Graph Based Semi Supervised Learning

Recent work (e.g. [2, 60, 61, 62]) shows the efficacy of graph-based methods in semi-

supervised learning (SSL) and active learning 3.6. Graph based methods imbue the dataset

with a structure agnostic towards many of the high dimensional artefacts and noise that

otherwise inhibit accurate predictions. After constructing a graph on a partially labeled

dataset, the labels can be propagated throughout the graph using various semi-supervised

methods. Largely rooted in partial differential equations (PDEs), these include the seminal

Laplace learning [18], also called label propagation, the graph MBO method [63], p-Laplace

learning [62], and graph-based Poisson learning [60]. In this section, we introduce the graph

based, semi-supervised learning algorithm called Laplace learning [18].

Let {x1, ..., xn} := X ⊂ Rd denote the feature vectors of the images in d dimension and

let L ⊂ {1, 2, ..., n} denote the set of indices for feature vectors that have an associated,

known label. We define U = {1, 2, ..., n} − L to represent the set of indices of unlabeled

data. For a dataset with K classes, we let yj ∈ {1, 2, ..., K} denote the label for image

j so that the labels correspond to their one-hot encoding as eyj ∈ RK . Let G(X,W) be

a graph where X denotes the vertices and W denotes the edge weights between the data.

Given this graph framework, semi-supervised learning techniques have seen great success.

Zhu el al. introduced Laplace learning in ”Semi-Supervised Learning Using Gaussian Fields

and Harmonic Functions” [18], which is the primary semi-supervised learning technique used

47

throughout this thesis. Laplace learning solves for the label function f : X → RK such that

f(xi) =

1
di

∑n
j=1Wijf(xj) for i /∈ L

eyi for i ∈ L,
(3.8)

where di =
∑

j ̸=i Wij. This formulation can be interpreted as assigning the label prediction

for unlabeled nodes as the weighted average of its neighbors in the graph while keeping

the known, labeled information fixed to the ground truth. From this perspective, we can

intuitively reason that Laplace learning is similar to solving the steady state heat equation

on the graph where the ground truth labeled nodes are akin to fixed boundary conditions,

such as hot or cold sinks [64]. In a partial differential equations sense, solving the steady

state heat equation implies that the solution is fixed in time and thus

∆f = ft =⇒ ∆f = 0 (3.9)

where t is the time parameter and x is the spatial parameter. This second equation is the

Laplace Equation as the second spatial derivative is known as the Laplacian.

Here, we introduce the graph Laplacian, L = D−W , where D is the diagonal matrix with

Dii = di mentioned above. The graph Laplacian takes its name from the Laplace operator

due to its similarities mentioned above [50]. The graph Laplacian has many extremely useful

features. For example, all graph Laplacians are positive semi-definite by construction and

the multiplicity of the zero eigenvalue indicates the number clusters present in the graph

structure, with connections to spectral clustering. Each connected component, C ⊂ X of

the graph introduces a new linearly independent vector into the kernel, which is the indicator

vector 1C where

[1C]i =

1 i ∈ C

0 i /∈ C

. (3.10)

With this in mind and treating f as a matrix in Rn×K such that each row is a label

48

prediction vector in RK , the problem of Laplace learning can be reformulated as

[Lf]i = 0 for i /∈ L

fi = eyi for i ∈ L
(3.11)

since

[Lv]i =
∑
j ̸=i

wij(vi − vj) (3.12)

for any vector v.

We have so far approached this formulation of Laplace learning from a perspective of

averaging the label prediction of nearby nodes in the graph. It can also be interpreted in

the form of an variational minimization problem with energy

E(f) = fTLf + λ |F (f − y)|2 (3.13)

where F is a diagonal indicator matrix, with Fii = 1 if i is labeled and zero otherwise, and

λ is a hyperparameter [16]. Since

vTLv =
1

2

∑
i,j

wij(vi − vj)
2 (3.14)

for any vector v, we see that the first energy term controls the smoothness of the label

predictions across the nodes. This term is known as the graph Dirichlet energy. The second

energy term controls the relaxation in enforcing the ground truth labels. Minimizing the

energy functional while taking the limit as λ goes to infinity recovers the strongly enforced

label problem. Via variational calculus, the solution to the energy minimization problem is

exactly Equation 3.11 when the labels are strongly enforced.

In principle, Laplace learning generates a graph harmonic function which is interpreted as

propagating the labels across the dataset. Without loss of generality, re-ordering the nodes

49

so that the labeled nodes are ordered first, the solution can be written as

f :=

f1

f2
...

fn

 =

 Y

−L−1
U ,ULU ,LY

 , (3.15)

where LU ,U and LU ,L represents the lower-right and lower-left blocks of L respectively and

Y ∈ {0, 1}|L×K| is the matrix whose rows are eyj for the corresponding labeled nodes [2].

This solution only exists when every unlabeled node has some connection to a labeled node.

If there is a connected component of unlabeled nodes with no connection to a labeled node,

then enforcing that the graph Laplacian is 0 over the component will not produce a unique

solution. Here we briefly justify from a linear algebra perspective why LU ,U is invertible

when the connected component of unlabeled nodes is connected to at least one labeled node.

Theorem 2. Assume G is a graph such that unlabeled nodes in U form a connected compo-

nent and there is at least one connection to a labeled node from L. Then LU ,U is invertible.

Proof. First we consider the subgraph GU by selecting only the unlabeled nodes and the

edges between them. This generates the graph Laplacian L′, which is positive semi-definite

and whose kernel is spanned by the vector of ones since there is only a single connected

component. Then we can see that

LU ,U = L′ +D′ (3.16)

where D′ is the diagonal matrix with 0 ≤ D′
ii =

∑
j∈L wij for i ∈ U . Since there is at least

one connection from a labeled node to unlabeled nodes, then there is at least one nonzero

entry of D′. Clearly D′ is also a positive semi-definite matrix.

In order to show that LU ,U is invertible, we prove that the only element in the kernel is

the 0 vector. Let v be a vector such that LU ,Uv = 0. It then follows that

vTLU ,Uv = vT (L′ +D′)v = vTL′v + vTD′v = 0. (3.17)

50

Since both of the matrices L′ and D′ are positive semi-definite, then this condition implies

that

vTL′v = 0 and vTD′v = 0. (3.18)

Since L′ is a graph Laplacian, this implies that v = c1 for some c ∈ R. Since D′ is diagonal

with some positive value Dii for some i, then this condition requires that vi = 0. Therefore,

using both of these conditions, we see that v is actually the 0 vector.

In practice, it may not be the case that all of the unlabeled nodes form a connected

component. In such a case, we would be able to divide the graph Laplacian, L, into block

matrices corresponding to each connected component and show that each block matrix is

invertible by the above theorem, assuming that the connected components share an edge with

a labeled sample. The solution to Laplace learning, Equation 3.15, produces the prediction

matrix f ∈ Rn×k where each row is interpreted as the class predictions for the corresponding

sample. Therefore the predicted class for sample i is taken as the argmaxj(fij).

Figure 3.2 visually shows how Laplace learning functions with feature data and two

labeled nodes. For this experiment, we generated 500 samples from the two moons dataset

with a noise value of 0.12, seen in Figure 3.2(a), and chose one sample from each class to

be labeled, represented by the stars [40]. We use the graph learning library to perform

a k nearest neighbors search with k = 15 and generate a graph with similarity function

Equation 3.4 using the Euclidean distance instead of cosine distance. The edges from the

graph structure are overlaid onto the feature vectors, seen in Figure 3.2(b), although we note

the edge weights are not equivalent. Using Laplace learning on the resulting graph produces

prediction values for the classes, shown in Figure 3.2(c). Thresholding the prediction values

shows the most likely predicted class and is seen in 3.2(d). The graph learning python library

was used for this experiment [65].

51

(a) (b)

(c) (d)

Figure 3.2: An example of how how data can be classified using Laplace learning. (a) Feature

vectors from two moons dataset with two labeled nodes represented as a red and blue star. (b) A

nearest neighbors search with k=15 has been used and the resulting edges, with varying weights,

are shown creating a graph. (c) The soft label predictions from using Laplace learning are shown

with colors indicating label prediction corresponding to the classes from the red and blue stars. (d)

The thresholded label predictions from using Laplace learning.

3.6 Active Learning

As we are interested in the low label rate regime for image classification, we explore a machine

learning approach known as active learning [66]. In active learning, a model is used to make

predictions on a class and then, based on those predictions, new samples are selected to be

manually labeled by a human expert. This process repeats until the users are satisfied with

the prediction results from the model or sufficient energy has been expended in labeling the

samples. The purpose of this process is to minimize the amount of redundant information

in labeled samples, thus only querying the most useful samples. In doing so, the strategy

52

aims to maximize the model accuracy with the fewest ground truth labels. Typically, active

learning is preferred when either individual samples require significant time, energy, or expert

knowledge to label or there are far too many samples to effectively label a substantial amount

of them.

Given some dataset {x1, ..., xn}, let L ⊂ {1, 2, ..., n} denote the set of indices for data with

an associated, known label and U = {1, 2, ..., n} − L denote the set of indices of unlabeled

data. Active learning uses acquisition functions on the predictions from the trained model

to determine which unlabeled sample, i ∈ U , should be labeled by a human expert, often

called an oracle. When a sample is queried and labeled, it would then be used to update the

labeled set, Lnew = Lold ∪ {i}. Then the prediction model would be retrained or fine-tuned

on the new labeled set before restarting the process over again.

This process of querying a single label at a time is known as sequential active learning,

as opposed to batch active learning which queries numerous labels at each iteration. Both

methods have their pros and cons. Sequential active learning allows for a greedy approach,

where each queried sample is a maximum of the acquisition function, often leading to strong

results. The downside of this is that the active learning process needs to be repeated many

times for sufficiently many samples to be labeled by the oracle. With batch active learning,

the queried samples can be labeled in parallel, requiring fewer iterations of the active learning

loop. The difficulty with batch active learning is avoiding querying samples that share

too much mutual information. It is common to measure mutual information using Fisher

information [67, 66] or by ensuring that the batched samples are distant in some latent space

[68].

For active learning to proceed, we need both a prediction model and an acquisition func-

tion. For the prediction model, we use the graph-based Laplace learning method discussed

in Section 3.5. Although we explore several acquisition functions, the uncertainty acquisition

function will be the primary focus in Chapter 4.

We consider prediction models taking in unlabeled nodes and outputting a vector of

53

length K such that the ith component corresponds to the probability that the given sample

belongs to the ith class. When evaluating a model, the predictions are thresholded to predict

the most likely class, but by using the unthresholded prediction vector we can establish a

notion of confidence and uncertainty in the model’s predictions. An underlying heuristic

for much of active learning is that the query target should be a sample that the model is

very uncertain about, since it likely contains information that is novel to the model. This

leads to the uncertainty acquisition function. Given a model prediction f(xi) ∈ RK for the

sample i ∈ U , we define the margin to be the difference between the first and second highest

predictions:

Margin(x) := max
k

f(x)k − max
l ̸=argmaxkf(xi)

f(x)l.

Another popular way to measure uncertainty is to use Shannon entropy [69]:

Entropy(x) := max
k

u(x)k −
∑
i

P (yi|x; θ) logP (yi|x; θ).

While the margin-based uncertainty simply measures the distance between the two most

confident predictions, entropy uncertainty utilizes all of the prediction weights. The uncer-

tainty acquisition functions query the sample that lies closest to the decision boundary, which

represents the border between expected classes in the data. Heuristically, the uncertainty

acquisition function will be able to target regions of the dataset that are low confidence and

allows for refinement [70].

