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Abstract 
 

Spatial and Temporal Responses of Animals  
to Landscape Heterogeneity, Predation Risk, and Human Activity 

 
by 

Kaitlyn M. Gaynor 

Doctor of Philosophy in Environmental Science, Policy, and Management 

University of California, Berkeley 

Professor Justin S. Brashares, Chair 

 
The global expansion of human activity has had profound consequences for wildlife. Research 
has documented the effects of widespread habitat destruction and defaunation on species and 
ecosystems, but the more subtle pathways through which humans alter the natural world have 
largely escaped quantification. Much like apex predators, humans can instill strong fear in wild 
animals, which may adjust their activity to avoid contact with humans. In this dissertation, my 
collaborators and I examine pathways through which human disturbance, predation risk, and 
environmental heterogeneity influence animal behavior and distribution. We review the literature 
and synthesize theory to develop a novel framework for studying landscapes of fear, and we 
apply this framework in a global meta-analysis and field studies from California and 
Mozambique to understand how large mammals perceive and respond to spatial and temporal 
patterns of risk from humans and carnivores. We consider links between risk and response in 
complex systems with multiple predators or multiple prey species, and we explore ecology of 
fear dynamics in the context of seasonality, human disturbance, and restoration. Together, this 
work integrates disciplines of behavioral ecology, community ecology, and landscape ecology, 
applying predator-prey theory to understand the role of humans in ecological communities. By 
elucidating behavioral pathways linking human disturbance to wildlife community dynamics, 
this research contributes to our understanding of wildlife ecology in human-dominated 
landscapes and highlights mechanisms for human-wildlife coexistence. 
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Chapter 1. Introduction 
 
COMMUNITY ECOLOGY IN THE ANTHROPOCENE 
 
In an era of rapid global change, it is critical to understand the ways in which human disturbance 
is reshaping ecosystems so that we may effectively mitigate the negative impacts of our 
activities. Over the last several decades, conservation biologists and ecologists have highlighted 
the devastating consequences of habitat loss, overharvest, pollution, and invasive species, which 
have led to global species declines and extinctions (Dirzo et al. 2014, Ripple et al. 2015). But in 
many places around the world, biodiversity is making a comeback, as people have recognized 
and reversed environmental destruction through habitat restoration, species reintroductions, and 
policies that promote conservation (Chapron et al. 2014, Pringle 2017). As we continue to design 
conservation and restoration efforts, we must understand the dynamics of these recovering, and 
often novel, ecosystems. 

Recovering animal populations are often returning to landscapes that bear little 
resemblance to those that they previously inhabited. The human footprint has expanded across 
the planet, and human populations and associated infrastructure continue to grow (Venter et al. 
2016). Given that people and wildlife are increasingly sharing space, promoting human-wildlife 
coexistence has emerged as one of the critical challenges to conservation in the Anthropocene 
(Dickman 2010). As ecologists explore how these novel ecosystems function, we must consider 
humans not as external to these systems, but embedded within them (Miller and Hobbs 2002).  

Theory from behavioral and community ecology can inform our understanding of 
interactions between humans and the other species with which we share the planet (Chapron and 
López-Bao 2016, Wilkinson et al. in press). In our role as both lethal and non-lethal apex super-
predators (Darimont et al. 2015, Clinchy et al. 2016), humans may drive patterns of wildlife 
behavior and distribution through their interactions with prey species in a manner predicted by 
predator-prey theory and the ecology of fear (Lima and Dill 1990, Brown et al. 1999). For 
example, recent studies have documented shifts in animal movement (Tucker et al. 2018), 
foraging patterns (Smith et al. 2015), and habitat selection (Eldegard et al. 2012, Cristescu et al. 
2013) in response to human activity. The fine-scale, behaviorally-mediated effects of humans on 
wildlife may initiate trophic cascades that greatly alter community dynamics.  

In the body of work included in this dissertation, my collaborators and I draw on concepts 
from predator-prey and landscape ecology to explore the effects of landscape heterogeneity, 
predation risk, and human disturbance on species activity patterns and the dynamics of 
ecological communities. We present a novel framework for studying landscapes of fear, and 
apply this framework in several field studies and a global meta-analysis to understand how large 
mammals perceive and respond to spatial and temporal patterns of risk from humans and 
carnivores. We consider links between risk and response in complex systems with multiple 
predators or multiple prey species, and explore ecology of fear dynamics in the context of 
seasonality, human disturbance, and restoration.  
 
TWO RECOVERING SAVANNA SYSTEMS 
 
I conducted fieldwork for my dissertation in two study systems halfway around the world from 
one another: the University of California Hopland Research and Extension Center in California’s 
Mendocino County, USA, and Gorongosa National Park, in central Mozambique. Both are 
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spatially heterogeneous and highly seasonal savanna systems, with associated spatiotemporal 
variation in patterns of risk from predators and human activity. Notably, both Hopland and 
Gorongosa are experiencing a recovery of large mammal species amidst rapid human population 
growth and land conversion. Both systems host diverse large mammal communities with 
complex multi-species predator-prey dynamics: Hopland is home to several large predator 
species, including hunters, while Gorongosa’s ungulate assemblage is exceptionally rich. Finally, 
both Hopland and Gorongosa are sites of ongoing restoration where research, management, and 
outreach are tightly linked, providing valuable opportunities to explore the ecological dynamics 
of human-wildlife coexistence.     
 
Hopland Research and Extension Center, California 
 
In California, large carnivores were nearly extirpated following decades of targeted persecution. 
As public attitudes have shifted and new policies have promoted tolerance and conservation, 
carnivores including wolves, mountain lions, and black bears are now returning to northern 
California’s landscapes (Musiani and Paquet 2004, Kovacs et al. 2016). Meanwhile, human 
populations are also on the rise in the region. Land is increasingly being converted from 
rangeland to agriculture, with particularly large growth in the viticulture sector (Merenlender 
2000). With these conversions comes a greater tolerance of carnivores, but a higher degree of 
landscape modification in the form of habitat loss, fencing, and intensive human activity (Hilty 
and Merenlender 2004).  

Our Hopland field site exemplifies many of these dynamics, with greater detections of 
large carnivores at the site in recent years, and conversion of land to vineyards on neighboring 
properties. The site borders undeveloped Bureau of Land Management property to the north, and 
dense settlement and vineyards along highway 101 to the south, and is thus situated at an urban-
wildland interface. The site itself is comprised of a mosaic of open grassland, oak woodland, and 
dense chaparral, and hosts a range of human activities, including a small sheep operation, 
multiple research projects, and seasonal hunting. This spatial heterogeneity, both in terms of 
habitat and human infrastructure, thus sets the stage for spatial variation in predator and human 
activity and associated patterns of risk for prey like black-tailed deer. 
 
Gorongosa National Park, Mozambique 
 
After losing 90% of its large mammal populations during Mozambique’s civil war (1977-1992), 
Gorongosa National Park today serves as an emblem of ecological rebirth. This area traditionally 
supported some of the world’s highest concentrations of large mammals, which were nearly 
extirpated due to high bushmeat demand during the war (Stalmans et al. 2019), with significant 
consequences for ecological dynamics (Daskin et al. 2016). Renewed investment in park 
management and select wildlife reintroductions have changed the park’s trajectory, and many 
large mammal populations are now thriving thanks to a concerted restoration effort (Pringle 
2017). 

However, this wildlife restoration is not without its challenges: Gorongosa is surrounded 
by a multi-use landscape (Easter et al. 2019) and is currently experiencing rapid human 
development as tourism and research infrastructure grows and settlements expand along park 
borders. Carnivores have made a slower recovery than many of the herbivore species, with only 
lions persisting through the war at low densities (Bouley et al. 2018, Atkins et al. 2019). 
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Understanding the interactions between growing human and wildlife populations is critical for 
maintaining Gorongosa’s ecological restoration while planning for the future of this dynamic 
system. 
 
OVERVIEW OF DISSERTATION 
 
My dissertation research is comprised of five chapters. Chapter 2 of my dissertation, 
“Landscapes of fear: spatial patterns of risk perception and response,” provides a theoretical 
framework for the remaining chapters, integrating concepts from behavioral ecology, community 
ecology, and landscape ecology to explore spatial dynamics of predator-prey interactions. My 
co-authors and I synthesize research and theory on landscapes of fear, developing a framework 
for linking spatial heterogeneity in the physical landscape to patterns of predation and prey 
response, mediated by the landscape of fear. Using this framework, we generate hypotheses 
about expected patterns of mismatch between risk and response and the relative importance of 
the landscape of fear in different systems. We also employ this framework to explore the various 
pathways through which human disturbance is 1) altering existing landscapes of fear through 
predator removal or restoration and habitat change, and 2) generating novel landscapes of fear by 
instilling fear in wild animals. The concept of the landscape of fear has been increasingly applied 
to anthropogenic contexts, and provides a valuable lens for understanding the ways in which 
sensory stimuli associated with human activity and infrastructure are perceived as risky by wild 
animals, and how this risk then affects their spatiotemporal distribution and behavior.   
 While most research on landscapes of fear quantifies static risk from a single predator or 
type of human disturbance, many prey animals are exposed to risk from multiple predators—
including humans—which varies over both space and time. In Chapter 3, “Black-tailed deer 
navigate contrasting patterns of risk from hunters and mountain lions in space and time,” we use 
empirical data to explore multi-predator landscape of fear dynamics at Hopland. We compile 
information on kill sites and predator activity to quantify patterns of spatiotemporal risk from 
both hunters and mountain lions, and use camera traps to examine deer responses to these 
patterns of risk. We assess the role of human infrastructure and landscape heterogeneity in 
generating spatial patterns of predation risk, examine the consequences of contrasting patterns of 
risk from humans and natural predators for prey species, and explore importance of temporal 
niche partitioning as a strategy for risk avoidance by prey when spatial partitioning is 
constrained. 
 Given that people are largely active during the day and have a far-reaching spatial 
footprint in many ecosystems around the world, my colleagues and I hypothesized that fear of 
humans may drive an increase in nocturnality among wild animals in many contexts, not only 
when animals face actual risk from hunters. We draw on the concept of temporal niche 
partitioning between people and wild animals in Chapter 4, “The influence of human disturbance 
on wildlife nocturnality.” Using a meta-analytic approach, my co-authors and I compile the 
results of 141 case studies from around the world to quantify the global impact of human 
disturbance on diel activity patterns of mammals. We compare shifts in wildlife nocturnality 
across habitats, guilds, and types of human disturbance. We then discuss the potential 
implications of our findings for population persistence, species interactions, and human-wildlife 
coexistence. 
 Human disturbance is not always a deterrent for wild animals; in some cases, human 
infrastructure may attract animals, providing accessible food resources and facilitating 
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movement. Building on the previous chapter, Chapter 5 explores the extent to which animals use 
different areas of their home range at different times of day to avoid people at fine 
spatiotemporal scales while still taking advantage of anthropogenic resources. This chapter, 
“Effects of human settlement and roads on diel activity patterns of elephants,” evaluates the 
extent to which African elephants in Gorongosa National Park adjust their spatiotemporal 
activity in response to diel patterns of human disturbance. My co-authors and I compile camera 
trap data from four sources to document the timing of elephant activity on and off roads, and 
inside and outside of the park boundaries. We discuss the consequences of spatiotemporal 
partitioning between elephants and people for human-wildlife conflict and ecotourism. 
 In Chapter 6, “Seasonal dynamics of an ungulate assemblage in a savanna floodplain 
landscape,” we explore the dynamics of the Gorongosa system at a broader scale. Using two 
years of camera trap monitoring data, we characterize the spatiotemporal patterns of the ungulate 
assemblage in this heterogeneous and dynamic system. We examine how species distributions 
and interactions change in response to the loss of habitat associated with seasonal flooding, and 
explore how environmental and anthropogenic factors facilitate or constrain spatiotemporal niche 
partitioning among species. We discuss our findings in the context of ongoing ecological 
restoration and consider how continued species recovery and anthropogenic disturbance may 
reshape the dynamics of Gorongosa’s wildlife. 
 In Chapter 7, I briefly review the main themes and findings that emerge from the body of 
work as a whole. In these concluding remarks, I reflect on the ways in which human activity is 
reshaping landscape of fear dynamics at multiple scales and highlight the importance of temporal 
partitioning as a mechanism for risk avoidance in wild animals when spatial responses are 
constrained. I also use these concluding remarks to emphasize that we have only scratched the 
surface in our understanding of fear effects in ecology. To effectively link landscapes of fear 
theory to ecosystem management, conservation, and restoration, we must deepen our 
understanding of the spatial and temporal dynamics of fear-mediated interactions between 
humans and wildlife, and between predators and prey. I hope that my research has identified 
routes towards this deeper understanding, and highlighted the importance of exploring less 
obvious, though powerful, pathways through which humans are shaping the natural world.  
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Chapter 2. Landscapes of fear: spatial patterns of risk perception and 
response 
 
This chapter has been previously published and is reproduced here with kind permission of the 
co-authors and Elsevier. 
 
Gaynor, K.M., Brown, J.S., Middleton, A.D., Power, M.E., & Brashares, J.S. 2019. Landscapes 
of fear: spatial patterns of risk perception and response. Trends in Ecology and Evolution. 
 
ABSTRACT 
 
Animals experience varying levels of predation risk as they navigate heterogeneous landscapes, 
and behavioral responses to perceived risk can structure ecosystems. The concept of the 
landscape of fear has recently become central to describing this spatial variation in risk, 
perception, and response. We present a framework linking the landscape of fear, defined as 
spatial variation in prey perception of risk, to the underlying physical landscape and predation 
risk, and to resulting patterns of prey distribution and anti-predator behavior. By disambiguating 
the mechanisms through which prey perceive risk and incorporate fear into decision-making, we 
can better quantify the nonlinear relationship between risk and response and evaluate the relative 
importance of the landscape of fear across taxa and ecosystems. 
 
INTRODUCTION 
 
The risk of predation plays a powerful role in shaping behavior of fearful prey, with 
consequences for individual physiology, population dynamics, and community interactions 
(Brown and Kotler 2004, LaManna and Martin 2016). Theoretical and experimental research has 
revealed the importance of heterogeneity within and among habitats as a driver of spatial 
patterning of predation and prey response (Box 1). Moreover, recent technological advances in 
the collection of geospatial and animal movement data have allowed more detailed empirical 
studies of the spatial dynamics of predation and anti-predator strategies (Jordan and Ryan 2015). 
Over the last two decades, ecologists have adopted the concept of the “landscape of fear” to 
describe the spatial variation in predation risk as perceived by prey across their foraging or home 
range (Laundré et al. 2001). This concept draws on the disciplines of behavioral, population, 
community, and spatial ecology to consider the role of spatially heterogenous predation risk in 
driving prey behavior and trophic cascades (Box 2). Research on landscapes of fear has become 
central to the study of predator-prey interactions and has enhanced our understanding of animal 
ecology on heterogeneous, dynamic landscapes. 
 As noted in the past for transformative concepts in ecology such as keystone species 
(Power et al. 1996) and trophic cascades (Polis et al. 2000), rapid and widespread adoption of the 
landscape of fear concept has led to inconsistent definitions and applications. Given the 
difficulties in measuring risk perception, researchers have adopted a broad range of operational 
definitions for the concept. Subsequently, “landscape of fear” has become a catch-all for many 
spatial phenomena relating to predation, and the term is increasingly applied to discussion of risk 
outside of a spatial context (Peers et al. 2018). This drift toward ambiguity has, in turn, fueled 
significant inconsistencies in how landscapes of fear are measured. While some studies have 
considered the landscape of fear to be an intrinsic attribute of a physical landscape, others have 
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suggested it is a spatial pattern resulting from predation, a cognitive map of risk perceived by 
prey, or a measurable response of prey manifested through their spatial distribution or foraging 
behavior (Table 1). Reflecting this confusion, recent studies have dedicated entire paragraphs to 
clarify their interpretation of the term among the conflicting definitions in the literature (Kohl et 
al. 2018). 
 A common source of confusion among studies of the landscape of fear results from the 
conflation of spatial patterns of predation risk with prey perceptions of that risk, or with prey 
anti-predator behavior in response to risk perception. The most immediate consequence of this 
ambiguity in definition is the inappropriate choice of proxies for measuring the phenomenon of 
interest, which can lead to circular inferences. For example, prey behavior, such as alarm calling 
or vigilance, is often used as a proxy for predation risk, which is then used to predict other 
aspects of prey response, such as distribution on a landscape (Willems and Hill 2009). Notably, 
the conflation of both predation patterns and prey behavior with the landscape of fear has 
impeded important discussions about mechanisms that link, or fail to link, risk and response. 
Amidst this confusion, there has been debate over the ecological importance of fear for prey 
species and community interactions, with different parties using different definitions for 
landscapes of fear (cf. (Fortin et al. 2005, Kauffman et al. 2010, Beschta and Ripple 2013)). 
 Here, in an effort to clarify and refocus the theory and science on landscapes of fear, we 
advocate for a definition of the landscape of fear as the spatial variation in prey perception of 
predation risk. The landscape of fear allows prey to integrate spatial variation in threats from 
predators with other spatially variable opportunities and hazards (Masello et al. 2017). For 
animals with advanced cognition, the landscape of fear may exist as a “mental map” that an 
animal proactively responds to, but the landscape of fear can also occur in real time as an animal 
navigates and responds to a landscape of heterogeneous risk. We introduce a framework around 
this definition that should allow researchers to better articulate what phenomena they are actually 
studying and measuring, rather than falling back on the term “landscape of fear” (Figure 1). The 
framework aims to help researchers to generate hypotheses and understand underlying 
assumptions.  
 Below, we apply our framework to discuss how predation risk and behavioral responses 
map imperfectly onto one another. We contend that understanding these mismatches between 
risk, perception, and response will not only clarify definitions, but open doors to an array of 
important questions in predator-prey ecology and evolution and enable an understanding of the 
relative importance of the landscape of fear across systems.  
 
MISMATCHES IN PREDATION RISK AND PREY RESPONSE 
 
Our framework (Figure 1) envisions the landscape of fear at the center of distinct, measurable 
landscapes corresponding to the physical environment, predation risk, and prey response. By 
conflating these distinct spatial maps and referring to each of these elements as the “landscape of 
fear,” as many studies have done (Figure 2, Table 1), scientists risk ignoring the important 
distinctions between them. Furthermore, many studies of the landscape of fear assume a linear 
relationship between these spatial patterns, but risk and response often fail to map closely onto 
one another due to non-linear relationships between, for example, predator activity and predation 
risk, predator cues and prey perception, or fear and anti-predator behavior. An understanding of 
the pathways linking habitat heterogeneity to anti-predator behavior via a landscape of fear, as 
outlined in Figure 1, enables predictions about when mismatches will occur between the 
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magnitude and spatial heterogeneity of actual predation risk and prey response to that risk 
(Figure 3).  

First, the landscape of fear will map more or less precisely onto the landscape of 
predation risk based on the strength and reliability of cues and the sensory and cognitive ability 
of prey to associate those cues with predation (Luttbeg and Trussell 2013). Given that prey 
should experience strong selection to be able to detect and respond to predators, mismatches 
between actual and perceived risk should be common in response to rare or novel habitats or 
predators (Abom and Schwarzkopf 2016). Invasive predators or human-induced habitat changes 
may create ecological traps, in which prey fail to optimize behavior due to anachronistic 
landscapes of fear (Schlaepfer et al. 2005). Such mismatches in actual versus perceived risks 
may be a hallmark of some captive animals, limiting inferences based on laboratory studies of 
the landscape of fear (Troxell-Smith et al. 2016). Detection of cues will still be imperfect among 
prey species that have co-evolved with their predators, as predators have evolved crypsis and 
hunting strategies to avoid detection (Abrams 2000). When studying landscapes of fear, it is 
therefore important to understand the cues that are most salient to prey, and the spatial and 
temporal scales of cue perception (Jordan and Ryan 2015). Studies of the chemosensory 
mechanisms underlying prey risk perception, for example, may provide insight into taxonomic 
differences in risk perception for many groups of species (Katz and Dill 1998, Jurcak and Moore 
2018). 

Given the large fitness cost of predation, some prey animals may have evolved a 
tendency to perceive a higher probability of predation than is actually present, and to “play it 
safe” (Bouskila and Blumstein 1992), particularly when the cost of responding is low (Abrams 
1994). By perceiving high risk as a default, prey may exhibit more homogenous anti-predator 
behavioral responses when compared to the heterogeneous landscape of predation risk. The 
landscape of fear can also amplify underlying variation in predation risk, if cues associated with 
risk drive exaggerated risk perception. Furthermore, many prey species now live in predator-free 
environments but still associate landscape cues with predation risk (Bonnot et al. 2016). Such 
inaccuracies in risk perception suggest that behavior may not always be an appropriate proxy for 
the actual risk of predation. 

Even when prey perceive risk with high accuracy, spatial patterns of prey distribution and 
anti-predator behavior rarely correlate perfectly with the landscape of fear due to cost-benefit 
trade-offs, including those associated with foraging (Figure 1). Prey must balance predator 
avoidance with other critical life functions such as acquiring food, and nearly all anti-predator 
strategies entail energetic or opportunity costs. Simply put, predation risk is not the only concern 
of most prey animals. Physiological, phylogenetic, or ecological constraints may limit a prey 
animal’s ability to respond to perceived predation risk (Creel 2011). If required resources like 
food and water are limited and concentrated, prey may have no choice but to use inherently risky 
areas (Valeix et al. 2009a, Schmidt and Kuijper 2015). Prey territoriality may also limit prey 
ability to adjust spatial distributions to avoid predation (Ford and Goheen 2015). Given these 
constraints, an animal may fail to exhibit anti-predator behavior, even when its landscape of fear 
accurately maps onto landscapes of risk.  

If the relative costs or benefits of anti-predator responses vary spatially, prey may exhibit 
spatial variation in anti-predator behavior that does not reflect the landscape of fear. In high-
quality forage patches, for example, the costs of anti-predator behavior may outweigh benefits of 
increased foraging, and in very risky areas, anti-predator behavior may not substantively reduce 
probability of detection or escape. For example, arboreal grey squirrels (Sciurus carolensis) in 
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open areas are less vigilant than squirrels near trees, fitting the prediction that the benefits of 
vigilance will be greater when there is an easy escape route (Brown 1999). To more fully 
understand how risk translates (or fails to translate) into behavior, we must examine how other 
fitness-enhancing opportunities and behavioral trade-offs vary in space and time. 

Trade-offs associated with foraging and the landscape of fear will also vary greatly with 
an individual prey animal’s state and marginal valuation of food. According to the asset 
protection principle, an animal in better physical condition has more to lose from being killed 
than one in poorer condition (Clark 1994). Thus, a hungry animal will assess a lower foraging 
cost at the same level of risk than one that is well-fed, and animals with different resource needs 
will manifest more or less rugose spatial landscapes of behavioral response (Catano et al. 2015). 
In the extreme, an animal on the verge of starvation should cease to show any spatial variation in 
fear responses if food is present throughout the landscape, even when predation risk varies 
strongly in space (Brown et al. 1997).  
 
PREDICTING LANDSCAPE OF FEAR EFFECTS 
 
As the concept of the landscape of fear has gained prominence, researchers increasingly attribute 
a range of ecological outcomes to predation risk effects (Teckentrup et al. 2018), and the role of 
fear in driving trophic cascades has even become a common media narrative (Mech 2012). While 
fear can play a critical role in determining individual fitness, population dynamics, and 
community interactions, its relative importance will vary across systems with different predator 
and prey species and landscape features (Schmitz 2005, Heithaus et al. 2009, Creel 2011). By 
understanding the ecological processes that give rise to, and arise from, the landscape of fear, we 
can predict where the landscape of fear will have meaningful consequences for prey population 
dynamics and community structure (Table 2). 

Landscape of fear effects on populations and communities should be most pronounced in 
landscapes that are highly heterogeneous, since the physical landscape sets the stage for spatial 
variation in predation risk and associated behavioral trade-offs (Atuo and O'Connell 2017). For 
example, in African and North American savannas, structural diversity in the form of open 
grassland and shrub or wooded patches provides diverse opportunities for escape, hiding, 
detection, ambush and capture for prey and predators alike (Eccard and Liesenjohann 2014). 
Prey may not experience or respond to predictably variable predation risk in more homogenous 
systems like mature European forests (Schmidt and Kuijper 2015) and the open ocean 
(Hammerschlag et al. 2015). Even in systems with heterogeneous risk, clumped resources may 
limit foraging opportunities and therefore constrain the ability of prey to incorporate fear into 
their behavioral decisions (Schmidt and Kuijper 2015).  

For landscapes of fear to exist, predation risk must not only vary in space but must vary 
predictably, and must be associated with cues that create generally reliable signals for prey 
(Weissburg et al. 2014). Prey may perceive greater risk from cues associated with ambush 
predators, which require certain forms of habitat structure for cover, than from cues associated 
with active or coursing predators (Schmitz et al. 2004), a pattern supported by mesocosm studies 
(Schmitz 2008). Prey must also have the ability to associate cues with risk. In the absence of 
strong selective pressure on predation risk perception and response over evolutionary history, 
prey species may fail to perceive a landscape of fear from rare or novel predators (Soluk and 
Collins 1988). If prey do not perceive and respond to predation risk, landscapes of fear will not 
play a major role in determining fitness and population dynamics. 
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Differences in predator and prey densities can lead to widespread variation in predation 
rates across systems, with implications for landscape of fear dynamics (Middleton et al. 2013). 
Landscapes of fear are more likely to influence prey behavior where encountering a predator 
brings a high risk of attack, but encounters are infrequent. Conversely, as summarized by the risk 
allocation hypothesis, prey experiencing frequent encounters with predators may live in a state of 
constant fear and exhibit less spatial structure in their anti-predator responses (Lima and 
Bednekoff 1999). Furthermore, for a given prey species, the population effects of landscapes of 
fear should be strongest when there are similar spatial patterns of predation risk for all of their 
predators. In contrast, when prey must trade off contrasting landscapes of risk among multiple 
predators, the landscape of fear may be relatively homogenous, particularly under predator 
facilitation where each predator is more dangerous in a different habitat (Kotler et al. 1992, 
Murray et al. 1995, Cresswell and Quinn 2013). 

Finally, even when predictable landscapes of fear exist and generate prey responses, these 
responses may not meaningfully impact prey population dynamics. While classical models of the 
landscape of fear assume there to be a strong cost to anti-predator behavior due to trade-offs 
between risk avoidance and foraging or other activities, such trade-offs may not always occur, 
particularly when prey rely more strongly on physical defenses than behavioral defenses (Creel 
2011). Also, prey with dietary breadth or plasticity, or abundant food resources, may be able to 
choose among equivalent foraging areas to reduce predation risk (Valeix et al. 2009a), 
particularly when predators have a narrow habitat domain (Schmitz 2005). Sometimes, the 
riskiest habitat is also the habitat with the lowest-quality forage (Pierce et al. 2004), and prey 
may be able to avoid risk while tracking food (Bakker et al. 2005). In these cases, landscapes of 
fear will play a negligible role in prey population-level outcomes, although they may still alter 
community structure at lower trophic levels. Furthermore, risk mitigation strategies like 
vigilance may not be mutually exclusive with other fitness-enhancing behaviors like foraging, 
depending on an animal’s physiology. Even where trade-offs do exist, and predation risk 
generates costly responses in prey, such costs may be insufficient to determine reproductive 
(fitness) outcomes or drive population dynamics and trophic cascades (Middleton et al. 2013).  

 
STUDYING LANDSCAPES OF RISK AND RESPONSE 
 
As scientists utilize remote sensing, GIS, and GPS technology, there is growing interest in 
moving beyond simple designations of safe and risky habitats to quantify spatially-explicit 
landscapes of risk and prey response. Much of our understanding of non-lethal predator effects 
comes from laboratory or mesocosm experiments, and there is a need to examine the 
determinants and consequences of landscapes of fear in natural systems (Peers et al. 2018). 
Opportunities exist to evaluate the hypotheses that emerge from our framework regarding the 
causes and consequences of mismatch between predation risk and prey response, and the relative 
strength of landscape of fear effects on population dynamics and species interactions. 

Thus far, ecologists have used a wide range of observational and experimental methods to 
measure and map what they have defined as a landscape of fear (Figure 2), and these different 
approaches have hindered comparisons across systems (Moll et al. 2017). For example, 
distribution of kill sites by a predator is often used to infer landscapes of fear (Moll et al. 2017), 
but predation patterns can be skewed by variation in density and activity of prey across the 
landscape. Vigilance by prey is another commonly used proxy for measuring risk, but, as 
discussed above, vigilance may actually be lower in the riskiest habitats, and “safe” places may 
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be made so by heightened vigilance (Brown 1999). Mapping activity patterns of prey across 
space is also commonly related to predation risk (Cresswell and Quinn 2013), but these patterns 
are often linked to other features of the landscape such as patterns of resource productivity or 
distribution of potential competitors (intra- or interspecific) or mates. Spatial variation in giving-
up densities (GUDs) in natural or experimental food patches across a landscape may indicate 
differences in the perceived foraging cost of predation, proportional to predation risk (Brown and 
Kotler 2004), although GUDs pose methodological challenges (see (Bedoya-Perez et al. 2013, 
McMahon et al. 2018)). 
 This diversity of imperfect approaches for measuring landscapes of fear is 
understandable, given the challenges associated with quantifying perception. While there have 
been recent advances in our understanding of the cognitive basis of risk perception (Staples et al. 
2009, Marzluff et al. 2012), studying cognition in wild animals presents significant challenges. 
Perceived risk may be associated with quantifiable physiological parameters such as 
glucocorticoid stress hormones and heart rate (Clinchy et al. 2013, Støen et al. 2015), but these 
physiological responses do not always align well with cognitive processes given their energetic 
costs and associated trade-offs (Clinchy et al. 2013). Furthermore, lag times in physiological 
responses can complicate studies of spatiotemporal variability.  

Given the difficulties associated with measuring the cognitive or emotional state of an 
animal, research on the landscape of fear may be better served by explicitly measuring predation 
risk and behavioral responses and exploring congruence or mismatch between them, rather than 
further attempts to map the landscape of fear itself. Progress in the study of landscapes of fear 
will depend on researchers becoming more deliberate in selecting relevant variables to quantify 
(i.e., predation events, predation risk, prey distribution, prey behavior), choosing suitable 
methods, and clearly defining concepts and the relationships among variables of interest. In 
Table 3, we compile a list of measurable proxies for both spatial variation in predation risk and 
behavioral responses of prey and describe how each of these proxies relates mechanistically to 
the landscape of fear.  

Ideally, by clarifying the elements that comprise a landscape of fear (Figure 1) we aim to 
reduce some of the difficulties outlined above by guiding study designs that account for the 
factors influencing the spatial and temporal scales of landscape of fear dynamics. In addition to 
reflecting the home range sizes and body sizes of both predator and prey, ecologically relevant 
scales will depend on the hunting behavior of predators, flight and escape behavior of prey, and 
detection abilities of predators and prey (Padié et al. 2015). Individual animals experience and 
respond to landscapes of fear at multiple scales, incorporating risk into selection of both broad 
habitat and microhabitat (Kuijper et al. 2015, Stears and Shrader 2015). Furthermore, while 
terrestrial landscapes of fear are often conceptualized and mapped as two-dimensional, many 
volant, arboreal, subterranean, or aquatic animals experience three-dimensional landscapes of 
fear (Emerson et al. 2011, Makin et al. 2012).  

Regular changes at any given site in habitat structure, resource distribution, and 
productivity over time further complicate efforts to depict a single landscape of fear. Studies 
often present the landscape of fear as temporally static, but prey experience temporal variation in 
the magnitude of predation risk and in resource trade-offs, often on multiple time scales. 
Understanding the temporal dynamics of predator and prey ecology and behavior is as important 
as defining appropriate geographic scales in studies of the landscape of fear. Landscapes of fear 
vary predictably with daily (Tolon et al. 2009, Kohl et al. 2018), monthly (lunar) (Bouskila 1995, 
Palmer et al. 2017), or seasonal cycles (Druce et al. 2009, Hopcraft et al. 2014). Studies should 
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account for this temporal variation by framing the question of interest. The measurement of a 
landscape of fear may be a single snapshot in time if the question concerns how the temporary 
presence of a predator influences the animal’s fear responses. But this scale may not be useful 
when integrating across time scales where prey modulate their activity to take advantage of safe 
times and places to obtain food, and consequently influence the distribution and abundance of 
their food.     

Finally, our framework emphasizes that the landscape of fear also varies among 
individual animals living on the same physical landscape and at the same time. Factors like sex, 
age, reproductive status and body condition can affect an individual’s vulnerability to predators, 
its perception of risk at a given time and place, and the trade-offs involved in its response 
(McArthur et al. 2014, Lagos and Herberstein 2017). Recent studies have linked anti-predator 
behavior to personality or behavioral syndromes, with some individuals inherently more fearful 
than conspecifics (Quinn et al. 2012, Bonnot et al. 2015, Spiegel et al. 2016). Thus, population-
level results should be interpreted with the understanding that they may describe an averaging of 
individual prey responses. 
 
CONCLUDING REMARKS 
 
The landscape of fear is an important concept in ecology, integrating behavioral, population, and 
community responses to predation and providing a central organizing principle for the study of 
predator-prey dynamics on heterogeneous landscapes. Despite broad acceptance and growth in 
the application of the landscape of fear concept, inconsistencies in its definition and application 
have clouded synthesis and advancement of theory. The landscape of fear has been repeatedly 
conflated with the physical landscape, spatial patterns of predation and predation risk, and 
heterogeneity in prey distribution and behavior. We suggest the use of a narrower definition of 
the landscape of fear as spatial variation in risk perception, and advocate for the use of more 
precise and appropriate terminology to describe the patterns of risk and prey behavior that are 
actually being studied (Figure 1). 
 By clarifying non-linear relationships between the physical landscape, predation risk, risk 
perception, and prey response, we highlight the complexity of animal fear while clarifying 
concepts to guide future research. While our landscape of fear framework is grounded in 
predator-prey interactions, it provides a useful lens to conceptualize the way that animals 
perceive and respond to various risks as they navigate complex environments, including 
competition (Swanson et al. 2016), and parasite or disease risk (Buck et al. 2018), for example. 
A synthetic understanding of the landscape of fear will enable comparisons of its role across taxa 
and ecosystems and improve predictions and studies of the effects of the landscape of fear on 
individual fitness, population dynamics, and community interactions. Such research is especially 
critical as humans reshape landscapes of fear through predator removal and reintroduction, 
habitat modification, and intensification of activities such as hunting and recreation (Box 4). 
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BOX 1. PRE-CURSORS TO THE LANDSCAPE OF FEAR CONCEPT 
 
Behavioral and population ecology 
 
Behavioral ecologists have long recognized the importance of spatially variable predation risk 
and prey responses in stabilizing predator-prey population dynamics (Huffaker 1958, Sih 1987, 
Gilliam and Fraser 1987). Charnov introduced the concept of “behavioral resource depression” 
to describe changes in prey microhabitat selection in response to predation risk, which made prey 
less accessible to predators (Charnov et al. 1976). Early studies of the “ecology of fear” (Brown 
et al. 1999) combined mass action models (in which the lethal effects of predators drive numeric 
responses in prey populations), with optimal foraging theory (Sih 1980). These conceptual 
models provided the theoretical framework for empirical studies of free-ranging predators and 
prey on complex landscapes. 
 Subsequent studies linked anti-predator strategies to physiological outcomes, including 
stress and reproduction (Creel et al. 2007, Zanette et al. 2011). Mesocosm experiments have 
demonstrated that in some contexts, these risk effects of predation have a greater influence on 
prey population dynamics than the consumptive effects (Preisser et al. 2005). While the study of 
risk effects has proven challenging in heterogeneous natural landscapes, patterns of spatial 
variation in predation risk and response likely have important consequences for spatial 
demographic patterns (Hopcraft et al. 2005, Matassa and Trussell 2011). 
 
