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TESTING EXPONENTIALITY BY COMPARING THE
EMPIRICAL DISTRIBUTION FUNCTION OF
THE NORMALIZED SPACINGS WITH THAT

OF THE ORIGINAL DATA

S. RAO JAMMALAMADAKAa and EMANUELE TAUFERb,∗

aDepartment of Statistics and Applied Probability, University of California, Santa Barbara,
CA 93106-3110, USA; bDepartment of Computer and Management Sciences, University of Trento,

Via Inama 5, 38100 Trento, Italy

(Received January 2002; Revised April 2003; In final form October 2003)

We introduce new goodness of fit tests for exponentiality by using a characterization based on normalized spacings. We
provide relevant asymptotic theory for these tests and study their efficiency. An empirical power study and comparisons
are also provided.

Keywords: Test for exponentiality; Kolmogorov–Smirnov statistics; Omega square statistics; Brownian Bridge;
Asymptotic efficiency

1 INTRODUCTION

In this paper, we develop a goodness of fit test for exponentiality exploiting a characterization
based on the ‘normalized spacings’. There is considerable literature on the problem of testing
for exponentiality. The reasons are many-fold and chief among these are: the watershed
role played by the exponential distribution in reliability and survival analysis, its nice
mathematical properties, as well as the availability of several characterizations. Most recently,
Baringhaus and Henze (2000) and Taufer (2000) developed tests based on the mean residual life
characterization. Alwasel (2001) and Ahmad and Alwasel (1999) exploited a characterization
based on the lack of memory of the exponential distribution. This property is also the basis for
tests considered earlier by Angus (1982) who used Kolmogorov–Smirnov and Cramer–von
Mises type test statistics based on the difference of the empirical distribution functions
(e.d.f.) F̄n(2x) and F̄2

n (x), where F̄ = 1 − F , denotes the survival function. Grzegorzewski
and Wieczorkowski (1999) and Ebrahimi et al. (1992) make use of the maximum entropy
characterization by considering the difference between a nonparametric estimator of entropy
and the maximum likelihood estimator of entropy under exponentiality. Other omnibus tests
for exponentiality have been developed by Henze (1993) and Baringhaus and Henze (1991,
1992) who used weighted distance measures between sample estimators of the Laplace
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720 S. R. JAMMALAMADAKA AND E. TAUFER

transform and its counterpart under the null hypothesis. Klar (2000) provides a test against
harmonic new better than used in expectation (HNBUE) alternatives by using estimates of∫ ∞

x F̄(t) dt − θe−x/θ based on the e.d.f. and the sample mean. The test exploits the property
that

∫ ∞
x F̄(t) dt − θe−x/θ is positive for all x for HNBUE alternatives and uses a weighted

distance measure. The approach of Klar generalizes an earlier contribution of Jammalamadaka
and Lee (1998) who consider a non-weighted distance measure. For a review of earlier
contributions, the interested reader is referred toAscher (1990) and Doksum andYandell (1984).

2 TEST STATISTICS

To turn to our problem, consider a random sample X1, . . . , Xn from an exponential distribution
with density f (x) = (1/θ) exp{−x/θ}, x > 0, θ > 0 (denote this by E(θ)); let X(0) = 0 and
let X(1), . . . , X(n) denote the order statistics. It is well known that the so-called ‘normalized
spacings’

Yi = (n − i + 1)(X(i) − X(i−1)) i = 1, . . . , n

are again independently and identically distributed (i.i.d.) from E(θ). Further this property
characterizes the exponential distribution, as shown in Seshadri et al. (1969). There are several
inferential procedures based on the normalized spacings. However, our goal in this paper is
to use simultaneously the X and the Y variables in order to provide a goodness of fit test for
exponentiality.

