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SUSCEPTIBILITY FACTORS IN ENVIRONMENTAL HEALTH (GL GINSBERG, SECTION EDITOR)

Environmental Health Factors and Sexually Dimorphic
Differences in Behavioral Disruptions

Cheryl S. Rosenfeld & Brian C. Trainor

# Springer International Publishing AG 2014

Abstract Mounting evidence suggests that environmental
factors—in particular, those that we are exposed to during
perinatal life—can dramatically shape the organism’s risk for
later diseases, including neurobehavioral disorders. However,
depending on the environmental insult, one sex may demon-
strate greater vulnerability than the other sex. Herein, we focus
on two well-defined extrinsic environmental factors that lead
to sexually dimorphic behavioral differences in animal models
and linkage in human epidemiological studies. These include
maternal or psychosocial stress (such as social stress) and
exposure to endocrine-disrupting compounds (such as one of
the most prevalent, bisphenol A [BPA]). In general, the evi-
dence suggests that early environmental exposures, such as
BPA and stress, lead to more pronounced behavioral deficits
in males than in females, whereas female neurobehavioral
patterns are more vulnerable to later in life stress. These
findings highlight the importance of considering sex

differences and developmental timing when examining the
effects of environmental factors on later neurobehavioral
outcomes.
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Introduction

The notion that many adult diseases originate from early
environmental changes has gained currency in the past decade
[1–3, 4•]. Several systems—in particular, the reproductive and
central nervous systems—are programmed by developmental
exposure to steroid hormones [5–12] and genes carried on the
Y chromosome [13•]. Sexually dimorphic responses to envi-
ronmental changes might originate from variable placental
responses to environmental exposures, which may buffer the
fetus of one sex more than the other [14–16]. For the purpose
of this review, a sexually dimorphic response will be consid-
ered a phenotypic effect that either differs in absolute occur-
rence between the sexes (with a response present in one sex
but absent in the other) or a significant difference in the
magnitude of the intensity. For instance, early reports indicat-
ed that certain toxicants and food additives lead to kidney
tumors in male but not female rats or mice [17, 18]. From
these original reports, extrinsic factors have been reported to
lead to varying degrees of sexually dimorphic responses—
including, most recently, in neurobehavioral endpoints, which
will be the primary focus of this review. With the National
Institutes of Health (NIH) requesting a stronger emphasis on
reporting health outcomes in both sexes, it is likely that
research in the coming decades will further elucidate how
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various environmental cues result in dramatic sexually dimor-
phic differences.

Sexually selected cognitive traits might be especially vul-
nerable to extrinsic environmental changes [19]. As originally
defined by Darwin [20], such traits promote intrasexual com-
petition and intersexual choice of mating partners [20, 21].
Female mating preferences can drive the evolution of anatom-
ical or behavioral traits in males and, in some cases, male
mating preferences have been found to exert selection on
female traits [22]. Expression of sexually selected behaviors
in mature animals is programmed by developmental (fetal and
neonatal or perinatal) exposure of the brain to steroid hor-
mones (an organizational effect) and is maintained later in life
by these same hormones—in particular, testosterone (an
activational effect) [19, 23].

Environmental factors may abolish or augment the normal
sex-specific brain programming or organizational effects nec-
essary for sexually selected and other sexually dimorphic
behaviors, leading to later behavioral deficits [1, 19, 24••,
25]. These changes could have a long-lasting impact on how
endogenous hormones act in mature individuals.

The cerebral cortex, hippocampus, and hypothalamus (in-
cluding the arcuate, ventromedial, and paraventricular nuclei)
are key brain regions that demonstrate pronounced sexually
dimorphic differences in neural programming [26]. While
androgen receptors (ARs) are expressed in these regions,
many testosterone-mediated neurobehavioral effects are due
to aromatization of testosterone to estrogen [27–30].
Hippocampal development is dependent upon this steroid
conversion [27, 28]. Being lipophilic, these circulating steroid
hormones, along with many endocrine-disrupting compounds
(EDCs), can easily cross the blood–brain barrier. Endogenous
and exogenous steroids bind to their cognate receptors, in-
cluding ARs, estrogen receptor (ESR)1, and ESR2, which are
widely expressed in these brain regions [31–37]. There are
also sex differences in the expression of these steroid hormone
receptors in the brain. For example, in the medial preoptic area
(mPOA) of males, the Esr1 promoter is hypermethylated and
Esr1 expression is reduced, relative to that in females [38]. In
contrast, neonatal female pups treated with estradiol exhibit a
masculinized DNA methylation pattern for Esr1. It is also
clear that EDCs, such as bisphenol A (BPA), can alter, in a
sex-dependent manner, the neural expression ofEsr1 and Esr2
[33, 39, 40], which may be one mechanism by which these
extrinsic factors can either ablate or heighten sex-specific
behavioral responses.