Community ecology 
 
Meanwhile, community ecologists observed that foraging behavior of fearful grazers structured 
the distribution of primary producers. Spatial variation in predation risk was hypothesized as a 
mechanism behind the formation of “grazing halos,” denuded areas at the edge of coral reefs 
where urchins sought refuge from predatory fish (Ogden et al. 1973). Similar patterns were 
observed in terrestrial systems; for example, the effects of pika (Ochotona princeps) on 
vegetation were strongest near rocks that provided refuge (Huntly 1987). Through experiments, 
ecologists linked the structural complexity of the habitat back to predator efficiency, with refuges 
from predators reducing prey mortality rates and transforming prey communities (Crowder and 
Cooper 1982). Spatial variation in predation risk and accompanying patterns of prey foraging 
activity have been found to shape lower trophic levels via “predator-induced resource avoidance” 
(Power 1984). 

The indirect effects of predators on lower trophic levels, mediated by fear in prey, have 
come to be known as trait-mediated indirect interactions, or behaviorally-mediated trophic 
cascades (Schmitz et al. 1997, Bolker et al. 2003, Werner and Peacor 2006). Many experiments 
have since found that trait-mediated interactions can be stronger drivers of food web dynamics 
than density-mediated effects (Preisser et al. 2005). These fear-driven interactions play out over 
landscapes where prey perception of risk is heterogeneous, and in turn, prey behaviors drive 
patterns of spatial heterogeneity in species distributions across trophic levels. 
 
BOX 2: EMERGENCE AND LIMITATIONS OF THE LANDSCAPE OF FEAR CONCEPT 
 
The “landscape of fear” term was coined by Laundré and colleagues in 2001 in their paper on elk 
and bison vigilance and foraging behavior in response to wolf reintroduction in Yellowstone 
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(Laundré et al. 2001). The core idea existed within earlier concepts (Box 1), like prey depression 
(Charnov et al. 1976) or predator-induced resource avoidance (Power 1984). However, the term 
“landscape of fear” was widely adopted, as it evoked an individual animal navigating a spatially 
explicit environment of variable predation risk. The “landscape of fear” captures the human 
imagination, and is intuitive, evocative, and relatable—in fact, the term originated in the fields of 
anthropology and human geography, where it is still used to describe spaces that induce dread 
and terror in people (Tuan 1979). While the accessibility of the term has made it appealing to 
researchers and the general public, it has also led to concerns about anthropomorphism and the 
attribution of conscious emotion to non-human animals (Adolphs 2013). Outside of the 
landscape of fear literature, there remains considerable debate among psychologists and animal 
behavior scientists about the definition and measurement of fear in both humans and non-human 
animals (Adolphs 2013, LeDoux 2014). 
 Despite the shortcomings of the term “fear,” it has caught on widely, and is generally 
considered by ecologists to be equivalent to conscious or unconscious risk perception. Fear as an 
adaptation allows the animal or organism to assign an activity cost to the risk of injury or death 
(Kotler and Brown 2017). Initially, there was a taxonomic bias towards large terrestrial 
mammals in the landscape of fear literature. However, within the last several years, the term has 
been applied to a wide range of taxa, including birds (Atuo and O'Connell 2017, Masello et al. 
2017), fish (Gil et al. 2017), and invertebrates (Hermann and Landis 2017, Hintz and Relyea 
2017). Amidst this trend, it has becoming increasingly common to attribute observed ecological 
phenomena to landscapes of fear. However, given that at least 15 different processes and states 
have been called a “landscape of fear” (Table 1), it is no surprise that some so-called landscape 
of fear is implicated in so many studies. As the landscape of fear research continues to gain 
popularity, it is critical to examine its definition, application, and context in predator-prey theory 
so that we can refine its use and better design studies to evaluate its role in ecosystems.  
 
BOX 3: A COMMUNITY-LEVEL PERSPECTIVE 
 
The simplest models of the landscape of fear assume a single predator and prey, but the 
consequences of landscapes of fear often involve multiple trophic levels. Acknowledging the 
complexity of landscapes of fear within a community ecology framework is essential for 
realistically quantifying their role in shaping ecosystem dynamics (Teckentrup et al. 2018). 
While we present the landscape of fear as an experience of an individual prey animal navigating 
risk trade-offs, it corresponds to related patterns at other trophic levels. The landscape of fear for 
a prey species is simultaneously a landscape of opportunity for predators, and a landscape of 
refuge for the species consumed by prey (Laundré et al. 2010).  

There are dynamic feedbacks across trophic levels, as predators perceive and respond to 
the prey species’ response (Lima 2002). Ultimately, underlying habitat heterogeneity can be 
shaped by fear responses of foraging prey through behaviorally-mediated trophic cascades, 
feeding back (e.g. through vegetation height or density) to alter spatial patterns of predation risk. 
Often the standing crop of resources will be the inverse of the landscape of fear as animals 
deplete food availability where they feel safe and leave more food behind where risky (Gil et al. 
2017). Prey can also intentionally engineer the physical landscape to reduce predation risk in a 
given area (Caro 2005).  

Efforts to quantify cascading consequences of fear provide compelling new insights on 
the ecosystem impacts of individual responses to fear. For example, an apex predator can alter 
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the landscape of fear of an herbivore through fear-induced behavioral changes in an intervening 
mesopredator (Frid et al. 2008). Lower-trophic level prey may even deliberately select for areas 
with apex predators, using them as cover from mesopredators that present more risk to the prey 
in question (Gordon et al. 2015). 

Multi-predator systems require that prey respond to multiple sources of risk, which can 
be additive or orthogonal depending on predator distributions and hunting modes (Cresswell and 
Quinn 2013). To explore this complexity, some studies have overlain multiple maps of predation 
risk arising from different types of predators in an attempt to quantify their relative effects on 
prey behavior (Willems and Hill 2009). Furthermore, the availability of alternative prey species 
can affect predation risk, dependent on prey switching and predator preferences. In multi-prey 
systems, competition and apparent competition can influence landscapes of predation risk and 
response (Laundré et al. 2014). For example, caribou perceive heightened predation risk in areas 
of high moose density, presumably because moose are a primary prey species for wolves (Avgar 
et al. 2015).  

 
BOX 4: LANDSCAPES OF FEAR IN THE ANTHROPOCENE 
 
Our framework highlights pathways through which disturbance alters and creates landscapes of 
fear. Land use changes through agriculture (Hof et al. 2012) and deforestation (Sahlén et al. 
2016) as well as pollution (Kerby et al. 2012) shape habitat structure, quality, and heterogeneity. 
Human activity thus alters the playing field for predator-prey dynamics, changing the 
effectiveness of predator and prey strategies and prey trade-offs, constraining the spatial scale of 
prey responses, and sometimes even altering sensory cues (Hintz and Relyea 2017). Climate 
change has also been implicated in reshaping landscapes of fear by changing habitat structure 
and habitat domain of predators and prey (Schmitz and Barton 2013, Riginos 2014). 

Human activity has also fundamentally changed the nature of predation risk. The decline 
of large terrestrial carnivores through persecution and habitat loss has had clear consequences 
through the creation of landscapes of fearlessness, and many studies have documented fearless 
prey transforming ecosystems in the absence of predators (Creel et al. 2005, Bonnot et al. 2016). 
Consequently, some conservation biologists have advocated for the restoration of landscapes of 
fear through carnivore reintroductions (Manning et al. 2009), although some studies suggest prey 
exhibit atypical fear responses to reintroduced predators (Nicholson et al. 2014). In other cases, 
the provision of anthropogenic subsidies to predators or the introduction of invasive predators 
has increased populations or changed hunting patterns, with consequences for landscapes of fear 
in native prey (Gompper and Vanak 2008). 

In addition to disrupting predation risk, humans also represent a new apex “super-
predator” (Darimont et al. 2015, Clinchy et al. 2016). In places with hunting, lethal human 
activity creates potentially novel landscapes of fear for targeted species (Norum et al. 2015), with 
potential consequences for physiology, prey demographics, and the structure of human-natural 
communities. However, animals perceive risk from humans even in the absence of lethal 
reinforcement (Frid and Dill 2002), and anthropogenic landscapes of fear have been linked to 
demographic consequences (Sawyer et al. 2017). Human activity can also initiate behaviorally-
mediated trophic cascades: “human shields” can arise when a predator avoids human, leading 
prey to preferentially seek refuge in those areas (Leighton et al. 2010, Kuijper et al. 2015). 
Ultimately, the landscape of fear associated with humans selects for species with plastic 
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responses to threatening stimuli, resulting in habituation to non-lethal human activity over time 
(Sih 2013). 

The landscape of fear framework can inform the design of strategies to reduce human-
wildlife conflict, including threats to people, livestock, agriculture, and property. Many conflict 
mitigation techniques, like novel sensory stimuli or targeted lethal control, for example, are 
aimed at imposing landscapes of fear on target species so that animals avoid areas of potential 
conflict (Cromsigt et al. 2013, Van Eeden et al. 2018). By understanding the sensory cues that 
generate fear in animals, and the behavioral responses and trade-offs associated with them, 
managers can better design mitigation strategies to effectively change wildlife behavior (Atkins 
et al. 2017). 
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FIGURE 1. A FRAMEWORK FOR UNDERSTANDING THE ECOLOGICAL CONTEXT OF THE 
LANDSCAPE OF FEAR.  
 
The (i) underlying physical landscape shapes visibility, detection, and movement before and 
during a predator-prey encounter. The structure of the landscape interacts with (ii) aspects of 
predator and prey biology to determine patterns of predator and prey distribution and risk. The 
physical landscape thus sets the stage for (iii) spatial variation in predation risk, or the likelihood 
of a predation event. This risk is then (iv) imperfectly perceived by prey, based on the reliability 
of cues, the sensory and cognitive capacities of the prey, and past experiences with predation in 
the individual’s lifetime or in the species’ evolutionary history. Cues of predation risk may be 
indirect (associated with the physical landscape) or direct (associated with predators themselves). 
The (v) landscape of fear is manifested in measurable behavioral outcomes, as prey (vi) 
incorporate information about predation risk into decisions about where to go and how to 
behave. The landscape of fear thus generates two behavioral strategies to proactively minimize 
risk: (vii) avoidance of high-risk areas, and (viii) modulation of behavior to reduce the 
probability of suffering predation while at a given location. 
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FIGURE 2. VISUALIZED LANDSCAPES OF FEAR FROM THE LITERATURE  
 
Conflicting definitions of the landscape of fear have generated a contrasting range of methods to 
quantify and visualize these landscapes, most often by measuring either the physical landscape, 
predation, predator presence, or prey response (see also Table 3). Our framework provides a 
useful way to compare approaches across studies by articulating the differences between 
predation, risk, fear, and prey response. Representations of the so-called “landscape of fear” in 
the literature include spatial variation in: (A) Predation risk: modeled risk of wolf (Canis lupus) 
predation on elk (Cervus elaphus), based on known kill locations, habitat features, and elk 
density (squares and triangles represent study plots) (Kauffman et al. 2010); (B) Reactive anti-
predator responses: density of observed leopard (Panthera pardus) alarm call vocalizations by 
vervet monkeys (Cercopithecus aethiops) (Willems and Hill 2009); (C) Proactive anti-predator 
behavior: contour lines of experimentally-determined giving-up densities for Nubian ibex 
(Capra nubiana) (Iribarren and Kotler 2012); (D) Effects of prey responses on vegetation: 
satellite imagery of grazing halos around reefs, resulting from foraging of fearful prey (Madin et 
al. 2011); (E) Perceived risk, (true landscape of fear): conceptual representation of fear in the 
mind of a theoretical prey animal (Jordan and Ryan 2015) 
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FIGURE 3. MISMATCH BETWEEN PREDATION RISK, THE LANDSCAPE OF FEAR, AND PREY ANTI-
PREDATOR BEHAVIOR 
 
The landscape of fear mediates the relationship between spatial variation in risk and prey 
response. Prey response includes both spatiotemporal distribution (as prey avoid areas of high 
risk) and spatial variation anti-predator strategies at a given place (including vigilance and 
grouping). There is often a mismatch in risk and response, due to limitations in prey perception 
and the trade-offs associated with decision-making. A) Prey may have imperfect information 
about predation risk, resulting in slight mismatches in their risk perception and response; B) 
Constraints on prey behavior, and steep costs associated with response, may lead to a reduced, 
more homogenous behavioral response to risk despite accurate perception of risk; C) Risk-averse 
prey may err on the side of caution, exhibiting more amplified anti-predator responses than the 
underlying risk surface (conversely, bold prey may exhibit muted anti-predator responses); D) 
Intrinsic risk and risk perception may be homogenous across a landscape, but spatial 
heterogeneity in forage quality, and therefore in behavioral trade-offs, may result in 
heterogeneity in prey distribution or anti-predator behavior; E) Predators may be extirpated in a 
system, resulting in no risk across the landscape, but evolved responses to cues can persist and 
influence prey behavior despite no actual risk. 
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TABLE 1. DEFINITIONS OF THE LANDSCAPE OF FEAR AS APPLIED OR DESCRIBED IN THE 
LITERATURE, AND THEIR RELATIONSHIP TO OUR FRAMEWORK 
 

Definitions of landscape of fear from the 
literature 

References Relationship to landscape of fear in our 
framework 

Spatial variation of prey perception of 
predation risk 

[1-3] Landscape of fear (Figure 1v) 

A complex ecological system involving a 
predator-prey response race   

[4-5] Entire framework (Figure 1) 

Spatial variation in predation risk [6-12] Spatial variation in predation risk (Figure 1iii) 

Spatial variation in predation [13] A product of both spatial variation in predation 
risk (Figure 1iii), prey response (Figure 1vii, viii), 
and predator response 

Conceptual topographic map of predation 
risk 

[14-16]  Optimal or idealized model of spatial variation in 
predation risk or landscape of fear (Figure 1iii, v) 

The distribution of habitat types (with 
different intrinsic risk) 

[17-18] Physical landscape (Figure 1i) 

An area in which prey perceive risk [19-21] Arguably any location within landscape of fear 
(Figure 1v), excluding extremes with near-zero 
risk perception 

Distribution and intensity of sensory cues 
associated with predators 

[22] Factor mediating the relationship between 
landscape of predation risk and landscape of fear 
(Figure 1iv) 

Spatial utilization of an area by risk-averse 
prey 

[3, 23-27] Spatial distribution of prey (Figure 1vii) 

Area that excludes fearful prey animals [28] Part of spatial distribution of prey (area of 
complete avoidance; Figure 1vii) 

Spatial variation in foraging costs of 
predation (result of foraging and risk 
trade-offs) 

[4, 29-32] Component of spatial variation in anti-predator 
behavior (Figure 1viii) 

Spatial variation in interference 
competition 

[33-34] Analog of the landscape of predation risk 
(involving competitors, rather than predators and 
prey) 

Output of experimental studies of prey 
behavior 

[35-36] Quantification of spatial variation in anti-predator 
behavior (Figure 1viii) 

Response of lower trophic levels (e.g. 
plants) to foraging by prey 

[37]  Trophic cascade caused by landscape of fear 
(consequence of Figure 1vii,viii) 

A tool for measuring foraging trade-offs [30] 
 

Landscape-scale giving-up density experiments 
(Measure of Figure 1viii) 
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TABLE 2. FACTORS THAT DETERMINE THE STRENGTH OF LANDSCAPE OF FEAR (LOF) EFFECTS 
FOR PREY POPULATION DYNAMICS AND TROPHIC INTERACTIONS 
 

Factor determining strength 
of LOF effects Weak LOF effects Strong LOF effects 

Physical habitat (Figure 1i) Homogenous physical landscape Heterogeneous physical landscape 

Factors mediating relationship between physical habitat and risk (Figure 1 vi) 
Predator biology Coursing predator, broad habitat 

domain 
Ambush predator, narrow habitat 
domain 

Prey biology Strong reliance on morphological 
(rather than behavioral) defenses, 
large body size 

No morphological defenses, small body 
size 

Predator distribution Widespread OR rare Abundant but predictably distributed 
Community dynamics No overlap among predator 

distributions and hunting strategies 
High degree of overlap among predator 
distributions and hunting strategies 

Factors mediating relationship between risk and perception (Figure 1 vii) 
Predation cues Absent, limited, unreliable Apparent, reliable, widespread 
Prey cognition and sensory 
perception 

Very limited Advanced abilities 

Prey memory learning 
ability, and experience 

Very limited, no prior experience Advanced learning ability, prior 
experience with predator 

Evolutionary history Novel predator, OR predator has co-
evolved strategies that limit prey 
perception of risk 

Long history of coexistence with 
predator, with minimal predator co-
evolution (perhaps due to many 
alternative prey species) 

Factors mediating relationship between perception and response (Figure 1 viii) 
Cost of response No foraging trade-offs with anti-

predator response (e.g. risky habitat 
is also poor quality) 

Very high fitness cost of anti-predator 
response 

Benefit of response Limited effectiveness of response Clear benefit of anti-predator response 
Individual condition Weak or ill individuals respond 

strongly (compensatory effects) 
Individuals at peak fitness respond 
strongly (additive effects) 

Physiological constraints Many physiological constraints Few constraints, highly plastic behavior 
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TABLE 3. METHODS OF MEASURING PREDATION RISK AND PREY RESPONSE ASSOCIATED WITH 
LANDSCAPES OF FEAR 
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Chapter 3. Black-tailed deer navigate contrasting patterns of risk from 
hunters and mountain lions in space and time 
 
ABSTRACT 
 
Prey animals navigate landscapes of fear, and these landscapes are often conceptualized as static, 
spatial patterns of risk resulting from a single predator. However, in most cases, prey face risk 
from several predator species, and this risk varies not only spatially but also across multiple time 
scales. To understand prey responses to risk from multiple predators, we examined how black-
tailed deer (Odocoileus hemionus) navigated layered landscapes of fear imposed by hunters and 
mountain lions (Puma concolor). First, to model spatiotemporal variability in risk of harvest by 
humans, we compiled 20 years of data on harvest locations at the Hopland Research and 
Extension Center in Mendocino County, California and deployed fine-scale GPS trackers on 
>300 hunters over three years. To quantify predation risk from wild carnivores, we built models 
of mountain lion spatiotemporal activity using data from 52 camera traps deployed in the study 
area. Finally, we used data from a subset of 36 of these camera traps in a systematic grid 
deployed from 2015 to 2017 to assess the spatiotemporal responses of deer to patterns of risk 
from both hunters and mountain lions.  

We found that humans and mountain lions exhibited distinct, contrasting patterns of 
spatiotemporal activity: risk from hunters was confined to the daytime and was highest near 
roads and in open grasslands, while risk from mountain lions was highest during the night and 
crepuscular periods, and highest in dense chaparral habitat in the northern part of the property, 
which has greater connectivity with undeveloped wilderness areas. While deer did not avoid 
areas of greatest risk from humans and mountain lion, they adjusted the timing of their diel 
activity to reduce the risk of encounters with both types of predators, with stronger responses in 
areas of higher risk. During the hunting season, deer exhibited greater temporal avoidance of 
humans than mountain lions, thereby potentially increasing their vulnerability to mountain lions. 
Our study demonstrates that interactions between predator hunting mode, habitat cover, and 
anthropogenic disturbance can result in distinct patterns of predation risk from multiple predators 
that lead to trade-offs for prey species. Furthermore, our study highlights the importance of 
temporal partitioning as a mechanism of predation risk avoidance when spatial responses are 
constrained. 
 
INTRODUCTION 
 
Predation risk plays an important role in ecological communities, driving patterns of prey 
behavior that ultimately shape population dynamics and species interactions (LaManna and 
Martin 2016). In heterogeneous landscapes, spatial variation in predation risk generates 
landscapes of fear for prey species, as prey perceive some areas as safer or riskier than others 
(Laundré et al. 2001, Gaynor et al. 2019). Prey may avoid areas of high risk (Broekhuis et al. 
2013), thereby reducing the risks of detection and capture by predators (Lima and Dill 1990). 
Landscapes of fear can influence the spatial distribution of prey animals (Willems and Hill 2009) 
and alter spatiotemporal patterns of prey activity and behavior (Valeix et al. 2009b) in diverse 
systems. Despite recent attention on landscapes of fear (Teckentrup et al. 2018, Peers et al. 2018, 
Gaynor et al. 2019), important questions remain about how risk-response dynamics influence 
prey behavior in complex natural systems (Prugh et al. 2019). The landscape of fear framework 
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is useful for conceptualizing links between the physical habitat, predation, and prey behavior, but 
depictions of static, simplified landscapes do not capture the underlying complexity of dynamic, 
interactions of many species (Moll et al. 2017).  
 Prey in most systems do not experience fixed patterns of predation risk from a single 
predator. Rather, prey must balance complementary and contrasting patterns of risk from diverse 
predators over multiple spatial scales. At coarse scales, variation in the presence or relative 
densities of different predator species will shape encounter probabilities, making prey more or 
less vulnerable in different portions of the landscape (Creel et al. 2007). On finer scales, hunting 
modes or habitat preferences of different predators interact with the physical environment and 
prey anti-predator responses to generate spatial heterogeneity in predation risk (Preisser et al. 
2007, Atwood et al. 2007, Miller et al. 2013). For example, sit-and-wait or ambush predators rely 
on cover for surprise attacks and thus closed habitats may be associated with higher risk of 
encountering these species relative to active or coursing predators (Hopcraft et al. 2005, Schmitz 
2005). Physiological constraints also influence how predators are distributed (i.e., the predator’s 
habitat domain;(Preisser et al. 2007). In particular, predators with narrow habitat domains may 
be restricted to certain areas of a physical landscape, thereby concentrating predation risk in 
these areas. Vulnerability of prey in a given habitat type is also a function of the prey’s anti-
predator defenses; the success of strategies like vigilance, crypsis, flight, body size, and 
aggregation varies with habitat structure (Lima and Dill 1990, Makin et al. 2017). 

While landscapes of fear are often presented as static spatial patterns, predation risk at a 
site may vary across multiple temporal cycles, in ways that differ among predator species. For 
example, risk of a predator encounter may vary seasonally with changes in predator and prey 
densities, food requirements, and reproductive status of either species (Druce et al. 2009, 
Hopcraft et al. 2014). Risk may also vary on shorter time scales as predators shift their home 
ranges (Valeix et al. 2009a). The relative vulnerability of prey and the efficiency of predators 
vary with light availability across lunar cycles (Bouskila 1995, Palmer et al. 2017) and diel 
periods (Tolon et al. 2009, Kohl et al. 2018). In particular, landscapes of fear change 
dramatically and predictably every day, as darkness reshapes the playing field for interactions 
between predators and prey with different circadian cycles and sensory modalities (Kohl et al. 
2018). Many predators are active only at certain times of the day, perhaps to avoid competitors 
or their own predators, and therefore restricted to a narrower temporal habitat domain (Smith et 
al. 2019). These restrictions create dramatically different landscapes of fear at different times of 
the 24-hour cycle. To minimize predation risk while continuing to meet foraging and other 
demands, prey may use high-risk places at low-risk times of day (Fischhoff et al. 2007, Kohl et 
al. 2018, Courbin et al. 2019, Smith et al. 2019).  

The dynamic risk landscape created for prey by the accumulated effects of several 
predators can take many forms. In some cases, predation risk from multiple predators may be 
additive, with similar spatial and temporal patterns for each predator. Such overlap would 
intensify the spatiotemporal peaks and troughs of risk for prey (Sih et al. 1998). More often, 
however, prey must trade off risk from multiple predators that hunt in different habitats or at 
different times of day (Willems and Hill 2009, Atwood et al. 2009, Morosinotto et al. 2010, 
Cresswell and Quinn 2013). Minimizing exposure to risk in these scenarios may involve constant 
adjustments in the habitat selection and behavior of prey. In systems in which risk from multiple 
predators varies over both space and time, temporal refugia may allow prey to balance risk from 
multiple predators. For example, roe deer (Capreolus capreolus) face distinct patterns of spatial 
risk from lynx (Lynx lynx) and human hunters (Lone et al. 2014): lynx hunt at night and humans 
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by day. Roe deer select different habitats during the day versus at night, presumably to minimize 
risk from both predators (Lone et al. 2017). However, avoidance of temporally-variable risk is 
less of an option for prey when that risk overlaps spatially and surrounds a critical resource. For 
example, to access dry season water holes in Zimbabwe, ungulates must face either daytime risk 
from human hunters or nighttime risk from lions (Panthera leo) (Crosmary et al. 2012a, 2012b). 
Alternatively, multiple predators may have a risk averaging effect and create a somewhat 
homogenous landscape of fear. In these cases, it could be adaptive for prey to largely ignore 
predation risk and prioritize other factors such as food, conspecifics or thermal refugia (Gaynor 
et al. 2019). The potential for disparate outcomes associated with prey response to multiple 
predators motivates expanding our studies of carnivore-ungulate systems beyond their current 
focus on a single predator and prey species (Montgomery et al. 2019). 
 
Study objectives 
 
Fully quantifying the vast complexity of interactions in multi-predator, multi-predator systems 
over space and time is unrealistic for most wildlife communities. However, ecologists can 
greatly advance our understanding of landscapes of fear by considering more than one predator 
or prey in their studies and accepting that risk will vary in both space and time. Here, we set out 
to provide an example of such an approach with research on the following questions: 
 

1) How do landscape heterogeneity and predator hunting mode interact to generate 
complementary or contrasting patterns of spatiotemporal risk from multiple predators?  

2) How do patterns of prey activity in both space and time map onto patterns of risk 
generated by multiple predators?  
 

To answer these questions, we examined the spatial and temporal patterns of risk associated with 
two major predators of Columbian black-tailed deer (Odocoileus hemionus columbianus) in 
northern California: mountain lions (Puma concolor) and human hunters. Deer are an abundant 
species in California and are a major prey item for multiple predator species (Allen et al. 2015) 
and an important game species for hunters (Conover 1997). Given their mixed feeding strategy 
(Baker and Hansen 1985), deer are able to use a variety of habitats. The absence of strong habitat 
constraints may facilitate avoidance of risk, allowing deer to incorporate risk into habitat 
selection as they navigate landscapes of fear. 

While coyotes (Canis latrans) and American black bears (Ursus americanus) also prey 
on deer at Hopland, they predominantly kill fawns. Furthermore, coyote and bear activity is 
widespread throughout the study area and not associated with any particular habitat type. 
Preliminary analyses suggest homogenous patterns of risk from coyotes and bears throughout the 
property. Any behavioral responses of adults to these predators are likely minimal, and we 
therefore excluded them from this study and focused instead on the two primary predators of 
adult deer: hunters and mountain lions. 

For both mountain lions and hunters, we examined the natural and anthropogenic 
landscape features associated with the risk they posed to deer in and characterized the temporal 
periods during which they impact deer. We then assessed overlap of risk from the two predators 
in both space and time and examined the relative influence of risk from mountain lions and 
hunters on the spatiotemporal activity patterns of deer inside and outside of the hunting season. 
Human hunting is generally constrained to particular seasons, areas, and times of day, and so 
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provides a unique opportunity to evaluate and isolate the effects of risk on a prey species (Proffitt 
et al. 2009). Furthermore, hunters play an important role as top predators in ecosystems 
throughout North America, but their effects on the behavior of game species remain 
understudied. Mountain lions also serve as a useful focal predator species for exploring spatial 
patterns of risk, given that they are ambush predators with a restricted habitat domain in both 
space and time (Smith et al. 2019).  

We predicted that the spatial and temporal patterns of risk from mountain lions and 
hunters would contrast with one another, given differences in diel activity patterns and hunting 
modes. Hunting risk is entirely confined to the daylight hours, whereas mountain lions are 
generally most active at night. We predicted that hunters would be most active near roads, given 
that they typically travel in vehicles and use roads as access points, and that mountain lions 
would be most active in the northern portion of the study area bordering undeveloped land, 
which facilitates habitat connectivity. We predicted that deer would be most vulnerable to 
humans in flat, open areas where hunters had longer lines of sight and could more easily detect 
deer. In contrast, deer should be most vulnerable to mountain lions in rugged, closed areas, 
where lions are better able to ambush and trap deer.  

Given these predicted contrasting patterns of risk, we expected deer to be more 
nocturnally active in areas of high hunter risk and more diurnally active in areas of high 
mountain lion risk. Where deer face trade-offs between risks from hunters and mountain lions, 
we expected stronger avoidance of hunters, due to the predictability of hunting risk and the 
strong sensory cues associated with the presence of hunters. We expected to observe stronger 
risk avoidance by deer in time than in space, given that the deer in our study area occur at high 
densities and exhibit strong side fidelity and may therefore be constrained in their spatial 
responses. We also expected deer to show seasonal responses to hunting risk, with decreased 
activity in areas of high hunting risk during the hunting season as compared to outside of the 
hunting season. 
 
METHODS 
 
Study area 
 
We conducted our research at the Hopland Research and Extension Center (henceforth, Hopland) 
in southern Mendocino County, California (Latitude: 39.002, Longitude: -123.084; Figure 1). 
Hopland is a 2,168 hectare research facility operated by the University of California. Located in 
the Mayacamas Mountains, Hopland is dominated by oak savanna, with a mosaic of habitats 
including grassland, woodland, and chaparral. Hopland hosts a diversity of large mammal 
species, including Columbian black-tailed deer, mountain lions (at least three distinct animals), 
American black bears (Ursus americanus), coyotes (Canis latrans), bobcats (Lynx rufus), and 
gray foxes (Urocyon cinereoargenteus). Of these carnivores, mountain lions, bears, and coyotes 
are known to prey on deer in the study area, with adult deer most vulnerable to mountain lions, 
and fawns most vulnerable to bears and coyotes.  

There is a network of well-maintained dirt roads throughout Hopland. To the north, 
Hopland is bordered by a rugged, 25,000 hectare Bureau of Land Management-owned recreation 
area, providing connectivity to the rest of the Mayacamas Range and expansive remote 
Mendocino National Forest lands to the north. To the south, Hopland is bordered by settlement 
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and agriculture along highway 101. Hopland maintains a flock of around 600 sheep and there is a 
history of lethal predator control onsite directed almost exclusively at coyotes.  

A public deer hunt occurs at Hopland during the first three weekends (Saturday and 
Sunday) of the annual California Zone 1 hunting season; the first Saturdays of the public hunts 
that occurred during this study were August 8, 2015, August 13, 2016, and August 12, 2017. No 
more than 20 hunters per day were permitted on the site during the days when hunting was 
allowed, resulting in a maximum of 120 hunters per year. Only bucks with forked antlers 
(henceforth “legal bucks”) were allowed to be harvested. Hunting was permitted throughout the 
site, with the exception of a 200 ha area near headquarters, staff residences, and other 
infrastructure.  
 
Determining spatial patterns of risk 
 
Spatial data 
We compiled spatial data for the study area, including raster layers that we hypothesized to be 
related to spatial patterns of predation risk from hunters and mountain lions and to deer activity 
(Table 1). Any rasters not originally created at a 10m x 10m resolution were resampled to this 
resolution and clipped to the Hopland property boundaries. Prior to all modeling, we 
standardized each of the raster layers by setting the mean value of the raster pixels to 0 and the 
standard deviation to 1 using the normImage function in the RStoolbox package in R (Leutner et 
al. 2018). 

We created a fine-scale habitat map of Hopland by manually digitizing remotely-sensed 
satellite imagery. We ground-truthed this map in 2015 by navigating to 50 random points and 
cross-validating their on-the-ground classification with the remotely sensed classification (49 of 
the 50 classifications matched, for an accuracy of 98%). For our analyses, we condensed habitat 
into three categories: grassland (20% of study area), woodland (41%), and chaparral (38%). 

We used data on slope and elevation from the 10-meter USGS National Elevation 
Dataset, and imagery from the National Agriculture Imagery Program (NAIP) for 2016 NDVI. 
We also calculated ruggedness, which considers variability in both slope and aspect within a 
neighborhood using the Vector Ruggedness Measure tool for ArcGIS, which was adapted from 
Hobson 1972. We calculated this metric over a series of neighborhood sizes, from 900m2 to 
12,100m2, to test whether the scale of terrain variation was influential.  

In ArcGIS, we created raster layers corresponding to the distance (in meters) to the 
nearest road, the nearest fence, the nearest water source, the nearest habitat edge (defined as the 
boundary between two habitat polygons of different types), the boundary with BLM land, the 
Hopland headquarters, and the Hopland property boundary.  
 To account for hunter visibility from roads, we established points spaced one meter apart 
on all roads as potential observation points. Effectively, by establishing points every meter, we 
created a continuous map of visibility from the road network; using a smaller interval would 
have been too computationally intensive and ultimately unnecessary, given that all rasters were 
resampled to a 10x10 m grid size. We divided the road network on the site into segments 
between road junctions or pull-off locations, and for each segment we masked elevation within a 
400m buffer, as this is the maximum distance at which a hunter is likely to locate a deer (Higley 
2002). For each segment, we then ran the Viewshed 2 tool in ArcGIS within the surrounding 
masked elevation, with each of the road points (at one-meter intervals) as an observer point. 
Each resulting cell value represented the number of points in the road segment from which it was 
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visible. We combined these viewshed rasters to make a visibility surface for the entire site, and 
we also reclassified them into visible/not visible areas.  
 
Risk of harvest by hunters 
A unique historical dataset, combined with recent GPS tracking, allowed us to explore patterns 
of hunting on fine spatial scales. We quantified the spatial distribution of risk of harvest by 
hunters by creating a spatial model based on known locations of deer harvests on the study site. 
We compiled data on the locations of all deer killed during the Hopland public hunt from 1994-
2017 (with the exception of 1995, 1996, 1999, and 2001). For the years for which hunting data 
were available, a total of 465 deer were harvested. The GPS coordinates of each harvest location 
were determined from pins that hunters placed on a large printed satellite image of the property 
immediately after returning to headquarters following a kill. For 2015-2017, we validated these 
points by comparing the hunter-reported locations to the clusters from the hunter GPS tracks 
described below; the difference between measures was typically <50 meters.  
 To understand spatial patterns of deer harvest, we compared the spatial characteristics of 
the 465 harvest locations to those of a set of 2000 random points within the Hopland boundaries 
(excluding areas where hunting was prohibited). We used the spsample function in the sp 
package in R to generate the random points (Pebesma & Bivand 2005). We extracted the raster 
values of each covariate at all harvest sites and all random points using the extract function in the 
raster package in R (Hijmans 2017).  

