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ABSTRACT
The natural beauty of coral reefs attracts millions of tourists worldwide resulting in
substantial revenues for the adjoining economies. Although their visual appearance
is a pivotal factor attracting humans to coral reefs current monitoring protocols
exclusively target biogeochemical parameters, neglecting changes in their aesthetic
appearance. Here we introduce a standardized computational approach to assess
coral reef environments based on 109 visual features designed to evaluate the
aesthetic appearance of art. The main feature groups include color intensity and
diversity of the image, relative size, color, and distribution of discernable objects
within the image, and texture. Specific coral reef aesthetic values combining all
109 features were calibrated against an established biogeochemical assessment
(NCEAS) using machine learning algorithms. These values were generated for
∼2,100 random photographic images collected from 9 coral reef locations exposed
to varying levels of anthropogenic influence across 2 ocean systems. Aesthetic
values proved accurate predictors of the NCEAS scores (root mean square error < 5
for N ≥ 3) and significantly correlated to microbial abundance at each site. This
shows that mathematical approaches designed to assess the aesthetic appearance of
photographic images can be used as an inexpensive monitoring tool for coral reef
ecosystems. It further suggests that human perception of aesthetics is not purely
subjective but influenced by inherent reactions towards measurable visual cues.
By quantifying aesthetic features of coral reef systems this method provides a cost
efficient monitoring tool that targets one of the most important socioeconomic
values of coral reefs directly tied to revenue for its local population.

Subjects Environmental Sciences, Computational Science
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INTRODUCTION
Together with fishing, cargo shipping, and mining of natural resources, tourism is one of

the main economic values to inhabitants of coastal areas. Tourism is one of the world’s

largest businesses (Miller & Auyong, 1991) and with ecotourism as the fastest growing form

of it worldwide (Hawkins & Lamoureux, 2001) the industry is increasingly dependent on

the presence of healthy looking marine ecosystems (Peterson & Lubchenco, 1997). In this

context coral reefs are one of the most valuable coastal ecosystems. They attract millions of

visitors each year through their display of biodiversity, their abundance of colors, and their

sheer beauty and lie at the foundation of the growing tourism based economies of many

small island developing states (Neto, 2003; Cesar, Burke & Pet-Soede, 2003).

Over the past decades the problem of coral reef degradation as a result of direct and

indirect anthropogenic influences has been rigorously quantified (Pandolfi et al., 2003).

This degradation affects not only the water quality, but also the abundance and diversity of

the reefs inhabitants, like colorful reef fish and scleractinian corals. To assess the status of

reef communities and to monitor changes in their composition through time, a multitude

of monitoring programs have been established, assessing biophysical parameters such as

temperature, water quality, benthic cover, and fish community composition (e.g., Jokiel

et al., 2004; Halpern et al., 2008; Kaufman et al., 2011). These surveys however target

exclusively on provisioning, habitat, and regulating ecosystem services and neglect their

cultural services; i.e., the immediately nonmaterial benefits people gain from ecosystems

(Seppelt et al., 2011; Martin-Lopez et al., 2012; Casalegno et al., 2013). Monitoring protocols

to assess the biogeochemical parameters of an ecosystem, which need to be conducted by

trained specialists to provide reliable data, will not give account of one of the most valuable

properties of coastal environments: their aesthetic appearance to humans, which is likely

the main factor prompting millions of tourists each year to visit these environments.

The value of human aesthetic appreciation for ecosystems has been studied in some

terrestrial (e.g., Hoffman & Palmer, 1996; Van den Berg, Vlek & Coeterier, 1998; Sheppard,

2004; Beza, 2010; De Pinho et al., 2014) and marine ecosystems (Fenton & Syme, 1989;

Fenton, Young & Johnson, 1998; Dinsdale & Fenton, 2006). However most of these studies

have relied on surveys, collecting individual opinions on the aesthetic appearance of

specific animals or landscapes and are therefore hard to reproduce in other locations due to

a lack of objective and generalizable assessments of aesthetic properties. A recent approach

by Casalegno et al. (2013) objectively measures the perceived aesthetic value of ecosystems

by quantifying geo-tagged digital photographs uploaded to social media resources.

Although relatively new in the context of ecosystem evaluation, efforts to define uni-

versally valid criteria for aesthetic principles have been existing since antiquity (e.g., Plato,

Aristotle, Confucius, Laozi). Alexander Gottlieb Baumgarten introduced aesthetics in 1735

as a philosophical discipline in his Meditationes (Baumgarten & Baumgarten, 1735) and

defined it as the science of sensual cognition. Classicist philosophers such as Immanuel

Kant, Georg Wilhelm Friedrich Hegel, or Friedrich Schiller, then established further

theories of the “aesthetic,” coining its meaning as a sense of beauty and connecting it to

the visual arts. Kant (1790) also classified judgments about aesthetic values as having a
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subjective generality. In the 20th and 21st century, when beauty was not necessarily the

primary sign of quality of an artwork anymore, definitions of aesthetics and attempts

to quantify aesthetic values have reemerged as a topic of interest for philosophers, art

historians, and mathematicians alike (e.g., Datta et al., 2006; Onians, 2007).

With the term aesthetics recipients usually characterize the beauty and pleasantness

of a given object (Dutton, 2006). There are however various ways in which aesthetics is

defined by different people as focus of interest and aesthetic values may change depending

on previous attainment (Datta et al., 2006). For example, while some people may simply

judge an image by the pleasantness to the eye, another artist or professional photographer

may be looking at the composition of the object, the use of colors and light, or potential

additional meanings conveyed by the motive (Datta et al., 2006). Thus assessing the

aesthetic visual quality of paintings seems, at first, to pose a highly subjective task (Li

& Chen, 2009). Contrary to these assumptions, various studies successfully applied

mathematical approaches to determine the aesthetic values of artworks such as sculptures,

paintings, or photographic images (Datta et al., 2006; Li & Chen, 2009; Ke, Tang & Jing,

2006). The methods used are based on the fact that certain objects or certain features in

them have higher aesthetic quality than others (Datta et al., 2006; Li & Chen, 2009). The

overarching consensus hereby is that objects, or images, which are pleasing to the eye,

are considered to be of higher value in terms of their aesthetic beauty. The studies which

inspired the metrics used in our current work successfully extracted distinct features based

on the intuition that they can discriminate between aesthetically pleasing and displeasing

images. By constructing high level semantic features for quality assessment these studies

have established a significant correlation between various computational properties of

photographic images and their aesthetics perceptions by humans (Datta et al., 2006; Li &

Chen, 2009).

METHODS
Study sites: Four atolls across a gradient of human impact served as basis for this study.