One of the simplest and natural ways to do this is to compare the e.d.f. of the original variables
X with that of the transformed ones, Y . More precisely, let Fn(t) and Gn(t) denote the e.d.f.
of (X1, . . . , Xn) and (Y1, . . . , Yn) respectively. We can construct new tests of exponentiality
by measuring the distance between these 2 e.d.f.s, using the classical Kolmogorov–Smirnov
and Cramer–von Mises type distances. We then obtain the test statistics

T1,n =
√

n

2
sup

0≤t<∞
|Fn(t) − Gn(t)|

and

T2,n = n

2X̄

∫
(Fn(t) − Gn(t))

2e−t/X̄ dt,

where X̄ is the sample mean. Clearly, under the hypothesis of exponentiality, since
(X1, . . . , Xn) and (Y1, . . . , Yn) have identical distributions, their e.d.f. Fn(t) and Gn(t) should
be close. Thus, one expects T1,n and T2,n to be close to zero under the null hypothesis of
exponentiality, while they should be large under any alternative hypothesis.

Although the X1, . . . , Xn and Y1, . . . , Yn are not independent, our statistics T1,n and T2,n

resemble the corresponding two-sample versions and hence the computational formulae for
T1,n and T2,n are easily derived. For instance, one computes T1,n just as it is done for the two
sample Kolmogorov–Smirnovstatistic, using X1, . . . , Xn and Y1, . . . , Yn as the two ‘samples’.
In order to compute T2,n , let Z(1), . . . , Z(2n) denote the ordered values obtained by combining
{Xi}n

i=1 and {Yi }n
i=1. Then these Z(i)s correspond to the jump points of Fn(t) − Gn(t) and

therefore

T2,n = n

2

2n−1∑
i=1

[Fn(Z(i)) − Gn(Z(i))]2

[
exp

{−Z(i)

X̄

}
− exp

{−Z(i+1)

X̄

}]
.
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As shown in Section 3, T1,n and T2,n provide ‘consistent’ tests for testing exponentiality, and
moreover their null distribution is free of nuisance parameters. These facts, together with
their computational simplicity makes them valuable as well as practically useful tests for
exponentiality.

3 ASYMPTOTIC PROPERTIES

Before we proceed to develop the relevant asymptotic theory for T1,n and T2,n , we should note
that the two empirical distribution functions are not independent. The dependence between
the Xs and Y s can be more easily seen by representing both of them in terms of the spacings
Di = X(i) − X(i−1). We can write

Fn(t) = 1

n

n∑
i=1

I{Xi ≤t} = 1

n

n∑
i=1

I{X(i)≤t} = 1

n

n∑
i=1

I{
�i

j=1 Dj ≤t
}

and

Gn(t) = 1

n

n∑
i=1

I{Yi ≤t} = 1

n

n∑
i=1

I{(n−i+1)(X(i)−X(i−1))≤t} = 1

n

n∑
i=1

I{(n−i+1)Di ≤t}.

We first derive some general results on T1,n and T2,n .

3.1 Consistency

For 0 ≤ s ≤ 1, we define the two processes

αn(s) ≡ √
n(Fn(F−1

E (s)) − s) and βn(s) ≡ √
n(Gn(F−1

E (s)) − s),

where FE indicates the distribution function of an E(θ) random variable. Then

√
n(Fn(t) − Gn(t)) = [αn(FE (t)) − βn(FE (t))]

from the continuity of FE it follows that T1,n and T2,n are distribution-free under the null
hypothesis of exponentiality. From now on, without loss of generality, we will assume that the
random sample X1, . . . , Xn comes from an E(1) distribution.

Next, we note that by the Glivenko-Cantelli theorem, under the null hypothesis we have
that

sup
0≤t<∞

|Fn(t) − FE (t)| a.s.−→ 0 and sup
0≤t<∞

|Gn(t) − FE (t)| a.s.−→ 0,

from which we easily infer that T1,n/
√

n
a.s.−→ 0 and T2,n/n

a.s.−→ 0 under exponentiality. On
the other hand, under the alternative that the observations are distributed according to some
continuous distribution function (d.f.) FA, following the results in Pyke (1965), we have that

Fn(t) − Gn(t)
a.s.−→ FA(t) − 1 +

∫ ∞

0
f A(y) exp{−th A(y)} dy (1)

where f A(t) denotes the density and

h A(t) = f A(t)

1 − FA(t)
,
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the hazard rate corresponding to FA. It may be recalled that under the null hypothesis of
exponentiality this hazard rate, hE (t) = 1. This indicates that the two tests are consistent and
their efficiency is tied to the hazard rate of the distribution, a point which will be studied in
more detail in Section 4.

