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EPIGRAPH

Let me be your mirror

Help you see a little bit clearer

The light that shines within

There’s a hope that’s waiting for you in the dark

You should know you’re beautiful just the way you are

—Alessia Cara, “Scars To Your Beautiful”
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ABSTRACT OF THE DISSERTATION

Nonequilibrium effects of vibrational strong coupling on chemical reactions

by

Matthew Du

Doctor of Philosophy in Chemistry

University of California San Diego, 2022

Professor Joel Yuen-Zhou, Chair

An ongoing goal in chemistry is to develop cheaper and greener methods of catalysis. Re-

cent experiments show modified reaction kinetics when placing molecules inside an optical cavity

and achieving vibrational strong coupling (VSC). VSC occurs when N � 1 molecular vibrations

strongly interact with a cavity photon mode to form two hybrid light-matter modes called polari-

tons, as well as N−1 optically dark vibrational modes. Since the aforementioned changes in reac-

tivity occur without external pumping, VSC holds promise as a future tool in industrial catalysis.

However, VSC-modified chemistry is not well understood. Initial theoretical efforts demonstrate

that transition-state theory (TST), the most commonly used reaction-rate theory, predicts negligible

xii



changes in reaction rate due to VSC for typical experimental conditions. Subsequent works have

begun to consider how VSC influences reactions for which the assumptions of TST break down.

In this dissertation, we theoretically explore how VSC affects reactions where thermaliza-

tion occurs on a similar or longer time scale compared to reactive events. Such reactions, which

include photochemical processes, can violate the TST assumption that internal thermal equilibrium

is maintained throughout the reaction.

First, we study thermally activated electron transfer. For two molecules under VSC, we find

that thermalization can be accelerated by cavity decay, a dissipative channel available to polaritons

but not the uncoupled molecular vibrations. As a result, nonequilibrium effects that impact the

reaction rate are suppressed. For a disordered ensemble of many molecules, VSC yields dark

modes that are delocalized across several molecules. We reveal an unconventional mechanism by

which this delocalization suppresses reactive events but not vibrational decay, thus speeding up the

reaction.

We then investigate photochemistry under VSC. Specifically, we propose a “remote con-

trol” of chemistry, where photoexcitation of molecules in one optical cavity enhances the photoi-

somerization of molecules in another optical cavity. This idea challenges the standard paradigm

that a catalyst must bind its substrate to change reactivity.

Finally, we develop a comprehensive theory for a related phenomenon: polariton-assisted

energy transfer between spatially separated molecules. This theory not only sheds light on experi-

mental observations but even predicts a number of intriguing effects, including the role reversal of

donor and acceptor chromophores.
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Chapter 1

Introduction

The manufacturing of everyday products involves chemical reactions. The reactions are

often carried out away from room temperature, using catalysts not found in nature, under artificial

lighting, and/or with electricity running through the reaction mixture. These conditions enable re-

actions to occur fast enough, or have high enough yield of the desired product, to meet the demands

of society. However, maintaining non-ambient temperatures, synthesizing catalysts, and applying

optical/electrical stimuli contribute to the cost of production, as well as detrimental effects on the

environment. Finding cheaper and greener ways of carrying reactions has been, and continues to

be, an important goal in chemistry research.

A recent wave of experiments has shown that simply placing a reaction mixture inside an

optical microcavity can significantly change chemical reactivity [1]. An optical microcavity [2]

consists of two highly reflective mirrors that are parallel and separated by a microscopic length,

ranging from hundreds of nanometers to tens of micrometers. The cavity can support standing

waves of light, analogous to the standing waves of vibration on the string of a violin or the standing

waves of sound in a flute. Like that in the musical instruments, each standing-wave mode of the

cavity has a frequency that is inversely proportional to the cavity length (i.e., distance between the

cavity mirrors).

The cavity length can be tuned such that a cavity mode is resonant with electronic or vi-

1



brational transitions of molecules inside the cavity. Such resonance allows the cavity mode to

favorably interact with the molecules. If the interaction is made strong enough, e.g., by increas-

ing the molecular concentration, the cavity mode will hybridize with an optically bright super-

position of molecular transitions to form hybrid light-matter states called polaritons [3, 4]. This

phenomenon is known as strong light-matter coupling (or simply, strong coupling). In typical ex-

periments [1, 3, 5, 6], a cavity mode collectively couples to N � 1 molecular transitions, where

each transition resides in a different molecule. In this case, two polaritons and N−1 optically dark

superpositions are formed [3, 4].

Besides their partial photonic character, the polaritons have different energies than the bare

molecular states. Thus, polariton formation can potentially serve as a general tool for modifying

chemical reactivity. Indeed, the past decade has witnessed the emergence of polariton chemistry,

i.e., chemistry under strong light-matter coupling [1, 3–16]. Notably, the strong coupling of molec-

ular vibrations [17–19], or vibrational strong coupling (VSC), has been observed to modify reac-

tion kinetics for a wide range of reactions [1], ranging from organic [20–23] to inorganic [24] to

enzymatic [25, 26]. That the investigated reactions are thermally activated (i.e., are carried out in

the absence of external pumping, such as laser and electrical excitation) raises the possibility of

using VSC in industrial applications.

To better understand the experimental changes in reactivity due to VSC, several studies

[27–30] have applied transition-state theory (TST) [31], one of the simplest and most commonly

used reaction-rate theories, to the case of molecules inside an optical cavity. However, these theo-

retical efforts find that reaction rates should change negligibly when many molecules collectively

undergo VSC to a cavity mode, as in the experiments. This discrepancy can be attributed to the fact

that there are only 2 polaritons compared to N−1� 1 dark states, where the latter states have the

same energy as the bare (i.e., outside the cavity) vibrational states. Only for a single molecule (or

a small number of molecules) does TST predict a change of reaction rate due to VSC [27, 28, 32].

Other works have focused on modeling reactions for which the assumptions of TST break

down. The key assumptions of TST are [31]

2



1. no recrossing of reactive trajectories,

2. no quantum tunneling (on a single electronic potential energy surface),

3. no nonadiabatic transitions (i.e., transitions between different electronic surfaces),

4. internal thermal equilibrium [i.e., thermal equilibrium within the states of each chemical

species (e.g., reactant, product)] is maintained throughout the reaction.

Significant changes in reactivity due to VSC have been theoretically revealed for reactions where

assumptions 1 [33–37], 2 [35], and 3 [38, 39] break down. However, it is still unclear how VSC

can modify reaction kinetics under typical experimental conditions [13, 15, 40]. In the context of

VSC chemistry, reactions where TST assumption 4 breaks down have not been previously explored

theoretically (to our knowledge; note that several perspective articles [15, 40] have suggested that

nonequilibrium effects could be important in VSC chemistry).

To this end, this dissertation is focused on how VSC affects reactions where thermalization

occurs on a similar or longer time scale compared to reactive events. For such reactions, internal

thermal equilibrium may not be maintained—even approximately—at all times (i.e., TST assump-

tion 4 may break down). First, we consider thermally activated electron transfer. We reveal two

different mechanisms by which VSC can accelerate thermalization and suppress nonequilibrium

effects that influence the reaction rate. In the first mechanism, which is more likely when a few

molecules undergo VSC [N ∼ O(1)], the polaritons enable modified reactivity [41]. In the second

mechanism, which relies on energetic disorder and is entropically favorable when many molecules

undergo VSC (N � 1), the reaction kinetics is altered by the dark states [42]. Then, we turn our

focus to a photochemical reaction, where molecules are driven out of thermal equilibrium by a

laser. Using VSC, we theoretically engineer a “remote control” of chemistry, where excitation of

molecules in one optical cavity can boost the reaction efficiency of molecules in a second opti-

cal cavity [43]. Lastly, we study a related phenomenon, polariton-assisted remote energy transfer
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(PARET), in which strong coupling of molecular electronic transitions enables energy transfer

between spatially separated dye molecules [44].

1.1 Summary of contents

In Chapter 2, which is adapted from [41], we investigate how VSC affects thermally acti-

vated electron transfer where thermalization and reactive transitions occur on similar time scales.

We employ an electron-transfer model based on Marcus-Levich-Jortner theory [45–47]. For N = 2

molecules coupled to a cavity mode, we show that the reaction kinetics can altered by dissipative

processes (in particular, cavity decay) that are available to polaritons but not to molecular states

outside a cavity.

In Chapter 3, which is adapted from [42], we study a disordered ensemble of N � 1

molecules under VSC. When static disorder (i.e., inhomogeneous broadening) is present in the

molecules, VSC creates dark states that are delocalized across 2− 3 molecules, in contrast to the

localized molecular states outside a cavity. Using the aforementioned model of electron transfer,

we reveal an unconventional mechanism by which dark-state delocalization suppresses the back-

ward reaction of vibrationally hot product while leaving vibrational decay unchanged, thereby

increasing the net rate of product formation.

In Chapter 4, which is adapted from [43], we propose a device involving two optical cav-

ities, one containing a “remote catalyst” and the other containing a reactant. Featuring VSC be-

tween each compound and its host cavity, the device enables excitation of the remote catalyst to

alter the photochemical reactivity of the reactant, even though the two compounds are spatially sep-

arated. We demonstrate such “remote control” for the infrared-induced cis→ trans conformational

isomerization of nitrous acid (HONO).

In Chapter 5, which is adapted from [44], we focus on PARET. We develop a compre-

hensive theory for energy transfer between spatially separated chromophores, whose electronic
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transitions are strong coupled to surface plasmons. Applying the theory, we shed light on exper-

iments reporting PARET when both donor and acceptor chromophores undergo strong coupling.

We also predict PARET (or lack thereof) for cases where one chromophore undergoes strong cou-

pling, including a “carnival effect” where donor and acceptors reverse roles.

In Chapter 6, we summarize the research presented in this dissertation and present an out-

look on the field of polariton chemistry.
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Chapter 2

Electron transfer under vibrational strong

coupling: effect of polaritons

2.1 Introduction

Strong light-matter interaction, or simply strong coupling (SC), occurs when an optical

cavity mode and a material excitation coherently exchange energy faster than either species decays

[2, 48–50]. This interaction results in light-matter eigenstates called polaritons. In addition to

inheriting both photonic and material properties, the hybrid states have different energies than

their constituents.

These features make polaritons a promising platform for modifying the physicochemical

properties of molecular systems [4, 9]. Typically, SC in such systems is achieved by the interaction

between a cavity mode and N � 1 quasidegenerate excitations in a molecular ensemble. This

collective SC produces two polariton states and N − 1 dark states. At light-matter resonance,

the so-called lower and upper polaritons are respectively redshifted and blueshifted from the bare

molecular (photonic) excitations by the collective light-matter coupling strength g
√

N, where g is

the single-molecule light-matter coupling strength and Ω = 2g
√

N is the so-called Rabi splitting.
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In contrast, the dark states remain unchanged in energy. Nevertheless, the polaritons can dissipate

into the dark states [51–57], enriching the relaxation dynamics of the SC regime.

In light of the considerable impact that polariton formation has on molecular excited states

[58–61], and of the photonic character of polaritons, it is not surprising that SC is emerging as a

versatile tool for manipulating photochemistry. It has been shown that, in organic materials, polari-

tons can lower the activation barrier of spin-conversion processes [62–66], enhance conductivity

[67–71], change the dynamics of photoinduced charge transfer [72–77], and alter photoisomer-

ization yield [78–83]. In some situations, dissipation associated with SC plays a key role in the

modification of photochemical processes. Notably, cavity decay (photon leakage from the cavity)

can enable the suppression of photodegradation by diverting population from polaritons to the elec-

tronic ground state instead of to the product [84–86]. The effect of cavity decay on photochemical

reactivity has also been demonstrated theoretically for photodissociation [87, 88], and photoiso-

merization [82, 83]. Another contributor to the suppression of photodegradation is the relaxation

between polaritons and dark states [84, 86]. This dissipative coupling can even mediate polariton-

assisted remote energy transfer [44, 89–92]. Moreover, relaxation from polaritons to dark states

can be harnessed to realize remote control of photoisomerization (see Chapter 4) [43].

Much less is understood about the ability to modify thermally activated reactions using SC

[17, 19] of molecular vibrations, commonly known as vibrational SC (VSC). Recent experiments

[1] demonstrate that reactions can be enhanced or suppressed by VSC without external pumping

(e.g., laser excitation). Reactions affected by VSC include organic substitution [20–22], organic

rearrangement [23], and hydrolysis [24]. However, the intriguing VSC reaction kinetics still lacks

a theoretical underpinning. Transition-state theory, the most commonly used reaction-rate theory,

has been unsuccessful at explaining the VSC reactions [27–30]. While a model of nonadiabatic

electron transfer under VSC captures some of the observed trends [38], additional connections to

experiments have yet to be made. Common to the attempted theoretical approaches is the following

assumption: internal thermalization (i.e., within the states of each chemical species) is much faster

than reactive transitions (i.e., between the states of different chemical species). Said differently,
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states of each chemical species are assumed to remain at internal thermal equilibrium throughout

the reaction.

Nonequilibrium effects may therefore be relevant in thermally activated reactions modi-

fied by VSC. In the context of adiabatic reactions, recent findings [33] reveal that non-Markovian

dynamics along the cavity-mode coordinate can induce trapping of population in a high-energy

region of the potential energy surface, preventing internal thermalization and promoting backward

reactive transitions. Alternatively, it would be interesting to explore how VSC affects reactions

with significant nonequilibrium effects outside the cavity. For instance, some organic reactions

involve the formation of vibrationally hot intermediate species that react before they fully thermal-

ize [93–95]. This may happen in desilylation reactions, which feature reactive intermediates [96]

and appear in studies reporting suppression of product formation [20, 21, 97] and rise in product

selectivity [21] using VSC. If nonequilibrium effects are indeed relevant to the VSC reactions, then

another intriguing topic is the role of dissipation, which is what enables thermal equilibrium to be

reached.

Here, we carry out a kinetic study of how the dissipative processes that VSC introduces to

the chemical system—specifically, cavity decay plus incoherent energy exchange among polaritons

and dark states—affects thermally activated reactions with significant nonequilibrium effects. The

class of reactions we consider is electron transfer, which is modeled using Marcus-Levich-Jortner

(MLJ) theory [45–47]. We examine reactions where vibrational relaxation and reactive transitions

occur on similar timescales. For the case of VSC, we use a generalization of the MLJ model to

calculate rates of reactive transitions. Rates associated with internal thermalization are calculated

using a standard treatment [53] of polariton relaxation. By comparing reaction kinetics under

VSC with those in the bare case and under weak light-matter coupling, we show that dissipation

associated with VSC can alter reaction kinetics by suppressing nonequilibrium effects. It follows

that the presence of nonequilibrium effects in the bare reaction can be important in determining the

influence of VSC on reactivity. Before concluding this paper, we discuss our results in the context

of the aforementioned experiments.
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2.2 Theory

2.2.1 Hamiltonian

Consider N identical molecules inside an optical cavity. Each molecule can undergo a

series of nonadiabatic electron transfer reactions. Such reactions occur via transitions between

diabatic electronic states, each representing a different reactive species (e.g., reactant, intermediate,

product). In the spirit of MLJ theory, the electronic states experience vibronic coupling to high-

frequency intramolecular vibrational modes and low-frequency solvent vibrational modes [47],

i.e., electron transfer is coupled to high- and low-frequency vibrations. Both types of modes are

hence reactive degrees of freedom. For simplicity, suppose that each molecule has only one high-

frequency reactive mode (hereafter conveniently referred to as vibrational mode), and assume that

VSC takes place between this mode and a single cavity mode. Already, we can see that the role of

VSC is to modify the dynamics of a reactive mode.

The Hamiltonian describing the electron-transfer molecules under VSC is

H = HS +HB +HS−B. (2.1)

The first term,

HS = He +Hv +He−v +Hc +Hc−v +VET, (2.2)

characterizes the “system”, the subspace whose evolution we are interested in. Comprising the

system are the electronic, vibrational, and cavity degrees of freedom. Electronic states are given

by

He =
N

∑
i=1

∑
φ

Eφ |φ (i)〉〈φ (i)|, (2.3)
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where |φ (i)〉 has energy Eφ and represents the molecule i belonging to reactive species φ . Next,

Hv = h̄ωv

N

∑
i=1

a†
i ai (2.4)

characterizes the vibrational modes, where the mode belonging to molecule i is represented by

creation (annihilation) operator a†
i (ai). Vibronic coupling involving the high-frequency vibrational

modes is described by

He−v = h̄ωv

N

∑
i=1

∑
φ

|φ (i)〉〈φ (i)|
[
λφ

(
a†

i +ai

)
+λ

2
φ

]
. (2.5)

For any molecule of reactive species φ , λφ is the dimensionless displacement of the corresponding

vibrational mode. The following two terms of HS [Eq. (2.2)] are the cavity Hamiltonian

Hc = h̄ωca†
0a0, (2.6)

and the light-matter interaction

Hc−v = h̄g
N

∑
i=1

(
a†

i a0 +a†
0ai

)
. (2.7)

The cavity mode has frequency ωc and is represented by creation (annihilation) operator a†
0 (a0).

In writing Eq. (2.7), we have assumed that molecules of all reactive species undergo VSC. Pre-

sumably, this condition has been realized in studies showing that organic desilylation [21] and

TPPK-acetone cyclization [24] can be modified by VSC, namely that involving a vibrational mode

which is optically bright and nearly identical in energy for both reactant and product species. For

cases where only one of reactant and product experiences VSC, theoretical modeling [38, 39]

predicts interesting effects such as autocatalysis [38]; we do not focus here on situations where

different reactive species couple unequally to the cavity. Finally, the electron-transfer interaction
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reads

VET =
N

∑
i=1

∑
φ 6=ϕ

(
Jφϕ |ϕ(i)〉〈φ (i)|+ Jϕφ |φ (i)〉〈ϕ(i)|

)
, (2.8)

where Jφϕ = Jϕφ is the diabatic coupling between reactive species φ and ϕ . The remaining degrees

of freedom, which constitute the “bath”, are captured in HB. The bath includes the low-frequency

solvent modes that participate in electron transfer, as well as modes that induce decay and incoher-

ent energy exchange among the polaritons and dark states. The system-bath coupling responsible

for these relaxation processes is characterized by HS−B. For the sake of brevity, we will not ex-

plicitly define HB and HS−B here.

The eigenstates of the system, treating the electron-transfer interaction (VET) as perturba-

tive, can be found by diagonalizing the zeroth-order Hamiltonian

H0 = He +He−v +HCV, (2.9)

where HCV = Hv +Hc +Hc−v governs the subsystem that includes cavity and vibrational modes.

Two polariton and N − 1 dark modes make up the eigenmodes of HCV. Let operators αq =

∑
N
i=0 cqiai for q = ±,2, . . . ,N represent the eigenmodes. The polariton modes respectively have

frequencies ω± = 1
2

(
ωc +ωv±

√
(ωc−ωv)2 +4g2N

)
and are given by

α+ = (cosθ)a0 +(sinθ)
1√
N

N

∑
i=1

ai, (2.10a)

α− = (sinθ)a0− (cosθ)
1√
N

N

∑
i=1

ai, (2.10b)

where θ = 1
2 tan−1[2g

√
N/(ωc−ωv)]. The dark modes all have frequency ωv, and each one is

represented by αq for q = 2, . . . ,N. Due to the degeneracy of the dark states, there exist multiple

ways to express the dark modes in terms of the bare modes (e.g., see Refs. [38] and [98]). We now

define multiparticle states for the various system degrees of freedom. Define |φφφ〉 ≡ |φ1,φ2, . . . ,φN〉

as the multiparticle electronic state where molecule i belongs to reactive species φi. For the cavity-
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vibrational modes, we define |m〉 ≡ |m+,m−,m2, . . . ,mN〉, which is an eigenstate of HCV with

mq excitations in mode q and with energy ∑q=±,2,...,N mqh̄ωq. Moving to this multiparticle repre-

sentation and carrying out some additional rearrangements, we can write the zeroth-order system

Hamiltonian [Eq. (2.9)] in the diagonal form

H0 = ∑
φφφ

∑
m

Eφφφ ;m|φφφ ;m〉〈φφφ ;m|. (2.11)

The eigenstates

|φφφ ;m〉 ≡ |φφφ〉⊗ |m̃(φφφ)〉 (2.12)

are expressed as products of an electronic state and a displaced cavity-vibrational state. The latter

is given by

|m̃(φφφ)〉 ≡

[
∏

q=±,2,...,N
D†

q(λφφφq)

]
|m〉, (2.13)

where Dq(λ ) = exp
(
λα†

q −λ ∗αq
)

is the displacement operator for eigenmode q. The displace-

ment of mode q, when the system is in electronic state |φφφ〉, is

λφφφq ≡
N

∑
i=1

λ
(i)
φiq, (2.14)

where

λ
(i)
φiq ≡ cqi

ωv

ωq
λφi (2.15)

is the contribution due to the vibronic coupling in molecule i (when this molecule belongs to

reactive species φi). From Eqs. (2.14)-(2.15), it is evident that VSC redistributes the displacements

of the bare modes among the polariton and dark modes. How displaced each eigenmode is depends

on its frequency and its overlap with the bare modes [Eq. (2.15)]. Returning to the electronic-
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cavity-vibrational eigenstates |φφφ ;m〉, the corresponding energies are

Eφφφ ;m =
N

∑
i=1

Eφi + ∑
q=±,2,...,N

mqh̄ωq

+

(
h̄ωv

N

∑
i=1

λ
2
φi
− ∑

q=±,2,...,N
h̄ωq

∣∣λφφφq
∣∣2) . (2.16)

We see that VSC does not only change the energies of states containing vibrational character

[second summation in the first line of Eq. (2.16)], but it also induces an energy shift equal to

the difference in high-frequency reorganization energy before and after VSC [second line of Eq.

(2.16)].

2.2.2 Kinetic model: VSC

Having obtained the system eigenstates and energies, we proceed to discuss the kinetic

model for simulating thermally activated nonadiabatic electron transfer under VSC. We are inter-

ested in reactions where nonequilibrium effects are significant outside the cavity. To focus on how

the reactions are impacted by VSC, including dissipation brought about by VSC, we limit our-

selves to the case of N = 2 and neglect multiply excited cavity-vibrational states; the state-space

truncation is a good approximation in our simulations (Sec. 2.3), where we choose parameters

such that (1) virtually all initial population resides in the zero- and first-excitation manifolds of the

cavity-vibrational subspace and (2) such that transitions within these lower manifolds are much

faster than transitions into higher manifolds. With these simplifications, we keep the dynamics

tractable enough for physical interpretation while still working in the regime of collective VSC

(i.e., N > 1). In Sec. 2.4, we discuss the case of many-molecule VSC.

We now present the kinetic model. The evolution of the system is governed by the master
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equation

d p(φφφ ;m)(t)
dt

=−

 ∑
(φφφ ′;m′)6=(φφφ ;m)

k(φφφ ′;m′|φφφ ;m)

 p(φφφ ;m)(t)

+ ∑
(φφφ ′;m′)6=(φφφ ;m)

k(φφφ ;m|φφφ ′;m′)p(φφφ ′;m′)(t). (2.17)

The quantity p(φφφ ;m) represents the population of |φφφ ;m〉, and k(φφφ ′;m′|φφφ ;m) denotes the rate of

transition |φφφ ;m〉 → |φφφ ′;m′〉. Processes of three types are included in the kinetic model: reactive

transitions; cavity-vibrational loss and gain; and relaxation among polaritons and the dark state

(there is only one dark state for N = 2). The latter two sets of processes occur within the same

electronic state and contribute to internal thermalization.

A reactive transition occurs between states |φφφ ;m〉 and |φφφ ′;m′〉 if the initial state is converted

to the final state by the electron-transfer reaction of molecule i from reactive species ϕ to reactive

species ϕ ′ 6= ϕ (i.e., |φφφ〉 6= |φφφ ′〉, φi = ϕ , φ ′i = ϕ ′, φ j = φ ′j for j 6= i). The corresponding transition

rate, derived in analogy to the MLJ electron-transfer rate [99], is

k(φφφ ′;m′|φφφ ;m) =

√
π

λ
(ϕϕ ′)
s kBT

|Jϕϕ ′|2

h̄

∣∣∣〈m̃′(φφφ ′)|m̃(φφφ)〉
∣∣∣2

× exp

−
(

E
φφφ
′;m′−Eφφφ ;m +λ

(ϕϕ ′)
s

)2

4λ
(ϕϕ ′)
s kBT

 , (2.18)

where λ
(ϕϕ ′)
s = λ

(ϕ ′ϕ)
s is the low-frequency reorganization energy for the reaction between species

ϕ and ϕ ′, kB is the Boltzmann constant, and T is the temperature. The rate depends on a generalized

Franck-Condon factor, 〈m̃′
(φφφ ′)
|m̃(φφφ)〉, for the cavity-vibrational states, where

∣∣∣〈m̃′(φφφ ′)|m̃(φφφ)〉
∣∣∣2 = ∣∣∣∣∣ ∏

q=±,d
〈m′q|Dq

(
λ
(i)
ϕ ′q−λ

(i)
ϕq

)
|mq〉

∣∣∣∣∣
2

. (2.19)

We have relabeled the single dark mode of the two-molecule system as q = d. The undisplaced
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cavity-vibrational state |mq〉 is the single-particle eigenstate of HCV with mq excitations in mode

q. Matrix elements of the displacement operator Dq(λ ) with respect to the undisplaced cavity-

vibrational states are evaluated according to the property [100]

〈m′q|Dq(λ )|mq〉=
√

mq!
(m′q)!

e−|λ |
2/2

λ
m′q−mqL

m′q−mq
mq (|λ |2)

for m′q ≥ mq, (2.20)

where Lk
n(x) is an associated Laguerre polynomial; for m′q < mq, the matrix element is evaluated

using the same expression except with m′q↔ mq and λ →−λ ∗.

We next discuss cavity-vibrational loss and gain. First consider loss. For the optical cavities

used in previous experiments of VSC reactions, bare cavity states decay via the leakage of photons

out into free space. In contrast, bare vibrational states decay through dissipation into solvent and

intermolecular modes. In VSC, the cavity-vibrational states can decay through a combination of

cavity and vibrational channels. The decay of |φφφ , êq〉, where êq is the unit vector representing a

single excitation of mode q =±,d, has rate [53, 62]

k(φφφ ;0|φφφ ; êq) = |cq0|2κ +

(
2

∑
i=1
|cqi|2

)
γ. (2.21)

The bare cavity decay rate is κ , and the bare vibrational decay rate is γ . For nonzero temperatures,

the reverse process, gain, can occur. The corresponding rate is determined by detailed balance:

k(φφφ ; êq|φφφ ;0) = k(φφφ ;0|φφφ ; êq)exp(−h̄ωq/kBT ).

Lastly, we have relaxation among polaritons and the dark state. Processes of this type orig-

inate from anharmonic coupling between vibrational states and low-frequency molecular modes of

the local environment [53, 55, 56, 101]. The relaxation from |φφφ , êq〉 to |φφφ , êq′〉 (where q,q′ =±,d
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and q 6= q′) has rate [53, 62]

k(φφφ ; êq′|φφφ ; êq) = 2π

(
2

∑
i=1
|cq′i|2|cqi|2

)

×{Θ(−ω) [n̄(−ω)+1]J (−ω)

+ Θ(ω)n̄(ω)J (ω)} , (2.22)

where Θ(ω) is the Heaviside step function, n̄(ω) = [exp(h̄ω/kBT )−1]−1 is the Bose-Einstein dis-

tribution function, and J (ω) is the spectral density of the anharmonically coupled low-frequency

bath modes. For the simulations in Sec. 2.3, we assume an Ohmic spectral density [53]: J (ω) =

ηω exp
[
−(ω/ωcut)

2], where η is a dimensionless parameter representing the anharmonic system-

bath interaction, and ωcut is the cutoff frequency of the low-frequency bath modes.

Now that we have presented the various processes captured by our kinetic model, we note,

for completeness, that k(φφφ ′;m′|φφφ ;m) = 0 for any transition |φφφ ;m〉→ |φφφ ′;m′〉 not induced by these

processes, i.e., not described by Eqs. (2.18), (2.21), and (2.22).

To conclude this section, we summarize how VSC influences reactive transitions and inter-

nal thermalization within our kinetic model. We do so in the context of reactions with nonequilib-

rium effects, which arise when internal thermalization is not fast compared to reactive transitions.

First, recall that VSC alters energies and redistributes the vibronic coupling of localized bare modes

among the delocalized eigenmodes (Sec. 2.2.1). In view of this, Eq. (2.18) says that VSC affects

the rate of reactive transitions by changing activation energy—which is related to the energies of

the initial and final states—and the Franck-Condon factor between initial and final states. These

rate changes can lead to modified reactivity when reactive species are at internal thermal equilib-

rium and when they are not. On the other hand, the additional relaxation channels created by VSC,

i.e., cavity loss and gain for polaritons [Eq. (2.21)] and relaxation among polaritons and the dark

state [Eq. (2.22)], help thermalize the vibrational states and only change populations when reac-

tive species are not at internal thermal equilibrium. Thus, if creating these additional relaxation

channels is the dominant effect of VSC, then nonequilibrium effects will be suppressed, as we will
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see in Sec. 2.3.

2.2.3 Kinetic model: no light-matter coupling

For the kinetic model of reactions in the bare case (i.e., light-matter coupling strength

g = 0), we write the zeroth-order system eigenstates [i.e., the eigenstates of H0, Eq. (2.9)] in the

basis of localized vibrational and cavity modes [see Eqs. (2.4) and (2.6), respectively] instead of

the basis of the polariton and dark modes. In the chosen basis, the eigenstates are still of the form

|φφφ ;m〉 ≡ |φφφ〉⊗ |m̃(φφφ)〉 [Eq. (2.12)], except that the displaced cavity-vibrational states are given by

|m̃(φφφ)〉=

[
N

∏
i=1
D†

i (λφi)

]
|m〉, (2.23)

where |m〉 ≡ |m0,m1, , . . . ,mN〉 represents the state where mode i = 0,1, , . . . ,N has mi excitations,

and Di(λ ) = exp
(

λa†
i −λ ∗ai

)
is the displacement operator for mode i. The zeroth-order energy

of |φφφ ;m〉 is

Eφφφ ;m =
N

∑
i=1

Eφi +m0h̄ωc + h̄ωv

N

∑
i=1

mi. (2.24)

The bare system is evolved under the same assumptions (including N = 2) as in the case

of VSC (Sec. 2.2.2). The master equation of the bare dynamics takes the general form of Eq.