The 4 islands are part of the northern Line Islands group located in the central Pacific. The

most northern atoll Kingman has no population and is, together with Palmyra which is

exposed to sparse human impact, part of the US national refuge system. The remaining

two atolls Tabuaeran and Kiritimati are inhabited and part of the Republic of Kiribati

(Dinsdale et al., 2008; Sandin et al., 2008). To extend the validity of the method proposed

here to other island chains and ocean systems we included an additional sampling site

in the Central Pacific (Ant Atoll) and four locations in the Caribbean also subjected to

different levels of human impact (2 sites on Curacao, Klein Curacao, and Barbuda, Fig. 1).

From every location we collected sets of 172 ± 17 benthic photo-quadrant (Preskitt, Vroom

& Smith, 2004) and 63 ± 9 random pictures. To evaluate the level of human impact and

status of the ecosystem we used the cumulative global human impact map generated by

the National Center for Ecological Analysis and Synthesis (NCEAS; http://www.nceas.ucsb.

edu/globalmarine/impacts). These scores incorporate data related to: artisanal fishing;

demersal destructive fishing; demersal non-destructive, high-bycatch fishing; demersal
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Figure 1 Map of sampling sites with representative images and NCEAS scores. The upper 4 images
show images of the benthic community in the respective Caribbean sites, the lower images represent the
sampling sites throughout the tropical Pacific.

non-destructive low-bycatch fishing; inorganic pollution; invasive species; nutrient input;

ocean acidification; benthic structures; organic pollution; pelagic high-bycatch fishing;

pelagic low-bycatch fishing; population pressure; commercial activity; and anomalies in

sea surface temperature and ultraviolet insolation (Halpern et al., 2008; McDole et al.,

2012). Additionally, bacterial cell abundance across the 4 Northern Line Islands and 3 of

the Caribbean locations (Curacao main island and Barbuda; Table 1) were measured after

the method described by Haas et al. (2014).

Aesthetic feature extraction: In total we extracted, modified, and complemented 109

features (denoted as f1,f2, ...,f109) from three of the most comprehensive studies on

computational approaches to aesthetically evaluate paintings and pictures (Table S1; Datta

et al., 2006; Li & Chen, 2009; Ke, Tang & Jing, 2006). Aesthetic evaluation of paintings and

photographs in all three studies were based on surveys of randomly selected peer groups.

Some of the features presented in previous work were however difficult to reproduce owing

to insufficient information given on these features (e.g., f16–24, or f51). This may have led

to slight alterations in some of the codes which were inspired by the suggested features but

deviate slightly in their final form. As the pictures were considered to be objective samples

representing the respective seascape, some traditional aesthetic features, like size of an

image or its aspect ratio have not been considered in this study. Overarching feature groups

considered in the picture analysis were color, texture, regularity of shapes, and relative sizes

and positions of objects in each picture.
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Aesthetic value: Although some of the implemented codes appeared similar and were

assessing closely related visual aspects, all of the suggested codes were implemented and

their value, or potential redundancy, was evaluated using machine learning algorithms.

Following feature extraction the 109 feature values were used as input for feed forward

neural networks that optimize the importance of features or feature groups and generate

a single aesthetic value for each respective photograph. The target outputs for the training

of the networks were the NCEAS scores of the regions where the pictures were taken. The

pictures were randomly separated into a batch used for training the machine learning

algorithms (N = 1,897) and one on which the algorithms were tested (N = 220, 20 from

each of 11 sites). We used Matlab’s neural network package on the training samples which

further subdivided these samples into training (70%), validation (15%) and test (15%)

sets (see Appendix for details). Unlike previous studies in which the aesthetic quality

was classified in given categories, this machine learning regression approach generates a

continuous metric for the aesthetic quality of a given reefscape.

RESULTS
An aesthetic value of coral reef images was defined using features previously created for

measuring the aesthetic quality of images. The values were calibrated using machine

learning to match NCEAS scores as closely as possible. Our algorithm gleaned the NCEAS

score from an image to within a root mean squared (rms) error of 6.57. Using five images

from the same locale improved the NCEAS score prediction to an rms error of 4.46. The

relative importance for each feature derived from a random forests approach showed

that all three overarching feature groups, texture, color of the whole image, and the size,

color, and distribution of objects within an image yielded important information for the

algorithm (Fig. S1). The ten most important features, or feature groups were hereby the

similarity in spatial distribution of high frequency edges, the wavelet features, number

of color based cluster, the area of bounding boxes containing a given percentage of the

edge energy, the average value of the HSV color space, entropy of the blue matrix, range of

texture, the arithmetic and the logarithmic average of brightness, and the brightness of the

focus region as defined by the rule of thirds.

The mean coral reef aesthetic values generated with this approach for each picture were

significantly different (p < 0.001) between all sampling locations except for Ant Atoll,

Fanning and Klein Curacao (ANOVA followed by Tukey, see Table S2). These sites are

also exposed to comparable levels of anthropogenic disturbance (NCEAS: 14.11–19.48).

Regression of coral reef aesthetic values against the NCEAS scores of the respective

sampling site showed a significant correlation (p < 0.001) for both the training (n = 1,897,

R2
= 0.93) and the test (n = 220, R2

= 0.80) set of images (Fig. 2). Further comparison to

microbial abundance, available for 7 of the 9 locations (microbial numbers for Curacao

Buoy2 and Ant Atoll were not available), revealed a significant correlation between

the aesthetic appearance of the sampling sites and their microbial density (p = 0.0006,

R2
= 0.88; Fig. 3).
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Figure 2 Coral reef aesthetic values. Boxplots of coral reef aesthetic values at each site and regression of
coral reef aesthetic values vs. NCEAS scores across all assessed reef sites. (Test) shows coral reef aesthetic
values calculated for 200 images on which the previously trained machine learning algorithm was tested.
(Training) shows the generated coral reef aesthetic values from 1,970 images used to improve the feed
forward neural networks that optimized the importance of features or feature groups in generating a
single coral reef aesthetic value.

DISCUSSION
This is the first study using standardized computational approaches to establish a

site-specific correlation between aesthetic value, ecosystem degradation, and the

microbialization (McDole et al., 2012) of marine coral reef environments.

Human response to visual cues
The connection between reef degradation and loss of aesthetic value for humans seems

intuitive but initially hard to capture with objective mathematical approaches. Dinsdale

(2009) showed that human visual evaluations provided consistent judgment of coral reef

status regardless of their previous knowledge or exposure to these particular ecosystems.