While various environmental factors have been linked to
sex-specific disruptions, this review will focus on two well-
characterized factors: perinatal exposure to EDCs, with the
prototype being BPA, and psychosocial stress. We will con-
sider how such environmental factors affect sexually selected
behavioral traits in adults, including cognition and reproduc-
tive and emotional behaviors.

Sexually Dimorphic Behavioral Differences Associated
with Endocrine-Disrupting Compounds

Bisphenol A (BPA)

Most EDCs are manufactured chemicals [41], and, of these,
BPA is one of the most mass produced, with production
exceeding 8 billion pounds per year [42, 43]. One known
action of BPA is binding and activation of ESRs [43], leading
to disrupted development of hormone-dependent systems.
The pervasiveness of this chemical predicts widespread and
continued exposure of animals and humans [42, 43]. BPA is
almost ubiquitously found in people; it is detectable in
the urine of 93 % of the US population [44], as well as
in fetal plasma, placental tissue [45], and breast milk
[46]. Results from animal models and human studies
indicate that exposure to BPA induces sex-specific ef-
fects in three general categories: (1) cognitive function,
(2)emotional function (e.g., anxiety), and (3)sociosexual
behaviors (Table 1).

Sexually mature, polygamous male deer mice (Peromyscus
maniculatus bairdii) exhibit enhanced spatial navigational
learning and memory, allowing them to locate potential fe-
male partners, which are widely dispersed throughout the
environment [47]. Consequently, this behavior might be con-
sidered a sexually selected cognitive trait, which requires
prenatal exposure to testosterone and photoperiod-dependent
increases in this same hormone [47, 48]. Developmental ex-
posure to environmentally relevant concentrations of BPA or
ethinyl estradiol (EE) through the maternal diet compromises
this behavior in males, as determined when both sexes are
tested at adulthood in a dry-land spatial navigation maze (a
Barnes maze) [24••, 49]. Under the notion that BPA may act
through its weak binding of ESR1/ESR2 [43], the US Food
and Drug Administration (FDA) has mandated that any study
that is to be considered in influencing policy decisions must
include EE as a positive control.

Male imprinting control region (ICR)mice exposed to BPA
as adults also exhibit impaired spatial and passive avoidance
memory, as evidenced by their performance in the Morris
water maze and footshock testing, whereas these deficiencies
are not observed in exposed females [50]. These differences
may be mediated by early exposure to estrogens or testoster-
one, which affects development of the hippocampus and
cerebral cortex [48, 51–53].

In control, non-treated female deer mice, spatial naviga-
tional ability is not enhanced when they become sexually
mature, as increased exploration and expansion of the home
range may be disadvantageous, with an increased predation
risk. However, females that are developmentally exposed to a
low dose of BPA or EE at doses comparable to human expo-
sure exhibit masculinized or increased spatial abilities and
exploratory behaviors [24••, 49].
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Male California mice (Peromyscus californicus) generally
pair-bond with a single female, and thus they do not possess
enhanced spatial navigational ability relative to females [54].
Consistently, developmental exposure to BPA or EE has not
altered spatial navigation in male or female California mice
[55]. However, BPA exposure abolished typical sex differ-
ences in the exploratory behaviors of this species, with ex-
posed females spending less time in the open arms of the maze
(30 cm platforms lacking barriers on each side, comparable to
the animal being placed on a diving board 100 cm above the
ground)—a positive index of exploration—than control fe-
males and an equivalent amount of time to that of control
males.

Although BPA disruptions in exploratory, anxiety-like, and
depressive-like behaviors have been found to differ across
contrasting species of rodents, a common thread is that BPA
exposure reduces sex differences in behaviors. In the deer
mice studies described above, BPA or EE exposure during
development increased anxiety-like behavior in elevated-plus-
maze males but not in females [56, 57]. Similar sexually
dimorphic responses were seen in C57BL6J mice, as devel-
opmental BPA exposure increased anxiety-like behavior in
males but not in females [58]. In both of these species, control
females showed higher levels of anxiety-like behavior than
males. In contrast, studies with ICR, BALB-c, and CD1 mice
reported that developmental BPA exposure increased anxiety-
like behavior in females but not in males [59–61]. Similar
disruptions of typical sexually dimorphic differences in ex-
ploratory behaviors have been reported in Long–Evans rat
females exposed to BPA during the perinatal period [62]. In
all four strains, control males showed higher levels of anxiety
like behavior than females.