(2.17). For the reaction of molecule i = 1,2 from reactive species ϕ to reactive species ϕ ′ 6= ϕ , the

reactive-transition rate is calculated with Eq. (2.18), where the generalized Franck-Condon factors

are evaluated using

∣∣∣〈m̃′(φφφ ′)|m̃(φφφ)〉
∣∣∣2 = ∣∣∣δm′0m0

〈m′i|Di(λϕ ′−λϕ)|mi〉δm′jm j

∣∣∣2 (2.25)

for j = 2δi1+δi2 6= i (here, δik is the Kronecker delta) and the analog of Eq. (2.20) with q→ i. The

undisplaced single-particle state |mi〉 represents mi excitations in mode i. The decay transitions
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have rates

k(φφφ ;0|φφφ ; êi) =


κ, i = 0,

γ, i 6= 0.
(2.26)

The reverse rates are governed by detailed balance:

k(φφφ ; êi|φφφ ;0) =


k(φφφ ;0|φφφ ; êi)exp(−h̄ωc/kBT ), i = 0,

k(φφφ ;0|φφφ ; êi)exp(−h̄ωv/kBT ), i 6= 0.
(2.27)

Among the singly excited vibrational states, there are no transitions of the same nature as the

relaxation among polaritons and dark states, i.e., k(φφφ ; ê j|φφφ ; êi) = 0. As mentioned in Sec. 2.2.2,

this incoherent energy exchange is caused by local system-bath interactions, which do not couple

different local vibrational modes. All rates k(φφφ ′;m′|φφφ ;m) that have not been discussed in this

section are taken to be 0.

2.2.4 Kinetic model: weak light-matter coupling

In this section, we derive the kinetic model that we use to simulate reactions where the light-

matter interaction strength is g = (3×10−4)ωv/
√

2 and the cavity decay rate is κ = 1ps−1� g
√

N

(where N = 2). Together, these parameters signify the regime of weak light-matter coupling. In this

regime, the light-matter coupling can be treated as a perturbation to the system. Thus, the zeroth-

order system eigenstates are those of the bare case (Sec. 2.2.3). However, the light-matter coupling

does change the population dynamics of the system. Below we follow a textbook approach (see

Ref. [99], pp. 103-106 and 413) to show that, when the cavity and/or vibrational excitations

decay on a timescale much shorter than that of the reaction dynamics, the effect of weak light-

matter coupling is to induce incoherent energy exchange between the excitations. Essentially, the

employed approach is a perturbative correction to the non-Hermitian dynamics of the bare case.

Formally, the dynamics of the bare system can be given by the quantum master equation
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[99]
dρ(t)

dt
=−i(L0− iR)ρ(t), (2.28)

where ρ(t) is the reduced density operator of the system, and the superoperator L0− iR generates

the bare dynamics. The Liouvillian superoperator L0(·) = [H0, ·]/h̄ generates the coherent (Her-

mitian) dynamics of the bare system. Here, H0 is the zeroth-order system Hamiltonian without

light-matter interaction. The superoperatorR represents system-bath interaction and generates the

incoherent (non-Hermitian) dynamics of the system, i.e., all reaction and relaxation dynamics of

the bare case. If we act on Eq. (2.28) with 〈φφφ ;m| from the left and |φφφ ;m〉 from the right, we

recover the master equation governing the bare population dynamics (see Sec. 2.2.3):

d p(φφφ ;m)(t)
dt

=−k(out)
(φφφ ;m)

p(φφφ ;m)(t)

+ ∑
(φφφ ′;m′)6=(φφφ ;m)

k(φφφ ;m|φφφ ′;m′)p(φφφ ′;m′)(t), (2.29)

where, for convenience, we have defined k(out)
(φφφ ;m)

≡ ∑(φφφ ′;m′)6=(φφφ ;m) k(φφφ ′;m′|φφφ ;m) as the outgoing

rate of population transfer from state |φφφ ;m〉. If we instead act on Eq. (2.28) with 〈φφφ ;m| from the

left and |φφφ ′;m′〉 6= |φφφ ;m〉 from the right, we arrive at

dρ(φφφ ;m),(φφφ ′;m′)(t)

dt
=−i

[
(Eφφφ ;m−E

φφφ
′;m′)/h̄

− ik(out)
(φφφ ;m)

/2− ik(out)
(φφφ ′;m′)/2

]
ρ(φφφ ;m),(φφφ ′;m′)(t), (2.30)

where ρ(φφφ ;m),(φφφ ′;m′)(t) = 〈φφφ ;m|ρ(t)|φφφ ′;m′〉 is a coherence. In writing Eq. (2.30), we have as-

sumed that each coherence is decoupled from populations and other coherences. We have also, for

simplicity, neglected pure dephasing.

For the system under weak light-matter coupling, the light-matter interaction Hc−v [Eq.

(2.7)] is added to the Hamiltonian (H0) of the bare system. To account for this change in the quan-

tum master equation, we simply add the superoperator Lc−v(·) = [Hc−v, ·]/h̄ to the superoperator

(L0− iR) that generates the bare dynamics. In doing so, we implicitly ignore the effect of light-
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matter coupling on system-bath interaction; this approximation should hold for sufficiently small

values of light-matter interaction strength. Quantum master equation (2.28) now reads

dρ(t)
dt

=−i(L0− iR)ρ(t)− iLc−vρ(t). (2.31)

With this transformation, states with a single vibrational excitation (i.e., |φφφ , êi〉, i = 1,2) evolve as

d p(φφφ ;êi)(t)
dt

=−k(out)
(φφφ ;êi)

p(φφφ ;êi)(t)

+ ∑
(φφφ ′;m′)6=(φφφ ;êi)

k(φφφ ; êi|φφφ ′;m′)p(φφφ ′;m′)(t)

+2gImρ(φφφ ;ê0),(φφφ ;êi)(t), (2.32)

and states with a single cavity excitation (i.e., |φφφ , ê0〉) evolve as

d p(φφφ ;ê0)(t)
dt

=−k(out)
(φφφ ;ê0)

p(φφφ ;ê0)(t)

+ ∑
(φφφ ′;m′)6=(φφφ ;ê0)

k(φφφ ; ê0|φφφ ′;m′)p(φφφ ′;m′)(t)

−2gIm
2

∑
j=1

ρ(φφφ ;ê0),(φφφ ;ê j)(t). (2.33)

To arrive at Eqs (2.32)-(2.33), we have used the general relation ρ(φφφ ′;m′),(φφφ ;m) = ρ∗
(φφφ ;m),(φφφ ′;m′). For

states with no vibrational or cavity excitations, the equations of motion remain the same as in the

bare case. From Eqs. (2.32) and (2.33)—in particular, the last line of each equation—it is clear

that the evolution of vibrational and cavity populations now depends on the light-matter coherence

ρ(φφφ ;ê0),(φφφ ;êi). In the presence of weak light-matter coupling, this light-matter coherence evolves
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according to

dρ(φφφ ;ê0),(φφφ ;êi)(t)
dt

=−i
(

∆− ik(out)
(φφφ ;ê0)

/2− ik(out)
(φφφ ;êi)

/2
)

ρ(φφφ ;ê0),(φφφ ;êi)(t)

− igp(φφφ ;êi)(t)+ igp(φφφ ;ê0)(t)

− igρ(φφφ ;ê j),(φφφ ;êi)(t), (2.34)

where j = 2δi1 + δi2 6= i. We have defined ∆ ≡ ωc−ωv. Notice the appearance of ρ(φφφ ;ê j),(φφφ ;êi), a

coherence involving different vibrational states, in the last line of Eq. (2.34). In the weak-coupling

regime, the evolution of this purely vibrational coherence is given by

dρ(φφφ ;ê j),(φφφ ;êi)(t)

dt
=−

(
k(out)
(φφφ ;ê j)

/2+ k(out)
(φφφ ;êi)

/2
)

ρ(φφφ ;ê j),(φφφ ;êi)(t)

− ig
[
ρ(φφφ ;ê0),(φφφ ;êi)(t)−ρ(φφφ ;ê j),(φφφ ;ê0)(t)

]
. (2.35)

It is apparent that the coherence ρ(φφφ ;ê j),(φφφ ;êi) does not directly couple to populations. In other words,

the coupling of populations to the purely vibrational coherence is higher-order in g, the strength

of the perturbative light-matter interaction. We are interested in the lowest-order correction to

the population dynamics due to light-matter interaction. Hence, we neglect the contribution of

ρ(φφφ ;ê j),(φφφ ;êi) in Eq. (2.34). This truncation, followed by formal integration of Eq. (2.34), leads to

ρ(φφφ ;ê0),(φφφ ;êi)(t)

=−ig
∫ t

0
dt ′ exp

[
−i
(

∆− ik(out)
(φφφ ;ê0)

/2− ik(out)
(φφφ ;êi)

/2
)

t ′
]

×
[
p(φφφ ;êi)(t− t ′)− p(φφφ ;ê0)(t− t ′)

]
, (2.36)

where we have made the change of variable (t− t ′)→ t ′. For our simulations, we are interested

in how populations change over times much longer than cavity and vibrational decay. Since these

two processes are included in k(out)
(φφφ ;ê0)

and k(out)
(φφφ ;êi)

, respectively, then the exponential term will decay
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on a timescale much shorter than the timescales of interest. We therefore make a Markovian

approximation—i.e., the substitutions p(φφφ ;êi)(t− t ′)→ p(φφφ ;êi)(t) and p(φφφ ;ê0)(t− t ′)→ p(φφφ ;ê0)(t), as

well as extending the integral to infinity—to obtain

ρ(φφφ ;ê0),(φφφ ;êi)(t)

=−ig
[
p(φφφ ;êi)(t)− p(φφφ ;ê0)(t)

]
×
∫

∞

0
dt ′ exp

[
−i
(

∆− ik(out)
(φφφ ;ê0)

/2− ik(out)
(φφφ ;êi)

/2
)

t ′
]
. (2.37)

Evaluating the integral and plugging Eq. (2.37) into Eqs. (2.32)-(2.33), we arrive at

d p(φφφ ;êi)(t)
dt

=−k(out)
(φφφ ;êi)

p(φφφ ;êi)(t)

+ ∑
(φφφ ′;m′)6=(φφφ ;êi)

k(φφφ ; êi|φφφ ′;m′)p(φφφ ′;m′)(t)

− γ
′
φφφ i p(φφφ ;êi)(t)+ γ

′
φφφ i p(φφφ ;ê0)(t), (2.38)

d p(φφφ ;ê0)(t)
dt

=−k(out)
(φφφ ;ê0)

p(φφφ ;ê0)(t)

+ ∑
(φφφ ′;m′)6=(φφφ ;ê0)

k(φφφ ; ê0|φφφ ′;m′)p(φφφ ′;m′)(t)

−

(
2

∑
j=1

γ
′
φφφ j

)
p(φφφ ;ê0)(t)+

2

∑
j=1

γ
′
φφφ j p(φφφ ;ê j)(t), (2.39)

where

γ
′
φφφ i =

4g2
(

k(out)
(φφφ ;ê0)

+ k(out)
(φφφ ;êi)

)
4∆2 +

(
k(out)
(φφφ ;ê0)

+ k(out)
(φφφ ;êi)

)2 . (2.40)

Eq. (2.40) is in line with standard expressions for the Purcell factor [2, 102]. Eqs. (2.38)-(2.39)

reveal that the dynamics under weak light-matter coupling is identical to the bare dynamics [Eq.

(2.29)], except that vibrational mode i incoherently exchanges energy with the cavity at rate γ ′
φφφ i.

Thus, the master equation for the weak coupling regime is that of the bare case but with the fol-
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lowing rates for relaxation between vibrational and cavity excitations:

k(φφφ ; êi|φφφ ; ê0) = k(φφφ ; ê0|φφφ ; êi) = γ
′
φφφ i, i = 1,2. (2.41)

We reiterate that this result rests on the condition that at least one of cavity and vibrational

excitations decays on a timescale faster than that of the reaction dynamics. In all our simulations

involving weak light-matter coupling, we only consider cases where this separation of timescales

is satisfied, and so we use the kinetic framework described by Eq. (2.41) and the immediately

preceding text.

2.3 Simulations

In this section, we perform kinetic simulations of thermally activated nonadiabatic electron

transfer under VSC. We simulate a set of representative reactions whose reactive transitions are

comparable in timescale to internal thermalization. As discussed in Sec. 2.1, we are interested

in understanding how such reactions are affected by VSC-induced dissipative processes. To this

end, we choose reaction parameters that highlight the impact of cavity decay, as well as relaxation

among polaritons and the dark state. In addition, parameters are chosen such that the dynamics of

states with more than one cavity-vibrational excitation are insignificant compared to the dynamics

of states with one or zero of such excitation (Sec. 2.2.2). Parameters specific to each reaction are

listed in Table 2.1. Throughout the simulations, we use h̄ωv = 2000 cm−1 and assume a resonant

cavity mode (i.e., ωc = ωv). We also fix the temperature at T = 298 K. Unless otherwise stated, we

use the following parameters to characterize internal thermalization: γ = 0.01 ps−1 , κ = 1 ps−1,

η = 0.001, and ωcut = 0.1ωv. We note that the chosen cavity decay rate (κ) is much faster than the

chosen vibrational decay rate (γ) and that both rates are similar to those found in VSC experiments

[55, 56, 92]. In calculations of reactions under VSC, we choose g = (0.03ωv)/
√

2, which yields a

Rabi splitting of Ω = 0.06ωv.

For comparison, we also simulate the reactions in the bare case (see Sec. 2.2.3 for kinetic
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Table 2.1: Reaction parameters.

Reaction Figure Reaction type Parametersa

1 2.1 A→ B EB =−0.6, λB = 1.5, JAB = 0.01, λ
(AB)
s = 0.08

2 2.2 A→ B EB = 0.95, λB = 1, JAB = 0.002, λ
(AB)
s = 0.05

3 2.3 A→ B→C
EB =−1.05, EC =−1.35, λB = 1.5, λC = 4.5,

JAB = 0.0003, JBC = 0.02, λ
(AB)
s = 0.05,

λ
(BC)
s = 0.3

aFor all reactions, EA = 0 and λA = 0. All Jφϕ not listed here are equal to 0. All parameters, except λφ

(dimensionless), have units h̄ωv.

model) and in the case of weak light-matter coupling (see Sec. 2.2.4 for kinetic model and its

derivation). In the latter, we set the light-matter coupling to 1% of the value used for VSC. For

all simulations in the weak-coupling regime, cavity decay is fast compared to the overall reaction

dynamics (which can have a different timescale than the reactive transitions; see Sec. 2.4 for fur-

ther discussion). Therefore, the weak light-matter coupling effectively induces relaxation between

vibrational and cavity states (Sec. 2.2.4) [103, 104].

In all simulations, the initial population is a thermal distribution of reactant eigenstates. The

distribution is determined by the Boltzmann probability function [i.e., p(φφφ ;m) ∝ exp(−Eφφφ ;m/kBT )]

and normalized to 1. In accordance with our truncation of the cavity-vibrational subspace (Sec.

2.2.2), the initial distribution consists only of states with ≤ 1 excitation in this subspace.

After calculating the population evolution for each state in the system, the total population

Nϕ(t) of each reactive species ϕ at time t is computed according to

Nϕ(t) = ∑
(φφφ ;m)

p(φφφ ;m)(t)〈φφφ ;m|Pϕ |φφφ ;m〉. (2.42)

The projection operator

Pϕ =
2

∑
i=1
|ϕ(i)〉〈ϕ(i)| (2.43)

counts the number of molecules belonging to reactive species ϕ .

We first simulate a reaction where the vibrationally hot product undergoes the reverse re-

action as fast as it decays (Fig. 2.1a). The main reactive transition involves a 0→ 1 vibrational
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excitation upon going from reactant to product. The vibrationally hot product either returns to the

reactant via the reverse transition or relaxes to the ground state, with both processes occurring at

similar rates. This scenario represents a nonequilibrium effect where the product does not fully

thermalize before it undergoes the reverse reaction. Under VSC, the reaction is enhanced com-

pared to the bare case (Fig. 2.1c, blue solid line vs black dashed line). The observed modification

is consistent with the following mechanism: dissipative processes associated with VSC speed up

internal thermalization and thereby force the product to decay instead of transforming back into

reactant. To test this mechanism, we carry out simulations for various values of cavity decay rate

κ (Fig. 2.1d) and anharmonic system-bath coupling parameter η (Fig. 2.1e). The latter determines

the rates of relaxation among polaritons and the dark state (Fig. 2.1b, red dotted arrows). As

cavity decay rate κ is lowered to zero, most of the reaction enhancement goes away (Figs. 2.1e).

In contrast, the modification largely survives as η is decreased. These trends reveal not only that

the reaction is enhanced by accelerated internal thermalization, but also that cavity decay plays

the main role in speeding up the thermalization. Specifically, cavity decay of the polaritons (Fig.

2.1b, yellow dashed arrows) enables the vibrationally hot product to cool much faster than it can

undergo a reverse reactive transition. Relaxation from the dark state to polaritons (Fig. 2.1b, red

dotted arrows) plays a supporting role: it transfers population to the (polariton) states that decay

via cavity leakage.

The second reaction we investigate has a reactive transition that starts from a vibrational ex-

cited state and occurs on the same timescale as vibrational decay (Fig. 2.2a). Although thermody-

namically unfavorable, this reaction can serve as an instructional example for thermodynamically

favorable situations where the most reactive channel involves a vibrational excited state in the reac-

tant. Due to a large energy difference between reactant and product electronic states, there is only

one reactive transition, which is accompanied by a 1→ 0 vibrational deexcitation. This transition

happens at a rate comparable to the decay of the initial vibrational state. Since vibrational decay

is extremely fast compared to its reverse process, the timescale of reactant internal thermalization

is that of vibrational decay, i.e., that of the reactive transition. Intuitively speaking, the population
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Figure 2.1: (a) Scheme of reaction where a reverse reactive transition (rate kr) from the vibra-
tionally hot product occurs on the same timescale as vibrational decay (rate γ). Reactant (blue) and
product (red) potential energy surfaces are plotted against effective solvent coordinate qs. Notewor-
thy transitions are shown. (Non)reactive transitions are represented with (dashed) solid arrows. (b)
Scheme depicting VSC-induced internal thermalization of the product. Potential energy surfaces
and nonreactive transitions, shown here for the system under VSC, follow the formatting style used
in (a), with the additional attribute that polaritonic surfaces are drawn with yellow outline. Po-
laritons can decay via cavity leakage (rate κ/2, where κ is the decay rate of the bare cavity), and
polaritons and dark state incoherently exchange energy (rates ∝ η , where η represents the system-
bath interaction that gives rise to this relaxation). (c-e) Product population kinetics for various (c)
regimes of light-matter coupling, (d) κ , and (e) η .
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of the reactive vibrational excited state does not reach its fully replenished (thermalized) value

prior to subsequent reactive transitions. In the presence of VSC, the reaction experiences an en-

hancement (Fig. 2.2c, blue solid line vs black dashed line). By varying κ (Fig. 2.2d) and η (Fig.

2.2e), we again find that the reaction modification is attributed mostly to cavity decay and less so

to relaxation among polaritons and the dark state. Cavity decay facilitates rapid thermalization

between the ground state and polaritons (Fig. 2.2b, yellow dashed arrows), while the dark state

quickly reaches thermal equilibrium through incoherent energy transfer with the polaritons (Fig.

2.2b, blue dotted arrows). As a result of these relaxation dynamics, the excited cavity-vibrational

states are refilled with population before the next reactive transition takes place.

While the first two reactions are enhanced by VSC, suppression is found for the third reac-

tion, which involves a vibrationally hot intermediate that reacts before it can fully thermalize (Fig.

2.3a) [93–95]. The first reactive transition is from reactant to intermediate and involves a 0→ 1

vibrational excitation. Next, the vibrationally hot intermediate can either make a reactive transition

to product or relax to the ground state, with similar rates for both processes. The former process is

followed by vibrational decay, while the latter is followed by an intermediate-to-product reactive

transition that is much slower than vibrational decay. Overall, a significant amount of intermedi-

ate population first makes a fast reactive transition and then cools, and the remaining intermediate

population first cools and then makes a slow reactive transition. With VSC, the population kinetics

of the reactant is unchanged (Fig. 2.3c, blue solid line vs black dashed line) because the vibra-

tionally hot intermediate, with or without VSC, is transformed into a different state much quicker

than it can transition back to reactant. However, there is greater accumulation of the intermediate

(Fig. 2.3d, blue solid line vs black dashed line) and suppressed formation of the product under

VSC (Fig. 2.3e, blue solid line vs black dashed line). Carrying out the same analysis as done with

the previous two reactions (see Figs. 2.3f-2.3i), we conclude that the rapid decay of polaritons via

cavity leakage (Fig. 2.3b, yellow dashed arrows), assisted by the relaxation from the dark state to

polaritons (Fig. 2.3b, green dotted arrows), causes the intermediate to reach thermal equilibrium

27



Figure 2.2: (a) Scheme of reaction where a reactive transition (rate k) from a vibrational excited
state occurs on the same timescale as vibrational decay (rate γ). Reactant (blue) and product (red)
potential energy surfaces are plotted against effective solvent coordinate qs. Noteworthy transitions
are shown. (Non)reactive transitions are represented with (dashed) solid arrows. (b) Scheme depict-
ing VSC-induced internal thermalization of the reactant. Potential energy surfaces and nonreactive
transitions, shown here for the system under VSC, follow the formatting style used in (a), with
the additional attribute that polaritonic surfaces are drawn with yellow outline. Polaritons can gain
energy from the ground cavity-vibrational state via photon absorption from the surroundings into
the cavity, and polaritons and dark state incoherently exchange energy. See caption of Fig. 2.1
for explanation of κ , η , and labels containing these symbols. (c-e) Product population kinetics for
various (c) regimes of light-matter coupling, (d) κ , and (e) η .
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Figure 2.3: (a) Scheme of reaction where a reactive transition (rate k1) from a vibrationally hot in-
termediate occurs on the same timescale as vibrational decay (rate γ). Reactant (blue), intermediate
(green), and product (red) potential energy surfaces are plotted against effective solvent coordinate
qs. Noteworthy transitions are shown. (Non)reactive transitions are represented with (dashed) solid
arrows. The rate k0 describes a reactive transition from the intermediate in its vibrational ground
state. Note: k0 6= k1 because the corresponding reactive transitions are associated with different
Franck-Condon factors [Eq. (2.25)]. (b) Scheme depicting VSC-induced internal thermalization of
the intermediate. Potential energy surfaces and nonreactive transitions, shown here for the system
under VSC, follow the formatting style used in (a), with the additional attribute that polaritonic
surfaces are drawn with yellow outline. Polaritons can decay via cavity leakage, and polaritons and
dark state incoherently exchange energy. See caption of Fig. 2.1 for explanation of κ , η , and labels
containing these symbols. (c-e) Population kinetics of (c) reactant, (d) intermediate, and (e) product
for various regimes of light-matter coupling. (f-i) Population kinetics of (f, h) intermediate and (g,
i) product for various (f, g) κ , and (h, i) η .
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before it can go through the faster reactive transition.

To obtain additional insight regarding nonequilibrium effects and how VSC alters reactiv-

ity, we study the reactions under weak light-matter coupling. Figs. 2.1c, 2.2c, 2.3d-2.3e show

population kinetics for VSC (blue solid line), weak light-matter coupling (aquamarine dotted line),

and the bare case (black dashed line). For all reactions, weak light-matter coupling leads to sig-

nificantly modified kinetics. The direction of change is the same as that of VSC. This finding is

consistent with the fact that, similar to VSC, weak light-matter coupling opens up relaxation be-

tween vibrations and the cavity, and enables internal thermalization of the reactive species to be

sped up by cavity decay. It also makes sense that the magnitude of change is less than that of VSC,

since the vibration-cavity relaxation resulting from weak light-matter interaction is not as fast as

cavity decay [103]. Nevertheless, it is interesting that one only needs to enter the weak-coupling

regime to manipulate reactivity. The same conclusion has been reached in a study of how cavity

decay allows light-matter coupling to protect molecules from photodegradation [85].

The simulations discussed so far suggest that the VSC-induced modifications to the above

reactions arise mainly from the suppression of nonequilibrium effects. To strengthen this claim,

we simulate the same reactions except the vibrational decay rate is made 100 times larger (i.e.,

γ = 1 ps−1 = κ). With this condition, we find that the VSC and bare kinetics (Fig. 2.4, blue solid

line vs black dashed line) are either virtually identical or much more similar than in the case of

slow vibrational decay. Thus, the changes in reactivity due to VSC are considerably reduced when,

outside the cavity, internal thermalization is already rapid compared to reactive transitions.

While our focus has been on nonequilibrium effects and their suppression by VSC-related

dissipation, we should note that the calculated reaction kinetics do exhibit some changes as a

consequence of VSC modifying activation energies and redistributing vibronic coupling among

the cavity-vibrational eigenmodes (Sec. 2.2.2). Because cavity decay has been identified as the

major contributor to the altered kinetics in the above reactions, the impact of the minor contributors

could be revealed by comparing simulations for VSC and no cavity decay (i.e., κ = 0 ps−1) with

those for the bare case. For the reaction of Fig. 2.1, the kinetics is noticeably different for the
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Figure 2.4: Population kinetics with fast vibrational decay rate γ = 1 ps−1. Plots correspond to
the following figures showing population kinetics with vibrational decay rate γ = 0.01 ps−1 but
otherwise same conditions: (a) Fig. 2.1c, (b) Fig. 2.2c, and (c-e) Figs. 2.3c–2.3e.
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two conditions (Fig. 2.1d, yellow solid line vs black dashed line). It seems that the difference

cannot be fully accounted for by the presence of relaxation among polaritons and dark state (Fig.

2.1e). Hence, modified energy differences and Franck-Condon factors likely impart a small but

appreciable influence on the reaction. This conclusion is corroborated by the slight enhancement

observed for the VSC reaction when vibrational decay is made faster than all reactive transitions

(Fig. 2.4a, blue solid line vs black dashed line); in this regime, dissipative processes introduced

by VSC should have no effect. For further discussion of how changes in energetics and Franck-

Condon factors due to VSC manifest as changes in reactivity, we refer the reader to Refs. [38] and

[39] (see also Ref. [105], which discusses these topics but in the context of SC to electronic states).

2.4 Connection to experiments

A noteworthy difference between our simulations and the experiments of VSC reactions is

the number N of molecules involved in VSC. In our simulations N = 2. In the experiments, N is

estimated to be 106 to 1012 [38, 53, 106].

For such large N, the particular reactions studied here are unlikely to be modified by VSC.

To understand this statement and to identify reactions that would be significantly affected by many-

molecule VSC, we present the following argument. Without loss of generality, consider a reaction

featuring a single forward reactive transition, which involves a 0→ 1 vibrational excitation. This

hypothetical reaction resembles that depicted in Fig. 2.1a. Assuming the steady-state approxi-

mation (SSA) for the vibrationally excited product and ignoring vibrational gain (i.e., the reverse

process of vibrational decay), the reaction rate can be written as kR→P = k f [kd/(kr+kd)], where k f

is the rate of the forward reactive transition, kr is the rate of the reverse reactive transition, and kd

is the decay rate of the vibrationally excited product. The quantity in square brackets, kd/(kr+kd),

is the efficiency with which the vibrationally excited product decays rather than returns to reac-

tant. In the reaction with VSC, there are N + 1 forward reactive transitions, each involving the

0→ 1 excitation of a polariton or dark state; there are two and N−1 such transitions, respectively.
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We first focus on the two polaritonic forward reactive transitions. Recall that the Franck-Condon

factor for a 0-1 vibronic transition is proportional to the displacement between initial and final vi-

brational states [Eq. (2.20) with m′q = 1 and mq = 0]. Since the overlap between a polariton mode

and each bare vibrational mode is O(N−1/2) [Eq. (2.10)], the displacements—and therefore the

0-1 Franck-Condon factors—associated with the polaritons are O(N−1/2) times the corresponding

bare values [Eqs. (2.14)-(2.15)]. Then the polaritonic reactive transitions have rates that scale as

O(N−1) because the rate of a reactive transition depends on the square of a Franck-Condon factor

[Eq. (2.18)]. Suppose that cavity decay is much faster than all other transitions from the polaritons,

including reverse reactive transitions and relaxation to dark states. This scenario, which has been

observed for cavity-coupled W(CO)6 in nonpolar solvents [107], results in a decay efficiency of 1

for product states with an excitation in a polariton mode. By applying the SSA to such states and

neglecting cavity gain (i.e., the reverse process of cavity decay), we arrive at the following effective

rate for the polaritonic reactive transitions: k(p)
R→P = εk f /N, where ε is a dimensionless constant

that accounts for changes in the reaction rate caused by the polaritons having modified energies.

In contrast, we assume that the reactive transitions involving the dark states do not afford changes

in the reaction rate, given that the dark states have similar decay dynamics to the bare vibrations

[51, 53, 55, 56, 101, 107, 108]. Furthermore, relaxation from dark states to polaritons should be

negligible: this dissipative process is mediated by local system-bath interactions (see Sec. 2.2.2)

and has rates scaling as O(N−1) [44, 53, 62], corresponding to the probability of each molecule

in either polariton [Eq. (2.10)]. So, in order for the reaction to be modified by VSC, the reaction

rate (k(p)
R→P) due to the polaritonic reactive transitions should be, at least, comparable to the bare

reaction rate (kR→P), i.e.,
ε

N
&

kd

kr + kd
. (2.44)

With arbitrary reactions in mind, criterion (2.44) says that for systems with experimentally relevant

values of N, VSC can change the kinetics of thermally activated reactions if
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1. the polaritons give rise to ε � 1, which means that activation energies are significantly

reduced compared to the bare case (this scenario is discussed in Ref. [38]), and/or

2. in the bare case, reverse reactive transitions are extremely fast compared to internal thermal-

ization, i.e., populations are efficiently trapped in the reactants.

When at least one of these two conditions is satisfied, a large-N generalization of the kinetic model

presented in Sec. 2.2.2 should predict altered reactivity under VSC. Indeed, Ref. [38] theoretically

demonstrates the ability for condition 1 to enable VSC catalysis of ground-state reactions when

N = 107. While such a demonstration has not been carried out for condition 2, Ref. [109] (see Fig.

6a of that work) has shown that condition 2 enables electronic SC to boost the efficiency of har-

vesting triplet excitons into singlet polaritons, ultimately leading to enhanced photoluminescence

compared to the bare organic material (in this case, the reverse reactive transition is the very rapid

fission of singlets into triplets).

Despite the above and other differences between this theoretical work and the experiments,

the suppression of nonequilibrium effects is a general phenomena and could be relevant to the

mechanism by which VSC modifies reaction kinetics in the latter. According to our calculations,

the suppression of nonequilibrium effects can lead to significant increase or decrease in reactivity,

depending on the specific properties of the reaction. Both types of modifications have been found

experimentally [1]. The resemblance does not stop there. Recall the experimental studies showing

that the desilylation of PTA using TBAF is suppressed by VSC [20, 97]. This reaction involves an

intermediate species [96]. Based on kinetic measurements, the authors propose that VSC forces

the reaction to go through a new pathway, which involves a different intermediate. Compared to

the intermediate of the bare reaction, the intermediate in the VSC reaction forms more easily but

reacts less readily. We would like to propose an alternative mechanism based on our results. In

the bare case, there could be nonequilibrium effects that cause slow conversion of reactant to in-

termediate (similar to the reaction of Fig. 2.2) and fast conversion of intermediate to product (like

in the reaction of Fig. 2.3; see Refs. [93], [94], and [95]). Under VSC, the intermediate would be
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the same as in the bare case, but nonequilibrium effects would be suppressed, thereby accelerating

the reactant-to-intermediate transformation and decelerating the intermediate-to-product transfor-

mation. This mechanism is consistent with the experimentally proposed one. Future works should

test the possibility of VSC-induced suppression of nonequilibrium effects in the desilylation and

other reactions.