We used a logistic regression model to determine which spatial covariates influenced 
harvest risk. We considered all covariates that we expected to have an effect on spatial patterns 
of harvest, including vegetation type, slope, distance to road, distance to fence, distance to 
headquarters, ruggedness in a 900 m2 neighborhood, ruggedness in a 2500 m2 neighborhood, 
viewshed, and distance to edge of chaparral habitat. All covariates were continuous variables, 
with the exception of vegetation, which was categorical. We used the glmulti function in the 
glmulti package in R (Calcagno 2013) to test all possible combinations of covariates and 
determined the best fit model based on AICc (corrected for small sample size). To make 
inferences based on all top models (<2 AICc of the best model), we averaged the coefficients of 
variables in these models using the coef function. To ensure that correlated covariates were not 
confounding the results of our analyses, we tested all covariates in the top models for collinearity 
and confirmed that variance inflation factors (VIF) < 4. 
 
Hunter activity 
In addition to modeling risk based on harvest, we also quantified the spatial distribution of hunter 
activity using GPS loggers. From 2015-2017, we provided each hunter at Hopland (N = 306) 
with an iGotU GT-600 GPS unit to be carried throughout the day. Participation was voluntary, 
but the participation rate was 100%. The iGotU units recorded a GPS location every 5 seconds; 
we down-sampled the locations to every 10 minutes to increase independence of data points and 
resolve computer processing constraints.  
 We combined all GPS locations recorded during 2015-2017, excluding points that fell 
within the zones where hunting was prohibited. Given the extent of this data set, we chose to 
map hunter activity based on the locations of all points rather than estimating activity based on 
spatial covariates. To generate a raster layer of hunter activity, we calculated an unweighted 
Gaussian kernel density estimate based on the locations of all of the points using the sp.kde 
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function in the spatialEco package in R (Evans 2018). We set the distance bandwidth of the 
Gaussian kernel to 400m. 
 
Mountain lion activity 
We modeled the spatial distribution of mountain lion activity in the study area based on camera 
trap records. We used data from 52 Reconyx HyperFire camera traps set up from 2015-2018: 16 
camera traps were placed opportunistically throughout the property (operating for a range of 59 
to 1,566 trap-nights, mean 651, SD 569), and 36 were placed systematically in a grid (operating 
for a range of 388 to 939 trap-nights, mean 569, SD 82). We deployed cameras at the center 
points of hexagonal grid cells, with each camera located 750 meters away from its six nearest 
neighbors. After navigating to the pre-determined GPS location in each grid cell, we identified a 
suitable camera location within 50 meters of that location. When possible, we pointed cameras 
towards animal trails to maximize detections. All cameras were placed in security boxes attached 
to trees. Cameras were motion-activated, and took three consecutive photographs per detection 
event, with a 30-second refractory interval between detection events. 
 We calculated the number of independent detections of mountain lions by each camera 
trap. For spatial analysis we defined a record as independent if it occurred at least 15 minutes 
after the previous record of a mountain lion at the same camera. For temporal analysis, we 
removed records occurring within 15 minutes of another record at any camera in the same grid 
cell (resulting in the removal of 8 records). For each camera, we then calculated a mountain lion 
Relative Activity Index (RAI), corresponding to the number of mountain lion detections per trap-
night (RAI = total detections / total trap-nights). We pooled data from 2015-2018, given the 
relatively low number of mountain lion detections. 

We used a generalized linear model to determine the spatial covariates that influenced the 
mountain lion RAI. Covariates that we expected to affect mountain lion activity included 
vegetation type, distance to BLM land, distance to headquarters, ruggedness within a 900m2 
neighborhood, ruggedness within a 2500m2 neighborhood. All covariates were continuous 
variables, with the exception of vegetation type, which was categorical. We used the glmulti 
function in the glmulti package in R to test all possible combinations of covariates and selected 
the model with the lowest AIC. We tested all covariates in the final model for collinearity 
(ensuring that VIF < 4). 

We then predicted and mapped RAI for the entire study area. We used the predict 
function in the raster package, based on the best model and the raster layers for the 
corresponding covariates. 
 
Determining temporal patterns of risk 
 
In addition to quantifying and mapping spatial patterns of activity by and associated risk from 
hunters and mountain lions, we also examined diel (24-hour) activity patterns of these predators. 
We determined the timing of hunter activity from GPS tracking data; for each subsampled fix 
(interval of 10 minutes) in which hunters were within legal hunting zone, we considered the 
hunter to be “active.” We determined the times of hunter risk based on the known times at which 
deer were harvested from 2015-2017; hunters reported the time of each kill, which we validated 
using the iGotU GPS data. We determined the timing of mountain lion activity from camera 
traps, using only images recorded >15 minutes from the previous detection at a given location.  
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To account for the circularity of 24-hour temporal data and for seasonal differences in 
sunset and sunrise time, we scaled all times to radians so that π/2 corresponded to sunrise and 
3π/2 to sunset. We used kernel density estimation to model diel activity patterns for mountain 
lions and hunters, as described by Ridout and Linkie (Ridout and Linkie 2009). We conducted 
separate analyses for hunter activity and harvest times. 
 
Comparing patterns of risk 
 
To compare spatial patterns of risk from mountain lions and hunters, we first recategorized the 
model-predicted rasters for hunter harvest and mountain lion activity (based on the model with 
the lowest AIC, as described above) into “low” and “high” categories. Both rasters had strong 
bimodal distributions, and we split the low and high categories according to the clear break in the 
data (Supplementary Figure 1). We then identified each cell in the study area as “Both Low” 
(low risk from both hunters and mountain lions),  “Hunter High” (high risk from hunters, low 
risk from mountain lions), “Mountain Lion High” (high risk from mountain lions, low risk from 
hunters), or “Both High” (high risk from both mountain lions and hunters).  
 To compare temporal patterns of risk from hunters and mountain lions, we calculated a 
coefficient of temporal overlap, d-hat, using the overlap package in R (Ridout and Linkie 2009). 
The value d-hat represents the area under the curve formed by taking the minimum of two 
activity density distributions (0 represents no temporal overlap, and 1 complete overlap). We 
used the dhat4 formula, as recommended by (Ridout and Linkie 2009) for sample sizes >50, and 
calculated 95% bootstrap confidence intervals. We conducted these analyses for both hunter 
activity and harvest times. 
 
Quantifying deer response to risk 
 
We used the grid of 36 camera traps described above (Figure 1) to quantify spatial and temporal 
patterns of deer activity. We calculated a Relative Activity Index (RAI) for deer at each camera 
trap and calculated diel activity patterns using kernel density estimation, following the protocols 
described above for mountain lions. We calculated RAI for all deer combined, and separately for 
does and legal bucks. 

When comparing the spatiotemporal distribution of deer in relation to hunting, we 
calculated RAI (RAI = total detections / total trap-nights) for the period before the hunt (the one 
month prior to the public hunt), during the hunt (from the first to the last day of the public hunt; a 
16-day period), and after the hunt (the one month after the public hunt). We chose a one month 
period before and after the hunting period to ensure a large enough sample size while minimizing 
seasonal confounds resulting from changes in reproductive status.  
 We determined the level of hunter activity, mountain lion activity, hunter risk, and 
mountain lion risk at each of the grid camera locations, extracting the raster values from each of 
the modeled spatial layers. We also binned cameras into “low” and “high” activity and “low” and 
“high” risk as described above, to create categorical variables associated with each of these 
layers. We then compared deer RAI in areas of low and high risk and activity, examining 
interactions with hunting season and habitat type.  

We quantified the amount of temporal overlap between deer and hunters in areas of low 
and high risk, calculating the overlap coefficients as described above. The same procedure was 
used to quantify temporal overlap between deer and mountain lions. Similarly, we compared diel 
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activity distributions of deer in areas of low and high risk, and inside and outside of the hunting 
season, to determine whether deer shifted the timing of their activity in response to spatially and 
seasonally-variable risk. 
 
RESULTS 
 
Patterns of risk from hunters 
 
For black-tailed deer in our study area, risk of predation from human hunters was strongly 
correlated with vegetation type and distance to road (Table 2; Figure 2). These two predictors 
were present in all top models of spatial risk. Harvest risk increased closer to roads, and was 
highest in grassland, intermediate in woodland, and lowest in chaparral. Several other predictors 
of harvest risk emerged in some (but not all) of the top models: harvest risk increased with 
ruggedness in a 2,500m2 window, visibility from road (viewshed), proximity to chaparral edge, 
headquarters, and fences but decreased with slope and with ruggedness in a 900m2 window. 
After distance to road and vegetation type, the most important predictors of harvest risk were 
ruggedness in a 2,500m2 window and distance to chaparral edge (Table 2). 
 Hunters were exclusively diurnal, given that hunting at night is illegal. Hunters were 
active at all hours of the day with a slight but consistent decline in activity from sunrise to 
sunset. Harvest times had a large peak at dawn, a smaller peak at midday, and tapered off after 
sunset. The overlap coefficient between hunter activity and harvest time was 0.887; there was no 
statistically significant difference in when hunters were active and when they harvested deer 
(bootstrapped 95% CI: 0.842 – 1.038; overlap with 1.000 indicates a non-significant difference). 
 GPS tracking of hunters from 2015-2017 revealed that patterns of hunter activity were 
spatially similar to the modeled patterns of risk based on the locations of harvest locations 
(Supplementary Figure 2). We used the model of harvest locations for all subsequent analyses 
because we considered harvest location to be a more direct proxy for the actual risk of being 
killed by a hunter (Moll et al. 2017). 
 
Patterns of risk from mountain lions 
 
There was a total of 120 mountain lion camera trap detections (29 records from the grid cameras, 
91 records from the opportunistically-placed cameras). The relative activity of mountain lions 
varied with vegetation type (present in both of the top two models) and distance to the BLM 
boundary (present in only the top model; Table 3; Figure 3). Mountain lion activity was highest 
in chaparral, intermediate in woodland, and lowest in grassland. Mountain lion activity increased 
with proximity to the BLM boundary to the north of the property. Mountain lions were generally 
nocturnal with increased activity in crepuscular hours, showing a strong peak in activity just after 
sunset and a smaller peak in activity around sunrise. 
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Comparing patterns of risk 
 
Spatial patterns of risk from hunters and mountain lions were strongly contrasting (Figure 4). 
After classifying spatial risk associated with each predator species into low and high categories, 
24% of the study area was associated with low risk for both hunters and mountain lions, 56% of 
the area was associated with high risk from hunters only, 20% of the area was associated with 
high risk from mountain lions only, and <0.01% of the area was associated with high risk from 
both hunters and mountain lions.  
 Similarly, temporal patterns of risk differed between mountain lions and hunters (Figure 
5; Supplementary Figure 3). The coefficient of temporal overlap between mountain lion activity 
and hunter activity was 0.379 (95% CI: 0.262 – 0.426); the coefficient between mountain lion 
activity and hunter harvest times was 0.386 (95% CI: 0.204 – 0.459). In both cases, these 
outcomes indicate statistically significant differences between diel activity patterns for mountain 
lions and hunters (bootstrapped confidence intervals do not overlap 1.00). 
 
Deer response to hunting risk 
 
Activity of bucks was lower in areas of higher modeled risk and during the hunting season. RAI 
values for legal bucks were lower during the hunting season compared to periods before and 
after the hunt; the decrease in activity during the hunt was more apparent in areas of high hunting 
risk (Figure 6). None of the differences in RAI values for bucks across seasons or risk levels 
were statistically significant, perhaps due to the high number of cameras with a buck RAI of 0 (n 
= 49 (26%) of the 191 camera-seasons included in the analysis). There was no significant 
difference in RAI values for bucks across seasons (before, during, after) in either low risk (F(2, 
82) = 1.04, p = 0.36) or high risk areas (F (2, 103) = 1.18, p = 0.31). There was no significant 
difference in RAI values for bucks in areas of low and high hunting risk in any time period 
(before, during, or after hunt; p > 0.05 for all t-tests). RAI values for does revealed no spatial or 
temporal effects of hunting on their activity (Supplementary Figure 4).  

Throughout the study area, the diel activity patterns of bucks and does differed during the 
public hunting period compared to the period before the hunt (Figure 7A). Before the hunt, legal 
bucks were somewhat active throughout the day, with a peak of activity around sunset. During 
the hunt, bucks decreased their daytime activity and shifted their activity peak from sunset to just 
after sunset (overlap coefficient dhat = 0.745, 95% CI: 0.599 – 0.824). Before the hunt, does 
exhibited two peaks in their activity: one in the morning between sunrise and sunset, and one just 
after sunset. During the hunt, does reduced their activity during the morning and increased 
activity just before sunrise and at sunrise (overlap coefficient dhat = 0.838, 95% CI: 0.779 – 
0.884). 

These shifts in diel activity patterns during the hunting season resulted in an increase in 
temporal overlap with mountain lions for does, but not for bucks (Figure 7A). The degree of 
overlap between does and mountain lions increased from 0.790 before the hunt (95% CI: 0.703-
0.859) to 0.843 during the hunt (95% CI: 0.783-0.922), although the 95% confidence intervals 
overlap, indicating that the difference between overlap coefficients is small. The overlap between 
bucks and mountain lions was similar before and during the hunt (Before: overlap coefficient = 
0.833, 95% CI: 0.789-0.941; During: overlap coefficient = 0.820, 95% CI: 0.741-0.953) 

During the hunt, bucks and does adjusted their diel activity patterns in response to spatial 
patterns of hunting risk (Figure 7B). While bucks in areas of both high and low hunting risk were 
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mostly active at night, those in high-risk areas were relatively less active at sunrise and 
throughout daylight hours when compared to bucks in low-risk areas. Further, while bucks in 
high risk areas waited until after sunset to resume activity levels, those in low risk areas were 
more active around sunset. There was significantly greater temporal overlap of bucks and hunters 
in areas of low risk (overlap coefficient dhat = 0.396, 95% CI: 0.214 – 0.508) compared to areas 
of high risk (dhat = 0.117, 95% CI: -0.066, 0.190). Similarly, there was greater temporal overlap 
between bucks and harvest times in areas of low risk (overlap coefficient dhat = 0.397 (95% CI: 
0.183– 0.533) compared to areas of high risk (dhat = 0.120 (95% CI: -0.098 – 0.187), although 
this difference was not significant. 

Similar to bucks, does were less active during the day in areas of high risk compared to 
areas of low risk. There was significantly greater temporal overlap between doe and hunter 
activity in areas of low risk (overlap coefficient dhat = 0.508 95% CI: 0.412 – 0.549) than in 
areas of high risk (dhat = 0.347, 95% CI: 0.245, 0.387). As with bucks, there was greater overlap 
between doe activity and harvest times in areas of low risk (overlap coefficient dhat = 0.555 
(95% CI: 0.355– 0.580) than in areas of high risk (dhat = 0.349 (95% CI: 0.169 – 0.398), 
although this difference was not significant. 

 
Deer response to mountain lion risk 
 
The mean RAI of deer at cameras in areas of high mountain lion risk (0.61 ± SD 0.32, n = 7) was 
higher than at cameras in areas of low mountain lion risk (0.44  ± SD 0.39, n = 29), although the 
difference was not significant (t = -1.15, df = 10.69, p = 0.28; Supplementary Figure 5). 

Both deer and mountain lions exhibited crepuscular activity, with detections at camera 
traps peaking around dawn and dusk. Year-round temporal overlap between deer and mountain 
lions was high (overlap coefficient = 0.798, 95% CI: 0.713 – 0.876). Mountain lions had a small 
activity peak at dawn, and a much larger peak at dusk. Deer in areas of lower mountain lion 
activity (based on modeled RAI) exhibited slightly more activity at dusk than dawn, while deer 
in areas of higher mountain lion activity exhibited slightly more activity at dawn than dusk 
(Figure 8). Although temporal overlap between mountain lions and deer was lower in areas of 
high mountain lion activity (overlap coefficient dhat = 0.737, 95% CI: 0.664 – 0.814) compared 
to areas of low mountain lion activity (overlap coefficient dhat = 0.816, 95% CI: 0.735 – 0.897), 
the difference was not statistically significant. 
 
DISCUSSION 
 
Black-tailed deer experience contrasting patterns of spatiotemporal risk from their two primary 
predators, mountain lions and humans. Natural features like vegetation type and topography 
interact with the hunting modes of each predator to generate variation in intrinsic risk, while 
anthropogenic features like roads and development further shape general patterns of hunter and 
mountain lion activity. Temporal patterns of risk are also markedly different: hunters are 
exclusively diurnal and mountain lions are crepuscular and nocturnal. These contrasting patterns 
of risk may create spatiotemporal refuges for deer, which can use high-lion-risk areas during the 
day and high-hunter-risk areas at night, thus minimizing risk from both predators (Lone et al. 
2017, Gehr et al. 2018). While we did not observe any spatial avoidance of predation risk by 
deer, we detected changes in daily activity patterns of deer in response to seasonal and spatial 
variation in hunting risk and, to a lesser extent, to spatial patterns of mountain lion risk.  
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Contrasting patterns of risk from multiple predators 
 
Human infrastructure substantially shaped the distributions of both mountain lions and hunters. 
Hunters spent much of their time driving on roads in search of bucks, resulting in higher hunter 
activity and therefore greater risk from hunters near roads. Hunter risk was also somewhat higher 
near Hopland headquarters, which serves as the activity center for hunting parties. Mountain lion 
activity was higher in the north near the border with BLM land, which is undeveloped and 
provides connectivity to the rest of the Mayacamas Mountains. In contrast, the southern portion 
of the property has a higher level of human activity, and borders vineyards and houses, with 
highway 101 and the town of Hopland further to the south. It is likely that mountain lions 
perceive risk from, and therefore avoid, human activity (Smith et al. 2017), especially given the 
history of lethal predator control in the study area.  

About a quarter of the study area was associated with low risk from both hunters and 
lions, providing a refuge from predation for deer. Much of this low risk zone was located in the 
south-central portion of the property, which encompasses several residences, office buildings, 
and a sheep operation and where human activity is particularly concentrated. Hunting is 
prohibited and mountain lion activity is low. Human infrastructure thus creates a shield for deer, 
which experience lower risk from both mountain lions and hunters in areas of higher 
anthropogenic disturbance (Berger 2007). Such human shields may provide a refuge for deer in 
other portions of California—while deer are thought to be declining in rural areas of the state 
(CDFW Website), they typically thrive in urban and suburban areas (DeStefano and DeGraaf 
2003) and a anthropogenic shield from natural predators and hunters may contribute to this 
phenomenon (Harden et al. 2005). 

With regard to habitat type, the observed contrasting spatiotemporal patterns of risk 
associated with hunters and mountain lions are consistent with their hunting modes. Given that 
mountain lions are ambush predators, they tend to attack deer in areas of denser vegetation and 
more rugged topography (Laundré 2010, Smith et al. 2019) (Wilmers et al. 2013, Benson et al. 
2016). Hunters who use rifles often behave similarly to ambush predators, relying on stealth and 
surprise rather than on chase and strength to take down prey. However, the use of rifles means 
that hunters can ambush prey from a distance, thus relying more on clear sightlines than on dense 
cover. Accordingly, we found that hunters are more likely to harvest deer in open grassland areas 
than in more closed woodland or chaparral habitats, where visibility is limited. It is possible that 
in other systems where hunters rely more on sit-and-wait tactics and therefore harvest more deer 
in areas with greater cover, spatial patterns of risk between hunters and mountain lions would be 
additive rather than contrasting (Norum et al. 2015). 

Constraints on the diel patterns of hunting for each predator also generate distinct and 
predictable temporal habitat domains (Smith et al. 2019). As ambush predators, mountain lions 
are adapted to hunt under the cover of darkness (Harmsen et al. 2011, Soria-Díaz et al. 2016), 
while humans are legally restricted to hunting only during the day. Diel patterns of hunting from 
both predators are therefore predictable. Our findings echo those of earlier studies that 
documented contrasting patterns of spatial and temporal risk from lynx (also an ambush 
predator) and hunters for roe deer in forests in Norway (Lone et al. 2017) and Switzerland (Gehr 
et al. 2018), suggesting that hunted ungulates in diverse systems worldwide may experience 
contrasting risk from humans and felid predators. 
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Weak spatial responses to risk by deer 
 
Despite strong spatial patterns of risk associated with each predator species, we found little 
evidence that deer adjust their spatial activity in response to spatial variation in predation risk. 
There was no relationship between mountain lion risk and overall deer activity. During the 
hunting season, there was a slightly greater reduction in legal buck activity at cameras in areas of 
high hunting risk compared to cameras in areas of low risk; this difference was not significant 
and was not evident among does, consistent with other studies that have documented greater 
response by males in populations in which only males were hunted (Paton et al. 2017).  

Several factors may contribute to the failure of deer to respond spatially to predation risk. 
First, mule deer are generally less plastic in their movement paths and home ranges as compared 
to other ungulate species (Sawyer et al. 2018). In our study system, GPS collar data suggest that 
these animals exhibit a high degree of site fidelity (even following a catastrophic wildfire in 
2018), occur at high densities, and occupy small home ranges to which they confine their 
activity. Deer at Hopland are therefore unlikely to adjust their home ranges in response to 
perceived predation risk. Second, the hunting season and preceding months coincide with late 
summer drought, the period of greatest resource scarcity during the year, and animals tend to 
exhibit weaker responses to predation risk when food is scarce (Sinclair and Arcese 1995, Oates 
et al. 2019). Third, even if prey attempt to avoid predators in space, predators seek out areas of 
high prey density (Sih 1984, Laundré 2010). Prey avoidance may therefore be counteracted by 
predator attraction, resulting in the absence of a relationship between prey activity and predation 
risk or predator activity. Finally, given contrasting spatial patterns of risk from hunters and 
mountain lions, it is not possible for deer to simultaneously avoid both predators in space, 
although this trade-off only exists during the hunting season. 

It is possible that we were not able to capture responses of deer at the appropriate spatial 
scale; in particular, our ability to evaluate fine-scale spatial responses to predation risk was 
limited by our reliance on camera trap data. Deer may be selecting habitat to avoid risk within 
their home ranges, seeking out low-risk habitats at times of day or in areas where risk from a 
given predator is highest (Moll et al. 2017). For example, a study of African ungulates found that 
the risk-based selection or avoidance of particular habitats was more important than avoidance of 
broader areas of carnivore activity (Thaker et al. 2011). Similarly, roe deer in France responded 
to risk within their home ranges by changing their habitat selection or distance to cover, but did 
not respond not at broader spatial scales, for example by shifting their home range to areas of 
lower risk (Padié et al. 2015). In future studies, we plan to deploy GPS collars on deer to 
understand how risk influences movement decisions and activity patterns within individual home 
ranges. By quantifying predation risk and prey behavior at multiple scales, we can better evaluate 
the influence of landscapes of fear on prey behavior (Prugh et al. 2019). 
  
Plasticity in diel activity patterns in response to risk 
 
Although we did not find evidence that deer change their overall use of space in response to 
predation risk, they exhibited spatial variation in the timing of their diel activity in response to 
seasonal and spatial patterns of risk. Our results indicate that deer can shift diel activity patterns 
to minimize encounters with predators. Our finding that deer become more active at night after 
the onset of the hunting season echoes those of other studies that have documented an increase in 
nocturnal activity in prey species in response to daytime hunting (Kilgo et al. 1998, Sunde et al. 
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2009, Thurfjell et al. 2013, Marchand et al. 2014, Hertel et al. 2016, Espinosa and Salvador 
2017). Notably, the change in the timing of activity by both bucks and does was stronger in areas 
of higher hunting risk, suggesting that deer perceive spatial variation in risk and respond by 
adjusting temporal activity.  

Similarly, we found that deer reduced their temporal overlap with mountain lions when in 
areas of higher mountain lion activity by switching their peak activity from dusk to dawn, when 
lions are less active. Over evolutionary time scales, carnivores and ungulates have engaged in an 
arms race and plasticity in ungulate diel activity patterns likely evolved as an anti-predator 
strategy (Wu et al. 2018). Generally, however, both mountain lions and deer are crepuscular with 
a high degree of overlap in diel activity. Many ungulates, including deer, remain 
morphologically and physiologically adapted to crepuscular activity, when they can effectively 
forage under low light conditions and avoid temperature extremes that occur during the day and 
at night (Bennie et al. 2014). Carnivores, including mountain lions, have co-evolved to track 
their prey over diel cycles and other studies of diel patterns of mountain lions and their most 
common prey have also found a high degree of synchrony (Harmsen et al. 2011). 

We found some evidence that deer temporal shifts are stronger in response to risk from 
hunters than to risk from mountain lions and, when faced with trade-offs, deer may minimize 
temporal overlap with hunters rather than with mountain lions. Hunting risk is highly predictable 
at both seasonal and daily scales and hunters are conspicuous on the landscape, and prey 
generally respond to risk from predators associated with more reliable cues (Makin et al. 2017). 
Previous studies of hunted elk populations documented greater changes in elk grouping patterns 
and movement rates (Proffitt et al. 2009) and vigilance (Ciuti et al. 2012) in response to risk 
from hunters than to risk from wolves. Our study suggests that hunting risk similarly generates a 
greater response in deer than risk associated with mountain lions, an ambush predator, which are 
typically thought to have more predictable spatial patterns of risk than coursing predators like 
wolves. 
 
Consequences for deer populations 
 
Although does did not exhibit a spatial response to hunting, and the response of bucks was weak, 
both does and bucks exhibited changes in their diel activity patterns in response to both hunting 
season and spatial patterns of hunting risk. Notably, the shift in diel activity patterns of does after 
the onset of the hunting season led to a decrease in their temporal overlap with hunters, but also 
increased their temporal overlap with mountain lions. Given that only bucks are hunted, hunting 
may therefore present an ecological trap to does, in which does seek to minimize predation risk 
by avoiding hunters but actually increase predation risk by coming into greater contact with 
mountain lions (Kilgo et al. 1998, Robertson and Hutto 2006). 

Contrasting patterns of risk from multiple predators may lead to predator facilitation, in 
which the combined effects of multiple predators on prey are synergistic rather than additive. At 
Hopland, contrasting risk may thus increase overall predation rates if bucks are unable to avoid 
both hunters and mountain lions simultaneously (Soluk 1993, Atwood et al. 2009) or if does 
increase their vulnerability to mountain lions. A study of roe deer in Switzerland documented 
super-additive mortality of roe deer from hunting as a result of predator facilitation, finding that 
avoidance of hunters by deer led to increased predation by lynx (Gehr et al. 2017). While 
contrasting patterns of risk may result in an increase in lethal effects of predation, we would also 
expect a decrease in the non-lethal effects of predation. These non-lethal (risk) effects of 
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predation arise as a result of costly behavioral responses to risk, but prey may exhibit weak anti-
predator responses in the face of trade-offs between risk from multiple predators (Creel and 
Christianson 2008, Cresswell and Quinn 2013). Contrasting risk from multiple predators may 
therefore reduce the importance of the landscape of fear for individual fitness and population 
dynamics. 
 
CONCLUSION 
 
Studies of the landscape of fear often characterize static patterns of risk from a single predator, 
but our understanding of complex predator-prey dynamics in natural landscapes requires a more 
nuanced examination of predator and prey activity over space and time. Here, we demonstrated 
that black-tailed deer face contrasting spatial and temporal patterns of risk from mountain lions 
and hunters. While deer do not avoid areas of high risk, likely due to constraints on space use 
and strong site fidelity, they adjust the timing of their activity in response to spatial patterns of 
risk to minimize encounters with predators. As large carnivore populations in North America 
continue to expand, prey species will increasingly face risk from multiple predators, including 
hunters, which play an outsized but understudied role in many systems. It is increasingly 
important to understand the role of risk from multiple species in driving prey behavior and 
population dynamics, particularly in areas of human disturbance. 
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FIGURE 1. STUDY SITE 
 
A) The study was conducted at the Hopland Research and Extension Center in Mendocino 
County, California (indicated with the blue star). B) Detail of study site, showing vegetation 
cover, locations of gridded camera traps, buildings and parking, and areas where hunting is 
prohibited (diagonal lines). 
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FIGURE 2. SPATIAL PATTERNS OF RISK FROM HUNTERS 
 
Predicted risk of hunter harvest (successful kills) on black-tailed deer, modeled based on 
historical harvest locations. Roads are indicated on the map, and areas where hunting is 
prohibited are shown in white. 
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FIGURE 3. SPATIAL PATTERNS OF RISK FROM MOUNTAIN LIONS 
 
Predicted mountain lion activity in the study area, modeled from camera trap data (Relative 
Activity Index = detections / trap-night). 
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FIGURE 4. CONTRASTING PATTERNS OF RISK FROM MULTIPLE PREDATORS 
 
There are distinct spatial patterns of risk from the two predators of black-tailed deer at Hopland. 
We identified areas of low and high risk from hunters and mountain lions by reclassifying the 
hunter harvest model raster and the mountain lion relative activity index model raster according 
to clear breaks in each dataset (both were bimodal; see Supplementary Figure 1). Areas where 
both mountain lion risk and hunter risk are high are virtually non-existent and account for 
<0.001% of the study area. 
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FIGURE 5. TEMPORAL PATTERNS OF RISK FROM MULTIPLE PREDATORS 
 
Kernel density distributions representing the timing of mountain lion and lion detections, where 
the area under the curve is equal to 1. There are distinct temporal patterns of risk from the two 
predators of black-tailed deer at Hopland. Mountain lions are mostly active at night, with a peak 
of activity around sunset and small peak around sunrise. Hunters are exclusively active during 
the daytime. 
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FIGURE 6. BUCK ACTIVITY IN RELATION TO HUNTING RISK IN SPACE AND TIME 
 
The Relative Activity Index (RAI) of legal bucks was generally low, but decreased slightly 
during the hunting season. This decrease was more apparent at cameras in areas of high hunting 
risk (n=21) than those of low risk (n=15). None of the differences in buck RAI across seasons or 
risk were statistically significant. The dark horizontal line indicates the median RAI across 
camera sites, the boxes represent lower and upper quartiles, and the whiskers represent minima 
and maxima (excluding outliers, which are shown as points). 
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FIGURE 7. DEER DIEL ACTIVITY PATTERNS IN RELATION TO HUNTING RISK 
 
Kernel density distributions representing the timing of buck and doe detections in response to 
hunting season and spatial risk. The activity patterns of both does and bucks shifted to be more 
nocturnal in response to the hunting season to reduce temporal overlap with hunters, particularly 
in areas of higher hunting risk. A) Diel activity patterns of deer in the entire study area, before 
and during the hunting period. During the hunt, the overlap between does and mountain lion 
activity patterns increased. B) Diel activity patterns for deer during the hunting period, in areas 
of low hunting risk (n = 15 cameras) and high hunting risk (n = 21 cameras), with hunter activity 
shown as a dotted line. 
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FIGURE 8. DEER AND MOUNTAIN LION TEMPORAL ACTIVITY 
 
Kernel density distributions representing the timing of mountain lion detections, and deer 
detections in response to spatial patterns of mountain lion risk. Deer and mountain lions 
exhibited crepuscular activity patterns year-round. Mountain lions were most active at dusk, and 
deer exhibited slight adjustments in the timing of their activity in response to spatial patterns of 
mountain lion activity. While deer in areas of low mountain lion activity were slightly more 
active at dusk than at dawn (n = 29 cameras), deer in high risk areas were more active at dawn 
than dusk (n = 7 cameras), possibly to avoid encounters with mountain lions. 
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TABLE 1. SPATIAL VARIABLES INCORPORATED INTO RISK MODELS 
 
We predicted that the following natural and anthropogenic variables would influence spatial 
patterns of risk for black-tailed deer at Hopland. We generated raster layers corresponding to 
each variable, which we incorporated into models of spatial risk from hunters and mountain 
lions. We were conservative in our selection of predictor variables for the mountain lion models, 
given a low sample size of camera traps. 
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TABLE 2. FACTORS ASSOCIATED WITH SPATIAL RISK FROM HUNTERS 
 
Spatial features associated with the probability of deer harvest by hunters, as determined from a 
logistic regression comparing characteristics of harvest and random locations. Model-averaged 
estimates and confidence intervals are reported. All covariates were standardized prior to 
modeling. For covariates corresponding to the distance to a feature, a negative estimate means 
that hunter harvest risk increased closer to that feature. The reference value for the vegetation 
layer is chaparral, so positive estimates mean that hunting risk was higher in woodland and 
grassland as compared to chaparral. 
 
Covariate Estimate (with 95% 

Confidence Interval) 
Number of 
Top Models 
(<2 ∆AICc) 
Present 

Relative 
Importance 

Intercept -2.991 (-3.408 – -2.574) 8 1.000 
Vegetation = Woodland 1.331 (0.884 – 1.778) 8 1.000 
Vegetation = Grassland 1.944 (1.494 – 2.394) 8 1.000 
Distance to road -0.619 (-0.759 – -0.479) 8 1.000 
Ruggedness (2,500m2) 0.119 (-0.019 – 0.257) 7 0.898 
Distance to chaparral edge -0.119 (-0.270 – 0.031) 7 0.892 
Distance to headquarters -0.031 (-0.139 – 0.076) 3 0.279 
Viewshed 0.004 (-0.017 – 0.024) 1 0.107 
Ruggedness (900m2) -0.003 (-0.023 – 0.017) 1 0.092 
Slope -0.002 (-0.018 – 0.014) 1 0.092 
Distance to fence -0.0002 (-0.011 – 0.011) 1 0.087 

 
 
TABLE 3. FACTORS ASSOCIATED WITH SPATIAL ACTIVITY OF MOUNTAIN LIONS 
 
Spatial features associated with mountain lion activity, as determined from a generalized linear 
model of mountain lion Relative Activity Index at 52 camera traps. Model-averaged estimates 
and confidence intervals are reported. All covariates were standardized prior to modeling. A 
negative estimate for distance to BLM boundary means that mountain lion activity increased 
closer to BLM land. The reference value for the vegetation layer is chaparral, so negative 
estimates mean that mountain lions were less active in woodland and grassland as compared to 
chaparral. 
 