In humans, the primary neurodevelopmental types of out-
comes associated with increased maternal or childhood uri-
nary BPA concentrations have been emotional behaviors. One
study reported that elevated maternal urinary BPA concentra-
tions between 16 weeks of gestation and birth were linked to
increased externalizing behaviors (e.g., hyperactivity and ag-
gression) in girls but not in boys at 2 years of age [63]. The
absence of an effect in boys might be related to the develop-
mental stage that was examined. Another epidemiological
study focusing on older children (3–5 years of age) reported
that higher maternal BPA concentrations in urine at 34 weeks
of gestation and higher child urinary BPA concentrations were
associated with increased externalizing behaviors in boys,
whereas the opposite correlation was reported in girls [64].
Examination of children at even later ages (7- to 9-year-olds)
also demonstrated trends for an interaction between prenatal
BPA exposure and externalizing problems, with higher BPA
concentrations being linked to increased externalizing prob-
lems in boys but not in girls [65]. Externalizing problems in
boys become more prevalent at 5–7 years of age, which may
partially explain why the effects of BPA on externalizingT
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problems were observed only in studies with older children
[66]. Other environmental factors are also likely to be impor-
tant, as there was variability across the studies in socioeco-
nomic status. All of the studies reviewed above consid-
ered internalizing problems as well, but there was little
consistency in how these problems were associated with
BPA across the studies. It is not clear whether these
differences are due to intrinsic sex-specific behavioral
vulnerabilities to environmental factors or whether BPA
is accentuating already existing sexually dimorphic be-
havioral differences.

BPA exposure disrupts several sociosexual behaviors in
various rodent models. In mate choice experiments, both
BPA and control female deer mice preferred control males
over males that had been developmentally exposed to BPA
[24••]. Male California mice must defend their territory and
their mate from male intruders by engaging in territorial
marking. However, BPA-exposed California male mice ex-
hibited suppressed territorial marking when control
males were present in the test arena [55]. Prenatal
exposure of BALB-c mice disrupted normal sexually
dimorphic differences in play behavior [39]. It remains
to be determined whether these behavioral changes
equate to altered male reproductive success. It is also
not clear how well the various sex-specific behavioral
differences will translate to humans.

Another concern relates to potential differences in metab-
olism of BPA between rodents and humans. Both adult ro-
dents and primates primarily metabolize BPA through
glucuronidation of BPA via UDP-glucuronosyltransferases
(UGTs). However, clearance of BPA in primates is generally
through urinary excretion, whereas the biliary–fecal route is
the primary route of excretion in rodents [67, 68]. Other
potential pharmacokinetic differences across species include
metabolism of BPA through sulfonation, which is generally
minor in adult animals [69–71], and enterohepatic recircula-
tion of BPA, which occurs to a minor extent in rodents and
even less in primates [72, 73]. Importantly, a side-by-
side analysis of serum BPA concentrations in mice and
rhesus monkeys (Macaca mulatta), who were both giv-
en a comparable oral bolus, demonstrated that the clear-
ance of BPA was comparable in the two species [73].
Thus, even though there are minor differences in the pharma-
cokinetics of BPA metabolism between rodents and primates,
findings in rodents are almost assuredly applicable to pri-
mates, including humans [73–75].

While BPAweakly binds to ESR1 and ESR2, it is not clear
if all of the above sex-specific behavioral differences are due
to engaging these steroid receptors. This chemical can also
bind to other steroid and non-steroid receptors, such as thy-
roxine receptor (TR), AR, glucocorticoid receptor (GR), per-
oxisome proliferator-activated receptor (PPAR ), and
pregnane X receptor [43, 76–79].