When evaluating this possibility, it is important to keep in mind that nonequilibrium effects

can affect reactivity even if internal thermalization occurs on a much shorter timescale than the

reaction. Whether or not nonequilibrium effects are present is determined by how fast internal

thermalization is relative to reactive transitions, which may be faster than the (overall) reaction.

These guiding principles are supported by our simulations. For the bare reactions shown in Figs.

2.1 and 2.3, internal thermalization occurs on a 100 ps timescale while the reaction occurs on a

10 ns timescale (Figs. 2.1a, 2.1c, 2.3a, 2.3c). Nevertheless, as already discussed in Sec. 2.3, the

ability of VSC—in particular, the associated relaxation processes—to change the reaction kinetics

relies on having (in the bare case) reactive transitions with similar rates as internal thermalization.

The above principles, when made specific to adiabatic reactions, can be stated as follows [110]:

regardless of the actual reaction rate or that predicted by transition-state theory, the influence that

nonequilibrium effects have on reactivity depends on how the rate of internal thermalization com-

pares to the reactive flux (i.e., the rate of product formation per unit population) at the transition-

state barrier.

2.5 Conclusions

In this work, we study how reactions with significant nonequilibrium effects are influenced

by the dissipative channels that VSC introduces to the chemical system. By using the MLJ formal-

ism of electron transfer as our reaction model, we present a kinetic framework that captures reactive

transitions, vibrational decay, cavity decay, and relaxation among polaritons and dark states. We
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then simulate reactions where internal thermalization and reactive transitions occur on the same

timescale. The considered reactions respectively exhibit three representative nonequilibrium ef-

fects: vibrationally hot product transforming back to reactant while thermalizing (Fig. 2.1), slow

replenishing of reactive vibrational excited state after a reactive transition (Fig. 2.2), and vibra-

tionally hot intermediate reacting before it can fully thermalize (Fig. 2.3). Under VSC, the first

two reactions are enhanced whereas the last reaction is suppressed. These modifications largely

occur because nonequilibrium effects are suppressed by VSC-induced dissipative processes. The

suppression of nonequilibrium effects is driven by cavity decay, which causes polaritons to ther-

malize much faster than reactive transitions occur. Relaxation between polaritons and dark states

allows the latter to indirectly experience accelerated thermalization due to cavity decay. When we

substantially increase the vibrational decay rate, i.e., make internal thermalization much faster than

reactive transitions (for the cavity-free case), the bare and VSC reactivities become much closer

(Fig. 2.4). Finally, we discuss our work in the context of recent experiments [1], which demon-

strate that thermally activated reactions can be enhanced or suppressed by the collective VSC of

a large number of molecules. We identify types of reactions for which our theory would predict

modified kinetics induced by many-molecule VSC. We also highlight resemblances between our

results and experimental observations. These resemblances suggest that VSC-triggered suppres-

sion of nonequilibrium effects could play a role in the experiments.

Chapter 2, in full, is adapted from the material as it appears in “Nonequilibrium effects of

cavity leakage and vibrational dissipation in thermally-activated polariton chemistry,” M. Du, J. A.

Campos-Gonzalez-Angulo, J. Yuen-Zhou, J. Chem. Phys. 154, 084108 (2021). The dissertation

author was the primary investigator and author of this paper.
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Chapter 3

Electron transfer under vibrational strong

coupling: effect of dark states

3.1 Introduction

The past decade has seen much interest in the control of chemical phenomena via the strong

coupling of matter to confined electromagnetic modes [3–11, 59, 61, 76, 83, 89, 111–114]. An

exciting prospect in this direction is vibropolaritonic chemistry, that is, the use of collective vibra-

tional strong coupling (VSC) [17–19] to modify thermally-activated chemical reactivity without

external pumping (e.g., laser excitation) [1]. While collective VSC involves a large number of

molecules per photon mode, it has been observed to substantially alter the kinetics of organic sub-

stitution [20, 21], cycloaddition [23], hydrolysis [24], enzyme catalysis [25, 26], and crystallization

[115], among other electronic ground-state chemical processes.

However, such modified reactivity under VSC is still not well understood. Studies [27–

30] show that the observed kinetics cannot be explained with transition state theory (TST) [31],

the most commonly used framework to predict and interpret reaction rates. Breakdowns of TST,

including recrossing the activation barrier [33], deviation from thermal equilibrium [29, 41], and
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Figure 3.1: Schematic of the model setup. Inside an optical cavity, an energetically disordered
ensemble of molecular vibrations, each belonging to a separate molecule, collectively interacts
with a cavity mode. When a molecule reacts, its cavity-coupled vibrational mode concomitantly
experiences a displacement in equilibrium geometry. Depicted here are molecules that undergo
intramolecular electron transfer, the reaction studied in this work.

quantum/nonadiabatic phenomena [29, 32, 38, 39, 41], have also been considered. The afore-

mentioned works regard all N vibrations coupled to the cavity mode to be identical. Under this

assumption, VSC forms two polaritons and N−1 optically dark vibrational modes, where the latter

remain unchanged from the cavity-free system. It follows that VSC-induced changes to thermally-

activated reactivity must arise from the polaritons. In fact, one study from our group highlighted

the molecular parameter space where polaritons dominate the kinetics [38] with respect to dark

modes; however, this hypothesis has been questioned as entropically unlikely [106].

Disorder, despite its ubiquity in molecular systems, has often been ignored when model-

ing molecules under strong light-matter coupling. Only recently has it been shown that the strong

coupling of disordered chromophores to an optical cavity mode can produce dark states which are

delocalized on multiple molecules [116, 117] (hereafter, referred as semilocalized). This semilo-

calization is predicted to improve or even enable coherent energy transport [116, 118]. Other find-

ings hint at adding sample impurities to help strong coupling modify local molecular properties

[119].

In this work, we demonstrate that the VSC of a disordered molecular ensemble (Fig. 3.1)

can significantly modify the kinetics of a thermally-activated chemical reaction. The altered reac-

tivity is attributed to the semilocalized dark modes. The semilocalization affects the reaction rate
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by changing the efficiency with which a reactive mode dissipates energy.

3.2 Hamiltonian H

Consider a disordered ensemble of N molecular vibrations, respectively corresponding to N

independent molecules, inside an optical cavity (Fig. 3.1). The system is described by the Hamil-

tonian H = h̄ωca†
0a0 + h̄∑

N
i=1 ωia

†
i ai + h̄∑

N
i=1 gi(a

†
i a0 +h.c.). Vibrational mode i is represented by

annihilation operator ai and has frequency ωi = ωv + δωi, where ωv is the mean vibrational fre-

quency and δωi is the frequency offset of mode i. Reflecting inhomogeneous broadening (static

diagonal disorder), δωi is a normally distributed random variable with mean zero and standard

deviation σv. The cavity mode is represented by annihilation operator a0, has frequency ωc, and

couples to vibration i with strength gi. For simplicity, we hereafter take gi = g for all i.

Using H, we investigate the physicochemical properties of a disordered molecular sys-

tem under VSC. Unless otherwise noted, calculations assume that the cavity is resonant with the

average vibration, ωc = ωv, and couples to the vibrations with collective strength g
√

N = 8σv

(for all N). Numerical values reported below are obtained by averaging over 5000 disorder re-

alizations, i.e., sets {ωi}N
i=1. In plots versus the H eigenfrequencies, each data point is an av-

erage over the H eigenmodes—from all disorder realizations—whose frequency lies in the bin(
∆ω(l− 1

2),∆ω(l + 1
2)
]

for ∆ω = 10−1σv and l ∈ Z.

3.3 Properties of the eigenmodes of H

We first study the eigenmodes of H. Formally, mode q = 1, . . . ,N + 1 is represented by

operator αq = ∑
N
i=0 cqiai and has frequency ωq. Figs. 3.2a and 3.2b show the probability distribu-

tion and photon fraction (|cq0|2), respectively, of the eigenmodes with respect to eigenfrequency.

The majority of modes form a broad distribution in frequency around ωv and are optically dark.

A minority of modes are polaritons, which have frequency ωv± 8σv, photon fraction ≈ 0.5, and
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Figure 3.2: (a) Probability distribution and (b) photon fraction of the eigenmodes of H. Values
are plotted versus eigenfrequency ωq for various N. In (a), the gray dashed line is the probability
density function [P(ωq) = (σv

√
2π)−1 exp

(
−(ωq−ωv)

2/(2σ2
v )
)
, displayed in units of 1/∆ω] of

the bare vibrational modes.

a lineshape minimally affected by inhomogeneous broadening [120]. As N rises, the eigenmodes

become increasingly composed of dark modes, whose probability distribution approaches that of

the bare (g = 0) vibrational modes (Fig. 3.2a, gray dashed line).

Next, we examine the delocalization of the dark modes. For the purpose of studying chem-

ical reactions, it is useful to compute the molecular participation ratio (PR) [117, 121]. This mea-

sure, defined as

molecular PR = 1/
N

∑
i=1

∣∣∣∣∣∣ cqi√
∑

N
i=1 |cqi|2

∣∣∣∣∣∣
4

(3.1)

and analogous to the usual PR [122], estimates the number of molecules over which eigenmode

q is delocalized. According to Fig. 3.3a, the average dark mode has molecular PR ∼2-3, and

this semilocalization persists as N increases. These phenomena were first noted independently

by Scholes [117] and Schachenmayer and co-workers [116]. For additional insight, we plot the

squared overlap (|cqi|2, Fig. 3.3b) and frequency difference (|ωqi|, where ωqi = ωq−ωi; Fig.

3.3c) between each dark mode and each bare vibrational mode. The typical dark mode has sizable

overlap with the bare modes that are nearest to it in frequency. The frequency difference between
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Figure 3.3: (a) Average molecular PR of the dark modes as a function of N. (b) Squared overlap
|cqi|2 (log10 scale) and (c) frequency difference |ωqi| between each eigenmode q and each bare
vibrational mode i. Each group of modes is ordered from low to high frequency, i.e., dark (polariton)
modes have index q = 2, . . . ,N (q = 1,N +1). The quantities in (b)-(c) are plotted for various N.

the dark mode and any of its major constituents is O(σv/N), i.e., negligible for large N.

3.4 Chemical reaction

We now explore how VSC influences the kinetics of a thermally-activated chemical reac-

tion. Consider a reactive molecule under collective VSC (Fig. 3.1). The molecule undergoes nona-

diabatic intramolecular electron transfer, and a cavity mode interacts collectively with a reactive

vibrational mode and N−1 nonreactive vibrational modes. The model here considered is general

enough that it should also be applicable to the case of “solvent-assisted VSC” [22, 123–125].

3.4.1 Hamiltonian

To model the reaction of one molecule in the ensemble, we employ the Hamiltonian Hrxn =
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H + ∑X=R,P |X〉〈X |{EX + h̄ωr[λX(ar + a†
r ) + λ 2

X ]}+V + H(l)
s . Note that vibrational and cavity

modes are still described by H. In writing Hrxn, we have changed the numerical index of the bare

vibrational mode (i = 1) involved in the reaction to the letter r (i.e., ω1→ ωr, a1→ ar); hereafter,

we refer to this mode as vr. The electronic subspace consists of reactant |R〉 and product |P〉 states.

Electronic state |X〉 has energy EX and couples to vr with dimensionless strength λX . As a result

of the vibronic coupling, vr experiences a displacement in its equilibrium position upon electron

transfer. The interaction between |R〉 and |P〉 is represented by V = JRP(|P〉〈R|+h.c.), where JRP

is the interaction strength. The last term of Hrxn is

H(l)
s = h̄∑

j
ω

(l)
j b†

jb j + h̄∑
j

ω
(l)
j ∑

X=R,P
|X〉〈X |

[
λ
(l)
X j (b j +b†

j)+(λ
(l)
X j )

2
]
, (3.2)

where the jth low-frequency mode has frequency ω
(l)
j and couples to electronic state |X〉 with

dimensionless strength λ
(l)
X j . The contribution of the low-frequency modes to the reaction rate is

characterized by reorganization energy λs = ∑ j

(
λ
(l)
P j −λ

(l)
R j

)2
h̄ω

(l)
j . Through H(l)

s , Hamiltonian

Hrxn also accounts for low-frequency vibrational modes of the solvent that help mediate electron

transfer. There is no direct coupling, though, of the cavity mode to the |R〉 
 |P〉 electronic

transitions, which we assume are dipole-forbidden.

3.4.2 Kinetic model

Since we are considering a nonadiabatic reaction, we treat V perturbatively and calcu-

late rates of reactive transitions between the zeroth-order electronic-vibrational-cavity eigenstates

of Hrxn. These states take the form |X ,χ〉 = |X〉⊗ |χ̃(X)〉. Belonging to the subspace of vibra-

tional and cavity modes, |χ̃(X)〉 =
(

∏
N+1
q=1 D†

q(λXq)
)
|χ〉 is a displaced Fock state with m(χ)

q exci-

tations in H eigenmode q. The undisplaced Fock state |χ〉 is an eigenstate of H, and Dq(λ ) =

exp(λα†
q − λ ∗αq) is a displacement operator. Mode q has equilibrium (dimensionless) position

λXq = λX cqr(ωr/ωq) when the system is in electronic state |X〉. Returning to the electronic-

vibrational-cavity state |X ,χ〉, we can write its energy as E(X ,χ) =EX +∑
N+1
q=1 m(χ)

q h̄ωq+∆X , where
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∆X = λ 2
X h̄ωr− h̄∑

N+1
q=1 |λXq|2ωq is the difference in reorganization energy—namely, that due to vi-

bronic coupling between vr and |X〉—with and without VSC.

Following extensions [38, 39, 41] of Marcus-Levich-Jortner theory [45–47] to electron

transfer under VSC, the rate of the reactive transition from |R,χ〉 to |P,χ ′〉 can be expressed as

k(R,χ)→(P,χ ′) =AFχ,χ ′ exp
(
−βEχ,χ ′

a

)
, (3.3)

where A =
√

πβ/λs|JRP|2/h̄, and β is the inverse temperature For this transition, the activation

energy is Eχ,χ ′
a = (E(P,χ ′)−E(R,χ)+λs)

2/(4λs). Through the Franck-Condon (FC) factor Fχ,χ ′ =

|〈χ̃(R)|χ̃ ′(P)〉|
2, the transition rate depends on the overlap between initial and final vibrational-cavity

states |χ̃(R)〉 and |χ̃ ′(P)〉, respectively. It can be shown that the rate k(P,χ ′)→(R,χ) corresponding to

the backward transition, |P,χ ′〉 → |R,χ〉, is related to Eq. (3.3) by detailed balance [99].

We specifically study a reaction where, in the absence of light-matter coupling, reactive

transitions occur on the same timescale as internal thermalization (i.e., thermalization of states

having the same electronic component). In such cases, internal thermal equilibrium is not main-

tained throughout the reaction, and the reaction rate (i.e., net rate of reactant depletion) may not

be approximated by a thermal average of reactant-to-product transition rates. Instead, the reaction

rate can also depend on, e.g., backward reactive transitions (from product to reactant) or vibrational

relaxation.

With this in mind, we numerically simulate the bare and VSC reactions using a kinetic

model. The population p(X ,χ) of state |X ,χ〉 evolves according to the master equation

d p(X ,χ)

dt
=− ∑

(X ′,χ ′)6=(X ,χ)

k(X ,χ)→(X ′,χ ′)p(X ,χ)+ ∑
(X ′,χ ′)6=(X ,χ)

k(X ′,χ ′)→(X ,χ)p(X ′,χ ′). (3.4)

State-to-state transitions (|X ,χ〉→ |X ′,χ ′〉), which are either reactive (X ′ 6=X) or nonreactive (X ′=

X), include forward and backward reactive transitions [Eq. (3.3)], vibrational and cavity decay,

and energy exchange among dark and polariton states [53, 55, 107]. The third set of processes

results from vibrational dephasing interactions (i.e., homogeneous broadening) of the molecular
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system [53]. The reaction parameters (Sec. 3.4.3) are such that the population dynamics proceeds

almost completely through states |X ,χ〉with zero or one excitation in the vibrational-cavity modes.

To reduce computational cost, the kinetic model includes only these states, which are denoted

by χ = 0 and χ = 1q, respectively, where q is an eigenmode of the vibrational-cavity subspace.

Master equation (3.4) is numerically solved (Sec. A.1) with the initial population being a thermal

distribution of reactant states (|R,χ〉). Then, the apparent reaction rate is obtained by fitting the

reactant population as a function of time (Sec. A.2).

We now present expressions for the rates of transitions within the truncated state space.

Rates (k(X ,χ)→(X ′,χ ′) for X ′ 6= X) of reactive transitions are given by Eq. (3.3) and depend on FC

factor Fχ,χ ′ . To evaluate Fχ,χ ′ , recall the standard identity [100]

〈m′|D(λ )|m〉=

√
m!

(m′)!
e−|λ |

2/2
λ

m′−mL(m′−m)
m (|λ |2), m′ ≥ m, (3.5)

where D(λ ) = exp(λa†−λ ∗a) is the displacement operator corresponding to bosonic annihilation

operator a, |m〉 is a number state of the mode represented by a, and Lk
n(x) is an associated Laguerre

polynomial. Using Eq. (3.5), we obtain

Fχ,χ ′ =



e−S, (χ ′,χ) = (0,0),

e−SSq, (χ ′,χ) = (1q,0),(0,1q).

e−S(1−Sq)
2, (χ ′,χ) = (1q,1q).

e−SSq′Sq, (χ ′,χ) = (1q′,1q), q′ 6= q,

(3.6)

where S = ∑
N+1
q=1 Sq and Sq = |λPq−λRq|2.

Regarding the nonreactive transitions, an excitation in mode q decays at rate

k(X ,1q)→(X ,0) = |cq0|2κ +

(
N

∑
i=1
|cqi|2

)
γ, (3.7)
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where κ is the decay (leakage) rate of the bare cavity and γ is the decay rate of all bare vibrations.

Detailed balance governs the rate of the reverse process: k(X ,0)→(X ,1q) = k(X ,1q)→(X ,0) exp(−β h̄ωq).

Following theories [51, 53, 126] of relaxation dynamics for molecules under VSC, the transition

from a polariton or dark state to another has rate

k(X ,1q)→(X ,1q′)
=

(
N

∑
i=1
|cq′i|2|cqi|2

)
R(ωq′−ωq), (3.8)

where q′ 6= q,

R(ω) = 2π [Θ(−ω)(n(−ω)+1)J(−ω)+Θ(ω)n(ω)J(ω)] , (3.9)

and Θ(ω) is the Heaviside step function. The environmental modes are characterized by spectral

density J(ω) and the Bose-Einstein distribution function, n(ω) = (exp(β h̄ω)−1)−1.

3.4.3 Reaction parameters

Unless otherwise stated, calculations of reaction rates are carried out using the parameters

described in this section.

For the bare molecular vibrations, we choose a mean frequency of ωv = 2000 cm−1, which

is representative of experimental studies on VSC [22, 23, 55, 101, 107, 127]. Since these studies

do not report values of inhomogeneous broadening, we simply take the vibrational frequencies

to have a standard deviation of σv = 10 cm−1. This choice of σv yields a spectral linewidth of

≈ 24 cm−1, which is consistent with vibrational lineshapes measured in some of the cited works

[22, 23, 107, 127]. For the cavity frequency and cavity-vibration interaction, we use ωc = ωv and

g
√

N = 8σv (for all N), respectively. Regarding the electronic degree of freedom and its coupling

to other degrees of freedom, we select parameters employed in the reaction simulations of [41]:

ER = 0, EP =−0.6ωv, λR = 0, λP = 1.5, JRP = 0.01ωv, λs = 0.08ωv.

Next, we describe the parameters governing the relaxation of vibrational and cavity modes.
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The temperature T is set to 298 K. We choose κ = 1 ps−1 as the bare cavity decay rate and γ = 0.01

ps−1 for the decay rate of all bare vibrational modes [107]. To model the relaxation among dark

and polariton states [Eq. (3.8)], we use the super-Ohmic spectral density

J(ω) = ηω
−1
0 ω

2 exp[−(ω/ωcut)
2], (3.10)

where η = 1× 10−3 is the interaction strength between each bare vibrational mode and its local

chemical environment, ωcut = 50 cm−1 is the cutoff frequency of the environmental modes, and

ω0 = ωcut. The spectral density resembles those in models of condensed-phase systems in general

[128], while the cutoff frequency is similar to those in liquid-phase molecular systems [129–131].

Our choice of spectral density is motivated by a number of other factors. First, J(ω) of Eq.

(3.10) allows for relaxation from polaritons to dark states that occurs on a timescale of 20-25 ps for

g
√

N ≈ 20 cm−1. This value is estimated by calculating the corresponding rate constant [Eq. (3.8)]

as R(∓20 cm−1)/2 (Fig. 3.4), which applies when the initial state is the upper/lower polariton

[53]. Measurements of vibrational polaritons using ultrafast 2D IR spectroscopy have revealed

that, by 25 ps (but not less than 5 ps) after polaritons are excited, the dark states significantly

contribute to the transient absorption signal [55, 132].

Second, we choose J(ω) such that the rate of relaxation between dark states decreases as

the frequency between the states approaches zero [see Fig. 3.4, namely R(∓ω) as ω → 0]. We

do this so that the associated decay linewidths of dark states do not exceed their energy spacing,

maintaining the validity of the kinetic model in this work (Sec. 3.4.4). For the same reason, we set

N ≤ 32 throughout this work (Sec. 3.4.4).

Figure 3.4: R(∓ω) [Eq. (3.9)] for J(ω) of Eq. (3.10) and T = 298 K.
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3.4.4 Validity of the kinetic model

Note that, for large enough N, the energy spacing between dark modes becomes smaller

than their decay linewidths. Under this condition, our kinetic model is not valid. In this section,

we discuss the validity of the model, as well as estimate the range of N for which the model holds.

At the core of our kinetic model is master equation (3.4), which is an example of the

Pauli master equation (PME) [99, 133]. The PME is a Markovian master equation that describes

the exchange of population among the eigenstates of a quantum system, which interacts with an

environment. Let Htot be the total Hamiltonian governing the system and environment. Make

the partition Htot = H0,S + (Htot−H0,S), where H0,S is a zeroth-order system Hamiltonian and

Htot−H0,S acts perturbatively on the H0,S eigenstates {|n〉}, which have frequencies {ωn}. While

H0,S is not necessarily the full Hamiltonian of the system in the absence of the bath, we assume

that Htot−H0,S gives rise to purely dissipative dynamics. Then the PME can be written as

dρnn(t)
dt

= ∑
m

knn,mmρmm(t), (3.11)

where ρ is the reduced density matrix of the system, ρnn (ρmm) is the population of H0,S eigenstate

|n〉 (|m〉), and knn,mm is the rate constant for population transfer from |m〉 to |n〉. Notice that the

populations are not coupled to coherences, which are the off-diagonal elements ρlm, where |l〉 and

|m〉 are different eigenstates of H0,S. In general, such coupling exists and cannot be ignored.

To understand when this decoupling is acceptable, consider the Redfield equation (RE)

[99], a Markovian quantum master equation that is more general than the PME. For the proceeding

analysis, it is convenient to first move to the interaction picture where the reduced density matrix

evolves as

ρ
(I)
lm (t) = 〈l|eiH0,St

ρ(t)e−iH0,St |m〉= eiωlmt
ρlm(t), (3.12)

where ωlm = ωl −ωm. With this transformation, the RE, for populations of H0,S eigenstates, can
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be written as
dρnn(t)

dt
= ∑

m
knn,mmρmm(t)+ ∑

l 6=m
knn,lme−iωlmt

ρ
(I)
lm (t), (3.13)

where l,m run over the eigenstates of H0,S. In writing Eq. (3.13), we have used ρ
(I)
nn (t)= ρnn(t) [Eq.

(3.12)]. Compared to the PME [Eq. (3.11)], the RE [Eq. (3.13)] additionally includes coupling of

populations to coherences through the constants knn,lm. To see when we can ignore this coupling,

formally integrate Eq. (3.13):

ρnn(t) = ρnn(0)+∑
m

knn,mm

∫ t

0
dt ′ρmm(t ′)+ ∑

l 6=m
knn,lm

∫ t

0
dt ′ e−iωlmt ′

ρ
(I)
lm (t ′). (3.14)

Focus on the second summation, which runs over the coherences. If e−iωlmt ′ oscillates much faster

than the (relaxation) timescale τrel,lm over which ρ
(I)
lm (t ′) evolves, then the integral in term lm

approximately vanishes for t = O(τrel,lm). Then a good approximation is to neglect all terms lm

that satisfy this condition, which can be concisely expressed as

ωlmτrel,lm

2π
� 1. (3.15)

This approximation, which falls under the secular approximation (also known as the rotating wave

approximation) of the theory of open quantum systems [99, 133], can be heuristically interpreted

as follows: if the energy gap between two states is larger than their decay linewidths [Eq. (3.15)],

then the two states are “good eigenstates" of the (reduced) system, and population will remain in

these states in the presence of decoherence processes. Applying the secular approximation to all

coherence terms, i.e., dropping all terms in the second summation of Eq. (3.13), converts the RE

to the PME. In other words, the PME is valid when the secular approximation [Eq. (3.15)] holds

for all coherences. Thus, one should be careful when using the PME to model systems with (near)

degeneracies.

In light of this, we reflect on the appropriateness of our kinetic model. Here, a system of N

molecules features a quasidegenerate manifold of N−1 dark states, whose frequencies are approx-
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imately normally distributed with mean ωv and standard deviation σv. In our kinetic simulations,

we vary N while fixing σv. As N increases, the frequency spacing between dark states decreases.

At the same time, the rates of relaxation processes—which include the electron transfer reaction,

vibrational/cavity decay, and scattering among polariton and dark states—do not change as much.

These relaxation rates determine the timescales over which coherences between dark states evolve

[in the interaction picture of Eq. (3.12)]. So, the secular approximation, and therefore our kinetic

model, will be invalid for large enough N.

Given the default parameters used in our reaction-rate calculations (Sec. 3.4.3), let us

estimate the values of N for which the secular approximation holds. Motivated by the previous

paragraph, we introduce a simplified version of the secular-approximation criterion [Eq. (3.15)]:

∆ωdarkτrel, dark

2π
� 1, (3.16)

where ∆ωdark is the characteristic frequency spacing between consecutive dark states, and τrel, dark

is the characteristic timescale for the evolution of dark-state coherences [in the interaction picture

of Eq. (3.12)]. Since the vast majority of dark states have frequency within 2σv of the mean

(ωv), we take ∆ωdark = 4σv/(N−1). Accounting for only the aforementioned relaxation processes

(i.e., ignoring pure dephasing [99]), we evaluate τrel, dark as the sum of characteristic rate constants

for the population decay of a single dark state (the corresponding quantity for population gain is

smaller; see Sec. 3.5):

τ
−1
rel, dark =

kb

2
+ γ + kscat, dark. (3.17)

The right-hand side is a sum of major decay rates, where kb/2 represents the rate of a backward

reactive transition for a dark state with 50% character of the reactive mode, γ is the (bare) vi-

brational decay rate, and kscat, dark is a characteristic rate at which a dark state decays into other

dark states. From the default parameters (Sec. 3.4.3), we have kb ≈ γ = 0.01 ps−1. To esti-

mate kscat, dark, we consider three dark states (q = 1,2,3) that are consecutive in frequency and

let kscat, dark be the sum of rates [Eq. (3.8)] of decay from dark state q = 2 to each dark state
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q′ 6= 2 (including states with q′ 6= 1,3). For simplicity and based on the results of Sec. 3.3,

we assume that dark states q = 1,2,3 are equally delocalized across two of four bare vibrational

states (i = 1,2,3,4), such that the expansion coefficients cqi (see Sec. 3.3) satisfy |cqi|2 = 0.5 for

(q, i) = (1,1),(1,2),(2,2),(2,3),(3,3),(3,4) [and |cqi|2 = 0 for all other (q, i) where q = 1,2,3].

Also, we set ∆ωdark as the frequency difference between states q = 1,2 and between states q = 2,3.

With J(ω) of Eq. (3.10) as the spectral density and T = 298 K as the temperature, Eq. (3.8) yields

kscat, dark = 0.25R(−∆ωdark)+0.25R(∆ωdark) (3.18a)

≈ 0.5
0.05 ps−1

10 cm−1 ∆ωdark. (3.18b)

In obtaining the second line, we have used Fig. 3.4 to approximately linearize R(∓ω) [Eq. (3.9)]

as (0.05 ps−1)ω/(10 cm−1) for ω ∈ [0,10] cm−1. Using the above rates, σv = 10 cm−1 (Sec.

3.4.3), and Eq. (3.16), we estimate that the secular approximation holds for N� 74. In all numer-

ical kinetic simulations, we set N ≤ 32.

3.5 Approximate kinetic models for chemical reaction

Even though we run the full numerical kinetic simulations as explained above (see also

Secs. A.1-A.2 ), we now introduce approximate models that shed conceptual intuition on the

calculated kinetics.

3.5.1 Bare reaction

The bare reaction can be essentially captured by Fig. 3.5a, described as follows. Starting

from its vibrational ground state, the reactant converts to product mainly by a 0→ 1 vibronic

50



transition, which excites the reactive mode and has rate k f ≡ k(R,0)→(P,1r), where

k f =AF0,1r exp(−βEa) , (3.19)

Ea ≡ E0,1r
a . The vibrationally hot product either reverts to the reactant at rate kb ≡ k(P,1r)→(R,0)�

k f , where

kb = k f exp [β (EP + h̄ωr−ER)] , (3.20)

or decays to its vibrational ground state at rate γ ≈ kb. Once the product reaches its vibrational

ground state, it effectively stops reacting due to the high reverse activation energy.

This kinetic scheme can be represented by a simplified kinetic model:

d p(R,0)
dt

=−k f p(R,0)+ kb p(P,1r), (3.21)

d p(P,1r)

dt
=−(kb + γ)p(P,1r)+ k f p(R,0). (3.22)

The first and second equations describe how the populations of |R,0〉 and |P,1r〉 evolve, respec-

tively. Since k f � kb,γ , p(P,1r) does not accumulate, and so we apply the steady-state approxima-

tion (SSA) [134] to this population: d p(P,1r)/dt ≈ 0. Solving the resulting equation for p(P,1r) and

plugging the solution into Eq. (3.21) leads to d p(R,0)/dt ≈−k(analytical)
bare p(R,0), where

k(analytical)
bare = k f

(
γ

γ + kb

)
(3.23)

is an effective rate for the bare reaction.

