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ABSTRACT OF THE THESIS

Protecting Against False Inferences:

A Comparison Between Stability Controlled Quasi-Experiment

and Difference-in-Differences Approaches

by

Colleen Pinkelman

Master of Science in Applied Statistics

University of California, Los Angeles, 2020

Professor Chad Hazlett, Chair

When a randomized trial is not possible for evaluating the effectiveness of a new treatment,

several alternatives have been proposed. Two of these methods are difference-in-differences

(DID) analysis and the stability controlled quasi-experiment (SCQE). DID allows for es-

timation of causal effects with an assumption of “parallel trends”: the trend in average

non-treatment outcomes are the same between treated and comparison groups. SCQE re-

lies on an assumption of the outcome’s “baseline trend”: the change between cohorts is the

same in the overall non-treatment outcome. We compare these two methods under a range of

baseline trend assumptions. We also evaluate the methods’ reliabilities in protecting against

false inferences and over-confidence. Our application is the effect of a placebo health policy,

which is known to have no true effect, on 30-day mortality rate among patients treated for

heart attack, heart failure, and pneumonia in U.S. hospitals.
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CHAPTER 1

Introduction

Although randomized experiments are the ideal setup for determining a cause and effect

relationship, they sometimes pose feasibility or ethical concerns. In medical applications

and post-hoc analyses in particular, randomized controlled trials (RCTs) are not always

possible. One of the prominent concerns about RCTs is the ethical concern of denying a

patient access to a potentially life-saving medical treatment. If alternatives to randomization

exist, there may be more ethical ways to distribute treatment.

A few designs that can accommodate partial self-selection are comprehensive cohort stud-

ies [8] and patient preference trials [4]. These aim to address the problem that individuals

who self-select into treatment are likely different from those who do not. However, they do

not avoid the need for some degree of randomization. There are a few alternative causal

inference methods that do not require randomization and therefore can better address this

ethical concern. Here, we examine two causal inference methods as applied to patients

treated for heart attack, heart failure, and pneumonia in United States hospitals.

1.1 Stability Controlled Quasi-Experiment

A new method called the stability controlled quasi-experiment (SCQE) was proposed in

2018 by Hazlett [5] for estimating the causal effect of a treatment on the outcomes of treated

units. This method does not require randomization. It accommodates any process of treat-

ment selection, including self-selection. It can be used for both designing an experiment or
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analyzing observational data.

Rather than requiring an assumption of randomization, SCQE provides an estimated

effect estimate subject to an assumption the user is willing to make regarding the change

in average outcomes over time. In particular, it requires positing a quantity for which

the average outcome would have changed from one cohort to the next, had there been

no treatment exposure. This quantity is called δ. For notation, we use the the potential

outcomes framework [6], where Y is the outcome of interest, D = {0, 1} is a treatment

indication, Y (D) is the potential outcome under treatment assignment D. We use T to

denote treatment status. T = 0 represents low or no use of the treatment, and the second

cohort T = 1 represents the treated group. We express δ as

δ = E[Y (0)|T = 1]− E[Y (0)|T = 0] (1.1)

This stability assumption identifies the Average Treatment effect on the Treated (ATT)

and is the key assumption for SCQE. In most cases, we rely on both subject matter experts

and prior average changes in outcome to determine our δ choice. However, this means that

the estimates of SCQE are accurate subject to the assumption of δ. It is then up to the

investigator to judge the plausibility of the chosen δ values in order to defend, fail to defend,

or reject the credibility of the corresponding effect estimates.

In cases where no change in average outcomes over time is expected, we use a δ of 0.

We can also postulate a range of delta values for which an ATT is to be determined. This

approach is useful in situations where: 1) we have multiple source of information about δ ,

2) we know the true values lies within a plausible range, or 3) we would like to represent an

observed past trend.