3.2 Asymptotic Null Distribution

Now we consider the problem of determining the asymptotic null distribution of T1,n and T2,n .
It is well known, see for example Csörg"o and Horváth (1993, p. 114), that there exist sequences
of Brownian Bridges B1

n (t) and B2
n (t) such that

sup
0≤t≤1

|αn(t) − B1
n(t)| a.s.= O(n−1/2 log n)

and

sup
0≤t≤1

|βn(t) − B2
n(t)| a.s.= O(n−1/2 log n).

However, in our case, αn(s) and βn(s) are not independent. Therefore, in order to determine the
asymptotic behavior of T1,n and T2,n , we need to find a joint approximation for the processes
αn(s) and βn(s). Such joint behavior is discussed in Barbe (1994). It turns out that the two
processes are asymptotically independent, which enables us to prove consistency of our test
statistics and to study their asymptotic efficiency.

For 0 ≤ s, u ≤ 1, let

Gα
K (s) =

∫ 1

0
[K (u, s) − sK (u, 1)] dF−1(u)

Gβ

K (s) = K (s, 1)

where K (·, ·) denotes a Kiefer process. For details on this process the reader is referred to
Csörgö and Révész (1981). Note that under exponentiality F−1(u) = − log(1 − u) and Gα

K (s)
and Gβ

K (s) have the same distribution as a Brownian Bridge B(s); moreover the joint process
(Gα

K (s), Gβ

K (s)) is Gaussian (Barbe, 1994). Also, since for any choice of 0 ≤ s, u ≤ 1,

cov(Gα
K (s), Gβ

K (u)) = 0,

we see that the two processes are independent. We provide the joint approximation in the
following theorem.

THEOREM 1 Under exponentiality one can construct the sequences αn(s) and βn(s) and a
sequence of Kiefer processes Kn (·, ·) on the same probability space, such that

sup
0≤s≤1

|αn(s) − Gα
Kn

(s)| = Op(n
−1/2φn log2 n)

sup
0≤s≤1

|βn(s) − Gβ

Kn
(s)| = Op(n

−1/2 log2 n).

where

φn =
∣∣∣∣F−1

(
1

n

)∣∣∣∣ ∨
∣∣∣∣F−1

(
1 − 1

n

)∣∣∣∣
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Proof The proof is adapted from that of Theorem 2.1 in Barbe (1994) which in turn relies on
a result from Komlós et al. (1975). Consider first the process αn(s), we just need to note that
it is equivalent to the process αU

n (s) defined in Barbe (1994) and hence we can directly apply
the approximation provided therein with the function φn = log n and F−1(t) = − log(1 − t)
in the case of exponentiality.

As far as the process βn(s) is concerned, we may apply directly the following result of
Komlós et al. (1975) which provides an approximation of the uniform empirical process by a
Kiefer process such that

max
1≤k≤n

sup
0≤s≤1

|k(Fk(s) − s) − K (s, k)| a.s.= O(log2 n)

where Fk(s) = k−1 ∑k
i=1 I{Yi ≤t}. Then, it holds that

βn(s) = K (s, n)

n1/2
+ Op(n

−1/2 log2 n).

Reasoning again as in Barbe (1994), we obtain the approximation given in the theorem.

As a consequence of the theorem, we see that the processes αn(s) and βn(s) are asymptotically
independent. From this result, consistency and the asymptotic null distribution of T1,n and T2,n

follow at once. We state the following Corollary.

COROLLARY Under exponentiality the process
√

(1/2)[αn(s) − βn(s)] converges weakly to
a Brownian Bridge B(s), 0 ≤ s ≤ 1.

Applying Donsker’s theorem we obtain the asymptotic distribution of T1,n and T2,n .