3.5.2 VSC reaction

Under VSC, the primary reaction pathway of the bare case is split into multiple pathways,

each involving the (de)excitation of a dark or polariton eigenmode q. For the VSC reaction chan-
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enhanced

thermalization

Figure 3.5: (a) Schematic of the bare reaction kinetics. Parabolas represent potential energy sur-
faces with respect to the effective low-frequency coordinate xs. After the main reactive transition
(|R,0〉→ |P,1r〉) with rate k f (the transition |R,0〉→ |P,0〉 is not shown), the product either reverts to
the reactant (|P,1r〉 → |R,0〉) at rate kb or vibrationally decays to its stable form (|P,1r〉 → |P,0〉) at
rate γ ≈ kb. (b) Schematic of the reaction kinetics under VSC. The half-yellow half-gray parabolas
qualitatively represent potential energy surfaces of product states with one excitation in a dark mode
(|P,1q〉). The reaction proceeds via multiple reaction channels, each involving a reactive transition
(|R,0〉 → |P,1q〉) with rate k(q)f < k f to the product with one excitation in a dark mode. The total
forward rate is approximately the bare rate k f . In contrast, the vibrationally hot product formed
from each reaction channel either returns to the reactant (|P,1q〉 → |R,0〉) at rate k(q)b < kb or cools
(|P,1q〉 → |P,0〉) at the bare molecular rate γ . There is also scattering (at effective rate ζ ) from
dark modes with cqr 6≈ 0 to those with cqr ≈ 0. Overall, VSC accelerates product thermalization,
suppressing backward reactive transitions, and thus enhancing the net reaction rate. (c) kVSC/kbare
as a function of N for fixed g

√
N and various cavity decay rates κ . (d) Activation enthalpy ∆H‡

versus activation entropy ∆S‡ for reactions with N = 32: bare (gray circle), VSC (purple circle,
κ = 1 ps−1), and bare with vibrational decay rate γ made 100 times faster (purple diamond). The
black dashed line is a fit to the points shown. In (c) and (d), the individual rates (kVSC, kbare) and
thermodynamic parameters (∆H‡, ∆S‡) are averages over 5000 disorder realizations.

nels, the forward and backward rates take the form

k(q)f =AF0,1q exp
(
−βE(q)

a

)
, (3.24)

k(q)b = k(q)f exp
{

β
[
EP + h̄ωq +∆P− (ER +∆R)

]}
, (3.25)

respectively, where k(q)f ≡ k(R,0)→(P,1q), k(q)b ≡ k(P,1q)→(R,0), and E(q)
a ≡ E0,1q

a . Now, consider the

following argument, which holds strictly for large N. As N increases, the average bare mode
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becomes localized on dark modes that have essentially the same frequency as it (Figs. 3.3b-3.3c),

and its overlap with the polariton modes vanishes (i.e., cqr ∝
1√
N
→ 0 for q = 1,N + 1; see Fig.

3.3b). These observations suggest that cqr 6≈ 0 only for modes q that are dark and have frequency

ωq ≈ ωr. It is then straightforward to show that E(q)
a

∣∣∣
cqr 6≈0

≈ Ea, F0,1q ≈ |cqr|2F0,1r , and

k(q)f/b ≈ |cqr|2k f/b. (3.26)

Thus, VSC leads to reaction channels that have lower rates of reactive transitions, due to changes

not in activation energies but in FC factors, which are smaller as a result of the semilocalization of

dark modes. From Eq. (3.26), it is evident that the total forward rate is approximately that of the

bare reaction (∑N+1
q=1 k(q)f ≈ k f , since ∑

N+1
q=1 |cqr|2 = 1). However, once a forward reactive transition

happens—and a dark mode is excited—the product either returns to the reactant at a reduced rate

(k(q)b < kb) or, due to the almost fully vibrational nature of the dark modes, vibrationally decays to

its stable form (|P,0〉) at essentially the same bare rate (γ). In other words, VSC suppresses reverse

reactive transitions by promoting the cooling of the reactive mode upon product formation.

This kinetic scheme can be represented by the following simplified model. In this model,

polaritons are decoupled from the reaction, and the reaction proceeds through multiple reaction

channels, each involving the (de)excitation of a dark mode. Define D as the set of dark modes.

The populations of |R,0〉 and |P,1q〉, where q ∈ D, evolve according to

d p(R,0)
dt

=− ∑
q∈D

k(q)f p(R,0)+ ∑
q∈D

k(q)b p(P,1q), (3.27)

d p(P,1q)

dt
=−

(
k(q)b + γ

)
p(P,1q)+ k(q)f p(R,0), (3.28)

respectively. In analogy to the derivation of Eq. (3.23), we can apply the SSA to each p(P,1q) to

arrive at
d p(R,0)

dt
≈−k f

(
∑

q∈D
|cqr|2

γ

γ + |cqr|2kb

)
p(R,0), (3.29)
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where we have used Eq. (3.26). Eq (3.29) can be rewritten as d p(R,0)/dt ≈ −k(analytical)
VSC p(R,0),

where

k(analytical)
VSC = k f

〈
γ

γ + |cqr|2kb

〉
dark modes q

(3.30)

is an effective rate for the VSC reaction, and 〈·〉dark modes q is a weighted average over all dark

modes q, each with weight |cqr|2. Since |cqr|2 < 1 for all q, then k(analytical)
VSC > k(analytical)

bare . We

emphasize that the major contributions to the average in Eq. (3.30) come from dark modes which

are closest in frequency to the bare reactive mode (see above). Further enhancement of the VSC

reaction, beyond that given by k(analytical)
VSC , occurs via dissipative scattering from these dark modes

to those with cqr ≈ 0. Said differently, the product is protected from reversion to reactant when

dark modes with relatively more reactive character lose their energy to those with relatively less.

Importantly, this scattering requires dark modes to be delocalized. The VSC reaction kinetics, as

described above, is summarized in Fig. 3.5b.

3.6 Numerical kinetic simulations of chemical reaction

Fig. 3.5c shows the ratio of VSC reaction rate to bare reaction rate, as determined from

numerical kinetic simulations. As we have shown analytically, VSC significantly accelerates the

reaction compared to the bare case. For 8≤N ≤ 32 (and g
√

N held constant), the rate enhancement

is roughly 50%. Notably, the effect of cavity decay on the reaction is minor and diminishes with N

(Fig. 3.5c). This behavior supports that the reaction proceeds mainly through the dark modes. The

present scenario is quite generic and contrasts with our previous model where extreme geometric

parameters are needed for polaritons to dominate the VSC kinetics [38].

We next look at the dependence on cavity detuning, δ = ωc−ωv, of the reaction rate and

reactive-mode delocalization. The lattermost quantity is defined as 1/∑
N+1
q=1 |cqr|4 (the PR of vr

when the mode is expressed in the eigenbasis of H). We find, for various light-matter coupling

strengths, that the reactive-mode delocalization is maximum close to resonance and eventually

54



Figure 3.6: (a) kVSC/kbare and (b) vr delocalization, as a function of cavity detuning δ , for various
collective light-matter coupling strengths g

√
N and fixed N = 32. In (a), kVSC and kbare are averages

over 5000 disorder realizations.

decreases with detuning (Fig. 3.6a). The rate enhancement due to VSC mostly follows the same

trend (Fig. 3.6b). Deviation from this trend at large negative detunings and collective light-matter

couplings is attributed to polariton contributions to the rate which, as discussed in [38], decrease

as N increases (Fig. ). The observed correlation between reactivity under VSC and delocalization

of the reactive mode corroborates that the reaction is sped up by dark-mode semilocalization.

Figure 3.7: (a) kVSC/kbare and (b) vr delocalization, as a function of cavity detuning δ , for various
N and fixed collective light-matter coupling strength g

√
N = 8σv. In (a), kVSC and kbare are averages

over 5000 disorder realizations. For δ � 0, kVSC/kbare has a significant positive contribution from
the reduced activation energy afforded by the lower polariton [38], whose overlap with vr scales
as O(N−1). As N increases, this polaritonic contribution diminishes, and the δ -dependence of
kVSC/kbare becomes more similar to that of vr delocalization.

For additional mechanistic insight into VSC catalysis and following the procedures in

[20, 22, 23], we plot in Fig. 3.5d the activation enthalpy (∆H‡) versus activation entropy (∆S‡)

for multiple cases of VSC and bare reactions. The thermodynamic parameters of activation are

computed by calculating the apparent reaction rate for additional temperatures and fitting the ob-

tained values to the Eyring-Polanyi equation (Sec. A.3). This fit indicates that changes in effective

parameters ∆H‡ and ∆S‡ can result from dynamical effects such as accelerated vibrational decay,
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rather than from potential energy changes.

3.7 Conclusions

In conclusion, we show that, by forming semilocalized dark modes, the VSC of a dis-

ordered molecular ensemble can modify the kinetics of a thermally-activated chemical reaction.

For a reactive molecule under collective VSC, we find that the electron transfer rate is significantly

increased. The spreading of reactive character across dark modes, as well as the dissipative scatter-

ing among these modes, allows the reactive mode to thermalize more efficiently once the product

is formed, suppressing dynamical effects, such as reversion to reactant. Although experimental

characterization of dark states remains a challenge, the phenomena proposed here might be veri-

fied using nonlinear infrared spectroscopy to measure populations [55, 56] and spatially resolved

energy transport measurements to detect delocalization [116]. The main mechanisms operating

in our model do not seem to be limited to nonadiabatic reactions and might have generalizations

in adiabatic reactions; these will be explored in future work. Given that these mechanisms only

rely on collective VSC, they should also be operative in the cavity-free polaritonic architectures

[135], although experiments along this front have so far not been reported. More broadly, our work

highlights that the previously overlooked dark states are the entropically likely channels through

which collective light-matter interaction can control chemistry.

Chapter 3, in full, is adapted from the material as it appears in “Catalysis by Dark States

in Vibropolaritonic Chemistry,” M. Du, J. Yuen-Zhou, Phys. Rev. Lett. 128, 096001 (2022). The

dissertation author was the primary investigator and author of this paper.
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Chapter 4

Remote control of infrared-induced

chemistry using vibrational strong coupling

4.1 Introduction

In photochemistry, energy transfer from light to matter produces nonequilibrium distribu-

tions of molecular states, therefore enabling selective initiation of reactive trajectories. For a given

reaction, tuning of yields is commonly achieved by surveying a series of chemical analogs. These

compounds undergo the same process but on different potential energy surfaces. The ability to

synthesize substrates with sufficiently varying energetics, though, limits the range of accessible

yields.

More facile chemical control of photoinduced reactivity is attainable in the strong cou-

pling [48] limit. In this regime, energy coherently oscillates between light and matter faster than

the rates at which their respective excitations decay, and the photonic and molecular states hy-

bridize into polariton states [5]. To reach sufficiently strong interaction between light and matter,

ensembles of molecules can be placed in optical microcavities (Fig. 4.1) [5]. These nano- or mi-

crostructures support electromagnetic modes that form polaritons with molecular superpositions
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of the same symmetry as the spatial profile of the electric field. Importantly, the majority of linear

combinations of matter energy states do not possess the right symmetry to mix with light (in real-

istic systems, slight mixing occurs due to symmetry-breaking environments; for example, see Ref.

[54]) and constitute the reservoir of dark states, which remains centered at the original molecular

transition energy and plays a crucial role in the relaxation dynamics of polaritons [3–5]. The en-

ergetic consequences and resulting reactivity of molecular polaritons have seen a surge in interest

over the past several years [3, 4, 7, 9, 136]. Since the observation of suppressed conversion be-

tween spiropyran and merocyanine organic dyes [78], modified kinetics upon polariton formation

have been demonstrated in a wide variety of photochemical processes by experimental (reverse

intersystem crossing [63], photobleaching [84], triplet-triplet annihilation [109], water splitting

[137]), theoretical (charge transfer [72, 73], dissociation [59, 138], isomerization [79], singlet fis-

sion [62]), or both types of studies (energy transfer [44, 68, 90, 91, 139]). In addition to detuning

the cavity from molecular resonances, polaritonic systems offer a robust control knob of energet-

ics: reactant concentration N/V (more precisely, N is the total number of cavity-coupled reactant

transitions and V is the cavity mode volume) [3, 4, 7, 9]. Indeed, the dependence of light-matter

coupling strength, and the concomitant polaritonic energy splittings (Fig. 4.2), on
√

N/V has en-

abled concentration-controlled tuning of a number of the aforementioned processes [63, 78, 90].

Although more robust than substituting the reactant species, changing the concentration is still

prone to issues of unfavorable intermolecular interactions, particularly insolubility.

Another convenient way to modulate the light-matter coupling is laser-driven ultrafast pop-

ulation of the dark-state reservoir [55, 56, 101, 108]. In pump-probe spectroscopy of vibrational

polaritons, the pump excitation (timescale ∼ 0.1 ps [108]) of the polaritons is followed by sub-

sequent relaxation into the dark-state reservoir within ∼10-100 ps of delay time [55, 108]. This

excited-state reservoir, as a result of its large density of almost purely vibrational states, acts as a

very efficient energy sink for the polaritons [53]; the energy transfer is mediated by the interaction

between the molecular component of the hybrid states and solvent or other intramolecular modes.

Due to vibrational anharmonicity, the 1→ 2 transitions are detuned from the 0→ 1 transitions and
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therefore do not couple as well to cavity modes that are resonant with the latter. In other words,

the concentration N/V of molecular transitions that can strongly couple to the cavity mode is ef-

fectively reduced on an ultrafast timescale. The reduction is tuned by varying the intensity of the

pump and detected in the frequency-resolved transient transmission of the proceeding probe pulse

[55, 108].

Here we theoretically demonstrate ultrafast and remote tuning of reaction yields of the

infrared-induced cis → trans fast isomerization channel of nitrous acid (HONO) [140]. Ob-

served in solid Kr matrices using ultrafast spectroscopy, this reaction is initiated by excitation

of the OH stretch vibration of the cis (reactant) conformer. Product formation happens on a 20 ps

timescale with an appreciable quantum yield of 10%. Therefore, this isomerization should serve

as an ideal candidate to study photoinduced processes involving vibrational polaritons, given that

typical infrared-optical microcavities are sufficiently long-lived (cavity photon lifetime ∼ 1-10 ps)

[55, 101, 108] to accommodate the described photochemical transformation. We propose a po-

laritonic device (Fig. 4.1) that consists of two connected microcavities containing, respectively,

the “remote catalyst”1 (RC) trans-cis conformer [141, 142] of glyoxylic acid and the reactant (R)

cis-HONO [143]. Strong coupling exists between the OH stretch ensembles of the molecules and

their corresponding host microcavities. Also strongly coupled are the microcavities themselves;

this effect is made possible by light transmission through their shared mirror [144]. The resulting

polaritonic eigenstates are delocalized among both RC and R molecules [145]. It follows that with-

out any direct interaction between the two molecular species, pump-driven population of the RC

dark-state reservoir can modify the energetics of R and thereby its reactivity in probe-driven con-

version to product (P) trans-HONO (Fig. 4.1, cf. A and B). Specifically, under thermal equilibrium

conditions, the lowest-energy polariton is off-resonant with a probe pulse (Fig. 4.2A), impinging

1In this work, “remote catalyst” appropriately describes the trans-cis conformer of glyoxylic acid. The
definition of a catalyst is a species that participates in a chemical reaction and accelerates it without be-
ing consumed (for example, see: D.W. Oxtoby, H.P. Gillis, and L.J. Butler [2011]. Principles of Modern
Chemistry [Cengage Learning]). Here, the glyoxylic-acid conformer constitutes a component of the reacting
polariton state, enhances HONO isomerization efficiency when its first excited state is populated, and is not
consumed.
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on the R cavity (Fig. 4.1A). This state also has reduced character of R and its cavity due to delo-

calization (Fig. 4.2A). After pumping—with a pulse impinging on the RC cavity (Fig. 4.1B)—and

subsequent relaxation, the polariton becomes resonant with the proceeding probe pulse (Fig. 4.2B)

and has increased R and R-cavity characters (Fig. 4.2, cf. A and B). Employing higher pump field

intensities, this nonlocal strategy can turn up reaction efficiency by an order of magnitude.

4.2 Theoretical framework: bare reaction

4.2.1 Hamiltonian

To model ultrafast tuning of the photoinitiated R → P conversion, we first describe the

bare reaction (i.e., that without strong light-matter coupling) as comprising three steps. The first

is absorption of light to create a single OH stretch excitation in R, which we label with |R〉. The

second step is intramolecular vibrational redistribution (IVR, [146]) transition from |R〉 to the near-

resonant seventh overtone mode of the torsional coordinate. Given the proximity of this highly

excited state to the barrier of the torsional double-well potential energy surface and its consequent

delocalization across R and P [140], the third step is relaxation into the R and P local wells via

interaction with environment degrees of freedom. For simplicity of notation, we hereby refer to

the product-yielding overtone state as |P〉, although it should be clear that it has mixed character of

R and P. This mechanism is in line with that first proposed for the reaction induced by pulsed [140]

and continuous-wave [147] excitation, and is in qualitative agreement with mechanisms suggested

by later studies [148].

Following the first mechanism [140], we take |P〉 to be 40 cm−1 lower in energy than |R〉.

This energy gap (illustrated by the difference between the minima of potential energy curves 3 and

4 in Fig. 7 of [140]) was obtained by adjusting the barrier height of the torsional double well to a

value (3610 cm−1) that allows the potential energy curves of |R〉 and |P〉 to cross [140]. Here, IVR

from |R〉 to |P〉 is treated as a coupling between the two states, while the other reaction steps (e.g.,
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Figure 4.1: Optical microcavities enable remote control of infrared-induced conformational
isomerization of HONO (A) The reaction is off. Without excitation of the “remote catalyst” (RC,
blue molecule) trans-cis conformer of glyoxylic acid, a “probe” laser pulse impinging on the cavity
containing reactant (R, red molecule) cis-HONO is off-resonant with polaritons and thereby re-
flected; no reaction occurs. (B) The reaction is on. First, a “pump” laser pulse impinging on the
mirror of the RC cavity excites a polariton whose character is predominantly the RC cavity and
the strongly coupled OH stretch (light-blue bond) of RC. Next, the probe pulse is now able to ef-
ficiently excite a polariton whose character is predominantly the R cavity and the strongly coupled
OH stretch (light-red bond) of R; R subsequently converts into the product molecule (P, yellow
molecule) trans-HONO.
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Figure 4.2: Pumping of the RC modifies energetics (A) (Left and right) For each of RC and
reactant (R), strong coupling between N molecules and the photon of their host cavity produces
two polaritons and N− 1 dark states; N = 6 is depicted here for illustration. (Middle) Intercavity
coupling hybridizes the polaritons of the noninteracting cavities into polaritons of the entire light-
matter device. Because of this delocalization of character across R and RC sides of the device, the
lowest polariton is off-resonant with a probe excitation and has reduced mixing fraction of R and
its cavity, affording inefficient transfer into product-yielding state |P〉. (B) (Left) Pump excitation
of the highest polariton is followed by relaxation into the RC dark states during a ∼10-100 ps
delay time. As a result of anharmonicities, the collective RC light-matter interaction is reduced,
modifying the polaritons within an ultrafast timescale. (Right) Now, the lowest polariton is resonant
with the proceeding probe excitation and has increased mixing fraction of R and its cavity, affording
efficient transfer into |P〉. In both (A) and (B), |G〉 is the molecular and photonic vacuum ground
state (energy not drawn to scale), and the polariton vertical positions (color gradients) qualitatively
represent their energies (mixing fractions).

62



absorption, relaxation into trans torsional potential well) are assumed to occur via coupling to a

continuum of bath modes under the wide-band [149] approximation. Understanding that photonic

bath modes induce excitation but nonradiative bath modes are the main contributors to relaxation of

|R〉 [149], we write the Hamiltonian for the bare reaction as H0 =Hsystem,0+Hbath,0+Hsystem−bath,0.

Specifically (hereafter, h̄ = 1),

Hsystem,0 = HR +HP +HR−P, (4.1a)

Hbath,0 = ∑
x=rad,nonrad

NR

∑
i=1

∫
∞

−∞

dω ωB†
x,i(ω)Bx,i(ω)

+ ∑
y=cis,trans

NR

∑
i=1

∫
∞

−∞

dω ω|By,i(ω)〉〈By,i(ω)|, (4.1b)

Hsystem−bath,0 = ∑
x=rad,nonrad

√
γx√
2π

NR

∑
i=1

∫
∞

−∞

dω[a†
R,iBx,i(ω)+h.c.]

+ ∑
y=cis,trans

√
Γy√
2π

NR

∑
i=1

∫
∞

−∞

dω[|Pi〉〈By,i(ω)|+h.c.]. (4.1c)

where

HR = ωR

NR

∑
i=1

a†
R,iaR,i, (4.2)

HP = ωP

NR

∑
i=1
|Pi〉〈Pi|, (4.3)

HR−P =VR−P

NR

∑
i=1

(|Pi〉〈G|aR,i +h.c.) (4.4)

describe |R〉, |P〉, and the |R〉-|P〉 IVR coupling, respectively. Here, a†
R,i (aR,i) is the bosonic cre-

ation (annihilation) operator for an OH stretch excitation at the ith molecule of the R species. The

OH stretch has frequency ωR = 3402 cm−1. Next, |Pi〉 is the seventh overtone (eighth excited state)

of HONO molecule i, where this state has mixed cis-trans character and energy ωP = 3362 cm−1.

Finally, |G〉 is the molecular and photonic vacuum ground state. The various interactions be-

tween |Ri〉 = a†
R,i|G〉 , |Pi〉, and their baths are summarized in Fig. 4.3. The |R〉-|P〉 coupling
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Figure 4.3: Schematic of the system and bath interactions of the R → P fast isomerization
channel in the absence of strong light-matter coupling See Eq. (4.1) for the Hamiltonian H0. The
ith R molecule has an OH stretch |Ri〉 (dark red circle) which is coupled to a set |Brad,i〉 of radiative
bath states (left dark red cloud) that contribute to its excitation and a set |Bnonrad,i〉 of nonradiative
bath states (right dark red cloud) that contribute to its decay. |Ri〉 is coupled to the torsional overtone
state |Pi〉 (yellow circle), which can decay into either the cis or trans potential wells of HONO via
coupling to |Bcis,i〉 (left yellow cloud) or |Btrans,i〉 (right yellow cloud), respectively.

has strength VR−P. The bath modes, which are described by Hbath,0 and Hsystem−bath,0, are taken

to be linearly coupled to {|Ri〉} and {|Pi〉} and are written in a form convenient for application

of input-output theory [150]. In particular, the operator B†
x,i(ω) (Bx,i(ω)) creates (annihilates) an

|R〉 bath mode of type x and frequency ω on R molecule i and satisfies the bosonic commutation

relations [Bx,i(ω),B†
x′,i′(ω

′)] = δx,x′δi,i′δ (ω −ω ′) and [Bx,i(ω),Bx′,i′(ω
′)] = 0, where δx,x′,δi,i′ are

Kronecker deltas and δ (·) is the Dirac delta function. The label x = rad (x = nonrad) indicates a

radiative (nonradiative) bath mode that excites (relaxes) R due to coupling to |R〉 with strength γrad

(γnonrad). Similarly, the state |By,i(ω)〉, representing a |P〉 bath mode of type y and frequency ω , sat-

isfies the relation 〈By,i(ω)|By′,i′(ω
′)〉= δy,y′δi,i′δ (ω−ω ′). The label y = cis (y = trans) indicates

a bath that relaxes |P〉 into the cis (trans) well via coupling to |P〉 with strength Γcis (Γtrans).

We use state representation for |P〉 in Eqs. (4.1b) and (4.1c) because this state

is the seventh overtone of the torsional coordinate, i.e., |Pi〉 = ∑
∞
m=1[ccis,m(a

†
τ,cis,i)

m/
√

m! +

ctrans,m(a
†
τ,trans,i)

m/
√

m!]|G〉. The creation (annihilation) operator a†
τ,x,i (aτ,x,i) is associated with

the diabatic torsional state x = cis, trans for the ith HONO molecule . The mth state of this

mode has expansion coefficient cx.m. If |P〉 overlaps most with the seventh localized overtones of
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each conformational isomer, we can write |Pi〉≈ [ccis,8(a
†
τ,cis,i)

8/
√

8!+ctrans,8(a
†
τ,trans,i)

8/
√

8!]|G〉.

Likewise, the use of state representation for the bath modes of |P〉 is motivated by the fact they are

also likely to be combination/overtone modes, given that they must be high in energy to efficiently

couple to the torsional state and induce relaxation.

4.2.2 Input-output theory

We next use input-output theory [150–152] to calculate the reaction efficiency. For nota-

tional convenience, we define βx(ω) = ∑
NR
i=1 Bx,i(ω)/

√
NR and βy(ω) = ∑

NR
i=1 |G〉〈By,i(ω)|/

√
NR,

and use dO(t)
dt = −i[O,H0] for any operator O which is time-independent in the Schrödinger pic-

ture. Then we obtain the following Heisenberg equations of motion:

dPR(t)
dt

=−iωRPR(t)− iVR−PPP(t)− i ∑
x=rad,nonrad

√
γx√
2π

∫
∞

−∞

dωβx(ω)(t), (4.5)

dPP(t)
dt

=−iωPPP(t)− iVR−PPR(t)− i ∑
y=cis,trans

√
Γy√
2π

∫
∞

−∞

dωβy(ω)(t), (4.6)

dβx(ω)(t)
dt

=−iωβx(ω)(t)− i
√

γx√
2π

PR(t), (4.7)

dβy(ω)(t)
dt

=−iωβy(ω)(t)− i

√
Γy√
2π

PP(t), (4.8)

for polarization operators PR = ∑
NR
i=1 aR,i/

√
NR and PP = ∑

NR
i=1 |G〉〈Pi|/

√
NR . Notice that

d[βx(ω)(t)eiωt ]

dt
=−i

√
γx√
2π

PR(t)eiωt , (4.9)

d[βy(ω)(t)eiωt ]

dt
=−i

√
Γy√
2π

PP(t)eiωt . (4.10)

Defining tin < t and tout > t, we integrate Eq. (4.9) and obtain the relations

βx(ω)(t) = βx(ω)(tin)e−iω(t−tin)− i
√

γx√
2π

∫ t

tin
dt ′PR(t ′)e−iω(t−t ′), (4.11a)

βx(ω)(t) = βx(ω)(tout)e−iω(t−tout)+ i
√

γx√
2π

∫ tout

t
dt ′PR(t ′)e−iω(t−t ′). (4.11b)
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Plugging in Eq. (4.11) for x = rad into Eq. (4.5) yields [150]

dPR(t)
dt

=−iωRPR(t)− iVR−PPP(t)− i
√

γnonrad√
2π

∫
∞

−∞

dωβnonrad(ω)(t)−
√

γradPR,in,rad(t)

− (γrad/2)PR(t), (4.12a)

dPR(t)
dt

=−iωRPR(t)− iVR−PPP(t)− i
√

γnonrad√
2π

∫
∞

−∞

dωβnonrad(ω)(t)−
√

γradPR,out,rad(t)

+(γrad/2)PR(t), (4.12b)

where the input and output polarizations are

PR,in,z(t) =
i√
2π

∫
∞

−∞

dωβz(ω)(tin)e−iω(t−tin), (4.13)

PR,out,z(t) =
i√
2π

∫
∞

−∞

dωβz(ω)(tout)e−iω(t−tout), (4.14)

respectively, for z = rad,nonrad,cis, trans. Subtracting the second from the first row of Eq. (4.12)

gives

PR,out,rad(t)−PR,in,rad(t) =
√

γradPR(t). (4.15)

This is an example of input-output relation. We analogously obtain relations for the x = nonrad

and y = cis, trans baths,

PR,out,nonrad(t)−PR,in,nonrad(t) =
√

γnonradPR(t), (4.16)

PP,out,y(t)−PP,in,y(t) =
√

ΓyPP(t). (4.17)

Eqs. (4.16) and (4.17) will prove useful below.

We want to express the output polarizations above in terms of PR,in,rad. To proceed, we first

substitute Eq. (4.11a) for x = nonrad into Eq. (4.12a) [150],
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dPR(t)
dt

=−iωRPR(t)− iVR−PPP(t)− ∑
x=rad,nonrad

√
γxPR,in,x(t)− ∑

x=rad,nonrad
(γx/2)PR(t). (4.18)

The analogous equation for PP is

dPP(t)
dt

=−iωPPP(t)− iVR−PPR(t)− ∑
y=cis,trans

√
ΓyPP,in,y(t)− ∑

y=cis,trans
(Γy/2)PP(t). (4.19)

Recalling that |R〉 is only excited by the photonic bath via weak light-matter coupling and |P〉 is

only excited by IVR coupling to |R〉, we hereafter take PR,1,in,nonrad(t),PP,in,y(t) = 0 and γrad �

γnonrad to arrive at the Heisenberg-Langevin equations:

dPR(t)
dt

=−i(ωR− iγnonrad/2)PR(t)− iVR−PPP(t)−
√

γradPR,in,rad(t) (4.20)

dPP(t)
dt

=−i[ωP− i(Γcis +Γtrans)/2]PP(t)− iVR−PPR(t). (4.21)

We now solve for PR and PP in the frequency domain to calculate the (frequency-resolved) absorp-

tion of R and the reaction efficiency. Taking the Fourier transform F [ f (t)] =
∫

∞

−∞
dt eiωt f (t) of

Eqs. (4.20) and (4.21), we obtain

PR(ω) = SR,0(ω)PR,in,rad(ω), (4.22)

PP(ω) = SP,0(ω)PR,in,rad(ω), (4.23)

where

SR,0(ω) =
−i
√

γrad[ω−ωP + i(Γcis +Γtrans)/2]
(ω−ωR + iγnonrad/2)[ω−ωP + i(Γcis +Γtrans)/2]−V 2

R−P
, (4.24)

SP,0(ω) = SR,0(ω)
VR−P

ω−ωP + i(Γcis +Γtrans)/2
. (4.25)
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We proceed to calculate the absorption of R and the reaction efficiency. The steady-state

absorbance of R, i.e., the fraction of the input energy that is dissipated by the nonradiative bath

coupled to R, is

absorbanceR,0(ω) =
〈P†

R,out,nonrad(ω)PR,out,nonrad(ω)〉

〈P†
R,in,rad(ω)PR,in,rad(ω)〉

(4.26a)

= γnonrad|SR,0(ω)|2 (4.26b)

=
γradγnonrad∣∣∣ω−ωR + iγnonrad/2− V 2

R−P
ω−ωP+i(Γcis+Γtrans)/2

∣∣∣2 (4.26c)

where we have used input-output equation (4.16), as well as Eqs. (4.22) and (4.24). In agreement

with physical intuition, Eq. (4.26c) says that the absorption of R peaks near ωR but is slightly offset

by an IVR-induced energy correction represented by the fraction in the denominator. Analogous

to the absorbance of R, the steady-state reaction efficiency η0 is the fraction of the input energy

whose bath-induced dissipation relaxes |P〉 into the trans localized potential well. Thus,

η0(ω) =
〈P†

P,out,trans(ω)PP,out,trans(ω)〉
〈P†

R,in,rad(ω)PR,in,rad(ω)〉
(4.27a)

= Γtrans|SP,0(ω)|2 (4.27b)

=
absorbanceR,0(ω)

γnonrad
γR→P(ω). (4.27c)

We have used input-output equation (4.17), as well as Eqs. (4.23), (4.25), and (4.26b). We also

recognized that

γR→P(ω) =
V 2

R−PΓtrans

(ω−ωP)2 +[(Γcis +Γtrans)/2]2
(4.28)

is exactly the (quantum mechanical) steady-state rate of transition from the (energy-broadened)

|R〉 state of frequency ω into the trans well [149, 153]. Then the bare reaction efficiency can be

intuitively expressed as

η0(ω) = absorbanceR,0(ω)QYR→P(ω), (4.29)
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where QYR→P = γR→P(ω)/γnonrad is an isomerization quantum yield, though defined differently

than in the experimental report of fast-channel HONO isomerization [140]. Satisfyingly, Eq. (4.29)

says that the reaction efficiency depends on how well R first absorbs at ω into |R〉 and then isomer-

izes by IVR coupling into |P〉 at this same frequency. In the simulations shown in Figs. 4.5 and 4.6,

we use [see Eq. (4.60)] η0(ωR)≈ 0.0023, calculated from Eq. (4.27c) with the previously reported

absorbanceR,0(ωR) ≈ 0.07 [140], absorption linewidth γnonrad ≈ 5 cm−1 [140], and isomerization

rate γR→P(ωR)≈ 0.167 cm−1 (or 5 ns−1) [140].