The most important cue was the perceived health status of the system. Crucial for this

intuitive human response to degraded or “unhealthy” ecosystems is the fact that we are

looking at organic organisms and react to them with the biological innate emotion of

disgust (Curtis, 2007; Hertz, 2012). Being disgusted is a genetically anchored reaction

to an object or situation, which might be potentially harmful to our system. Often, a

lack of salubriousness of an object or situation is the crucial element for our senses, one

of them visual perception, to signal us to avoid an object or withdraw from a situation

(Foerschner, 2011). As the microbial density and the abundance of potential pathogens

in degrading reefs are significantly elevated (Dinsdale et al., 2008)—albeit not visible
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Figure 3 Distribution of aesthetic values. (A) shows microbial cell abundance at 7 reef sites. (B) shows
the distribution of pictures with respective aesthetic values at each of those sites. (C) shows the regression
between mean microbial cell abundance and mean aesthetic value (training + test) across all 7 sampling
sites.

to the human eye—our inherent human evaluation of degraded reefs as aesthetically

unpleasing, or even disgusting, is nothing else than recognizing the visual effects of these

changes as a potential threat for our well-being. Generally the emotion of disgust protects

the boundaries of the human body and prevents potentially harmful substances from

compromising the body. This theory was supported by French physiologist Richet (1984),

who described disgust as an involuntary and hereditary emotion for self-protection. The

recognition of something disgusting, and thus of a lack of aesthetic value, prompts an

intuitive withdrawal from the situation or from the environment triggering this emotion.

Recent evolutionary psychology largely follows this thesis and concludes that disgust, even

though highly determined by a certain social and cultural environment, is genetically

imprinted and triggered on a biological level by objects or environments which are

unhealthy, infectious, or pose a risk to the human wellbeing (Rozin & Fallon, 1987; Rozin

& Schull, 1988; Foerschner, 2011). Decisive here is the connection between disgust and the

salubriousness, or better lack thereof, of given objects, which indicates unhealthiness. Our

here presented study supports these theories by establishing objectively quantifiable coral

Haas et al. (2015), PeerJ, DOI 10.7717/peerj.1390 7/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.1390


reef aesthetic values for ecosystems along a gradient of reef degradation, and for a subset

microbial abundance. Perception of aesthetic properties is not purely a subjective task

and measurable features of aesthetic perception are inherent to human nature. The main

visual features assessed by our analysis are color intensity and diversity, relative size and

distribution of discernable objects, and texture (Fig. S1 and Table S1). Human perception

of each of these features does not only trigger innate emotions, each of these features also

yields palpable information on the status of the respective ecosystem.

Color: Thriving ecosystems are abounding with bright colors. On land photosyn-

thesizing plants display a lush green and, at least seasonally, blossoms and fruits in

every color. Animals display color for various reasons, for protective and aggressive

resemblance, protective and aggressive mimicry, warning colors, and colors displayed

in courtship (Cope, 1890). Underwater, coral reefs surpass all other ecosystems in their

display of color. The diversity and colorfulness of fauna and flora living in healthy reef

systems is unmatched on this planet (Marshall, 2000; Kaufman, 2005). This diverse

and intense display of color is, however, not only an indicator of high biodiversity,

but also of a “clean” system. The brightest and most diverse display of colors by its

inhabitants will be dampened in a system with foggy air or murky waters. Previous

studies suggest an evolutionary theory in the human preference of color patterns as a

result of behavioral adaptations. Hurlbert & Ling (2007) conclude that color preferences

are engrained into human perception as neural response to selection processes improving

performance on evolutionarily important behavioral tasks. Humans were more likely

to survive and reproduce successfully if they recognize objects or environments that

characteristically have colors which are advantageous/disadvantageous to the organism’s

survival, reproductive success, and general well-being (Palmer & Schloss, 2010). Thus it is

again not surprising that humans are inherently drawn to places with bright and diverse

colors as they represent clean systems not associated with pollution or other health risks.

Objects: Not only does the visual brain recognize properties like luminance or color,

it also segregates higher-order objects (Chatterjee, 2014). The relative size, distribution

and regularity of objects in the pictures analyzed were important features in determining

the aesthetic value of pictures. Birkhoff (1933) proposed in his theory of preference for

abstract polygon shapes that aesthetic preference varies directly related to the number of

elements. Further it has been established that people tend to prefer round regular and

convex shapes as they are more symmetrical and structured (Jacobsen & Höfel, 2002;

Palmer & Griscom, 2013). The fluency theory provides an additional explanation for a

general aesthetic preference for specific objects (Reber, Winkielman & Schwarz, 1998; Reber,

Schwarz & Winkielman, 2004; Reber, 2012). It predicts aesthetic inclination as a result of

many low-level features (Oppenheimer & Frank, 2008), like preferences for larger (Silvera,

Josephs & Giesler, 2002), more symmetrical (Jacobsen & Höfel, 2002), more contrastive

objects (Reber, Winkielman & Schwarz, 1998; reviewed in Reber, Schwarz & Winkielman,

2004). From a biological view there may be additional causes for the preference of

larger discernable objects. Bigger objects representing living entities indicate that the

environment is suitable for large animals and can provide a livelihood for apex predators
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like humans, while small objects suggest a heavily disturbed system, unable to offer

resources for growth or a long life experience for its inhabitants. The lack of discernable

objects like fish, hard corals, or giant clams suggests that microbiota are dominant in this

system, likely at the expense of the macrobes (McDole et al., 2012).

Texture: Another important criterion in the aesthetic evaluation of an image is the

existence of clearly discernible outlines; a distinguishable boundary texture that keeps

objects separated from their environment. The Russian philosopher Bakhtin (1941)

elevated this characteristic to be the main attribute of grotesqueness in relation to animated

bodies. Anything that disrupts the outline, all orifices or products of inner, bodily processes

such as mucus, saliva, or semen evokes a negative emotional response of disgust and

repulsion (Foerschner, 2011; Foerschner, 2013). Even though various theories on triggers for

disgust exist, the absence of discernable boundaries (both physical and psychological) are

fundamental to all of them (Foerschner, 2011; Menninghaus, 2012). For living organisms

the transgression of boundaries and the dissolution of a discernable surface texture signify

much more than the mere loss of form: it comprehends the organism in a state of becoming

and passing, ultimately in its mortality. Decomposition, disease, and decay are as disgust-

ing to us as mucus, saliva, or slime; the former in their direct relation to death, the latter

ones as products of bodily functions, which equally identifies our organic state as transient

(Kolnai, 2004). Further, amorphous slime covering and obscuring the underlying texture

of objects may be the result of biofilm formation. A biofilm is a group of microorganisms

which, frequently embedded within a mucoidal matrix, adheres to various surfaces. These

microbial assemblages are involved in a wide variety of microbial infections (Costerton,

Stewart & Greenberg, 1999). Human perception is therefore more likely to evaluate a vis-

cous, slimy, or amorphous object surface as repulsive whereas surface textures with clearly

defined boundaries and patterns are pleasing to our senses and generally deemed aesthetic.

