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Abstract of the Thesis

Visualization of Video Sequence in 3D Space

by

Chenhui Wang

Master of Science in Statistics

University of California, Los Angeles, 2014

Professor Song-Chun Zhu, Chair

Understanding of a incoming video sequence is one of the key parts of modern

computer vision. Visualization of all the details that a computer understands

about a certain video sequence is a very important tool to evaluate a vision system.

In this paper, we propose a method for visualizing a 2D video sequence in a 3D

space, which is based on the data of DARPA project.

The visualization started with the reconstruction of 3D space depended on

the 2D video sequence data information. The use of homographic transformation

for a structured light system reduced the computational cost of the system, since

it only needed one image of the underlying environment. The smoothing of 3D

trajectories of moving person was calculated from detection results. All the hu-

man skeleton models were from a pre-created 3D skeleton library. Aligning all the

skeletons was a challenging problem in this project. We used the human-object

interaction relationship and temporal information of the trajectories, such as mo-

tion information, trying to put the skeletons in the correct place. The results

showed that visualization was a good way to express the understanding results of

a computer vision system.
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To my mother . . .

who—among so many other things—

saw to it that I learned to touch-type

while I was still in elementary school
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CHAPTER 1

Introduction

Modern computer vision has shown more and more favor on the spacial relation-

ship between people and surrounding environment. However, the information that

we can get from 2D images is always very vague and the 2D trajectories from track-

ing tell nothing in this area. Reconstructing the 3D environment and visualizing

the 3D movements and interaction between people and man-made objects is very

useful. In addition to expressing the learning results of a computer vision system,

visualization is also very important, especially in revealing the relationship, such

as sitting on a chair, standing on the ground.

1.1 Motivation

Typical 2D computer vision methods can largely solve detection and tracking

problems, however, when dealing with occlusion and human-object interactions,

such methods often lose their efficiency. The goal of this research is to find out

the concealed information under 2D representation and make the detection and

tracking results meaningful and reliable. Moreover, this visualization will further

help to solve problems, such as reasoning and intention prediction.

Dataset. In order to test the performance of DARPA project results, we

used the data collected by SIG, which contained both indoor and outdoor human

daily scene. The complexity of these typical scenes can largely represent normal

human daily activities and the interactions between each other and man-made

1



objects. The dataset contains 3 categories, 8 scenes and 26 different viewpoints

in total. What is more, there are also 14 action classes and 6 interacting object

classes. We test our visualizing method on this dataset and the visualization

results demonstrate the goodness of the DARPA system.
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CHAPTER 2

3D Environment Reconstruction

Much work has been done in camera calibration, since it is a very important step in

3D computer vision. The techniques can roughly be classified into two categories:

photogrammetric calibration and self-calibration. To begin this chapter, we would

like to first introduce the notations used.

2.1 Notation

We dente a 2D point by m = [u, v]T , and a 3D point by M = [X, Y, Z]T . x̃ is used

to denote the augmented vector by adding 1 as the last element: m̃ = [u, v, 1]T

and M̃ = [X, Y, Z, 1]T . A camera is modeled by the usual pinhole: the relationship

between a 3D point M and its image projection m is given by

sm̃ = A
[
R t

]
M̃, (2.1)

where s is an arbitrary scale factor. (R, t), called the extrinsic parameters, is the

rotation and translation which relates the world coordinate system to the camera

coordinate system, and A, called the camera intrinsic matrix, is given by

A =


α γ u0

0 β v0

0 0 1


with [u0, v0] the coordinates of the principal point, α, and β the scale factors in

image u and v axes, and γ the parameter describing the skewness of the two image

axes.
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2.2 Homography between the model plane and its image

Without loss of generality, we assume the model plane is on Z = 0 of the world

coordinate system. Let us denote the ith column of the rotation matrix R by ri.

From (2.1), we have

s


u

v

1

 = A
[
r1 r2 r3 t

]

X

Y

0

1



= A
[
r1 r2 t

]
X

Y

1


Since Z is assumed equal to 0, we can abuse the notation and M = [X, Y ]T .

In turn, M̃ = [X, Y, 1]T . Therefore, a model point M and its image m is related

by a homography H:

sm̃ = HM̃ with H = A
[
r1 r2 t

]
. (2.2)

Thus, the 3× 3 matrix H is defined up to a scale factor.