For ω 6= ωR, computing η0(ω) requires [see Eq. (4.27c)] explicit evaluation of γR→P(ω),

Eq. (4.28), and absorptionR,0(ω), Eq. (4.26c). For calculating γR→P(ω), in both this and polari-

tonic (Sec. 4.3.2) cases, we assign values to Γcis +Γtrans and V 2
R−PΓtrans. First, we set Γcis +Γtrans

to the rate of |P〉 population relaxation. Treating the process as one-phonon emission of the di-

abatic eighth-excited torsional state of cis-HONO in the harmonic limit, Γcis +Γtrans is 8 times

the population relaxation rate of the singly excited torsion of cis-HONO [149]. We make this

harmonic approximation because the population decay rate of |P〉 is not reported (to the best of

our knowledge), but that of the v = 1 torsional state of cis-HONO can be estimated. Specifically,

we assume that this single excitation relaxes at the same rate (1.67 cm−1 , or (20 ps)−1 [140]) as

|R〉, in analogy to the similarity of their absorption linewidths [154]. While anharmonicity, other

relaxation channels (e.g., multiphonon processes), and pure dephasing may significantly contribute

to the decay of |P〉, these contributions are not well-characterized (to the best of our knowledge).

Furthermore, modeling these contributions is difficult and should not change the main conclusions

of this work. Having set Γcis +Γtrans = 8× 1.67 cm−1, we assign V 2Γtrans ≈ 275 cm−3 to afford

the experimentally observed value γR→P(ωR) = 0.167 cm−1 [140] from Eq. (4.28).

Like γR→P(ω), explicit calculation of absorptionR,0(ω) using Eq. (4.26c) requires an un-

known (to the best of our knowledge) parameter, namely VR−P. Since the reported value [140] is

incorrect [148], we evaluate absorbanceR,0(ω) [Eq. (4.26c)] by assuming VR−P is small,

absorbanceR,0(ω)≈ γradγnonrad

(ω−ωR)2 +(γnonrad/2)2 , (4.30)
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which intuitively is the Lorentzian lineshape for |R〉 in the absence of IVR. The criterion to justify

Eq. (4.30) can be derived as follows. From Eqs. (4.26b) and (4.24), the poles of the absorption are

given by

ωaverage±
√

ωsquared difference

2
, (4.31)

as well as their complex conjugates. The frequency

ωaverage =
ωR +ωP− i(γnonrad +Γcis +Γtrans)/2

2
(4.32)

is the average of the complex-valued energies ωR− iγnonrad/2 and ωP + i(Γcis +Γtrans)/2 of |R〉

and |P〉, respectively. When VR−P = 0, the squared difference of these energies is

ωsquared difference = (ωR−ωP)
2− (γnonrad−Γcis−Γtrans)

2/4− i(ωR−ωP)(γnonrad−Γcis−Γtrans)

−V 2
R−P. (4.33)

By analogy with the criteria for strong interaction [48], the IVR energy correction in Eq. (4.26c)

can be neglected if the square of the IVR coupling is less than the “linewidth” of ωsquared difference:

V 2 < |(ωR−ωP)(γnonrad−Γcis−Γtrans)|. (4.34)

Using the values for Γcis+Γtrans and V 2Γtrans from the previous paragraph, this inequality is satis-

fied if the probability Γtrans/(Γcis +Γtrans) of decaying into the trans potential well is greater than

≈ 0.06. This range of probabilities is reasonable, given that the measured isomerization quantum

yield (as defined in [140]) is 10% [140].
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4.3 Theoretical framework: reaction in polaritonic device

4.3.1 Hamiltonian

We next describe the reaction in the proposed polaritonic device (Sec. 4.1 and Fig. 4.1),

where the probe absorption into the polariton states triggers IVR onto |P〉. Both absorption and

IVR are treated with a version of input-output theory [151, 152, 155] adapted to pump-probe

spectroscopy for vibrational polaritons [56]. The major qualitative and quantitative features of

experimental transient spectra are captured within this theory [55, 56], including the frequencies

and intensities of the resonances exhibited by the transient transmission of the probe. In this work,

we disregard electrical anharmonicity [56] (and fine-structure contributions such as molecular ro-

tations [60, 156]), whose inclusion should not qualitatively change our main findings.

The Hamiltonian for the proposed polaritonic setup (Fig. 4.1) is H = Hsystem +Hbath +

Hsystem−bath. The first term on the right-hand side reads

Hsystem = HRC +HcavRC +HcavRC−RC

+HcavRC−cavR +HR +HcavR +HcavR−R

+HP +HR−P, (4.35)

from which Hamiltonian H(no pump)
system , Eq. (4.61), follows in the perturbative limit of HR−P. From

left to right and top to bottom, the terms of Eq. (4.35) respectively represent the contributions of

|RC〉 (the OH stretch excitation in RC), RC cavity, their coupling, intercavity coupling, R cavity,

|R〉, cavity-|R〉 coupling, |P〉, and the |R〉-|P〉 IVR coupling. The terms HR, HP, and HR−P have
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been defined in Sec. 4.2.1. The other terms read

HRC = ωRC

NRC

∑
i=1

a†
RC,iaRC,i (4.36a)

+∆

NRC

∑
i=1

a†
RC,ia

†
RC,iaRC,iaRC,i, (4.36b)

HcavRC = ωcavRCc†
RCcRC, (4.37)

HcavRC−RC = gRC

NRC

∑
i=1

(a†
RC,icRC +h.c.), (4.38)

HcavRC−cavR = gcav(c
†
RcRC +h.c.), (4.39)

HcavR = ωcavRc†
RcR, (4.40)

where a†
x,i (ax,i) is the bosonic creation (annihilation) operator for an OH stretch excitation at the

ith molecule of the x = R,RC species, and c†
x (cx) is the bosonic creation (annihilation) operator

for a photon in the cavity hosting x. Given that population of just RC (but not R) is assumed to

be excited by the pump, only its anharmonicity is relevant [compare Eqs. (4.36) and (4.2)]. All

energy and coupling parameters in Eqs. (4.36)-(4.40) are defined in Sec. 4.4. The latter two terms

of H read

Hbath = ∑
x=RC,cavRC,cavR,R,P

Hbath,x, (4.41a)

Hsystem−bath = ∑
x=RC,cavRC,cavR,R,P

Hsystem−bath,x. (4.41b)
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In particular,

Hbath,x =
Nx

∑
i=1

∫
∞

−∞

dω ωB†
x,i(ω)Bx,i(ω), (4.42a)

Hbath,cavx =
∫

∞

−∞

dω ωB†
cavx

(ω)Bcavx(ω), (4.42b)

Hbath,P = ∑
y=cis,trans

NR

∑
i=1

∫
∞

−∞

dω ω|By,i(ω)〉〈By,i(ω)|, (4.42c)

and

Hsystem−bath,x =

√
γx√
2π

Nz

∑
i=1

∫
∞

−∞

dω[a†
x,iBx,i(ω)+h.c.], (4.43a)

Hsystem−bath,cavx =

√
κx√
2π

∫
∞

−∞

dω[c†
xBcavx(ω)+h.c.], (4.43b)

Hsystem−bath,P = ∑
y=cis,trans

√
Γy√
2π

NR

∑
i=1

∫
∞

−∞

dω[|Pi〉〈By,i(ω)|+h.c.] (4.43c)

for x = RC,R. The various interactions between |xi〉 = a†
x,i|G〉, |cavx〉, |Pi〉, and their baths are

summarized in Fig. 4.4. Note that the bath modes for |R〉 only include the nonradiative degrees

of freedom that induce its decay [cf. Eqs. (4.1b) and (4.42a)]. Since probe excitation of the

polaritonic system would be carried out experimentally via laser impingement on the R cavity

mirror, the radiative input is considered to couple only to the R cavity [56, 152]. The operator

B†
RC,i(ω) (BRC,i(ω)) creates (annihilates) a nonradiative bath mode that has frequency ω , is cou-

pled to RC molecule i, and satisfies the bosonic commutation relations [BRC,i(ω),B†
RC,i′(ω

′)] =

δi,i′δ (ω −ω ′) and [BRC,i(ω),BRC,i′(ω
′)] = 0. Analogously, B†

cavx(ω) (Bcavx(ω)) creates (annihi-

lates) a x cavity radiative bath mode of frequency ω and satisfies [Bcavx(ω),B†
cavx(ω

′)] = δ (ω−ω ′)

and [Bcavx(ω),Bcavx(ω
′)] = 0. The decay constants γRC = γR = 5 cm−1 approximate the absorption

linewidth of the OH stretch excitation in R [140] and RC [141, 142]. The cavity photon lifetimes

κRC = κR = 9.5 cm−1 are chosen such that 2κx/ωx (each cavity has only one mirror that cou-

ples to external photons, Fig. 4.1) approximately matches experimental parameters [55, 56]. We
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have also defined the operator PP = ∑
NR
i=1 |G〉〈Pi|/

√
NR, which (through P†

P PP) keeps track of the

IVR-transferred population from |R〉 to |P〉. The remaining decay rates Γcis and Γtrans (Sec. 4.2)

represent relaxation of the HONO torsional state into the local R (cis) or P (trans) wells.

4.3.2 Input-output theory

In this section, we obtain expressions for the transient spectra and reaction efficiency using

input-output theory for pump-probe spectroscopy of vibrational polaritons [56]. Besides the sub-

tleties introduced by the inclusion of nonlinear effects, this derivation follows the same steps as

those of the bare case (Sec. 4.2.2). In fact, the notation here is identical to that Sec. 4.2.2, unless

otherwise noted.

To derive equations of motion for |RC〉, RC cavity, R cavity, |R〉, and |P〉, we first carry

out standard input-output theory, specifically the steps taken in Sec. 4.2.2 to obtain equations of

motion (4.18) and (4.19) in the bare case. If we then account for the assumption made above that

only the R cavity couples to an input field, we arrive at the Heisenberg-Langevin equations

dPRC(t)
dt

=−i(ωRC− iγRC/2)PRC(t)

− igRC
√

NRCcRC(t)−2i∆PRC,3(t), (4.44a)

dcRC(t)
dt

=−i(ωcavRC− iκRC/2)cRC(t)

− igcavcR(t)− igRC
√

NRCPRC(t), (4.44b)

dcR(t)
dt

=−i(ωcavR− iκR/2)cR(t)− igcavcRC(t)

− igR
√

NRPR(t)−
√

κRcR,in(t), (4.44c)

dPR(t)
dt

=−i(ωR− iγR/2)PR(t)

− igR
√

NRcR(t)− iVR−PPP(t), (4.44d)

dPP(t)
dt

=−i[ωP− i(Γcis +Γtrans)/2]PP(t)

− iVR−PPR(t), (4.44e)
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Figure 4.4: Schematic of the system and bath interactions of the R → P fast isomerization
channel for the polaritonic device See Eqs. (4.35), (4.41), and those defining the terms therein, for
Hamiltonian H. The ith molecule of compound x = RC,R has an OH stretch excitation |xi〉 (dark
blue, dark red circle), which is coupled to a set |Bx〉 of nonradiative bath states (dark blue, dark red
clouds) that contributes to its decay. |xi〉 is also coupled to photon |cavx〉 of the cavity containing
compound x. |cavx〉 interacts with a set |Bcavx〉 of radiative bath states, as well as with the other
cavity state. For probe excitation of the polaritonic device, the states in |BcavRC〉 (light blue cloud)
contribute to decay—in the form of transmission—of |cavRC〉 (light blue circle), while the states
in |BcavR〉 (light red cloud) contribute to decay—in the form of reflection—and excitation of |cavR〉
(light red circle). Finally, |Ri〉 is coupled to another state, the torsional overtone |Pi〉 (yellow), which
can concomitantly decay into either the cis or trans potential wells of HONO via coupling to |Bcis,i〉
or |Btrans,i〉, respectively.
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where Px = ∑
Nx
i=1 ax,i/

√
Nx is the linear molecular polarization representing the collective bright

molecular states P†
R|G〉 and P†

RC|G〉, Px is coupled to cavity polarization c†
x , and PRC,3 =

∑
NRC
i=1 a†

RC,iaRC,iaRC,i/
√

NRC is the third-order polarization for RC that depends on the pump-

induced excited-state fraction fpump, a parameter that describes the extent of pumped RC popu-

lation stored in the corresponding dark-state reservoir. The corresponding input-output relations

are

cRC,out(t) =
√

κRCcRC(t), (4.45a)

cR,out(t)− cR,in(t) =
√

κRcR(t), (4.45b)

Pz,out(t) =
√

γzPz(t), (4.45c)

PP,out,y(t) =
√

ΓyPP(t). (4.45d)

where

cR,in(t) =
i√
2π

∫
∞

−∞

dωBcavR(ω)(tin)e−iω(t−tin) (4.46)

is the R cavity input field that excites the R cavity at time tin,

cx,out(t) =
i√
2π

∫
∞

−∞

dωBcavx(ω)(tout)e−iω(t−tout), (4.47)

Pu,out(t) =
i√
2π

∫
∞

−∞

dωβu(ω)(tout)e−iω(t−tout) (4.48)

annihilate output fields produced as energy is dissipated from the polaritonic system by bath modes

at time tout > t, and the different βu are defined as βu(ω) = ∑
Nu
i=1 Bu,i(ω)/

√
Nu for u = R,RC and

βu(ω) = ∑
NR
i=1 |G〉〈Bu,i(ω)|/

√
NR for u = cis, trans. Notice that for |P〉, the Heisenberg-Langevin

equations [cf. Eqs. (4.44e) and (4.21)], input-output relations [cf. Eqs. (4.45d) and (4.17)], and the

associated notation are identical to those in the bare case (Sec. 4.2.2). In contrast, the Heisenberg-

Langevin equation (4.44a) contains the third-order RC polarization PRC,3, whose dynamics become

relevant when the polaritonic device is pump-excited.

We now treat the dynamics of PRC,3, beginning with evaluation of the exact Heisenberg-
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Langevin equation for a†
RC,iaRC,iaRC,i:

d[a†
RC,i(t)aRC,i(t)aRC,i(t)]

dt
=

da†
RC,i(t)

dt
aRC,i(t)aRC,i(t)+a†

RC,i(t)
daRC,i(t)

dt
aRC,i(t)

+a†
RC,i(t)aRC,i(t)

daRC,i(t)
dt

(4.49a)

= A1 +A2, (4.49b)

where

A1 =−i(ωRC− i3γRC/2+2∆)[a†
RC,i(t)aRC,i(t)]aRC,i(t)−2igRC[a

†
RC,i(t)aRC,i(t)]cRC(t), (4.50a)

A2 = igRC[c
†
RC(t)aRC,i(t)]aRC, j(t)−2i∆[a†

RC,i(t)a
†
RC,i(t)aRC,i(t)aRC,i(t)]aRC,i(t). (4.50b)

In going from Eq. (4.49a) to Eq. (4.49b) [i.e., the sum of Eqs. (4.50a) and (4.50b)] we have used

daRC,i(t)
dt

=−i(ωRC− iγRC/2)aRC,i(t)− igRCcRC(t)−2i∆a†
RC,i(t)aRC,i(t)aRC,i(t), (4.51)

obtainable by inspection of Eq. (4.44a). We now analyze the terms that contribute to the dynamics

of the anharmonic-induced polarization. As written above, all terms in Eqs. (4.50a) and (4.50b)

are proportional to the product of a quantity in square brackets and a creation operator. In par-

ticular, the first (second) term in Eq. (4.50a) is proportional to [a†
RC,iaRC,i]aRC,i ([a†

RC,iaRC,i]cRC)

and interpretable as creation of a population in the first excited RC state followed by an RC (RC

cavity) transition. On the other hand, the first (second) term in Eq. (4.50b) is proportional to

[c†
RCaRC,i]aRC,i ([a†

RC,ia
†
RC,iaRC,iaRC,i]aRC,i) and interpretable as the creation of a RC-cavity co-

herence (population of the second excited RC state) followed by an RC transition. Because we

supposed that the pump pulse only creates singly excited RC population (in the form of dark RC

states), we neglect both terms in Eq. (4.50b) [56]. Moreover, we approximate the a†
RC,iaRC,i in the

rightmost term of Eq. (4.50a) as fpump = ∑
NRC
i=1 a†

RC,iaRC,i/NRC, the effective fraction of total RC

molecules populated via relaxation from polariton to RC dark states during the delay time [56].
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With these steps, Eq. (4.49) becomes

dPRC,3(t)
dt

=−i(ωRC +2∆− i3γRC/2)PRC,3(t)

−2igRC fpump
√

NRCcRC(t). (4.52)

We associate absorbance into RC, absorbance into R, and reaction efficiency η with the

fraction of the initial energy that is dissipated by the nonradiative bath of |RC〉, nonradiative bath

of |R〉, and the bath inducing relaxation from |P〉 into the trans-HONO well, respectively. In

analogy to using input-output Eqs. (4.16) and (4.17) to obtain Eqs. (4.26) for R absorption and

(4.27) for reaction efficiency η0 in the bare case, we employ polaritonic input-output Eqs. (4.45c)

and (4.45d) to write

absorbanceR( fpump,ω) = γR|SR( fpump,ω)|2 (4.53)

η( fpump,ω) = Γtrans|SP( fpump,ω)|2. (4.54)

The linear response functions SR and SP are defined such that each multiplied by cR,in(ω) yields

PR(ω) and PP(ω), respectively. From the Heisenberg-Langevin equations (4.44), it is evident that

calculation of Eqs. (4.53)-(4.54) requires knowledge of VR−P. As done in Sec. 4.2.2 for the

bare case, we perturbatively treat the IVR coupling and neglect the terms containing VR−P when

evaluating Eqs. (4.53)-(4.54) in computations. In particular, the reaction efficiency can now be

written as

η( fpump,ω) = absorbanceR( fpump,ω)QYR→P(ω), (4.55)

where

QYR→P(ω) =
γR→P(ω)

γR
(4.56)

is an isomerization quantum yield, and

γR→P(ω) =
V 2

R→PΓtrans

(ω−ωP)2 +[(Γcis +Γtrans)/2]2
(4.57)
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is the transition rate from |R〉 to |P〉. The validity of this perturbative treatment can be shown by

noticing that

PR(ω) =
gR
√

NR[ω−ωP + i(Γcis +Γtrans)/2]
(ω−ωR + iγnonrad/2)[ω−ωP + i(Γcis +Γtrans)/2]−V 2

R−P
cR(ω), (4.58)

recognizing that the fraction on the right-hand side is equal to SR,0(ω) [Eq. (4.24)] up to a constant,

and analyzing the roots of the denominator of this fraction as done in the last paragraph of Sec.

4.2.2. For later use, we define

ηON = η(0.3,ωON), (4.59)

ηOFF = η(0,ωON),

η0 ≡ η0(ωR), (4.60)

where ωON (see Fig. 4.5B, pink dashed line) is the frequency that maximizes η(0.3,ω) in the

region ω ∈ [ωP−2 cm−1,ωR−gR
√

NR+2 cm−1] containing the lowest polariton lineshape for all

coupling strengths explored in this work.

4.4 Results

Before proceeding to analyze the dynamics of the remote-control device, we investigate its

spectral features. In the first excitation manifold, the Hamiltonian for the polariton states in the

basis of the constituent species is (h̄ = 1)

H(no pump)
system =



ωRC gRC
√

NRC 0 0

gRC
√

NRC ωcavRC gcav 0

0 gcav ωcavR gR
√

NR

0 0 gR
√

NR ωR


, (4.61)
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where the entries from left to right (top to bottom) represent |RC〉, the cavity hosting RC, the

cavity hosting R, and |R〉, respectively. For simplicity, we take each cavity mode to be resonant

with the hosted OH vibration: ωcavRC = ωRC = 3455 cm−1 (the average frequency of the OH

stretch of RC [141, 142]) and ωcavR = ωR = 3402 cm−1 (the frequency of the OH stretch vibration

of R [140]). Let the collective light-matter couplings [4] be gRC
√

NRC = 57 cm−1 and gR
√

NR =

11 cm−1 for numbers NRC and NR of RC and R molecules, respectively, per mode volume V of

each cavity; we have incorporated V into the g values for notational convenience. These couplings

correspond to∼ 1.7% and∼ 0.3% of the transition energy of each interacting species, comparable

to experimental values (0.2-2.2%) for mid-infrared vibrational polaritons [19, 108, 157]. As will

become clear, the particular polariton mixing fractions and energies endowed by the chosen light-

matter interaction strengths are essential for realizing the proposed remote control. With no cavity-

cavity coupling (gcav = 0; Fig. 4.2A, blue and red panels), one pair of polaritons has character of

only RC and its cavity (blue), and the other pair only R and its cavity (red). Upon introduction

of intercavity coupling gcav = 27 cm−1 (Fig. 4.2A, purple panel)—corresponding to ∼ 0.8% of

the cavity photon energies [144]—the three lowest polaritons from the gcav = 0 case hybridize

into three states delocalized across RC, R, and their host cavities. This mixing of states from both

compounds enables pumping of RC to remotely tune the energy of polaritons with R character and

thereby the isomerization efficiency. In contrast, the highest polariton for gcav = 0 is spectrally

isolated and does not change much in energy or character when intercavity coupling is introduced

(Fig. 4.2A, cf. blue and purple panels).

Thus, population of the dark RC states is achievable via excitation of this highest polariton

with a pump pulse (Fig. 4.2B, left panel) impinging on the RC cavity (Fig. 4.1B, top panel).

Because gRC and ωRC−ωR are sufficiently larger than gR, this highest level is essentially half RC

and half RC cavity in character. Furthermore, by conservation of the number of energy levels, there

are NRC−1 RC dark reservoir states, significantly larger than 4, the number of polaritons. Energy

relaxation from the highest polariton is then most likely to occur into the relatively dense RC dark

manifold [4, 5, 53]. For pumping a polariton that is half molecule and half cavity in character, a
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previous study showed that changing the field intensity of the pump pulse can tune fpump from zero

to several tenths [108].

The resulting pump-dependent effective Hamiltonian is [56]

H(pump)
system =



ωRC 0 gRC
√

(1−2 fpump)NRC 0 0

0 ωRC +2∆ gRC
√

2 fpumpNRC 0 0

gRC
√
(1−2 fpump)NRC gRC

√
2 fpumpNRC ωcavRC gcav 0

0 0 gcav ωcavR gR
√

NR

0 0 0 gR
√

NR ωR


.

(4.62)

Though not utilized in calculations of absorption or reaction efficiency, this matrix provides phys-

ical intuition in that it characterizes the polaritonic transitions in the absence of lineshape broad-

ening (our calculations do account for dissipative effects): |RC〉, the |RC〉 1 → 2 transition, the

cavity with RC, the cavity with R, and |R〉, from left to right (top to bottom). ∆ =−89 cm−1 is the

mechanical anharmonicity of the OH stretch of RC [141, 142]. It is evident from Eq. (4.62) that as

the parameter fpump representing the degree of population of RC dark reservoir states is increased,

the coupling between RC and the cavity is reduced, formalizing the qualitative arguments provided

above. Taking the perspective that the hybrid states for gcav 6= 0 are formed by mixing the polariton

states of the noninteracting cavities (Fig. 4.2A), pumping blueshifts the lower RC polariton away

from the lower R polariton and reduces their mixing when gcav 6= 0 (Fig. 4.2B). Indeed, the lowest

polariton for gcav 6= 0 becomes predominantly R and its corresponding cavity upon pumping (Fig.

4.2B, right).

The ability to shift its energy and increase its R character with pumping of RC renders

this lowest polariton state promising for enhancing with greater pump strengths the energy that

eventually dissipates into R molecules, and thus the isomerization triggered when a probe pulse

impinges on the R cavity (Fig. 4.2, cf. A and B). Spectra (Fig. 4.5A) computed from input-output

theory reveal that probe absorption of the lowest polariton into R, i.e., due to R component, is

blueshifted and stronger with more pumping. This trend is in agreement with the pump-induced
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rise of its R and R-cavity mixing fractions (Fig. 4.2B, cf. left and right panels). Probe absorption

into R scales not only with component of R but also with that of R cavity because the probe laser

impinges on this cavity. As a consistency check, we note that the energies and intensities of the

other absorption peaks (Fig. 4.5A) also agree with the energies and R/R-cavity characters (Fig.

4.2), respectively, of the higher polariton states. In particular, (for each fpump explored in Fig.

4.5A) the lack of a detectable absorption peak between 3500 and 3520 cm−1 is consistent with <

5% character of the highest polariton being either R or R cavity (Fig. 4.2A).

Now we show that the efficiency η of the probe-initiated reaction is highly pump-tunable

(Fig. 4.5B). Also calculated from input-output theory, η [Eq. (4.55)] is the product of the polariton

probe absorbance into R and the quantum yield of isomerization, i.e., efficiency of decay into

|P〉, from the excited polariton. For our isomerization model, which is developed from previous

experimental and theoretical studies (see Sec. 4.2), the quantum yield scales with the energy

resonance between the excited polariton and |P〉 [Eqs. (4.56) and (4.57)]. Given that the peak

absorption of the lowest polariton moves away in energy from |P〉 (ωP = 3362 cm−1 [140]; see

Sec. 4.2.1) with pumping (Fig. 4.5A), it is somewhat counterintuitive that the corresponding

peak value of η increases. This behavior arises because for all values of fpump, spectral overlap

between any polariton and |P〉 is small (Fig. 4.5A). Thus, the peak η is controlled by the position

and intensity of the lowest-polariton absorption. It therefore makes sense that the maximum η

blueshifts and rises with higher pumping (Fig. 4.5B). Relative to the experimental bare reaction

efficiency η0 [Eq. (4.60)], the peak η values are an order of magnitude greater (Fig. 4.5B), even

for fpump = 0. The reason for such high values is that the lowest polariton is (Fig. 4.5A) a more

efficient absorber (into R) and nearer in resonance to |P〉 than the bare |R〉 (peak absorbance = 0.07

[140]). To realize remote tuning of reactivity, we focus on the probe frequency (Fig. 4.5B, pink

dashed line) that corresponds to the peak η for the highest explored fraction fpump = 0.3 of pump-

excited RC molecules. Notably, pumping enhances the reaction efficiency ηON for this choice of

ωprobe by an order of magnitude compared to the efficiency ηOFF with no pumping (Fig. 4.5C). As

an aside, while the model in this work only includes polariton relaxation to |P〉 and the (molecular

82



fpump = 0.3

fpump = 0.2

fpump = 0.1

fpump = 0

3360 3400 3440 3480 3520

0

0.6

ωprobe (cm
-1)

A
bs
or
ba
nc
e R

A

3370 3380 3390
0

5

10

15

ωprobe (cm
-1)

η
/η
0

B

0 0.1 0.2 0.3
1

5

10

fpump

η
O
N
/η
O
F
F

C

Figure 4.5: Pumping of the RC enhances probe-initiated reaction with high tunability (A)
Probe energy absorption into reactant (R), i.e., due to R component, given various fractions fpump
of pump-excited RC molecules. The dashed lines indicate the energies of the bare vibrations (i.e.,
those without strong light-matter coupling) of RC (dark blue) and R (dark red), as well as the
arbitrarily scaled energy spectrum of the non-absorbing quantum state |P〉 (yellow) that first receives
population from the strongly coupled R vibration via IVR and then relaxes into product (P) states.
(B) Relative reaction efficiency η/η0 (i.e., compared to the bare efficiency) as a function of the
probe pulse energy. The color scheme for the solid lines follows that of (A). (C) Enhancement
ηON/ηOFF of reaction efficiency (i.e., compared to fpump = 0, probe excitation only) as a function
of fpump at the probe energy ωprobe ≈ 3385 cm−1 associated with the maximum η for fpump = 0.3
and indicated by the pink dashed line in (B).

and photonic) vacuum ground state, relaxation from the lowest polariton to dark (R or RC) or other

polariton states is energetically uphill. Therefore, these uphill processes can be neglected if their

respective transition energies are sufficiently larger than kBT (kB is the Boltzmann constant and T

is the temperature).

So far, we have considered modifying a reaction by optical pumping of RC. We now briefly

show further manipulation of the R → P isomerization efficiency via tuning of intercavity and
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cavity-RC couplings, both adjustable without any direct alteration of R. Thus, we also show re-

mote control of the reaction in the linear probe-excitation regime, i.e., without pumping. For each

gcav or gRC
√

NRC, the probe frequency is fixed at that which affords peak reaction efficiency when

fpump = 0.3 (Fig. 4.5B, pink dashed line). When the intercavity coupling is manipulated (Fig.

4.6A), e.g., by varying the thickness of the middle mirror [158], the maximum boost in reaction

efficiency with pumping (ηON) over that without (ηOFF) reaches several 10-fold as gcav goes from

0 to 30 cm−1. Such an increase occurs because delocalization of the lowest polariton across RC,

R, and their host cavities—and therefore potential for reactive modification—increases with inter-

cavity coupling. Changing gcav raises too the absolute ηON (compared to bare efficiency η0, Fig.

4.6B) by up to an order of magnitude for fixed fpump. Intriguingly, as gcav vanishes, the absolute

efficiency without pumping climbs to an order of magnitude higher than in the bare case. This

rise can occur because only for zero intercavity coupling does the (probe-excited) lowest polariton

remain unchanged with pumping, and thus the fixed probe frequency corresponds to the maximum

reaction efficiency in the linear probe-excitation regime. That the peak efficiency can exceed η0 by

an order of magnitude, even when fpump = 0, has been explained above. Alternatively, gRC
√

NRC

can be tuned (Fig. 4.6C), e.g., by increasing the concentration of RC, to yield similar favorable

pump-enhancements (Fig. 4.6, cf. A and C) and absolute efficiencies (Fig. 4.6, cf. B and D)

for fixed pumping. Indeed, cavity-RC coupling can also regulate the efficiency of the single-pulse

photoisomerization (Fig. 4.6, C and D, fpump = 0). Resemblance between the effects of varying

gcav and gRC
√

NRC is understandable, given that pumping also has no effect on the lowest polari-

ton as the latter coupling strength approaches zero. Notice though that gRC
√

NRC must exceed

∼ 40 cm−1 to appreciably influence ηON/ηOFF (Fig. 4.6C) and ηON/η0 (Fig. 4.6D). The origin

of this requirement is the same as that of the pump-induced modulation (with fixed cavity-RC

coupling): adjusting gRC
√

NRC changes the mixing between the polaritons of the noninteracting

cavities; control of reactivity is realizable when the lowest polariton of the entire device is suf-

ficiently delocalized across the photonic and vibrational species associated with both RC and R.