Another popular acquisition function is variance optimality (VOPT). VOPT is agnostic

of the observed and predicted labels and essentially attempts to query the labels such that

the unlabeled data suffers the least amount of variance in terms of its distribution [71]. An

extension of VOPT that preserves submodularity guarantees and minimizes predictive co-

variance is σ optimality [72]. The last acquisition function to be mentioned is Model Change

[73]. Model Change is a look-forward acquisition function that uses Gaussian distributions

to approximate the significance of an unlabeled point by estimating the amount of change

it would cause in the model [73]. There has been work done to combine the ideas of model

54

change with variance optimality resulting in MCVOPT as another, derivative acquisition

function [2]. In practice, it is costly to apply these acquisition functions to every single un-

labeled sample, so often a candidate set is chosen over which the search is conducted, which

is known as pool-based sampling. This is more common when datasets become very large,

but introduces further considerations such determining the pool to sample from.

In some sense, these acquisition functions are motivated largely by heuristics. A common

theme in the heuristics is the contrast between exploration and exploitation. Exploration in

an active learning setting involves querying regions without much known information, which

can provide a more complete understanding of the label distributions. Exploitation on the

other hand involves querying samples near decision boundaries where other known labeled

information may be near by. This allows for a refinement of the decision boundary. Both

exploration and exploitation are necessary for accurately exploring a dataset.

Figure 3.3 shows a cycle of active learning using a dataset of three Gaussian clusters

with various noise. In Figure 3.3(a), the data with graph structure is shown. The graph is

built using a k nearest neighbors search, for k = 15, and the similarity function in Equation

3.4 with the Euclidean distance [40, 65]. Three nodes are designated as initial labeled data

with the stars. Using the margin uncertainty acquisition function, Figure 3.3(b) shows the

most uncertain node being selected with the black circle. This node is queried, the label is

recovered, and the graph learning process is retrained, producing the predictions in Figure

3.3(c). Repeating this process would further refine the predictions.

55

(a) (b)

(c)

Figure 3.3: Active learning process. (a) Initial graph with three labeled nodes (stars) and starting

predictions indicated by the colors red, blue and green. (b) The queried node is highlighted by the

black circle. The acquisition function is margin uncertainty. (c) The queried node is labeled and

now represented as a blue star. The resulting predictions are updated.

56

CHAPTER 4

Graph Active Learning with Applications to Synthetic

Aperture Radar Data

4.1 Introduction

In this section, we explore the applications of neural network encoders with graph based semi-

supervised learning to classify synthetic aperture radar (SAR) images. First, we provide a

background on what SAR images are and how they are collected. Then, we examine various

SAR datasets and evaluate the effectiveness of our semi-supervised learning methods on these

datasets. The work in this section is largely adapted from the SPIE publication ”Utilizing

contrastive learning for graph-based active learning of SAR data” in collaboration with Riley

O’Neil, Jeff Calder, and Andrea Bertozzi [4]. Notably, the material regarding the background

on SAR images and work on the Caesar dataset are new in this thesis and not present in

the mentioned work. Jeff Calder and Andrea Bertozzi supervised the project, and provided

feedback and direction. I was responsible for all of the data preprocessing on the Caesar

dataset as well as training and running the neural network encoders and active learning

models on the Caesar and MSTAR datasets. Riley’s contributions were in evaluating the

quality of the SimCLR embeddings on the MSTAR dataset.

4.1.1 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) imaging is a remote sensing technique for collecting high

resolution reconstructions from resolution-limited apertures mounted on moving objects,

57

such as planes and satellites [74, 75]. For traditional, stationary radar sensors to yield high

resolution images, a large aperture is required, which is infeasible for many applications. By

using sensors mounted to objects moving along straight trajectories, SAR imaging provides

high resolution scans from smaller apertures while being relatively easy to collect. SAR

imaging finds wide usage in Earth monitoring, climate change research, change detection,

and the detection and identification of specific targets [74].

In order to collect SAR data, a SAR satellite will emit energy towards a target and then

measure the amount of energy returned from the target [75]. This is in comparison to a

standard high resolution camera which relies on natural light to interact with the target

and then measures specific light frequencies in response. A domain specific consideration of

SAR data is choosing the appropriate frequency of light to emit towards the target. Certain

energy frequencies will have stronger penetration power than others, indicating that specific

frequency ranges will be ideal for certain targets. For example, the frequency range between

18 − 27GHz is a rarely used frequency range that is ideal for measuring H2O absorption

whereas frequencies in the range of 4−8GHz (known as C Band) are very popular frequencies

used for global mapping and change detection among other applications [75].

SAR satellites also need to take into consideration the polarization of light for emitting

and receiving. Most SAR sensors use linear polarization, meaning SAR satellites can emit

either or both vertically and horizontally polarized light and also detect either or both hori-

zontally and vertically polarized light. To keep track of the polarization, the data is labeled

as some combination of V and H where the first term indicates the emitted polarization and

the second is the received. So V H would indicate that vertically polarized light is emitted

and horizontally polarized light is received by the sensor [75]. Linearly oriented surfaces tend

to preserve the polarity whereas randomly oriented structures can scatter and depolarize the

signal as it bounces. Using the different polarizations in conjunction can recover more infor-

mation about of the image. A ”single pol” system is one that only transmits and receives

one polarization (typically HH or VV), while a ”dual pol” system can typically transmit in

58

one polarization but receive in two. A ”quad-pol” or full system can transmit both H and

V waves and receive both H and V waves. Each combination of polarizations can be treated

as a different channel, not unlike the three channels in RGB imagery. Thus, satellites with

limited polarization options can produce single-channel data, whereas others can generate

up to four channels of data, although the information across these channels may not differ

significantly.

4.2 Caesar Dataset

The Caesar dataset is a SAR dataset for ship detection with complex backgrounds [1]. It was

constructed using 102 images from the Gaofen-3 satellite and 108 images from the Sentinel-1

satellite. The dataset consists of 43,819 ship chips (images) containing 59,535 ships. There

are numerous imaging modes and resolutions in the original images that were cropped and

labeled to create the dataset, providing a large variety of image types. Furthermore, the

Caesar Dataset is based on images from sensors that use different polarization systems,

resulting in essentially two channels per image, seen in Figure 4.1. It is important to note

that these ship chips were extracted from images with various resolutions and swaths. This

variability results in multiple ship scales, ranging from very small to those occupying nearly

the entire chip. Furthermore, some of the images include land or islands which can lower

accuracy.

As it is, the dataset is to serve as training and testing for object detection. This means

that the chips are broad in scope and can contain multiple ships within a chip. In addition to

the images, there are separate files pertaining to the location of the ships as well as bounding

boxes surrounding them. This is meant to serve as the ground truth for a image detection

algorithm that locates the ships in the chips and creates a bounding box around it, not

unlike work done in Section 2.3.

In order to convert this object detection dataset to a classification dataset, we decided to

59

(a) (b)

Figure 4.1: Different polarizations of SAR images taken from the Gaofen satellite [1]. Three ships

are seen in the lower left of the image in which (a) represents the hh channel and (b) The hv

channel.

subsample regions in each of the chips. The goal is to create a binary classification problem,

so we deliberately subsample regions that overlap with the ship bounding boxes to create

the ’ship’ class and we subsample regions that don’t contain ships to create the ’non ship’

class. Now a classifier can be trained to determine whether or not the subsampled region

contains a ship or not. For example, Figure 4.2 shows a sample chip with the corresponding

bounding box overlaid on each of the ships present in the chip. From this, we extract at

least three subsamples centered around each of these bounding boxes with the corresponding

’ship’ label associated.

In order to be used in a neural network pipeline, we require that all images in the dataset

have the same dimensions or size. This means a uniform choice of the subsample window

size is required (without re-scaling). Provided in [1] is a histogram plot demonstrating the

relative size of the bounding boxes with respect to the chips. In the plot, the vast majority

60

Figure 4.2: Sample chip from Figure 4.1(a) with bounding boxes overlaid around the three ships.

of the bounding boxes have size less than 30% of the chip size. Consequently, we chose to

make the subsample bounding boxes have a relative size of 30% of the chip size, or in other

words 76x76 pixels. This is larger than most of the ships’ bounding boxes, so there may be

overlap with other ships and blank space, but the additional variability should make for a

more diverse dataset.

To make this problem straightforward, we assume, wherever possible, that the ships are

centered exactly in the middle of the chip. However, this is not feasible for ships located

near the image boundaries. Figure 4.3 shows an example of sampling the ships from a chip.

It is worth noting that this could potentially create a bias in a classification pipeline that

indicates learning when bright regions are centered in the chip. A way to fix this could include

adding uniform or Gaussian noise to the center pixel location prior to cropping. Uniform

noise would indicate that the ship could reasonably appear anywhere within the subsampled

region whereas Gaussian noise would have a bias towards the ship being centered.

Naturally, in order to construct this binary classification dataset, we would also need

to have samples that do not feature ships. In order to do this, we could naively randomly

61

(a) (b) (c)

Figure 4.3: Ship images sampled from a larger chip. (a) The original chip with the bounding boxes

for ships shown. (b) A cropped region surrounding the lower bounding box. (c) A cropped region

surrounding the upper bounding box.

sample regions of the appropriate size and ensure they do not contain any ships by using the

bounding box information. In order to determine if the randomly sampled window contained

a ship, we used an intersection over union metric and arbitrarily decided that if the randomly

chosen window contained 10% of the bounding box of any ship, then we would discard it.

Another concern was that since many of the ships are simply over open ocean, the backdrop

is often very dark or entirely black. In order to avoid superfluous black images, we added

a condition that ensured a non-negligible L2 variation (the square of the total variation

semi-norm). Figure 4.4 shows two samples taken from Figure 4.2 that would be used as the

’non-ship’ label. Notably, these samples do not intersect the ships in the image and also

contain sufficient amounts of noise.

In summary, this dataset has 9779 images with dimensions of 76x76. There are 5335

samples that include a ship and 4444 samples that do not contain a ship, which together

create the binary classification dataset.

62

(a) (b) (c)

Figure 4.4: Non-ship images samples from a larger chip. (a) The original chip with bounding boxes

for ships. (b) and (c) Cropped regions of land for the non-ship class that have sufficient variation.

4.3 MSTAR

The Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset [76] was

published in 1998 by Sandia National Laboratories with funding from the Defense Advanced

Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL). The

MSTAR dataset consists of 6,874 SAR chip images, collected by a Sandia X-band radar

operating at 9.60 GHz with a bandwidth of 0.591 GHz. Designed for automatic target

recognition, the dataset features ten distinct vehicle classes (Armored Personnel Carrier:

BMP-2, BRDM-2, BTR-60, and BTR-70; Tank: T-62, T-72; Weapon System: 2S1; Air

Defense Unit: ZSU-234; Truck: ZIL-131; Bulldozer: D7). It is standard to split the MSTAR

dataset by the angle of capture where an angle of 15° corresponds to the training data and

angle of 17° corresponds to the testing data [76].

We preprocess the data following the method described in Miller et al. [2]. Specifically,

the magnitude and phase images are center-cropped to 88x88 pixels. To reduce presumed

noise, pixel values are clipped to the range of [0,1], which is an acceptable range for inter-

preting images. Additionally, the images are forced into a 3-channel format; the first channel

is the magnitude of the image and the second and third channels are the real and complex

63

(a) (b) (c)

Figure 4.5: The magnitude (first channel) from three SAR images corresponding to different

classes.

phases, respectively. Letting M be the magnitude of the image and P be the phase of the

image, the three-channel format is given as(
M,

1

2
(M cos(P) + 1),

1

2
(M sin(P) + 1)

)
.

Examples of MSTAR images are shown in Figure 4.5. A notable characteristic is that

the target is always directly centered in the image. Additionally, a shadow appears behind

the target, which is a consequence of SAR imaging where the sensor’s energy is blocked by

the target. The shadow effect is more specific to MSTAR and is not prevalent in the Caesar

dataset.