Given our assumed δ, we calculate the ATT with the unbiased estimate for the non-

treatment outcome among the whole group in the pre-treatment period. In other words,

this is the mean observed non-treatment outcome in the pre-treatment period shifted by δ.
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The group average is then a weighted combination of the average non-treatment outcome

among the untreated and the average non-treatment outcome among the treated (calculated

by applying the law of iterated expectations):

E[Y (0)|T = 0] = E[Y (0)|T = 1]− δ

= E[Y (0)|D = 1, T = 1]π1

+ E[Y (0)|D = 1, T = 1](1− π1)− δ

(1.2)

As a final step, we compute the ATT as the difference between the treatment and non-

treatment potential outcomes, taken among the treated. Since the average outcome for the

treated had they not directly taken the treatment is not directly observable, we use the

strategy mentioned above of inferring this quantity using the mean observed non-treatment

outcome in the pre-treatment period shifted by δ. This is represented as

ATT = E[Y (1)|D = 1, T = 1]− E[Y (0)|D = 1, T = 1]

= E[Y |D = 1, T = 1]− E[Y |T = 0]− E[Y |D = 0, T = 1](1− π1) + δ

π1

(1.3)

1.2 Difference in Differences Analysis

Initially, the difference-in-differences (DID) and SCQE approaches may appear similar. DID

requires observed outcomes of units who were and were not exposed to treatment at two

time periods. Researchers rely on the “parallel trend” assumption, which dictates that in

the pre-intervention period, some set of observed and unobserved covariates influence the

levels and trends in the outcomes for both the treatment and comparison groups [3]. The

method uses the trend in outcomes in the control group to impute the trend in non-treatment

outcomes in the treated group. Notation for DID includes D = 0, 1 for treatment indication,

T = 0, 1 for pre- and post-treatment time periods, respectively, and Y (T ) for the observed

outcome at time T. The parallel trends assumption is expressed by
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E[Y (0)|T = 1, D = 1]− E[Y (0)|T = 0, D = 1]

= E[Y (0)|T = 1, D = 0]− E[Y (0)|T = 0, D = 0]
(1.4)

If the parallel trends assumptions holds, DID provides the estimated ATT. For the anal-

ysis that follows, we explore an application of both methods on the same dataset to compare

their results.

1.3 The Relationship between Parallel Trends and δ

In comparing the two methods, we also find it important to clarify the relationship between

parallel trends and δ. DID can be considered a “special case” of SCQE in that we determine

δ from the change over time in units that are not treated, and we assume that the change

in non-treatment outcomes is the same for both treated and non-treated individuals.

In SCQE, δ could be set equal to the change that was observed over time in the untreated

group. This mathematically implies that the trend in non-treatment outcomes for the treated

units equals that in the untreated units, which are both equivalent to δ. DID learns δ through

the change of units not eligible for treatment over time and assumes that the change in non-

treatment outcomes is the same for both groups. The differences between the two methods

are 1) SCQE has a built-in sensitivity analysis, and 2) the assumptions that each method

require differ in important ways. In many cases, a practitioner may have more information

about the plausible range of baseline trends than the degree to which the trend differs between

the treatment and control groups. This is primarily because the latter introduces additional

complexity from the method of selection into treatment. For instance, one could conduct

a sensitivity analysis with DID by allowing the researcher to posit a different trend in the

control group and the treated group. In this scenario, the practitioner would be inferring

more about the selection method than about the trends themselves.

4



1.4 An Example Implementation

To clarify the difference in implementation between the two methods, we outline a simple

example. Suppose a researcher would like to evaluate the effect of a medical treatment

for some condition on patient recovery rates. In DID, the researcher must first assess the

plausibility of the parallel trends assumption in this case. They can then proceed with

estimation of the DID effect. Once the effect is obtained, they can use it to inform their

understanding of the treatment.