Although pumping of RC provides a very versatile tuning mechanism, in the absence of ultrafast
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Figure 4.6: Pump-induced enhancement of probe-initiated reaction can be remotely tuned
by varying properties of the cavities and RC Reaction efficiencies ηON relative to those without
pumping (ηOFF) or in the bare case (i.e., without strong light-matter coupling, η0) as a function of
either intercavity coupling strength gcav (A and B) or collective cavity-RC coupling gRC

√
NRC (C

and D) and fraction fpump of pump-excited RC molecules. The probe frequency for each gcav (A and
B) or gRC (C and D) is fixed at that leading to maximum reaction efficiency for fpump = 0.3 (see Fig.
4.5B, pink dashed line). All other parameters are from the simulations shown in Fig. 4.5. In (B)
and (D), notice the ability to control reaction efficiency even in the linear optical regime ( fpump = 0,
probe excitation only).

equipment and so long as increasing the thickness of the intercavity mirror or the concentration

of RC is feasible, the linear optical experiments suggested provide an interesting alternative to our
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original proposal.

4.5 Conclusions

We have theoretically demonstrated ultrafast remote control of the isomerization of cis-

HONO to trans-HONO using an infrared polaritonic device. The proposed setup consists of two

strongly interacting microcavities containing separate ensembles of the RC and reactant. The po-

laritons of the hybrid system are delocalized across both molecular species and their host cavities.

Acting on the RC cavity, a pump pulse excites the highest polariton, followed by picosecond-

timescale relaxation to the dark-state reservoir of RC. Because of anharmonicity, the 1 → 2 vi-

brational transition of RC is significantly detuned from the RC cavity mode, hence inducing an

effective weakening of the collective coupling (and hybridization) between RC and the remaining

components of the device. The lowest polariton concomitantly blueshifts and acquires less char-

acter of RC and its respective cavity and more of reactant and its respective cavity. As a result,

probe-pulse excitation acting on the reactant cavity yields enhanced efficiency of IVR into the prod-

uct state compared to the no-pumping case. By raising the pump intensity, the reaction efficiency

can be boosted by an order of magnitude. Remarkably, this tunability requires no spatial contact

whatsoever between RC and reactant, challenging the paradigm of traditional chemical catalysis

that the catalyst must bind its reactant. We emphasize that additional manipulation of reactivity can

be achieved by varying the intercavity or RC-cavity coupling strengths, e.g., by changing the dis-

tance between cavities or the concentration of RC, respectively. These adjustments extend remote

control to the linear optical regime.

Although our results involve tuning a vibrational excited state that couples into the reaction

coordinate, they can be generalized to electronic excited states, which feature a variety of photo-

chemical reactions, some of which have been explored already in the polaritonic regime [3, 4, 7, 9].

Success of the proposed strategies relies essentially on (1) the ability to couple RC and R to in-

teracting cavity modes and (2) a difference in coupling between the fundamental and anharmonic
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transition of the former compound. Indeed, inorganic [159] and organic [160, 161] excitons are

satisfactory platforms for realization of the polaritonic device and the pump-dependent modulation

of light-matter coupling studied here. Furthermore, remote control of reactivity can be extended

to include plasmonic nanostructures, which have been well-studied in the strong coupling regime

[48, 162, 163] and also offer promising routes for ultrafast manipulation of nanoparticle-reactant

[164], plasmon-plasmon [165], and photon-plasmon interactions [166]. In light of recent exper-

imental reports in the literature where chemical reactions have been controlled with vibrational

strong coupling [20, 21, 24], we also emphasize the following: our proposed scheme involves an

infrared-photoinduced process, where the strongly coupled reactant mode (OH stretch) is different

from the reaction coordinate (torsion). In contrast, the reported experiments are carried out under

thermally activated conditions, and strong coupling is applied to the stretching mode of a reacting

bond. It is currently unclear whether a thermally-activated analog of the proposal is feasible; we

are currently exploring such possibility.

Beyond the application described here, the polaritonic device can be employed as a diag-

nostic tool for reaction mechanisms. For example, by strongly coupling different reactant excited

states one at a time to the reactant cavity and comparing how their respective reaction efficiencies

change with the intensity of the pump pulse, the relative importance of each state in the reaction

and its position in a proposed pathway may be determined. Such functionality would be partic-

ularly attractive in IVR or IVR-driven reactions, such as the HONO isomerization studied here

[167], where several possibly interacting excited states may participate in the dynamics. More

broadly, the proposed remote control represents a new class of molecular quantum technologies

featuring manipulation of chemical processes through coherent interactions [168]. In particular,

this technique to control reactions without direct catalyst-reactant interaction paves way for novel

and possibly greener approaches to catalytic and separations chemistry. One interesting prospect is

the prevention of byproduct formation by spatially separating all reagents and coupling only their

respective states necessary for the reaction by means of, for instance, optical cavities. Notably, the

inherent separation of reagents also reduces chemical and energy waste generated in purification.
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Chapter 4, in full, is adapted from the material as it appears in “Remote Control of Chem-

istry in Optical Cavities,” M. Du, R. F. Ribeiro and J. Yuen-Zhou, Chem 5, 1167 (2019). The

dissertation author was the primary investigator and author of this paper.
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Chapter 5

Remote energy transfer using electronic

strong coupling

5.1 Introduction

Enhancement of excitation energy transfer (EET) remains an exciting subfield of the chem-

ical sciences. Although Förster resonance energy transfer [169] (FRET) is one of the most exten-

sively studied and well known forms of EET, its efficiency range is only at 1-10 nm [170]. As such,

exploration of EET schemes beyond that of a traditional pair of donor and acceptor molecules

has been a highly active area of research. For instance, the theory of multichromophoric FRET

[171] has been applied to demonstrate the role of coherent exciton delocalization in photosynthetic

light harvesting [172–176]. This coherence, which is due to excitonic coupling between molecu-

lar emitters, has also been argued to increase EET in mesoscopic multichromophoric assemblies

[177], with recent studies even reporting micron-sized transfer ranges in H-aggregates [178, 179].

Along similar lines, a well-studied process is plasmon-coupled resonance energy transfer [180],

where molecules which are separated several tens to hundreds of nanometers apart can efficiently

transfer energy between themselves due to the enhanced electromagnetic fields provided by the
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neighboring nanoparticles [181, 182]. Transfer between molecules across even longer distances

can be mediated by the in-plane propagation of surface plasmons (SPs), with micron ranges re-

ported in the literature [183, 184] (see Ref. [185] for an example of micron-range EET via other

types of electromagnetic modes). Notably, the plasmonic effects in these last examples occur in

the so-called weak-coupling regime, where the frequency of energy exchange between excitons

and plasmons is much slower than their respective decays.

An intriguing advancement in polariton-assisted remote energy transfer (PARET) has re-

cently been reported by the Ebbesen group for cyanine dye J-aggregates strongly coupled to a

microcavity mode [90]. For spatially separated slabs of donor and acceptor dyes placed between

two mirrors, it was found that increasing the interslab spacing from 10 to 75 nm led to no change in

the relaxation rate between the hybrid light-matter states or polaritons, thus revealing a remarkable

distance independence of the process. Importantly, such PARET phenomenon was already noted

in an earlier work by the Lidzey group [89] with a different cyanine-dye system, although the in-

terslab spacing was not systematically varied there; similar work was also previously reported for

hybridization of Frenkel and Wannier-Mott excitons in an optical microcavity [186]. Motivated by

these experiments, we hereby present a quantum-mechanical theory for polariton-assisted energy

transfer which aims to characterize the various types of PARET afforded by these hybrid light-

matter systems. To be concrete, we do so within a model where the “photonic modes” are SPs in

a metal film and consider spatially separated slabs of donors and acceptor dyes which electrostat-

ically couple to one another as well as to the SPs. We present a comprehensive formalism which

encompasses the cases where either one or both types of chromophores are strongly coupled to the

SPs. We apply our theory to a model system similar to those reported by the Ebbesen and Lidzey

groups. Our work complements recent studies proposing schemes to enhance one-dimensional ex-

citon conductance [68, 69]. In those studies, the delocalization afforded by strong coupling (SC)

is exploited to overcome static disorder within the molecular aggregate. Here, the emphasis is not

on disorder (surmountable also by polaritonic topological protection [187]), but rather on PARET

between two different types of chromophores, where energy harvested by one chromophore can
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be collected in another. This focus on long-range capabilities, as well as in-depth analyses of the

rate contributions for the SC-induced states, provide fresh perspectives on PARET. In particular,

we offer fascinating predictions for the experimentally unexplored scenario of “photonic modes”

strongly coupled to one of donors or acceptors (the latter case was first theoretically investigated

for the chromophores in a microcavity [188]).

As a preview, we highlight the structure and the main conclusions of this work (the latter

are summarized in Table 5.1). We begin by introducing the general Hamiltonian for spatially

separated slabs of donors and acceptor chromophores in Sec. 5.2. EET rates for a single or both

types of chromophores strongly coupled to SPs are presented in Secs. 5.2.1 and 5.2.2, respectively.

In the former case, the rates are “FRET-like” [169] and shown to be dependent on spectral overlap

(of absorption and emission lineshapes) [189, 190]. For SC of donors, EET can be tuned for

enhancement or suppression. This result is in stark contrast with that of acceptors-SPs SC where,

surprisingly, EET to acceptor polariton states vanishes for large-enough samples. For the case

when both chromophores strongly interact with SPs, transfer is instead mediated by vibrational

relaxation in analogy [189, 190] with the theories of Davydov [191, 192] and Redfield [193].

Nevertheless, PARET is still achieved. In Sec. 5.3, we apply the formalism to study a model system

resembling cyanine dye J-aggregates. Our numerical simulations demonstrate that applying SC

exclusively to donors enables PARET up to 1 micron. We also show that sufficiently intense SC of

acceptors induces a “carnival effect” that reverses the role of the donor and acceptor. Lastly, when

both chromophores are strongly coupled to SPs, we obtain sizable PARET rates at chromophoric

separations over hundreds of nanometers which are in good agreement with experiments.

5.2 Theory

We begin by describing the polaritonic (plexcitonic) setup that we theoretically investigate.

Let the chromophore slabs lie above (z > 0) and parallel to the metal film (z < 0) that sustains
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Table 5.1: Comparison of different cases of PARET arising from SC of donors and/or acceptors.

SC of Features

Donors only

• PARET from donor polariton states; dominated by PRET contribu-
tion

• Rate of EET from donor dark states ≈ bare (i.e., no SPs) FRET rate.

• “Förster regime” of PARET

Acceptors
only

• Low EET to acceptor polariton states due to their low density of
states (compared to dark states) and delocalized character

• Rate of EET to acceptor dark states ≈ bare FRET rate

• “Carnival effect”: acceptor and donor reverse roles

• “Förster regime” of PARET

Donors and
Acceptors

• Polariton states are delocalized across donors and acceptors

• Rate of PARET from polariton to dark states � rate of PARET
from dark/polariton to polariton states due to relative density of final
states; dark-state manifolds are dense and act as traps

• PARET mediated by vibrational relaxation

• “Davydov/Redfield regime” of PARET
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SP modes (example schematic diagrams are given in Figs. 5.1a, 5.2a, 5.4a, and 5.5a). We as-

sume the metal film and the slabs are extended along the xy (longitudinal) plane. The slabs of

C = D,A (donor, acceptor) chromophores consist of Nxy,C, Nz,C, and NC = Nxy,CNz,C molecules in

the xy-plane, z-direction, and total, respectively. An effective Hamiltonian for this setup can be

constructed as,

H = HD +HA +HP +HDA +HDP +HAP. (5.1)

The term HC = H(sys)
C +H(B)

C +H(sys−B)
C is the Hamiltonian for the slab with the C chromophores,

where

H(sys)
C = h̄ωC ∑

i, j
|Ci j〉〈Ci j|, (5.2a)

H(B)
C = ∑

i, j
∑
q

h̄ωq,Cb†
q,Ci j

bq,Ci j , (5.2b)

H(sys−B)
C = ∑

i, j
|Ci j〉〈Ci j|∑

q
λq,Ch̄ωq,C(b

†
q,Ci j

+h.c.), (5.2c)

represent the system (excitonic), bath (phononic), and system-bath-coupling contributions, respec-

tively. The label Ci j refers to a C exciton located at the (i, j)-th molecule of the corresponding

slab [(i, j) indexes an (xy,z) coordinate]. We take every Ci j exciton to have energy h̄ωC and ne-

glect inter-site coupling since the latter provides an insignificant dispersion to polaritons when

compared to the SP dispersion. Specifically, within the wavevector range of interest, inter-site

coupling only induces a constant energy shift (which we assume to be included in ωC) to the

exciton subsystem. Thus, the exciton dispersion is only relevant at much shorter wavelengths.

b†
q,Ci j

(bq,Ci j) labels the creation (annihilation) of a phonon of energy h̄ωq,C at the q-th vibrational

mode of the (i, j)-th molecule in the C slab. Given the molecular character of the problem, vibronic

coupling is assumed to be local [194] (in contrast to that for relatively ordered materials such as

crystals [195]): exciton Ci j couples linearly to b†
q,Ci j

and bq,Ci j but not to modes in other molecules

[196]; these couplings are characterized by Huang-Rhys factors λ 2
q,C [197]. The SP Hamiltonian
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HP = H(sys)
P +H(B)

P +H(sys−B)
P has similar form [198, 199]:

H(sys)
P = ∑

~k

h̄ω~ka†
~k

a~k, (5.3a)

H(B)
P = ∑

q
h̄ωq,Pb†

q,Pbq,P, (5.3b)

H(sys−B)
P = ∑

~k
∑
q

gq,~k(b
†
q,Pa~k +h.c.), (5.3c)

where a†
~k
(a~k) labels the creation (annihilation) of an SP of energy h̄ω~k and in-plane wavevector~k.

Bath modes indexed by q,P with corresponding operator b†
q,P (bq,P) and energy h̄ωq,P are coupled

to each SP mode~k with strength gq,~k. Specifically, these SP interactions occur with either elec-

tromagnetic or phonon modes and represent radiative and Ohmic losses, respectively [199]. The

remaining rightmost terms in Eq. (5.1) represent the dipole-dipole interactions amongst donors,

acceptors, and SP modes. The HDA term is given by the electrostatic (near-field) dipole-dipole

interactions between donors and acceptors,

HDA = ∑
i, j

∑
l,m

µDµAκi jlm

r3
i jlm

(|Alm〉〈Di j|+h.c.), (5.4)

where µC = |~µCi j | for transition dipole moment (TDM) ~µCi j corresponding to Ci j, ri jlm is the dis-

tance between Di j and Alm, and κi jlm = µ̂Di j · µ̂Alm−3(µ̂Di j · r̂i jlm)(µ̂Alm · r̂i jlm) is the orientational

dependence of the interaction (we denote v̂ as the unit vector corresponding to~v). We have ignored

the corrections to κi jlm due to reflected waves from the metal—despite their prominent effects in

phenomena such as photoluminescence [200]—since they are numerically involved and do not sig-

nificantly change the order of magnitude of the bare dipole-dipole interaction;[201] furthermore

their expected effects in HDA will be overwhelmed by HCP, as we shall explain in Secs. 5.2.1 and

5.3. For simplicity, we take the permittivity on top of the metal to be a real-valued positive di-

electric constant εd . The light-matter interaction for species C in the rotating-wave approximation
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[202] is also dipolar in nature and is described by [203]

HCP = ∑
i, j

∑
~k

µCκ~kCi j

√
h̄ω~k

2ε0SL~k
e−ad~kz j,Cei~k·~Ri,C |Ci j〉〈G|a~k +h.c. (5.5)

where (~Ri,C,z j,C) are the position coordinates of Ci j and |G〉 is the electronic ground state (i.e., with

no excitons). Just like in HDA, the interaction between an SP mode and a chromophore (indexed by

~k and Ci j, respectively) has an orientation-dependent parameter κ~kCi j
= −µ̂Ci j · (k̂+ i k

ad~k
ẑ), where

ad~k =
√
|~k|2− εd(ω~k/c)2 is the real-valued evanescent SP decay constant for the region above the

metal. The light-matter coupling also includes the quantization length L~k [204] and area S of the

SP.

The general Hamiltonian in Eq. (5.1) describes a complex many-body problem consisting

of excitons, SPs, and vibrations, all coupled with each other. To obtain physical insight on the

opportunities afforded by this physical setup, we consider in the next sections two limit cases

where either one or both types of chromophores are strongly coupled to the SP. The study of these

two situations already provides considerable perspective on the wealth of novel EET phenomena

hosted by this polaritonic system.

5.2.1 Case i: strong coupling of only one chromophore

We consider the case where one of the chromophores C (D or A) is strongly coupled to an

SP but the other, C′, is not. This can happen when the concentration or thickness of the C slab

is sufficiently high and that of the C′ slab low. Under these circumstances, we write Eq. (5.1) as

H = H(i)
0 +V (i), where we define the zeroth-order Hamiltonian as H(i)

0 = H(i)
sys +HB +Hsys−B. The

system, bath, and their coupling are respectively characterized by H(i)
sys = H(sys)

D +H(sys)
A +H(sys)

P +

HCP, HB = H(B)
D +H(B)

A +H(B)
P , and Hsys−B = H(sys−B)

D +H(sys−B)
A +H(sys−B)

P . The perturbation

describing the weak interaction between chromophore C′ and the SC species is V (i) = HDA+HC′P,

i.e., the electrostatic interaction as in Förster [169] theory [189, 190]. To diagonalize H(i)
sys, we

introduce a collective exciton basis comprised of bright C states with in-plane momenta matching
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those of the SP modes and ignore the very off-resonant SP-exciton couplings beyond the first

Brillouin zone (FBZ) of the molecular system [203, 205]: H(i)
sys =HC′+∑~k∈FBZ H(~k)

bright,C+Hdark,C+

∑~k/∈FBZ h̄ω~ka†
~k

a~k, where

H(~k)
bright,C = h̄ωC|C~k〉〈C~k|+ h̄ω~ka†

~k
a~k +gC(~k)(|C~k〉〈G|a~k +h.c.), (5.6a)

Hdark,C = H(sys)
C − ∑

~k∈FBZ

h̄ωC|C~k〉〈C~k|. (5.6b)

For each ~k-mode in the FBZ, there is only one “bright” collective exciton state |C~k〉 =
1

gC(~k)
∑i, j µCκ~kCi j

√
h̄ω~k

2ε0SL~k
e−ad~kz j,Cei~k·~Ri,C |Ci j〉 that couples to the~k-th SP mode |~k〉 = a†

~k
|0〉, where

gC(~k) =

√
∑i, j

∣∣∣∣µCκ~kCi j

√
h̄ω~k

2ε0SL~k
e−ad~kz j,Cei~k·~Ri,C

∣∣∣∣2. In addition to the weakly coupled C′ states, H(i)
sys

has two polariton eigenstates |αC,~k〉 = cC~kαC,~k
|C~k〉+ c~kαC,~k

|~k〉 for α = UP,LP (upper polariton and

lower polariton, respectively), which are also eigenstates of H(~k)
bright,C for each~k ∈ FBZ; throughout

this work, cmn = 〈m|n〉. Furthermore, there is a large reservoir of NC−Nxy,C = Nxy,C(Nz,C− 1)

“dark” (purely excitonic) eigenstates |dC,~k〉 (d = 0,1, · · ·Nz,C − 2) which are also eigenstates of

Hdark,C with bare chromophore energy h̄ωC.

EET rates between C and uncoupled C′ states can be derived by applying Fermi’s golden

rule; the corresponding perturbation V (i) connects vibronic-polariton eigenstates of H(i)
0 as in

FRET and MC-FRET theories [171, 206–208]. For simplicity, we also invoke weak system-bath

coupling Hsys−B, from which the following expression can be obtained [209, 210]:

γF←I ≈
2π

h̄
|〈F |V (i)|I〉|2JF,I. (5.7)

This is the rate of transfer between H(i)
sys eigenstates |I〉 and |F〉, where JF,I is the spectral overlap

between absorption and emission spectra, which depend on HB and Hsys−B. Since our focus is

to understand the general timescales expected for the PARET problem, in Sec. 5.3 we treat the

broadening of electronic/polaritonic levels due to Hsys−B as Lorentzian, although more sophisti-

cated lineshape theories can be utilized if needed [197]. Furthermore, we can in principle also
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refine Eq. (5.7) to consider the complexities of vibronic mixing between the various eigenstates of

H(i)
sys, as done in recent works by Jang and Cao [171, 206–208].

It follows from Eq. (5.7) that the rates from donor states—either polaritons with given

wavevector~k or a uniform mixture of dark states with occupation pD~k
= 1

ND−Nxy,D
for all d,~k—to

the incoherent set of all bare acceptor states are,

γA←αD,~k
=

2π

h̄ ∑
l,m
|〈Alm|HDA +HAP|αD,~k〉|

2JA,αD,~k
, (5.8a)

γA←darkD =
2π

h̄(ND−Nxy,D)
∑
l,m

∑
~k∈FBZ

∑
d
|〈Alm|HDA|dD,~k〉|

2JA,dD,~k
. (5.8b)

Here, we notice that γA←αD,~k
in Eq. (5.8a) can be enhanced or suppressed relative to bare (in the

absence of metal) FRET due to additional SP-resonance energy transfer [211] (PRET) channel

given by HAP, as well as the spectral overlap JA,αD,~k
that can be modified by tuning the energy

of |αD,~k〉. Similar findings were obtained for electron transfer with only donors strongly coupled

to a cavity mode [72]. Given that |αD,~k〉 corresponds to a delocalized state, one would expect

a superradiant enhancement of the rate [173, 174]; in practice, this effect is minor due to the

distance dependence of HDA (see Sec. B.1.1). On the other hand, Eq. (5.8b) presents an average

rate γA←darkD from the dark states and hence does not feature a PRET term. In fact, it converges

(see Sec. B.1.2 for derivation) to the bare FRET rate [Eq. (5.12b) below] in the limit of large

ND� Nxy,D (when there are many layers of chromophores along z) and isotropically averaged and

orientationally uncorrelated TDMs ~µCi j for both C = D,A.

In contrast, strongly coupling the acceptor states to SPs yields the following rates:

γαA←D =
2π

h̄ND
∑

~k∈FBZ
∑
i, j
|〈αA,~k|HDA +HDP|Di j〉|2JαA,~k,D

, (5.9a)

γdarkA←D =
2π

h̄ND
∑

~k∈FBZ
∑
d

∑
i, j
|〈dA,~k|HDA|Di j〉|2JdA,~k,D

. (5.9b)

Here, we have calculated average rates over the ND possible initial states at the D slab and summed

over all final states for each polariton/dark band. Given the asymmetry of Fermi’s golden rule with
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respect to initial and final states (rates scale with the probabilities of occupation of initial states

and with the density of final states) [173], the physical consequences of Eq. (5.9) are quite different

to those of its counterpart in Eq. (5.8) when NA� Nxy,A and all TDMs are isotropically averaged

and feature no orientational correlations amongst them. Seemingly counterintuitive in light of the

various recently reported phenomena which are enhanced upon exciton delocalization, the rate of

EET to polariton states is reduced substantially compared to the bare FRET rate (at short donor-

acceptor separations; see Sec. B.1.3 for a formal derivation of this statement). Nevertheless, this

statement is easily understood from a final-density-of-states argument [see Eq. (5.9a)]: only Nxy,A

bright acceptor collective modes contribute to γαA←D, whereas NA localized acceptor states con-

tribute to the bare FRET rate. On the other hand, γdarkA←D behaves similarly to Eq. (5.8b) in that

it converges [see Eqs. (5.13b) and (B.19c)] to the bare FRET rate. Thus, at donor-acceptor sepa-

rations where the square of the FRET coupling exceeds on average that for PRET, the inequality

γαA←D� γdarkA←D is expected to hold.

Our analyses of Eqs. (5.8) and (5.9) reveal one of the main conclusions of this work: while

strong coupling of D but not A might yield a significant D→ A EET rate change with respect to

the bare case, strong coupling of A but not D will change that process in a negligible manner.

Interestingly, these trends have also been observed for transfer between layers of donor and accep-

tor quantum dots selectively coupled to metal nanoparticles in the weak-interaction regime [212].

However, polariton formation with A is not useless, for one may consider the intriguing prospect

of converting A states into new donors. As we shall show in the next paragraphs, this role reversal

or “carnival effect” can be achieved when the UP is higher in energy than the bare donor states.

These findings are quite general and should apply to other molecular processes as long as the in-

teractions between reactants and products (taking the roles of donors and acceptors) also decay at

large distances, a scenario that is chemically ubiquitous [78].

5.2.2 Case ii: strong coupling of both donors and acceptors

We next consider the SC of SPs to both donors and acceptors. We rewrite Eq. (5.1) as
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H = H(ii)
0 +V (ii), where H(ii)

0 = H(ii)
sys + HB and the perturbation is V (ii) = Hsys−B for interslab

distance large enough to neglect interaction HDA in V (ii). Here, H(ii)
sys = H(sys)

D +H(sys)
A +HDP +

HAP +HDA +HP is the polariton Hamiltonian. As in the Davydov model [191, 192], the EET

pathways of interest become those where Hsys−B induces vibrationally mediated relaxation (faster

than dipole-dipole coupling in typical organic chromophores separated by 1-10 nm [170]) among

the delocalized states resulting from SC [189, 190]. The transfer rates describing these processes

can be deduced by Fermi’s golden rule too, the resulting expressions coinciding with those derived

with Redfield [193] theory [99, 189, 190]. Although not necessary, we take Nxy,D = Nxy,A = Nxy to

avoid mathematical technicalities about working with two~k grids of different sizes, a complication

that does not give more insight into the physics of interest. As done in Sec. 5.2.1, we rewrite H(ii)
sys

in~k-space: H(ii)
sys = ∑~k∈FBZ H(~k)

bright +Hdark,D +Hdark,A +HDA +∑~k/∈FBZ h̄ω~ka†
~k

a~k, where

H(~k)
bright = h̄ωD|D~k〉〈D~k|+ h̄ωA|A~k〉〈A~k|+ h̄ω~ka†

~k
a~k (5.10)

+gD(~k)(|D~k〉〈G|a~k +h.c.)+gA(~k)(|A~k〉〈G|a~k +h.c.),

and the terms labeled dark are defined analogously to those in Eq. (5.6b). For each~k ∈ FBZ, there

are three polariton eigenstates of H(~k)
bright that are linear combinations of |D~k〉, |A~k〉, and |~k〉, and we

call them UP, middle polariton (MP), and LP, according to their energy ordering. In addition, the

presence of Hdark,C yields NC−Nxy,C dark C eigenstates.

The resulting expressions for the rates of transfer from a single polariton state or average
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dark state to an entire polariton or dark state bands are

γβ←α~k
= ∑

~k′∈FBZ
∑
C
|cC~k′β~k′

|2|cC~kα~k
|2 ∑

i, j
|cCi jC~k′

|2|cCi jC~k
|2RC(ωβ~k′α~k

), (5.11a)

γα←darkC =
1

NC−Nxy
∑

~k′∈FBZ
∑

~k∈FBZ
∑
d
|cC~k′α~k′

|2

×∑
i, j
|cCi jC~k′

|2|cCi jdC,~k
|2RC(ωα~k′C

), (5.11b)

γdarkC←α~k
= ∑

~k′∈FBZ
∑
d
|cC~kα~k

|2 ∑
i, j
|cCi jdC,~k′

|2|cCi jC~k
|2RC(ωCα~k

), (5.11c)

for α,β = UP,MP,LP and C = D,A [see Sec. B.2.1 for derivation of Eq. (5.11)]. To intuitively

understand Eq. (5.11a), note that |cC~kα~k
|2|cCi jC~k

|2 and |cC~k′β~k′
|2|cCi jC~k′

|2 are the fractions of exciton

|Ci j〉 in the polariton states |α~k〉 and |β~k′〉, respectively, while RC(ωβ~k′α~k
) is the single-molecule

rate of vibrational relaxation at the energy difference ωβ~k′
−ωα~k

. More specifically, RC(ω) =

2πΘ(−ω)[n(−ω)+1]JC(−ω)+2πΘ(ω)n(ω)JC(ω), where Θ(ω) is the Heaviside step function,

n(ω) = 1
eh̄ω/kBT−1

is the Bose-Einstein distribution function (kB is the Boltzmann constant and T

is temperature) for zero chemical potential µ = 0, and JC(ω) = ∑q λ 2
q,Cω2

q,Cδ (ω −ωq,C) is the

spectral density for chromophore C [99]. Hence, one can interpret β ← α~k as a sum of incoherent

processes (over C and i, j) where the (local) vibrational modes in Ci j absorb or emit phonons

concomittantly inducing population transfer between the various eigenstates of H(ii)
sys . Eqs. (5.11b)

and (5.11c) can be interpreted in a similar light. As an aside, we note that these transitions are

analogous to the so-called intraband relaxation among collective exciton states in J-aggregates

[213]. We now comment on some important qualitative trends in these rates while for simplicity

assuming that Nz,D = Nz,A = Nz. First, EET from polariton or dark states to a polariton band [Eqs.

(5.11a) and (5.11b)] scale as RC
Nz

. To see this, note that both |cC~k′β~k′
|2 and |cC~kα~k

|2 are O(1), while

|cCi jC~k′
|2 and |cCi jC~k

|2 are O( 1
NxyNz

), but the summations ∑~k∈FBZ and∑i, j are respectively carried over

Nxy and NxyNz terms. On the other hand, γdarkC←α~k
takes values that are on the order of the single-

molecule decay RC(ωCα~k
). For sufficiently large Nz, these scalings are consistent with previous

studies on relaxation dynamics of polaritons [51, 53, 126] and can be summarized as follows: the
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dominant channels of relaxation are from the polariton states to a reservoir of dark states that share

the same exciton character; their timescales are comparable to those of the corresponding single-

chromophore vibrational relaxation; given the large density of states in this reservoir compared to

the polariton bands, the dark states act as a population sink or trap from which population can only

leak out very slowly [53, 214].