4.3.1 Previous and Related Work

Work on Automatic Target Recognition for SAR data predominantly focuses on the MSTAR

dataset. Most of the work directly applied to MSTAR can be separated into pre-deep learning

approaches, such as support vector machines (SVM), and modern deep learning approaches,

such as convolutional neural networks (CNNs). Pre-deep learning methods are varied in

their approaches. Researchers have used feature extraction combined with scattering models

64

[77, 78] as one approach. Many approaches utilize SVMs for their classification; such as in a

straightforward manner in [79], paired with Adaboost [80], or in parallel with a hand-tuned

covariance embedding scheme [81].

Convolutional neural networks are central to some of the most successful state-of-the-art

machine learning methods, particularly for image classification. CNNs utilize stacked con-

volutions, activation functions, and fully connected linear layers to learn features. The main

issue with applying CNNs to MSTAR is that they often need large amounts of training data

to successfully make accurate predictions. The MSTAR dataset is relatively small with on

the order of 4000 training chips, but, realistically, large amounts of labeled training data are

not often available in practice. Methods that successfully use very few labels are extremely

desirable and CNNs typically require many labels in their training set. This problem has

lead to various modifications that allow CNNs to function well despite the challenges. Some

techniques for utilizing CNNs target the overfitting problem, while still keeping the general

structure. One approach uses additional regularization during the training process, such as

the max-norm regularization [82]. Another approach, the All-Convolutional Networks, re-

placed fully connected layers with additional convolutional layers [83, 84]. Other researchers

have simply tried to minimize the number of parameters in the CNN [85]. Additional ap-

proaches include unsupervised methods, such as variational autoencoders. The Euclidean

Distance Restricted Autoencoder [86] method uses an autoencoder designed to embed im-

ages from the same class nearby each other, to extract features before classifying the data

with an SVM.

One particularly interesting approach to working with limited datasets is to generate

additional synthetic data. For MSTAR, researchers have attempted to replicate SAR images

using computer software. In the SAMPLE dataset, researchers present a dataset of real and

synthetic data based on the MSTAR dataset [87]. By using Computer Aided Design (CAD)

models for the vehicles, researchers have reproduced synthetic SAR images of these same

vehicles under the same conditions. This raises a compelling challenge in determining how

65

synthetic data, implicitly labeled by its creation, could assist in making predictions about

unlabeled real-world data. It became apparent that the synthetic data was quite distinct

from the real world data, leading to extra difficulties [87]. Some efforts, however, include

training fully supervised CNNs on just the synthetic data and then using that to label the

unlabeled data [88, 89]. Other efforts include using generative adversarial neural networks

(GANs) to augment the synthetic data to make it more similar to real world data, hopefully

boosting its usefulness towards classifying real world data [90].

4.4 SAR Image Classification

For typical image classification problems, data is often abundant and images are easily

interpretable by humans, enabling quick and accurate annotation for training datasets. SAR

images, by contrast, may be easy to collect given the proper sensor arrays, but the signals

received can be very difficult for humans to interpret. The returned SAR images will show

signs of energy scattering [75] and various reflectances that leave most objects appearing

as bright blobs. However, despite human difficulty in interpretation, there is meaningful

information in the way the signals are reflected and received from the target. This leads

to an interesting problem where machine learning methods may be able to succeed and

outperform humans. The caveat is that it is difficult to provide the models with sufficient

amounts of well labeled training data, indicating that the ideal model will be in the low label

rate regime. This is the prime motivation for active learning being applied to the datasets.

With active learning, we can attempt to maximize the classification accuracy of our models

with minimal reliance on human experts to label information.

The components of the classification pipeline and active learning regime were discussed

in Chapter 3 and here we utilize and combine the established methods to great effect. The

method is described as follows:

1. Train Feature Extraction Neural Network: Choose an appropriate neural network

66

architecture and train an encoder to encode the images in a latent space that preserves image

similarity.

2. Construct a Graph: Pass all of the data samples through the encoder network to

obtain latent space representations. Use a sparse k nearest neighbors search in the latent

space to construct a similarity graph with cosine similarity.

3. Perform Laplace Learning: Using the known labeled information, propagate the labels

across the graph to the unlabeled nodes, with Laplace learning, generating predictions.

4. Query a Label: Using the model’s predictions, apply an acquisition function to select

a label from the unlabeled samples. Once labeled by a human expert, add it to the labeled

set.

5. Loop Until Completion: Repeat steps 3 and 4 until sufficient accuracy is achieved or

enough energy has been spent on labeling samples.

Although active learning can technically query from the testing set, we restrict the queried

labels to be from the training set, for MSTAR, so that comparisons to other techniques and

methods in the literature remain cohesive.

In order for graph-based methods to work well, there must be a powerful and accurate

method for capturing the inherent structure of the data to create the similarity graph.

If the graph is not well constructed, then the edges between samples will poorly capture

the intrinsic relationship between the samples and hamper the flow of labels via the semi-

supervised learning (SSL) methods. We have introduced the variational autoencoder and

SimCLR architectures in Chapter 3, which will be the principle feature extraction methods

used in this work.

In this section, we build on previous work [2] in SAR classification by enhancing the fea-

ture extraction method. First, we begin with an application of the classification pipeline to

the Caesar dataset using a variational autoencoder to showcase the general pipeline. Then,

we develop a SimCLR framework for MSTAR images by introducing data augmentations

67

that are specific to the dataset. This results in markedly improved feature extraction and

graph structures. We show that the contrastive SimCLR feature embeddings are of far higher

quality (i.e., more distinct and separable classes) when compared with those obtained from

variational autoencoders [2] and raw images. We evaluate the quality of the embeddings

with support vector machines, spectral clustering, and graph cut energies. Secondly, we

demonstrate the power of our SimCLR embeddings when paired with active learning frame-

works, showing significantly faster learning and drastically improved accuracy at low label

rates compared to Miller et al. [2].

4.4.1 Caesar Results

In order to run image classification on the newly generated dataset, we train a variational

autoencoder to encode the data, build a similarity graph on the encoded data, and then per-

form graph based semi-supervised learning within an active learning loop. For this example,

we opt for the more established variational autoencoders over a SimCLR architecture, as this

is a new dataset and we aim to demonstrate proven effectiveness [2]. For the autoencoder,

we use an encoder that has four convolutional layers alongside max pooling and ReLU lay-

ers. Then, we apply the reparameterization trick, representing the embeddings as a mean

and standard deviation. Finally, the decoder also has four convolutional transpose layers,

mirroring the encoder architecture.

After training the variational autoencoder, latent space representations of the Caesar

images are generated. Figure 4.6 shows the two dimensional visualizations of the learned

latent space embeddings with Figure 4.6(a) showing a UMAP visualization and Figure 4.6(b)

showing the t-SNE visualization. The purple samples represent ship samples and the yellow

samples represent non-ship samples. We note that the data is well separated, which is likely

indicative of distinct data classes and implies that a semi-supervised learning model should

be able to distinguish between the classes with relatively high accuracy.

We construct a graph using the latent features with similarity function 3.4 using the cosine

68

(a) (b)

Figure 4.6: Two low dimensional embeddings of the VAE embedded Caesar dataset. (a) The

UMAP visualization. (b) The t-SNE visualiation. The purple samples correspond to the class of

ships and the yellow samples correspond to the class of non-ships.

distance metric, and use k = 50 as the number of nearest neighbors. With the constructed

graph, we randomly acquire one label from each class. Then, we begin the active learning

training loop with Laplace learning as the graph-based semi-supervised learning method.

We compare various acquisition functions, many of which are discussed in Section 3.6. The

results of running active learning are shown here in Figure 4.7. We observe that model

change with variance optimality performs the best, but all of the acquisition functions show

strong performance over the random acquisition method, reaching around 90% accuracy very

quickly.

4.4.2 MSTAR Results

For the MSTAR dataset, previous work [2] showed very strong classification results using a

variational autoencoder and an active Laplace learning loop. To improve upon this work,

we sought to utilize more modern, state-of-the-art feature extraction techniques to enhance

the quality of latent embeddings. In this section, we compare embeddings from the varia-

69

Figure 4.7: Results of running the active learning pipeline on the processed Caesar dataset. Mul-

tiple acquisition functions are shown in the legend.

tional autoencoder used in [2] with a SimCLR framework by examining various properties,

visualizations, and classification results from the embeddings.

SimCLR [41] frameworks largely depend on the augmentations employed in them. If the

augmentations are too harsh (e.g. total image corruption), then the network is forced to

learn from noise and undesirable artefacts of the transformation. If the augmentations are

too minor, then the network does not generalize well. Care must be taken to ensure that

the augmentations used for a given dataset or task are meaningful and mimic unseen data.

SimCLR frameworks for standard image classification (e.g. ImageNet, Cifar10) typically

use color jitter, random cropping, random horizontal or vertical flips, and random blur.

Here, we consider the peculiarities of SAR images and the MSTAR dataset, assess which

augmentations are suitable and unsuitable, and propose custom augmentations which we

ultimately use for training an encoder.

First, since MSTAR images are taken from airplanes, the scanned vehicles cast a shadow

where no radar signals were received. This shadow is always behind the vehicles, and

70

we would naturally want our encoder model to learn this important feature, pertinent to

MSTAR. Therefore, we opt not to use augmentations for the dataset that would rotate or

flip the images vertically, as this would destroy the shadow effect always being behind the

target. Another concern is that SimCLR [41] image classification neural networks typically

attribute great success to using a color jitter augmentation (as with ImageNet and Cifar10),

which randomly shift the entire color distributions in an image. However, SAR images are

not standard color images, and instead have magnitude and phase information, so we elected

to not make use of the color jitter augmentation.The last consideration is that the MSTAR

chips have the vehicle centered in the middle of the chip for each image. To be consistent

with the dataset, we opted not to use random cropping, which would affect the symmetry in

the chips. This led to the implementation of a random center crop augmentation where an

integer 40 ≤ k ≤ 88 is randomly selected, and the image is then cropped around the center

to produce a k × k image that would be resized to 32 × 32. Overall, this builds scale and

zoom invariance. The downsizing of the image to 32 × 32 mitigates memory usage issues

and the dimension being a power of two allows for several max-pooling CNN layers, granting

the encoder greater capacity for generalization and less susceptibility to pixel-wise minutia.

The other two standard data augmentations that were applied to the MSTAR images were

a random horizontal flip, which flips the image horizontally 50% of the time, and a ran-

dom Gaussian blur transformation with a 7× 7 kernel and a random sigma value randomly

selected between 0.1 and 2.0 for each augmentation.

The seminal SimCLR paper [41] demonstrated that a standard ResNet [91] architecture

is well-suited for the encoder network and recommends using a 2-layer perceptron for the

projection head. However, Chen’s later work [92] recommends using a slightly deeper projec-

tion head. Accordingly, we use a 3-layer perceptron instead of a 2-layer perceptron. SimCLR

[41] uses a deep ResNet50 for training on ImageNet data. In order to have large batch sizes

under memory constraints and prevent overfitting, we opted for the lighter ResNet18 model

on MSTAR as well as the aforementioned downsampling to 32× 32 resolution.

71

All code was implemented in Python. The source code to replicate our experiments and

evaluation may be found on our GitHub repository1. The models were implemented using the

PyTorch package, the graph learning and active learning methods were implemented from

the GraphLearning Python package [65], and the SimCLR PyTorch implementation was

adapted from SupContrast (Supervised Contrastive) GitHub2 [93]. The SimCLR ResNet18

was trained for 500 epochs and 1000 epochs with a learning rate of 0.05, batch size of 512,

and a SimCLR temperature of 0.5. Training was done using two Nvidia RTX GeForce 2080

GPU’s working in parallel. The VAE encoder used the pretrained weights from Miller et

al. [2], which is available on their GitHub3, and the specifics of which can be seen in their

paper.