Other Endocrine-Disrupting Compounds

It is beyond the scope of this review to cover all of the EDCs
that are proposed to disrupt sexually dimorphic behaviors in
various animal models. Table 2 provides a comprehensive list
of other EDCs and their impact on the above behavioral
categories. Three types of examples are (1) the estrogenic
compounds EE, estrogen present in birth control pills, and
diethylstilbestrol (DES), which was administered from the
1950s to the 1970s under the misconception that it prevented
miscarriages; (2) the androgenic compounds testoster-
one, 17α methyldihydrotestosterone (MDHT), and levo-
norgestrel, and the antiandrogenic class, exemplified by
flutamide; and (3) a broad range of other EDCs, includ-
ing insecticides, such as methoxychlor (MXC) and di-
chlorodiphenyltrichloroethane (DDT) and its active metabo-
lite, dichlorodiphenyldichloroethylene (p,p-DDE), fungicides
(especially vinclozolin, which has antiandrogenic properties),
plasticizers [e.g., di(2-ethylhexyl) phthalate (DEHP)], and
coolants/insulating fluids (e.g., polychlorinated biphenyls
[PCBs]). Even some commonly used antimicrobials, such as
triclosan and triclobarban, may exert endocrine disrupting
properties. The two illustrative chemicals, EE and vinclozolin,
where across taxa sex-specific disruptions have been reported,
will be further discussed.

Effects of EE on sex-specific behaviors have been docu-
mented in a wide range of species, including rodents, fish,
pipefish, frogs, and birds, as detailed above (for Peromyscus
species, where BPA was tested alongside EE, as required by
current FDA guidelines for BPA studies) and below. Sand
goby (Pomatoschistus minutus) males exposed to EE as
adults become demasculinized, as evidenced by their
protracted time to engage in nest-building, compromised
courtship behaviors, diminished aggressive behaviors, and
altered parental care relative to control males [80, 81]. Gulf
pipefish (Syngnathus scovelli) possess sex-role reversal in that
females must compete for a limited number of males to carry
fertilized eggs. However, EE-treated males exhibited female-
like secondary sexual traits, and mate choice trials have re-
vealed that females, which are typically not the choosier sex in
this species, selectively reject these males [82]. African
clawed male frogs exposed as adults to EE display
reductions in the number of and temporal/spectral qualities
in advertisement calls and demonstrate elevated number of
rasping calls [83]. Moreover, females selectively reject these
males in mate choice trials. In ovo exposure of Japanese quail
(Coturnix japonica) to EE leads to later depression of male
sexual behaviors [84]. Taken together, the cross-species find-
ings provide robust evidence that developmental and adult
exposure to EE compromises later male sexual behaviors and
attractiveness to females across taxa.

The antiandrogenic compound vinclozolin has been report-
ed to disrupt sexually dimorphic behaviors in fish, frogs, and
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rodents. In guppy fish (Poecilia reticulata), males exposed as
adults to this chemical possessed less sexually attractive
orange-yellow coloration and suppression of male-typical
courtship behaviors [85]. Male African clawed frogs
(Xenopus laevis) exposed as adults to vinclozolin demonstrat-
ed a decreased proportion of advertisement calls and chirping
(indicative of an aroused state) and an increased proportion of
rasping calls (indicative of a non-aroused state) [86]. Perinatal
exposure to vinclozolin or flutamide eliminates male-typical
social play behaviors in Sprague Dawley juvenile male rats [87].

Sexually Dimorphic Behavioral Differences
in Psychosocial Stress

Just as the effects of EDC depend on developmental timing,
the effects of psychosocial stress on the brain and behavior
also depend on the stage of development. Intriguingly, when
the mother is exposed to psychosocial stress during pregnan-
cy, stronger effects are observed in male offspring, whereas
the effects of psychosocial stress during adolescence or after
sexual maturity are usually stronger in females.

Early Life Stress

Early life stress induces long-lasting changes in a diverse set
of metabolic and neurobiological systems [88]. The effects of
psychosocial stress early during gestation usually have more
long-lasting consequences than the effects of stress later in
gestation. For example, when pregnant female mice were
exposed to chronic variable stress, male but not female off-
spring spent more time floating in the forced swim test [89].
Floating in this test is considered to be a measure of behavioral
despair because drugs with antidepressant properties reduce
floating and increase swimming [90]. Although many physi-
ological systems are affected by psychosocial stress, the im-
pact of elevated glucocorticoids has been best studied. When
rat dams were injected with corticosterone during pregnancy,
male but not female adolescent offspring showed increased
anxiety-like behavior [91]. Corticosterone injections during
pregnancy also increased floating behavior in the forced swim
test in both male and female adolescent offspring. On average,
it appears that males are more sensitive to glucocorticoids
during prenatal development, which is consistent with the
findings from clinical studies reporting that maternal depres-
sion during or after pregnancy has stronger effects on anxiety
in boys than in girls [92]