5.3 Application

The theory above is now applied to study EET kinetics associated with slabs of chro-

mophores with h̄ωD = 2.1 eV, h̄ωA = 1.88 eV; these transition energies are chosen to match

those of the J-aggregated cyanine dyes (TDBC and BRK5714, respectively) used in previous

polariton experiments [90, 215]. For simplicity, this section assumes T = 0 and thus only con-

siders downhill transfers to/from polariton and dark states. We describe the metal with Drude

permittivity of silver (ωp = 9.0 eV, ε∞ = 1 [216]) and all media at z > 0 (including molecular

slabs) with εd = 1. We model spectral overlaps [Eqs. (5.8) and (5.9)] with Lorentzian functions

JF,I =
ΓI+ΓF

2

π[(
ΓI+ΓF

2 )2+(h̄ωFI)2]
; we set ΓA ≈ ΓD = 47 meV to represent observed values for absorption of

TDBC [162] and ΓP,~k =
vg(~k)

L~k
[203], where vg(~k) is the SP group velocity. Rigorous treatments of

lineshape functions have been previously reported in MC-FRET literature and could be applied to

this problem as well [207, 208, 217, 218], although this effort is beyond the scope of our work. We

also neglect differences in TDMs and assign µD = µA = 10 D, a typical number for cyanine dyes

[219]. In addition, we assume that the dipoles are isotropically oriented and spatially uncorrelated.

5.3.1 Case i: strong coupling of only one chromophore

We now proceed to simulations for Case i, where only one of the molecular species forms

polaritons. With the assumption of isotropically oriented and spatially uncorrelated dipoles, we

find the interesting observation that the transfer rates in Eq. (5.8) can be approximately decom-

posed into incoherent sums of FRET and PRET rates (see Sec. B.1.2 for more explicit expressions,
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derivations, and justification of validity),

γA←αD,~k
≈ 2π

h̄ ∑
l

∑
i, j

(
|cD~kαD,~k

|2|cDi jD~k
|2|〈Al0|HDA|Di j〉|2

+|c~kαD,~k
|2|〈Al0|HAP|~k〉|2

)
JA,αD,~k

, (5.12a)

γA←darkD = γbare FRET =
2π

h̄ND
∑

l
∑
i, j
|〈Al0|HDA|Di j〉|2JA,D, (5.12b)

where, as explained above, only γA←αD,~k
differs from γbare FRET. More concretely, we consider

a 35-nm-thick slab of donors with 1× 109 molecules/µm3 on top of a 1 nm spacer placed on a

plasmonic metal film. We set the monolayer slab of acceptors with 1× 104 molecules/µm2 at

varying distances from the donors (Fig. 5.1a). Then the collective couplings of the donor-resonant

SP mode (|~k|= 1.1×107 m−1) to donors and acceptors is gD(~k) = 155 meV and gA(~k)≤ 2.5 meV,

respectively. When there is no separation between donor and acceptor slabs, rates > 1 ns−1 (Fig.

5.1b) are obtained for transfer to acceptors from the UP (∼ 10 ns−1), LP (∼ 100 ns−1), or the

set of dark states (∼ 10 ns−1). As separation increases however, the rate from dark states decays

much faster than those from either UP or LP. This difference stems from the slowly decaying PRET

contribution of the polaritons, as well as the totally excitonic character of the dark states, which can

only undergo FRET but not PRET (Fig. 5.1a,b). In fact, for large distances, the FRET contribution

becomes significantly overwhelmed by PRET (Fig. 5.1c), in consistency with previous studies

in the weak SP-coupling regime [220]. As the distance between slabs approaches 1 µm, it is

fascinating that while transfer from dark states (and thus bare FRET) practically vanishes, the rate

from either LP (∼ 1 ns−1) or UP (∼ 0.01 ns−1) is still at or above typical fluorescence decay rates

(0.01-10 ns−1) [221]. Roughly speaking (in FRET language), this PARET has a Förster distance

in the µm range, or 1000-fold greater than the typical nm-range [222]. Interestingly, the LP rate

exceeds the UP one by 1-2 orders of magnitude at all separations due to greater spectral overlap

with the acceptor (Fig. 5.1a).

In contrast, strongly coupling the acceptors to a resonant SP mode does not lead to the

aforementioned PARET from donors to acceptors (Fig. 5.2). Making the same assumptions as
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Figure 5.1: (a) Schematic energy-level diagram showing the EET transitions from donors strongly
coupled to SPs to bare acceptors. The thickness of the horizonal lines denotes the density of states
while the thickness of arrows corresponds to rate of transition (thicknesses not drawn to scale).
Inset: representation of the EET process from a thick and dense slab of donors (featuring SC to
SPs) to a dilute monolayer of acceptors. (b) Rates as a function of donor-acceptor separation ∆z for
EET from donor polariton and dark states to acceptors (lines). The rate from dark states and for the
bare-donor FRET (dots), are calculated in the same manner. (c) Contributions of rates for transfer
from donor UP and LP to acceptor states due to donor-acceptor (FRET) and SP-acceptor (PRET)
interactions [see Eq. 5.12a and immediately preceding discussion].
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above, i.e., taking isotropically oriented and spatially uncorrelated dipoles, we obtain (Sec. B.1.3),

γαA←D ≈
2π

h̄ND
∑

~k∈FBZ
∑

i

(
∑
l,m
|cA~kαA,~k

|2|cAlmA~k
|2|〈Alm|HDA|Di0〉|2

+|c~kαA,~k
|2|〈~k|HDP|Di0〉|2

)
JαA,~k,D

, (5.13a)

γdarkA←D = γ
′
bare FRET =

2π

h̄ND
∑

i
∑
l,m
|〈Alm|HDA|Di0〉|2JA,D. (5.13b)

We consider (Fig. 5.2a) a 50 nm-thick acceptor slab with a concentration of 1×109 molecules/µm3

on top of the 1 nm spacer placed on the metal, and a monolayer of donors with concentration

1× 104 molecules/µm2 at varying distances from the acceptors. Notice that γdarkA←D becomes

another bare FRET rate like in Eq. (5.12b). For γαA←D, we see that PRET still dominates over

FRET for long distances (Fig. 5.3). However, due to the suppression of γαA←D relative to γdarkA←D

explained in Sec. 5.2.1, the limited spatial range of interactions of HDA and HDP, and the fact that

the donor energy is lower than that of |UPA,~k〉for most~k ∈ FBZ, the rates to the acceptor UP band

fall below fluorescence timescales [221] and therefore offer no meaningful enhancements with re-

spect to the bare FRET case (Fig. 5.2b). While the first two reasons also explain the similarly

low rates to the LP band, the major factor is that most states |LPA,~k〉 essentially overlap only with

acceptors that are closer to the metal—and thus farther from the donors—due to the evanesecent

nature of the SP-exciton coupling [Eq. (5.5)].

Coupling SPs to acceptors need not, however, be a disappointment. Increasing the accep-

tor slab thickness to 140 nm affords for the acceptor-resonant SP mode (|~k| = 9.8×106 m−1) the

collective coupling gA(~k) = 237 meV while keeping gD(~k) = 1.7meV. Consequently, the acceptor

UP energy h̄ωUPA,~k
is lifted higher than h̄ωD (Fig. 5.4a), thus allowing for the carnival effect where

the donors and acceptors reverse roles. Due to sufficient spectral overlap between the acceptor UP

and donor states (Fig. 5.4a), transfer from UP occurs at ∼ 100 ns−1 for donor-acceptor separation

of 1 nm and drops only to ∼ 1 ns−1 when this separation approaches 1 µm (Fig. 5.4b). On the

104



Figure 5.2: (a) Schematic energy-level diagram showing the EET transitions from bare donors to
acceptors strongly coupled to SPs. The thickness of the horizonal lines denotes the density of states
while the thickness of arrows corresponds to rate of transition (thicknesses not drawn to scale).
Inset: representation of the EET process from a dilute monolayer of donors to a thick and dense
slab of acceptors (featuring SC to SPs). (b) Rates as a function of donor-acceptor separation ∆z for
energy transfer from donors to acceptor polaritons and dark states (lines). The rate to dark states
and for bare-acceptor FRET (dots), are calculated in the same manner.
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Figure 5.3: SC of SPs to acceptors. Contributions of EET rates from donors to acceptor UP and LP
due to donor-acceptor (FRET) and SP-donor (PRET) interactions.

other hand, neither the acceptor dark nor LP states contribute to this reversed PARET given their

lack of spectral overlap with the donors and detailed balance (especially at T = 0). This result pro-

vides the second main conclusion of our work: polaritons offer great versatility to control spectral

overlaps without actual chemical modifications to the molecules and can therefore endow them

with new physical properties. Before proceeding to simulations for Case ii, it should first be noted

that while our model neglects intermediate- and far-field donor-acceptor dipole-dipole interactions

that become relevant at ∼ µm distances, these couplings are expected to be small compared to

PRET couplings and therefore should not qualitatively change our results for Case i. The relative

insignificance of the far-field, or radiative, contributions is consistent with their correspondence to

emission followed by absorption (of a real photon) [223]. Regardless, these additional interactions

can be modeled using a quantum electrodynamics treatment [224] of energy transfer in bulk me-

dia according to previous literature [225]. Second, we highlight that the PARET from polariton

states for the donors-only and reversed cases of SC may not be efficient in experiments due to its

competition with vibrational relaxation from UP to dark states (~10-100 fs for exciton-microcavity

systems [51, 52, 226–228]) and/or radiative decay (dominated by fast cavity leakage ~10-100 fs

for both microcavities [227–229] and SPs [230, 231]). However, conditions may be optimized to

suppress these deleterious pathways by detuning the SP energy relative to that of the strongly cou-

pled chromophore such that the polariton state is mostly excitonic and has an enhanced lifetime
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[62].

5.3.2 Case ii: strong coupling of both donors and acceptors

Finally, when both chromophores are strongly coupled to SPs, we limit ourselves to donor-

acceptor separations ≥ 10 nm to ignore HDA terms (an approximation discussed in Section 5.2.2

and validated by the calculations above demonstrating that FRET coupling is significantly di-

minished at such distances). The thickness (35 nm) and density (1× 109 molecules/µm−3) of

each slab is large enough to allow for SC of the donor-resonant SP mode (|~k| = 1.1× 107 m−1,

gD(~k) = 155 meV, and gA(~k) = 142 meV) to both chromophores separated up to ∼ 400 nm. To

evaluate the rates derived (Sec. B.2.2) from Eq. (5.11) under the condition NC�Nxy,C for C =D,A,

we introduce a spectral density representing intramolecular exciton-phonon coupling of TDBC:

JA(ω)≈ JD(ω) = J (ω), where

J (ω) = ∑
q∈BTDBC

λ
2
q ω

2
q

Γ/h̄
2

π[(Γ/h̄
2 )2 +(ω−ωq)2]

, (5.14)

Γ = 47 meV is equal to the chromophore decay energy, and BTDBC is the discrete set (Sec. B.2.2)

of localized vibrational modes which significantly couple to each TDBC exciton. Such coupling

has been experimentally [52, 226–228, 232] and theoretically [51, 126, 233–235] supported as

the mechanism of vibrational relaxation for the dye; our spectral density has been reconstructed

from the works of Agranovich and coworkers [51, 126]. By placing the donor slab on top of the

spacer on the metal and varying the acceptor position above the donors (Fig. 5.5a), we find that

for all donor-acceptor separations, the rates of PARET from UP to dark donors (∼ 105 ns−1) and

MP to dark acceptors (∼ 104− 105 ns−1) are substantially higher compared to those from dark

donors to MP (∼ 103 ns−1) and dark acceptors to LP (∼ 103 ns−1) (Fig. 5.5b). These observations

are in agreement with our discussion above, where the dark state manifolds act as population

sinks due to their high density of states. Indeed, we also notice that the rates for UP→ darkD and

MP→ darkA are enhanced (Fig. 5.5b) compared to those of UP→MP and MP→LP, respectively,
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Figure 5.4: (a) Schematic energy-level diagram showing the “carnival-effect”-EET role-reversal
process from acceptor UP state to bare donors. Insets: (top) cartoon illustrating the “carnival effect”
between donors and acceptors and (bottom) representation of the reversed-role EET process from a
thick and dense slab of acceptors (featuring SC to SPs) to a dilute monolayer of donors. (b) Rate as
a function of donor-acceptor separation ∆z for energy transfer from acceptor UP to bare donors.
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by approximately Nz = 35, the analytically estimated ratio solely based on the associated density

of final states. Another interesting detail seen from Fig. 5.5b is that the UP→MP (MP→ LP)

rate with respect to the interslab distance ∆z is essentially parallel to that of UP→ darkD (MP→

darkA). This is a consequence of the MP (LP) essentially having donor (acceptor) energy and

character for most points in the FBZ. The UP→ darkA and UP→ LP processes behave similarly

(Fig. 5.6).

These calculated rates establish consistency with a number of recent notable experiments.

First, our results corroborate the experimental observation of efficient PARET for separated donor

and acceptor slabs of cyanine dyes strongly coupled to a microcavity [89, 90]. While our SP

model for the SC of both excitons cannot account for the exact distance-independent PARET [90]

between donor and acceptor slabs in a microcavity, the rates are essentially constant over hundreds

of nanometers due to the slowly decaying SP fields. Additional validation of our theory is obtained

by defining rate parameters C (functions of the γ rates above, see Secs. B.2.3 and B.2.4) that can

be directly compared to those experimentally reported (Table 5.2) [89]. Since experimental C have

not been determined for the setup of our work, we instead use those describing a blend of two

cyanine dyes where physical separation of the dyes did not significantly change the observed pho-

toluminescence [89]. In our work, we obtained rates that assume zero temperature and sum across

the whole polariton band in the FBZ; in practice, experiments occur at room temperature and probe

polariton photoluminescence around a narrow window of wavevectors close to the anticrossings (

∼ 107 m−1 in [236]). If we take these experimental details into account when calculating C, we

notice good agreements with our theory (see Table 5.2). As an aside, we reiterate that there are

other experimental subtleties, notably competing processes such as radiative decay, that we have

not considered but may compromise the longevity of the polariton states and thereby influence the

observation of the EET phenomena predicted throughout this work for the two cases of SC.

Given the significant differences between the microcavity- [158, 237] and SP-based [48]

systems, let alone experimental uncertainty, the accordance between our theory and the afore-

mentioned experiments highlights the remarkable robustness of cavity SC of donor and acceptor
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Figure 5.5: (a) Schematic energy-level diagram showing the EET transitions among polariton and
dark states for both donors and acceptors strongly coupled to SPs. The SP mode is resonant with
the donor transition (for polariton as initial state); the donor slab lies 1 nm above the metal and
has fixed position (z > 0) while the acceptor slab is moved in the +z-direction to vary the donor-
acceptor separation ∆z. The thickness of the horizonal lines denotes the density of states while the
thickness of arrows corresponds to rate of transition (thicknesses not drawn to scale). Insets: (top)
cartoon illustrating vibrational relaxation, the EET mechanism for this case of SC, and (bottom)
representation of the setup of thick and dense slabs for both types of chromophores (featuring SC
to SPs). (b) Rates for selected downhill transitions as a function of ∆z.
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Figure 5.6: SC of SPs to both donors and acceptors. EET rates (that are not shown in Fig. 5.5) as
a function of donor-acceptor separation ∆z for downhill transtions among polariton and dark states.
The SP mode is resonant with the donor transition, and the donor slab lies 1 nm from the metal and
has fixed position while the acceptor slab is moved in the +z-direction to vary ∆z.

excitons as a method for PARET. Moreover, we have arrived at the third main conclusion of this

paper: when donor and acceptors are both strongly coupled to a photonic mode, efficient energy ex-

change over hundreds of nm can occur via vibrational relaxation; more generally, local vibrational

couplings can induce nonlocal transitions given sufficient delocalization of the polariton species—

irrespective of spatial separation. Seemingly “spooky”, this action at a (far) distance is a mani-

festation of donor-acceptor entanglement resulting from strong light-matter coupling [238]. While

this relaxation mechanism and entanglement is present in typical molecular aggregates [239, 240],

the novelty in the polariton setup is the remarkable mesoscopic range of interactions that is effec-

tively produced.

5.4 Conclusions

In summary, we have theoretically calculated experimentally consistent rates of PARET

for various cases of SC. We employed a polariton (plexciton) setup consisting of a metal whose

SP modes couple to donor and/or acceptor chromophores. For the case where a single type of

chromophore is strongly coupled to SPs, we have demonstrated that energy transfer starting from

delocalized states can be enhanced due to increased spectral overlap compared to the bare FRET
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Table 5.2: Comparison between PARET rate parameters C for donor and acceptor cyanine dye
J-aggregates strongly coupled to SP (theory) and microcavity (experiment) modes.a

C SP
(theory)b

Microcavity
(experiment)c

CUPB
5 (2.9-3.2 fs)−1 (34 fs)−1

C2
(177-259

ps)−1 (603 ps)−1

CMPB
5 (6.9-12 fs)−1 (8.5 fs)−1

C1
(178-243

ps)−1 (228 ps)−1

aSee Secs. B.2.3 and B.2.4 for additional details. b Ranges of the rate parameters calculated from
Eq. (B.34), plotted in Fig. 5.7, and accounting for the facts that typical polariton

photoluminescence experiments occur at room temperature and probe only final polariton states
near the anticrossings [236]. cRate parameters that were obtained from experimental fitting of a

kinetic model and that describe the PARET processes for a blend of J-aggregating NK-2707
(donors) and TDBC (acceptors) cyanine dyes both strongly coupled to a microcavity mode [89].

Figure 5.7: SC of SPs to both donors and acceptors. Rate parameters C as a function of donor-
acceptor separation ∆z for downhill transitions. The donor slab lies 1 nm from the metal and has
fixed position while the acceptor slab is moved in the +z-direction to vary ∆z.

112



case. Astonshingly, this transfer can remain fast up to 1 µm because the PRET coupling decays

slowly with respect to metal-chromophore separation when compared to the faster decaying inter-

chromophoric dipole-dipole coupling. Also, we have shown that delocalizing the acceptors is a

poor strategy to enhance EET starting from the donors, but can lead to an intriguing and efficient

role-reversed (“carnival effect”) EET when starting from the acceptors. These observations shed

new light on the timely debate of how to harness coherence to enhance molecular processes [241].

Given their generality, they can also be applied to guide the design of polaritonic systems to con-

trol other chemical processes that have similar donor-acceptor flavor (e.g., charge transfer [242],

electron transfer [72], singlet fission [62]) or reactant-product nature (e.g., cis-trans isomerization

[79, 205], dissociation [242]). Finally, our calculated rates support vibrational relaxation as the

mechanism of PARET when both donors and acceptors are strongly coupled to a cavity mode. The

results obtained in this work affirm light-matter SC as a promising and novel means to engineer

novel interactions between molecular systems across mesoscopic lengthscales, thus opening doors

to remote-controlled chemistry.

Chapter 5, in full, is adapted from the material as it appears in “Theory for polariton-

assisted remote energy transfer,” M. Du, L. A. Martínez-Martínez, R. F. Ribeiro, Z. Hu, V. M.

Menon and J. Yuen-Zhou, Chem. Sci. 9, 6659 (2018). The dissertation author was the primary

investigator and author of this paper.
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Chapter 6

Conclusions and outlook

6.1 Conclusions

In this dissertation, we provided insight on how VSC affects reactions where thermalization

occurs on a similar or longer time scale compared to reactive events. In general, the rate of such

reactions depends not only on the thermal-equilibrium properties (e.g., energies and populations)

of the reacting molecules. The reaction rate can also depend on, for example, nonequilibrium

populations, as well as the rates at which vibrational states dissipate and exchange energy. These

additional factors provide a wide array of opportunities through which VSC can modify reactiv-

ity beyond changing thermal-equilibrium properties. Exploring these opportunities may help us

understand the experimental observations of VSC-modified reaction kinetics, for which TST—a

theory that assumes internal thermal equilibrium throughout the reaction—has not been able to

explain.

We first studied thermally activated nonadiabatic electron transfer under VSC, specifically

that where either N = 2 or N � 1 molecules are strongly coupled to an optical cavity mode. To

do so, we developed a kinetic model, which combines Marcus-Levich-Jortner theory of electron

transfer and theories of polariton relaxation, that explicitly includes both dissipative processes (i.e.,

thermalization) and reactive transitions.

For N = 2 molecules under VSC, the reaction can efficiently proceed through the polaritons.
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The cavity decay of the polaritons can accelerate the thermalization of the reacting molecules and

suppress nonequilibrium effects that influence the (bare) reaction rate. The reaction rate can be

enhanced or suppressed due to cavity decay. However, this effect is less likely to happen for VSC

of N � 1 molecules, since there are N− 1 dark modes and thus a steep entropic penalty for the

reaction to proceed through the 2 polaritons.

For N� 1 molecules under VSC, we considered a disordered ensemble of N� 1 molecules

under VSC. Static disorder (i.e., inhomogeneous broadening) had not been rigorously accounted

for in previous models of VSC reactions. In the presence of this energetic inhomogeneity, the av-

erage dark mode is delocalized across 2-3 molecules. We showed that an electron-transfer reaction

proceeds primarily through the dark modes (instead of the polaritons), as expected by entropic

considerations. Dark-mode delocalization reduces the rate of reactive transitions while leaving

unchanged the rate of vibrational decay, thus changing the (net or apparent) reaction rate. This

delocalization-modified kinetics can arise when the homogeneous linewidths of the the dark modes

is smaller than their energy spacings.

We then turned our focus to photochemistry, where molecules are driven out of equilibrium

by a laser. Specifically, we theoretically engineered a “remote control” of chemistry. This device

contains two optical cavities with a shared middle mirror. One cavity contains a “remote catalyst”

compound and the other cavity contains a reactant compound. Each compound undergoes VSC to

its host cavity. Since the middle mirror is partially transparent, excitation of the remote catalyst

can affect the reactivity of the reactant, even though the two compounds reside in different optical

cavities. This idea goes beyond the textbook picture of a catalyst binding to its substrate to affect

the reaction.

Finally, we developed a theory for a related phenomenon: polariton-assisted remote energy

transfer. We considered the cases when one or both chromophores (i.e., donors and acceptors)

undergo strong coupling between their electronic transitions and confined electromagnetic modes.

In either case, we theoretically demonstrated energy transfer when the chromophores are spatially

separated by as much as one micron. For one chromophore under strong coupling, this long-range
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energy transfer occurs when the donors are strongly coupled. In general, when the acceptors are

strong coupled, energy transfer is unchanged by strong coupling. However, we demonstrated an

intriguing phenomenon which we called the “carnival effect”: when the upper polariton is higher

in energy than the donors, energy flows from this polariton to the donors, and thus the donors and

acceptors have reversed roles. For both donors and acceptors under strong coupling, long-range

energy transfer is mediated by a series of vibrational-relaxation transitions between dark states and

polaritons.

6.2 Outlook

Here, we have paved the way towards understanding the role of nonequilibrium effects in

thermally activated reactions under VSC. However, much work remains to elucidate the mech-

anism behind the experimentally observed VSC-modified reaction kinetics. For example, it is

unclear whether the dark modes can affect chemical reactivity in typical experimental settings,

where the homogeneous linewidths of the dark modes exceed their energy spacings.

In addition, the effects reported here pertain nonadiabatic reactions (which involve tran-

sitions between different electronic potential energy surfaces) whereas the experiments featured

adiabatic reactions (which involve dynamics on a single electronic surface). Nevertheless, we be-

lieve that analogous effects can arise in adiabatic reactions. Indeed, the phenomena reported here

rely crucially not on properties unique to nonadiabatic reactions but on the competition between

reactive events and thermalization. Future studies may consider alkene hydroboration [93, 94] or

ozonolysis [243], two adiabatic reactions where chemical species can react before they thermalize.

Another puzzle that remains in understanding the experiments is why the reaction rate is

observed to change only when vibrational transitions are resonant with cavity modes having zero

in-plane momentum (i.e., k = 0) [20, 22, 23]. According to recent theoretical work [244], if bulk

polaritons [245] are accounted for, the polariton density of states is increased maximally by VSC

when the resonance condition holds. It remains to be seen whether this enhancement is key to
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understanding the experiments, since the polaritons are vastly outnumbered by the dark modes.

As suggested by [244], it is important for future theoretical models to more precisely rep-

resent the experimental systems. For example, the observed changes in reaction kinetics under

VSC could be attributed to factors that appear in only some experimental setups supporting VSC.

In fact, there have been unsuccessful attempts [246, 247] to reproduce initial findings [22, 24] of

VSC-modified reactivity.
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Chapter A

Appendix for Chapter 3

A.1 Numerically solving the master equation

State populations as a function of time are simulated by numerically solving master equa-

tion (3.4). We start by writing the equation as dp/dt = Ap, where p is the vector of pop-

ulations and A is the matrix of transition rates. Subsequently, we apply the following stan-

dard procedure to evaluate p(t) = exp(At)p(0) [248]. This method employs the symmetriza-

tion of A to avoid a numerically unstable matrix inversion. First, we compute the matrix

B = MAM−1, where M is the diagonal matrix with diagonal elements M(X ,χ),(X ,χ) = f−1/2
(X ,χ)

, and

f(X ,χ) = exp(−βE(X ,χ))/∑(X ,χ) exp(−βE(X ,χ)). Since the transition rates [Eqs. (3.3), (3.7)-(3.8)]

satisfy detailed balance, B is symmetric. After numerically diagonalizing B, the population at time

t is evaluated as

p(t) = M−1Qexp(Dt)QᵀMp(0), (A.1)

where Q is a matrix whose columns are the eigenvectors of B, D is the diagonal matrix whose

diagonal elements are the eigenvalues corresponding to said eigenvectors, and Qᵀ = Q−1 due to B

being symmetric. Because we are interested in thermally activated reactivity, the vector of initial
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populations, p(0), is taken to be a thermal distribution of reactant eigenstates:

p(R,χ)(0) =
exp(−βE(R,χ))

∑χ exp(−βE(R,χ))
, (A.2a)

p(P,χ)(0) = 0. (A.2b)

We evaluate p(t) at t = j∆t, where ∆t = 0.2 ns and j = 0, . . . ,100.

A.2 Numerically fitting the reaction rate

The reaction rate is obtained by fitting the numerically determined values of reactant pop-

ulation,

pR = ∑
χ

p(R,χ), (A.3)

and their respective values of t to the exponential function

pR = exp(−kt). (A.4)

The fitting parameter k is the reaction rate. For all fits, the adjusted R2 values have mean 0.99999

and standard deviation 7×10−6. Such successful fitting reflects the reaction being first-order [134]

in reactant. Here, first-order kinetics occurs because product excited states do not accumulate

sufficiently (see Sec. 3.5.1) and the product ground state does not revert to reactant states at a fast

enough rate (due to high activation energy).
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A.3 Numerically fitting the thermodynamic parameters of ac-

tivation

To determine the thermodynamic parameters of activation for a given reaction (i.e., set of

reaction parameters excluding temperature, T ), we calculate the reaction rate, k, for T = 278, 283,

288, 293, 298 K. The rates are computed using numerical kinetic simulations, as described in Sec.

A.2. We then fit the (k,T ) values to the Eyring-Polanyi equation [249, 250],

k =
kBT

h
exp
(
−∆H‡

RT
+

∆S‡

R

)
, (A.5)

where R is the gas constant. The fitting parameters ∆H‡ and ∆S‡ are the enthalpy and entropy,

respectively, of activation.

For all fits, the adjusted R2 values have mean 0.9999996 and standard deviation 1×10−7.

This excellent agreement between the numerically obtained rates and the Eyring-Polanyi equation

is attributed to a fortuitous choice of temperature range over which the fittings are performed. Sub-

optimal goodness of fit is expected for general ranges of T because the transition rates [Eqs. (3.3),

(3.7)-(3.8)] of our kinetic model have a different functional form (with respect to T ) compared to

Eq. (A.5).
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Chapter B

Appendix for Chapter 5

B.1 Case i: strong coupling of only one chromophore

B.1.1 Lack of supertransfer enhancement

Here, we demonstrate that even though the donor polariton state is coherently delocal-

ized, the superradiance enhancement of EET to bare acceptors that one could expect [173, 174]

is negligible when taking into account the distance dependence and orientational correlation of

the involved dipolar interactions. The essence of supertransfer is that a constructive interference

of individual donor dipoles in an aggregate can lead to FRET rates that scale as N times a bare

FRET rate. However, for this to happen, it is important to have a geometric arrangement where all

donors are equally coupled to, i.e., equidistantly spaced and identically oriented with respect to,

all acceptors; this is not the case in our problem.

To show this point explicitly, we first evaluate the FRET rate associated with the delocalized

donor |D~k=0〉 transferring energy to bare acceptors,
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γ
FRET
A←D~k=0

≡ 2π

h̄ ∑
l,m
|〈Alm|HDA|D~k=~0〉|

2JA,D~k=~0

≈ 2π

h̄
µ

2
Dµ

2
A ∑

l,m

1
ND

(
∑
i, j

κi jlm

r3
i jlm

)2

JA,D~k=~0
, (B.1)

where we have approximated |D~k=0〉 as a totally symmetric state across all chromophores,

|cDi′ j′D~k=0
|2 =

|κ~kDi′ j′
|2

∑i, j |κ~kDi j
|2 ≈

1
ND

[see definition of |C~k〉 for C = D,A right after Eq. (5.6)].

Compare Eq. (B.1) to the corresponding supertransfer rate

γsupertransfer =
2π

h̄
µ

2
Dµ

2
A

1
ND

∑
l,m

∣∣∣∣∣∑i, j Vlm

∣∣∣∣∣
2

JA,D

=
2π

h̄
µ

2
Dµ

2
A ∑

l,m
NDV 2

lmJA,D, (B.2)

where Vlm is the identical coupling between acceptor Alm and any donor Di j for all i, j and may

take on any nonzero real value. Since the separations between the donors and any given acceptor

are clearly different in the slab geometry of this work, the resulting rate is much less than that of

Eq. (B.2).

We next show this more precisely. Consider S(lm)
> (ε) =

{
(i, j)

∣∣∣∣ 4
r6

i jlm
≥ ε2V 2

lm

}
for positive

ε → 0, where this set has N(lm)
> elements. Then

1
ND

(
∑
i, j

κ2
i jlm

r3
i jlm

)2

≤ 1
ND

 ∑
(i, j)∈S(lm)

> (ε)

4
r3

i jlm

2

+
2

ND

 ∑
(i, j)∈S(lm)

> (ε)

2
r3

i jlm

 ∑
(i, j)/∈S(lm)

> (ε)

2
r3

i jlm


+

1
ND

 ∑
(i, j)/∈S(lm)

> (ε)

4
r3

i jlm

2

. (B.3)

We have used the fact that the squared FRET orientation factor κ2
i jlm ranges from 0 to 4 [222].

Since S(lm)
> (ε) is a finite set, the first term on the righthand side vanishes for sufficiently large ND.
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Thus,

1
ND

(
∑
i, j

κ2
i jlm

r3
i jlm

)2

≤ 2(ND−N(lm)
> )ε|Vlm|

ND
∑

(i, j)∈S(lm)
> (ε)

2
r3

i jlm
+

(ND−N(lm)
> )2ε2V 2

lm
ND

, (B.4)

and so

γFRET
A←D~k=0

γsupertransfer
≤

JA,D~k=~0
∑l,m

[
2(ND−N(lm)

> )ε|Vlm|
ND

∑
(i, j)∈S(lm)

> (ε)
2

r3
i jlm

+
(ND−N(lm)

> )2ε2V 2
lm

ND

]
JA,DND ∑l,mV 2

lm
. (B.5)

In the limit ND→ ∞, we find

γFRET
A←D~k=0

γsupertransfer
→

JA,D~k=~0
ε2

JA,D
→ 0. (B.6)

Therefore, we conclude that the decay of dipolar interactions with respect to distance precludes a

supertransfer enhancement [173, 174] in our problem.