SCQE requires slightly more of the practitioner during the setup phase. First, the re-

searcher must have some degree of knowledge or a reasonable assumption about the trend in

outcome with no treatment. Frequently, this is obtained via analysis of the pre-intervention

trends or by consulting a subject matter expert. Given this information, they then posit

a δ value or range of δ values that they deem plausible for this scenario. After this is de-

termined, they proceed with SCQE calculations. The returned effect estimate or estimates

are conditioned on the assumed δ value. When interpreting the results, the researcher must

factor this assumption into their interpretation of the treatment’s effect on recovery rates.
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CHAPTER 2

Methods

2.1 Data Preparation

We sourced our data from Hospital Compare, published by Medicare. The data’s primary

purpose is to enable comparison of the quality of care at hospitals around the country. We

included data from the years 2009-2013 [2]. The raw data includes 5,856 hospitals. To

ensure data quality, we first excluded hospitals with missing, incomplete, or inconsistent

data in each year. The resulting dataset contains 5,548 hospitals. For this study, we imagine

a treatment intervention that took place between 2011 and 2012. Since the treatment is

imagined, we know it has a true effect of 0. We introduce this placebo treatment in the

interest of evaluating each method’s ability to uncover a zero effect.

The initial data contains 5 conditions (heart attack, heart failure, pneumonia, hip/knee,

and all-cause). For this analysis, we focus on the three most commonly observed conditions:

heart attack, heart failure, and pneumonia. We further filter the data by including only

providers that had at least one observation for each condition in each of our considered

years. In each year, there is one observation for 30-day mortality rate for each condition in

each hospital. We separate the datasets by condition to run three parallel analyses.

The final heart attack, heart failure, and pneumonia data sets contain 2,378, 3,517, and

3,771 measurements for mortality rate at the hospital level, respectively. Running three

analyses in parallel improves our ability to generalize the result. We utilize 4 time periods

(2009, 2010, 2011, 2012) for our investigation. The two final time periods (years 2011 and
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2012) are used as the pre- and post-treatment introduction periods, respectively, for the

SCQE and DID implementations. Data from 2009 and 2010 is used to help inform the

choice of δ.

In order for our inferences from the SCQE and DID methods to be valid, we should

have reason to believe that there were no other treatments that took place during the post-

intervention time period. Otherwise, we might find an effect where there should be none

because our treatment is a placebo. Since our data is comprised of three different medical

conditions across thousands of hospitals in the US, we find it very unlikely that there would

be important changes across all these dimensions in the same year. We have no way to verify

this with absolute certainty, but we see no evidence to the contrary. Based on the Medicare

site itself, we also find that the mortality rate metric formulation is stable throughout these

years. With these assurances in mind, we proceed with the analysis.

2.2 SCQE δ Choice

A key assumption required in SCQE analysis is the proposed value or range of values for

the average change in non-treatment outcomes, called δ. In other words, this is the change

in mortality rate that we would expect if there had been no treatment effect. In the true

experimental setting, this value is unobservable. It is recommended to use domain knowledge

and prior observed rates of change to inform the choice of δ. In this application, we use the

first three pre-intervention measurements to determine the expected year over year change

for 30-day mortality rate in non-treated hospitals. We have no reason to believe that there

are other effects influencing the outcomes during this pre-treatment period.

To inform our choice of δ we first calculate the year over year change in mortality rate

from 2006 to 2007, and 2007 to 2008, respectively. We then plot these values and examine

the summary statistics each condition are given in Table 3.1 below. Based on these known

quantities, we will include δ assumptions of -1%, -0.5%, 0%, 0.5%, 1%, and the approximate
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minimum and maximum δ’s for each condition. Although δ is fundamentally unknowable,

we believe this to be a plausible assumption for the range of δ values based on trends seen

in the pre-intervention period. We keep this estimation method in mind while interpreting

the results to avoid potential overconfidence.

Table 2.1: Pre-Intervention Trends in Mortality Rate for Each Condition

Measure Heart Attack Heart Failure Pneumonia

Minimum -4.9% -6.9% -9.2%

25th Percentile -0.8% -0.7% -0.8%

Median 0% 0% 0%

75th Percentile 0.8% 0.8% 0.8%

Maximum 8.0% 8.1% 8.1%

2.3 Simulation

We imagine the placebo treatment took place in 2012. We aim to estimate the effect of this

treatment on mortality rate for each of the three conditions. We first calculate each hospital’s

trend for each outcome, based on times T = 0 and T = 1. We adjust the probability to be

mean-centered. We also multiply by a constant, a, which was chosen to give a reasonable

distribution of probabilities.