Increased corticosterone levels in the mother can also im-
pact postnatal development. Dams injected with corticoste-
rone have increased corticosterone levels in breast milk, as
well as increased brain levels of corticosterone in their pups
[93]. Males but not females had suppressed neurogenesis inT
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the hippocampus [94], which is thought to be an important
mechanism conferring resilience to the long-term effects of
stress [95]. In this study, postnatal corticosterone exposure had
no effects on behavior in the forced swim test, which is a
short-term behavioral response. Future studies could also
consider the impact of postnatal corticosterone exposure on
longer-lasting stressors, such as chronic variable stress or
social defeat.

Adolescence appears to be an important transition with
regard to sex differences in sensitivity to psychosocial stress
[96]. In adolescent rats, a combination of social and physical
stressors increased depression-like behaviors in females but
not in males [97•]. Adolescent stress also increases behavioral
sensitivity to drugs of abuse, and this effect is stronger in
female rats than in males [98]. These results suggest that
females have increased physiological responses to psychoso-
cial stress during adolescence. These findings are also consis-
tent with epidemiological work supporting the hypothesis that
girls are more likely than boys to carry risk factors for stress-
induced mental disorders (such as depression), and that the
challenges of adolescence engage these risk factors to impact
mental health [99, 100].

Chronic Mild Stress

The chronic mild stress (CMS) paradigm has become a widely
used approach to induce behavioral phenotypes associated
with depression. CMS consists of a combination of physical
and low-level social stressors administered in an unpredictable
order [101]. Examples of stressors include changes of cage
mates, exposure to cold temperatures, and disruption of light
cycles. One of the most common responses to CMS is anhe-
donia, or reduced interest in rewards, such as sucrose, high-fat
food, or sex. Reduced motivation to obtain reward is a key
component of depression [102]. Consumption of preferred
food items, such as sucrose, generates hedonic behavioral
responses, which are evolutionarily conserved [103]. There
have been concerns that reduced sucrose intake could be
induced by stress-induced weight loss rather than by anhedo-
nia per se [104]. While stress-induced weight loss can be
included as a covariate statistically [105], some laboratories
have been unable to replicate the effects of CMS on sucrose
intake [106, 107]. An intriguing alternative approach is exam-
ination of more ethological measures of behavior. For exam-
ple, several lab groups have observed that CMS reduces male
sexual behavior in rats [108–110]. Although more study is
needed, it will be interesting to see if the effects of CMS on
sexual behavior are more robust than the effects on food/taste
preferences.

The overwhelming majority of CMS studies have focused
on males, but a few have examined females [111]. In general,
CMS reduced sucrose consumption in both males and fe-
males. While stress-induced anhedonia is usually stronger in

females [112–114], some studies have reported that males and
females are equally affected [115, 116]. This inconsistency
suggests that the use of more ethological approaches, such as
sexual behavior, could be useful. The effect of social isolation
on anhedonia has also been reported to induce stronger re-
sponses in females [117]. However whenmale and female rats
were challenged with a novel stressor (the forced swim test),
females exposed to CMS engaged in more floating behavior
(considered to be an index of behavioral despair), whereas
males engaged in less floating behavior [112]. To our knowl-
edge, no study has examined whether CMS impairs female
sexual behavior. Mixed results have been reported on the
effects on CMS on the hypothalamic–pituitary–adrenal
(HPA) axis. The most common result is that CMS increases
baseline corticosterone levels, which has been reported in both
males [107, 112, 118, 119] and females [114]. However, other
reports have noted no effects of CMS on corticosterone levels
[116, 120–122]. Divergent results may be a result of genetic
variability across genetic lines. There is substantial variation
in coping responses between the different lines of rats [123].
Some lines respond to stress with reactive coping strategies,
consisting of behavioral responses such as immobility. Other
lines respond with more proactive coping strategies, such as
escape. Individuals using more reactive coping strategies are
more likely to have higher stress-induced glucocorticoid
levels than individuals using more proactive strategies [124].