We assess embedding quality of our SimCLR ResNet18, Miller et al. [2]’s VAE, and the

raw flattened SAR images by various different means: t-SNE and UMAP visualizations of

the SimCLR and VAE embeddngs, accuracy of support-vector machine (SVM) classifiers

over different training/testing splits, graph cut energies, and spectral clustering accuracy.

First, we compare UMAP [49] and t-SNE [47] visualizations of the raw image, VAE, and

SimCLR embeddings shown in Figures 4.8, 4.9, and 4.10, respectively. The embeddings from

the raw, unprocessed images show some class structure but are very noisy. Notably in the

VAE embeddings, the t-SNE embedding shows the classes are generally well separated with

little mixture between labels, but most of the labeled clusters appear disjointed from their

respective class. In contrast, the SimCLR t-SNE and UMAP visualizations in Figure 4.10

reflect much more cohesion within the labeled clusters. There is very little mixing and the

labeled clusters are very well connected with their respective classes. We would expect the

SimCLR embeddings to be much better for graph construction.

We now consider the graph cut energy and spectral clustering accuracy. We take the

1https://github.com/jasbrown96/Contrastive-Active-Learning

2https://github.com/HobbitLong/SupContrast

3https://github.com/jwcalder/MSTAR-Active-Learning

72

https://github.com/jasbrown96/Contrastive-Active-Learning
https://github.com/HobbitLong/SupContrast
https://github.com/jwcalder/MSTAR-Active-Learning

(a) (b)

Figure 4.8: Visualizations for the raw, un-embedded images. (a) The UMAP visualization of the

data. (b) The t-SNE visualization of the data.

(a) (b)

Figure 4.9: Visualizations for the VAE encoded data. (a) The UMAP visualization of the data.

(b) The t-SNE visualization of the data.

weight matrix W ∈ Rn×n over n samples to be the k-nearest neighbor (KNN) graph on the

respective embeddings (or raw flattened images) with k = 20:

Wij = e
−4∥xi−xj∥

dk(xi)

73

(a) (b)

Figure 4.10: Visualizations for the SimCLR encoded data. (a) The UMAP visualization of the

data. (b) The t-SNE visualization of the data.

where dk(xi) is the distance to the kth neighbor of xi. The graph cut energy (GCE) measures

the weight of all graph edges that would need to be cut in order to split the graph into

connected components corresponding to each class. This gives a measure of how well the

graph-construction captures clustering. The GCE can be computed as

GCE(W,U) ≡ tr(UTLU)

where L is the graph Laplacian built according to Section 3.5 and U ∈ Rn×k are the 1-hot

label vectors for the k classes.

Spectral clustering is a tractable relaxation of minimizing the graph cut energy to split

the graph into connected components, while still seeking to preserve local connectivity of the

graph. It has gained wide usage for unsupervised classification problems in which k-means

clustering is insufficient [50]. Numerous methods of normalization exist; we opt to use Ng-

Jordan-Weiss normalization [94, 50]. Let D be the diagonal matrix with Dii =
∑

j ̸=i Wij.

The algorithm uses the symmetrized Laplacian:

Lsym = D−1/2LD−1/2.

74

Embedding Graph Cut Energy (GCE) Spectral Clustering Accuracy (%)

SimCLR 340.301 52.66

VAE 410.941 25.70

Raw Images 1005.815 21.99

Table 4.1: Graph cut energy (GCE) and spectral clustering accuracy (SCA, given as a

percentage) for SimCLR and VAE embeddings as well as raw flattened images, using KNN

graph with k = 20.

Letting U = (u1, ..., uk) denote the matrix of eigenvectors corresponding to the first k smallest

eigenvalues of Lsym (k = 10 for 10 classes), the algorithm normalizes U by row norms for

Ũ [i, :] = U [i, :]/∥U [i, :]∥, and performs K-Means clustering for each Ũ [i, :] to determine the

cluster of the corresponding sample xi [50]. By registering the identified clusters to the

ground truth classes by maximal likelihood, we assess the accuracy of spectral clustering.

The spectral clustering accuracies and graph cut energies are shown in Table 4.1, com-

paring a single representative SimCLR model trained for 500 epochs to the VAE model and

the raw images. The SimCLR embeddings clearly outperform VAE and the raw images by

a sizeable margin (twice as good as VAE in spectral clustering).

Finally, we compare the accuracy of linear support vector machines (SVM). The SVM

fitting was performed across a range of train/test split ratios, from 10 to 3600 labeled points.

More split ratios were examined in the lower end of the spectrum, as this is the region of

greater interest for low label rates. For each split ratio, 50 random partitions were used

to fit an SVM classifier, whereafter the testing accuracies were averaged for the final re-

sult. Note that the same partitions were consistently applied to the SimCLR embeddings,

VAE embeddings, and raw images in each instance. Figure 4.11 shows the average testing

accuracies vs the number of points used to fit the SVM classifiers. SimCLR embeddings

trained for 500 epochs and 1000 epochs were compared with the VAE embeddings and raw

images. The SimCLR curves represent the average SVM performance across 21 distinctly

75

trained models (the 50 partitions are applied to each, averaged for each model, then averaged

overall). Clearly, the SimCLR embeddings outperform both the VAE embeddings and raw

images, particularly at low-label rates. Interestingly, the raw images outperform the VAE

embedding until 620 labeled points. The 1000 epoch SimCLR models slightly outperforms

the 500 epochs SimCLR models, more notably at low label rates, but the performance is

quite similar overall.

Figure 4.11: Different training/testing splits for fitting SVM classifiers on SimCLR, VAE, and

raw image embeddings, averaged over 50 random partitions for each split, partitions randomly

generated (susceptible to large class imbalance/underepresentation at low label rates).

The partitions here are completely random and agnostic to class representation - the

extremely low label rate splits may not even see a representative of each class, and class im-

balances may persist at higher levels, which may hamper the performance of SVM classifiers.

Toward this end, we also examine SVM with equal class representation in fitting at different

label rates. Here an equal number of random representatives were selected uniformly from

each class. As before, 50 partitions were done for each split level. The results of this can be

seen in Figure 4.12, which compares the VAE embeddings, raw images, and average perfor-

mance of 21 distinct SimCLR models trained for 500 epochs and 1000 epochs. Here again,

76

the SimCLR embeddings clearly outperform the VAE and raw images. The 500 epoch and

1000 epoch SimCLR models still perform similarly overall, again with the 1000 epoch model

fairing slightly better at low label rates, and the raw images outperform the VAE embedding

until 320 labeled points. Overall, the high accuracies at extremely low label rates suggest

the classes in the SimCLR embedding are highly linearly separable and well partitioned; far

fewer samples are needed for fitting to achieve good classification accuracy compared to the

VAE and raw images.

Figure 4.12: Equal class SVM fitting (same number of points used for each class in fitting)

across different training/testing splits on SimCLR, VAE, and raw image embeddings, aver-

aged over 50 random partitions for each split.

The t-SNE and UMAP visualizations of the embeddings, shown in Figures 4.8, 4.9,

and 4.10, along with our other experiments for embedding and graph comparison suggest

that graph-based learning methods will be far more effective with the SimCLR embeddings

over the VAE embeddings. To verify, we conduct graph-based active learning with VAE

and SimCLR embeddings with various acquisition functions. The results with the SimCLR

embeddings are shown in Figure 4.13 and the results with the VAE embeddings are shown

in 4.14. The active learning results displayed for the SimCLR models are averaged over 21

separately trained models, with 500 and 1000 epochs respectively, to mitigate the effects

77

of noise and properly represent the method. Active learning with the VAE embedding

yields considerably strong results with the uncertainty acquisition function achieving 94.1%

accuracy at approximately 300 labels, representing approximately 5% of the MSTAR dataset.

In stark contrast, the SimCLR embedding reaches the same accuracy around 60 labels (about

1% of the dataset), which is a drastic improvement at even lower label rates. Remarkably,

at the very beginning of the learning rate process, the SimCLR accuracy is over 50% and

near optimal accuracy is achieved with every acquisition function after reaching 300 labels.

The uncertainty acquisition function performs the best and reaches 99.2% accuracy.

Figure 4.15 compares the best performing acquisition function, uncertainty acquisition,

using both embeddings. As mentioned previously, the SimCLR embeddings demonstrably

outperform the prior embeddings in every way. In the initial setting, with only one label per

each of the ten classes, the SimCLR embedding can achieve nearly 50% accuracy whereas

the VAE embedding achieves 12% accuracy. With only 60 labels, the SimCLR accuracy

has surpassed 90% and with over 200 labels, the accuracy is nearly optimal at around 98%.

Comparatively, the VAE embedding keeps learning up to around 300 labels and achieves

approximately 94% accuracy.

4.5 Conclusion

As demonstrated in Section 4.4.2, the power of contrastive learning for feature extraction

serves to be a useful tool in the space of SAR data, yielding more linear separability of classes

and better partitioned embeddings, with greater local homogeny and connectedness. Com-

bined with graph-based active learning, very few labels are necessary to achieve remarkable

accuracy using the SimCLR embeddings; state of the art classification accuracies happen

with far less labeled data required, compared to the VAE embeddings. This classification

pipeline is able to succeed and excel at learning SAR data, which is a notable accomplish-

ment. One particular interest for future work is that the SimCLR framework is amenable

78

(a) (b)

Figure 4.13: Accuracy of active learning with Laplace semi-supervised learning on SimCLR em-

beddings. (a) The encoder trained to 500 Epochs. (b) The encoder trained to 1000 Epochs. The

results displayed are averaged across 21 distinctly trained models with active learning applied to

each model individually. Using 300 labels, the 500 epoch embeddings achieved an average accuracy

of 98.3% and the 1000 epoch embeddings achieved an average accuracy of 99.2%.

Figure 4.14: Accuracy of active learning with Laplace semi-supervised learning on the VAE em-

beddings with the pretrained weights from Miller et al. [2]. With 300 labels, the highest accuracy

achieved is 94.2%.

to fine-tuning the encoder network over labeled data [92] in such a way that additional la-

beled data could lead to stronger embeddings, as well as strong machine learning models.

79

Figure 4.15: Direct comparison between the graph based active learning performance with the

SimCLR embeddings against the VAE embeddings. The SimCLR embeddings are trained to 1000

epochs and averaged over 21 distinctly trained models, with the vertical bands corresponding to

one standard deviation in accuracy.

This inspires interesting problems involving updating the encoder network inside the active

learning loop, either via an encoder update step or even a novel acquisition function.

80

CHAPTER 5

Deep Learning Techniques and Applications to

Hyperspectral Imagery

5.1 Introduction

In this section, we explore Hyperspectral pixel classification for identifying recyclable ma-

terial within waste. This work is largely adapted from ”Material Identification in Complex

Environments: Neural Network Approaches to Hyperspectral Image Analysis” published in

the 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote

Sensing (WHISPERS) in Athens, Greece © 2023 IEEE [5]. Additional content is provided

in this thesis regarding the background of hyperspectral imaging and processing of the data.

The work was done in collaboration with Adrien Weihs, Bohan Chen, Harris Hardiman-

Mostow, Jocelyn Chanussot, and Andrea Bertozzi. Several approaches to data exploration

were considered. Bohan Chen utilized hyperspectral unmixing methods to separate the data

while Adrien and Harris used PCA and statistical approaches. I manually sampled pixels

from the training data by hand and used empirical features of the data to separate and

pre-process the data into classes. For methodology, all methods utilized some form of fea-

ture extraction with a classification head. I explored contrastive learning methods such as

SimCLR while Harris and Bohan used autoencoders. This work fits with the theme of data

classification with limited labels due to the fact that the dataset is comprised of only three

images. Our work is pixel based, and while there are a relatively large amount of pixels in

each image, the limited variation reduces their viability for training large models.