P (selection) =
ec(a1−a2)

1 + ec(a1−a2)

In the above, c is the chosen constant (75 in this case). a1 is given by trend for each

hospital between the pre and post-treatment intervention time periods, and a2 is the mean

trend across hospitals. This selection method means that hospitals with a higher trend in

mortality rate have a higher likelihood to have been selected into treatment. The below
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plots give the distribution of hospitals’ probability of selection into treatment (Figure 2.1)

and the relationship between a hospital’s trend and its probability of selection (Figure 2.2).

Figure 2.1: Distribution of selection probabilities for hospitals

Figure 2.2: Selection probability for hospitals by trend in mortality rate between

times T=0 and T=1

The placebo treatment has an effect of zero. We can then evaluate our methods against

this known effect [1]. The goal of the method is to estimate the zero effect by including

it within the given confidence interval of the estimate. Specifically, we compare the DID

estimator to the SCQE method using the range of δ values chosen above. We consider the
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“coverage” of a method to be 1 when the CI includes zero, and 0 when it does not. We

simulate 500 times for each of the conditions and compare the coverage of each. In each

simulation, we select a random subset of 100 hospitals for evaluation. Our unit of analysis

is the mortality rate for one of the three conditions at an individual hospital. Given this

simulation method, the expected bias is towards positive results. The placebo treatment is

assigned more often to units whose outcomes are increasing over time, which means that

DID will appear to show positive (harmful) effects.

2.4 SCQE Package

To implement the SCQE analysis, we use the SCQE package for R. The package was devel-

oped in 2020 and is available for download from GitHub. It allows a user to study both the

one and two cohort cases, using either summary statistics from the population or the full

data. In our case, we have a one cohort case with the full data for each simulation available.

It also allows the user to plot the SCQE object in order to visualize the results. This paper

is the first documented application of the package.
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CHAPTER 3

Results

3.1 SCQE Results

We consider our plausible range of δ’s to be between the 25th and 75th quantiles of observed

pre-intervention trends. The summary statistics are provided in Table 2.1 in the above

chapter, and the full distribution of pre-intervention trends for each of the three conditions

is given in Figure 3.1 below. Given the summary statistics and distribution of the pre-trends,

we find this to be a reasonable and conservative estimation of the plausible δ values. We

choose to err on the conservative side in terms of δ range to reduce the chance that we

capture a zero effect as a result of having a wide, permissive δ assumption.

Figure 3.1: Distribution of Pre-Intervention Trends in Mortality Rate for Each Condition
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Using this specified range, we run simulations for each of the three conditions. The SCQE

method produces a range of estimates based on the provided choices of δ. Figure 3.2 is an

example plot for one simulation, to illustrate the outcome of an SCQE analysis for a single

hospital. Each horizontal line estimate represents the effect estimate obtained from the δ

value on the y-axis. The point gives the exact effect estimate obtained, while the whiskers

represent the respective size of the 95% confidence interval.

For example, we see that assuming a δ value of 0 gives an estimated effect of 0.005 with

lower and upper bounds of approximately -0.004 and 0.014. Here, the practitioner would

have to assume a δ value of at least 0.008 to make a conclusions that the ATT was negative.

Conversely, the practitioner would have to assume a δ of less than -0.0028 to conclude there

was a positive ATT.

Figure 3.2: SCQE estimates for a single simulation in terms of mortality rate

We can now evaluate the coverage of the SCQE method. We consider the coverage to
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be 1 in cases where the range of effect estimates includes the zero effect case and 0 in cases

that do not include the zero effect case. We find that in 100% of simulations for each of the

three cases, the effect estimate interval includes the zero effect case. We also examine the

mean effect estimates for the upper and lower bounds of the explored δ ranges. For both

the upper and lower 95% CI bounds, the method is not off by more than about 0.15% in

estimated increase or decrease in mortality rate. Based on the symmetry of these estimates,

SCQE appears equally likely to slightly over- or under-estimate the true zero effect. This

translates to an approximately equal chance of having a favorable or unfavorable perspective

on the effect of the theoretical treatment.