It has to be mentioned that by no means do we claim to provide an assessment for the

value of art or artistic images by this method. The value of an artwork depends not only

on the aesthetics, but also on the social, economic, political or other meanings it conveys

(Adorno, 1997), and on the emotions and impulses it triggers in a recipient. However this

study suggests that perception of aesthetic properties may be more objective than com-

monly appraised and patterns of aesthetic evaluation are inherent to human perception.

Crowd sourcing & historic data mining
The approach provided here will likely be a valuable tool to generate assessments on the

status of reef ecosystems, unbiased by the respective data originator. By taking a set of

random photographic images from a given system information on the aesthetic value

and thus on the status of the ecosystem can be generated. Contrary to all previously

introduced monitoring protocols the objective analysis of pictures will overcome bias

introduced by the individual taking samples or analyzing the respective data. Obviously,

the analysis of a single picture will depend on the motive chosen or camera handling

and not every single picture will accurately reflect the status of the ecosystem (Fig. 4).

However, as in most ecological approaches the accuracy of the information increases with
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Figure 4 Image examples. Examples of pictures with their respective generated aesthetic values from two
contrasting sampling sites, Kingman and Kiritimati. Aesthetic values for (A) and (B), which resemble
representative images of the specific locations, were close matches to the NCEAS score at the respective
site. (C) and (D) give examples of pictures which resulted in mismatches to the respective NCEAS score.

sample size, i.e., number of digital images available (see Fig. 3B). The application of this

method to resources like geo-tagged digital image databases or historic images of known

spatial and temporal origin will allow access to an immense number of samples and could

provide objective information on the status and the trajectories of reefs around the world.

Previous studies already focused on the problem of establishing a baseline for pristine

marine ecosystems, especially coral reefs. But coral reefs are among the most severely

impacted systems on our planet (Knowlton, 2001; Wilkinson, 2004; Bellwood et al., 2004;

Pandolfi et al., 2005; Hoegh-Guldberg et al., 2007) and most of the world’s tropical coastal

environments are so heavily degraded that pristine reefs are essentially gone (Jackson et

al., 2001; Knowlton & Jackson, 2008). The here presented method could provide a tool to

establish a global baseline of coral reef environments, dating back to the first photographic

coverage of the respective reef systems. As an example we used photographic images of the
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A) Carysfort reef 1975: 
11.44

B) Carysfort reef 1985: 
12.42

C) Carysfort reef 1995: 
21.25

D) Carysfort reef 2004: 
35.50

E) Carysfort reef 2014: 
32.49

F) Palmyra 2011: 
10.85

Figure 5 Aesthetic values of Carysfort reef. (A–E) are taken at the identical location on Carysfort reef,
US Caribbean, over a time span of 40 years (photos taken by P Dustan). The aesthetic value calculated
for each picture shows a significant degradation of aesthetic appearance during this period. The historic
images from 1975 indicate that the aesthetic appearance of this Caribbean reef was comparable to present
day pristine reefscapes as for example on Palmyra atoll in the Central Pacific (F, photo taken by J Smith).

Carysfort reef in the US Caribbean, taken at the same location over a time span of nearly

40 years (1975–2014). The image analysis showed a clear degradation of aesthetic values

during those four decades (Fig. 5). While the aesthetic appearance of this Caribbean reef

in 1975 is comparable to reefscapes as they are found on remote places like the Palmyra

atoll today, the aesthetic value drastically declined over the 40 year time span and place the

aesthetic appearance of this reef below the heavily degraded reef sites of Kiritimati today

(2004 and 2014).

Socioeconomic assessment for stakeholders
This study provides an innovative method to objectively assess parameters associated with

a general aesthetic perception of marine environments. Although converting the aesthetic

appearance of an entire ecosystem in simple numbers will likely evoke discussions and in

some cases resentment, it may provide a powerful tool to disclose effects of implementing
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conservation measurements on the touristic attractiveness of coastal environments to

stakeholders. The approach allows for a rapid analysis of a large number of samples and

thus provides a method to cover ecosystems on large scale. Linking aesthetic values to

cultural benefits and ultimately revenue for the entire community may be an incentive to

further establish and implement protection measurements and could help to evaluate the

success and the value to the community of existing conservation efforts. Using monitoring

cues that directly address inherent human emotions will more likely motivate and sustain

changes in attitude and behavior towards a more sustainable usage of the environmental

resources than technical terms and data that carry no local meaning (Carr, 2002; Dinsdale,

2009). Quantifying the aesthetic appearance of these ecosystems targets on one of the most

important socioeconomic values of these ecosystems, which are directly tied to culture and

the revenue of its local population.
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APPENDIX: FEATURE EXTRACTION
Global features
Global features are computed over all the pixels of an entire image.

Color: The HSL (hue, saturation, lightness) and HSV (hue, saturation, value) color spaces

are the two most common cylindrical-coordinate representations of points in an RGB

color model. The HSV and HSL color space define pixel color by its hue, saturation and

value, respectively lightness (Joblove & Greenberg, 1978). This provides a color definition

similar to the human visual perception. The first step for each picture analysis was

therefore to calculate the average hue, saturation and value respectively lightness for

both color spaces. Assuming a constant hue, the definition of saturation and of value

and lightness are very much different. Therefore hue, saturation, and value of a pixel in

the HSV space will be denoted as IH(m,n),IS(m,n) and IV (m,n), and hue, saturation and

lightness in the HSL space as IH (m,n), IS (m,n) and IL (m,n) from here on, where m and n

are the number of rows and columns in each image.

f1 =
1

MN


n


m

IH(m,n) (1)

f2 =
1

MN


n


m

IS(m,n) (2)

f3 =
1

MN


n


m

IV (m,n) (3)

f4 =
1

MN


n


m

IS (m,n) (4)

f5 =
1

MN


n


m

IL (m,n). (5)
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To assess colorfulness the RGB color space was separated in 64 cubes of identical volume by

dividing each axis in four equal parts. Each cube was then considered as individual sample

point and color distribution D1 of each image defined as the frequency of color occurrence

within each of the 64 cubes. Additionally a reference distribution D0 was generated so that

each sample point had a frequency of 1/64. The colorfulness of an image was then defined

as distance between these two distributions, using the Quadratic-form distance (Ke, Tang

& Jing, 2006) and the Earth Mover’s Distance (EMD). Both features take the pair-wise

euclidian distances between the sample points into account. Assuming ci is now the center

position of the i-th cube, we get dij = ∥rgb2luv(ci) − rgb2luv(cj)∥2 after a conversion to the

LUV (Adams chromatic valence space; Adams, 1943) color space. This leads to

f6 =


h − h0


T A


h − h0


and f7 = emd(D1,D0,{dij|1 < i,j < 64}) (6)

in which h and h0 are vectors listing the frequencies of color occurrence in D1 and D0.