THEOREM 2 Under the null hypothesis of exponentiality,

T1,n
D−→ sup

0<s<1
|B(s)|,

T2,n
D−→

∫ 1

0
|B(s)|2 ds,

where B(s), 0 ≤ s ≤ 1 denotes a Brownian Bridge. Thus

lim
n→∞ P(T1,n > t) = 2

∞∑
k=1

(−1)k+1 exp{−2k2t2}

and

lim
n→∞ P(T2,n > t) = 1

π

∞∑
k=1

(−1)k+1
∫ (2k)2π2

(2k−1)2π2

1

y

√
−√

y

sin
√

y
exp

(
− ty

2

)
dy.

4 APPROXIMATE BAHADUR EFFICIENCY

Result (1) tells us that the performance of our test statistics is closely connected with the hazard
rate of the distribution and this is even more evident if we write the distribution function F in
terms of the hazard rate, i.e.

F(t) = 1 − exp

{
−

∫ t

0
h(y) dy

}
.
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In order to investigate in more depth, we will find the dominant term in Eq. (1) for a sequence of
alternatives that approach the null hypothesis. To do so, suppose that under the alternative, the
observations are distributed according to some continuous d.f. F(t, θ), θ ≥ 0 which coincides
with the exponential d.f. only for θ = 0 and denote, for convenience, the RHS of Eq. (1) as
H (t, θ).

We expand formally H (t, θ) in Taylor series for θ around θ = 0 retaining only the first few
terms. To this end, we need some regularity conditions on F(t, θ) and f (t, θ) and these are
implicit as in e.g. Nikitin (1996). Let the prime denote the derivative with respect to θ , i.e. for
any function g(·, θ)

g′(·, θ) = ∂g(·, θ)

∂θ
.

If we compute the derivative of the function H (t, θ) with respect to θ we obtain

H ′(t, θ) = F ′(t, θ) +
∫ ∞

0
f ′(y, θ) exp{−th(y, θ)} dy

− t
∫ ∞

0
f (y, θ)h′(y; θ) exp{−th(y, θ)} dy.

To evaluate H ′(t, 0) we recall that h(t, 0) = hE (t) = 1 and note that, by definition and
regularity conditions

h′(t, 0) = et [ f ′(t, 0) + F ′(t, 0)],
∫ ∞

0
f ′(t, 0) dt = 0.

After some simplifications we obtain

H ′(t, 0) = F ′(t, 0) − te−t
∫ ∞

0
F ′(y, 0) dy.

Together with the fact that H (t, 0) = 0 we finally have that

H (t, θ) =
[

F ′(t, 0) − te−t
∫ ∞

0
F ′(y, 0) dy

]
θ + O(θ2). (2)

This result may be used to compute the approximate local Bahadur slope in order to make
some comparisons with other test statistics efficiencies. Recall that if a sequence {Tn}
satisfies Tn/

√
n

Pθ−→ b(θ), θ > 0 and, under the null hypothesis, the limiting distribution
F(t) = limn→∞ P(Tn ≤ t) satisfies log[1 − F(t)] = − ((at2)/2) (1 + o(1)), as t → ∞, then
the approximate Bahadur slope of the standard sequence Tn is defined as cT (θ) = a[b(θ)]2.

Given the asymptotic independence of the processes based on the observations and the
normalized spacings and result in Eq. (1) it is possible to compute the approximate Bahadur
slope for the two statistics T1,n and T2,n (we take the root of T2,n in order to have a normalized
sequence). The value of the constant a may be determined from the corresponding results
for two sample Kolmogorov–Smirnov and Cramer–von Mises statistics; they can be found,
for example, in Nikitin (1995, chapter 3). Let cT1(θ) and cT2(θ) denote the approximate Bahadur
slopes of T1,n and T2,n , respectively. Then

cT1(θ) = [ sup
0≤t<∞

|H (t, θ)|]2
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and

cT2(θ) = π2

4

[∫ ∞

0
H (t, θ)2e−t dt

]
.

Next, we can use result (2) to compute the approximate slope as θ → 0. In order to have a first
battery of results, we now compare the approximate Bahadur slopes of the statistics T1,n and T2,n

with those of Kolmogorov–Smirnov (KS) and Cramer–von Mises (ω2) one sample statistics
of the simple hypothesis of exponentiality where the mean is given; next we will consider a
test (G) based on the Gini’s statistic (Gail and Gastwirth, 1978) and a test (A1) based on a loss
of memory type functional equation which has been proposed by Angus (1982).