Covariate Estimate (with 95% 

Confidence Interval) 
Number of 
Top Models 
(<2 ∆AICc) 
Present 

Relative 
Importance 

Intercept -0.001 (-0.002 – 0.001) 2 1.000 
Vegetation = Woodland -0.010 (-0.014 – -0.007) 2 1.000 
Vegetation = Grassland -0.009 (-0.012 – -0.005) 2 1.000 
Distance to BLM boundary -0.001 (-0.002 – 0.001) 1 0.655 
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SUPPLEMENTARY FIGURE 1. HISTOGRAMS OF MODELED HUNTER RISK AND MOUNTAIN LION 
ACTIVITY 
 
Histograms showing the distribution of cell values of (A) modeled hunter risk and (B) modeled 
mountain lion activity in the study area, after rasters have been standardized. Dashed red lines 
indicate the cut points used to distinguish between low and high risk.  
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SUPPLEMENTARY FIGURE 2. SPATIAL PATTERNS OF HUNTER ACTIVITY 
 
Kernel density estimates of hunter activity, based on GPS tracking of hunters from 2015-2017. 
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SUPPLEMENTARY FIGURE 3. HUNTER HARVEST TIMES 
 
Kernel density distributions representing the timing of deer harvest by hunters from 2015-2017 
(n = 32 kills), based on iGotU GPS data. Deer are exclusively harvested by hunters during the 
day. Most deer are harvested around dawn, with a smaller peak around noon.  
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SUPPLEMENTARY FIGURE 4. DOE ACTIVITY IN RELATION TO HUNTING RISK IN SPACE AND TIME 
 
The Relative Activity Index (RAI) of does was similar in the periods before, during, and after the 
hunt, and in areas of high and low hunting risk. The dark horizontal line indicates the median 
RAI across camera sites, the boxes represent lower and upper quartiles, and the whiskers 
represent minima and maxima (excluding outliers, which are shown as points). 
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SUPPLEMENTARY FIGURE 5. DEER AND MOUNTAIN LION ACTIVITY 
 
Deer RAI was slightly higher at cameras in areas of high mountain lion activity (n=7) than at 
cameras of low mountain lion risk (n=29). This difference was not statistically significant. 
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Chapter 4. The influence of human disturbance on wildlife nocturnality 
 
A version of this chapter has been previously published and is reproduced here with kind 
permission of the co-authors. 
 
Gaynor, K. M., Hojnowski, C. E., Carter, N. H., & Brashares, J. S. 2018. The influence of human 
disturbance on wildlife nocturnality. Science, 360, 1232–1235. 
 
ABSTRACT 
 
Rapid expansion of human activity has driven well-documented shifts in the spatial distribution 
of wildlife, but our effects on the temporal dynamics of animals have rarely been quantified. We 
examined anthropogenic impacts on mammal diel activity patterns, conducting a meta-analysis 
of 76 studies of 62 species from 6 continents. Our global study revealed a strong effect of 
humans on daily patterns of wildlife activity. Animals increased their nocturnality by an average 
factor of 1.36 in response to human disturbance. This finding was consistent across continents, 
habitats, taxa, and human activities. As the global human footprint expands, temporal avoidance 
of humans may facilitate human-wildlife coexistence. However, such responses can result in 
dramatic shifts away from natural patterns of activity, with consequences for fitness, population 
persistence, community interactions, and evolution. 
 
INTRODUCTION 
 
The global expansion of human activity has had profound consequences for wildlife. Research 
has documented the effects of habitat destruction and defaunation on species and ecosystems 
(Dirzo et al. 2014), but the indirect or non-lethal pathways through which humans alter the 
natural world have largely escaped quantification. Human presence can instill strong fear in wild 
animals, which may adjust their activity to avoid contact with humans (Frid and Dill 2002). As in 
natural predator-prey systems, such risk avoidance can have important non-lethal effects on 
animal physiology and fitness, affecting demography and triggering trophic cascades (Preisser et 
al. 2005).  

The study of fear effects on animals has focused mainly on spatial avoidance, propelled 
by rapid advances in wildlife tracking, remote sensing, and computational methods (Frid and Dill 
2002, Tucker et al. 2018). However, as the human footprint expands (Venter et al. 2016), there 
are fewer areas where animals can seek spatial refuge from people. In places where wild animals 
co-occur with humans, animals may minimize risk by separating themselves in time rather than 
in space (Kronfeld-Schor and Dayan 2003). Temporal partitioning is a common, even intrinsic, 
feature of ecological communities, shaping spatiotemporal patterns of predation and competition 
(Carothers and Jaksić 1984, Kronfeld-Schor and Dayan 2003, Lesmeister et al. 2015). Here we 
show that humans, as a diurnal apex “super-predator,” (Clinchy et al. 2016) are driving increases 
in nocturnal activity across diverse mammalian taxa.  
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METHODS 
 
To quantify temporal shifts in wildlife activity in response to humans, we conducted a meta-
analysis of published literature on the activity of mammals across gradients of human 
disturbance. Our dataset included 141 effect sizes for 62 mammal species, representing 21 
families and 9 orders, and spanned 6 continents (Figure 1). We restricted our analysis to 
medium- and large-bodied mammals (>1kg in body size (Jones et al. 2009)), given their large 
space needs, potential for conflict with humans, and high levels of behavioral plasticity, and 
because data were widely-available on their 24-hour activity patterns. Within each study, we 
compared animal activity in low and high human disturbance treatments. We classified areas, 
time periods, or individual animals as being associated with low or high disturbance based on 
categorical descriptions of the study system, or binned distance or elapsed time from an 
anthropogenic disturbance.  

For each species in each study, we calculated the Risk Ratio (RR) as a measure of effect 
size. We compared the percentage of activity that occurred at night (as measured by motion-
activated cameras, telemetry devices, and direct observation) at sites or during seasons of high 
human disturbance (Xh) to nighttime activity under low disturbance (Xl), with RR = ln(Xh/Xl)). 
A positive RR indicated a relatively greater degree of nocturnality in response to humans, while 
a negative RR indicated reduced nocturnality. We used meta-analytical random effects models to 
estimate the overall effect of human disturbance on nocturnality and to compare responses across 
types of human disturbance, species traits, habitats, continents, and study methods. We also used 
multivariate models to explore the relative importance of these factors using an information-
theoretic approach. 
 
RESULTS 
 
Our analysis revealed a striking increase in nocturnal activity. Overall, mammal nocturnality 
increased by a factor of 1.36 [95% confidence interval: 1.23-1.51] in areas or time periods of 
high human disturbance relative to low-disturbance conditions. For example, an animal that 
typically split its activity evenly between the day and night would increase its proportion of 
nocturnal activity to 68% of total activity near human disturbance. Of the 141 effect sizes, 83% 
corresponded to an increase in nocturnality in response to humans (Figure 1b). This finding 
indicates a significant, widespread increase in nocturnality among mammals living alongside 
people.  

Our analysis spanned a wide range of human activities associated with diverse stimuli 
representing different levels of risk to wildlife, including lethal activities (e.g., hunting, 
retaliatory persecution), non-lethal activities (e.g., hiking, natural resource extraction), and 
human infrastructure (e.g., urban development, roads, agriculture). There was a significant 
increase in nocturnality in response to all forms of human presence (Figure 2), signaling the 
robustness of our findings. Surprisingly, non-lethal human activities generated similar shifts in 
wildlife diel patterns as lethal activities (Figure 2), suggesting that animals perceive and respond 
to humans as threats even when they pose no direct risk.  

We expected temporal responses of wildlife to vary across species, given interspecific 
differences in biology such as variation in morphology and behavior. Body sizes of the 63 
species analyzed ranged from the common opossum (Didelphis marsupialis, 1.13 kg) to the 
African elephant (Loxodonta africana, >3,500 kg). Mammals of all body size classes showed a 
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strong response to human activity, although there was a slight trend toward a greater response 
among larger-bodied species (Figure 2), perhaps because they are more likely to be hunted and 
harassed or because their space needs force them into more frequent contact with people. Across 
trophic levels, species also exhibited similar responses to human activity (Figure 2). Even apex 
carnivores, which from an evolutionary perspective have typically faced little or no predation 
risk from other species, responded to humans by becoming more active at night. Species that are 
typically diurnal showed an increase in nocturnality, and even crepuscular and nocturnal species 
became more strongly nocturnal around humans (Figure 6a). Human activity increased wildlife 
nocturnality across continents and habitat types (Figure 6b,c). Study method (camera trap, 
telemetry, or direct observation), human disturbance treatment (space or time), and continent 
were included as predictors of effect size in the best multivariate models (Tables 3, 4). 
 
DISCUSSION 
 
The absence of increased nocturnal activity by wildlife in many of the studies examined does not 
necessarily indicate an absence of human impact. Differences in age, sex, reproductive status, 
and personality may shape responses and mask patterns at the population level (Hertel et al. 
2017). For example, in one population of brown bears (Ursus arctos), human recreation induced 
temporal shifts among adult males that created additional daytime feeding opportunities for 
females, which are often otherwise outcompeted by males for access to resources (Nevin and 
Gilbert 2005). Alternatively, ecological and morphological constraints may limit behavioral 
plasticity, causing individuals to remain active during the daytime in the presence of humans, 
thereby incurring the cost of increased stress or energetically-expensive anti-predator behaviors 
(Gill et al. 2001). Animals living alongside humans in disturbed ecosystems may face additional 
constraints (e.g., limited food resources) that limit their ability to respond temporally (Martin et 
al. 2010). At the community level, strictly diurnal species may also entirely avoid areas of human 
activity, opening niches for more nocturnal competitors, including invasive species (Huijbers et 
al. 2013).  

In addition to changing diel patterns of activity in response to human disturbance, 
wildlife species may alter temporal patterns of specific behaviors. During the day, animals often 
choose more protected habitats or microhabitats in areas of human disturbance (Dupke et al. 
2016), or more strongly avoid anthropogenic features like roads and buildings (Morrison et al. 
2014, Stabach et al. 2016). Some species also modify daytime and nighttime movement speed 
and tortuosity (Oriol-Cotterill et al. 2015) and temporal patterns of anti-predator behavior like 
vigilance (Sönnichsen et al. 2013). Furthermore, in addition to shifting activity from the day to 
the night, animals often decrease their overall activity throughout the 24-hour period in response 
to human disturbance, spending more time resting and less time foraging or engaging in other 
fitness-enhancing behaviors (van Doormaal et al. 2015).  

We assert that fear of humans is the primary mechanism driving the increase in wildlife 
nocturnality, given its prevalence across activity types, and the widespread evidence that 
mammals perceive and respond to risk from people (Frid and Dill 2002, Tucker et al. 2018). In 
some of the studies included in our analysis, fear of humans may interact with other factors, such 
as food provisioning (e.g., anthropogenic food sources like livestock, crops, and food waste), to 
drive increased nocturnal activity (rather than spatial avoidance) by generalist species in areas of 
human disturbance (Beckmann and Berger 2003, Valeix et al. 2012). Furthermore, nighttime 
light cues or increased visibility around permanent human infrastructure may also promote an 
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increase in nocturnal activity in these areas (Dominoni et al. 2016). However, for animals wary 
of humans or more fearful of predators in lit areas, anthropogenic light may also be perceived as 
a source of risk, and thus may limit the magnitude of a shift to nocturnality (Longcore and Rich 
2004). 

The global increase of nocturnality among wildlife in human-dominated areas 
demonstrates the high degree of behavioral plasticity of animals in a human-altered world, with 
great implications for ecology and conservation (Figure 3). On the positive side, temporal 
partitioning may facilitate human-wildlife coexistence at fine spatial scales and effectively 
increase available habitat for species that are able to adjust (Carter et al. 2012). The separation of 
humans and wildlife in time, if not space, may also limit contact rates between people and 
dangerous animals and therefore reduce some forms of negative encounters between the two, 
such as disease transmission and attacks on people. In situations where humans pose a lethal 
threat to wildlife, increased nocturnality may be advantageous to individual animals and has been 
linked to increased probability of survival (Murray and St Clair 2015). In this case, increased 
mortality among more diurnal individuals may even drive selective pressure for behavioral 
plasticity and nocturnal activity (Murray and St Clair 2015). 

While human-wildlife coexistence may be a positive outcome of increased nocturnal 
activity of wildlife, there are also potentially negative and far-reaching ecological consequences 
of this shift. Humans may impose significant fitness costs on individual animals, analogous to 
predation risk effects in predator-prey systems, in which costly anti-predator behavior 
compromises prey reproduction and survival and alters trophic interactions (Creel and 
Christianson 2008). An increase in nocturnality may also eventually alter evolution through 
selection for morphological, physiological, and behavioral adaptations to nighttime activity. The 
human “super-predator” has already been implicated in evolutionary changes through selective 
harvest (Darimont et al. 2009), but, as with other predators (Preisser et al. 2005), the non-lethal 
effects of humans may have an even stronger influence on fitness and evolutionary trajectories. 

Risk effects induced by a temporal response to human presence are expected to be 
particularly strong, as an increase in nocturnal activity can cause mismatches between 
morphology and environment for historically diurnal species. The diel cycle provides a reliable 
set of environmental cues against which ecological and evolutionary processes play out (Gaston 
et al. 2013). Behavior at different times of the diel cycle influences and is influenced by 
morphology (e.g., corneal size, (Schmitz and Motani 2010), physiology (e.g., opsin 
proteins(Zhao et al. 2009), and ecology (e.g., group-living, predation risk(Stankowich et al. 
2014). Although most mammals possess some sensory adaptations to nighttime activity due to 
our nocturnal mammalian ancestors, many species have evolved traits that optimize diurnal 
behavior (Hall et al. 2012, Maor et al. 2017). When active at other times, diurnally-adapted 
animals may suffer from reduced hunting and foraging efficiency, weakened anti-predator 
strategies, disruption of social behavior, poor navigational capacity, and higher metabolic costs, 
all of which can compromise reproduction and survival (Tuomainen and Candolin 2010, Sih 
2013).  

By altering typical activity patterns in some wildlife species, human disturbance initiates 
behaviorally-mediated trophic cascades and transforms entire ecological communities (Werner 
and Peacor 2003, Schmitz et al. 2004). Fear-based behavioral responses by apex predators to 
humans might diminish their ability to hunt and thus perform their ecological role at the top of a 
trophic web (Ordiz et al. 2013). Animals that are increasingly nocturnal may drastically alter 
their diets towards prey or forage that are more accessible at night, reshaping lower trophic levels 
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(Ordiz et al. 2017). Predators may also abandon kills near human settlements in the daytime, 
resulting in increased overall predation rates (Smith et al. 2015). Human-induced increases in 
nocturnality among prey species can also increase their vulnerability to nocturnal predators 
(Kilgo et al. 1998). Differential responses to human disturbance among mammal species also 
alter patterns of predation and competition. Predators may increase nocturnality in response to 
humans, creating temporal human shields, in which a prey species will then decrease 
nocturnality near human disturbance to avoid predation, analogous to spatial human shields 
(Berger 2007, Muhly et al. 2011). Alternatively, some prey species may instead seek out human-
dominated areas at night to escape nocturnal predators that spatially avoid humans (Atickem et 
al. 2014).  

Human-induced change in diel activity represents a growing field of inquiry, as 
evidenced by the large number of studies in our meta-analysis. However, very few studies have 
examined the individual, population, or community-level consequences of these behavioral 
changes. Given the widespread nature of increased nighttime activity, there is ample opportunity 
and need to study not just the magnitude of this effect but also its consequences for individual 
fitness, species interactions, and natural selection. Additional research and synthetic analyses are 
also needed for non-mammalian taxa, which may also exhibit diel shifts in response to humans 
(Burger and Gochfeld 1991).  

As research on the pattern and consequences of increased nocturnality advances, we urge 
similar progress be made incorporating knowledge of temporal dynamics in conservation 
planning. Currently, spatial ecology informs commonly-used land-planning tools (Pressey et al. 
2007), but new tools are needed that explicitly address temporal interactions. Approaches might 
include diurnal “temporal zoning,” analogous to spatial zoning, that would restrict certain human 
activities during times of the day when species of conservation concern are most active or when 
the likelihood of negative human-wildlife encounters are highest. Similar strategies already 
restrict human activity at certain times of the year, such as during breeding seasons (Larson et al. 
2016). Systematic approaches to understanding and managing temporal interactions between 
humans and wildlife can open up new domains for conservation in an increasingly crowded 
world.  
 
EXTENDED MATERIALS AND METHODS 
 
Literature search 
 
To quantify the effects of human disturbance on mammal activity patterns, we conducted a meta-
analysis of data from published and grey literature (Figure 4). We used the following search 
terms (matching title, abstract, and/or keywords): ((activity OR temporal OR diel OR nocturnal* 
OR diurnal* OR "time of day") AND (human OR people OR anthropogenic) AND (wildlife OR 
mammal* OR animal* OR herbivore* OR ungulate* OR carnivore* OR *predator*)).  

We searched the published scientific literature using the ISI Web of Science database 
(Research Areas: Environmental Sciences & Ecology and Zoology), including peer-reviewed 
and grey literature and publications in all languages (with English abstracts). To identify 
unpublished studies, we also searched the ProQuest Dissertations & Theses database. We sorted 
these results by relevance and reviewed the first 700 dissertation titles. We also searched Google 
Scholar, and our review of the first 500 results (sorted by relevance) did not reveal any studies 
that had not been already identified on Web of Science, nor did it include any studies from the 
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unpublished, grey literature. We searched Google with a variety of search terms as well, but no 
relevant scientific publications appeared in the first 100 results of any searches. 

To broaden our search, we also used a “snowball” method, in which we reviewed the 
references of all included papers, and used the ISI Web of Science database to identify papers 
that cited included papers. This snowball method yielded several studies from the unpublished, 
grey literature. 

 
Inclusion criteria 
 
We scanned the abstracts of all studies that referenced some aspect of wildlife ecology in the 
title. When the abstract mentioned human activity and/or diel activity patterns of mammals, we 
scanned the full paper to determine whether it met the inclusion criteria. We included all studies 
that presented data on the day and night activity of at least one mammal species (body size >1kg) 
across a gradient of human activity that enabled a dichotomous distinction between a control 
(low human activity) and treatment (high human activity). 
 Ultimately, we included a very small percentage of studies identified in the initial search 
(Figure 4), as many of them failed to meet our inclusion criteria. We found that using more 
specific, restrictive search terms often excluded relevant references, so we chose to cast a wider 
net. However, this approach required us to scan and reject the titles and abstracts of a large 
number of papers, many of which were ultimately irrelevant to the meta-analysis. 

Methods for studying animal activity included camera traps, GPS or VHF telemetry, or 
direct observation. Recent research suggests that camera traps and telemetry provide comparable 
measures of diel activity pattern (Lashley et al. 2018). Gradients of human activity included 
distinct study areas or study time periods with different degrees of anthropogenic disturbance, or 
a mosaic of land use types within the study area that were subject to different degrees of 
disturbance. We included studies with continuous variation in human activity that could be 
binned into low and high activity categories. We included studies of single species as well as 
those of multiple species. For single-species studies that used camera traps, we contacted the 
authors and requested unpublished data on non-target species to reduce potential publication 
bias. 
 
Extraction of nocturnality data 
 
For each species in each study, we determined nocturnality (the percentage of activity that 
occurred at night) in the high human disturbance treatment (𝑋"High) and low human disturbance 
contrast (𝑋"Low). We adopted the definition of “active” used in each original study. Activity 
measures included movement in front of motion-activated cameras, accelerometers on telemetry 
devices, radio signals from telemetry observations, behavioral records from direct observation, 
distance traveled, and, when no behavioral data were available, presence in a given area. We 
conducted supplementary analyses excluding the 12 studies that only examined presence (rather 
than activity) to confirm that they did not bias our results. 

To calculate nocturnality, we recorded the total number of daytime activity and nighttime 
activity observations in areas of high and low human disturbance in a 2x2 contingency table: 
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 Night Day Total 
High Human 
Disturbance OHighNight	 OHighDay	 OHighNight	+	OHighDay	=	OHigh	

Low Human 
Disturbance OLowNight	 OLowDay	 OLowNight	+	OLowDay	=	OLow	

 
We determined observation counts based on statistics reported in the published text or tables, 
using counts, means, and sample sizes to calculate the number of observations for each 
condition. When the data were not reported in the text, we extracted data from figures using 
WebPlotDigitizer (http://arohatgi.info/WebPlotDigitizer/). If any of the four cells in the 
contingency table had a value of zero, we added a small value (0.5) to each of the cells, as is 
customary for the calculation of risk ratios in meta-analysis to avoid issues arising from division 
by zero (Viechtbauer 2010). This was only necessary for 5 (3.5%) of the 141 data sets, and each 
only had one cell with a zero value.  

For each study, we pooled observations from each human disturbance condition together 
in a single contingency table to calculate 𝑋"High and 𝑋"Low as follows: 

𝑋"3456 =
𝑂𝐻𝑖𝑔ℎ𝑁𝑖𝑔ℎ𝑡
𝑂𝐻𝑖𝑔ℎ

																			𝑋">?@ =
𝑂𝐿𝑜𝑤𝑁𝑖𝑔ℎ𝑡
𝑂𝐿𝑜𝑤

	 

 
Defining day vs. night 
 
If the original study summarized data by day versus night, we followed the definitions of day and 
night used by the authors. If data were summarized hourly or provided in raw format, we defined 
day as the time period between sunrise and sunset, and night as the time period between sunset 
and sunrise. We identified sunset and sunrise times for the reported study location using the 
website: https://www.timeanddate.com/sun/. If the date of each observation was provided, we 
used date-specific sunrise and sunset times and classified each observation or binned hour of 
observations as day or night. Otherwise, we used the average sunrise and sunset times during the 
reported study period at the study location. If authors classified some observations crepuscular, 
we reclassified those observations as day or night based on the sunrise and sunset criteria. If this 
reclassification was not possible, we excluded crepuscular observations from analysis. 
 
Defining low vs. high human activity 
 
For each study site, we classified areas, time periods, or individual animals as associated with 
“low” and “high” human activity. In most cases, we followed classifications made by authors. In 
some cases, authors did not explicitly differentiate between low and high areas or time periods of 
human activity, instead typically either expressing human activity as a continuous variable or 
recognizing more than two categories of disturbance. In these cases, we classified areas, time 
periods, or individual animals as low or high human activity based on descriptions of the study 
system in the publication, or based on binned distance or elapsed time from an anthropogenic 
disturbance. The spatial and temporal scale of classification varied across studies. Examples of 
low vs. high human activity included: areas without vs. with recreation or hunting; inside vs. 



 61 

outside of a protected area; far vs. near from settlement or roads; non-hunting vs. hunting season; 
before vs. after the construction of infrastructure.  
 
Additional meta-data extraction 
 
For each study, we recorded information about methods and relevant characteristics of the site 
and ecosystem. We recorded the study location (latitude, longitude, country, and continent). If 
authors did not provide the exact latitude and longitude, we identified the approximate 
coordinates using site descriptions, figures, and Google Maps. If the study included multiple 
sites, we identified the approximate center point for all sites used. We classified the habitat, as 
described in the publication, into one or more of the following broad habitat categories: forest, 
savanna, grassland, or desert. 

We recorded all types of human activities that were reported in the study system and that 
varied in magnitude between the low and high activity treatments. For each species in each 
study, we further classified human activity as lethal (hunting or lethal persecution of the target 
species) or non-lethal. For studies in which activity varied over space (rather than time period), 
we recorded the distance between the low and high human activity sites in each study. We also 
noted when areas of low and high activity were adjacent or arranged in a mosaic.  
 For each species represented in the meta-analysis, we determined the taxonomic 
classification, body size, trophic level, and typical activity pattern using the PanTHERIA 
database (Jones et al. 2009). We followed the taxonomy of Wilson & Reeder 2005 (Wilson and 
Reeder 2005), unless species had been reclassified and were only present in the database based 
on Wilson & Reeder 1993(Wilson and Reeder 1993). When information was unavailable in the 
PanTHERIA database, we extracted data from Animal Diversity Web (Myers et al. 2018) or used 
PanTHERIA data for closely-related congeners.  
 We classified the general methods that each study used to measure animal activity 
(camera trap, telemetry, or observation), and the specific measures of activity (direct observation, 
activity sensor, movement on camera, distance moved, presence). We classified each effect size 
as low, medium, or high quality, based on the study design to determine potential effects of study 
quality on the observed result. Low quality studies had < 10 individual animals in the study, < 20 
observation sites (including camera trap locations), or limited information about sample size. 
Medium quality studies had 10-19 individual animals in the study or 20-99 observation sites. 
High quality studies had > 20 individual animals in the study or >100 observation sites. These 
classifications resulted in a roughly even distribution of studies across bins. To supplement this 
study quality analysis, we also split studies of each general study method into quartiles based on 
sample size, and classified each effect size by quality quartile (Q1, Q2, Q3, and Q4). 
 
Data sources 
 
Our initial ISI Web of Knowledge search yielded 7,610 references and the ProQuest search 
yielded 700 references, with an additional 50 identified from the snowball citation search (Figure 
4). We ultimately included 76 of these papers in the meta-analysis. There was a mean (+ SD) of 
1.91 (+ 1.78) species per study (range = 1 to 8 species), with a total of 62 species represented 
across studies. There was a total of 141 effect sizes included in the meta-analysis. For two 
studies, the results were compared to those from separate publication with a different degree of 
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human activity; in these instances, we combined data from both studies to calculate effect sizes 
for the meta-analysis after determining that methods were comparable. 
 
Effect size calculation 
 
We calculated an effect size for each species in each study (studies of multiple species therefore 
yielded multiple effect sizes). We calculated log risk ratios (RR) as a measure of effect size 
(Figure 5), where RR is the ratio of mean nocturnality at sites or during time periods of high 
human disturbance (𝑋"High) to mean nocturnality in low disturbance locations or temporal periods 
(𝑋"Low): 

 

RR=	ln G
XHigh""""""
Xlow""""" I 

A positive risk ratio (RR > 0) represents a shift to increased nighttime activity (and decreased 
daytime activity) in areas of high human activity. A negative risk ratio (RR < 0) represents a shift 
to decreased daytime activity (and increased nighttime activity) in areas of high human activity. 
To facilitate interpretation of our results, we back-transformed mean effect sizes and converted 
unlogged risk ratios to percentages to determine the percent shift towards nocturnality in areas of 
high human activity. 
 
Calculating sampling variance of effect sizes 
 
We calculated variance as follows, where O represents the total number of observations in the 
2x2 contingency table above (Borenstein et al. 2008): 

Variance(RR)=G
1

OHighnight
-
1
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1
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For studies that used camera traps or direct visual observation, each independent 
detection of a species was counted as one observation for the purposes of calculating variance. 
Definitions of independence varied across studies, but when possible, we used raw data to define 
independence as >1 hour between sightings or photographs (camera trigger events).  

For telemetry studies, we counted each active GPS or VHF fix as an observation. Given 
that fix rate fixes are spatiotemporally autocorrelated, we subsampled high-fix rate data to create 
a 1-hour inter-fix interval. When we had access to raw data, comparisons of our results with 
analyses of the full data set indicated that subsampling did not change the effect size but did 
reduce sample sizes for observations and increased associated estimates of variance, for a more 
conservative meta-analysis. Finally, when fix intervals differed between nighttime and daytime 
data, we subsampled the period with more fixes to standardize data collection effort. 
 
Data analysis 
 
To calculate an overall mean effect size, we used a random effects linear model in the metafor 
package in R (Viechtbauer 2010). We weighted each effect size by the inverse of its variance, 
and included study and species as random effects to account for non-independence. For the 



 63 

purposes of modeling random effects, we considered publications using the same data set from 
the same study area to be part of the same study. We also subsampled the data to compare 
overall effects for each type of human activity, trophic level, body size, habitat, continent, and 
typical activity pattern (Figure 6).  

Finally, we constructed mixed effects models with random and fixed effects to evaluate 
the impacts of ecological, geographical, anthropogenic, and methodological variables on effect 
sizes (see list of variables and explanations in Table 1). We used a forward stepwise model 
selection process based on AIC (Table 2). The best model included study and species as random 
effects, and body mass quartile, human disturbance treatment (space vs. time), study quality 
(camera trap, telemetry, and direct observation), and continent as fixed effects (Table 3). 

 
Publication bias and testing robustness of results 
 
We took several steps to address potential publication biases in the literature. When conducting 
the literature search, we used a broad search strategy to locate studies of wildlife activity across 
gradients of human disturbance. The majority of the studies included in the meta-analysis 
reported diel activity patterns alongside many other patterns of movement and behavior, and a 
temporal shift was rarely the primary study objective or key finding. We therefore expected less 
publication bias towards findings of increased nocturnality around human activity. For all 
camera trap studies that reported results for only a single species, we contacted the authors to 
request unpublished data on additional species that were captured on camera. 

We conducted separate analyses using effect sizes only from studies of single species and 
only from studies of multiple species. As expected, the increase in nocturnality in response to 
humans was slightly greater for datasets that focused on a single species (1.41, 95% Confidence 
Interval: 1.27-1.58, n = 50) compared to those that included multiple species (1.31, 95% 
Confidence Interval: 1.13-1.53, n = 91). For both types of study, the increase in nocturnality in 
areas of high human activity was significant. Comparing single versus multiple study species 
indicated that estimates of effect size were not significantly different, nor were they different 
from the overall outcome when all effect sizes were included (1.36, 95% Confidence Interval: 
1.23-1.51). 

To further address potential bias introduced by phylogenetic relationships among the 
included species, we ran two additional meta-analytic models including either family or order as 
random effects in the model. These models performed far more poorly than those that instead 
only included species as a random effect. The AIC for the overall meta-analytic model was 442 
when family was included and 566 when order was included, compared to an AIC of 171 for the 
model that includes species only.  
 We assessed publication bias using funnel plots, which mapped residuals for RR against 
the inverse of the variance (Figure 7). We conducted an Egger test to measure the asymmetry of 
these funnel plots; these tests revealed a correlation between observed outcomes (RR) and the 
corresponding sampling variances, suggesting a publication bias (z = 3.86, p = 0.0001). 
However, the Rosenberg’s fail-safe number – the estimated number of  unpublished studies that 
would have to be included in the meta-analysis to change the significance of the result – was 
very large (1,597,688, p < 0.0001) (Rosenthal 1979, Viechtbauer 2010). This number represents 
the estimated number of unpublished studies that would have to be included in the meta-analysis 
to change the result, suggesting that our results are robust to publication bias.  
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Results were robust to study methodology and did not vary with study quality, the number of 
species in the study, general study method, measure of animal activity, or disturbance 
comparison type (Table 4). All methods yielded effects with the same directionality (increased 
nocturnality in response to humans) and with similar magnitudes to the overall global effect. 
 
ACKNOWLEDGEMENTS 
 
We thank the authors of all studies included in this meta-analysis, especially those who provided 
additional data: A. Baker, P. Cruz, F. Dalerum, P. Díaz-Ruiz, T. Lynam, M. Murphy-Mariscal, 
D. Ngoprasert, J. Nix, V. Oberosler, M. Reilly, L. Rich, Y. Wang, R. Wheat, and. T. Wronski. 
Special thanks to C. Burton, T. Forrester, W. McShea, R. Kays, R. Steenweg, and J. Whittington 
for thoughts on an earlier version of this study and to N. Schramm for data processing assistance. 
E.A. Lacey, A.D. Middleton, M.E. Power, the Brashares Group at UC Berkeley, and three 
anonymous reviewers provided helpful feedback and edits. K.M.G. and C.E.H. were funded by 
the NSF-GRFP, and J.S.B. was funded in part by NSF-CNH 115057.  
 
  



 65 

FIGURE 1. MAMMALS BECOME MORE NOCTURNAL TO AVOID HUMANS THROUGHOUT THE 
WORLD.  
 
(A) Map illustrating the locations of the 76 studies included in the meta-analysis. (B) Paired 
measures of nocturnality (percentage of activity that occurs in the night) in areas of high human 
disturbance (red points; Xh) and low human disturbance (green points; Xl), displayed for each 
species in each study (n = 141; ordered from high to low Xl). The relative change in nocturnality 
in response to human disturbance was used to calculate effect size (RR) for the meta-analysis, 
where RR = ln(Xh/ Xl). 
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FIGURE 2. INCREASE IN LARGE MAMMAL NOCTURNALITY IN RELATION TO HUMAN ACTIVITY 
TYPES, TROPHIC LEVEL, AND BODY SIZE.  
 
Points represent the estimated overall effect size (with 95% confidence intervals) for each 
category. Positive values indicate a relative increase in nocturnal activity in areas of higher 
human disturbance. The number of effect sizes in each category is indicated in parentheses 
(human activity categories were non-exclusive). Mammals exhibit a significant increase in 
nocturnal activity in response to all types of human activity, with similar patterns across trophic 
levels and body sizes. Back-transforming the overall (mean) RR (0.31, CI: 0.21-0.41) indicates 
that nocturnality increased by a factor of 1.36 (CI: 1.23-1.51) in response to human activity. 
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FIGURE 3. CASE STUDIES DEMONSTRATE THE DIVERSE CONSEQUENCES OF HUMAN-INDUCED 
INCREASES IN NOCTURNALITY.  
 
(A) red brocket deer (Mazama americana) and subsistence hunting, Atlantic Forest, Argentina 
(Di Bitetti et al. 2008); (B) coyote (Canis latrans) and hiking, Santa Cruz Mountains, California, 
USA (Wang et al. 2015, Smith et al. 2018); (C) sable antelope (Hippotragus niger) and sport 
hunting, Hwange National Park, Zimbabwe (Crosmary et al. 2012a); (D) tiger (Panthera tigris) 
and forest product collection and farming, Chitwan National Park, Nepal (Carter et al. 2012); (E) 
wild boar (Sus scrofa) and urban development, Cracow and Białowieza Forest, Poland 
(Podgórski et al. 2013). Green bars represent nocturnality (percentage of total activity that occurs 
in the night) in areas of low human disturbance (Xl), and red bars represent nocturnality in high 
human disturbance (Xh). 
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FIGURE 4. PRISMA (PREFERRED REPORTING ITEMS FOR SYSTEMATIC REVIEWS AND META-
ANALYSES) FLOW CHART ILLUSTRATING THE PROCEDURE FOR IDENTIFYING AND INCLUDING 
RELEVANT PUBLICATIONS. 
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FIGURE 5. FOREST PLOT OF ALL EFFECT SIZES AND CONFIDENCE INTERVALS 

Forest plot of 141 effect sizes (Risk Ratio) in blue, with 95% confidence intervals (CI) indicated. 
Positive values indicate a relative increase in nocturnal activity in areas of higher human 
disturbance. The green diamond represents the estimated global overall effect size (0.31; CI: 
0.21-0.41), and the width of the diamond represents the 95% CI. Back-transforming the overall 
RR indicates that nocturnality increased by a factor of 1.36 (CI: 1.23-1.51) in response to human 
activity. 
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FIGURE 6. EFFECT SIZES ACROSS (A) CONTINENTS, (B) HABITAT TYPES, AND (C) TYPICAL 
ACTIVITY PATTERNS.  

Squares denote estimated effect sizes for each category; horizontal lines depict 95% Confidence 
Intervals. Sample sizes (number of effect sizes) are shown in parentheses. 

 

 
 
  

Mix

Savanna

Forest

South America

North America

Europe

Asia

Africa

Nocturnal

Crepuscular

Diurnal

(8)

(31)

(99)

(18

(61)

(16)

(24)

(25)

(19)

(107)

(N=20)

0.0 0.4 0.8

Risk Ratio
-0.4

A)

B)

C)



 71 

FIGURE 7. FUNNEL PLOTS DEPICTING THE RELATIONSHIP BETWEEN THE EFFECT SIZE (RISK 
RATIO) AND (A) STANDARD ERROR, (B) SAMPLING VARIANCE, (C) INVERSE STANDARD ERROR, 
AND (D) INVERSE SAMPLING VARIANCE. 
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TABLE 1. DESCRIPTIONS OF META-ANALYTIC MODEL VARIABLES  
 
These factors were tested as predictors of changes in mammalian nocturnality in response to 
human disturbance. All factors are categorical, unless otherwise indicated. 
 