A = (aij) is a similarity matrix with aij = 1 − dij/dmax and dmax = max(dij); ‘emd’ denotes

the earth mover’s distance we implemented using an algorithm described by Rubner,

Tomasi & Guibas (2000).

For color analysis only pixels with a saturation Is (m,n) < 0.2 and a lightness

IL ∈ [0.15,0.95] were used as the human eye is unable to distinguish hues and only

sees shades of grey outside this range. As PH = {(m′,n′)|IS > 0.2 and 0.15 < IL < 0.95}

represents the set of pixels whose hues can be perceived by humans, f8 was defined as the

most frequent hue in each image and f9 as the standard deviation of colorfulness.

f8 = min(hmax), (7)

where ∀ hue h, # of {(m′,n′) ∈ PH|IH = hmax} ≥ # of {(m′,n′)} ∈ PH|IH = h. If hues had

an identical cardinal, the smallest one was chosen.

f9 = std(var(I′
H )). (8)

where I′
H (m,n) = IH (m,n) if (m,n) ∈ PH; otherwise I′

H (m,n) = 0. var (I′
H ) is the vector

containing the variance of each column of I′
H , and std returns its standard deviation.

The hue interval [0, 360] was then uniformly divided into 20 bins of identical size

and computed into a hue histogram of the image. Q represents the maximum value this

histogram and the hue count was defined as the number of bins containing values greater

than C · Q. The number of missing hues represents bins with values smaller than c · Q. C

and c was set to 0.1 and 0.01, respectively.

f10 = # of {i|h(i) > C · Q} (9)

f11 = # of {i|h(i) < c · Q}. (10)

Hue contrast and missing hues contrast was computed as:

f12 = max(∥ch(i) − ch(j)∥al) with i,j ∈ {i|h(i) > C · Q} (11)

f13 = max(∥ch(i) − ch(j)∥al) with i,j ∈ {i|h(i) < c · Q} (12)
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where ch(i) is the center hue of the i-th bin of the histogram and ∥ · ∥al refers to the

arc-length distance on the hue wheel. f14 denotes the percentage of pixels belonging to

the most frequent hue:

f14 = Q/N where N = # of PH (13)

f15 = 20 − # of {i|h(i) > C2 · Q} with C2 = 0.05 (14)

Color models: As some color combinations are more pleasant for the human eye than others

(Li & Chen, 2009), each image was fit against one of 9 color models (Fig. S2K). As the

models can rotate, the k-th model rotated with an angle α as Mk(α), Gk(IH (m,n) was

assigned to the grey part of the respective model. EMk(α)(m,n) was defined as the hue of

Gk(α) closest to IH .

EMk(α)(m,n) =


IH (m,n) if IH (m,n) ∈ Gk(α)

Hnearestborder if IH (m,n) ∉ Gk(α)


(15)

where Hnearestborder is the hue of the sector border in Mk(α) closest to the hue of pixel

(m,n). Now the distance between the image and the model Mk(α) can be computed as

Fk,α =
1

m


m IS (m,n)


n


m

∥EMk(α)(m,n) − IH (m,n)∥al · IS (m,n) (16)

with IS (m,n) accounting for less color differences with lower saturation. This definition

of the distance to a model was inspired by Datta et al. (2006) with the addition of a

normalization 1
m


n Is (m,n)
which allows for a comparison of different sized images.

As the distances of an image to each model yield more information than the identity of

the single model the image fits best, all distances were calculated and features f16–f24 are

therefore defined as the smallest distance to each model:

f15+k = min
α

Fk,α, k ∈ {1,...,9}. (17)

Theoretically the best fitting hue model could be defined as Mko(αo) with

α(k) = arg min
α

Fk,α,k0 = arg min
k∈{1,...9}

Fk,α(k) and α0 = α(k0). (18)

Those models are, however, very difficult to fit. Therefore we set a threshold TH assuming

that if Fk,α(k) < TH, the picture fits the k-th color model. If ∀k Fk,α(k) ≥ TH the picture was

fit to the closest model. In case several models could be assigned to an image not the closest

one, but the most restrictive was chosen. As the color models are already ordered according

to their restrictiveness the fit to the color model we characterize as:

f25 =


maxk ∈ {j|Fj,α(j),TH} k if ∃k ∈ {1,...,9},Fk,α(k) < TH

k0 if ∀kFk,α(k) ≥ TH


(19)

Normalizing the distances to the models enabled us to set a unique threshold (TH = 10)

for all the images independently of their size.
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Brightness: Light conditions captured by a given picture are some of the most noticeable

features involved in human aesthetic perception. Some information about the light

condition is already explored by the previously described color analysis, however, analyzing

the brightness provides an even more direct approach to evaluating the light conditions of

a given image. There are several ways to measure the brightness of an image. For this study,

we implemented analysis which target slightly different brightness contrasts.

f26 =
1

MN


m


n

L(m,n) (20)

f27 = exp


255

MN


m


n

log


∈ +

L(m,n)

255


(21)

where L(m;n) = (Ir(m;n) + Ig(m;n) + Ib(m;n))/3. f26 represents the arithmetic and f27

the logarithmic average brightness; the latter takes the dynamic range of the brightness

into account. Different images can therefore equal in one but differ in the other value.

The contrast of brightness was assessed by defining h1 as a histogram with 100 equally

sized bins for brightness L(m;n), with d as index for the bin with the maximum energy

h1(d) = max(h1). Two indices a and b were set as the interval [a;b] which contains 98% of

the energy of h1. The histogram was then analyzed step by step towards both sides starting

from the dth bin to identify a and b. The first measure of the brightness contrast is then

f28 = b − a + 1. (22)

For the second contrast quality feature a brightness histogram h2 with 256 bins comprising

the sum of the gray-level histograms hr,hg and hb generated from the red, green and blue

channels:

h2(i) = hr(i) + hg(i) + hb(i), ∀i ∈ {0,...,255}. (23)

The contrast quality f29 is then the width of the smallest interval [a2,b2] whereb2
i=a2h2(i) > 0.98

255
i=0h2(i).

f29 = b2 − a2. (24)

Edge features: Edge repartition was assessed by looking for the smallest bounding box

which contains a chosen percentage of the energy of the edges, and compare its area to the

area of the entire picture. Although Li & Chen (2009) and Ke, Tang & Jing (2006) offer two

different versions to target this feature, both use the absolute value of the output from a

3 × 3 Laplacian filter with α = 0.2. For color images the R, G and B channels are analyzed

separately and the mean of the absolute values is used. At the boundaries the values outside

the bounds of the matrix was considered equal to the nearest value in the matrix borders.