81

5.1.1 Hyperspectral Data Review

Hyperspectral imaging utilizes specialized sensors to detect frequencies beyond the standard

visible spectrum. Whereas the visible light spectrum wavelengths range from approximately

380nm to 750nm, hyperspectral sensors are able to detect light wavelengths up to 1700nm.

For normal images captures taken by standard, color cameras, there are three channels to

each image: red, green, and blue. For hyperspectral cameras, there are significantly more

channels in each image, often including hundreds of frequencies that the camera detects.

This leads to very high dimensional data and very smooth spectral signals [95]. A hyper-

spectral image is often compared to a hyperspectral cube where the first two dimensions

correspond to the width and height of the image and the third dimension corresponds to

the spectral signature of each pixel. Examining a single pixel in such a hypercube would

result in a spectral band, showing the amount of absorbance and reflectance of the respective

wavelengths.

The interactions with certain wavelengths of light has a strong correlation to the chemical

composition of the region being imaged. This leads to a very wide range of applications,

including agricultural purposes such as detecting grape cultures in a vineyard [96] or assessing

fruit and vegetable quality [97], and also even biomedical imaging applications [98]. In this

section, we consider the problem of identifying recyclable plastic material within waste, since

the spectral information could meaningfully discern between desirable and undesirable waste.

Recycling of waste material is an important component of the United Nations’ Sustain-

able Development Goals [99]. Chemometric study of spectroscopy data obtained through

hyperspectral imaging (HSI) has proven to be a popular framework in quality sorting and

recycling tasks, such as classification of polymers [100, 101, 102, 103], classification of food

samples [104], contamination identification for plastic recycling [101], and waste identifica-

tion in copper ore processing [105]. Similarly, we are interested in identifying plastic samples

in a tray of waste materials of various chemical compositions. In particular, we want to

82

perform pixel-wise classification to detect plastic on the HSI data of Figure 5.3(b), which

contains plastic among other materials.

The novelties of this work are three-fold. First, while most of the mentioned papers

consider spectrum data in the near infrared (NIR) wavelengths (900nm to 1700nm), we

aim to compare classification results obtained from the NIR and visible (VIS) wavelengths

(400nm to 1000nm). To this end, we present results on images collected from two different

hyperspectral cameras, which image in the NIR and VIS wavelengths respectively. From an

industrial point of view, such results can assist in the choice of the image acquisition setup.

Second, the spectroscopy data in the referenced papers is acquired in a very controlled

environment: the samples are well-separated and placed on a uniform white background, al-

lowing for straight-forward analysis of the spectral data. Furthermore, the typical framework

assumes expert knowledge of the materials and thus precise definition of the classes in the

classification task. However, in our dataset, samples are cluttered on a piece of cardboard

with various interfering, partly overlapping elements and more realistic, varied lighting. The

dataset is also only vaguely labelled, which leads to a broad definition of the plastic class (see

Section 5.2 for details). The resulting intraclass variability presents a challenge to traditional

chemometric classification approaches. This also reflects the more realistic industrial setting

where recycling material is placed directly on a conveyer belt without pre-arrangement,

manual or chemical sorting, and tedious pixel-wise labelling.

Third, chemometrics in most of the spectroscopy literature are based on linear methods

(see Section 5.3). Recently, there has been more deep machine learning methods used in

these applications [102, 103, 106]. We continue this trend by presenting novel results using

contrastive learning, as well as autoencoders combined with graph learning. To the best of

our knowledge, this has not previously appeared in the literature for this task.

The rest of the chapter is structured as follows: in Section 5.2, we describe our dataset,

data calibration and data exploration; in Section 5.3 we survey our methods for the classifi-

cation task; in Section 5.4 we discuss our results; in Section 5.5 we summarize our findings

83

and offer future avenues of work.

5.2 Dataset

The dataset consists of six images derived from three scenes imaged by two cameras: Specim

FX10 and Specim FX17. The imaging setup is shown in Figure 5.1. A rail moves the camera

while two sources of light illuminate the scene to minimize shadows. The study by Morales

[107] appears to describe very similar imaging conditions and also uses the same camera

models, so we refer the reader to this source for further experimental setup details regarding

the cameras.

The Specim FX10 camera operates in the visible wavelengths (400nm to 1000nm) and the

Specim FX17 camera operates in the near infrared wavelengths (900nm to 1700nm). FX10

captures 448 evenly spaced wavelengths and FX17 captures 224 evenly spaced wavelengths.

The cameras both use a push broom action and are set up as a row of sensors that can

be scanned across the materials. The two cameras imaging the same scenes allows us to

compare the classification results between the different wavelengths.

The three scenes contain two training images and one testing image. The different mate-

rials within the image have been very roughly labelled. The first training image, Figure 5.2,

contains plastic samples on a white, paper background. For FX10, this image is 700× 400;

for FX17, this image is 730× 320. The second training image, Figure 5.3(a), contains clut-

tered scraps of non-plastic material in a cardboard box. The non-plastic materials include

copper, fabrics, stones, paper, and metal. For FX10, this image is 1120 × 570; for FX17,

this image is 1125 × 480. The testing image, Figure 5.3(b), contains the same cluttered

scraps as the training image, Figure 5.3(a), but with the addition of plastics. For FX10, this

image is 1135 × 580; for FX17, this image is 1130 × 480. Despite the images sharing some

samples, the different imaging conditions help our methods to prevent significant overfitting

and allow our results to still reveal meaningful insights about the data and optimal classi-

84

Figure 5.1: The imaging apparatus. Two light sources are used for illumination to minimize

shadows on the scrap samples and the camera is attached to a rail. © 2023 IEEE

fication methods. As we intend to work with pixel-level data, these large images supply a

very large amount of pixel information. If we are able to successfully separate the pixels by

class, then supervised learning methods will become viable. However, as many of the pixels

are expected to have extremely similar spectral information, we effectively consider this to

be a limited information case and consider methods that are robust to overfitting.

5.2.1 Calibration

To calibrate the Specim cameras, we are provided with a dark image and a reference image.

The dark image is taken when the lens is closed and captures the noise inherent to the

sensors in the camera. The reference image contains materials with high reflectance which

are used to normalize the measurements with respect to the lighting source. Using the dark

and reference images, we calibrate our images via the industry standard equation, consistent

with Arnold’s work on hyperspectral imagery for industrial sorting applications [100].

85

Figure 5.2: A controlled environment of various types of plastic on a sheet of white paper. The

plastics have various colors and spectral signatures. © 2023 IEEE

First, we average the spectral intensity across each pixel in the dark image and will

subtract that value from all of the camera’s measurements. This removes biases in the

instrument measurements, normalizing the data for further processing. The reference image

contains a piece of paper with two materials on it, denoted as Ref 50 and Ref 99. The

Ref 50 material and Ref 99 material reflect 50% and 99% of the light that is incident on

the material, respectively. After subtracting the dark intensity from the images (including

the reference), we then divide by the average spectrum from the Ref 99 material, which

normalizes the observed spectrum in the data by the lighting used in the laboratory. We do

not have information about the Ref 99 reflectance for all of the sensors, as only a patch is

imaged, and so we must extrapolate and will take a mean over the Ref 99 pixels we do have.

We define the spectrum for Ref by the following

Ref(λ) =

∑
(i,j)∈A IRef (i, j, λ)− IDark(i, λ)

|A|

where IRef is the image containing the reference materials, IDark is the image from covering

the lens, the first coordinate (i) corresponds to the sensor axis and A is the set of x,y

86

(a) (b)

Figure 5.3: Two scenes of mixed clutter. The materials present are annotated on the figures

directly. (a) Contains no plastic and is used for sampling the clutter materials. (b) Contains

plastic and is used for testing. © 2023 IEEE

coordinates corresponding to the desired reference material in the image. Simply put, this

process subtracts the dark measurements from the reference image and then averages bands

across the desired reference spectrum to acquire a single band. In order to calibrate one of

the images in the dataset, we perform the following

I(x, y, λ) =
IRAW (x, y, λ)− IDark(x, λ)

Ref(λ)

where IRaw is the uncalibrated image. Dividing by the reference value for the images helps to

normalize for the intensity and presence of the lighting used in the laboratory environment.

5.2.2 Data Preprocessing

Light scattering can cause significant variability in the captured spectra both in diffuse

reflectance and transmittance spectroscopy. For our application, this is particularly rele-

87

vant: diffusively reflected light not only contains information about the chemical content

of our samples but also about its micro-structure which causes the scattering (e.g. surface

roughness, density fluctuations) [108]. The latter can be modeled using physical models and

produces both multiplicative and additive interference in the spectra [109].

While deep learning methods are capable of dealing with this variability, for classical

linear baseline methods and data exploration (refer to Sections 5.2.3 and 5.3), preprocess-

ing of the spectra is necessary. Preprocessing is highly specific to the dataset [101, 110].

After considering multiplicative scattering correction, standard normal variate and spectral

derivative methods (see [108] for a review), we decided to use the Savitzky-Golay (SG) filter

[111]. Using a moving window, the filter applies smoothing to the spectra by performing

polynomial approximation. This approximation allows one to take derivatives of the spectra

easily. We write SG-0 for the smoothed spectra and SG-1 for the first derivative of SG-0.

Due to the moving window, both the first and last bands of the spectrum can be discarded.

5.2.3 Data Exploration

In order to use supervision for pixel classification of the testing image, Figure 5.3(b), we need

to define regions of interest (ROIs) to train and evaluate our algorithm on. To obtain pure

plastic samples, we remove the background of the plastic image, Figure 5.2, by thresholding

on specific bands [104]. For non-plastic samples, we use all of the pixels in Figure 5.3(a)

as negative training samples, as the scene does not contain any plastic. We also note that

removing the background in Figure 5.3(b) and defining a ROI is significantly harder than

in some of the datasets considered in [100, 101, 104] due to its complexity. Using only an

unmixing method on materials with high intraclass variability - such as in this recycling

setting - may fail to identify ROIs with plastic. To avoid excluding plastic pieces from the

ROI, we consider the whole scene as our testing ROI. This also makes our methods applicable

to real-world settings where defining an ROI may not be realistic.

By manually sampling the plastic ROI in Figure 5.2, we observe that the plastic pieces

88

(a) (b)

Figure 5.4: Spectral responses of manually selected pixels from Figure 5.2. The black spectra are

randomly selected pixels that are used to reflect pixel density. The red spectra are shadows of

the plastic on paper. The blue spectra corresponds to the background paper. The green spectra

corresponds to plastic pixels. (a) FX10. (b) FX17.

may be composed of different polymers. This implies large intraclass variabilty in the plastic

and is similar to practical applications of recycling, where one might be interested in various

plastics types (and potentially in plastics with chemical compositions not seen in the training

dataset). This motivates deep learning methods, whose larger capacity can capture intraclass

variability more accurately than classical methods. The large variability in our classification

task is in contrast to the usual setting explored in [100, 101, 104] where the target classes

are known in advance and well-defined.