Category Variable Description Justification 
Random Study Source publication Study design and methodology may influence the 

results; we therefore controlled for the study as a 
random effect. 

Random Species  Species name  We expected that populations/individuals of a given 
species would exhibit similar results across studies; 
we therefore controlled for the species as a random 
effect. 

Ecology/ 
Geography 

Trophic 
level 

Carnivore, omnivore, 
or herbivore (from 
Pantheria) 

Animals of different trophic levels face different risk 
trade-offs from human disturbance, and might 
therefore respond accordingly. For example, 
carnivores face more persecution from humans.  

Ecology/ 
Geography 

Body size 
quartile 

Quartile of average 
body mass of study 
species, in kg (from 
Pantheria) 

Larger-bodied species may face greater threats from 
humans, or perceive greater risk from human 
disturbance, and therefore respond more strongly. 
The body sizes used in this analysis do not capture 
sexual dimorphism or the range across populations, 
so we therefore used a categorical rather than 
continuous body mass measure. Four categories 
allowed for robust estimates of mean effect sizes. 
Dividing the 62 species into more bins would lead to 
the overrepresentation in bins of those species that 
were most commonly studied, limiting inference.  

Ecology/ 
Geography 

Activity 
pattern 

Typical activity 
pattern: diurnal, 
crepuscular, nocturnal 
(from Pantheria) 

Nocturnal or crepuscular species may be better able 
to increase their nocturnality in response to humans, 
while diurnal species may face greater constraints. 
However, diurnal species may also exhibit shifts of 
greater magnitude in response to humans.   

Ecology/ 
Geography 

Habitat Habitat as described in 
study: desert, forest, 
grassland, savanna, 
mix 

Habitat may influence the degree to which (and 
spatial scale at which) human disturbance is 
perceived and responded to; we expected greater 
responses in more open habitats, where the effects 
and sensory cues associated with disturbance may be 
more pervasive. 

Ecology/ 
Geography 

Continent Continent There may be continent-wide patterns in the effects 
of human disturbance on diel activity patterns in 
mammals, due to continental similarities in 
disturbance type, history of human disturbance, and 
wildlife communities. 

Human Disturbance 
type 

Broad category of 
human activity: 
activity, infrastructure, 
or both 

Animals may respond more strongly to direct human 
presence rather than infrastructure if they perceived 
humans themselves to be a threat. Furthermore, 
animals may exhibit a stronger temporal response to 
activity than infrastructure, given that human activity 
is less predictably avoidable in space.  

Human Lethality Whether subject 
animal was target of 
hunting or lethal 
persecution: yes or no 

Animals should respond more strongly to lethal 
disturbance than to non-lethal disturbance, given the 
presence of an actual threat to the animal’s life. 
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Category Variable Description Justification 
Human Human 

footprint 
(continuous) 

Average value of 
human footprint in 
10km radius around 
the center of study site 
(130) 

There may be greater effects of the human footprint 
on human-induced nocturnality in areas with a 
higher human footprint, if the magnitude of overall 
human disturbance drove the magnitude of response. 
Alternatively, effects may decrease with footprint if 
animals become habituated to humans in these areas 
and are therefore less likely to perceive them as a 
threat. 

Methods Method Broad method for 
studying animal 
activity: camera trap, 
telemetry, or 
observation 

Study method may influence the magnitude of the 
effect. For example, direct observation of animals 
may reduce the size of the effect if human observer 
presence during the night and day is perceived as a 
threat. 

Methods Activity 
measure 

Measure of animal 
activity: direct 
observation, activity 
sensor, movement on 
camera, distance 
moved, or presence 

The measure of animal activity may influence the 
magnitude of the effect size. 

Methods Number of 
species 

How many species 
were in the study 
(categorical): single or 
multiple 

Studies of a single species may be more subject to 
publication bias, and therefore have a higher effect 
size than those of multiple species. 

Methods Disturbance 
comparison 

Human disturbance 
treatment: space or 
time 

The magnitude of the change in nocturnality may be 
greater when comparing different areas than 
different time periods. When using time-for-space 
substitution, there may be lag effects, or habituation 
effects, which could weaken the observed response 
of wildlife to human activity. 
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TABLE 2. RESULTS OF META-ANALYTIC LINEAR MIXED-EFFECTS MODELS OF THE EFFECTS OF 
HUMAN DISTURBANCE ON MAMMALIAN NOCTURNALITY 
 
Tables include AIC, DAIC (difference in AIC between the model and the model with the lowest 
AIC), and Akaike weight (w) values. We used forward stepwise model selection. Here, we report 
the results of the null and full models and all models with DAIC < 10. 
 

Fixed effects Random effects AIC DAIC w 
Treatment + Continent + Method Study + Species 156.10 0 0.223 
Treatment + Continent + Method + Activity Pattern Study + Species 157.12 1.02 0.134 
Treatment + Continent + Method + Body Size Study + Species 157.22 1.12 0.127 
Treatment + Continent + Method + Lethality Study + Species 157.53 1.43 0.109 
Treatment + Continent + Method + Human Footprint Study + Species 158.12 2.02 0.081 
Treatment + Continent + Method + Number of Species Study + Species 158.16 2.06 0.080 
Treatment + Continent + Method + Trophic Level Study + Species 159.50 3.40 0.041 
Treatment + Continent + Method + Disturbance Type Study + Species 159.68 3.58 0.037 
Treatment + Continent Study + Species 160.48 4.38 0.025 
Treatment + Continent + Activity Pattern Study + Species 160.92 4.82 0.020 
Treatment + Continent + Method + Activity Measure Study + Species 161.00 4.90 0.019 
Treatment + Continent + Activity Measure Study + Species 161.23 5.13 0.017 
Treatment + Continent + Body Size Study + Species 161.74 5.64 0.013 
Treatment + Continent + Lethality Study + Species 161.96 5.86 0.012 
Treatment + Continent + Number of Species Study + Species 162.01 5.91 0.012 
Treatment + Continent + Method + Habitat Study + Species 162.13 6.03 0.011 
Treatment + Continent + Human Footprint Study + Species 162.44 6.34 0.009 
Treatment + Method Study + Species 163.33 7.23 0.006 
Treatment + Body Size Study + Species 163.62 7.52 0.005 
Treatment + Continent + Trophic Level Study + Species 163.83 7.73 0.005 
Treatment + Continent + Disturbance Type Study + Species 164.17 8.07 0.004 
Treatment Study + Species 165.64 9.54 0.002 
Treatment + Activity Pattern Study + Species 165.69 9.59 0.002 
Null model (Random effects only) Study + Species 169.77 13.67 0.001 
Full model (All variables in Table S4) Study + Species 178.97 22.87 <0.001 
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TABLE 3. STANDARDIZED COEFFICIENTS OF THE FIXED EFFECTS IN THE BEST FIT META-
ANALYTIC LINEAR MIXED-EFFECTS MODEL (AIC = 156.10) 
 
The reference levels of each fixed effect are: Treatment = Location, Method = Camera trap, 
Continent = Africa. 
 
Fixed effect Estimate SE Z p-value Lower 

95% CI 
Upper 

95% CI 
Intercept 0.1554 0.1353 1.1407 0.2540 -0.1109 0.4197 
Treatment = Time -0.3537 0.0996 -3.5510 0.0004 -0.5489 -0.1585 
Method = Observation 0.4345 0.1510 2.8780 0.0040 0.1386 0.7305 
Method = Telemetry 0.1330 0.0804 1.6548 0.0980 -0.0245 0.2905 
Continent = Asia 0.4372 0.1598 2.7365 0.0062 0.1241 0.7504 
Continent = Europe 0.0260 0.1638 0.1588 0.8738 -0.2950 0.3470 
Continent = North 
America 

0.0760 0.1445 0.5255 0.5992 -0.2073 0.3592 

Continent = South 
America 

-0.0489 0.1689 -0.2894 0.7723 -0.3799 0.2822 
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TABLE 4. COMPARISON OF RESULTS ACROSS STUDY METHODS 
 
Methods included study quality, the number of species in the study, general study method, 
animal activity measure, and disturbance comparison. Results were robust to study methodology, 
with all methods yielding effects of the same direction (increase in nocturnality in response to 
humans) and of similar magnitude. An asterisk indicates a significant increase in nocturnality in 
response to human activity. The effect sizes are presented as back-transformed RRs for ease of 
interpretation. 
 
Methodology Overall Effect 95% Confidence 

Interval 
Number of 
Effect Sizes 

Study quality (3 bins) 
Low 1.45 1.20-1.75 * 35 
Medium 1.31 1.17-1.48 * 54 
High 1.39 1.13-1.70 * 52 
Study quality (quartiles)    
Q1 (lowest) 1.45 1.20-1.75 * 35 
Q2 1.30 1.12-1.50 * 38 
Q3 1.45 1.18-1.78 * 38 
Q4 (highest) 1.28 1.05-1.57 * 30 
Species in study 
Single 1.41 1.27-1.58 * 50 
Multiple 1.31 1.13-1.53 * 91 
Study method 
Camera trap 1.29 1.13-1.46 * 98 
Telemetry 1.45 1.31-1.62 * 31 
Observation 2.19 1.33-3.62 * 12 
Animal activity measure 
Direct observation 2.00 1.32-3.03 * 14 
Activity sensor 1.40 1.18-1.66 * 17 
Movement (camera) 1.29 1.13-1.46 * 98 
Presence 1.61 1.46-1.78 * 12 
Disturbance comparison 
Location 1.42 1.28-1.58 * 127 
Time 1.17 1.03-1.33 * 14  

 
  



 

 77 

Chapter 5. Effects of human settlement and roads on diel activity patterns of 
elephants 
 
This chapter has been previously published and is reproduced here with kind permission of the 
co-authors and Wiley. 
 
Gaynor, K. M., Branco, P. S., Long, R. A., Gonçalves, D. D., Granli, P. K., & Poole, J. H. 2018. 
Effects of human settlement and roads on diel activity patterns of elephants (Loxodonta 
africana). African Journal of Ecology, 56(4), 872–881. 
 
ABSTRACT 
 
As the human footprint expands worldwide, people and wildlife are coming into greater contact, 
and areas of human activity may be simultaneously associated with risk and reward for animals. 
To avoid human threats while exploiting opportunities, animals may adjust their spatiotemporal 
activity, using areas of anthropogenic disturbance at night when people are less active. We 
combined four camera trap datasets from Mozambique’s Gorongosa National Park to evaluate 
the effects of roads and settlement on diel activity patterns of elephants (Loxodonta africana). 
We found high rates of elephant activity along the boundary of the park, where elephants can 
access cultivated crops, and along roads, which serve as movement corridors. However, 
elephants restricted their activity to the night and crepuscular periods in these areas of human 
disturbance, seeking refuge in the interior of the park away from roads and settlements during the 
day. Our findings suggest that a history of killing and antagonism has instilled a fear of humans 
in this elephant population, with implications for research, tourism, and human-elephant 
coexistence. Our study highlights the utility of camera traps in monitoring human-wildlife 
conflict and habituation and demonstrates the value of integrating disparate camera trap datasets 
for comparative analyses on landscape or even continental scales. 
 
INTRODUCTION 
 
As the human population grows exponentially and our footprint expands across the globe, people 
and wildlife are increasingly forced to share space (Hoare and Toit 1999, Venter et al. 2016, 
Jones et al. 2018). Conservation efforts have bolstered wildlife populations in many African 
protected areas (Craigie et al. 2010), and human development interventions outside of protected 
areas have promoted the growth of human populations (Wittemyer et al. 2008). People and wild 
animals are therefore coming into contact more frequently in these interfaces along protected 
areas, and encounters between humans and wildlife can have important implications for animal 
behavior, human-wildlife conflict, protected areas management, and conservation (Dickman 
2010, Tucker et al. 2018). By simultaneously monitoring the use of both natural and 
anthropogenic landscapes by wildlife, we can better understand the impacts of humans on 
wildlife populations and manage for coexistence within shared spaces. 

Wild animals often perceive humans as a threat, and therefore seek to minimize 
encounters with people (Frid and Dill 2002). This perception may sometimes be precipitated by 
actual risk, such as hunting or persecution (Ndaimani et al., 2014; Setsaas et al., 2007). However, 
animals may also exhibit generalized anti-predator strategies in response to human activity (e.g., 
tourism, settlement), especially if they have had previous negative experiences with humans 
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(Pangle and Holekamp, 2010; Stankowich 2008). Despite such perceptions of risk, animals may 
also seek out areas of human activity that provide accessible or high-quality food resources such 
as crops, livestock, or food waste (Chiyo and Cochrane 2005, Treves 2009). Thus, animals 
sometimes experience trade-offs between forage and perceived risk wherein areas of 
anthropogenic disturbance are associated with both threats from people and high-quality 
resources (Brown et al. 1999, Chiyo et al. 2011). 

Where wild animals are unable to avoid people in space due to expansive human activity, 
and especially when animals are drawn to anthropogenic resources, they may instead avoid 
people in time (Rasmussen and Macdonald 2011, Oriol-Cotterill et al. 2015). There is growing 
evidence that mammal species across the planet adjust their diel activity patterns in response to 
human activities (which occur largely during daylight hours) by becoming more nocturnal 
(Gaynor et al. 2018a). For wide-ranging and behaviorally plastic species, such adjustments may 
occur at relatively fine-scale spatiotemporal scales (Carter et al. 2012), where during the daytime 
animals seek out areas of lower human activity and at night move into human-dominated areas 
(Barnes et al. 2007, Graham et al. 2009, Valeix et al. 2009a, Gunn et al. 2014).  
 African elephants (Loxodonta africana) are an ideal species for examining the effects of 
human activity on spatiotemporal behavior because of their learning ability, flexible activity 
patterns, large home range sizes, and propensity to exploit anthropogenic resources (Boettiger et 
al. 2011, Fullman et al. 2017). Elephants also face diverse threats from humans, including 
poaching (Wittemyer et al. 2014, Ripple et al. 2015, Wasser 2015). While some elephant 
populations can take refuge in protected areas, many also forage in human-dominated 
environments (Scholssberg et al. 2018). However, elephants often leave park boundaries in 
search of additional resources, resulting in measurable changes in movement patterns (Cook et 
al. 2015, Hunninck et al. 2017) and higher stress levels (Hunninck et al. 2017). The presence of 
elephants outside of protected areas is frequently a source of human-wildlife conflict in the form 
of crop damage and threats to safety, which can disrupt human livelihoods and lead to retaliation 
against elephants (Hoare 2000, Chiyo et al. 2005, Graham et al. 2010, Chase et al. 2016). 
Elephants are an important flagship species for conservation, and are a keystone species in 
savanna ecosystems (Coppolillo et al. 2003, Pringle 2008, Coverdale et al. 2016). Nonetheless, 
elephants are also declining across the African continent (Chase et al. 2016). As the human 
population grows throughout Africa, particularly in areas with high elephant populations (de 
Boer et al. 2013), it is critical to expand our toolkit for understanding how human disturbance 
influences the behavior of this important species. With fine-scale information on the 
spatiotemporal responses of elephants to human activities, conservation practitioners can better 
plan for coexistence (Songhurst et al. 2016). 

We used data from multiple camera trap studies throughout Gorongosa National Park in 
Mozambique to quantify spatiotemporal patterns of elephant activity in close proximity to 
humans. Camera trap studies have become increasingly common for continuous monitoring and 
for observational and experimental research, as the cost decreases and software for automating 
analysis of images becomes more readily available (Burton et al. 2015, Steenweg et al. 2017). 
Moreover, because camera traps capture all species that pass by (including people) at all times of 
day, they provide a rich source of data, often beyond the initial study focus (Caravaggi 2017). 
Our study was opportunistic in that we took advantage of four unique camera trap projects 
designed for different monitoring and research purposes by different research teams in the park. 
The distinct goals of each of these projects led to differences in study design and camera 
placement, which inadvertently facilitated a larger-scale comparative study.   
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Our specific objectives were to use the camera trap data to examine the effects of (1) 
settlement and agriculture just outside of the park and (2) roads used for tourism and research 
inside the park on elephant diel activity patterns. We expected elephants to be more active in the 
interior areas of the park during the day, and show increased presence in human-dominated areas 
along the boundary of the park and in the park’s buffer zone at night to take advantage of 
cultivated crops. Due to the recent history of violence against elephants within the national park, 
both avoidance and aggressive behavior are common responses to vehicles across elephant 
families (Poole and Granli 2018). Therefore, at a finer spatial scale, we expected elephants to 
avoid the park’s roads more strongly during the day, when potential vehicle encounter rates are 
higher. By elucidating elephant activity patterns in human-altered landscapes, our research 
highlights the implications of behavioral plasticity for conservation and human-wildlife conflict 
and coexistence. 
 
METHODS 
 
Study site 
 
Gorongosa National Park (GNP) is located in Sofala Province in central Mozambique, at the 
southern extent of the Great Rift Valley (Latitude: -18.82, Longitude: 34.50). The park 
encompasses 3,770 km2 and supports a diversity of large mammal species that occupy a range of 
habitat types. The study area is characterized by Acacia-Combretum savanna woodlands and 
floodplain grasslands (Stalmans and Beilfuss 2008). Mean annual rainfall in the valley of GNP is 
700-900 mm, with a rainy season that runs from November – March and a dry season from April 
– October (Stalmans and Beilfuss 2008). Lake Urema is located in the center of the park and 
provides a permanent water source throughout the year, and inundating the floodplains of the 
valley during the wet season. There are several perennial rivers in GNP, including the Pungue 
River, which forms the southern border of the park.  

During Mozambique’s civil war (1977-1992), wildlife populations, including elephants, 
declined dramatically due to killing for meat and ivory (Vines 1991, Daskin et al. 2016). Prior to 
the war, the park was estimated to have ~2,200 elephants (Tinley 1977), reduced to <200 
individuals by 1994 (Poole and Granli 2017). Following the end of war, renewed investment in 
wildlife management has enabled populations to recover, largely through natural population 
growth. In particular, a public-private partnership between the government of Mozambique and 
the Gorongosa Restoration Project (Stalmans and Peel 2016) has facilitated considerable 
progress toward returning GNP to its former status as one of the most diverse parks in the world. 
The current elephant population in GNP is estimated to be between 567 (aerial total count, 
Stalmans and Peel, 2016) and 825 individuals (based on individual registration of adults and a 
mean ratio of 2.4:1 of immatures to adult female; Poole and Granli, 2018). As a result of their 
recent history of violence with humans, elephant family groups in GNP exhibit a high rate of 
aggressive behavior toward people and are fearful of both humans and vehicles, despite little 
evidence of elephant poaching at present (Poole and Granli 2017, 2018). 
 A variety of human activities occur within GNP, centered on the park’s core road 
network. There is a small but growing tourism operation based in Chitengo, the park’s 
headquarters, and tourist vehicles frequently travel throughout the park for wildlife viewing 
(multiple times per day during most of the year). Despite their aggression, elephants are a 
sought-after species for viewing, and tourist vehicles thus regularly seek out areas of high 
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elephant activity. There is also a large amount of research activity in the park, and researchers 
use the road network as they travel around the park to collect samples, make observations of 
animals, and set up experiments. GNP’s park rangers also use the road network, although most of 
their patrols are in remote, off-road areas based out of the park’s ranger outposts. The park gates 
are only open from sunrise to just after sunset, so the vast majority of vehicle activity is restricted 
to daytime and dusk, with the exception of some ranger activity. 
 GNP is surrounded by a 5,333 km2 buffer zone, where approximately 200,000 
subsistence crop farmers currently reside (Ministério da Terra 2016). The buffer zone is a mixed-
use area, where people are permitted to grow crops, harvest natural resources, raise livestock, 
and conduct controlled burns, along with other livelihood activities. Hunting for bushmeat and 
trophies is prohibited, and there are no roads with vehicle traffic in the buffer zone study area. 
Importantly, when asked about the problems they face living close to the national park, residents 
of the buffer zone overwhelmingly indicate that the primary issue is crop damage by elephants 
(P. Branco, unpublished data). Most crop foraging occurs along the park’s southern border, 
where GNP’s elephants are concentrated (Stalmans and Peel 2016, Poole and Granli 2017).  
  
Data collection 
 
As scientific activity in GNP has grown, several research projects have deployed camera traps to 
accomplish various monitoring and research objectives. We combined camera trap data from 
four projects to quantify elephant activity patterns in relation to human disturbance (Table 1). 
These projects included a systematic camera grid, the ElephantVoices project, the Human-
Elephant Coexistence (HEC) project, and the Gorongosa Lion Project (GLP). 

The systematic camera grid (5-km2 grid cells) was set up to monitor year-round 
spatiotemporal patterns of large mammal activity and determine landscape-level correlates of 
occupancy in the core area of the park. To maximize animal detections, cameras faced open 
areas or small game trails with signs of animal activity, all off-road.  

The ElephantVoices project used cameras to identify individual elephants and groups 
along the southern boundary of the park, and to look at patterns of access from the park to the 
Pungue River and buffer zone. Camera traps were deployed at five sites on elephant trails off of 
the Dingue-Dingue Road, which follows the southern boundary of the park. This road is 
occasionally used by park vehicles, but seldom by tourist or researcher vehicles and therefore has 
very little vehicle traffic. 

The Human-Elephant Coexistence project was aimed at understanding and mitigating 
crop damage by elephants. HEC cameras were located at 13 elephant crossing locations (>200 m 
apart) in the park’s buffer zone between the Pungue River and agricultural fields. There were 1-3 
cameras at each crossing location (<100 m from each other; combined for analysis). Although 
some camera traps were located near deterrents (e.g., beehive fences) that were constructed 
halfway through the study period, the cameras were placed in such a way that they photographed 
the elephants before they encountered these deterrents. Thus, the mitigation experiment does not 
appear to have affected diel activity patterns, although cameras in that project might have 
experienced reduced detection rates if elephants were less likely to return to those crossing 
locations after encountering deterrents.  

Finally, the Gorongosa Lion Project used camera traps opportunistically placed on roads 
to monitor the recovery of the park’s lion population. For our analysis of GLP data, we used 
images from the 21 camera traps that faced roads. All GLP images were uploaded to WildCam 
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Gorongosa, a Zooniverse citizen science platform through which untrained volunteers from 
around the world identify the species in camera trap images. We downloaded all image records 
that had been classified as an elephant by at least one of 25 volunteers (n = 6833). We reviewed 
all images classified as an elephant by 10% or more of the users and excluded all images that 
were not elephants. 

In total, data were collected from 2013 through 2017, although not all projects spanned 
this entire period. All projects used Bushnell TrophyCam camera traps with infrared sensors set 
to be triggered by motion, and detection distances and habitat types were similar across data sets. 
We reviewed all photographs to identify those with elephants (GLP photographs were first 
screened by citizen scientists). For all projects, camera traps were deployed within the park’s 
road network in the southern region of GNP, bounded by Lake Urema on the north and the buffer 
zone in the south (Figure 1). This area of the park corresponds to the area of highest human 
activity and highest elephant densities, as determined from elephant sightings during seven dry 
season aerial surveys (2010-2016) that covered all or most of the park area (Stalmans and Peel 
2016). Despite the concentration of human infrastructure, elephants remain in this area as it 
provides prime habitat and may have historically experienced lower levels of illegal poaching.  
 
Data analysis 
 
For each of the four data sets, we identified each independent observation of elephants, defined 
as an image taken >15 minutes from any other image. We chose 15 minutes based on expert 
assessment; extensive visual observations of elephant groups and examination of camera trap 
footage indicated that elephants in the same known group were rarely separated by >15 minutes 
at a given location. We considered the observation time to be the time of the first photograph. 
Combining photographs limited pseudoreplication and allowed us to compare relative activity 
rates across projects, given differences in the number of photographs taken during each trigger 
event and the delay time between trigger events. 

To quantify differences in elephant activity between the core and exterior of the park, we 
compared the grid dataset (interior) with the combined ElephantVoices and HEC datasets (edge). 
To evaluate the effects of roads on elephant diel activity patterns we compared a subset of the 
grid dataset (off-road) with the GLP dataset (on roads). To control for non-random placement of 
GLP cameras across habitat types and areas of the park, we included only the 13 grid cameras (of 
the 60 cameras) that were located within the same 5-km2 grid cell as a GLP camera.  

We used kernel density estimation to model diel activity patterns of elephants, as 
described by Ridout and Linkie (2009). We converted the times of each observation to radians to 
account for the circularity of the temporal data. To account for seasonal differences in sunset and 
sunrise time, we scaled the times so that p/2 corresponded to sunrise and 3p/2 corresponded to 
sunset. Based on the distribution of observation across the 24-hour cycle, we generated a 
smoothed non-parametric kernel density distribution of elephant activity for each project.  

We compared pairs of density distributions (interior vs. edge of park, on vs. off road) by 
calculating the temporal overlap value, d-hat. The value d-hat represents the area under the curve 
formed by taking the minimum of the two activity density distributions at each time point. A 
value of 0 indicates no temporal overlap, whereas a value of 1 indicates complete overlap. We 
used the d-hat4 formula for estimating overlap, as recommended by Ridout and Linkie (2009) for 
sample sizes >50, and calculated an approximate 95% bootstrap confidence intervals. We used 
the overlap package in R for these analyses (Ridout and Linkie 2009). Although there was an 
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uneven survey effort across projects, the sample size was >100 detections for all datasets, and 
considered to be sufficiently large for these analyses (Ridout and Linkie 2009). 

We used counts of elephant observations at each of the 99 camera sites to further 
examine patterns of elephant activity in response to human disturbance. We determined the time 
period of each observation based on the sunrise and sunset times on the day of the observation. 
We defined four diel time periods: dawn (30 min period before sunrise), day (sunrise to sunset), 
dusk (30 minute period after sunset), and night (between dusk and dawn). We also combined 
dawn and dusk detections to determine the total number of crepuscular detections.  

Based on this count data, we calculated a Relative Activity Index (RAI) for elephants at 
each camera. Daily RAI (RAID) was equal to the total number of observations divided by the 
number of trap-nights (based on the dates of deployment). We calculated mean RAID for each 
treatment (interior vs. edge of park, on vs. off road). We also calculated an hourly RAI (RAIH) 
for each of the four diel time periods, defined as the number of independent detections per trap-
hour (day: 12 hours, night: 11 hours; dawn and dusk: 0.5 hours each). 

We used generalized linear models to examine the effects of roads and settlement on 
elephant observation counts. For all models, we used a negative binomial distribution to account 
for the overdispersion of the count data. We then used Wald chi-square tests, with the Anova 
function in the car R package, to test the significance of the fixed effects on elephant activity 
(Fox and Weisberg, 2011). To compare overall numbers of elephant detections across projects 
and human disturbances, we ran separate models with fixed effects of road treatment (on vs. off) 
and settlement (park interior vs. boundary), in which the dependent variable was the overall 
count of elephant observations, and the unit of analysis was the camera site. We controlled for 
differences in camera trap sampling effort by including effort (number of trap-nights) as an offset 
in the model. To examine temporal differences, we also ran separate models for each project and 
treatment, in which we included time period as a fixed effect, camera site as a random effect, and 
effort (number of trap-hours) as an offset.  

We did not conduct any spatially-explicit analyses, given the differences in spacing of the 
camera traps. While the grid cameras were systematically deployed and >2km apart, the other 
cameras were all opportunistically placed. 

 
RESULTS 
 
The four projects generated a total of 1,983 independent elephant detection events, over a total of 
19,904 trap nights. Elephants were detected at 93 of the 99 camera sites. The number of elephant 
observations differed across the four datasets (χ2 = 47, df = 3, p < 0.0001, Supplementary Figure 
1). Elephant RAID (mean ± SD) was highest for the ElephantVoices project (0.47 ± 0.17), 
followed by the GLP (0.23 ± 0.27) and the Human-Elephant Coexistence cameras (0.10 ± 0.08). 
RAID was lowest on the grid cameras (0.06 ± 0.09).  

Distinct diel patterns of activity were evident among elephants in each of the four 
datasets (Figure 2). Elephant activity was higher at night and during crepuscular periods than 
during the day for the ElephantVoices and HEC datasets (EV χ2 = 175, df = 2, p < 0.0001; HEC 
χ2 = 61, df = 2, p < 0.0001), with sharp peaks in activity just after sunset, and less pronounced 
peaks just before sunrise. In the grid dataset, elephant activity was highest during crepuscular 
periods, intermediate during the day, and lowest at night (χ2 = 37, df = 2, p < 0.0001). Elephant 
activity at GLP cameras was highest during crepuscular periods and the night and lower during 



 

 83 

the day, though there was no significant difference between time periods (χ2 = 5, df = 2, p = 
0.09). 

Inside the park, elephants were active throughout the 24-period, though there were 
significant differences across diel periods with most activity occurring during the day (χ2 = 37, df 
= 2, p < 0.0001). In contrast, elephants showed crepuscular activity patterns at the park edge, 
with significant differences across diel periods (χ2 = 233, df = 2, p < 0.0001). The overlap 
coefficient of the activity distributions of elephants in the interior versus the edge of the park was 
0.46 (± 95% CI 0.40-0.48), representing the percentage of the total area under the activity 
density curves that is shared by the inside and outside park activity distributions (Figure 3). 
Mean RAI was higher at the boundary of the park (0.203 ± SD 0.200) than in the interior of the 
park (0.062 ± SD 0.087; Figure 5). There was a significant effect of settlement proximity on 
elephant observation counts (χ2 = 27, df = 1, p < 0.0001). 

Elephant diel activity patterns on versus off of roads differed (Figure 4). On roads, 
elephants showed a peak in activity before sunrise, a reduction in activity during the daytime, 
and an increase in activity again at sunset and into the early hours of the morning, although 
differences across diel categories were not significant (χ2 = 5, df = 2, p = 0.09). Off road, 
elephants were more active during the middle of the day and late afternoon, with significant 
differences across diel periods (χ2 = 9, df = 2, p = 0.01). The overlap coefficient of the activity 
distributions of elephants on roads versus off roads in the park was 0.79 [95% CI: 0.73-0.84]. In 
the core of the park, there was no significant effect of roads on elephant observation counts (χ2 = 
3, df = 1, p = 0.09). Mean RAI at cameras on roads was 0.24 (± SD 0.29), and mean RAI at 
cameras off roads was 0.10 (± SD 0.16; Figure 5). 
 
DISCUSSION 
 
Our findings suggest that elephants in Gorongosa National Park adjust the timing and location of 
their activity to avoid encounters with vehicles in the park and with people living in the buffer 
zone. Despite a likely fear of humans, however, this population of elephants did not entirely 
avoid areas of human disturbance; elephants exploited agricultural areas as food and water 
sources and used roads as movement corridors. By adjusting the timing of their movements at 
multiple spatial scales, elephants were able to navigate a landscape of multiple anthropogenic 
activities and opportunities while minimizing direct contact with people.  

Although elephants in the park were more likely to be detected on roads than on trails, 
our study suggests that they adjusted the timing of their movement on roads to avoid vehicle 
encounters. We found that elephants were more active during the day than during the night on 
the grid cameras, which were placed away from roads, whereas elephants were more active at 
crepuscular and nocturnal periods on the GLP cameras that were placed on the road system. 
Elephants appear to be reducing their use of roads during areas of peak vehicle traffic, which are 
restricted to daytime and dusk periods. Such fine-scale temporal avoidance of vehicles has also 
been observed among Asian elephants (Elephas maximus; Katugaha et al. 1999). Our finding 
could also be attributed in part to the non-random distribution of GLP (road) cameras. 

Previous studies have reported that elephants avoid roads in places where they experience 
persecution, such as the Congo Basin, where road avoidance by elephants restricts their habitat 
access, home range size, and movement ability (Blake et al. 2008). The elephant population of 
GNP was heavily poached during Mozambique’s civil war, which may account for their 
avoidance of vehicles (Poole and Granli 2018). Many elephants in GNP exhibit distress, flight, 



 

 84 

and aggression in the presence of vehicles, and their response to vehicles has the potential to 
hinder tourism and elephant research in GNP. There is evidence that some elephants are slowly 
becoming habituated to the presence of vehicles, and in the assumed absence of direct threats to 
elephants inside the park, this habituation may continue to increase (Poole and Granli 2018). The 
continued use of camera traps throughout GNP will enable us to document and monitor potential 
changes in behavior through time, and inform ongoing efforts to habituate the park’s elephants to 
human presence. 

Despite their tendency to avoid vehicles, cameras placed on the road system (GLP 
cameras) still detected similar overall levels of elephant activity than cameras placed off of roads 
(grid cameras). This suggests that despite perceived risk from vehicles, elephants use low-traffic 
unpaved roads (Granados et al. 2012) as movement corridors, as has been documented for many 
other large mammal species (Abrahms et al. 2016). In fact, many of the roads in Gorongosa 
National Park originated as elephant trails. Elephants sometimes respond vocally to the sound of 
vehicles (Poole 1987), doing so in one documented case from up to 3 km away (Poole et al. 
2005), and, therefore, may choose to reactively avoid vehicles when they encounter them, rather 
than proactively avoid roads altogether. 

Elephants in GNP are far more likely to be active in and around human settlements 
during the night, when people are generally less active. Our findings are consistent with the 
results of GPS telemetry studies that found that elephants utilize settled areas most often at night 
(Graham et al. 2009, Cook et al. 2015) and have relatively higher nocturnal movement speeds in 
response to poaching (Ihwagi et al. 2018) or human settlement (Galanti et al. 2006). In GNP, 
elephants cross park boundaries to forage in maize fields in the communities along the Pungue 
River (P. Branco, unpublished data). The overall higher activity rates at the boundary of the park 
as compared to the interior can be attributed to study design and elephant movement patterns. 
The cameras on the boundary of the park were placed on elephant paths with the goal of 
capturing elephants, and as elephants have been found to show strong site fidelity to crossing 
paths, these cameras had high detection rates (Gerhardt et al. 2014).  

By entering the settled areas of the buffer zone mainly at night, elephants reduce the risk 
of direct contact with people and maximize their crop foraging opportunities, as has been 
reported in similar studies in Kenya (Graham et al. 2010) and Tanzania (Gunn et al. 2014). 
Direct encounters with humans can pose a risk to elephants, which may be chased away or 
harassed by people defending their fields, and can also pose a risk to people (Moss 2001, Sitati et 
al. 2003). However, although nocturnal activity among elephants in settled areas benefits 
elephants by reducing direct contact with people, this activity pattern makes it more difficult for 
local farmers to protect their crops, resulting in high rates of crop damage (Parker et al. 2007). 
Camera traps set up in strategic locations, like those used by the ElephantVoices and Human-
Elephant Coexistence projects in GNP, can be used to document, monitor, and potentially 
mitigate crop foraging and conflict. Such efforts will be increasingly important, as elephants in 
GNP are expanding their range and are beginning to raid crops in other areas of the buffer zone.  