According to Li & Chen (2009) the area of the smallest bounding box, containing 81% of

the edge energy of their ‘Laplacian image’ (90% in each direction), was divided by the area
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of the entire image (Figs. S2E–S2H).

f30 = H90W90/HW (25)

H90 and W90 represent the height and width of the bounding box with H and W as the

height and width of the image.

Ke, Tang & Jing (2006) resized each Laplacian image initially to 100 × 100 and the image

sum was normalized to 1. Subsequently the area of the bounding box containing 96.04% of

the edge energy (98% in each direction) was established and the quality of the image was

defined as 1 − H98W98, whereby H98 and W98 are the height and width of the bounding

box.

f31 = 1 − H98W98;H98 and W98 ∈ [0,1]. (26)

Resizing and normalizing the Laplacian images further allows for an easy comparison of

different Laplacian images. Analog to Ke, Tang & Jing (2006) who compared one group

of professional quality photos and one group of photos of inferior quality, we can now

consider two groups of images: one with pictures of pristine and one with pictures of

degraded reefs. Mp and Ms represent the mean Laplacian image of the pictures in each of

the respective groups. This allows a comparison of the Laplacian image L with Mp and Ms

using the L1-distance.

f32 = ds − dp, where (27)

ds =


m,n

|L(m,n) − Ms(m,n)| (28)

dp =


m,n

|L(m,n) − Mp(m,n)|. (29)

The sum of edges f33 was added as an additional feature not implemented by one of the

above mentioned studies. Sobel image S of a picture was defined as a binary image of

identical size, with 1’s assigned to edges present according to the Sobel method and 0’s for

no edges present. For a color image Sobel images Sr,Sg and Sb were constructed for each of

its red, green and blue channels and the sum of edges defined as

f33 = (|Sr|L1 + |Sg |L1 + |Sb|L1)/3. (30)

Texture analysis: To analyze the texture of pictures more thoroughly we implemented

features not yet discussed in Ke, Tang & Jing (2006), Datta et al. (2006), or Li & Chen

(2009). Therefore we considered RH to be a matrix of the same size as IH , where each

pixel (m,n) contains the range value (maximum value–minimum value) of the 3-by-3

neighborhood surrounding the corresponding pixel in IH . RS and RV were computed in

the same way for IS and IV and the range of texture was defined as

f34 =
1

MN


m


n

(RH(m,n) + RS(m,n) + RV (m,n))/3. (31)
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Additionally DH,DS, and DV were set as the respective matrix identical in size to IH,IS,

and IV , where each pixel (m,n) contains the standard deviation value of the 3-by-3

neighborhood around the corresponding pixel in IH,IS, or IV . The average standard

deviation of texture was defined as:

f35 =
1

MN


m


n

(DH(m,n) + DS(m,n) + DV (m,n))/3. (32)

The entropy of an image is a statistical measure of its randomness, and can also be used

to characterize its texture. For a gray-level image, it is defined as—
255

i=0p(i) ∗ log2(p(i))

where p is a vector containing the 256 bin gray-level histogram of the image. Thus, we

define features f36, f37 and f38 as the entropy of Ir, Ig , and Ib respectively.

f36 = entropy (Ir) (33)

f37 = entropy (Ig) (34)

f38 = entropy (Ib). (35)

Wavelet based texture: Texture feature analysis based on wavelets was conducted according

to Datta et al. (2006). However concrete information on some of the implemented steps

(e.g., norm or exact Daubechies wavelet used) was sometimes not available which may

result in a slight deviation of the calculation. First a three level wavelet transformation

on IH was performed using the Haar Wavelet (see Figs. S2I and S2J). A 2D wavelet

transformation of an image yields 4 matrices: the approximation coefficient matrix CA

and the three details coefficient matrices CH,CV and CD. Height and width of resulting

matrices are 50% of the input image and CH,CV and CD show horizontal, vertical and

diagonal details of the image. For a three-level wavelet transformation a 2D wavelet

transformation is performed and repeated on the approximation coefficient matrix CA
1

and repeated again on the new approximation coefficient matrix CA
2 , resulting in 3 sets of

coefficients matrices. The ith-level detail coefficient matrices for the hue image IH were

then denoted as CH
i ,CV

i , and CD
i (I ∈ {1,2,3}). Features f39–f41 are then defined as follows:

f38+i =
1

Si


m


n

(CH
i (m,n) + CV

i (m,n) + CD
i (m,n)), i ∈ {1,2,3} (36)

where ∀i ∈ {1,2,3}, Si = |CH
i |L1 +|CV

i |L1 +|CD
i |L1. Features f42–f44 and f45–f47 recomputed

accordingly for Is and Iv. Features f48–f50 are defined as the sum of the three wavelet

features for H,S, and V respectively:

f48 =

42
i=40

fi,f49 =

45
i=43

fi,f50 =

48
i=46

fi. (37)

Blur: Measurements of the image blur were done based on suggestions given by Li & Chen

(2009) and Ke, Tang & Jing (2006). Based on the information provided we were not able

to implement the features successfully, thus the features presented here are a modified
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adaptation. For this purpose each picture was considered to be a blurred image Iblurred

as a result of the convolution of an hypothetical sharp version of the image Isharp and a

Gausssian filter Gσ : Iblurred = Gσ ∗ Isharp. As the Gaussian filter eliminates high frequencies

only, the blur of a picture can be determined by quantifying the frequency of the image

above a certain threshold θ . A higher frequency indicates less blur. The threshold θ reduces

the noise and provides a defined cutoff of the high frequencies. To quantify blur in a

given image, a 2D Fourrier Transform was performed resulting in Y . To avoid ambiguities

the 2D Fourrier Transform is then normalized by 1/
√

MN : Y = fft2(Iblurred)/
√

MN.

As we observed a phenomenon of spatial aliasing, only the frequencies (m′,n′) where

0 < m′ < M/2 and 0 < n′ < N/2 were used, resulting in

f51 = max


2

m′
−
M

2


M

;2
n′

−
N

2


N


(38)

where |Y(m′,n′)| > θ , 0 < m′ < M/2, and 0 < n′ < N/2. The threshold was set as θ = 0.45.