Social Stress

A powerful source of stress in many species comes from
competitive interactions and aggression. Interestingly, many
of the behavioral and neurobiological phenotypes observed in
individuals that lose aggressive encounters are evolutionarily
conserved [125, 126]. One of the most widely reported phe-
notypes induced by defeat stress is withdrawal from social
contexts, even non-threatening contexts [127, 128]. Social
withdrawal has special relevance for mental health, because
patients diagnosed with depression show stronger avoidance
responses to social cues [129, 130]. Social avoidance further
reduces social support and helps to maintain depression [131].
Like CMS, defeat stress induces reduced intake of sucrose
[132, 133]. Scent marking can also be used to estimate sexual
motivation, and this behavior is strongly inhibited by defeat
stress [134]. Defeat stress has proven to be a robust approach,
as many behavioral phenotypes have been replicated in dif-
ferent lab groups and species [125]. One drawback, however,
is that it has been very difficult to study sex differences,
because female rats and mice are generally not aggressive
toward other females. However, creative use of different spe-
cies or manipulations of context have allowed several groups
to study defeat stress in females.

Under certain conditions, lactating female rats will engage
in aggression toward other females. Variability between
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different rat strains may be an important factor influencing the
intensity of defeat. Sprague Dawley dams appear to have lower
aggression levels, and females exposed to defeat by a dam
actually had decreased levels of floating behavior in the forced
swim test, compared with controls [135]. In contrast, Wistar
dams appear to have higher aggression levels, and females
exposed to defeat showed increased floating in the forced swim
test and sucrose anhedonia [136]. Long–Evans dams also appear
to be more aggressive, and females exposed to defeat showed
increases in depression-like behaviors [137•] and increased self-
administration of cocaine [138]. This approach represents a
significant advance because it allows for the study of defeat stress
in a species in which there is a strong literature in males.
However, given the relatively low aggression levels of dams
toward other females, it is harder to directly compare males and
females. Other rodent species such as Syrian hamsters
(Mesocricetus auratus) and California mice (Peromyscus
californicus) allow for more direct comparisons of males and
females because their intrafemale aggression levels are higher
and females will engage in aggression in the absence of pups.
Intriguingly, female Syrian hamsters appear to be more resistant
to the behavioral effects of defeat stress thanmales [139], and this
resistance appears to be mediated in part by circulating estradiol
[140]. In California mice, defeat stress has very different long-
term effects on behavior and the HPA axis in males and females.

The California mouse is a monogamous species, in which
both males and females defend a territory. Female California
mice are aggressive in resident–intruder tests [141], which
facilitates the use of social defeat in both males and females.
Acute responses of the HPA axis are more sensitive to social
conflict in females than in males. Females show a significant
increase in corticosterone following a resident–intruder test,
and this increase is observed in both residents (winners [142])
and intruders (losers [143]). In contrast, neither male residents
nor intruders show an increase in corticosterone. This sex
difference in corticosterone responsiveness is mediated by
gonadal hormones (Fig. 1a). Castration sensitizes male corti-
costerone responses to defeat stress, whereas ovariectomy
blocks defeat-induced increases in corticosterone in females
[143]. Notably, the long-term effects of defeat stress on base-
line corticosterone are quite different. Defeat stress increases
male baseline corticosterone during both the active phase and
the inactive phase, but has no effect on females [144••], which
is similar to findings in female rats [135]. Elevated corticoste-
rone during the inactive phase is often observed in patients
diagnosed with depression, and some recent reports have
suggested that this symptom is more likely to occur in men
[145, 146]. While defeat stress has a stronger effect on base-
line corticosterone levels in males, defeat stress has a stronger
effect on social interaction behavior in female California mice.

Male and female California mice are highly motivated to
approach unfamiliar individuals, like many other strains of
Mus [147]. However, social defeat reliably reduces social

approach in female California mice, whereas this effect is
weaker or absent in male California mice [144••, 148]. This
result mimics reports in humans that social withdrawal occurs
to a greater degree in women with depression than in men
[149]. Unlike the effects of defeat stress on corticosterone,
there is no effect of gonadectomy on social interaction behav-
ior [143]. Similarly, social withdrawal is observed across
different stages of the estrous cycle [144••]. These results
suggest a diminished role for gonadal hormones in mediating
sex differences in social withdrawal behavior in adults.
However, there is evidence that hormones may have more
important effects early in life. This evidence comes from an
unexpected finding that cage bedding has important effects on
behavioral responses to stress (Fig. 1b). Corncob bedding
contains tetrahydrofuran (THF) diols, which have estrogenic
properties but do not bind directly to ESRs [150]. California
mice raised on corncob have significantly elevated levels of
THF diols [151], most likely through consumption of