In addition to implications for tourism and human-wildlife conflict, behavioral responses 
of animals to human disturbance can have important consequences for wildlife populations and 
their conservation. When animals perceive risk from people, they may avoid areas of human 
activity, and these behavioral adjustments may alter foraging and reproduction and have costly 
consequences for individual fitness and survival (Sawyer et al. 2017). Avoidance of human 
activity may also decrease the effective amount of habitat available for wild animals (Gibeau et 
al. 2002, Eldegard et al. 2012). For wide-ranging species like elephants, avoidance of humans in 
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both space and time may increase movement distances and travel costs (Graham et al. 2009). 
However, such effects likely are context-dependent. For example, as we found in this study, 
animals such as elephants may sometimes be able to exploit anthropogenic infrastructure and 
resources, which could compensate for increased costs of movement in anthropogenic landscapes 
(Chiyo et al. 2011). Future research is needed to understand the costs and benefits of 
spatiotemporal responses to human activity, and their implications for conservation at the 
human-wildlife interface (Songhurst et al. 2016, Goldenberg et al. 2017). 
 Our study demonstrates the utility of camera traps as an alternative to telemetry for 
studying spatiotemporal activity patterns of wildlife. While camera traps do not yield fine-scale 
spatial data, they provide insight into the 24-hour activity patterns and can be systematically 
deployed to facilitate spatial analysis. Our results also highlight the value of integrating datasets 
for comparative analyses. We compared different regions of a study system to examine the 
dynamics of elephant behavior in and around a national park. Similar analyses could be 
conducted at larger scales to compare different systems or even regions throughout the African 
continent, highlighting similarities and differences in drivers of animal activity. As the use of 
camera traps throughout Africa grows, there will be opportunities to integrate disparate datasets 
to improve our understanding of the continent’s wildlife and address conservation challenges. 
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FIGURE 1. MAP OF THE STUDY AREA IN THE SOUTHERN PORTION OF GORONGOSA NATIONAL 
PARK, MOZAMBIQUE.  
 
Locations of camera traps from all four projects in relation to roads and the park boundary. The 
smoothed kernel density of elephants in the park was calculated in ArcGIS using the location of 
elephants (weighted by group size) recorded during seven aerial surveys of the park from 2000-
2016, during the dry season (208 records of 1932 elephants). 
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FIGURE 2. DIEL DISTRIBUTION OF ELEPHANT ACTIVITY FOR EACH PROJECT. 
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FIGURE 3. EFFECTS OF SETTLEMENT ON ELEPHANT DIEL ACTIVITY. 
 
Diel distribution of elephant activity inside the park (grid dataset) versus at the park boundary 
(ElephantVoices and HEC datasets). The grey region shows the overlap between the two 
distributions, and its area represents the overlap value (d-hat). 
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FIGURE 4. EFFECTS OF ROADS ON ELEPHANT DIEL ACTIVITY. 
 
Diel distribution of elephant diel activity on roads (GLP dataset) versus off roads (grid data, 
subset to include only cameras in proximity to GLP cameras) inside Gorongosa National Park. 
The grey region shows the overlap between the two distributions, and its area represents the 
overlap value (d-hat). 
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FIGURE 5. EFFECTS OF SETTLEMENTS AND ROADS ON DETECTION RATES. 
 
The Relative Activity Index of elephants (independent detections per camera trap-night), for 
cameras off roads (subset grid dataset) and on roads (GLP dataset), and for cameras inside the 
park (grid dataset) and at the park boundary (ElephantVoices and HEC datasets). The dark 
horizontal line indicates the median RAI across camera sites, the boxes represent lower and 
upper quartiles, and the whiskers represent minima and maxima (excluding outliers, which are 
shown as points). 
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SUPPLEMENTARY FIGURE 1. ELEPHANT RAI BY PROJECT 
 
The Relative Activity Index of elephants (independent detections per camera trap-night), for 
each of the four projects. The dark horizontal line indicates the median RAI across camera sites, 
the boxes represent lower and upper quartiles, and the whiskers represent minima and maxima 
(excluding outliers, which are shown as points). 
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SUPPLEMENTARY FIGURE 2. ELEPHANT RAI ACROSS DIEL PERIODS, BY PROJECT 
 
The hourly Relative Activity Index of elephants (independent detections per camera trap-hour) 
across diel time periods, for each of the four projects. The dark horizontal line indicates the 
median RAI across camera sites, the boxes represent lower and upper quartiles, and the whiskers 
represent minima and maxima (excluding outliers, which are shown as points). 
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TABLE 1. SUMMARY OF CAMERA TRAP DATA COLLECTED BY THE FOUR PROJECTS INCLUDED IN 
OUR ANALYSES. 
 

 
ElephantVoice

s 
Gorongosa 

Lion Project Grid 
Human-
Elephant 

Coexistence 

Study purpose 
Elephant 

identification 
and monitoring 

Monitoring of 
lions and other 

carnivores 

Systematic 
large mammal 

survey 

Elephant crop-
foraging and 
response to 
deterrents 

Camera placement 
On elephant 

river crossing 
trails 

On roads Game trails off 
road 

On elephant 
river crossing 

trails 

Study location Park boundary 
(park side) Park interior Park interior 

Park boundary 
(buffer zone 

side) 

# camera sites 5 21 60 13 

# camera sites with 
elephant detections 5 (100%) 20 (100%) 60 (100%) 11 (87%) 

Study period 
May 2015 – 
November 

2016 (seasonal) 

August 2013 – 
May 2015 
(seasonal) 

June 2016 –  
July 2017 

(continuous) 

August 2017 – 
December 2017 

(continuous) 

Total camera trap-
nights 803 2,290 15,599 1,353 

# of elephant 
detection events 
(>15 min apart) 

406 421 1,022 134 
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Chapter 6. Seasonal dynamics of an ungulate assemblage in a savanna 
floodplain landscape 
 
ABSTRACT 
 
African savannas are spatially heterogeneous and highly seasonal, resulting in a wide range of 
niches that diverse ungulate species occupy. Some of these savanna systems experience extreme 
flooding, which inundates grassland habitat, reducing its seasonal availability. The resulting 
concentration of animals in woodlands leads to the seasonal re-assortment of the mammal 
assemblage, potentially restructuring patterns of niche partitioning. In the Anthropocene, human 
activity is reshaping the dynamics of these systems through both local disturbance and global 
change. Here, we examined the effects of seasonal flooding, landscape heterogeneity, and human 
disturbance on the spatial distribution and spatiotemporal partitioning of ungulates in Gorongosa 
National Park, Mozambique. We conducted a two-year camera trap study to explore how 
environmental and anthropogenic spatial features interact with species traits to drive patterns of 
ungulate occupancy, relative density, and species co-occurrence across seasons.  

Ungulate species showed strong associations with multiple environmental features (e.g., 
tree cover, water availability, fire history, termite mounds) with specific habitat preferences 
varying across species. In general, the effects of environmental heterogeneity on ungulate 
distributions were far greater than anthropogenic impacts. In the wet season, relative densities of 
waterbuck and other grazers increased dramatically in the woodland study area, as the floodplain 
was inundated; this reassortment resulted in greater spatial overlap among taxa, particularly 
species with similar diets. We did not find evidence that increased competition in the wet season 
leads to greater spatial or temporal partitioning among ungulates. However, as lions concentrate 
in woodlands during the wet season, there may be apparent competition dynamics, through 
which one species negatively impacts another as a result of its shared predator. As the ungulate 
assemblage in this system recovers from its near-extirpation during Mozambique’s civil war, 
insights into its ecological dynamics can inform continued restoration efforts.  
 
SPATIAL HETEROGENEITY AND UNGULATE DIVERSITY IN AFRICAN SAVANNAS 
 
African savannas are some of the most iconic ecosystems on the planet, hosting a diversity of 
large mammal species and a mosaic of distinctive landscape features (Dobson 2009). These 
ecosystems are also experiencing rapid transformation as a result of global climate change and 
human population growth (Wittemyer et al. 2008). Many African savannas increasingly 
represent novel systems due to local extinctions, fragmentation, anthropogenic disturbance, and 
in some cases, targeted restoration efforts. To better conserve these ecosystems in the face of 
global change, we must know how they function, and understand how landscape heterogeneity 
interacts with a species’ biology to drive patterns of spatial and temporal distributions.   

Spatiotemporal heterogeneity is a hallmark of savanna ecosystems, which are 
characterized by a mixture of grassland and woodland habitats as well as extreme seasonality in 
annual rainfall (Anderson et al. 2016). At finer spatial scales, termite mounds and their 
associated nutrient-rich soils create hotspots of high-quality browse amidst the grassland and 
woodland matrix habitat. Fire is also an important feature of savanna habitats, resulting in the 
immediate loss of vegetative cover and the subsequent regrowth of high-quality forage (Bond 
and Keeley 2005, Eby et al. 2014). Water availability is heterogenous, and watering holes are 
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important resources for many species. Increasingly, many savanna ecosystems around the world 
are also characterized by spatial variation in human activities, including roads and other 
infrastructure, ecotourism, law enforcement, research, hunting, and other livelihood activities. 
Such activities can change the distribution of animal species through both numerical and 
behavioral effects, mediated by habitat degradation, removal of individual animals, or avoidance 
of anthropogenic disturbance by animals (Frid and Dill 2002, Darimont et al. 2015). 

Over evolutionary history, the landscape heterogeneity of savannas and associated 
diversity of niches have generated a wide range of forms and strategies among ungulate species 
(Cromsigt and Olff 2006, Hopcraft et al. 2011, Owen-Smith 2014, Schuette et al. 2016). African 
ungulates exhibit a large degree of variation in body mass, diet, sociality, anti-predator strategies, 
and water dependence, among other traits (Jarman 1974, Toit and Olff 2014, Hempson et al. 
2015). In studies of other African savanna systems, body size and foraging strategy have been 
found to influence the effect of spatial heterogeneity on ungulate density and distribution (Bhola 
et al. 2012, Anderson et al. 2016). Trait diversity thus promotes the coexistence of ungulate 
species, allowing them to partition resources within savanna systems and minimize competition 
(Belovsky 1997, Kleynhans et al. 2010). 
 
SEASONAL DYNAMICS OF FLOODPLAIN SYSTEMS 
 
Many of the most notable African savanna systems, including Botswana’s Okavango Delta and 
Zambia’s Kafue National Park, are characterized not only by spatial heterogeneity but also by 
extreme flooding. In these systems, floodplain grasslands are often completely underwater for 
portions of the year, resulting in the seasonal loss of an entire ecotype. The seasonal movement 
of grazing ungulates off of floodplains leads to an annual re-assortment of the spatial distribution 
of ungulate species, thereby reshaping assemblages in the surrounding landscape and potentially 
altering patterns of herbivore competition. Many herbivore grazers utilize the floodplain in the 
dry season, but are concentrated into surrounding woodland savanna during the wet season as the 
submerged floodplains become inaccessible, potentially reshaping patterns of competition among 
ungulates (Bennitt et al. 2014).  

Given this flooding and the associated loss of grassland habitat, the seasonal dynamics of 
floodplain systems differ dramatically from those of other African savanna systems that 
experience extreme wet and dry seasons. In systems that do not flood, the wet season and 
associated vegetation growth afford opportunities for herbivores to disperse away from 
permanent water sources (Okello and Kiringe 2008). For example, in the dry season in the Masai 
Mara, medium- and large-bodied herbivores concentrate in the reserve and in areas with greater 
water availability (Bhola et al. 2012). In the dry season in Serengeti, constrained resource 
availability leads to broader habitat use among herbivore species and increased interspecific 
competition (Bukombe et al. 2017). In floodplains, however, competition may be increased 
during the wet season, as herbivore biomass becomes concentrated in a smaller area and high-
quality forage is particularly in demand given the nutritional requirements of lactating females, 
the presence of which often coincides with the wet season (Fynn et al. 2014). The inaccessibility 
of submerged floodplains may thus transform patterns of niche partitioning among African 
ungulate species. 

As global climate change alters precipitation regimes in tropical areas, flooding dynamics 
may come to play a larger role in savanna ecosystems (Andersson et al. 2011). With more 
frequent droughts punctuated by more dramatic floods, animals may be seasonally concentrated 
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into smaller or larger areas, potentially reshaping community interactions. Furthermore, as the 
human footprint expands (Venter et al. 2016) and populations grow around protected areas 
(Wittemyer et al. 2008), human activity may also be constraining animal movement and limiting 
dispersal during floods. It is therefore important to understand how environmental heterogeneity 
and anthropogenic disturbance interact to influence animal communities in these dynamic 
savanna systems.  
 
RESEARCH QUESTIONS  
 
We set out to understand the seasonal dynamics of a floodplain savanna ecosystem, and to 
answer the following questions and evaluate the following hypotheses: 
 

I. How does seasonal flooding of the grassland affect the occupancy and density of species 
in the surrounding woodland? 

• Hypothesis: There will be an influx of ungulates into the woodland, particularly 
grazing and water-dependent species, as grassland habitat becomes less 
accessible.  

 
II. What environmental and anthropogenic spatial features are associated with ungulate 

species occurrence and relative densities?  
a)  How does this effect of landscape heterogeneity on species distributions differ in 

the dry and wet seasons?  
b)  How does the relative importance of these factors differ among species with 

different ecological and life history traits? 
• Hypothesis: Associations with woody cover and other landscape features will vary 

widely across herbivore species, in accordance with diet, group size, water-
dependence, and anti-predator strategy (Jarman 1974). For example: 

• Water-dependent species will be found closer to the floodplain in the dry 
season, and closer to seasonal pans in the wet season. 

• Smaller-bodied browsers, which are more selective in their diets, will be 
found more often in areas with higher fire frequency and termite mound 
density, both of which promote growth of nutritious forage (Eby et al. 
2014). 

• Hypothesis: Animals will avoid areas of higher human disturbance, and this 
avoidance will be greater during the dry season when people are more active. 

 
III. How do seasonal dynamics influence patterns of species co-occurrence in space and 

time? 
• Hypothesis: As animals concentrate in the woodland in the wet season, 

spatiotemporal overlap among competitors will increase.  
 
GORONGOSA NATIONAL PARK: A CASE STUDY 
 
Mozambique’s Gorongosa National Park (henceforth, Gorongosa) provides an ideal opportunity 
to study interactions between seasonal flooding, spatial heterogeneity, anthropogenic 
disturbance, and spatiotemporal niche partitioning by ungulates. Located at the southern extent 
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of Africa’s Great Rift Valley, Gorongosa’s defining feature is the vast floodplain surrounding 
Lake Urema, which is located in the center of the park. This floodplain is inundated each year 
from approximately December through April (Figure 1); after the flood recedes in the dry season 
(approximately July through October), the Lake Urema floodplain is highly productive, 
supporting high densities of grazing ungulates. The woodland savannas around the floodplain are 
dominated by Acacia-Combretum assemblages, and also include palmveld, miombo woodland, 
and closed-canopy forest (Stalmans and Beilfuss 2008). Together, the floodplain and savannas 
host a rich mammal assemblage representing 18 ungulate species across 16 genera. 
 
Seasonal flooding dynamics 
 
In the dry season, Lake Urema covers an area of approximately 23 km2. The lake is fed by 
several rivers in a 9,300 km2 catchment (Steinbruch and Weise 2014). The floodplain of the lake 
and surrounding rivers encompasses roughly 750 km2, though the degree to which it is inundated 
in the wet season varies greatly with annual rainfall. Up to 40% of Gorongosa floods each year, 
and within the Rift Valley, as much as 60% of the area can be inundated, resulting in a dramatic 
loss of terrestrial habitat during the wet season. 

In the dry season, most large mammals concentrate on the floodplain. For example, an 
aerial survey of Gorongosa during the 2016 dry season (October) documented 69% of the park’s 
medium and large mammal biomass on the floodplain (Stalmans and Peel 2016). While pre-war 
aerial surveys and historical accounts indicate that many of these animals left the floodplain 
during the wet season (Tinley 1977), little is known about current dynamics of seasonal wildlife 
movements in Gorongosa.  
 
Community dynamics in a novel, recovering system 
 
The study area represents a changing ecosystem that includes a large mammal assemblage that is 
markedly different from historical baseline conditions (Stalmans et al. 2019). During 
Mozambique’s civil war (1977-1992), wildlife populations declined dramatically in the midst of 
political and economic instability as well as food insecurity, which drove increased bushmeat 
hunting (Hatton et al. 2001, Gaynor et al. 2016, Daskin and Pringle 2018). Following the end of 
the armed conflict, a restoration effort led by the Government of Mozambique and an NGO, the 
Gorongosa Restoration Project, facilitated the recovery of many large mammal populations 
through increased enforcement and, to a lesser extent, through limited reintroductions (Stalmans 
et al. 2019). However, the megaherbivore species that were dominant before the war, including 
buffalo, hippo, and elephant, have not returned to their pre-war numbers and the system is now 
dominated by antelope (Stalmans et al. 2019). Most notably, waterbuck populations have 
exploded in number and now account for >60% of herbivore biomass in the park, with waterbuck 
abundance an order of magnitude higher than pre-war estimates (Stalmans et al. 2019).  

While the causes of this asymmetric recovery remain unknown, it has been suggested that 
waterbuck survived the war at higher densities and their population has been growing unchecked 
in the absence of predation or food limitation (Stalmans et al. 2019). Although Gorongosa once 
hosted a diverse guild of large carnivores, including leopards (Panthera pardus), lions (Panthera 
leo), African wild dogs (Lycaon pictus), and spotted hyena (Crocuta crocuta), all species but 
lions went locally extinct during the armed conflict. Lions were the only large carnivore species 
in the focal area during our study period, with a growing population of around 100 individuals 



 

 98 

(Bouley et al. 2018). In the absence of an intact carnivore guild, it is unlikely that herbivore 
populations in Gorongosa are limited by top-down forces (Atkins et al. 2019, Stalmans et al. 
2019). Small- and medium-sized ungulates may therefore be released from the predator 
limitation that is common in other African savanna systems (Sinclair et al. 2003).  

In the absence of top-down forces given predator extirpation, herbivores may instead be 
food-limited (Sinclair 1985, Sinclair et al. 2003). Previous research in Gorongosa has revealed 
that dietary breadth is greater for abundant species, a finding that has been attributed to niche 
expansion resulting from more intense intraspecific competition (Pansu et al. 2018). Pansu et al. 
(2018) also found that dietary specialization among species is higher in the woodland savanna 
than in the grassland floodplain, presumably because the structural complexity of the former 
habitats makes certain plants inaccessible to smaller-bodied species. It is possible that in the 
current, restructured herbivore assemblage that more abundant species may outcompete and 
therefore suppress the recovery of other species, suggesting that it is important to understand 
patterns of ungulate niche partitioning (Stalmans et al. 2019).  
 
Anthropogenic impacts on the system 
 
As wildlife populations in Gorongosa National Park have recovered from armed conflict, human 
activity has also increased. The park is surrounded by a 5,330 km2 buffer zone that is occupied 
by around 200,000 subsistence farmers (Ministério da Terra, 2016). The buffer zone is a mixed‐
use area, where people are permitted to grow crops, harvest natural resources, raise livestock and 
conduct controlled burns, along with other livelihood activities. Unlike in other well-studied 
African savanna systems (Schuette et al. 2016), there is no livestock grazing in or around 
Gorongosa. All hunting for bushmeat or trophies is prohibited in the park and buffer zone, but 
illegal hunting occurs throughout the park (Gonçalves 2017). It is possible that the expansion of 
human settlement at the park’s borders is constraining seasonal movement for some woodland 
species, although historically, most movement of animals between the wet and dry season was 
confined to the Rift Valley (Tinley 1977). 

Although the park is largely undeveloped, there is a dense network of roads in the 
southern region of the park, in the woodland south of the floodplain. There is a small but 
growing tourism operation based in Chitengo, the park’s headquarters, and tourist, research, and 
ranger vehicles frequently travel throughout the park, with vehicle activity peaking in the dry 
season but declining markedly in the wet season, when many roads are closed. There are also 
several settlements located inside the park, including Chitengo. There is a large ranger presence 
in the park, primarily aimed at reducing hunting and other illegal activities. 

These human disturbances are heterogeneous in both space and time. Little is known 
about the extent to which human disturbance is changing the distribution of mammal species in 
Gorongosa, either through changes in behavior associated with avoidance of human activity 
(Frid and Dill 2002) or through bottom-up (via changes in habitat) or top-down (via hunting) 
effects on local population densities (Ogutu et al. 2009). By examining the effects of both habitat 
heterogeneity and human activity on ungulate assemblage dynamics, we can better understand 
the changing ecology of this system as both wildlife and people recover from civil war. 
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OVERVIEW OF METHODS 
 
To evaluate spatiotemporal patterns of ungulate activity in Gorongosa National Park, we 
conducted a camera trap survey in the woodland south of Lake Urema from 2016-2018. Data 
collection encompassed two dry seasons (July – September) and two wet seasons (December – 
March). We used a grid configuration to place 60 cameras in an area of 300km2 in the woodland 
floodplain (Figure 2). We selected this study region because it contained a high density of large 
mammals and was accessible via the park’s road network. Flooding prevented camera trap 
monitoring of the floodplain itself, and thus we focused on the seasonal dynamics of the 
surrounding, unflooded areas. 

We examined dry and wet season patterns of ungulate occupancy and relative activity in 
response to environmental and anthropogenic spatial features. We evaluated the effects of nine 
covariates that we hypothesized would affect species distribution, including tree cover, fire 
history, density of termite mounds, density of seasonal watering holes (pans), lion activity, 
poaching, and distance to lake, rivers, and roads (Supplementary Figure 1).  

We used two complementary modeling approaches: a multispecies occupancy model that 
provided insights into broad patterns of species presence and absence while controlling for 
imperfect detection (Rich et al. 2016), and linear mixed models of species Relative Activity 
Index (a simple measure of detections per trap-night) to explore patterns of relative species 
densities (Palmer et al. 2018). We then explored how ungulate ecological and life history traits 
(diet, sociality, water dependence) mediated the observed seasonal relationships between spatial 
heterogeneity and species occupancy and relative density. We also evaluated pairwise patterns of 
spatial co-occurrence, spatial Relative Activity Index correlations, temporal overlap, and dietary 
overlap among all ungulate species in the wet and dry season to understand how patterns of 
spatiotemporal niche partitioning changed seasonally.  

We documented 38 species in our study area (Supplementary Table 1), including 18 
ungulates (Supplementary Table 2; listed in decreasing order of camera trap detections; 
Supplementary Table 3): warthog (Phacochoerus africanus), waterbuck (Kobus ellipsiprymnus), 
bushbuck (Tragelaphus scriptus), impala (Aepyceros melampus), oribi (Ourebia ourebi), nyala 
(Tragelaphus angasii), elephant (Loxodonta africana), bushpig (Potamochoerus larvatus), 
Southern reedbuck (Redunca arundinum), greater kudu (Tragelaphus strepsiceros), Natal red 
duiker (Cephalophus natalensis), sable antelope (Hippotragus niger), African buffalo (Syncerus 
caffer), common wildebeest (Connochaetes taurinus), hartebeest (Alcelaphus buselaphus), 
common duiker (Sylvicapra grimmia), hippopotamus (Hippopotamus amphibius), and common 
eland (Taurotragus oryx). More detailed information about study design and analytical methods 
can be found in Extended Methods section at the end of this chapter; more information about the 
study species is provided in the appendices. 

 
I.   HOW DOES SEASONAL FLOODING OF THE GRASSLAND AFFECT THE OCCUPANCY AND 
DENSITY OF SPECIES IN THE SURROUNDING WOODLAND? 
 
Seasonal influx of floodplain species 
 
Each year, the woodlands of Gorongosa experience an influx of biomass during the wet season, 
as animals move out of the inundated floodplain of Lake Urema. This influx was apparent from 
the camera trap data: in general, the species that concentrate on the floodplain in the dry season 
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(as determined from the 2016 aerial survey) showed an increase in their Relative Activity Index 
in the woodland during the wet season. These floodplain species were found in close proximity 
to the lake in both the dry season and the wet season, but this pattern was even stronger in the 
wet season, suggesting that dispersal from the floodplains is responsible for the observed wet 
season increase in their woodland activity (linear regression for dry season: r2 = 0.07, F(1,16) = 
1.29, p = 0.27; wet season: r2 = 0.19, F(1,16) = 3.80, p = 0.07).  

Much of this seasonal influx was driven by waterbuck, which accounted for 58% of the 
animals counted in the aerial survey and 75% of the non-elephant biomass. During the 2016 dry 
season, the aerial survey revealed that 76% of waterbuck were on the floodplain. While 
waterbuck occupancy remained close to 1.00 in both the dry and wet seasons due to the uniform 
presence of waterbuck at all cameras on the study site, waterbuck detections in the camera trap 
grid nearly doubled in the wet season as compared to the dry season (Figure 3; paired t-test: t = -
3.85; df = 91, p < 0.0001). This pattern held for both years of the study, and notably, waterbuck 
detections increased from the first year to the second year of the study in both seasons, a pattern 
indicative of their continued population growth. Seasonal models of waterbuck Relative Activity 
Index (RAI = detections / trap-night) predicted higher activity throughout almost the entire study 
area in the wet season, with effects strongest close to Lake Urema but extending well into the 
woodland (Figure 4). 

Most ungulate species had a higher occupancy probability in the wet season than the dry 
season, suggesting that more species are concentrating in the woodland study area as a result of 
seasonal flooding (Supplementary Figure 2). African buffalo showed the most striking 
difference, with both occupancy probabilities and RAI increasing dramatically in the wet season 
(Supplementary Figure 2, 3; RAI paired t-test: t = -2.49, df = 91, p = 0.01). However, the 
ecological impacts of buffalo dispersal are likely limited, particularly when compared to those of 
the waterbuck, given the low densities of buffalo in the study system. Prior to the civil war, 
buffalo were the most abundant species in Gorongosa in terms of both number and biomass, and 
it is likely that their seasonal movement patterns played an important role in driving historical 
dynamics. Further research is needed to understand the ecological implications of the 
replacement of buffalo with waterbuck as the dominant floodplain migrant in this reassembled 
ecosystem. 

Although detection rates for hippopotamus were low (20 detections across 6 cameras), 
hippopotamus were detected exclusively in the wet season. Hippopotamus are highly water-
dependent and the expansion of Lake Urema likely results in a complete seasonal shift of their 
distribution. As massive bulk grazers that transfer substantial nutrients from terrestrial to aquatic 
systems (Stears et al. 2018), hippopotamus may have large impacts on dynamics of the woodland 
in the wet season. Their ecological role was likely even more important before their hunting-
induced decline during the civil war, when hippopotamus numbers were much higher; today, 
based on aerial counts, hippopotamus densities remain around 15% of their estimated densities in 
the 1970s, (Stalmans et al. 2019).  
 
Limited evidence for displacement of woodland species 
 
Three species – greater kudu, nyala, common duiker – displayed a lower occupancy probability 
in the woodland study area in the wet season than the dry season, although these differences 
were not significant (95% credible intervals overlapped; Supplementary Figure 2). In addition to 
bushbuck, these species also had a lower Relative Activity Index in the wet season than in the 
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dry season (Kudu paired t-test: t = 2.18, df = 91, p = 0.03; Nyala: t = 1.77, df = 91, p = 0.08; 
Common duiker: t = 1.81, df = 91, p = 0.07; Bushbuck: t = 1.65, df = 91, p = 0.10; 
Supplementary Figure 3). These browser or mixed-feeder species are all strongly associated with 
woodland habitat throughout the year and it is possible that they were displaced to other 
woodland areas further from the floodplain (and thus outside of the camera trap grid) as a result 
of the wet season influx of floodplain grazing species. However, the observed differences in 
seasonal occupancy and density were small, suggesting that any displacement is likely minimal. 
 
II.  WHAT ENVIRONMENTAL AND ANTHROPOGENIC SPATIAL FEATURES ARE ASSOCIATED WITH 
UNGULATE OCCURRENCE AND RELATIVE DENSITIES?  
 
Environmental features and species traits interact to drive species distributions 
 
In both the wet and dry seasons, we observed strong effects of environmental heterogeneity on 
the distribution of ungulate species, with the influence of environmental features varying 
according to ecological and life history traits (Supplementary Table 4, 5). Tree cover was an 
important predictor of relative densities of many species, with some taxa found in areas of 
greater tree cover (nyala, red duiker) and others found in more open areas (oribi, reedbuck, 
wildebeest, impala, and hartebeest). Generally, tree cover had a negative effect on the Relative 
Activity Index (RAI = detections / trap-night) of grazing species, a positive effect on the RAI of 
browsing species, and no effect on the RAI of mixed feeders (Figure 5). Similarly, dietary 
diversity (or niche breadth), as measured by Pansu et al. (2018) in Gorongosa, was positively 
associated with higher tree cover, as browsers and mixed feeders tend to feed on a greater 
number of plant species than the grazers. 

Proximity to Lake Urema and its associated floodplains also influenced the distribution of 
many water-dependent species in the neighboring woodland; waterbuck, warthog, eland, 
elephant, and bushbuck all had higher Relative Activity Indices closer to the lake, while sable 
antelope, nyala, hartebeest, and wildebeest were all more active further from the lake. Thus, 
heterogeneity in tree cover and water availability appears to facilitate the coexistence of a 
diversity of ungulate species. 
 
Seasonal differences in species-habitat associations 
 
In most cases, the effects of environmental features on the occupancy and relative activity of a 
species were consistent across seasons, suggesting that species occupy similar niches in wet and 
dry seasons. Some exceptions included nyala, which showed a strong association with termite 
mounds in the dry season only, and elephants and kudu, both of which had higher relative 
activity indices in areas with more frequent fire in the dry season only. Both fire and termite 
mounds are associated with nutrient-rich forage for browsers and it is possible that this relatively 
higher-quality forage is a more important resource in the dry season, when resources are scarcer 
and there is less nutritious, early-growth browse available.  
 In contrast, species with a greater percentage of grass in their diets had a stronger 
association with fire frequency in the wet season only (Figure 6; Linear regression for dry 
season: r2 = 0.019, F(1,11) = 0.22, p = 0.65; wet season: r2 = 0.24, F(1,11) = 3.56, p = 0.09). 
However, this relationship was not significant, apparently due to an outlier: bushbuck were 
exclusively browsers with no grass in their diets, but were very strongly associated with areas of 
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high fire frequency in the dry and wet seasons. Fire clears indigestible, dry grass in the dry 
season, promoting the growth of nutritious grass after the first rains. It is likely that grazing 
species are therefore drawn to these areas of the woodland in the wet season, particularly given 
that floodplain grasses are unavailable during the flood.  
 Patterns of association with rivers and lakes differed seasonally for some of the water-
dependent species (Figure 7). While buffalo were found closer to lakes and rivers in the dry 
season, this pattern was absent in the wet season, when water was more available throughout the 
woodland in seasonal watering holes. Similarly, waterbuck activity was higher near rivers in the 
wet season, but not in the dry season.  
 
Weak anthropogenic effects 
 
We found limited evidence that human activity influenced the occupancy and relative activity of 
ungulates in Gorongosa. In general, environmental features were much more important than 
anthropogenic features in determining patterns of species occupancy and relative activity. The 
only exception was for red duiker, which were found further from roads in both the wet and dry 
seasons; these small, solitary antelope are generally skittish and are known to flee quickly from 
vehicles in Gorongosa. At the community level, animal occupancy was higher near roads in the 
dry season than in the wet season, contrary to our prediction that road closures in the wet season 
would reduce road avoidance by wildlife. As my coauthors and I have demonstrated previously 
(Chapter 5), animals may be using roads for travel but avoiding vehicles in time rather than 
space (Gaynor et al. 2018b). The absence of an effect of roads on species activity may also be 
confounded by the fact that the roads were created to facilitate dry-season wildlife viewing by 
tourists and thus roads may be located in areas of high wildlife densities. Finally, although not all 
roads are used equally (and some, in fact, are rarely used), we did not assess the relative degree 
of vehicle traffic on the different roads in the study area; it is possible that animals may be 
avoiding the most heavily-trafficked roads during periods of peak use but that this tendency was 
not evident in our data set.  
 While illegal bushmeat hunting continues to pose one of the major threats to wildlife in 
Gorongosa (Bouley et al. 2018), we found limited evidence to suggest that hunting is driving 
fine-scale spatial patterns of distribution and activity in ungulates. However, our measure of 
hunting was coarse, having been generated by participatory mapping exercises with rangers. In 
these interviews, rangers noted that hunting is very dynamic and that spatial patterns change 
year-to-year and across seasons. Additional research is needed to understand how hunting may 
be shaping the recovery of Gorongosa’s ungulates through fine-scale numerical and behavioral 
effects on populations (Stalmans et al. 2019). 
 We were unable to examine the effects of human settlements on ungulate distribution, as 
there were few settlements near the study area (with the exception of park headquarters) and 
distance to the nearest settlement was correlated with other spatial variables. A 2015 pilot study 
conducted around two communities located in the park (Muaredzi and Muanza-Baixo) revealed 
no relationship between settlement distance and wildlife activity (Gaynor 2016). A recent study 
conducted in a forestry concession located adjacent to Gorongosa’s buffer zone found that 
species richness declined in proximity to settlements (Easter et al. 2019), although this disturbed 
landscape still had a high level of species richness and provided habitat for species that are not 
found in the park itself, including leopards. As settlements expand around Gorongosa’s borders 
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and within areas of the park itself, it will be important to understand how human activities 
around settlements are shaping the environment and influencing wildlife recovery. 
 
III.  HOW DO SEASONAL DYNAMICS INFLUENCE PATTERNS OF SPECIES CO-OCCURRENCE IN 
SPACE AND TIME? 
 
Little spatiotemporal partitioning among competitors 
 
Although different ungulate species were associated with distinctive spatial features as discussed 
above, we found that the majority of ungulate species were positively associated with one 
another in both space and time. Species with more similar diets were somewhat more likely to be 
found at the same cameras (Figure 8), likely because they are drawn to areas that contain their 
shared resources. This pattern was slightly stronger in the wet season, but overall the correlation 
between spatial and dietary overlap was not statistically significant (Dry: r2 = 0.045, F(1,76) = 
0.55, p = 0.46; Wet: r2 = 0.045, F(1,76) = 3.58, p = 0.06). Although we found that animals with 
similar diets tended to share rather than partition space, it is possible that competitors are 
partitioned resources at finer spatial scales. Other studies have shown that while some African 
herbivore species have a high degree of overlap at broad scales of space use, they have little 
overlap at scale of individual foraging areas (Owen-Smith et al. 2015).  

We did not find evidence that dietary similarity was correlated with overlap of diel 
activity patterns (Supplementary Figure 4), suggesting that animals did not partition time to 
avoid their competitors (Kronfeld-Schor and Dayan 2003). While temporal partitioning may be 
beneficial in reducing scramble competition, it is likely less important in contest competition 
systems in which resources are spatially dispersed and slowly renewing, as is the case for many 
of the grazer and mixed-feeder species in Gorongosa. In fact, temporal overlap with competitors 
may confer anti-predator benefits through the detection and dilution effects of mixed-species 
herds (Schmitt et al. 2014), although we found no evidence of a positive relationship between 
temporal and dietary overlap.  