Local features
In addition to global features which provide information about the general aspect of a

picture, local features consider fragments of the image. This approach focuses on objects

captured in the photograph, while disregarding the overall composition, which is partly

dependent on the camera operator. Objects corresponding to uniform regions can be

detected with the segmentation process described in Datta et al. (2006). First the image

is transformed in the LUV color space and the K means algorithm is used to create

K color-based pixel cluster. Then a connected components analysis in an 8-connected

neighborhood is performed to generating a list of all segments present. The 5 largest

segments are denoted as s1,...s5, in decreasing order. As most pictures contain many details

resulting in noise, we applied a uniform blur with m × m ones matrix as kernel before the

segmentation process.

Rule of third: A well-known paradigm in photography is that the main subject of attention

in a picture should generally be in its central area. This rule is called the ‘Rule of third’ and

the ‘central area’ can more precisely defined as the ninth of a photo divided by 1/3 and

2/3 of its height and width (see Figs. S2A and S2B). Using HSV color space f52 defines the

average hue H for this region

f52 =
12M

3


−
M

3


+ 1

2N
3


−
N

3


+ 1




2M
3


m=


M
3




2N
3


n=


N
3

IH(m,n) (39)

IS and IV are computed accordingly with f53 and f54.

Focus region: Li & Chen (2009)

offer a slightly different approach on the rule of thirds. The study suggests to use HSL

color space and argue that focusing exclusively on the central ninth is too restrictive. From

this approach, the focus region FR was defined as the central ninth of the respective picture
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plus a defined percentage µ in its immediate surrounding (Figs. S2A and S2B). For the here

presented image analysis we set µ = 0.1.

f55 =
1

#of{(m,n)|(m,n) ∈ FR}


(m,n)∈FR

IH (m,n) (40)

IS and IL are computed accordingly with f56 and f57.

Segmentation: The segmentation process generates a list L of connected segments in which

the 5 largest segments are denoted as s1, . . . , s5. Our analysis focuses on the largest 3 or 5

segments only. Not only were the properties of each of these segments, but also the quantity

of the connected segments in each picture recorded. This provides a proxy for the number

of objects and the complexity of each recorded image.

f58 = # of L. (41)

The number of segments si in L above a certain threshold (f59), and the size of the 5 largest

segments si (f60–f64) was defined as:

f59 = # of {si|# of si < MN/100,i ∈ {1,...,5}} (42)

f59+i = (# of si)/MN, ∀ ∈ {1,...,5}. (43)

To gain information on the position of these 5 biggest segments, the image was divided in 9

equal parts identical to Rule of third feature analysis. Setting (ri,ci) ∈ {1,2,3}
2 as the indices

of the row and column around the centroid of si, features f65 through f69 as were defined,

starting on the top left of each image as

f64+i = 10 ∗ r + c, ∀ ∈ {1,...,5}. (44)

The average hue, saturation and value were then assessed for each of the objects. Features

f70 through f74 were computed as the average hues of each of the segments si, in the HSV

color space:

f69+i =
1

# of si


(m,n)∈si

IH(m,n), ∀i ∈ {1,...,5}. (45)

Features f75–f79 and f80–f84 are computed analog for IS and IV respectively. Features f85– f87

were further defined as the average brightness of the top 3 segments:

f84+i =
1

# of si


(m,n)∈si

L(m,n), ∀i ∈ {1,2,3} (46)

lightness L(m,n) has already been defined under ‘Brightness analysis’. This allows us to

compare the colors of each of the segments and to evaluate their diversity by measuring

the average color spread f88 of their hues. As complementary colors are aesthetically more

pleasing together f89 was defined as the average complementary colors among the assessed

segments.
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f88 =

5
i=1

5
j=1

|h(i) − h(j)| and f89 =

5
i=1

5
j=1

∥h(i) − h(j)∥al (47)

where ∀i ∈ 1,...,5,h(i) = f69+i is the average hue of si.

As round, regular and convex shapes are considered to be generally more beautiful,

the presence of such shapes in a picture should increase its aesthetic value. Here we only

assessed the shapes of the 3 largest segments in each image. The coordinates of the centers

of mass (first-order moment), the variance (second-order centered moment) and skewness

(third-order centered moment) was calculated for each of these segments was calculated by

defining for all i ∈ {1,2,3}

f89+i = xi =
1

# of si


(m,n)∈si

x(m,n) (48)

f92+i = yi =
1

# of si


(m,n)∈si

y(m,n) (49)

f95+i =
1

# of si


(m,n)∈si

((x(m,n) − xi)
2
+ ((y(m,n) − yi)

2) (50)

f98+i =
1

# of si


(m,n)∈si

((x(m,n) − xi)
3
+ ((y(m,n) − −yi)

3) (51)

where ∀(m,n),(x(m,n),y(m,n)) are the normalized coordinates of pixel (m,n).

Horizontal and vertical coordinates were normalized by height and width of the image

to account for different image ratios. To quantify convex shapes in an image f102 was

defined as the percentage of image area covered by convex shapes. To reduce noise only R

segments p1,...,pR containing more than MN/200 pixels were incorporated in this feature.

The convex hull gk was then computed for each pk. A perfectly convex shape pk ∩ gk = pk

and area(pk)
area(gk) = 1 would be too restrictive for our purposes of analyzing natural objects, so pk

was considered convex if area(pk)
area(gk) > δ.

f102 =
1

MN

R
k=1

I


area(pk)

area(gk)
> δ


∗ |area(pk)| (52)

where I(·) is the indicator function and δ = 0.8.

The last features using segmentation measure different types of contrast between the 5

largest segments. Features f103–f106 address the hue contrast, the saturation contrast, the

brightness contrast, and the blur contrast. First the average hue, saturation, brightness, and

the blur for each si was calculated

h(i) =
1

# of si


(m,n)∈si

IH(m,n), ∀i ∈ {1,...,5} (53)

s(i) =
1

# of si


(m,n)∈si

IS(m,n), ∀i ∈ {1,...,5} (54)
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l(i) =
1

# of si


(m,n)∈si

L(m,n), ∀i ∈ {1,...,5}. (55)

To calculate the blur of the segment si, Isi was computed so that

ISi(m,n) =


(Ir(m,n) + Ir(m,n) + Ir(m,n))/3 if (m,n) ∈ si

0 otherwise
(56)

and b(i) defined as blur measure of Isi for all i ∈ {1,...,5} , analog to the previously

described ‘Blur measure’.

b(i) = max


2

m′
−
M

2


M

;2
n′

−
N

2


N


(57)

where |Yi(m′,n′)| > θ,0 < m′ < M/2 and 0 < n′ < N/2, with Yi = fft 2(Isi)/
√

MN and

θ = 0.45. Features f103–f106 were then defined as

f103 = max
i,j∈{1,...,5}

(∥ h(i) − h(j)∥al) (58)

f104 = max
i,j∈{1,...,5}

(∥ s(i) − s(j) ∥) (59)

f105 = max
i,j∈{1,...,5}

(∥ l(i) − l(j) ∥) (60)

f106 = max
i,j∈{1,...,5}

(∥ b(i) − b(j) ∥). (61)

Low depth of field indicators: Finally, according to the method described by Datta et al.