In Figure 5.4, we see respective spectral bands for pixels selected from Figure 5.2 for

the FX10 camera, Figure 5.4(a), and FX17 camera, Figure 5.4(b). The colors distinguish

between the material being imaged. Notably we see that paper reflects the most amount of

light and has the largest signature whereas plastic will absorb more light and thus appear

darker. The shadows have similar spectral bands to the paper but are less bright. Amongst

89

the plastic spectral lines, we have sampled plastic of various colors which accounts for the

significantly varied spectral lines, referred to previously as the intraclass variability. The

black, mostly transparent bands correspond to randomly selected pixels in the image. This

is intended to give a reference for the density of certain materials in the image. For example,

the darkest regions fall within the blue bands and suggest that paper is the most prominent

material in the image. We do still see black bands in the regions corresponding to plastic

indicating more variability in the class. In order to isolate the plastic pixels from Figure 5.2,

we use the information from these spectral bands to derive thresholds. More specifically,

for FX10 pixels we threshold along the 40th band where we empirically witness separation

from the plastic and shadow spectra. For the FX17 camera, we see that the shadow spectra

is more difficult to discern from the plastic so we instead use the standard deviation of the

spectra alongside some additional thresholding to isolate those pixels.

5.3 Methods

In this section, we survey the different methods used for the detection of plastic in the

mixed image. The methods vary from linear to highly nonlinear. We first describe Partial

Least Squares Discriminant Analysis (PLS-DA) which we use as our baseline. Following

the motivations detailed in Sections 5.2.2 and 5.2.3, we also explore deep learning meth-

ods. In particular, we perform dimensionality reduction through Autoencoders (AEs) and

Contrastive Learning (CL); our classifiers include Multilayer Perceptrons (MLP), k-Nearest

Neighbors (k-NN) [21], and Graph Learning (GL) [18]. Unsupervised autoencoders with

semi-supervised graph learning classifiers were chosen as the low-label rate model while the

supervised contrastive learning with k-NN and separate MLP classifier were chosen as the

supervised methods.

90

5.3.1 Partial Least Squares Discriminant Analysis

We refer to [112] for a review of the methods discussed in this section. A standard assumption

in multivariate linear regression is that the variables are uncorrelated. This is not satisfied

when using spectra and we therefore aim to transform our data into a small number of

orthogonal vectors. Unsupervised principal component analysis achieves this by projecting

data onto principal components which point in relevant directions based on the variance of the

spectra. Performing regression using the principal components as variables is called principal

component regression (PCR). The supervised counterpart to PCR is PLS-DA: the directions

of the orthogonal vectors used in the regression problem now maximize covariance with the

response variable. Regression yields a continuous response prediction and we threshold at

0.5 to obtain labels in {0, 1} (for binary classification). PLS-DA is the standard classification

method used in spectroscopy [104, 101, 100] and in our experiments, we use three orthogonal

vectors for PLS-DA.

5.3.2 Nonlinear Dimensionality Reduction and Classifiers

As explained in Section 5.3.1, dimensionality reduction is essential when dealing with spectral

data. We now detail two deep learning approaches for this task.

We utilize an autoencoder with an input dimension of 448 or 224 (for FX10 or FX17,

respectively), followed by fully connected layers with output dimension 100, 25, and 5,

respectively, before fully connected layers with output dimension 25, 100, 448, respectively.

Rectified Linear Unit (ReLU) activation functions are used after each layer except at the

bottleneck. We train the network for 50 epochs. We use the Adam optimizer [113] with a

learning rate of 0.001, and β values of 0.9 and 0.999. The loss is mean squared error. To

classify the pixels, we perform graph learning (see Section 3.5) on the embeddings learned

by the AE.

Additionally, we use SupCon [46], a fully supervised contrastive learning with the goal of

91

learning latent representations for samples so that classes are well clustered. Typically when

using contrastive learning, many data augmentations are used to create more varied data

and teach the neural network to be invariant to certain effects. Due to the spectral nature

of the data, it is less clear which augmentations are natural to use. Moreover, we have an

abundance of pixels, so we instead do not use any augmentations and rely on the noise in

the pixels to provide natural variation.

We train a simple multilayer perceptron encoder network with input dimension of 448

or 224 (for FX10 or FX17 respectively) followed by two linear layers with sizes 256 or 128

(for FX10 and FX17 respectively) and 64 with ReLU activation functions. We then have

a dropout layer with dropout probability of 50% and then one more linear layer of size 16

with a sigmoid activation function. The projection head is a linear layer of size 4 with

a normalization activation function. We train the models for 500 epochs using the Adam

optimizer with a learning rate of 0.001, beta values of 0.9 and 0.999, and a gamma value of

0.99 for the scheduler. For the SupCon loss function, we use a temperature of 0.1.

Many of the non-plastic samples have identical latent representations with this archi-

tecture, which makes graph learning ill-posed when the number of nearest neighbors is not

large enough. For classification, we instead opt to use a k-NN classifier with k = 5 for

the contrastive embeddings. For the autoencoder trained embeddings, the Laplace learning

methodology described in Section 3.5 is used. For our experiments, we use the cosine dis-

tance, set k = 10, and we use 1000 non-plastic samples and 500 plastic samples as training

points to classify the pixels. As a separate classifier, we train a 3-layer fully connected neural

network for binary classification on the data. The network has hidden layers of size 50 and

10 with ReLU activation functions. We use cross entropy loss. The network uses the same

hyperparameters as the AE network.

92

5.4 Results

We present classification results on both FX10 and FX17 data in Figure 5.5. Since we have

no pixel-wise ground truth, our evaluation is qualitative. In Figure 5.5, the background

displays the hyperspectral images captured by the respective cameras, with pixels classified

as plastic highlighted in yellow. The right most figure showcases the ground truth regions of

interest. As we were not provided pixel-based annotations for the testing environment, we

simply must intuit the qualitative results by the amount of overlap with the three marked

regions of interest at the top, left, and bottom of the image.

We see that the detection results from the spectra in the FX17 camera appears to be

much more confined to the regions of interest and therefore stronger. For the FX17 data,

all of the methods are able to detect the plastic at the top and bottom of the image frame,

but the linear method notably misses the plastics on the left-most region. All of the deep

learning methods successfully detect plastics on all three regions but have varying degrees of

sensitivity. The AE with graph learning appears to have more noise than the other methods

but does detect the most amount of plastic. The contrastive learning embeddings with

k-nearest neighbors classifier and the multi-layer perceptron classifer have more balanced

results.

For the FX10 images, the results are notably poorer. Only the AE with graph learning

is able to detect the plastic on the left-most region of interest but also suffers from many

false positives elsewhere. The contrastive learning with k nearest neighbors and the multi-

layer perceptron have some ability to distinguish the plastic but also suffer from more false

positives than the FX17 images.

Overall, it is clear that the deep methods outperform PLS-DA, the more classical method,

in detecting additional plastic. As noted, some of the images suffer from noise in the results

and the appearances of false positives, but many of these erroneous results could likely be

filtered with post-processing techniques. For example, plastic-classified pixels should be

93

FX
10

PLS-DA MLP AE + GL CL + KNN GT
FX
17

Figure 5.5: Binary classification on FX10 and FX17 images using four methods: PLS-DA (Partial

Least Squares Discriminant Analysis), MLP (Multilayer Perceptron), AE + GL (Autoencoder and

Graph Learning), and CL + k-NN (Contrastive Learning and k-Nearest Neighbors). In the first

four columns, yellow pixels indicate a plastic classification. The last column shows the approximate

”ground truth” areas where plastic was manually placed.© 2023 IEEE

densely grouped to correspond to a plastic object, so, reasonably, stray pixels should be

filtered out.

94

5.5 Conclusion and Future Work

Using machine learning and artificial intelligence to automate the process of material sorting

using hyperspectral cameras shows promise. We have demonstrated that, with relatively

limited data, plastic can be detected readily with a variety of methods in both the visible

and near infrared spectra. We find that classification results are stronger for images taken

with the FX17 camera, indicating that the near infrared (900nm-1700nm) range is suitable

for differentiating plastics from other non-plastic refuse, however the visible spectrum does

appear to be viable as well.

It would be valuable to further explore the distinctions between the methods and light

spectra with a meticulously curated, larger dataset containing expert knowledge of the types

of plastics.

95

CHAPTER 6

Conclusion

In this thesis, we reviewed many different techniques for low label rate image learning in

a variety of application environments. Many classical image processing techniques were

introduced in Chapter 1, including linear, signal processing, and variational methods. In

Chapter 2, we were able to utilize some of these methods. For example, the Canny edge

detector is the first step in the detection of the largely transparent particles. We also intro-

duced additional, classical techniques. The Hough Transforms that follow the edge detector

are well-known methods for template detection that have lower requirements than neural

networks and snake active contours are a variational, adaptive method for segmenting the

particles that is sensitive to local, fine-grain features. With these methods we were able to

leverage the specific geometry of the particles to facilitate an automated detection algorithm.

Coupled with snake active contours and the resulting theory for for the convergence of the

snakes, we established a viable method for the segmentation of the particles as well. The

empirical results of the hand tuned algorithm on the small dataset show strong support for

the methodology and have very good precision, which is ideal for the medical testing envi-

ronment. Without relying on any deep learning methodology, this work can generalize well

and run on limited hardware. Future work could involve utilizing more particle geometries,

using a more efficient implementation of the generalized Hough Transform, or deriving more

specific conditions on the particles to ensure convergence of the snake active contours.

Beyond the classical techniques, we also utilized many modern, more state-of-the-art

neural network methods that worked very well with our classical pipeline. For example, the

96

variational autoencoders and SimCLR architectures serve as a stronger, nonlinear upgrades

over principal component analysis or non-negative matrix factorization for learning features

in images. These methods couple very well with the transductive graph-based semi super-

vised learning, Laplace learning. The mathematical background of graph learning allows us

to leverage an abundance of unlabeled information while using minimal labels. Further inte-

grating these methods into an active learning pipeline can result in remarkable performance.

All of these methods are detailed in Chapter 3.

With these established methods, we were able to consider more practical applications. To

start, the work in Chapter 4 explores applications of the methodology to synthetic aperture

radar data. We firstly introduced SAR data and discussed many of the domain relevant

features of the data. Then we introduced two datasets: the Caesar dataset which required

significant pre-processing to craft into a classification dataset, and the MSTAR dataset which

is a classical benchmark dataset. Since both datasets consist of SAR images, they require

expert knowledge to label, but can benefit by often having a large amount of data, much more

so than what is considered in the particle detection problem. We show that the graph-based

active learning pipeline from 3 achieves very strong results on both of these datasets and

utilizing SimCLR for learning features on MSTAR improved over previous state-of-the-art

results.

In the final chapter, Chapter 5, we move away from remote sensing SAR data to a close-

range hyperspectral dataset. Similar to Chapter 4, we discuss many domain specific features

of the dataset before processing the data. The dataset consisted of only six hyperspectral

images across two cameras. This supplies a large amount of labeled pixel data relative to

the other datasets, but the difficulty here stems from the lack of images provided. Despite

there being a large number of varied pixel spectra to work with, all of the spectra comes

from three images, indicating very similar imaging conditions. This can be acceptable for

controlled environments where conditions are consistent, but may not be ideal in practical

scenarios. However, we still use many of the established techniques to develop a variety of

97

methods for pixel-based classification to segment the image. We show that the near infrared

spectrum is well suited to the task and that deep learning tools are viable for the problem.

By combining classical and modern imaging techniques into a single pipeline, we are able

to utilize as much information as possible in a given dataset, learn features, and propagate

labels. The methods have seen great success and further work is being done to combine the

methods to a higher degree.

98

REFERENCES

[1] Y. Wang, C. Wang, H. Zhang, Y. Dong, and S. Wei, “A sar dataset of ship detection
for deep learning under complex backgrounds,” remote sensing, vol. 11, no. 7, p. 765,
2019.

[2] K. Miller, J. Mauro, J. Setiadi, X. Baca, Z. Shi, J. Calder, and A. L. Bertozzi,
“Graph-based active learning for semi-supervised classification of SAR data,” in
Algorithms for Synthetic Aperture Radar Imagery XXIX, E. Zelnio and F. D. Garber,
Eds., vol. 12095, International Society for Optics and Photonics. SPIE, 2022, p.
120950C. [Online]. Available: https://doi.org/10.1117/12.2618847

[3] J. Brown, A. Arnheim, A. L. Bertozzi, and D. D. Carlo, “Detection and segmentation
of shape-coded particles via hough transforms and snake active contours,” in 2024
IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). IEEE,
2024, pp. 85–88, © 2024 IEEE. Reprinted, with permission.