 
Stronger overlap in the wet season 
 
As predicted, we found that spatiotemporal overlap among ungulates was higher in the wet 
season, as compared to the dry season. As animals are concentrated into a smaller area, they may 
be constrained in their ability to avoid each other in space, despite the potential for increased 
competition. Patterns of spatial overlap between ungulate species were generally higher in the 
wet season than in the dry season (Figure 9). When comparing all pairwise interactions of 
ungulates, we found significantly higher SIF, a measure of co-occurrence (t = -2.37, df = 54, p = 
0.02), and higher correlations between Relative Activity Index (RAI), a measure of relative 
densities (t = -3.75, df = 54, p < 0.001), in the wet season than in the dry season (Supplementary 
Figure 4). It is possible that dietary specialization increases in the wet season as species carve out 
unique dietary niches in the woodland, but we were not able to examine seasonal differences in 
dietary overlap since diet samples were only collected in the dry season.  
 It is possible that the greater availability of high-quality forage in the wet season reduces 
competition and thus counteracts the effects of increased density of ungulates in the woodland. 
Other studies of ungulates in Southern Africa have documented strong dietary niche partitioning 
only in the dry season, when resources are scarce (Kleynhans et al. 2010). Generally, 
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competition may play less of a role in Gorongosa’s ungulate communities than we had initially 
hypothesized. It is possible that, as species recover, they are not regulated either by bottom-up 
nor top-down effects. The system is highly dynamic, and during our study, the population 
trajectories of several species were exhibiting exponential growth (Stalmans and Peel 2016). As 
populations continue to grow, it is likely that competition will play a greater role in structuring 
the ungulate assemblage and continued seasonal monitoring may reveal changes in 
spatiotemporal partitioning as competition intensifies.  
 
Potential apparent competition 
 
The concentration of herbivores in the woodland during the wet season may also be driving 
apparent competition among species, through which dominant floodplain-associated species 
negatively impact woodland species through the increase in abundance of lions, a common 
predator. As previously reported for the Gorongosa lion population, lion home ranges shift from 
the floodplain to the woodland in the wet season and their home range sizes decrease (Bouley et 
al. 2018). Lions are also excluded from the inundated floodplains and may track dispersing prey 
into the woodlands; floodplain species comprise the majority of lion prey (Bouley et al. 2018).  

Low overall predator densities in Gorongosa likely mean that the numerical effects of 
predation on any given ungulate species are small. However, we found some evidence to suggest 
that seasonal differences in predation risk may change prey behavior. We found that some 
species, including sable antelope (a strongly-preferred prey species of lions, Bouley et al. 2018), 
reedbuck, and oribi dramatically change their diel activity patterns from the dry to the wet season 
(Figure 10). The overlap between the diel activity distributions of lions and both reedbuck and 
oribi was significantly greater in the dry season than in the wet season (oribi: dry season overlap 
coefficient dhat = 0.704, bootstrapped 95% confidence interval = 0.583 – 0.834, wet season dhat 
= 0.367, 95% CI = 0.915 – 0.464; reedbuck: dry season dhat = 0.871, 95% CI = 0.830 – 1.044, 
wet season dhat = 0.519, 95% CI = 0.354 – 0.689). Overlap between the diel activity patterns of 
sable antelope and lions was also greater in the dry season than the wet season, although this 
difference was not statistically significant (confidence intervals overlapped; dry season dhat = 
0.795, 95% CI = 0.700 – 0.960, wet season dhat = 0.574, 95% CI = 0.430 – 0.789). 

These ungulate species typically give birth around the beginning of the wet season, and 
newborn and juvenile ungulates are particularly vulnerable to predation. In the dry season, they 
are crepuscular, and have a high degree of overlap with lion activity. However, in the wet season, 
they become primarily diurnal, despite increased daytime temperatures at this time of year. It is 
possible that this shift in diel pattern is related to lion avoidance. It is unlikely, however, that it is 
related to avoidance of waterbuck, as waterbuck are primarily diurnal. 
 
CONCLUSION: THE DYNAMICS OF A RECOVERING SYSTEM 
 
We documented seasonal changes in ungulate distributions in the woodlands of Gorongosa, 
where the annual inundation of the neighboring floodplain excludes animals from a large portion 
of the available terrestrial habitat. Waterbuck, already a dominant species in the woodland during 
the dry season, nearly doubled in number in the woodland during the wet season. As a 
consequence of this seasonal concentration of ungulates, we found stronger spatial overlap 
among all species during the dry season compared to the wet season. Despite the potential for 
increased competition during the wet season, there was no evidence that species partitioned 
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space or time at the scales examined in our study, regardless of dietary overlap or shared life 
history traits. Each ungulate species was generally associated with the same habitat features in 
the dry and the wet season, although we saw some seasonal effects of water availability and 
forage (mediated by fire) for some species. The tight coupling between species traits and 
environmental niches may have limited seasonal reassembly of ungulate species but may also 
have facilitated coexistence and even facilitation at fine spatial scales among species using 
different resources within their overlapping home ranges (Arsenault and Owen-Smith 2002). 

Given the recent re-establishment of large mammal populations in Gorongosa, it is 
unlikely that we are observing the dynamics of a community in a stable state. Both bottom-up 
and top-down pressures on ungulate communities are growing, potentially leading to increased 
competition among ungulate species. Predation will also likely play a larger role in driving the 
distribution of fearful prey as carnivores return to the landscape. Since the completion of this 
study, lion populations in Gorongosa have increased, African wild dogs have been reintroduced, 
a leopard was seen in the study area, and additional reintroductions are planned for the near 
future. While hunting has declined in recent years, other forms of human activity have increased, 
including tourism, research activity in the park, and human settlement at park borders, each of 
which has the potential to influence ungulate activity. Growing ungulate populations, in turn, 
will continue to reshape the landscape through foraging feedbacks such as changing patterns of 
tree cover and forage quality (Holdo et al. 2009, Daskin et al. 2016, Anderson et al. 2016). 
Seasonal patterns of spatiotemporal partitioning may shift in response to these landscape 
changes; continued monitoring of the Gorongosa ungulate assemblage will provide important 
insights into the ecological dynamics of large mammal restorations in African habitats. 
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EXTENDED METHODS 
 
Study site 
 
Gorongosa is located in central Mozambique, at the southern extent of Africa’s Great Rift Valley 
(Latitude: -18.82, Longitude: 34.50). The continuous core of the park encompasses 3,700km2 
(excluding the discontinuous portion of the park on Mount Gorongosa, and the newly-
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incorporated Coutada 12). The 40-km-wide valley in the center of the park is bordered to the east 
and west by steep terrain. Average annual rainfall is 700-900mm in the valley, and greater on the 
surrounding plateaus, peaking in December to February.  
 
Camera trap grid 
 
We deployed a grid of 60 Bushnell TrophyCam camera traps within the 300 km2 study region 
(Figure 1; Supplementary Table 6, 7). We divided the study area into 5 km2 hexagonal grid cells 
and placed one camera at the center point of each grid cell, similar to the Snapshot Serengeti 
protocol (Swanson et al. 2015). We mounted each camera on a suitable tree within 100 meters of 
the center point, at a height of 1 meter. To maximize animal detections and minimize false 
triggers, we faced cameras towards open areas or small game trails with signs of animal activity. 
Each camera was within 2 km of a road, but no cameras faced roads.  

The grid operated continuously from June 2016 – June 2018, although some cameras 
were inoperable for limited periods due to water or elephant damage, overgrown vegetation 
blocking the lens, or depleted batteries. In June 2017, 14 of the least-accessible cameras were 
removed from the grid.  

Each camera took 2 photographs per trigger event with a delay of 30 seconds between 
triggers. For analyses that involved counts of independent detections, we considered all records 
of a given species without a break of >15 minutes to be part of the same detection. 

Trained undergraduate volunteers at the University of California, Berkeley, identified the 
animal in each photograph to species. K.G. confirmed all identifications and generated a record 
of detections from the photographs using the camtrapR package in R (Niedballa et al. 2016). 

 
Defining seasons 
 
For the purposes of our analyses, we defined the dry season as July 1 to September 30 (3 
months), and the wet season as December 1 to March 31 (4 months). Although the time period 
for the wet season was one month longer than the dry season, there were fewer total camera trap-
nights in the wet season due to more frequent camera inoperability during this season 
(Supplementary Table 6, 7).  

These season designations correspond to patterns of annual rainfall during the study 
period, as recorded at Gorongosa headquarters. From 2016 and 2017, total rainfall from July 
through September was < 15mm (or around 2% of total annual rainfall). For the rain-years of 
2016-2017 and 2017-2018 (spanning October-September), > 70% of the total annual rainfall fell 
from December through March. The second year of the study received nearly twice as much rain 
as the first, much of it falling late in the wet season (total rainfall 2016-2017 = 685 mm; 2017-
2018 = 1286 mm). Although December 2017 was a low rainfall month, we chose to include it in 
the wet season, as early rains in October-November 2017 had led to early flooding of the 
Gorongosa floodplain. The first year of our study was a somewhat dry year, while the second 
year was a particularly wet year. We were unable to distinguish between the effects of different 
rain and flooding regimes given that we were only comparing two years, and had small sample 
sizes for the second year.  
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Spatial data 
 
We compiled spatial data on environmental and anthropogenic features that we expected to be 
related to large mammal occupancy and density (Supplementary Figure 1). We generated raster 
layers corresponding to tree cover, fire, termite mounds, seasonal watering holes, lion activity, 
poaching, and distances to lake, rivers, roads, and settlement. For rasters not already at a 10 x 10 
m resolution, we resampled each raster at this scale. We then cropped each raster to the study 
area, and standardized each raster by scaling each variable so that the mean was 0 and the 
standard deviation was 1. We then extracted the value of each raster layer at each of the 60 
camera trap locations. We examined correlations between all covariates and excluded any for 
which r > 0.7 (Dormann et al. 2012). All analyses were done using the raster package in R 
(Hijmans & van Etten 2017).  

We used remotely-sensed satellite imagery to generate tree cover, fire, and seasonal 
watering hole layers. We used the 2010 tree cover layer from the Global Forest Change database 
(Hansen et al. 2013). To quantify fire history in the study area, we used the 500-meter resolution 
Burned Area product from NASA’s MODIS satellites (MCD64A1) (Giglio et al. 2016). We 
calculated fire return interval (or fire frequency) in the period from 2000-2016. We manually 
digitized seasonal watering holes, which have a unique and recognizable visual signature, using a 
DigitalGlobe image from 2015, via ESRI ArcMap World Imagery. We ground-truthed the layer 
in the field, visiting 50 points that we had visually identified as watering holes from satellite 
imagery, with 100% accuracy in identifying watering holes. It is possible but unlikely that some 
small watering holes were missed. We then generated raster layers corresponding to the distance 
to the nearest watering hole and to the area covered by watering holes within 100m, 250m, 
500m, and 1km of each pixel. After exploratory analysis, we decided to use a radius of 250m2, 
because it best predicted community-level occupancy in the multi-species models described 
below. 

When setting up the camera traps, we counted the number of termite mounds within a 
100 meter radius of each camera. To extrapolate termite mound model results to the entire study 
area, we used spatial data on termite mound locations generated through both supervised and 
object-based training procedures, using 1.8m resolution WorldView-2 (© Digital Globe; 
Longmont, CO, USA) satellite imagery from July and August 2010. This classification involved 
the separation of mounds from surrounding habitat based on spectral properties and shape. We 
compared the classification output to information on the locations of known mounds (n = 126) 
and other habitat patches (n = 1041), as recorded in the field (overall accuracy: 62%; sensitivity 
to mounds: 61%; specificity to mounds: 64%). 

To quantify relative lion activity in the study area in each season, we used the 10%, 25%, 
50%, 75%, and 95% home-range isopleths for all male and female lions, generated from GPS 
collar data collected as described by Bouley et al. (2018). All prides and male coalitions in the 
study area were collared for at least one year between 2013-2016.To generate a raster of relative 
lion activity density, we summed all isopleths for all collared individuals in the wet and late dry 
seasons, using only the most recent isopleths for each individuals for animals followed for 
multiple years.  

To understand spatial variation in poaching pressure, we used participatory maps 
generated by focus groups of park rangers, as described by (Gonçalves 2017). In the 
participatory mapping exercise, the relative degree of poaching was classified as high, medium, 
or low throughout the park, based on ranger perception of reported incidents, snares and traps 
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found, and wildlife mortality. We created a raster with three levels corresponding to low, 
medium, and high poaching. 

We also generated rasters corresponding to the distance to Lake Urema, distance to the 
nearest river, distance to the nearest settlement, and distance to nearest road. The locations of 
settlements in and around the park were compiled by M. Stalmans of the Gorongosa Department 
of Scientific Services from a number of sources, including aerial surveys and remotely-sensed 
imagery. The locations of roads were recorded on the ground with a GPS unit while driving 
along the roads in the park. We ultimately removed distance to settlement from analysis, as it 
was correlated with distance to river, which we hypothesized was a more important predictor of 
animal activity in this system. 
 
Analysis of species distribution and activity 
 
We used two complementary modeling approaches to examine spatial covariates of seasonal 
species distributions: 1) a multispecies occupancy modeling approach developed to understand 
broad patterns of species richness and species presence or absence, and 2) predictors of species 
detection rates (Relative Activity Indices) to explore differences in relative densities of ungulate 
species over space and time. 
 
Occupancy modeling 
The occupancy modeling framework developed by (Rich et al. 2016) accounts for imperfect 
detection of animals by camera traps, allows for the examination of covariates of interest for both 
occurrence and detection probabilities, and draws on observations of all species in the 
community to inform occurrence probabilities of individual taxa (Dorazio and Royle 2005). This 
approach was recently used by Easter et al. (2019) to quantify patterns of species richness in a 
forestry concession in the greater Gorongosa ecosystem. 
 For each species detected at each camera, we generated a detection history corresponding 
to the number of days in which that species was detected. We then used this detection history to 
estimate the probability of species i occurring at camera site j, while accounting for imperfect 
detection. In our model, we defined occurrence of a given species at a site, zi,j, as a binary 
variable equal to 1 if the range occupied by species i included camera site j, and 0 if it did not. 
We assumed that occurrence was a Bernoulli random variable, where Ѱi,j is the probability of a 
species i occurring at site j, and thus zi,j ~ Bern(Ѱi, j). We treated each day as a repeat survey at a 
given camera site, to distinguish between true absences and non-detections in cases in which a 
species was present but not detected by the camera trap. We then estimated the conditional 
probability of detecting species i at camera site j on survey occasion (day) k as Xi,j,k ~ Bern(pi,j,k * 
zi,j), where pi,j,k is the detection probability given that the species was truly present at the site. 
 We used a generalized linear mixed modeling approach, following (Zipkin et al. 2009, 
2010, Rich et al. 2016); this consisted of fitting one model for each season (dry and wet) with 
spatial covariates selected based on a priori justification. Occupancy covariates included tree 
cover, fire frequency, termite mound density, watering hole density, lion activity, poaching, and 
distance to lake, rivers, and roads. We also included four detection covariates that we thought 
might influence the detection probability of different species: camera height, camera angle, 
detection distance, and grass cover in the immediate area. 

We fitted a single model to the entire community, assuming that species-specific 
parameters were random effects derived from a normally-distributed, community-level 
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hyperparameter. We incorporated detections from all species in this model, although in 
subsequent analyses we focused on ungulates. We also split species into groups according to diet 
(herbivore, omnivore, and carnivore), after which coefficients were modeled as functions of 
community-level mean, group-level mean, and species-specific effect for each covariate. More 
information on the specifics of the modeling framework can be found in Rich et al. (2016). 
 
Relative activity index 
We also used information on relative detection rates to explore spatial and seasonal changes in 
relative densities of ungulate species, complementing the occupancy modeling approach. While 
hierarchical occupancy modeling accounts for imperfect detection of species, it only addresses 
presence or absence and thus fails to account for differences in species abundance. For common 
species that are widespread in space, a comparison of relative activity across camera sites may 
provide greater insight into seasonal dynamics of space use. To that end, for each camera in each 
season, we calculated a Relative Activity Index (RAI), corresponding to the number of 
detections per trap-night. RAI has been found to be a suitable proxy for densities of African 
ungulates in the Serengeti (Palmer et al. 2018). We did not use the RAI modeling framework for 
the carnivore species, as it is less suited for rare, solitary, or territorial species, for which there is 
often a bimodal distribution in detection rates across camera sites. 

We used linear mixed models to evaluate the effects of landscape covariates on RAI, 
running separate models for each species in each season (n = 116 cameras in the dry season; n = 
82 cameras in the wet season). Before modeling, we first standardized RAI for each species in 
each season by setting the mean to 0 and the standard deviation to 1; this was done so that we 
could compare covariate estimates across species and seasons. Using the dredge function in the 
MuMIn package (Bartón 2018), we evaluated all possible combinations of fixed effects to 
identify the top models based on AIC, including the same covariates as we did in the occupancy 
model above: tree cover, fire frequency, termite mound density, water hole density, lion activity, 
poaching, and distance to lake, rivers, and roads. We included camera location as a random 
effect in each model to account for the inclusion of two years of data for most of the cameras. 
Fixed effects included tree cover, fire frequency, termite mound density, water hole density, 
distance to lake, distance to river, lion activity, and distance to road. We then averaged the 
coefficients from all models within 2 AIC of the top model, and calculated 95% confidence 
intervals for each covariate.  

To map activity patterns for waterbuck in the dry and wet seasons, we used the model-
averaged coefficients to predict waterbuck RAI for each 100 x 100 meter cell in the study area 
given the average values of the covariate rasters in that cell. For this analysis, we used raw RAI 
values rather than standardized RAI values to facilitate comparisons between seasonal RAI. We 
compared dry and wet season RAI for each species using paired t-tests, where dry and wet 
season RAI were paired for a camera in a given year (n = 92 camera-years). The summary results 
of these tests are presented in Supplementary Figure 3.  
 
Linking species traits to spatial patterns 
 
To examine the relationship between species traits and spatial predictors of activity and 
distribution, we compiled information on all ungulate species in the study area from a variety of 
sources. We gathered information on sociality, broad dietary strategy, and water dependence 
from the PanTHERIA database (Jones et al. 2009) and from the supplementary materials of 
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(Hempson et al. 2015). We also used site-specific information on dietary niche width and percent 
grass in diet from (Pansu et al. 2018), who conducted a DNA-metabarcoding study in Gorongosa 
National Park concurrently with our camera trap study. Finally, we used data from the 2016 dry 
season (October) aerial survey of Gorongosa (Stalmans and Peel 2016) to understand species 
distributions at a larger spatial scale during the dry season, since our camera trap grid was 
confined to the woodland savanna. For each species, we calculated the percentage of individuals 
of each species that were on the floodplain versus the woodland savanna. 
 
Analysis of species interactions 
 
To evaluate seasonal differences in niche partitioning among ungulate species in Gorongosa, we 
calculated pairwise overlap between ungulate species in space and time, and incorporated 
information on dietary overlap from (Pansu et al. 2018). We then used several linear regression 
models for the wet and dry season to examine relationships between spatial, temporal, and 
dietary overlap. 

As with the analysis of spatial predictors of species distribution, we also used two 
different modeling approaches to determine pairwise spatial overlap. First, we used a Bayesian 
hierarchical co-occurrence modeling framework to assess pairwise patterns of species co-
occurrence. As described by (Davis et al. 2018), we used a Bayesian modeling framework to 
calculate Species Interaction Factors (SIF) for each pair of ungulate species based on conditional 
occupancy and detection probabilities for each member of the pair (e.g. the probability that 
species A is present given that species B is present or absent, and vice versa). If the species are 
independent of one another, SIF is equal to 1; SIF > 1 if the species co-occur more frequently 
than expected, and SIF 0-1 if species co-occur less frequently than expected (avoidance). We 
log-transformed SIF values for subsequent analysis, so that a negative value corresponded to 
avoidance, and a positive value to attraction. Second, we conducted a linear regression of 
Relative Activity Indices. For all pairs of species A and B, we calculated Pearson’s r correlation 
coefficients between the Relative Activity Index of species A and species B at a given camera 
site in a given year. 

To calculate diel temporal overlap between species, we first used the times of each 
independent detection to generate a kernel density distribution of diel activity patterns across 
camera sites, as described by Ridout and Linkie (Ridout and Linkie 2009). To account for the 
circularity of the temporal data and for daily differences in sunset and sunrise time, we scaled all 
times to radians so that π/2 corresponded to sunrise and 3π/2 to sunset. For each pair of species, 
we then calculated a coefficient of temporal overlap, d-hat, using the overlap package in R 
(Ridout and Linkie 2009b). The value d-hat represents the area under the curve formed by taking 
the minimum of two activity density distributions (0 represents no temporal overlap, and 1 
complete overlap). We used the dhat4 formula, as recommended by (Ridout and Linkie 2009) for 
sample sizes >50.  

We also incorporated two pairwise measures of interspecific dietary niche overlap from 
(Pansu et al. 2018): Pianka’s index of dietary niche overlap and the Bray-Curtis dissimilarity 
index. To minimize the influence of outliers caused by infrequently-detected species, we 
restricted analysis to the 10 most commonly-detected ungulate species for which diet data was 
also available: warthog, waterbuck, bushbuck, impala, oribi, nyala, elephant, reedbuck, greater 
kudu, and sable. All data for the diet study were collected during the dry season.  
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FIGURE 1. SEASONAL RAINFALL IN GORONGOSA, 2016-2018.  

Total monthly rainfall in Chitengo, the headquarters of Gorongosa National Park, during each 
month of our study. We compared wildlife distributions in the dry season (July – September) and 
wet season (December – March). 
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FIGURE 2. STUDY SITE.  
 
Map of Gorongosa National Park, showing the locations of the lake, floodplain, and camera 
traps. In the dry season, Lake Urema is restricted to the area shown in dark blue. In the wet 
season, much of the floodplain, in light blue, is seasonally inundated as Lake Urema and the 
surrounding rivers flood. The camera trap grid is located south of Lake Urema, in savanna 
woodland. Inset shows the location of Gorongosa National Park within Mozambique. 
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FIGURE 3. RELATIVE ACTIVITY INDEX OF WATERBUCK.  

Average Relative Activity Index (RAI = detections / trap-night) of waterbuck across cameras in 
each season, with bars representing Standard Error. Waterbuck activity in the woodland study 
area nearly doubled between the dry and wet seasons during both years of the study, with a 
general increase from year 1 to year 2, reflecting continued population growth. 
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FIGURE 4. MODELED RELATIVE ACTIVITY INDEX OF WATERBUCK IN THE DRY AND WET 
SEASON.  
 
Map illustrates the predicted waterbuck Relative Activity Index (RAI = detections / trap-night) in 
the woodland camera trap study area south of Lake Urema. The map is based on the top dry and 
wet season models of waterbuck RAI, and the values of the underlying spatial raster layers 
associated with the predictors in these models. Waterbuck activity increases throughout the study 
area, particularly near Lake Urema, as animal disperse from the inundated floodplain. 
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FIGURE 5. FORAGING STRATEGY AND TREE COVER ASSOCIATION.  

Points represent the mean of model-averaged coefficients for tree cover as a predictor in the 
models of Relative Activity Index (RAI = detections / trap-night), averaged across species within 
each foraging strategy. Error bars correspond to standard error of the mean. Generally, the RAI 
of grazing species decreased with tree cover, while the RAI of browsing species increased with 
tree cover.  
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FIGURE 6. FIRE AND GRAZING.  

Relationship between percent grass in diet and the effect of fire frequency on Relative Activity 
Index (RAI = detections / trap-night). There is one point for each species (for which diet data 
were available), representing the model-averaged coefficient corresponding to the effect of fire 
frequency on RAI. In the wet season, species with a higher percentage of grass in their diet were 
more strongly associated with areas that burn more frequently.  
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FIGURE 7. WATERBUCK AND BUFFALO ASSOCIATE WITH RIVERS AND LAKES IN DRY SEASON.  

Model-averaged coefficients and 95% confidence intervals representing the effect of distance to 
river and lake on the seasonal Relative Activity Index (RAI = detections / trap-night) of buffalo 
and waterbuck. In the dry season, the RAI of waterbuck and buffalo is higher in proximity to 
rivers and lakes. A negative value represents greater activity when in closer proximity to the 
feature (smaller distance).  
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FIGURE 8. SPATIAL AND DIETARY OVERLAP.  
 
Relationship between pairwise dietary overlap and pairwise spatial associations among ungulate 
species. Each point represents a pair of species (for which diet data were available for both 
species). There is a weakly positive, although not statistically significant, relationship between 
pairwise dietary overlap and correlation between relative activity index. 
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FIGURE 9. SEASONAL DIFFERENCES IN SPECIES ASSOCIATIONS.  

Seasonal differences in pairwise Pearson’s r correlation coefficients between the Relative 
Activity Index of species at a given camera site. The color of the circle represents the season in 
which spatial correlation was higher between those species, and the size of the circle corresponds 
to the magnitude of the difference between wet and dry season correlation. 
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FIGURE 10. SEASONAL CHANGES IN DIEL OVERLAP BETWEEN UNGULATES AND LIONS.  

Kernel density distributions representing the timing of ungulate and lion detections, where the 
area under the curve is equal to 1. In the dry season, oribi, sable antelope, and reedbuck have a 
relatively high degree of temporal overlap with lions (dotted line), exhibiting crepuscular and 
nocturnal activity. In the wet season, lions remain crepuscular/nocturnal, but all three antelope 
species change their activity patterns to be more diurnal. 
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SUPPLEMENTARY FIGURE 1: SPATIAL COVARIATES 
 
Maps of environmental and anthropogenic spatial features in the study area. These features were 
used as covariates in models of mammal occupancy and relative activity. All features have been 
standardized to have a mean of 0 and standard deviation of 1, and all values presented here are 
relative values. The hexagonal grid is overlaid on each map; grid cells are 5km2 in area, and 
camera traps are located at the center point of each grid cell. 
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SUPPLEMENTARY FIGURE 2: SEASONAL OCCUPANCY OF UNGULATE SPECIES 
 
Mean occupancy probabilities for ungulate species in the dry and wet seasons, with 95% credible 
intervals, as calculated using a Bayesian multispecies hierarchical model. Occupancy can be 
interpreted as the probability of a species using a given camera site in the study area during the 
study period, accounting for imperfect detection rates. Species are ordered by increasing dry 
season occupancy. 
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SUPPLEMENTARY FIGURE 3: SEASONAL RELATIVE ACTIVITY INDICES OF UNGULATE SPECIES 
 
Mean Relative Activity Index (RAI) of each ungulate species in the dry and wet season across 
camera sites, with bars representing Standard Error. RAI represents the number of independent 
detections (>15 minutes apart) per trap-night. Species are ordered by increasing dry season RAI. 
The significance level of paired t-tests comparing RAI at a given camera-year in the dry and wet 
season is indicated with asterisks next to the species name (* p < 0.10; ** p < 0.05; *** p < 
0.001). A) A small number of species comprised the majority of detections (warthog, waterbuck, 
bushbuck, and impala), with a long tail of more rare species. B) Here, the y-axis (RAI) is plotted 
on a log scale so that seasonal differences are more visible for the rare species. 
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SUPPLEMENTARY FIGURE 4: PAIRWISE SPATIAL AND TEMPORAL OVERLAP AMONG UNGULATE 
SPECIES 
 
Pairwise spatial relationships among ungulate species in Gorongosa National Park. Figures 
illustrate the direction and magnitude of the spatial and temporal association between the species 
in the dry season and wet season, and differences between seasons. A-C) Patterns of species co-
occurrence, as determined through a series of two-species hierarchical occupancy models. The 
resulting measure (Species Interaction Factor) corresponds to the probability of one species 
being present given the presence of the other species. D-F) Patterns of spatial association as 
measured through Pearson’s r correlation coefficients between the Relative Activity Indices of 
species across camera sites. G-I) Overlap in kernel density distributions of diel activity, ranging 
from completely opposite activity to completely synchronized activity. 
 
Spatial co-occurrence (Species Interaction Factor) 
 
A) Dry season                 B) Wet season             
 

   
 
C) Comparison between seasons 
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Spatial correlation of relative activity 
 
D) Dry season                 E) Wet season             

   
 
F) Comparison between seasons  
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Temporal overlap 
 
G) Dry season                 H) Wet season    
          

 
 
 
I) Comparison between seasons  
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SUPPLEMENTARY FIGURE 5: SEASONAL DIEL ACTIVITY PATTERNS OF UNGULATES 
 
Kernel density distributions for diel activity patterns of ungulate species in Gorongosa National 
Park in the dry and wet seasons, scaled to sunrise and sunset times. 
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SUPPLEMENTARY TABLE 1: STUDY SPECIES 
 
All mammal species (excluding small rodents) that were documented by camera traps in 
Gorongosa National Park, Mozambique from 2016-2018. We detected a total of 38 mammal 
species. Detections were dominated by five species (warthog, waterbuck, baboon, bushbuck, and 
impala) comprising 78% of all detections (Supplementary Table 3). Diet classification and body 
size are from the PanTHERIA database. 
 
Common 
name 

Genus and 
species 

Family Order Diet 
classification 

Body 
size (kg) 

Impala Aepyceros 
melampus 

Bovidae Cetardiodactyla Herbivore 52.59 

Hartebeest Alcelaphus 
buselaphus 

Bovidae Cetardiodactyla Herbivore 160.94 

Natal red 
duiker 

Cephalophus 
natalensis 

Bovidae Cetardiodactyla Herbivore 12.72 

Common 
wildebeest 

Connochaetes 
taurinus 

Bovidae Cetardiodactyla Herbivore 198.62 

Sable antelope Hippotragus 
niger 

Bovidae Cetardiodactyla Herbivore 236.41 

Waterbuck Kobus 
ellipsiprymnus 

Bovidae Cetardiodactyla Herbivore 204.39 

Oribi Ourebia ourebi Bovidae Cetardiodactyla Herbivore 17.19 
Southern 
reedbuck 

Redunca 
arundinum  

Bovidae Cetardiodactyla Herbivore 43.29 

Common 
duiker 

Sylvicapra 
grimmia 

Bovidae Cetardiodactyla Herbivore 15.64 

African 
buffalo 

Syncerus caffer Bovidae Cetardiodactyla Herbivore 592.67 

Common 
eland 

Taurotragus 
oryx 

Bovidae Cetardiodactyla Herbivore 562.59 

Bushbuck Tragelaphus 
scriptus 

Bovidae Cetardiodactyla Herbivore 43.29 

Nyala Tragelaphus 
angasii 

Bovidae Cetardiodactyla Herbivore 87.62 

Greater kudu Tragelaphus 
strepsiceros 

Bovidae Cetardiodactyla Herbivore 206.06 

Elephant Loxodonta 
africana 

Elephantidae Cetardiodactyla Herbivore 3824.54 

Hippopotamus Hippopotamus 
amphibius 

Hippopota-
midae 

Cetardiodactyla Herbivore 1536.31 

Warthog Phacochoerus 
africanus 

Suidae Cetardiodactyla Herbivore 82.50 

Bushpig Potamochoerus 
larvatus 

Suidae Cetardiodactyla Omnivore 69.06 
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Common 
name 

Genus and 
species 

Family Order Diet 
classification 

Body 
size (kg) 

Serval Leptailurus 
serval 

Felidae Carnivora Carnivore 12.00 

Lion activity Panthera leo Felidae Carnivora Carnivore 158.62 
Marsh 
mongoose 

Atilax 
paludinosus 

Herpestidae Carnivora Omnivore 3.60 

Bushy-tailed 
mongoose 

Bdeogale 
crassicauda 

Herpestidae Carnivora Carnivore 1.72 

Slender 
mongoose 

Galerella 
sanguinea / 
Herpestes 
sanguineus 

Herpestidae Carnivora Omnivore 0.54 

Dwarf 
mongoose 

Helogale 
parvula 

Herpestidae Carnivora Carnivore 0.28 

Egyptian 
(large grey) 
mongoose 

Herpestes 
ichneumon 

Herpestidae Carnivora Omnivore 2.98 

White-tailed 
mongoose 

Ichneumia 
albicauda 

Herpestidae Carnivora Carnivore 3.63 

Banded 
mongoose 

Mungos mungo Herpestidae Carnivora Carnivore 1.26 

Honey badger Mellivora 
capensis 

Mustelidae Carnivora Omnivore 9.00 

Civet Civettictis 
civetta 

Viverridae Carnivora Omnivore 12.08 

Common 
genet 

Genetta 
genetta 

Viverridae Carnivora Omnivore 1.76 

Hare Lepus microtis Leopridae Lagomorpha Herbivore 1.76 
Pangolin Manis 

temminckii 
Manidae Pholidota Carnivore 11.94 

Samango Ceropithecus 
albogularis 

Cercopitheci
dae 

Primates Omnivore 5.04 

Vervet Chlorocebus 
pygerythrus 

Cercopitheci
dae 

Primates Omnivore 3.70 

Baboon Papio 
cynocephaus 

Cercopitheci
dae 

Primates Omnivore 15.82 

Bushbaby Otolemur 
crassicaudatus 

Galagidae Primates Herbivore 1.21 

Porcupine Hystrix 
africaeaustralis 

Hystricidae Rodentia Herbivore 14.94 

Aardvark Orycteropus 
afer 

Orycteropod
idae 

Tubulidentata Carnivore 56.18 

 
  



 

 131 

SUPPLEMENTARY TABLE 2: UNGULATE TRAITS  
 
Behavioral and ecological traits for ungulate species in Gorongosa National Park. 
 

Common 
name 

Foraging 
strategy1 

Percent 
grass in 

diet2 
Group size3 Water 

dependence3 

% biomass on 
floodplain in 
dry season4 

Impala Mixed feeder 10 Gregarious High 50% 
Hartebeest Grazer 91 Gregarious High 29% 
Natal red 
duiker 

Browser NA 
Solitary/pairs None 

20% 

Common 
wildebeest 

Grazer 95 
Megagroups High 

27% 

Sable antelope Grazer 86 Family High 23% 
Waterbuck Grazer 50 Family High 76% 
Oribi Grazer 42 Family None 74% 
Southern 
reedbuck 

Grazer 56 
Solitary/pairs High 

83% 

Common 
duiker 

Browser NA 
Solitary/pairs None 

13% 

African buffalo Grazer 34 Megagroups High 17% 
Common eland Mixed feeder NA Gregarious None 0% 
Bushbuck Browser 0 Family Low 15% 
Nyala Mixed feeder 12 Family Low 25% 
Greater kudu Browser 0 Solitary/pairs Low 53% 
Elephant Mixed feeder 20 Gregarious High 50% 
Hippopotamus Grazer NA Gregarious High 100% 
Warthog Grazer 97 Family High 65% 
Bushpig Mixed feeder NA Family High 51% 

 

1Tinley 1977; 2Pansu et al. 2018; 3Hempsen et al. 2013; 4Stalmans et al. 2019 
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SUPPLEMENTARY TABLE 3: TOTAL DETECTIONS OF EACH SPECIES 
 
The number of camera trap detections for each species during the study (wet and dry seasons 
combined) and the number of cameras (out of 60) at which the species was detected. 
 