(2006) to detect low depth of field (DOF) and macro images, we divided the images into 16

rectangular blocks of identical size M1, ..., M16, numbered in row-major order. Applying

the notations of the ‘Wavelet based texture’, CH
3 ,CV

3 , and CD
3 denote the third level detail

coefficient matrices generated by performing a three-level Haar wavelet transform on the

hue channel of the image. The low DOF for the hue is then computed as

f107 =


(m,n)∈M6M7M10M11(CH

3 (m,n) + CV
3 (m,n) + CD

3 (m,n))16
i=1


(m,n)∈Mi(CH

3 (m,n) + CV
3 (m,n) + CD

3 (m,n))
(62)

and f108 and f109 are calculated similarly for saturation and value.

Machine learning
To reduce the noise and decrease the error, we analyzed multiple methods of determining

feature importance. An unsupervised random forests approach was used to identify the

most important features (Fig. S1). For every tree in the construction of a random forests,

an out-of-bag sample was sent down the tree for calculation and the number of correct

predictions was recorded. The variable importance was then generated by comparing

the number of correct predictions from the out-of-bag sample to a randomly permuted
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variant. For each feature, the resulting importance is:

1

ntrees


all trees

(ROOB − Rperm).

A second method was to identify redundant columns before the training. Using a

covariance matrix of the 109 features, relationships between columns were analyzed and

columns with a correlation greater than 0.90 were clustered into groups. Within every

group, features were either directly or mutually related. In order to not compromise the

comprehensive approach of the coral reef aesthetic feature analysis the most important

features from each group remained in the analysis while highly correlated, less important

features within a group were removed. We built neural networks based on these two

methods and discerned when removing redundant features we obtained lower mean

square errors. Thus, we utilized a total of 97 features when building our ensemble of neural

networks.

To fuse the predictive power of the 109 aesthetic features, a Levenberg–Marquardt

algorithm was used simultaneously on every sample of the training set to minimize the

mean squared error of the estimated output score and the NCEAS value. Typical mean

squared error rates were in the 90s. We then decided on a threshold of 60 for the mean

squared error and searched the weight space of the neural network to find 10 sets of weights

with a mean squared error of less than 60 on the validation set. The predicted NCEAS

scores of these 10 networks were then averaged for the ensemble prediction, which is our

aesthetic value.

After running test data through the ensemble of neural networks, we further analyze the

accuracy of our system by simultaneously testing multiple pictures at a time. To see how

much more reliably we could deduce the NCEAS score using N pictures from the same site,

we averaged the outputs from our ensemble of neural networks for all twenty choose N

(N = 1, 2, 3, 4, 5) combinations available from the test batch. Combinations of multiple

pictures increased the accuracy of the root mean square error of 6.57 for N = 1–5.35 for

N = 2, 4.88 for N = 3, and 4.46 for both N = 4 and N = 5.
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Jacobsen T, Höfel L. 2002. Aesthetic judgments of novel graphic patterns: analyses of individual
judgments. Perceptual and Motor Skills 95:755–766 DOI 10.2466/pms.2002.95.3.755.

Joblove GH, Greenberg D. 1978. Color spaces for computer graphics. Computers & Graphics
12:20–25 DOI 10.1145/965139.807362.

Jokiel PL, Brown EK, Friedlander A, Rodgers SKU, Smith WR. 2004. Hawa‘coral reef assessment
and monitoring program: spatial patterns and temporal dynamics in reef coral communities.
Pacific Scienc 58:159–174 DOI 10.1353/psc.2004.0018.

Kant I. 1790. Kritik der Urteilskraft. Frankfurt aM: Suhrkamp Verlag, 237–241.

Kaufman L. 2005. One fish two fish red fish blue fish: why are coral reefs so colorful? National
Geographic 86–109. Available at http://ngm.nationalgeographic.com/2005/05/coral-reefs/
kaufman-text.

Kaufman L, Sandin S, Sala E, Obura D, Rohwer F, Tschirky T. 2011. Coral Health Index (CHI):
measuring coral community health. Arlington: Science and Knowledge Division, Conservation
International.

Ke Y, Tang X, Jing F. 2006. The design of high-level features for photo quality assessment.
Proceedings Computer Vision and Pattern Recognition IEEE 1:419–426.

Haas et al. (2015), PeerJ, DOI 10.7717/peerj.1390 25/27

https://peerj.com
http://dx.doi.org/10.3791/52131
http://dx.doi.org/10.1126/science.1149345
http://dx.doi.org/10.1126/science.1152509
http://dx.doi.org/10.1016/j.cub.2007.06.022
http://dx.doi.org/10.1126/science.1059199
http://dx.doi.org/10.2466/pms.2002.95.3.755
http://dx.doi.org/10.1145/965139.807362
http://dx.doi.org/10.1353/psc.2004.0018
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://ngm.nationalgeographic.com/2005/05/coral-reefs/kaufman-text
http://dx.doi.org/10.7717/peerj.1390


Knowlton N. 2001. The future of coral reefs. Proceedings of the National Academy of Science of the
United States of America 98:5419–5425 DOI 10.1073/pnas.091092998.

Knowlton N, Jackson JB. 2008. Shifting baselines, local impacts, and global change on coral reefs.
PLoS Biology 6:e54 DOI 10.1371/journal.pbio.0060054.

Kolnai A. 2004. On disgust. Peru, Illinois: Open Court Publishing.

Li C, Chen T. 2009. Aesthetic visual quality assessment of paintings. IEEE Journal of Selected Topics
in Signal Processing 3:236–252 DOI 10.1109/JSTSP.2009.2015077.

Marshall NJ. 2000. Communication and camouflage with the same ‘bright’ colours in reef fishes.
Philosophical Transactions of the Royal Society B 355:1243–1248 DOI 10.1098/rstb.2000.0676.

Martin-Lopez B, Iniesta-Arandia I, Garcıa-Llorente M, Palomo I, Casado-Arzuaga I, Garcı́a
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