Table 3.1: SCQE Coverage from Range of δ Values

Condition Percent of Intervals Average Lowest Average Highest

Including 0 Effect Estimate Effect Estimate

Heart Attack 100% -1.7% 1.3%

Heart Failure 100% -1.6% 1.6%

Pneumonia 100% -1.7% 1.5%

For a subset of the simulations, we plot the ATT estimates for each simulation result

for SCQE, calculated by subtracting the treated hospitals’ counterfactual non-treatment

mortality rate from their observed mortality rate under the placebo treatment. The boxes

represent the range of likely point estimates produced by plugging in the calculated 95% CI

of δ values. The whiskers represent the 95% CI produced by the standard errors.
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Figure 3.3: ATTs (in terms of mortality rate) across the first 25 simulations for SCQE

3.2 DID Results

For DID, we consider that the control and treatment group have been observed both before

and after the hypothetical treatment. We obtain the DID estimate by using an interaction

term in an OLS model. This method imposes a constant diff-in-diff effect across units. The

estimated DID parameter gives the estimated effect of the treatment. We also consider the

uncertainty of these estimates.

Across the 3 conditions (heart attack, heart failure, and pneumonia) we obtain mean

effect estimates of 0.0047, 0.0049, and 0.0063 respectively. Similar to in SCQE, when the

DID interval includes the zero effect case we consider the coverage to be 1, and 0 in cases

where it does not. Since DID provides a point estimate rather than a range of estimates like

SCQE, we expect the coverage of this method to be lower. We also measure how often 95%

CI contains entirely positive or entirely negative effect values. This proportion quantifies

how often DID significantly over- or under-estimates the effect.

We also plot the ATT estimates obtained by DID for a subset of the simulation results

14



Table 3.2: DID Coverage with 95% CI

Condition Percent of Intervals Percent of Estimates Percent of Estimates

Including 0 Significantly Positive Significantly Negative

Heart Attack 68.8% 31.0% 0.2%

Heart Failure 60.4% 39.6% 0.0%

Pneumonia 59.6% 40.4% 0.0%

in Figure 3.4. Instead of the boxes present in Figure 3.3, we observe points that correspond

to the single effect estimate from DID. The whiskers represent the 95% CI produced by the

standard errors.

Figure 3.4: ATTs (in terms of mortality rate) across the first 25 simulations for DID
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CHAPTER 4

Conclusions

With the above results, we can conclude that the SCQE method protects against false

inferences of estimating an effect when there is none much more consistently than DID does.

In 100% of cases with a plausible range of δ assumptions, our SCQE effect estimate includes

the zero effect case. The estimates do not have a clear bias toward over- or under-estimating

the effect. The caveat to this result is that the estimates are less precise than the estimates

obtained from DID. The 100% coverage is partially owed to the range of δ assumptions

allowed, but we must still agree that the assumptions are reasonable for the coverage value

to hold.

In contrast, DID had approximately 60%-70% coverage across the three conditions. There

were very few simulations in which DID produced a significantly negative result. In cases

where the effect estimate excluded 0, it was due to an overestimate. On average, DID biased

toward a small, positive effect across all simulations that were done. The magnitude of this

effect was similar to that of the maximum estimated SCQE effect. However, the frequent

estimation above zero may translate to a rejection of further use of the placebo treatment

in a real world scenario.

We also find that the two methods differ in what they require of the practitioner. DID

is a slightly more straightforward in its application. Although the assumptions required are

stringent, the calculation and consequent effect estimates are relatively easy to interpret.

SCQE, on the other hand, demands more critical thought and decision-making during its

application. Critical to the end result is the practitioner’s choice of δ, and therefore more
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preparation analysis is required in setting up the problem. While interpreting the result,

one must also be cognizant of the assumption required in order for the estimated effect to

be valid. This can have both desirable and undesired consequences. When the practitioner

has a solid grasp on a reasonable δ range, inferences are robust. However, a moral hazard

is created in that an individual could use the flexibility within the framework to bend the

effect estimates to more closely fit a desired outcome.