It should be remarked that comparisons are made in order to provide some complementary
information and exemplify computations for our tests statistics for some common distributions.
Moreover, note that in the case of KS and ω2 the slopes are computed on the basis of a simple
hypothesis, i.e. the mean θ is given; in the case of Gini’s and Angus’ statistics the exact slopes
are available as they have been computed by Nikitin and Tchirina (1996) and Nikitin (1996),
respectively.

We utilize the linear failure rate, Makeham and Weibull alternatives, which are often
considered in the evaluation of the performance of tests for exponentiality (Doksum and
Yandell, 1984; Nikitin, 1996).

Example 1 Consider a distribution with density f (t, θ) = (1 + θ t) exp{−t − (1/2)θ t2}
(linear increasing failure rate). In this case we have

F ′(t, θ) = 1

2
t2 exp

{
−

[
t + θ t2

2

]}

and hence

F ′(t, 0) − te−t
∫ ∞

0
F ′(y, 0) dy = 1

2
te−t (t − 2).

From this we obtain that cT1(θ) = 0.0532θ2 and cT2(θ) = 0.061θ2 as θ → 0. To obtain the
corresponding results for one sample KS and ω2 statistics we expand F(t, θ) around θ = 0 to
obtain

F(t, θ) − F(t, 0) = F ′(t, 0)θ + O(θ2).

Applying standard techniques for computing the approximate slope of these statistics (see,
e.g. Nikitin, 1995, chapter 2) we obtain cKS(θ) = 0.2930θ2 and cω2(θ) = 0.2437θ2 as θ → 0.
From this we see that the relative efficiencies are eB

T1,KS = cT1(θ)/cKS(θ) � 0.18 and eB
T2,ω2 =

cT2(θ)/cω2(θ) � 0.25. Next, using the results in Nikitin and Tchirina (1996) and Nikitin (1996)
we obtain cG(θ) = 0.75θ2 and cA1(θ) = 0.0733θ2 as θ → 0. Considering T1,n, we obtain
eB

T1,G � 0.07 and eB
T1,A1

� 0.73; slightly better results hold for T2,n .

Example 2 Take a Makeham density f (t, θ)= [1 + θ(1 − e−t )] exp{−[t + θ (t + e−t − 1)]}.
Then

F ′(t, θ) = (t + e−t − 1) exp{−[t + θ(t + e−t − 1)]}

from which

F ′(t, 0) − te−t
∫ ∞

0
F ′(y, 0) dy = e−t

[
e−t + t

2
− 1

]
,
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and we have cT1(θ) = 0.0077θ2 and cT2(θ) = 0.008θ2 as θ → 0. Also, cKS(θ) = 0.1048θ2

and cω2(θ) = 0.1θ2 as θ → 0, and hence eB
T1,KS � 0.07 and eB

T2,ω2 � 0.08. Again, we obtain

cG(θ) = 0.0833θ2 and cA1(θ) = 0.0156θ2 as θ → 0 and consequently eB
T1,G � 0.09 and

eB
T1,A1

� 0.49 with analogue results for T2,n .

Example 3 Consider a Weibull density of the form f (t, θ) = (θ + 1)tθ exp{−t1+θ }.
Calculations lead to

F ′(t, θ) = t1+θ exp{−t1+θ } log t

from which

F ′(t, 0) − te−t
∫ ∞

0
F ′(y, 0) dy = te−t [log t + γ − 1]

where γ is Euler’s constant. It turns out that cT1(θ) = 0.1321θ2 and cT2(θ) = 0.1377θ2 as
θ → 0. Also, cKS(θ) = 0.2916θ2 and cω2(θ) = 0.3113θ2 as θ → 0, and hence eB

T1,KS � 0.45
and eB

T2,ω2 � 0.44. Finally we have cG(θ) = 1.44θ2 and cA1(θ) = 0.2601θ2 as θ → 0 and

consequently eB
T1,G � 0.09 and eB

T1,A1
� 0.51 with analogue results for T2,n .