[4] J. Brown, R. O’Neill, J. Calder, and A. L. Bertozzi, “Utilizing contrastive learning for
graph-based active learning of sar data,” in Algorithms for Synthetic Aperture Radar
Imagery XXX, vol. 12520. SPIE, 2023, pp. 181–195.

[5] J. Brown, B. Chen, H. Hardiman-Mostow, A. Weihs, A. L. Bertozzi, and J. Chanus-
sot, “Material identification in complex environments: Neural network approaches to
hyperspectral image analysis,” in 2023 13th Workshop on Hyperspectral Imaging and
Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2023, pp. 1–5,
© 2023 IEEE. Reprinted, with permission.

[6] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

[7] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” in Proceedings.
1991 IEEE computer society conference on computer vision and pattern recognition.
IEEE Computer Society, 1991, pp. 586–587.

[8] D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” Advances
in neural information processing systems, vol. 13, 2000.

[9] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” nature, vol. 401, no. 6755, pp. 788–791, 1999.

[10] C. Van Loan, Computational frameworks for the fast Fourier transform. SIAM, 1992.

[11] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE transac-
tions on Computers, vol. 100, no. 1, pp. 90–93, 1974.

99

https://doi.org/10.1117/12.2618847

[12] J.-L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: A review,”
Publications of the Astronomical Society of the Pacific, vol. 114, no. 800, p. 1051, 2002.

[13] R. C. Gonzalez, Digital image processing. Pearson education india, 2009.

[14] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, 1986.

[15] A. Rosenfeld, “Picture processing by computer,” ACM Computing Surveys (CSUR),
vol. 1, no. 3, pp. 147–176, 1969.

[16] J. Calder, “The calculus of variations,” University of Minnesota, vol. 40, 2020.

[17] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Interna-
tional journal of computer vision, vol. 1, no. 4, pp. 321–331, 1988.

[18] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using gaussian
fields and harmonic functions,” in Proceedings of the 20th International conference on
Machine learning (ICML-03), 2003, pp. 912–919.

[19] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, B. C.
Van Esesn, A. A. S. Awwal, and V. K. Asari, “The history began from alexnet: A
comprehensive survey on deep learning approaches,” arXiv preprint arXiv:1803.01164,
2018.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp.
436–444, 2015.

[21] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE transactions on
information theory, vol. 13, no. 1, pp. 21–27, 1967.

[22] B. C. Csáji et al., “Approximation with artificial neural networks,” Faculty of Sciences,
Etvs Lornd University, Hungary, vol. 24, no. 48, p. 7, 2001.

[23] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Label propagation for deep semi-
supervised learning,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 5070–5079.

[24] G. Destgeer, M. Ouyang, C.-Y. Wu, and D. Di Carlo, “Fabrication of 3d concentric
amphiphilic microparticles to form uniform nanoliter reaction volumes for amplified
affinity assays,” Lab Chip, vol. 20, pp. 3503–3514, 2020.

[25] G. Destgeer, M. Ouyang, and D. Di Carlo, “Engineering design of concentric am-
phiphilic microparticles for spontaneous formation of picoliter to nanoliter droplet
volumes,” Analytical Chemistry, vol. 93, no. 4, pp. 2317–2326, 2021.

100

[26] V. Shah, X. Yang, A. Arnheim, S. Udani, Y. Luo, M. Ouyang, G. Destgeer, O. Garner,
H. Koydemir, A. Ozcan, and D. Di Carlo, “Amphiphilic particle-stabilized nanoliter
droplet reactors with a multimodal portable reader for distributive biomarker quan-
tification,” ACS Nano, vol. 17, pp. 19 952–19 960, 2023.

[27] G. Destgeer, M. A. Sahin, L. van den Eijnden, and C. Bhiri, “Deep learning based
recognition of shape-coded microparticles,” Frontiers in Lab on a Chip Technologies,
vol. 2, p. 1248265, 2023.

[28] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural net-
works,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 828–841,
2019.

[29] S. Savkare and S. Narote, “Blood cell segmentation from microscopic blood images,”
in 2015 International conference on information processing (ICIP). IEEE, 2015, pp.
502–505.

[30] C. Zhang, X. Xiao, X. Li, Y.-J. Chen, W. Zhen, J. Chang, C. Zheng, and Z. Liu,
“White blood cell segmentation by color-space-based k-means clustering,” Sensors,
vol. 14, no. 9, pp. 16 128–16 147, 2014.

[31] F. Al-Hafiz, S. Al-Megren, and H. Kurdi, “Red blood cell segmentation by thresholding
and canny detector,” Procedia Computer Science, vol. 141, pp. 327–334, 2018.

[32] P. V. Gulyaev, “Application of the hough transform to dispersion control of overlapping
particles and their agglomerates,” Devices and Methods of Measurements, vol. 14, pp.
199–206, 2023.

[33] V. Pătrăucean, P. Gurdjos, and R. G. Von Gioi, “A parameterless line segment and
elliptical arc detector with enhanced ellipse fitting,” in Computer Vision–ECCV 2012:
12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012,
Proceedings, Part II 12. Springer, 2012, pp. 572–585.

[34] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect lines and
curves in pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11–15, 1972.

[35] P. M. Merlin and D. J. Farber, “A parallel mechanism for detecting curves in pictures,”
IEEE Transactions on Computers, vol. 100, no. 1, pp. 96–98, 1975.

[36] L. D. Cohen, “On active contour models and balloons,” CVGIP: Image understanding,
vol. 53, no. 2, pp. 211–218, 1991.

[37] D. H. Ballard, “Generalizing the hough transform to detect arbitrary shapes,” Pattern
recognition, vol. 13, no. 2, pp. 111–122, 1981.

101

[38] J. Ivins and J. Porrill, “Everything you always wanted to know about snakes (but were
afraid to ask),” Artificial Intelligence, vol. 2000, 1995.

[39] B. Braden, “The surveyor’s area formula,” The College Mathematics Journal, vol. 17,
no. 4, pp. 326–337, 1986.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[41] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive
learning of visual representations.” PMLR, 2020, pp. 1597–1607.

[42] M. A. Kramer, “Nonlinear principal component analysis using autoassociative neural
networks,” AIChE journal, vol. 37, no. 2, pp. 233–243, 1991.

[43] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[44] ——, “An Introduction to Variational Autoencoders,” Foundations and Trends in
Machine Learning, vol. 12, no. 4, pp. 307–392, Nov. 2019, publisher: Now Publishers,
Inc. [Online]. Available: https://www.nowpublishers.com/article/Details/MAL-056

[45] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an in-
variant mapping,” in 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), vol. 2, 2006, pp. 1735–1742.

[46] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu,
and D. Krishnan, “Supervised contrastive learning,” CoRR, vol. abs/2004.11362,
2020. [Online]. Available: https://arxiv.org/abs/2004.11362

[47] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of machine
learning research, vol. 9, no. 11, 2008.

[48] G. E. Hinton and S. Roweis, “Stochastic neighbor embedding,” Advances in neural
information processing systems, vol. 15, 2002.

[49] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and
projection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

[50] U. von Luxburg, “A tutorial on spectral clustering.” Stat. Comput., vol. 17, no. 4, pp.
395–416, 2007. [Online]. Available: http://dblp.uni-trier.de/db/journals/sac/sac17.
html#Luxburg07

102

https://www.nowpublishers.com/article/Details/MAL-056
https://arxiv.org/abs/2004.11362
http://dblp.uni-trier.de/db/journals/sac/sac17.html#Luxburg07
http://dblp.uni-trier.de/db/journals/sac/sac17.html#Luxburg07

[51] B. Chen, Y. Lou, A. L. Bertozzi, and J. Chanussot, “Graph-based active learning for
nearly blind hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote
Sensing, 2023.

[52] Z. Meng, E. Merkurjev, A. Koniges, and A. L. Bertozzi, “Hyperspectral image classifi-
cation using graph clustering methods,” Image Processing On Line, vol. 7, pp. 218–245,
2017.

[53] J. Qin, H. Lee, J. T. Chi, L. Drumetz, J. Chanussot, Y. Lou, and A. L. Bertozzi,
“Blind hyperspectral unmixing based on graph total variation regularization,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 3338–3351, 2020.

[54] “ANNOY library,” https://github.com/spotify/annoy, accessed: 2024-01-01.

[55] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-
told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17,
pp. 261–272, 2020.

[56] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the nystrom
method,” IEEE transactions on pattern analysis and machine intelligence, vol. 26,
no. 2, pp. 214–225, 2004.

[57] A. L. Bertozzi and A. Flenner, “Diffuse interface models on graphs for classification of
high dimensional data,” Multiscale Modeling & Simulation, vol. 10, no. 3, pp. 1090–
1118, 2012.

[58] C. Garcia-Cardona, E. Merkurjev, A. L. Bertozzi, A. Flenner, and A. G. Percus, “Mul-
ticlass data segmentation using diffuse interface methods on graphs,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 36, no. 8, pp. 1600–1613, 2014.

[59] J. Woodworth, G. Mohler, A. L. Bertozzi, and P. Brantingham, “Non-local crime
density estimation incorporating housing information,” Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, no.
2028, p. 20130403, 2014.

[60] J. Calder, B. Cook, M. Thorpe, and D. Slepčev, “Poisson Learning: Graph based
semi-supervised learning at very low label rates,” Proceedings of the 37th International
Conference on Machine Learning, PMLR, vol. 119, pp. 1306–1316, 2020. [Online].
Available: http://proceedings.mlr.press/v119/calder20a.html

103

https://github.com/spotify/annoy
http://proceedings.mlr.press/v119/calder20a.html

[61] K. Miller and J. Calder, “Poisson reweighted Laplacian uncertainty sampling for graph-
based active learning,” arxiv:2210.15786, 2022.

[62] M. Flores, J. Calder, and G. Lerman, “Analysis and algorithms for Lp-based semi-
supervised learning on graphs,” Applied and Computational Harmonic Analysis, vol. 60,
pp. 77–122, 2022. [Online]. Available: https://doi.org/10.1016/j.acha.2022.01.004

[63] E. Merkurjev, A. L. Bertozzi, and F. Chung, “A semi-supervised heat kernel pagerank
MBO algorithm for data classification,” Communications in Mathematical Sciences,
vol. 16, no. 5, pp. 1241–1265, 2018.

[64] D. G. Zill, M. R. Cullen, and W. S. Wright, Differential equations with boundary-value
problems. Brooks/Cole Publishing Company, 1997.

[65] J. Calder, “GraphLearning Python Package,” doi:10.5281/zenodo.5850940, 2022.

[66] B. Settles, Active Learning. Morgan & Claypool Publishers LLC, Jun. 2012, vol. 6,
no. 1. [Online]. Available: https://doi.org/10.2200/s00429ed1v01y201207aim018

[67] A. Kirsch and Y. Gal, “Unifying approaches in active learning and active sam-
pling via fisher information and information-theoretic quantities,” arXiv preprint
arXiv:2208.00549, 2022.

[68] J. Chapman, B. Chen, Z. Tan, J. Calder, K. Miller, and A. L. Bertozzi, “Novel batch
active learning approach and its application on the synthetic aperture radar datasets,”
in Algorithms for Synthetic Aperture Radar Imagery XXX, vol. 12520. SPIE, 2023,
pp. 96–111.

[69] C. E. Shannon, “A mathematical theory of communication,” The Bell system technical
journal, vol. 27, no. 3, pp. 379–423, 1948.