By noticing that
∣∣∣∣∑i, j

κi jlm

r3
i jlm

∣∣∣∣2 > ∑i, j
κ2

i jlm

r6
i jlm

(at least when all κi jlm ≥ 0), and for JA,D ≈ JA,D~k=~0
,

we still expect a coherence enhancement of EET: γFRET
A←D~k=0

> 2π

h̄ µ2
Dµ2

A ∑l,m
1

ND
∑i, j

κ2
i jlm

r6
i jlm

JA,D, the

corresponding bare FRET rate. However, this enhancement is quite modest compared to all other

effects that we consider in our problem (e.g., PRET contributions).

B.1.2 Simulated rates: strong coupling of donors

Here, we derive expressions for the simulated rates of EET between a multi-layer slab of

ND� Nxy,D donor molecules strongly coupled to a SP and a monolayer of acceptor molecules at

z = z0,A > z j,D for all j.

The polariton states α = UP,LP are of the form |αD,~k〉 = cD~kαD,~k
|D~k〉+ c~kαD,~k

|~k〉, where
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|~k〉= a†
~k
|0〉 and

|D~k〉=
1√

∑i, j |κ~kDi j
|2e−2ad~kz j,D

∑
i, j

κ~kDi j
e−ad~kz j,Dei~k·~Ri,D |Di j〉. (B.7)

Plugging Eq. (B.7) into Eq. (5.8a), the rate of transfer from donor polariton state |αD,~k〉 (α =

UP,LP) to acceptors is

γA←αD,~k
=

2π

h̄ ∑
l

∣∣∣〈Al0|HDA +HAP|αD,~k〉
∣∣∣2 JAαD,~k

=
2π

h̄ ∑
l

∣∣∣∣∣∣〈Al0|HDA +HAP|

cD~kαD,~k ∑
i, j

κ~kDi j
e−ad~kz j,Dei~k·~Ri,D√

∑i, j |κ~kDi j
|2e−2ad~kz j,D

|Di j〉+ c~kαD,~k
|~k〉

∣∣∣∣∣∣
2

JA,αD,~k
.

(B.8)

For simplicity, we next assume the chromophores lie in an infinitely extended and translationally

invariant slab along the xy plane and their TDMs are isotropically distributed and orientationally

uncorrelated:

γA←αD,~k
= |cD~kαD,~k

|2 2π

h̄
NA ∑

i, j

(
e−2ad~kz j

Nxy,D ∑ j e−2ad~kz j,D

)
µ2

Dµ2
A〈κ2

FRET 〉
r6

i j
JAαD,~k

+ |c~kαD,~k
|2 2π

h̄
ρ
(2D)
A µ

2
A〈|κLM,~k|

2〉
h̄ω~k

2ε0L~k
e−2ad~kz0,AJAαD,~k

, (B.9a)

where ri j is distance between acceptor at (0,0,z0,A) and donor i j, ρ
(2D)
A =

Nxy,A
S is the concentration

of acceptors per unit area, the isotropically averaged orientation factors for FRET and light-matter

interaction are 〈κ2
FRET 〉 = 〈κ2

i jl0〉 =
2
3 [222], and 〈|κLM,~k|

2〉 = 〈|κ~kDi j
|2〉 = 2

3 +
1
3
|~k|2
a2

d~k

[203]. Eq.

(B.9a) shows that the isotropic distribution of dipoles and the lack of correlations amongst their

orientations yields an incoherently averaged rate over the populations of exciton (first term) and

SP (second term). Furthermore, Eq. (5.12a) is a less explicit form of Eq. (B.9a), which follows

from using the approximation e−2a
d~k

z j,D

Nxy,D ∑ j e−2a
d~k

z j,D
≈ |cDi jD~k

|2 =
|κ~kDi j

|2e−2a
d~k

z j,D

∑i, j |κ~kDi j
|2e−2a

d~k
z j,D

(i.e., ignoring the

orientational dependence of the exciton populations).
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In obtaining Eq. (B.9a), we have utilized the following approximations which are valid for

large ND:

〈
κ~kDi j

κi jl0κ∗~kDi′ j′
κi′ j′l0

∑i, j |κ~kDi j
|2e−2ad~kz j,D

〉
≈
〈κ~kDi j

κi jl0κ∗~kDi′ j′
κi′ j′l0〉

∑i, j〈|κ~kDi j
|2〉e−2ad~kz j,D

=

〈κ~kDi j
κi jl0κ∗~kDi′ j′

κi′ j′l0〉

〈|κLM|2〉Nxy,D ∑ j e−2ad~kz j,D
, (B.10a)〈

κ~kDi j
κi jlmκ∗~kAl0√

∑i, j |κ~kDi j
|2e−2ad~kz j,D

〉
≈

〈κ~kDi j
κi jlmκ∗~kAl0

〉

〈
√

∑i, j |κ~kDi j
|2e−2ad~kz j,D〉

. (B.10b)

In addition, we have applied a mean-field approach to the orientational factors,

〈κ~kDi j
κi jl0κ

∗
~kD′i′ j

κi′ j′l0〉 ≈ 〈κ~kDi j
κ
∗
~kD′i′ j
〉〈κi jl0κi′ j′l0〉= 〈|κLM,~k|

2〉〈κ2
FRET 〉δ(i, j),(i′ j′), (B.11a)

〈κ~kDi j
κi jl0κ

∗
~kAl0
〉 ≈ 〈κ~kDi j

κ
∗
~kAl0
〉〈κi jl0〉= 0. (B.11b)

In the continuum limit, Eq. (B.9a) reads,

γA←αD,~k
=

2π

h̄
ρ
(2D)
A S1JAαD,~k

, (B.12)

S1 = |cD~kaD,~k
|2µ

2
Dµ

2
A〈κ2

FRET 〉

∫ s+W
s dze−2ad~kz π

2(z0,A−z)4

e−2a
d~k

(s+W)−e−2a
d~k

s

−2ad~k

+ |c~kαD,~k
|2µ

2
A〈|κLM,~k|

2〉
h̄ω~k

2ε0L~k
e−2ad~kz0,A ,

(B.13)

where the base of the donor slab is located at z = s and its thickness isW (while the integral over

z has an analytical solution, it is complicated and does not shed much insight into the problem).

Next, we show that the rate [Eq. (5.8b)] of EET from donor dark states to a spatially

separated monolayer of bare acceptors at z = z0,A converges to the bare FRET rate γbare FRET in

Eq. (5.12b) assuming that ND� Nxy,D and all donor and acceptor TDMs are isotropically oriented

and uncorrelated. The steps applied in this subsection can be extended in a straightforward manner

to establish this result for multiple layers in the acceptor slab. This result is intuitively expected

given that the dark states are purely excitonic and centered at the original transition frequency ωD;

furthermore, the density of dark states is close to the original density of bare donor states. Our
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derivation here relies on Lorentzian lineshapes for the dark donor and acceptor states; however, we

anticipate the conclusions to hold for more general lineshapes under certain limits.

We assume that the lineshape of each dark state |dD,~k〉 can be expressed as a Lorentzian with

peak energy and linewidth identical to that of bare donors, leading to JA,dD,~k
= JA,D. Connecting

this finding to the relevant rate expression, we can rewrite Eq. (5.8b) for an acceptor monolayer as

γA←darkD =
2π

h̄
1

ND−Nxy,D
∑

l

[
∑
i, j
|〈Al0|HDA|Di j〉|2− ∑

~k∈FBZ

|〈Al0|HDA|D~k〉|
2

]
JA,D. (B.14)

We have used the relation ∑~k∈FBZ ∑d |d~k〉〈d~k| = 1(sys)
D −∑~k∈FBZ |D~k〉〈D~k| for donor (electronic)

identity 1(sys)
D . Assuming Nz,D� 1 (equivalent to ND� Nxy,D ), we have

γA←darkD =
2π

h̄
1

ND
∑

l
∑
i, j
|〈Al0|HDA|Di j〉|2JA,D−

2π

h̄
1

ND
∑

l
∑

~k∈FBZ

|〈Al0|HDA|D~k〉|
2JA,D. (B.15)

We note that the first term is exactly γbare FRET. Applying the arguments from the derivation of the

rate [Eq. (B.12)] of EET from donor polaritons to acceptors [including the orientational averaging

approximations of Eqs. (B.10) and (B.11)], as well as the continuum approximation, we obtain

γA←darkD =
2π

h̄
ρ
(2D)
A µ

2
Dµ

2
A〈κ2

FRET 〉

∫ s+W
s dz π

2(z0,A−z)4

W
− 1

ND
∑

~k∈FBZ

∫ s+W
s dze−2ad~kz π

2(z0,A−z)4∫ s+W
s dze−2ad~kz

JAD.

(B.16)

Using ∑~k∈FBZ = Nxy,D and Nz,D� 1, we arrive at

1
ND

∑
~k∈FBZ

∫ s+W
s dze−2ad~kz π

2(z0,A−z)4∫ s+W
s dze−2ad~kz ≤ 1

Nz,D
max

~k∈FBZ

∫ s+W
s dze−2ad~kz π

2(z0,A−z)4∫ s+W
s dze−2ad~kz

�

∫ s+W
s dz π

2(z0,A−z)4

W
, (B.17)
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which yields

γA←darkD ≈
2π

h̄
ρ
(2D)
A µ

2
Dµ

2
A〈κ2

FRET 〉
π

6

[
1

(z0,A−s−W)3 − 1
(z0,A−s)3

]
W

JAD. (B.18)

This expression is exactly the bare FRET rate γbare FRET of Eq. (5.13b) under the aforementioned

assumptions of infinitely extended slab along the xy plane, translational symmetry, orientational

averaging, and the continuum limit.

B.1.3 Simulated rates: strong coupling of acceptors

The simulated rates for EET from a monolayer of bare donor at z = z0,D > zm,A for all

m to acceptor polariton/dark states asssuming a thick acceptor slab (NA � Nxy,A), orientational

averaging and no correlations for the TDMs ~µAlm are given by

γαA←D =
1
h̄

∫
π/a

0
dk kS2(k)JαA,~kD, (B.19a)

S2(k) = |cA~kαA,~k
|2µ

2
Dµ

2
A〈κ2

FRET 〉

∫ s+W
s dze−2ad~kz π

2(z0,D−z)4

e−2a
d~k

(s+W)−e−2a
d~k

s

−2αd~k

+ |c~kαA,~k
|2µ

2
D〈|κLM,~k|

2〉
h̄ω~k

2ε0L~k
e−2ad~kz0,D (B.19b)

γdarkA←D =
2π

h̄
ρAµ

2
Dµ

2
A〈κ2

FRET 〉
π

6

[
1

(z0,D− s−W)3 −
1

(z0,D− s)3

]
JAD = γ

′
bare FRET, (B.19c)

where γ ′bare FRET is the bare FRET rate. Here, the thickness of the acceptor slab is W , its base is

located at z= s, and its (three-dimensional) concentration is ρA = NA
SW . The derivation of Eq. (B.19)

starts with the preliminary rate expression in Eq. (5.9) and proceeds analogously to those in Sec.

B.1.2. In contrast to Eq. (B.12), Eq. (B.19a) also sums over the final polariton~k modes, yielding

a integral rate upon invoking the continuum-limit transformation ∑~k∈FBZ→
S

(2π)2

∫ 2π

0 dφ
∫ π/a

0 dk k

for acceptor lattice spacing a. Eq. (B.19) is a more explicit form of Eq. (5.13).
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We now consider the case when

1
Nxy,A

∑
~k∈FBZ

|〈~k|HDP|Di0〉|2 <
1

NA
∑
l,m
|〈Alm|HDA|Di0〉|2, (B.20)

in other words, the average PRET coupling intensity is smaller than that of FRET; this happens

when the donor-acceptor separation lies within the typical FRET range (1-10 nm). As we next

show, the EET rate from a monolayer of bare donors to acceptor polariton band αA is consequently

much smaller than the bare FRET rate [γ ′bare FRET in Eq. (5.13b)] as NA� Nxy,A (i.e., Nz,A� 1),

for isotropic and uncorrelated orientational distribution of TDMs ~µAlm,~µDi0 . The steps taken here

resemble those employed in Sec. B.1.2. Starting from Eq. (5.13a), we utilize |cAlmA~k
|2 ≈ 1

NA
to

obtain

γαA←D ≈
2π

h̄ND
∑

~k∈FBZ
∑

i

[
|cA~kαA,~k

|2 ∑
l,m

1
NA
|〈Alm|HDA|Di0〉|2 + |c~kαA,~k

|2|〈~k|HDP|Di0〉|2
]

JαA,~k,D

≤ 2π

h̄ND
∑

i
∑
l,m
|〈Alm|HDA|Di0〉|2

1
Nz,A

max
~k∈FBZ

JαA,~k,D

+
2π

h̄ND
∑

i
∑

~k∈FBZ

|〈~k|HDP|Di0〉|2 max
~k∈FBZ

JαA,~k,D

� 2π

h̄ND
∑

i
∑
l,m
|〈Alm|HDA|Di0〉|2JA,D

= γ
′
bare FRET, (B.21)

where the second inequality holds for sufficiently large Nz,A such that 2
Nz,A

max~k∈FBZ JαA,~k,D
� JA,D.

This result can be physically interpreted as follows: γ ′bare FRET and γFRET
αA←D scale as the number of

final states NA and Nxy,A� NA, respectively.
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B.1.4 Additional simulation details

For simulations where the acceptors are under SC, the rates from donors to acceptor po-

lariton bands [Eq. (B.19a)] were calculated numerically. In particular, the integrals over k were

calculated via the trapezoidal rule using 2000 intervals.

For simulations of the “carnival effect” (i.e., “reversed role” transfer from strongly coupled

acceptors to donors) the coupling is strong enough such that the UP is higher in energy than the

bare donors. Thus, the acceptor UP becomes a donor and the donors turn into acceptors. We use

the rate Eq. (B.12) derived for the case of exclusive donor SC for transfer from a polariton state

with the labels D and A interchanged.

B.2 Case ii: strong coupling of both donors and acceptors

B.2.1 Derivation of Eq. (5.11)

In this section, we show how to derive the EET rates in Eq. (5.11) between polariton/dark

states when both donors and acceptors are strongly coupled to SP modes. While we only derive

rate Eq. (5.11a) in significant detail, Eqs. (5.11b) and (5.11c) can be analogously obtained in

essentially the same manner.

Excitons coupled to the ~k-th SP mode produce polariton states of the form |α~k〉 =

cD~kα~k
|D~k〉+ cA~kα~k

|A~k〉+ c~kα~k
|~k〉. As discussed in Sec. 5.2.2, the perturbation V (ii) due to the chro-

mophore and photon baths induces transitions between the UP, MP, LP and dark states of donors

and acceptors,

V (ii) = ∑
C

∑
i, j
|Ci j〉〈Ci j|∑

q
λq,Ch̄ωq,C(b

†
q,Ci j

+h.c.)+∑
~k

∑
q

gq,~k(b
†
q,Pa~k +h.c.), (B.22)

where C = D,A. Given the locality of vibronic coupling, the first term only couples two states
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that share the same chromophores. On the other hand, the second term does not couple different

polariton/dark states because it represents radiative and Ohmic losses from the SP modes. The EET

rate from a single polariton state |α~k〉 to the polariton band β can then be calculated by invoking

Fermi’s Golden Rule,

γβ←α~k
= ∑

~k′∈FBZ
∑
C
|cC~k′β~k′

|2|cC~kα~k
|2 ∑

i, j
|cCi jC~k′

|2|cCi jC~k
|2

× 2π

h̄2 ∑
L′

∑
L

pLCi j
|〈L′Ci j

|∑
q

λq,Ch̄ωq,C(b
†
q,Ci j

+bq,Ci j)|LCi j〉|
2
δ (ωβ~k′α~k

+ωL′Ci j
LCi j

).

(B.23)

|LCi j〉 refers to a local bath state of molecule Ci j and pLCi j
is the thermal probability to populate it.

Assuming that all molecules of the same type C (donor or acceptor) feature the same bath modes,

we can associate the single-molecule rate

2π

h̄2 ∑
L′

∑
L

pLCi j
|〈L′Ci j

|∑
q

λq,Ch̄ωq,C(b
†
q,Ci j

+bq,Ci j)|LCi j〉|
2
δ (ω +ωL′Ci j

LCi j
) =RC(ω) (B.24)

which can be readily related to a spectral density. Then we arrive at the compact expression,

γβ←α~k
= ∑

~k′∈FBZ
∑
C
|cC~k′β~k′

|2|cC~kα~k
|2 ∑

i, j
|cCi jC~k′

|2|cCi jC~k
|2RC(ωβ~k′α~k

), (B.25)

which is exactly Eq. (5.11a).

To derive the average rate Eq. (5.11b) from dark states of chromophore C to the polariton

band α , we begin with

γα←darkC =
2π

h̄2 ∑
~k′∈FBZ

1
NC−Nxy,C

∑
~k∈FBZ

∑
d

∑
i′ j′

∑
L′

∑
i′′ j′′

∑
L

[
pLCi′′ j′′

|〈α~k′,L
′
Ci′ j′
|V (ii)|dC,~k,LCi′′ j′′ 〉|

2

×δ (ωα~k′C
+ωL′Ci′ j′

LCi′′ j′′
)

]
. (B.26)

Similarly, the derivation of rate Eq. (5.11c) from polariton state |α~k〉 to the same dark states starts
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at

γdarkC←α~k
=

2π

h̄2 ∑
~k∈FBZ

∑
d

∑
i′ j′

∑
L′

∑
i′′ j′′

∑
L

pLCi′′ j′′
|〈dC,~k′,L

′
Ci′ j′
|V (ii)|α~k,LCi′′ j′′ 〉|

2
δ (ωCα~k

+ωL′Ci′ j′
LCi′′ j′′

).

(B.27)

We note that the presence of the prefactor 1
NC−Nxy,C

in Eq. (B.26) and lack thereof in Eq. (B.27)

is due to the asymmetry of Fermi’s Golden Rule: in the former equation, dark states serve as the

initial state and thus the term for each state is weighted by its occupation probability, which we

have assumed to be uniform at 1
NC−Nxy,C

given their degeneracy.

B.2.2 Simulated rates

In this section, we present the rates used in our simulations for both donors and acceptors

strongly coupled to SPs assuming orientationally averaged TDMs ~µCi j , Nxy,D = Nxy,A = Nxy, and

Nz,C� 1 for C = D,A.

The overlap between |Ci j〉 and the collective mode |C~k〉 can be written as |cCi jC~k
| =

κ~kCi j
e−a

d~k
z j,C√

∑i, j |κ~kCi j
|2e−2a

d~k
z j,C

and plugged into Eq. (5.11a) to obtain the rate for EET from polariton state

|α~k〉 to band β :

γβ←α~k
=

1
2π

∑
C

 |cC~kα |2

ρC
e−2a

d~k
(sC+WC)−e−2a

d~k
sC

−2ad~k

×
∫

π/a

0
dk′ k′|cC~kβ |2

e−2(a
d~k

+a
d~k′ )(sD+WD)−e−2(a

d~k
+a

d~k′ )sD

−4ad~k′

e−2a
d~k′ (sD+WD)−e−2a

d~k′ sD

−2ad~k′

RC(ωβ~k′α~k
)

 , (B.28)

where we have applied orientational averaging of the TDMs under the approximation 〈|cCi jC~k
|2〉 ≈

e−2a
d~k

z j,C

Nxy ∑ j e−2a
d~k

z j,C
(Sec. B.1.2) and the~k-space continuum-limit transformation (Sec. B.1.3).

The derivation of the EET rate from polariton |α~k〉 to dark states is similar to that of Eq.
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(B.18) (Sec. B.1.2). We can write Eq. (5.11c) as

γdarkC←α~k
= |cC~kα~k

|2RC(ωCα~k
)∑

i, j
|cCi jC~k

|2 ∑
~k′∈FBZ

∑
d
|〈Ci j|dC,~k′〉|

2. (B.29)

Inserting the relation ∑~k∈FBZ ∑d |dC,~k〉〈dC,~k|= 1(sys)
C −∑~k∈FBZ |C~k〉〈C~k|, we obtain

γdarkC←α~k
= |cC~kα~k

|2RC(ωCα~k
)∑

i, j
|cCi jC~k

|2
(

1− ∑
~k′∈FBZ

|cCi jC~k′
|2
)
. (B.30)

Noting that |cCi jC~k′
|2 ∼ 1

NxyNz,C
and ∑~k∈FBZ sums over Nxy terms, we utilize Nz,C � 1 and

∑i, j |cCi jC~k
|2 = 1 to write

γdarkC←α~k
= |cC~kα~k

|2RC(ωCα~k
). (B.31)

This same logic can be applied to arrive at

γα←darkC =
1

2πρCWC

∫
π/a

0
dk′ k′|cC~k′α~k′

|2RC(ωα~k′C
) (B.32)

for a continuum of~k states.

In summary, the simulated equations for the case where both donors and acceptors are

strongly coupled are

γβ←α~k
=

1
2π

∑
C

 |cC~kα |2

ρC
e−2a

d~k
(sC+WC)−e−2a

d~k
sC

−2ad~k

×
∫

π/a

0
dk′ k′|cC~kβ |2

e−2(a
d~k

+a
d~k′ )(sD+WD)−e−2(a

d~k
+a

d~k′ )sD

−4ad~k′

e−2a
d~k′ (sD+WD)−e−2a

d~k′ sD

−2ad~k′

RC(ωβ~k′α~k
)

 , (B.33a)

γα←darkC =
1

2πρCWC

∫
π/a

0
dk′ k′|cC~k′α~k′

|2RC(ωα~k′C
), (B.33b)

γdarkC←α~k
= |cC~kα~k

|2RC(ωCα~k
). (B.33c)

From these expressions, it can be seen that the rates to polariton bands [Eqs. (B.33a) and (B.33b)]
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scale as ∼ 1
Nz,C

relative to the rate to dark states [Eq. (B.33c)], which scales as a single-molecule

rate RC. This is because there are Nxy states in each polariton band as opposed to NC−Nxy in the

band of dark states.

The spectral density [Eq. (5.14)] that governs RC(ω) depends on the energies h̄ωq and

coupling strengths λqh̄ωq of representative localized vibrational modes BTDBC, reproduced below

from literature [226]:

h̄ωq (meV) 40 80 120 150 185 197

λqh̄ωq (meV) 14 18 25 43 42 67

B.2.3 Rate parameters for comparison to experiments

Here, we present closed-form expressions for certain rate parameters characterizing down-

hill vibrational-relaxation transitions between polariton and dark states. Specifically, these rate

parameters were first introduced as empirical constants fitted to the data of Coles et al. [89]. For

spatially separated slabs of donors and acceptors—the setup studied in our work—such experimen-

tal values are not available in the literature. Instead, we compare to those of Coles et al. for a blend

of donors and acceptors. This comparison is supported by qualitatively similar photoluminescence

for both setups, as reported by the same authors [89].

Based on their fitting model [Eqs. (3)-(5) of Ref. [89]], we express their rate parameters

{CUPB
5 = (34 fs)−1,C2 = (603 ps)−1,CMPB

5 = (8.5 fs)−1,C1 = (228 ps)−1} (Table 1 of Ref. [89])

in terms of our theoretical framework as follows (throughout this section we use the convention
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ca,b = 〈a|b〉 and ω f ,i = ω f −ωi):

CUPB
5 ≡max

~k
{γdarkD←UP~k

}, (B.34a)

C2 ≡ NdarkD

〈
2πJD(−ωMP~k,D

)
πk2

(2π)2/S
1

ND

〉
~k

(B.34b)

=
NdarkD

2ρDWD

∫ kmax
kmin

dk′ (k′)3JD(−ωMP~k′ ,D
)

1
2(k

2
max− k2

min)
, (B.34c)

CMPB
5 ≡max

~k
{γdarkA←MP~k

}, (B.34d)

C1 ≡ NdarkA

〈
2πJA(ω−LP~k,A

)
πk2

(2π)2/S
1

NA

〉
~k

(B.34e)

=
NdarkA

2ρAWA

∫ kmax
kmin

dk′ (k′)3JA(−ωLP~k′ ,A
)

1
2(k

2
max− k2

min)
, (B.34f)

where the relations in Eqs. (B.34b) and (B.34e) were obtained by comparing the first terms on

the right-hand sides of Eqs. (4) and (3) of Ref. [89], respectively, with Eq. (15) of the theoretical

work by Michetti and La Rocca [234]. The particular kmin,kmax used in calculation of C2 and C1 in

Table 5.2 are given in the next section. JC(ω) is the spectral density [defined after Eq. (5.11)] for

chromophore C = D,A. NdarkC is a fitting constant proportional to the steady-state population—

assumed to be invariant with respect to wavevector by Coles et al. Notice that CUPB
5 and CMPB

5

can be numerically evaluated using theory presented above [Eq. (B.33c)]. However, numerical

computation of C2 and C1 requires the values of NdarkC , which are not actually defined by Coles et

al. [89]. Given that the precise values C were determined by Michetti and La Rocca [234] (as well

as other references; see first three sentences of footnotes of Table 1 in Ref. [89]), we next estimate

NdarkC using a combination of experimental results from Ref. [89] and the theoretical results from

Ref. [234].

The first step is to relate C2 and C1 to FGR rates γMP~k←darkD and γLP~k←darkA [Eq. (B.33b)]
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using Eqs. (4) and (3) of Ref. [89]:2

NdarkD ≈
(603 ps)−1 〈|cD,MPθ

|2[n(−ωMPθ ,D)+1]
〉

θ

〈γMPθ←darkD〉θ
, (B.35a)

NdarkA ≈
(228 ps)−1

〈
|cA,LPθ

|2[n(−ωLPθ ,A)+1]
( |ωLPθ ,A|

75 meV/h̄

)1.93
〉

θ

〈γLPθ←darkA〉θ
, (B.35b)

where |cC,αθ
|2 is the fraction of exciton C in polariton state αθ for (C,α) = (D,MP),(A,LP) and

n(ω) = 1
eh̄ω/kBT−1

is the Bose-Einstein distribution function. We have replaced~k with θ to indicate

quantities that are either experimentally determined for a polariton state excited by a laser with this

incident angle (see Coles et al. [89] for further experimental details) or estimated from Michetti and

La Rocca [234]. We carry out the averages 〈·〉θ above over the θ -interval [θmin = 17◦,θmax = 56◦]

by making the following assumptions:

•

|cD,MPθ
|2 =


0 θ ∈ [θmin,27◦]

0.8
θmax−27◦ (θ −θmax)+0.8 θ ∈ [27◦,θmax]

(B.36)

(Fig. 3d of Coles et al. [89])

• n(−ωMPθ ,D)≈ 0 because |ωMPθ ,D| � kBT (Figs. 4a-4c of Coles et al. [89])

•

|cA,LPθ
|2 =


0.9

47◦−θmin
(θ −47◦)+0.9 θ ∈ [θmin,47◦]

0.9 θ ∈ [47◦,θmax]

(B.37)

(Fig. 3e of Coles et al. [89]),

2We associate the nomenclature of Coles et al. to ours to minimize the introduction of new names and
variables: upper polariton band (UPB) → UP, middle polariton band (MPB) → MP, and lower polariton
band (LPB)→ LP, ex2→ donors (D), exciton reservoir ex2→ dark donors (darkD), ex1→ acceptors (A),
exciton reservoir ex1→ dark acceptors (darkA).
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•

ωLPθ ,A(nm−1) =
1

−30 nm
θmax−θmin

(θ −θmax)+640 nm
− 1

636.4 nm
(B.38)

(Figs. 4a-4c of Coles et al. [89]),

• 〈γMPθ←darkD〉θ ≈ 〈γLPθ←darkA〉θ ≈ 107 s−1 (roughly the average rate of scattering from the

dark states to states in the LP close to the anticrossing for microcavity with a single strongly

coupled J-aggregate cyanine dye, Fig. 6 of Michetti and La Rocca [89]).

Then we arrive at NdarkD ≈ 49 and NdarkA ≈ 112.

Using these quantities, numerical values for Eq. (B.34) can be calculated, as discussed in

the next section. Comparison of the values to the rate parameters of Coles et al. is summarized in

Table 5.2.

B.2.4 Additional simulation details

We note that the rates in Eqs. (B.33a) and (B.33b) from polariton and dark states, respec-

tively, to polariton bands were calculated numerically: as for the case of exclusive SC of acceptors

to SPs (Sec. B.1.4), the k-integrals were computed with the trapezoidal rule using 2000 intervals.

For the downhill energy transfer processes between polariton and dark states, we also com-

pared (Table 5.2) rate parameters C that were experimentally determined by Coles et al. [89] to

analogous theoretical rate parameters that we presented in Sec. B.2.3. The latter values, shown in

the second column of Table 5.2, were calculated by computing the C in Eq. (B.34) with the same

simulation conditions as for Fig. 5.5b, except considering T = 300 K and polariton k-interval

[kmin = 0.8kA,kmax = 1.1kD] (instead of T = 0 K and the entire FBZ, respectively; see next para-

graph for justification). kA = 9.8×106 m−1 and kD = 1.1×107 m−1 are the anticrossing wavevec-

tors for acceptors and donors, respectively. Given the reduced k-interval, the numerical integrals
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[Eqs. (B.34c) and (B.34f)] were evaluated using only 200 intervals (instead of 2000). The results

are plotted in Fig. 5.7.

The above changes in temperature and k-interval were chosen to allow for a more direct

comparison with the experiments of Coles et al. Their experiments were carried out at room

temperature and only probed polariton states near the anticrossings. Our choice of [kmin,kmax]

comes from the paper of Hakala et al. [236]. To the best of our knowledge, this is the only

work that studies a system with SPs strongly coupled to two organic-exciton bands and reports the

concentration of the chromophore after it has been deposited on the metal and becomes strongly

coupled to SPs. Specifically, the three polariton bands formed from hybridization of SPs and

two exciton bands of Rhodamine 6G dye afforded absorption signal detectable in the window∼

[1.2×107 m−1,1.8×107 m−1], or between∼ 0.8 of the smaller anticrossing wavevector and∼ 1.1

of the bigger. This result stayed essentially the same for a wide range of concentrations, ranging

from 0.1-10% of that used in this work for strongly coupled chromophores. So we employed

[kmin,kmax] for our calculation of C (without changing the concentration we assumed for Fig. 5.5b).

It should be noted that between the systems of our work and Coles et al., there are differ-

ences in setup (physically separated slabs vs. blend) and electromagnetic modes (SP vs. micro-

cavity). We argue that these differences do not preclude good agreement with respect to order of

magnitude:

• The validity of comparing physically separated slabs and a blend of donors and acceptors

has been explained in Sec. B.2.3, as well as Sec. 5.3.

• Energy-transfer rates [Eq. (5.11)] are dictated by energy gaps between polariton and dark

states, exciton fractions of polariton states, and the spectral densities, regardless of the nature

of the electromagnetic modes.
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