From the three examples, we note that the approximate slopes of T1,n and T2,n are always
close to each other, but fall short of the comparisons with the other test statistics. Part of
the explanation, for classical Kolmogorov–Smirnov and ω2 one sample statistics, may be
found in the fact that these are computed under a simple hypothesis of exponential with given
mean, whereas for our statistics the slope has been calculated under the composite hypothesis
where the mean is not specified. Note, in fact, that there is no need to estimate the mean in
computing T1,n ; a version of the quadratic statistics T2,n with analogue characteristics could
be developed also.

Further, approximate Bahadur slopes are only a rough measure of the asymptotic efficiency
and this might partly explain results as far as Gini’s statistic and A1,n are concerned. Coming
to the question of computing the exact slopes, given this partial evidence and the impossibility
of applying standard results it seems an uneven task. In Section 5, we examine some simulated
power values of our statistics where we will see, power for moderate sample sizes gives
satisfactory results.

5 MONTE CARLO POWER COMPARISONS

In this section, we are going to compare the power performance of T1,n and T2,n with those of
other tests statistics that have appeared in the literature. In particular, we consider traditional
one sample Kolmogorov–Smirnov and ω2 statistics with estimated parameters and other tests
based on a characterization of the exponential distribution that have been proposed in the
literature such as those proposed by Angus (1982) and based on a loss of memory type
functional equation (actually on an order statistics characterization) but also, on this subject
one can consult Ahmad and Alwasel (1999) which propose a different test statistics based
on the same functional equation. Next, we consider the proposal of Baringhaus and Henze
(2000) which define Kolmogorov–Smirnov and Cramer–von Mises type statistics relying on a
characterization via mean residual life. The last two alternative statistics considered are those
of Ebrahimi et al. (1992) (see also Grzegorzewski and Wieczorkowski, 1999) whose test is
based on entropy and Gail and Gastwirth (1978) who propose a test for exponentiality based
on the Gini’s index which is constructed from the area under the Lorenz curve; this test, also
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TABLE I Goodness of Fit Tests Studied.

Symbol Definition/characterization Reference

K Sn Two sided Kolmogorov–Smirnov test with estimated mean Durbin (1975)
ω2

n Cramer–von Mises statistic with estimated mean Darling (1957)
A1,n KS type based on loss of memory functional equation Angus (1982)
A2,n CVM type based on loss of memory functional equation Angus (1982)
H1,n KS type based on mean residual life function Baringhaus and Henze (2000)
H2,n Cramer–von Mises type based on mean residual life Baringhaus and Henze (2000)
Vm,n Based on Vasicek’s (1976) entropy estimator Ebrahimi et al. (1992)
Gn Based on Gini’s index Gail and Gastwirth (1978)

in the light of the recent results of Nikitin and Tchirina (1996) is a test which performs well in
a variety of situations. Table I summarizes the relevant information about the alternative test
statistics used.

As far as the alternative distributions considered in the Monte Carlo experiment, they are
reported in Table II. We have tried to encompass some common distributions frequently
considered in other power studies as well as to have a certain variety of life distributions
differing from the point of view of the hazard rate. The choice of the parameters has been made
in such a way that the resulting density is not too far away in shape from the exponential one.

In Table III, we find the power estimates for samples of moderate size (n = 20) for
the goodness fit tests considered in Table I and the alternative distributions of Table II. The
estimates have been obtained by rounding to the nearest integer the percentage of statistics
declared significant out of 10,000 samples of size 20. In order to check our routines, we have
reproduced the power studies contained in the original papers of Table I, obtaining substantially
equal results. The test statistics of Ebrahimi et al. (1992) required the choice of a window
parameter m. Also in the light of Taufer (2002), we chose a value m = 4 for all situations.

This power study provides some elements to make an overall comparison among tests for
exponentiality based on characterizations.