A potential threat to the validity of inferences from both methods would be any sys-

tematic differences in the characteristics of those who receive treatments and those who do

not. Although the methods can both accommodate non-random selection into treatment,

the parallel trends and stability assumptions might be violated in cases where there is an

underlying factor that affects who does and does not receive treatment. This would interfere

with our interpretation of the effects. This is not a concern in this particular case since

we simulate selection into treatment. There are no known underlying characteristics in this

hospital dataset that could have an unintended impact on the results.

In short, we find that SCQE more reliably protects against false inferences about the effect

of a placebo treatment. We recommend continuing to compare these two methods in a wider

variety of scenarios to see if these findings hold. However, we believe that choice of method

in situations similar to ours depends largely on the practitioner’s preferences. SCQE is the

best choice when parallel trends is not a reasonable assumption. Based on these results, it

also seems to fare better than DID when there is a biased process of selection into treatment.

The primary threat to SCQE’s usefulness in this scenario is that its estimates are less precise.

DID may be preferable in cases that adhere to the parallel trends requirements and have a

random selection process, since it provides a single point estimate that is easier to interpret.
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CHAPTER 5

Future Work

One clear weakness of this work is that there was a known absence of effect. Although this

provided an advantage in being able to accurately assess the outcomes of the two methods, it

is not representative of a realistic scenario. Two obvious extensions would be to also analyze:

1) a case where there is a known, non-zero effect and 2) a case where there is an unknown,

posited nonzero effect. In the first, we would examine how often they reject a zero effect in

favor of an effort estimate in the correct direction. These two cases might provide additional

information about the methods’ sensitivity in detecting an effect, instead of solely examining

the methods’ protection against false inferences.

In the interest of further investigating protection against false inferences, we may want to

extend this analysis to a case where there is less consistency in the pre-intervention trends.

For each of the conditions in our application, the change in mortality rate was consistently

centered around 0. In a situation with more fluctuation in pre-intervention trends, it may

be more difficult to propose the plausible δ range and therefore more difficult to obtain valid

inferences. We recommend further study on SCQE’s efficacy in cases with less clear and

consistent pre-intervention trends.

It would also be worthwhile to compare to additional methods. Another alternative that

can control for non-parallel trends is the usage of matching estimators [7]. This differs from

the stability assumption required for SCQE. It instead takes a subset of the treated and non-

treated groups that have a similar pre-intervention pattern, and compares within this subset.

Often, researchers match not only on the pre-intervention outcomes and observables, but also
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use synthetic control methods and weighting. This essentially amounts to considering the

non-treated group as the counterfactual for the treated counterparts. However, it has been

found in some cases to actually increase estimator bias instead of reduce it. This effect

appears to be largely based on research context. It may be worthwhile to conduct a more

in-depth investigation of this matching approach to the SCQE approach in the case where

parallel trends is violated.

19



REFERENCES

[1] A Linden A Ryan E Kontopantelis. “Now trending: Coping with non-parallel trends in

difference-in-differences analysis”. In: Statistical Methods in Medical Research (2018).

[2] J Dimick A Ryan BK Nallamothu. “Medicare’s public reporting initiative on hospital

quality had modest or no impact on mortality from three key conditions”. In: Health

Aff (2012).

[3] JD Angrist and J Pischke. Mostly harmless econometrics: an empiricist’s companion.

Princeton: Princeton University, 2009.

[4] C Brewin and C Bradley. “Patient preferences and randomised clinical trials”. In: BMJ:

British Medical Journal (1989).

[5] C Hazlett. “Estimating causal effects of new treatments despite self-selection: The case

of experimental medical treatments”. In: Journal of Causal Inference 7 (2019).

[6] T Speed J Splawa-Neyman D Dabrowska. “On the application of probability theory

to agricultural experiments. Essay on principles.” In: Statistical Science 5.4 (1990),

pp. 465–472.