2.3 Estimation of the Homography Between the Model

Plane and its Image

The technique we used to estimate the homography between the model plane and

its image is based on maximum likelihood criterion. Let Mi and mi be the model

and image points, respectively. Ideally, they should satisfy (2.2). In practice, they

do not because of noise in the extracted image points. Let us assume that mi

is corrupted by Gaussian noise with mean 0 and covariance matrix Λmi
. Then,

the maximum likelihood estimation of H is obtained by minimizing the following

4



functional ∑
i

(mi − m̂i)
TΛ−1mi

(mi − m̂i),

where

m̂i =
1

h̄T3Mi

h̄T1Mi

h̄T2Mi

 with h̄i, the ith row of H

In practice, we simply assume Λmi
= σ2I for all i. This is reasonable if

points are extracted independently with same procedure. In this case, the above

problem becomes a nonlinear least-squares one, i.e., minH

∑
i ‖mi − m̂i‖2. The

nonlinear minimization is conducted with the Levenberg-Marquardt Algorithm.

This requires an initial guess, which can be obtained as follows.

Let x = [h̄T1 , h̄
T
2 , h̄

T
3 ]T . Then equation (2.2) can be rewritten asM̃T 0T −uM̃T

0T M̃T −vM̃T

x = 0

When we are given n points, we have n above equations, which can be written

in matrix equation as Lx = 0, where L is a 2n × 9 matrix. As x is defined up

to a scale factor, the solution is well known to be the right singular vector of

L associated with the smallest singular value (or equivalently, the eigenvector of

LTL associated with the smallest eigenvalues).

In L, some elements are constant 1, some are in pixels, some are in world co-

ordinates, and some are multiplication of both. This makes L poorly conditioned

numerically. Much better results can be obtained by performing a simple data

normalization prior to running the above procedure.
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2.4 Constrains on the intrinsic parameters

Given an image of the model plane, an homography can be estimated. Let us

denote it by H =
[
h1 h2 h3

]
. From (2.2), we have[

h1 h2 h3

]
= λA

[
r1 r2 t

]
where λ is an arbitrary scalar. Using the knowledge that r1 and r2 are orthonor-

mal, we have

hT1 A−TA−1h2 = 0 (2.3)

hT1 A−TA−1h1 = hT2 A−TA−1h2 (2.4)

These are the two basic constraints on the intrinsic parameters, given one

homography. Because a homography has 8 degrees of freedom and there are 6

extrinsic parameters (3 for rotation and 3 for translation), we can only obtain 2

constraints on the intrinsic parameters.

2.5 Real Data Calibration

Using the proposed technique to estimate each homography, we can simply recon-

struct all the DARPA indoor and outdoor scenes. The following figures show the

reconstruction results. To make the scene not so messy, we only draw one chair

in each indoor scene. In real calibration data, we have all the chairs’ 3D location

information in our system.
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Figure 2.1: Two indoor scene

Figure 2.2: Two reconstructed scene respectively
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Figure 2.3: One outdoor scene and its reconstructed scene
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CHAPTER 3

3D Skeleton Library

In order to visualize all the people actions, we built a 3D human action skeleton

library using Kinect camera, and all the skeletons are captured from RGBD video.

It includes 2 categories, 14 action classes, including stationary actions, such as

standing, sitting, and non-stationary actions, like walking, throwing. It has totally

937 action video sequences and 50,132 RGBD frames. Each action class contains

about 30 video sequences in stationary action classes, and around 80 in moving

action classes. These action videos were shot from three different viewpoints,

hence when we are dealing with skeleton visualization in a complicated scene, an

appropriate skeleton could be placed in the right place.

The human skeleton model shot by Kinect camera each have 20 3D joints as

shown in Table 3.1. After shooting the video data, we perform normalization by

aligning all the skeletons to a reference pose so that the torso and shoulder of all

skeleton models have the same location, size and direction. The alignment makes

all the skeleton poses stand at (0, 0, 0) with roughly the same size 3×1×10, facing

the direction of (1, 0, 0).

3.1 Stationary Action Skeleton

Stationary actions mainly contains standing and sitting. These two classes will be

found frequently in human daily action events. Standing is usually a transition

status, it connects two walking paths in most cases. One random selected 3D

9



Table 3.1: Action intrinsic parameters

Number Joint Number Joint

1 hip center 11 wrist left

2 spine 12 hand left

3 shoulder center 13 hip right

4 head 14 knee right

5 shoulder right 15 ankle right

6 elbow right 16 foot right

7 wrist right 17 hip left

8 hand right 18 knee left

9 should left 19 ankle left

10 elbow left 20 foot leftt

skeleton model of action standing is shown in Figure 3.1.

Figure 3.1: 3D skeleton for standing

Sitting is another stationary action that can be mostly used in the visualization

of indoor environments. Since chair is one of the most important components of a

indoor scene, the action of sitting could be found through out the whole DARPA

project data. People sat down and talked, played cards, or ate food. Figure 3.2

shows a typical sitting action 3D model in 3D space.