[70] D. D. Lewis, “A sequential algorithm for training text classifiers: Corrigendum and
additional data,” in Acm Sigir Forum, vol. 29, no. 2. ACM New York, NY, USA,
1995, pp. 13–19.

[71] M. Ji and J. Han, “A variance minimization criterion to active learning on graphs,”
in Artificial Intelligence and Statistics, Mar. 2012, pp. 556–564. [Online]. Available:
http://proceedings.mlr.press/v22/ji12.html

[72] Y. Ma, R. Garnett, and J. Schneider, “σ-optimality for active learning on gaussian
random fields,” Advances in Neural Information Processing Systems, vol. 26, 2013.

[73] K. Miller and A. L. Bertozzi, “Model-change active learning in graph-based
semi-supervised learning,” Oct. 2021, arXiv: 2110.07739. [Online]. Available:
http://arxiv.org/abs/2110.07739

104

https://doi.org/10.1016/j.acha.2022.01.004
https://doi.org/10.2200/s00429ed1v01y201207aim018
http://proceedings.mlr.press/v22/ji12.html
http://arxiv.org/abs/2110.07739

[74] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanas-
siou, “A tutorial on synthetic aperture radar,” IEEE Geoscience and remote sensing
magazine, vol. 1, no. 1, pp. 6–43, 2013.

[75] A. I. Flores-Anderson, K. E. Herndon, R. B. Thapa, and E. Cherrington, “The sar
handbook: comprehensive methodologies for forest monitoring and biomass estima-
tion,” Tech. Rep., 2019.

[76] AFRL and DARPA, “Moving and stationary target acquisition and recognition
(MSTAR) dataset,” https://www.sdms.afrl.af.mil/index.php?collection=mstar, ac-
cessed: 2021-07-10.

[77] M. A. Koets and R. L. Moses, “Feature extraction using attributed scattering center
models on sar imagery,” in Algorithms for Synthetic Aperture Radar Imagery VI, vol.
3721. SPIE, 1999, pp. 104–115.

[78] L. C. Potter and R. L. Moses, “Attributed scattering centers for SAR ATR,” IEEE
Transactions on image processing, vol. 6, no. 1, pp. 79–91, 1997.

[79] Q. Zhao and J. C. Principe, “Support vector machines for SAR automatic target
recognition,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 2,
pp. 643–654, 2001.

[80] Y. Wang, P. Han, X. Lu, R. Wu, and J. Huang, “The performance comparison of
adaboost and svm applied to SAR ATR,” in 2006 CIE international conference on
radar. IEEE, 2006, pp. 1–4.

[81] G. Dong and G. Kuang, “Target recognition in SAR images via classification on rie-
mannian manifolds,” IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 1, pp.
199–203, 2014.

[82] S. Wagner, K. Barth, and S. Brüggenwirth, “A deep learning SAR ATR system using
regularization and prioritized classes,” in 2017 IEEE Radar Conference (RadarConf),
2017, pp. 0772–0777.

[83] H. Wang, S. Chen, F. Xu, and Y.-Q. Jin, “Application of deep-learning algorithms to
MSTAR data,” in 2015 IEEE International Geoscience and Remote Sensing Sympo-
sium (IGARSS). IEEE, 2015, pp. 3743–3745.

[84] S. Chen, H. Wang, F. Xu, and Y.-Q. Jin, “Target classification using the deep con-
volutional networks for SAR images,” IEEE transactions on geoscience and remote
sensing, vol. 54, no. 8, pp. 4806–4817, 2016.

[85] C. Coman and R. Thaens, “A deep learning SAR target classification experiment on
MSTAR dataset,” in 2018 19th International Radar Symposium (IRS), 2018, pp. 1–6.

105

https://www.sdms.afrl.af.mil/index.php?collection=mstar

[86] S. Deng, L. Du, C. Li, J. Ding, and H. Liu, “SAR automatic target recognition based
on euclidean distance restricted autoencoder,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 10, no. 7, pp. 3323–3333, 2017.

[87] B. Lewis, T. Scarnati, E. Sudkamp, J. Nehrbass, S. Rosencrantz, and E. Zelnio,
“A SAR dataset for ATR development: the synthetic and measured paired
labeled experiment (SAMPLE),” in Algorithms for Synthetic Aperture Radar
Imagery XXVI, E. Zelnio and F. D. Garber, Eds., vol. 10987, International
Society for Optics and Photonics. SPIE, 2019, p. 109870H. [Online]. Available:
https://doi.org/10.1117/12.2523460

[88] T. Scarnati and B. Lewis, “A deep learning approach to the synthetic and measured
paired and labeled experiment (sample) challenge problem,” in Algorithms for Syn-
thetic Aperture Radar Imagery XXVI, vol. 10987. SPIE, 2019, pp. 29–38.

[89] N. Inkawhich, M. J. Inkawhich, E. K. Davis, U. K. Majumder, E. Tripp, C. Capraro,
and Y. Chen, “Bridging a gap in SAR-ATR: Training on fully synthetic and testing on
measured data,” IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 14, pp. 2942–2955, 2021.

[90] M. Swan, A. Major, J. Lear, C. G. Parks, and J. Zhan, “Enforcing feature correlation on
cycle-consistent gan generated functions: a first step in closing the synthetic measured
gap found in sar images,” in Algorithms for Synthetic Aperture Radar Imagery XXIX,
vol. 12095. SPIE, 2022, pp. 115–125.

[91] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 770–778.

[92] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, “Big self-supervised
models are strong semi-supervised learners,” Advances in neural information processing
systems, vol. 33, pp. 22 243–22 255, 2020.

[93] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu,
and D. Krishnan, “Supervised contrastive learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 18 661–18 673, 2020.

[94] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” in Avances in Neural Information Processing Systems. MIT Press, 2001,
pp. 849–856. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.19.8100

[95] N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,”
Optical Engineering, vol. 52, no. 9, pp. 090 901–090 901, 2013.

106

https://doi.org/10.1117/12.2523460
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100

[96] F. Lacar, M. Lewis, and I. Grierson, “Use of hyperspectral imagery for mapping grape
varieties in the barossa valley, south australia,” in IGARSS 2001. Scanning the Present
and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Re-
mote Sensing Symposium (Cat. No. 01CH37217), vol. 6. IEEE, 2001, pp. 2875–2877.

[97] D. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, O. L. Garćıa-Navarrete, and
J. Blasco, “Recent advances and applications of hyperspectral imaging for fruit and
vegetable quality assessment,” Food and Bioprocess Technology, vol. 5, pp. 1121–1142,
2012.

[98] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” Journal of biomedical
optics, vol. 19, no. 1, pp. 010 901–010 901, 2014.

[99] B. X. Lee, F. Kjaerulf, S. Turner, L. Cohen, P. D. Donnelly, R. Muggah, R. Davis,
A. Realini, B. Kieselbach, L. S. MacGregor et al., “Transforming our world: imple-
menting the 2030 agenda through sustainable development goal indicators,” Journal
of public health policy, vol. 37, pp. 13–31, 2016.

[100] T. Arnold, M. De Biasio, R. Kammari, and K. Sayar-Chand, “Development of vis/nir
hyperspectral imaging system for industrial sorting applications,” in Algorithms, Tech-
nologies, and Applications for Multispectral and Hyperspectral Imaging XXVII, vol.
11727. SPIE, 2021, pp. 298–304.

[101] G. Bonifazi, L. Fiore, R. Gasbarrone, R. Palmieri, and S. Serranti, “Hyperspectral
imaging applied to weee plastic recycling: A methodological approach,” Sustainability,
vol. 15, no. 14, p. 11345, 2023.

[102] A. Sbrana, A. G. de Almeida, A. M. de Oliveira, H. S. Neto, J. P. C. Rimes, and M. C.
Belli, “Plastic classification with nir hyperspectral images and deep learning,” IEEE
Sensors Letters, vol. 7, no. 1, pp. 1–4, 2023.

[103] B. Delaporte, T. van Gelder, and K. van der Sluis, “Polymer flake detection through
hyperspectral imaging.”

[104] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An augmented linear mixing
model to address spectral variability for hyperspectral unmixing,” IEEE Transactions
on Image Processing, vol. 28, no. 4, pp. 1923–1938, 2018.

[105] M. Dalm, M. Buxton, and F. van Ruitenbeek, “Discriminating ore and waste
in a porphyry copper deposit using short-wavelength infrared (swir) hyperspectral
imagery,” Minerals Engineering, vol. 105, pp. 10–18, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0892687516304228

107

https://www.sciencedirect.com/science/article/pii/S0892687516304228

[106] K. Moirogiorgou, F. Raptopoulos, G. Livanos, S. Orfanoudakis, M. Papadogiorgaki,
M. Zervakis, and M. Maniadakis, “Intelligent robotic system for urban waste recy-
cling,” in 2022 IEEE International Conference on Imaging Systems and Techniques
(IST). IEEE, 2022, pp. 1–6.

[107] A. Morales, P. Horstrand, R. Guerra, R. Leon, S. Ortega, M. Dı́az, J. M. Melián,
S. López, J. F. López, G. M. Callico et al., “Laboratory hyperspectral image acquisition
system setup and validation,” Sensors, vol. 22, no. 6, p. 2159, 2022.

[108] Å. Rinnan, F. Van Den Berg, and S. B. Engelsen, “Review of the most common pre-
processing techniques for near-infrared spectra,” TrAC Trends in Analytical Chemistry,
vol. 28, no. 10, pp. 1201–1222, 2009.

[109] H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance
separated by extended multiplicative signal correction. application to near-infrared
transmission analysis of powder mixtures,” Analytical Chemistry, vol. 75, no. 3, pp.
394–404, 02 2003. [Online]. Available: https://doi.org/10.1021/ac020194w

[110] Å. Rinnan, “Pre-processing in vibrational spectroscopy–when, why and how,” Analyt-
ical Methods, vol. 6, no. 18, pp. 7124–7129, 2014.

[111] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified
least squares procedures.” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 07
1964. [Online]. Available: https://doi.org/10.1021/ac60214a047

[112] A. Biancolillo and F. Marini, “Chemometric methods for spectroscopy-based
pharmaceutical analysis,” Frontiers in Chemistry, vol. 6, 2018. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fchem.2018.00576

[113] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

108

https://doi.org/10.1021/ac020194w
https://doi.org/10.1021/ac60214a047
https://www.frontiersin.org/articles/10.3389/fchem.2018.00576

	Introduction
	Traditional Image Processing with Applications to Particle Detection and Classification
	Introduction
	Particle on a Chip
	Dataset

	Detection and Segmentation
	Background
	Circle Hough Transform
	Template Matching and Hough Transforms
	Segmentation
	Convergence of Snake
	Detection Pipeline
	Experiments and Results

	Conclusion

	Review of Feature Extraction, Graph Learning, and Active Learning
	Introduction
	Neural Network Encoders
	AutoEncoder
	Contrastive Learning (SimCLR)

	Embedding Visualizations
	Graph Embedding
	Graph Based Semi Supervised Learning
	Active Learning

	Graph Active Learning with Applications to Synthetic Aperture Radar Data
	Introduction
	Synthetic Aperture Radar

	Caesar Dataset
	MSTAR
	Previous and Related Work

	SAR Image Classification
	Caesar Results
	MSTAR Results

	Conclusion

	Deep Learning Techniques and Applications to Hyperspectral Imagery
	Introduction
	Hyperspectral Data Review

	Dataset
	Calibration
	Data Preprocessing
	Data Exploration

	Methods
	Partial Least Squares Discriminant Analysis
	Nonlinear Dimensionality Reduction and Classifiers

	Results
	Conclusion and Future Work

	Conclusion
	References