[7] A Linden. “A matching framework to improve causal inference in interrupted time-series

analysis”. In: Eval Clin Pract. (2015).

[8] M Olschewski and H Scheurlen. “Comprehensive cohort study: an alternative to ran-

domized consent design in a breast preservation trial”. In: Methods of information in

medicine (1985).

20



APPENDIX A

R Code

In the interest of reproducibility and as a demonstration of the SCQE package, we include

the R function for our simulations below. We exclude the data cleaning and visualization

steps for brevity.

library(did)

devtools :: install_github("chadhazlett/scqe", force=TRUE)

# function to simulate SCQE/DID

# and collect results for a given condition

simulate_methods <- function(df, deltas=deltas , n=10) {

df$probs <-0

df$trends <-0

# specify selection probability variables for each provider

for (i in 1: length(unique(df$provider ))){

trend <- (df[i,]$date4 -df[i,]$date3) # trend of T=1 - T=0

a <- 75 # arbitrary constant

trend_avg <- -0.0005285755 # average of all trends

prob_selection <- exp(a*(trend -trend_avg))/

(1+ exp(a*(trend -trend_avg )))
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df[i,]$probs <- prob_selection

df[i,]$trends <- trend

}

# initialize variables

scqe_effects <- NULL

scqe_low_se <- NULL

scqe_high_se <- NULL

scqe_low_delta <- NULL

scqe_high_delta <- NULL

did_effects <- NULL

did_se <- NULL

for (i in 1:n){

df_i <- NULL

# select hospitals into treatment

df$treated <- rbinom(nrow(df), 1, prob=df$probs)

# random selection into simulation

hospitals_select <- sample (1: nrow(df), 100, replace = F)

df_i <- df[hospitals_select , ]

# SCQE result estimate and standard errors

post <- c(rep(0, nrow(df_i)), rep(1, nrow(df_i)))

tx <- c(rep(0, length(df_i$treated)), (df_i$treated ))

y <- as.numeric(c(df_i[,4], df_i[ ,5]))
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scqe_result <- scqe(treatment = tx,

outcome = y,

delta=deltas ,

post = post)

result <- summary(scqe_result)

# Effects

scqe_effects_i <- as.numeric(result$critical.points [3])

scqe_effects <- c(scqe_effects , scqe_effects_i)

# SEs

scqe_low_se_i <- as.numeric(result$full.results [2,5])

scqe_high_se_i <- as.numeric(result$full.results [6,5])

scqe_low_se <- c(scqe_low_se , scqe_low_se_i)

scqe_high_se <- c(scqe_high_se, scqe_high_se_i)

# Upper and lower effect estimates

scqe_low_delta_i <- as.numeric(result$full.results [2,2])

scqe_high_delta_i <- as.numeric(result$full.results [6,2])

scqe_low_delta <- c(scqe_low_delta , scqe_low_delta_i)

scqe_high_delta <- c(scqe_high_delta , scqe_high_delta_i)

# DID result estimate and standard errors

did_result <- lm(y ~ tx + post + tx*post , data=df)

mod <- summary(did_result)

did_effects_i <- mod$coefficients [2]

did_effects <- c(did_effects , did_effects_i)
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did_se_i <- mod$coefficients [5]

did_se <- c(did_se , did_se_i)

}

# return outputs as a list

out <- list()

out$scqe <- scqe_effects

out$scqe_low_se <- scqe_low_se

out$scqe_high_se <- scqe_high_se

out$scqe_low_delta <- scqe_low_delta

out$scqe_high_delta <- scqe_high_delta

out$did <- did_effects

out$did_se <- did_se

out$probs <- probs

invisible(out)

}

# run simulations

y_hf<-simulate_methods(df=hf_long , deltas=hf_deltas , n=500)

y_ha<-simulate_methods(df=ha_long , deltas=ha_deltas , n=500)

y_pn<-simulate_methods(df=pn_long , deltas=pn_deltas , n=500)
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