10



Figure 3.2: 3D skeleton for sitting

3.2 Non-stationary Action Skeleton

Moving actions form most of human daily action events. For example, walking

can be everywhere in both indoor and outdoor scenes. People need to walk to do

different sort of things, such as picking up and throwing something.

Here, we represent a non-stationary action by a sequence of 3D skeleton mod-

els. This kind of representation contains the temporal information of the underly-

ing action, since in real world, people preform these actions in a continuous way,

not a discrete way.

When dealing with outdoor actions, such as riding a bike, our library not only

contains the model of the moving skeleton itself, but also the 3D bounding box

of the interactive object, say bicycle. In this way, further information about this

action can be learnt by our system. Because when the system detects a moving

bicycle, it will search our library and get the corresponding 3D model. The model

will provide the knowledge of riding a bike, like human on the bike, feet above the

ground.

In our library, we define several such relationship, like people in a car, people

walking a bicycle. Similar human-object interactive actions such as throwing,

picking, also contain the object 3D bounding box alongside with human skeleton

11



Figure 3.3: 3D skeleton sequence for walking
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model.

Figure 3.4: 3D skeleton sequence for riding

3.3 Information Provide by Our Library

As mentioned in 3.2, our system can get information about the human-object

interaction from this 3D skeleton library, such as on the bike, feet above the ground.

In out model, we define these human-object relationships as built in model labels.

Walking, for example, would provide the intrinsic model label of feet on ground.

The intrinsic model label for throwing would be the ownership of a small object

changing from “yes” to “no”. Each 3D model is associated with at least one

reasonable model label.

With the help of these information, our system would be able to answer ques-

tions such as “Is there a person with his feet above the ground?” or “How many

13



people are there throwing a disk (small object)?”

Table 3.2: Action intrinsic parameters

Intrinsic label

Action feet on ground on chair on bike in car ownership

carrying 1 0 0 0 0 → 1

crawling 1 0 0 0 0

doffing 1 0 0 0 1 → 0

donning 1 0 0 0 0 → 1

in car 0 0 0 1 0

picking 1 0 0 0 0 → 1

riding 0 0 1 0 0

sitting 1 1 0 0 0

sit down 1 0 → 1 0 0 0

standing 1 0 0 0 0

stand up 1 1 → 0 0 0 0

throwing 1 0 0 0 1 → 0

walking 1 0 0 0 0

walking bike 1 0 0 0 0

Our library also describes the variation of key parts of human performing

different actions. We assume that each joint follows a multivariate Gaussian dis-

tribution in space. Figure 3.5 shows the exact distribution of hip center (left) and

head (right) in space. We can tell that the same human joint will not vary a lot

during one action. More empirical distributions are shown in the following page.

Further, our library can generate scatter plot of the 2D locations of the moving

joints given the locations of the still joints. Figure 3.6 shows what our library will

produce. In the action of standing up, if we set the two ankles fixed, the variation

14



Figure 3.5: Empirical distribution of joints in action of sit down

of head location is the largest and two shoulders’ are smaller, while hip center has

the smallest variation. This observation fits our intuition.

ankle right
ankle left

Expected Hip Center

Expected Head

Expected Shoulder Right

Expected Shoulder Left

Figure 3.6: Relative 2D location map of standing up
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Figure 3.7: Empirical distribution of joints in action of sit down

Figure 3.8: Empirical distribution of joints in action of sit down

Figure 3.9: Empirical distribution of joints in action of sit down
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ankle right
ankle left

Expected Hip Center

Expected Head

Expected Shoulder RightExpected Shoulder Left

Expected Hand

Donning

ankle right
ankle left

Expected Hip Center

Expected Head

Expected Shoulder RightExpected Shoulder Left

Expected Hand

Doffing

Figure 3.10: Relative 2D location map

shoulder right
shoulder left

Expected Hip Center

Expected Head

Expected Ankle Right

Expected Ankle Left

Expected Hand

Walking

Figure 3.11: Relative 2D location map
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CHAPTER 4

Visualization

In this chapter, we perform the final visualization of this project. First, we intro-

duce the 3D trajectories used in visualizing the movements of person. Then, the

method for aligning the skeletons is addressed, hence skeletons will not be facing

in a wrong direction or seen at a unrealistic position. At last, visualization of the

whole scene both skeletons and the surrounding environment is used to show the

goodness and effectiveness of our method.

4.1 3D Trajectories

The 3D trajectories we used here are pre-computed through 2D tracking. However,

these trajectories are pretty noisy, which are resulted in different size of head

bounding box, occlusion, etc. Thus smoothing is needed.