Common name Total 

Detections 
Total Number (%) of 

Camera Sites 
Warthog 11,930 60 (100%) 
Waterbuck 10,437 60 (100%) 
Baboon 9,210 60 (100%) 
Bushbuck 6,770 60 (100%) 
Impala 3,864 54 (90%) 
Common genet 1,904 59 (98%) 
Oribi 1,786 56 (93%) 
Nyala 1,112 43 (72%) 
Elephant 962 60 (100%) 
Civet 938 58 (97%) 
Porcupine 881 49 (82%) 
Bushpig 705 58 (97%) 
Vervet 623 40 (67%) 
Southern reedbuck 448 47 (78%) 
Greater kudu 405 53 (88%) 
Natal red duiker 265 15 (25%) 
Hare 220 36 (60%) 
Marsh mongoose 215 42 (70%) 
Sable antelope 157 33 (55%) 
Honey badger 137 20 (33%)  
African buffalo 134 35 (58%) 
Common wildebeest 127 39 (65%) 
Slender mongoose 123 24 (40%) 
Aardvark 96 26 (43%) 
Hartebeest 91 16 (27%) 
Common duiker 89 16 (27%) 
White-tailed mongoose 88 28 (47%) 
Bushy-tailed mongoose 69 21 (35%) 
Banded mongoose 59 26 (43%) 
Egyptian (large grey) mongoose 47 38 (63%) 
Lion activity 45 40 (67%) 
Samango 39 18 (30%) 
Serval 32 15 (25%) 
Bushbaby 31 14 (23%) 
Dwarf mongoose 21 13 (22%) 
Hippopotamus 20 6 (10%) 
Common eland 15 5 (8%) 
Pangolin 14 26 (43%) 
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SUPPLEMENTARY TABLE 4: PREDICTORS OF RAI 
 
Model-averaged coefficients and relative importance of spatial predictors of standardized 
Relative Activity Index for ungulate species. The relative importance of each covariate is the 
sum of the Akaike weights of the models in which that covariate appears (for all models within 2 
deltaAIC of the top model). Covariates are listed in order of descending importance for the dry 
season, and covariates with an importance >0.50 are bolded. 
 

Impala 
 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.113 (-0.332 – 0.106) 1.00 -0.001 (-0.239 – 0.236) 1.00 
Tree cover -0.368 (-0.605 – -0.130) 1.00 -0.156 (-0.505 – 0.049) 0.68 
Fire frequency -0.275 (-0.506 – -0.044) 1.00 -0.308 (-0.581 – -0.034) 1.00 
Pan density -0.300 (-0.775 – 0.066) 0.85 0.002 (-0.444 – 0.517) 0.04 
Poaching 0.013 (-0.115 – 0.328) 0.13 0.019 (-0.142 – 0.359) 0.17 
Lion activity -0.014 (-0.338 – 0.121) 0.13 0.206 (-0.008 – 0.472) 0.89 
Distance to road -0.012 (-0.347 – 0.137) 0.12 -0.007 (-0.352 – 0.196) 0.10 
Distance to Lake Urema -0.010 (-0.331 – 0.146) 0.11 -0.093 (-0.452 – 0.077) 0.50 
Termite mound density -0.003 (-0.216 – 0.221) 0.08 -0.014 (-0.335 – 0.154) 0.16 
Distance to river 0.0001 (-0.216 – 0.221) 0.08 0.002 (-0.213 – 0.314) 0.04 

 
Hartebeest 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.005 (-0.191 – 0.181) 1.00 -0.032 (-0.235 – 0.170) 1.00 
Termite mound density 0.266 (0.078 – 0.454) 1.00 -0.006 (-0.263 – 0.125) 0.08 
Distance to Lake Urema 0.281 (0.076 – 0.486) 1.00 0.109 (-0.052 – 0.393) 0.64 
Tree cover -0.132 (-0.401 – 0.044) 0.74 -0.274 (-0.515 – -0.033) 1.00 
Lion activity 0.030 (-0.092 – 0.322) 0.27 -0.003 (-0.241 – 0.159) 0.07 
Pan density 0.032 (-0.224 – 0.515) 0.22 0.001 (-0.367 – 0.400) 0.06 
Fire frequency 0.006 (-0.128 – 0.274) 0.09 0.327 (0.073 – 0.581) 1.00 
Distance to river -0.002 (-0.217 – 0.17) 0.07 0.004 (-0.163 – 0.262) 0.07 
Poaching -0.001 (-0.203 – 0.181) 0.07 -0.027 (-0.335 – 0.113) 0.24 
Distance to road 0.0001 (-0.198 – 0.202) 0.07 -0.026 (-0.339 – 0.120) 0.23 

 
Red Duiker 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept 0.074 (-0.155 – 0.302) 1.00 0.073 (-0.179 – 0.324) 1.00 
Distance to road 0.288 (0.029 – 0.547) 1.00 0.445 (0.158 – 0.733) 1.00 
Tree cover 0.269 (0.020 – 0.518) 1.00 0.110 (-0.084 – 0.470) 0.57 
Fire frequency -0.088 (-0.450 – 0.080) 0.48 -0.342 (-0.654 – -0.030) 1.00 
Termite mound density 0.014 (-0.135 – 0.323) 0.15 0.002 (-0.228 – 0.283) 0.07 
Lion activity 0.013 (-0.156 – 0.336) 0.14 -0.010 (-0.323 – 0.189) 0.16 
Poaching 0.010 (-0.170 – 0.323) 0.13 0.300 (0.034 – 0.567) 1.00 
Distance to Lake Urema -0.008 (-0.318 – 0.187) 0.12 0.006 (-0.241 – 0.321) 0.14 
Pan density 0.006 (-0.401 – 0.517) 0.11 0.001 (-0.487 – 0.524) 0.07 
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Distance to river -0.001(-0.261 – 0.217) 0.05 0.024 (-0.145 – 0.380) 0.20 
 

Common Wildebeest 
 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.023 (-0.232 – 0.186) 1.00 -0.019 (-0.233 – 0.195) 1.00 
Tree cover -0.281 (-0.524 – -0.038) 1.00 -0.287 (-0.538 – -0.036) 1.00 
Distance to Lake Urema 0.312 (0.086 – 0.538) 1.00 0.277 (0.049 – 0.505) 1.00 
Termite mound density -0.011 (-0.294 – 0.124) 0.13 -0.006 (-0.280 – 0.140) 0.09 
Distance to river 0.008 (-0.146 – 0.291) 0.11 0.003 (-0.179 – 0.271) 0.07 
Distance to road 0.007 (-0.162 – 0.285) 0.11 0.025 (-0.107 – 0.347) 0.21 
Poaching -0.006 (-0.271 – 0.155) 0.11 -0.002 (-0.248 – 0.187) 0.07 
Fire frequency 0.006 (-0.170 – 0.288) 0.10 0.019 (-0.136 – 0.351) 0.17 
Pan density -0.007 (-0.488 – 0.343) 0.10 -0.007 (-0.509 – 0.321) 0.08 
Lion activity -0.001 (-0.242 – 0.213) 0.09 -0.041 (-0.345 – 0.083) 0.31 

 
Hippopotamus 

(note: there were no hippopotamus detections in the dry season) 
Wet season 

Covariate Estimate (95% Confidence 
Interval) 

Importance 

Intercept -0.008 (-0.215 – 0.199) 1.00 
Fire frequency -0.248 (-0.487 – -0.008) 1.00 
Poaching 0.040 (-0.094 – 0.358) 0.30 
Pan density -0.059 (-0.593 – 0.178) 0.28 
Distance to Lake Urema -0.034 (-0.359 – 0.094) 0.26 
Tree cover -0.026 (-0.370 – 0.108) 0.20 
Distance to river -0.015 (-0.315 – 0.106) 0.15 
Lion activity 0.009 (-0.113 – 0.29) 0.10 
Termite mound density -0.003 (-0.256 – 0.129) 0.05 
Distance to road -0.002 (-0.287 – 0.177) 0.04 

 
Sable antelope 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.012 (-0.229 – 0.204) 1.00 0.034 (-0.225 – 0.293) 1.00 
Distance to river 0.176 (-0.017 – 0.427) 0.86 0.005 (-0.195 – 0.344) 0.07 
Distance to Lake Urema 0.142 (-0.018 – 0.421) 0.71 0.172 (-0.058 – 0.528) 0.73 
Termite mound density -0.096 (-0.377 – 0.037) 0.56 -0.008 (-0.336 – 0.180) 0.10 
Distance to road -0.104 (-0.438 – 0.058) 0.55 0.129 (-0.072 – 0.517) 0.58 
Fire frequency 0.080 (-0.069 – 0.433) 0.44 0.237 (-0.022 – 0.597) 0.82 
Pan density -0.089 (-0.699 – 0.153) 0.33 -0.014 (-0.666 – 0.380) 0.10 
Tree cover 0.046 (-0.075 – 0.427) 0.26 -0.194 (-0.555 – 0.042) 0.76 
Lion activity -0.041 (-0.413 – 0.086) 0.25 -0.012 (-0.359 – 0.159) 0.12 
Poaching 0.0001 (-0.204 – 0.219) 0.02 0.0002 (-0.263 – 0.277) 0.03 

 
Waterbuck 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.031 (-0.195 – 0.132) 1.00 -0.075 (-0.269 – 0.120) 1.00 
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Distance to river -0.360 (-0.526 – -0.194) 1.00 -0.039 (-0.333 – 0.066) 0.29 
Termite mound density -0.169 (-0.326 – -0.011) 1.00 -0.007 (-0.260 – 0.131) 0.11 
Distance to Lake Urema -0.468 (-0.635 – -0.300) 1.00 -0.536 (-0.739 – -0.332) 1.00 
Distance to road -0.042 (-0.291 – 0.069) 0.38 -0.028 (-0.320 – 0.097) 0.26 
Tree cover 0.016 (-0.116 – 0.290) 0.18 -0.038 (-0.359 – 0.099) 0.29 
Pan density -0.021 (-0.444 – 0.196) 0.17 -0.021 (-0.543 – 0.247) 0.14 
Fire frequency 0.007 (-0.143 – 0.243) 0.15 0.0004 (-0.203 – 0.237) 0.02 
Lion activity -0.004 (-0.236 – 0.147) 0.08 0.060 (-0.056 – 0.336) 0.43 
Poaching 0.0003 (-0.164 – 0.173) 0.07 0.019 (-0.097 – 0.286) 0.20 

 
Elephant 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.014 (-0.228 – 0.200) 1.00 -0.014 (-0.199 – 0.170) 1.00 
Distance to Lake Urema -0.314 (-0.547 – -0.082) 1.00 -0.377 (-0.568 – -0.185) 1.00 
Distance to river -0.313 (-0.535 – -0.091) 1.00 -0.310 (-0.501 – -0.118) 1.00 
Fire frequency 0.186 (-0.030 – 0.460) 0.86 -0.023 (-0.356 – 0.106) 0.18 
Poaching -0.011 (-0.318 – 0.138) 0.13 0.206 (0.012 – 0.400) 1.00 
Termite mound density -0.005 (-0.260 – 0.161) 0.10 -0.001 (-0.187 – 0.166) 0.10 
Lion activity -0.006 (-0.302 – 0.190) 0.10 -0.002 (-0.212 – 0.179) 0.10 
Pan density -0.007(-0.499 – 0.359) 0.10 -0.016 (-0.475 – 0.223) 0.13 
Distance to road 0.003 (-0.219 – 0.278) 0.09 -0.002 (-0.211 – 0.179) 0.10 
Tree cover -0.001 (-0.268 – 0.246) 0.09 -0.009 (-0.303 – 0.153) 0.12 

 
Oribi 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.057 (-0.270 – 0.156) 1.00 -0.103 (-0.325 – 0.119) 1.00 
Tree cover -0.276 (-0.514 – -0.037) 1.00 -0.479 (-0.729 – -0.229) 1.00 
Termite mound density -0.103 (-0.368 – 0.049) 0.65 -0.125 (-0.394 – 0.038) 0.70 
Distance to road -0.063 (-0.373 – 0.076) 0.42 -0.017 (-0.335 – 0.115) 0.16 
Distance to river -0.033 (-0.338 – 0.093) 0.27 -0.004 (-0.283 – 0.157) 0.07 
Pan density -0.059 (-0.652 – 0.191) 0.25 -0.341 (-0.822 – 0.030) 0.86 
Poaching -0.009 (-0.293 – 0.138) 0.12 -0.003 (-0.262 – 0.167) 0.07 
Lion activity -0.009 (-0.328 – 0.141) 0.09 0.004 (-0.158 – 0.277) 0.07 
Distance to Lake Urema 0.007(-0.150 – 0.301) 0.09 -0.004 (-0.290 – 0.174) 0.07 
Fire frequency -0.004 (-0.290 – 0.153) 0.06 -0.021 (-0.351 – 0.105) 0.17 

 
Warthog 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.038 (-0.220 – 0.144) 1.00 -0.027 (-0.210 – 0.157) 1.00 
Fire frequency 0.252 (0.045 – 0.458) 1.00 0.295 (0.082 – 0.508) 1.00 
Distance to river -0.259 (-0.449 – -0.069) 1.00 -0.313 (-0.507 – -0.119) 1.00 
Distance to Lake Urema -0.485 (-0.680 – -0.290) 1.00 -0.658 (-0.859 – -0.457) 1.00 
Lion activity -0.017 (-0.309 – 0.105) 0.17 0.015 (-0.100 – 0.288) 0.16 
Pan density -0.012 (-0.460 – 0.252) 0.12 -0.006 (-0.420 – 0.312) 0.11 
Tree cover -0.007 (-0.282 – 0.157) 0.12 -0.013 (-0.307 – 0.128) 0.14 
Poaching 0.004 (-0.163 – 0.241) 0.11 0.003 (-0.166 – 0.223) 0.11 
Distance to road 0.004 (-0.181 – 0.248) 0.11 0.004 (-0.172 – 0.247) 0.11 
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Termite mound density -0.003 (-0.202 – 0.150) 0.11 0.001 (-0.168 – 0.193) 0.10 
 

Bushpig 
 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept 0.002 (-0.235 – 0.238) 1.00 0.026 (-0.206 – 0.258) 1.00 
Distance to road -0.178 (-0.508 – 0.040) 0.76 0.002 (-0.218 – 0.263) 0.09 
Distance to river -0.109 (-0.444 – 0.060) 0.57 -0.004 (-0.273 – 0.196) 0.09 
Fire frequency 0.107 (-0.075 – 0.468) 0.55 -0.009 (-0.343 – 0.179) 0.10 
Lion activity 0.069 (-0.096 – 0.452) 0.39 -0.005 (-0.283 – 0.171) 0.10 
Termite mound density 0.015 (-0.141 – 0.330) 0.16 -0.001 (-0.237 – 0.217) 0.09 
Pan density 0.020 (-0.310 – 0.617) 0.13 0.014 (-0.299 – 0.561) 0.10 
Distance to Lake Urema -0.008 (-0.343 – 0.156) 0.08 -0.009 (-0.311 – 0.147) 0.11 
Poaching 0.001 (-0.236 – 0.27) 0.05 0.251 (0.018 – 0.483) 1.00 
Tree cover -0.002 (-0.319 – 0.183) 0.03 0.003 (-0.213 – 0.290) 0.09 

 
Southern Reedbuck 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.052 (-0.283 – 0.180) 1.00 -0.046 (-0.257 – 0.166) 1.00 
Tree cover -0.253 (-0.536 – -0.001) 0.94 -0.284 (-0.530 – -0.037) 1.00 
Distance to river -0.141 (-0.433 – 0.043) 0.72 -0.019 (-0.314 – 0.113) 0.19 
Termite mound density -0.083 (-0.410 – 0.060) 0.47 -0.076 (-0.345 – 0.058) 0.53 
Pan density -0.070 (-0.722 – 0.209) 0.27 -0.171 (-0.686 – 0.099) 0.58 
Lion activity -0.007 (-0.349 – 0.224) 0.12 0.026 (-0.096 – 0.325) 0.22 
Distance to Lake Urema 0.004 (-0.197 – 0.301) 0.08 0.004 (-0.164 – 0.275) 0.08 
Poaching -0.001 (-0.243 – 0.217) 0.08 0.004 (-0.161 – 0.266) 0.07 
Distance to road -0.001 (-0.270 – 0.217) 0.04 -0.002 (-0.257 – 0.177) 0.04 
Fire frequency 0.0002 (-0.235 – 0.250) 0.04 0.005 (-0.161 – 0.291) 0.08 

 
African buffalo 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.007 (-0.198 – 0.183) 1.00 -0.041 (-0.258 – 0.176) 1.00 
Distance to river -0.228 (-0.425 – -0.031) 1.00 0.050 (-0.087 – 0.379) 0.34 
Distance to Lake Urema -0.259 (-0.464 – -0.054) 1.00 0.025 (-0.110 – 0.352) 0.21 
Fire frequency 0.110 (-0.044 – 0.399) 0.62 0.004 (-0.151 – 0.306) 0.06 
Poaching 0.064 (-0.057 – 0.357) 0.43 -0.002 (-0.249 – 0.184) 0.05 
Pan density 0.063 (-0.157 – 0.574) 0.30 -0.241 (-0.731 – 0.072) 0.73 
Termite mound density -0.005 (-0.226 – 0.139) 0.11 -0.062 (-0.354 – 0.065) 0.43 
Distance to road -0.006 (-0.308 – 0.139) 0.07 0.004 (-0.154 – 0.287) 0.05 
Lion activity 0.003 (-0.165 – 0.267) 0.05 0.031 (-0.110 – 0.349) 0.26 
Tree cover 0.001 (-0.217 – 0.241) 0.05 -0.169 (-0.482 – 0.034) 0.75 

 
Common duiker 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.001 (-0.199 – 0.197) 1.00 -0.005 (-0.214 – 0.205) 1.00 
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Distance to Lake Urema 0.076 (-0.046 – 0.359) 0.49 0.014 (-0.121 – 0.291) 0.17 
Fire frequency 0.059 (-0.088 – 0.404) 0.38 0.002 (-0.181 – 0.255) 0.06 
Lion activity -0.029 (-0.331 – 0.095) 0.25 -0.004 (-0.263 – 0.157) 0.07 
Distance to road -0.030 (-0.364 – 0.111) 0.24 0.0002 (-0.213 – 0.220) 0.06 
Poaching -0.023 (-0.346 – 0.112) 0.19 0.002 (-0.186 – 0.243) 0.06 
Distance to river -0.019 (-0.312 – 0.094) 0.17 -0.0002 (-0.215 – 0.207) 0.06 
Tree cover -0.008 (-0.332 – 0.123) 0.08 0.004 (-0.167 – 0.293) 0.07 
Pan density 0.004 (-0.269 – 0.494) 0.03 -0.012 (-0.469 – 0.293) 0.13 
Termite mound density -0.001 (-0.218 – 0.160) 0.03 0.101 (-0.053 – 0.342) 0.70 

 
Eland 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.015 (-0.205 – 0.175) 1.00 -0.018 (-0.244 – 0.209) 1.00 
Fire frequency 0.249 (0.032 – 0.466) 1.00 0.080 (-0.066 – 0.451) 0.42 
Distance to river -0.236 (-0.434 – -0.038) 1.00 0.003 (-0.210 – 0.297) 0.06 
Distance to Lake Urema -0.229 (-0.431 – -0.026) 1.00 -0.122 (-0.441 – 0.055) 0.63 
Poaching -0.007 (-0.273 – 0.156) 0.13 0.024 (-0.113 – 0.344) 0.21 
Tree cover -0.007 (-0.288 – 0.174) 0.12 0.036 (-0.111 – 0.420) 0.23 
Lion activity -0.006 (-0.266 – 0.169) 0.12 0.187 (-0.018 – 0.435) 0.90 
Distance to road -0.006 (-0.274 – 0.178) 0.12 0.028 (-0.125 – 0.367) 0.23 
Termite mound density -0.003 (-0.213 – 0.153) 0.11 0.005 (-0.149 – 0.304) 0.06 
Pan density 0.003 (-0.339 – 0.401) 0.11 -0.004 (-0.575 – 0.315) 0.03 

 
Nyala 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept 0.005 (-0.209 – 0.219) 1.00 0.062 (-0.172 – 0.296) 1.00 
Termite mound density 0.273 (0.054 – 0.492) 1.00 0.016 (-0.134 – 0.335) 0.15 
Tree cover 0.254 (0.030 – 0.521) 0.92 0.293 (0.021 – 0.564) 1.00 
Distance to Lake Urema 0.055 (-0.068 – 0.408) 0.33 0.340 (0.077 – 0.603) 1.00 
Fire frequency -0.015 (-0.320 – 0.149) 0.18 -0.327 (-0.596 – -0.058) 1.00 
Pan density -0.010 (-0.551 – 0.309) 0.09 -0.004 (-0.509 – 0.433) 0.11 
Distance to river 0.003 (-0.182 – 0.263) 0.08 0.005 (-0.207 – 0.289) 0.11 
Lion activity 0.003 (-0.200 – 0.278) 0.08 -0.0002 (-0.236 – 0.233) 0.11 
Distance to road -0.003 (-0.262 – 0.196) 0.08 0.008 (-0.195 – 0.332) 0.12 
Poaching -0.001 (-0.235 – 0.202) 0.07 -0.005 (-0.290 – 0.205) 0.11 

 
Greater Kudu 

 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.031 (-0.250 – 0.187) 1.00 0.015 (-0.237 – 0.268) 1.00 
Fire frequency 0.303 (0.063 – 0.542) 1.00 0.014 (-0.138 – 0.381) 0.11 
Poaching -0.041 (-0.376 – 0.087) 0.28 0.005 (-0.183 – 0.307) 0.08 
Tree cover -0.030 (-0.363 – 0.116) 0.25 -0.002 (-0.296 – 0.237) 0.07 
Pan density -0.040 (-0.604 – 0.241) 0.22 -0.022 (-0.679 – 0.265) 0.11 
Distance to river 0.002 (-0.184 – 0.259) 0.06 0.010 (-0.150 – 0.355) 0.10 
Distance to Lake Urema 0.002 (-0.199 – 0.259) 0.06 0.003 (-0.213 – 0.287) 0.08 
Termite mound density 0.001 (-0.190 – 0.237) 0.06 0.005 (-0.181 – 0.309) 0.08 
Distance to road -0.001 (-0.266 – 0.238) 0.06 0.006 (-0.190 – 0.332) 0.08 
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Lion activity -0.001 (-0.245 – 0.224) 0.06 -0.003 (-0.291 – 0.202) 0.08 
 

Bushbuck 
 Dry season Wet season 
Covariate Estimate (95% 

Confidence Interval) 
Importance Estimate (95% 

Confidence Interval) 
Importance 

Intercept -0.038 (-0.226 – 0.149) 1.00 -0.033 (-0.235 – 0.170) 1.00 
Fire frequency 0.389 (0.169 – 0.609) 1.00 0.347 (0.099 – 0.594) 1.00 
Distance to river -0.362 (-0.558 – -0.165) 1.00 -0.283 (-0.487 – -0.079) 1.00 
Distance to Lake Urema -0.502 (-0.706 – -0.299) 1.00 -0.510 (-0.728 – -0.292) 1.00 
Poaching -0.041 (-0.327 – 0.079) 0.33 0.001 (-0.204 – 0.223) 0.08 
Tree cover 0.017 (-0.138 – 0.316) 0.19 0.003 (-0.199 – 0.271) 0.09 
Pan density -0.026 (-0.511 – 0.228) 0.19 0.078 (-0.132 – 0.639) 0.31 
Lion activity -0.008 (-0.290 – 0.138) 0.10 0.001 (-0.201 – 0.228) 0.08 
Termite mound density -0.001 (-0.195 – 0.171) 0.08 -0.008 (-0.259 – 0.117) 0.11 
Distance to road 0.0004 (-0.214 – 0.224) 0.08 -0.145 (-0.417 – 0.032) 0.75 
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SUPPLEMENTARY TABLE 5: PREDICTORS OF OCCUPANCY  
 
Mean estimated effect size, with 95% credible interval, for each covariate hypothesized to 
influence occupancy. Effects with a 95% credible interval that did not overlap 0 are in bold. The 
community- and group-level hyper-parameters informed species-level coefficients. Group 
associations of each species can be found in Supplementary Table 1. Only ungulate species are 
reported in the table, but the full model included all 38 species detected on camera traps. 
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SUPPLEMENTARY TABLE 6. CAMERA OPERATION BY YEAR AND SEASON 
 
Sampling effort for each season and each year of the camera trap study, including the number of 
camera sites and mean and total camera trap-nights.  
 
 Number of 

cameras 
Mean (± SD) 

trap-nights per 
camera 

Total of  
trap-nights 

Dry 
season 

Year 1 (2016) 60 82 ± 14 4,906 
Year 2 (2017) 56 89 ± 10 4,093 
Total 116 85 ± 13 8,999 

Wet 
season 

Year 1 (2016-2017) 45 73 ± 40 4,000 
Year 2 (2017-2018) 37 77 ± 44 2,840 
Total 82 75 ± 42 6,840 
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SUPPLEMENTARY TABLE 7: CAMERA TRAP LOCATION AND OPERATION DATES  
 
Locations of the 60 camera traps in the study grid, and the number of days for which each 
camera trap was operating in each season of each year. The dry season was July to September, 
and wet season from December to March. Cameras that were operating for fewer than 10 days in 
a season were excluded from analysis. 
 

Camera Latitude Longitude 

2016 Dry 
Season 

Operation  
(n = 60 

cameras) 

2016-2017 
Wet 

Season 
Operation 

(n = 56 
cameras)  

2017 Dry 
Season 

Operation 
(n = 45 

cameras)  

2017-2018 
Wet 

Season 
Operation 

(n = 37 
cameras)  

A06 -18.94847 34.31120 86 31 NA NA 
A08 -18.97055 34.31128 86 61 92 69 
A10 -18.99254 34.31170 86 20 92 0 
B05 -18.93760 34.33081 88 79 NA NA 
B07 -18.95957 34.33033 88 121 92 121 
B09 -18.98108 34.33122 86 40 92 91 
C06 -18.94877 34.35125 88 37 92 29 
C08 -18.97041 34.35071 88 121 92 121 
D03 -18.91569 34.36975 92 26 92 40 
D05 -18.93763 34.37036 87 50 92 121 
D07 -18.97986 34.37051 82 121 92 121 
D09 -18.95907 34.37054 27 24 NA NA 
E02 -18.90468 34.39004 92 81 92 38 
E04 -18.92648 34.39024 87 121 71 NA 
E06 -18.94814 34.39065 92 58 47 NA 
E08 -18.97007 34.39047 92 47 92 17 
E10 -18.99155 34.39053 85 121 92 NA 
E12 -19.01331 34.39089 79 121 NA NA 
F01 -18.89402 34.40934 87 NA 92 121 
F03 -18.91463 34.40951 92 25 92 59 
F05 -18.93785 34.40944 27 36 88 NA 
F07 -18.95938 34.41000 88 95 92 NA 
F09 -18.98048 34.41010 22 26 NA NA 
F11 -19.00232 34.41034 85 34 92 56 
G02 -18.90452 34.42932 87 NA 92 24 
G04 -18.92615 34.42925 92 121 92 121 
G06 -18.94765 34.42924 88 121 92 121 
G08 -18.96947 34.42969 81 114 92 121 
G10 -18.99154 34.42987 85 121 NA NA 
G12 -19.01238 34.43031 83 97 NA NA 
H03 -18.91520 34.44920 87 121 92 121 
H05 -18.93732 34.44904 88 121 92 50 
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Camera Latitude Longitude 

2016 Dry 
Season 

Operation  
(n = 60 

cameras) 

2016-2017 
Wet 

Season 
Operation 

(n = 56 
cameras)  

2017 Dry 
Season 

Operation 
(n = 45 

cameras)  

2017-2018 
Wet 

Season 
Operation 

(n = 37 
cameras)  

H07 -18.95859 34.44962 86 26 48 NA 
H09 -18.98015 34.45014 86 121 NA NA 
H11 -19.00162 34.44932 83 121 NA NA 
H13 -19.02429 34.44970 83 64 NA NA 
I04 -18.92486 34.46830 88 121 92 121 
I06 -18.94756 34.46877 86 26 92 28 
I08 -18.96937 34.46918 81 38 92 112 
I10 -18.99097 34.46956 81 29 92 11 
I12 -19.01319 34.46984 83 24 92 121 
I14 -19.03467 34.46753 81 40 NA NA 
J03 -18.91491 34.48890 88 17 92 14 
J05 -18.93744 34.48872 82 69 92 48 
J07 -18.95831 34.48913 86 42 92 121 
J09 -18.97872 34.48870 81 54 NA NA 
J11 -19.00152 34.48963 81 NA 92 121 
J13 -19.02231 34.48900 82 44 92 40 
K04 -18.92375 34.50578 75 72 92 83 
K06 -18.94731 34.50857 80 121 92 121 
K08 -18.96980 34.50842 80 25 92 32 
K10 -18.99110 34.50899 80 121 92 121 
K12 -19.01297 34.50941 82 38 92 32 
L05 -18.93517 34.52907 82 34 92 31 
L07 -18.95881 34.52905 80 121 66 NA 
L09 -18.97978 34.52872 80 NA NA NA 
L11 -19.00148 34.52897 82 121 92 121 
L13 -19.02311 34.52930 80 121 NA NA 
M08 -18.96881 34.54853 82 79 NA NA 
M10 -18.99093 34.54668 82 92 92 NA 
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Chapter 7. Concluding remarks 
 
LANDSCAPES OF FEAR IN THE ANTHROPOCENE 
 
In this dissertation, my coauthors and I examined how spatial heterogeneity, predation risk, and 
human activity interact to shape the spatiotemporal distribution of wild animals. The concept of 
the landscape of fear, introduced in Chapter 2, provided a valuable lens for exploring these 
dynamics. As exemplified through the remaining chapters, the links between landscape 
heterogeneity, predation risk, the landscape of fear, and prey response are non-linear, and 
governed by behavioral constraints and trade-offs. Understanding these non-linearities can shed 
light on the relative importance of the landscape of fear in driving population and community 
dynamics across systems.  
 The landscape of fear framework can also inform our understanding of the multiple 
pathways through which human activity reshapes landscapes of fear, many of which we explored 
in this dissertation. Anthropogenic disturbance can transform the underlying physical landscape, 
and thus alter the playing field for predator-prey interactions. As documented in the Chapter 3 
Hopland case study, human infrastructure like roads and settlements can facilitate hunting by 
people and drive spatial patterns of harvest risk for deer. Development and land conversion can 
also introduce spatial constraints that limit prey’s ability to avoid predators. Even patterns of 
global climate change can have local effects on habitat; in Gorongosa, for example, more 
extreme patterns of flooding as a result of climate change may reshape interactions between 
predators and prey, as explored in Chapter 6.  

Human disturbance itself is often associated with stimuli that are perceived as risky, thus 
generating landscapes of fear. In some cases, human hunters act as another predator on the 
landscape, as in the Chapter 3 Hopland study. However, novel anthropogenic landscapes of fear 
drive responses in animals even in the absence of underlying risk, as documented in the Chapter 
4 meta-analysis on animal activity patterns in response to human disturbance. Furthermore, the 
Gorongosa elephant case study presented in Chapter 5 highlights how human activity can also be 
associated with resources for wild animals, and people can thus shape both sides of the cost-
benefit trade-off associated with novel landscapes of fear. 
  As non-lethal apex super-predators, humans can thus alter the distribution of predators 
through landscapes of fear, with cascading consequences for prey species. As discussed in 
Chapter 3, infrastructure creates a “human shield” in which deer can find refuge from predation 
from mountain lions. People also directly affect the density of predators on the landscape 
through removal or reintroduction; policies and conservation interventions in both California and 
Gorongosa are facilitating the return of large carnivores, reinstating landscapes of fear for prey. 
 
THE ROLE OF TEMPORAL PARTITIONING 
 
While landscapes of fear are typically associated with static spatial patterns of risk, risk often 
varies temporally, and temporal niche partitioning emerged as a central theme throughout this 
dissertation. Time is an important ecological resource (Kronfeld-Schor and Dayan 2003), and the 
diel cycle facilitates co-existence not only between predators and prey, but also between animals 
and people. The role of temporal risk avoidance may be especially important when ecological or 
anthropogenic constraints limit the ability of animals to respond spatially to risk. As we 
documented in Chapter 3, deer in Hopland, which persist at high densities with strong site 
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fidelity, did not adjust their space use or overall activity in response to risk from hunters or 
mountain lions. Instead, deer changed their diel activity patterns in response to spatial and 
seasonal patterns of risk, minimizing temporal overlap with their predators. In Gorongosa, shifts 
in temporal activity patterns may also be a mechanism for reducing apparent competition during 
times of year when spatial constraints concentrate antelope species and lions into smaller areas, 
as our findings in Chapter 6 suggest. 

As human activity expands worldwide and constrains space for large mammal 
communities, temporal niche partitioning may play an even greater role in ecological dynamics 
of disturbed and recovering systems. Globally, animals respond to human disturbance by 
increasing their relative nocturnal activity to avoid people by day, as described in Chapter 4. 
Animals may also balance risks and rewards associated with human activity by adjusting their 
spatiotemporal activity around human disturbance on fine scales, as documented for the 
Gorongosa elephants in Chapter 5.  
 
IMPLICATIONS FOR HUMAN-WILDLIFE COEXISTENCE 
 
Given that humans are playing an outsized role in ecological communities, it is critical that we 
understand the dynamics of human-wildlife coexistence on an increasingly crowded planet. To 
that end, this work contributes to a growing body of evidence documenting strong behavioral 
responses of animals to human presence. The striking global pattern of wildlife avoidance of 
human activity suggests an important behavioral mechanism through which anthropogenic 
disturbance is reshaping ecological communities. By understanding how animals perceive and 
respond to risk associated with their environments and with human stimuli, we may be better 
able to design management interventions that facilitate coexistence. 

Despite our understanding of human impacts on animal behavior, little is known about 
the long-term, downstream consequences of these behavioral shifts for animal populations or 
species interactions. Human disturbance may create ecological traps, if animals perceive risk 
from human activity that is actually benign and suffer fitness consequences as a result. In 
Hopland, for example, female deer exhibit subtle shifts in their activity patterns in response to 
hunters, despite the fact that only males can be harvested. Consequently, female deer experience 
greater temporal overlap with mountain lions, and their risk avoidance behavior may thus 
actually put them at greater risk. Future research that examines the role of human activity in 
reshaping species interactions and initiating behaviorally-mediated trophic cascades may shed 
light on consequences of disturbance at larger scales. 
 While this dissertation examined the dynamics of human-wildlife coexistence through an 
ecological lens, interactions between people and natural systems are also defined by social, 
economic, and political dynamics. Research that examines the feedbacks of socioecological 
systems and investigates human-wildlife interactions as part of a coupled human-natural system 
will provide a more complete picture of the salient factors that facilitate or inhibit human-
wildlife coexistence. Identifying and implementing solutions that advance goals of biodiversity 
conservation along with the well-being of people necessitates interdisciplinary collaboration and 
integrated policies and management strategies. I hope that the body of work in this dissertation 
can contribute to these broader dialogues about how to best manage landscapes and wildlife 
communities in the Anthropocene. 
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