Fig. 1 Effects of social defeat on corticosterone (a) and social interaction
(b) behavior in California mice. Social stress increases corticosterone
levels in female California mice, and ovariectomy blocks this effect. In
contrast, castrated males have increased corticosterone levels following
stress. The effect of defeat stress on social interaction is stronger in
females than in males, but the effect is weaker in females raised on
corncob bedding. * p<0.05 versus control, *** p<0.001 versus control,
† p<0.05 male versus female. cccorncob, cfcardboard bedding, Gdx
gonadectomy, sc woodchip bedding
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bedding. When female California mice were raised on corn-
cob bedding, the effect of defeat stress on social interaction
behavior was blunted, compared with females raised on aspen
wood chips or cardboard-based bedding [143]. This finding
suggests that females raised on corncob could bemasculinized
during development. Interestingly, THF diols stimulate cyclo-
oxygenase (COX)-2 activity [152]. In male rats, estradiol
increases COX2 activity to increase production of prostaglan-
dins in the preoptic area (POA) of the hypothalamus [153].
Prostaglandins induce the formation of dendritic spines in the
POA, which are more abundant in males than in females and
are thought to play an important role in controlling male
sexual behavior [154].

Conclusions

Developmental/adult exposure to EDCs—in particular,
BPA—is associated with sex-specific effects in various animal
models and human epidemiological studies. Across animal
models, male sexually selected traits that affect intrasexual
competition and intersexual choice appear to be especially
vulnerable to the EDCs that have been tested to date. EDCs
also seem to exert sex-specific effects on anxiety/depressive-
like behaviors in animal models and human epidemiological
studies [24••, 39, 49, 58–60, 63–65]. While only a handful of
studies have directly assessed linkages between BPA exposure
and sex-specific behavioral differences in humans, a some-
what consistent finding is that prenatal BPA exposure is linked
to increased externalizing behavioral problems, particularly in
older boys [63–65]. However, future studies are needed to
clarify whether early BPA exposure alters neurobehavioral
programming in animal models and humans, and whether
the observed differences persist with maturity.

EDCs likely exert sex-specific behavioral effects by
disrupting normal steroid programming of the brain, which
could occur through direct binding of neural steroid receptors
[155–157], modulation of steroid hormone synthesis or me-
tabolism [156–158], and/or epigenetic alterations of steroid-
dependent genes [159]. These changes likely shape how an
individual reacts to challenges faced later in life.

The effects of psychosocial stress are also dependent on the
developmental stage, with males exhibiting increased vulner-
ability during the prenatal stage and females exhibiting in-
creased sensitivity in adolescence. In adults, the effects of
psychosocial stress are sex dependent. For example, defeat
stress induces social withdrawal in females and disrupts base-
line corticosterone levels in males.

Future studies should thus consider the combined impact of
early exposure to an EDC, such as BPA, and later life stress (the
“two-hit” model) on sex-specific behaviors. It is clear that BPA
can induce anxiogenic effects, which vary according to the sex.

However, the interaction between BPA exposure and psychoso-
cial stress is still unclear. It will be essential to disentangle direct
effects of BPA on brain development from indirect effects of
BPA that may be mediated by altered parental behavior. BPA
reduces hypothalamic GR expression [160], which might exag-
gerate glucocorticoid responses to stress. It has also been sug-
gested that BPA can directly bind and activate GR [77], which
would be another avenue by which BPA can affect later social
and environmental stressors [161].

In conclusion, behaviors such as sexually selected traits might
serve as a barometer of exposure to EDC or psychosocial stress.
An important implication of sex-specific disruptions in behavior
is the long-term impact on susceptibility to stress later in life.
There are important sex differences in behavioral and neurobio-
logical responses to stress [125, 162], and at least some of these
differences originate from early life experience. Thus exposure to
EDC early in life is likely to alter sex-specific responses to stress
in adults. However, to our knowledge, there has been no study to
date aimed at testing this novel hypothesis that developmental
exposure to EDCs followed by later social/environmental
stressors can lead to harmful biomolecular and behavioral chang-
es that are sex dependent. Therefore, future studies are needed to
determine the potential combined epigenetic and gene expression
effects that these extrinsic factors exert on the various brain
regions governing adult cognitive and sociosexual behaviors
andwhether the neurobehavioral responses vary according to sex.
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