Analogously to what happened in the computation of the approximate Bahadur slope, T1,n

and T2,n show very close power values however, as we can see, they compare well in most
cases also with the tests statistics considered in Section 4. The tests do not perform as well as
most of its competitors for Weibull alternatives with θ < 1 (and also Gamma). Actually, the
same happens to the test statistics A1,n and A2,n based on the loss of memory characterization.
Apart from this case, the test statistics T1,n and T2,n compare well with most of the other tests
although they do not uniformly outperform any of the other tests for the cases considered.
Although there is clearly not a best test from the point of view of power for all situations,
we see that the statistics based on mean residual life and entropy show good power for most
alternatives.

TABLE II Alternative Distributions Considered.

Symbol F(t) [f(t) when indicated] Support Failure rate

Pareto 1 − [(θ − 2)/(θ − 1)]θ−1t1−θ t ≥ (θ − 2)/(θ − 1) Decreasing
Weibull 1 − exp{−tθ } t ≥ 0 Increasing θ > 1,

decreasing θ < 1
Lognormal f (t) = (1/(

√
2π tθ)) exp{log2(t)/(2θ2)} t ≥ 0 Hump shaped

Shifted exponential 1 − exp{−(t − θ)} t ≥ θ Constant
Linear failure rate 1 − exp{−t − θ t2/2} t ≥ 0 Increasing

Dhillon 1 − exp{1 − etθ } t ≥ 0 Bathtub shaped, θ < 1
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TABLE III Monte Carlo Power Estimates Based on 10,000 Samples of Size 20.

Distribution T1,n KSn A1,n H1,n V4,n Gn T2,n ω2
n A2,n H2,n

Pareto(2.2) 87 93 99 83 99 44 67 91 97 74
Pareto(2.5) 97 98 99 95 99 53 91 98 99 86
Weibull(0.8) 04 17 02 13 04 24 04 20 04 21
Weibull(1.4) 27 29 25 36 37 36 26 35 29 37
Lognormal(0.6) 73 84 81 84 90 80 74 89 84 84
Lognormal(0.8) 28 30 42 29 42 24 26 34 38 27
Shifted exp(0.2) 28 25 42 23 59 22 25 28 34 23
LFR(0.5) 12 10 09 14 13 10 12 11 11 11
LFR(3.0) 30 30 23 39 36 38 30 37 29 38
Dhillon(0.7) 06 06 03 06 05 05 06 06 05 05
Dhillon(0.9) 17 15 10 21 20 17 17 17 14 18

Note: Significance level α = 0.05.

6 EXAMPLES

As examples of application we use the data set given in Grubbs (1971) and Wadsworth (1990,
p. 611). These data sets have been used in Ebrahimi et al. (1992), Ahmad and Alwasel (1999)
and Shapiro (1995) to show the application of various tests for exponentiality. The first data
(Tab. IV) are the times between arrivals of 25 customers at a facility, their quantile plot shows a
clear departure from the exponentiality hypothesis, the hypothesis of exponentiality is rejected
with p-value smaller than 0.01 by all the tests considered in Shapiro (1995). The second data
set (Tab. V) represents mileages for 19 military personal carriers that failed in service. These
data have been used by Ebrahimi et al. (1992) and Ahmad and Alwasel (1999), and they come
to the conclusion that the hypothesis of exponentiality is tenable in this case.

Let us begin with the data set of Wadsworth (1990), the inter arrival times have been ordered
in Table IV.

From the data we obtain T1,n = 2.83 and T2,n = 2.87. Both statistics reject the hypothesis
of exponentiality with an estimated p-value well below the 0.001 level.

As far as the second data set is concerned, the mileages have been ordered in Table V.
Performing the computations we have the values T1,n = 0.65 with an estimated p-value of

0.44 T2,n = 0.1283 with an estimated p-value of 0.18.

TABLE IV Inter Arrival Times.

1.80 3.43 3.98 4.23 4.65
2.89 3.48 4.06 4.34 4.84
2.93 3.57 4.11 4.37 4.91
3.03 3.85 4.13 4.53 4.99
3.15 3.92 4.16 4.62 5.17

TABLE V Mileages.

162 508 884 1603
200 539 1003 1984
271 629 1101 2355
320 706 1182 2880
393 778 1463
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