We tried two ways of smoothing.

1). Simple moving average:

Pt =
1

n

t+n∑
i=t

Pi (4.1)

where Pt = (xt, yt, zt) is the trajectory position at time t. This method is

easy and fast to implement, but it lags the actual position;

2). Smoothing spline:

Let (xi, Yi);x1 < x2 < · · · < xn be a sequence of observations, modeled by

18



the relation Yi = µ(xi). The smoothing spline estimate µ̂ of the function µ

is defined to be the minimizer of

µ̂ = min

( n∑
i=1

(
(Yi − (̂µ(xi)

)2
+ λ

∫ xn

xi

µ̂′′(x)2dx

)
(4.2)

This method will manually balance accuracy and smoothness, but the choos-

ing of smoothing parameter λ is a challenge.

Combing both methods, we get some good smoothed 3D trajectories results.

Figure 4.1 and Figure 4.2 show the difference before and after the smoothing of

3D trajectories.

Figure 4.1: Three different viewpoints of break room

Figure 4.2: Three different viewpoints of break room
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4.2 Aligning the Skeletons

Since we live in a 3D spacial world, the relationship between human and sur-

rounding objects is especially important in the visualization of a space. The

spacial constraints is the first thing that we considered in this project.

Suppose V = (I1, . . . , Iτ ) is an input video sequence in the time interval [1, τ ],

where It is the video frame at time t. Let L = (l1, . . . , lτ ) be the sequence of

frame labels. lt = (ht, jt, ot, at) is the interpretation to the frame It. ht is the

human pose. jt is the trajectory location. ot = (o1t , . . . , o
nt

t ) are the objects

interacting with human, where nt is the number of objects. Each object includes

the attributes of class label and 3D location. at is the human action class like

walking, sitting, etc.

Hence, the human-object interactions in 3D spacial domain can be described

as

Φ(It, lt) = φ1(at, ht, βt) + φ2(at, jt, ot) (4.3)

This function shows the geometric compatibility of each frame which describes

the spatial constraint between human body and objects in 3D space.

Pose Model φ1(at, ht, βt) is the human pose model. The human pose with

20 3D joints are from our 3D skeleton library. To normalize the data, we align all

the skeletons to a reference pose so that the torso and shoulder of all poses have

the same location, size and direction. To get the correct moving direction, we

again used the simple moving average smoothing algorithm to catch the temporal

information. Suppose we calculate the motion using only the footprint data, z = 0,

thus jt = (xt, yt, 0), then

βt =
1

n

t+n∑
i=t

arctan
∆xi
∆yi

(4.4)

Further, as mentioned in 3.3, we assume that ht follows a multivariate Gaussian

distribution. Then we have N(ht;µat ,Σat), where µat is the mean and Σat is the

20



covariance, thus each action will have a corresponding likelihood score.

3D Geometric Compatibility φ2(at, jt, ot) measures the human-object ge-

ometric relations. Since human-object relationship in 3D space contains more

information, the geometric relation in 2D image is not applicable as shown in

Figure 4.3. We model this relationship in 3D space.

Figure 4.3: Three different viewpoints of break room

In any human-object interaction relationship, the location of an object is

closely related to the locations and directions of some body parts, which we call

the key parts. As when people sit, he must sit on a chair, hence his geometric

location must be the same as the chair’s. Suppose ηoit is the difference vector

from the key parts center to the object geometric location center. In the visual-

ization part we would like to minimize this distance. The 3D geometric relation

is modeled as:

φ2(at, jt, ot) =
1

nt

nt∑
j=1

min
i
ηoit (4.5)

where nt is the number of objects. Dividing the function by nt is to offset the

influence of difference object number.

This minimum distance will also give the table facing information, since the

minimum tells which table is the nearest one. Hence the facing problem can be

easily solved.
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4.3 Final Visualization

Combining all the above techniques, we can recover the 3D environment and

visualize the movement of human and the interactive objects. Figure and Figure

show the final visualization results.

Figure 4.4: Final visualization of conference room: Walking

Figure 4.5: Final visualization of conference room: Sitting
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Figure 4.6: Final visualization of conference room: Standing

Figure 4.7: Final visualization of conference room: Picking
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CHAPTER 5

Conclusion

We conducted a dynamic homographic transformation method to calibrate the

scene and reconstruct the 3D environment of DARPA project. After the recon-

struction, we visualized the 3D skeleton action movements in the synthesized

scenes. The human-object interactions defined in 3D spacial domain boost the

reliability on visualization of 3D events. Through these visualization experiments

on DARPA dataset, we can prove the effectiveness of our method. Further using

the intrinsic information we provided, the system would be able to answer simple

queries.
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