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Abstract 
Particle accelerators play an important role in a wide range of scientific dis-
coveries and industrial applications. The self-consistent multi-particle simu-
lation based on the particle-in-cell (PIC) method has been used to study 
charged particle beam dynamics inside those accelerators. However, the PIC 
simulation is time-consuming and needs to use modern parallel computers 
for high-resolution applications. In this paper, we implemented a parallel 
beam dynamics PIC code on multi-node hybrid architecture computers with 
multiple Graphics Processing Units (GPUs). We used two methods to paral-
lelize the PIC code on multiple GPUs and observed that the replication me-
thod is a better choice for moderate problem size and current computer 
hardware while the domain decomposition method might be a better choice 
for large problem size and more advanced computer hardware that allows di-
rect communications among multiple GPUs. Using the multi-node hybrid 
architectures at Oak Ridge Leadership Computing Facility (OLCF), the opti-
mized GPU PIC code achieves a reasonable parallel performance and scales 
up to 64 GPUs with 16 million particles.  
 

Keywords 
Particle Accelerator, Particle-In-Cell, GPU, Parallel Beam Dynamics  
Simulation 

 

1. Introduction 

The modern particle accelerator as one of the most important inventions in 20th 
century provides an important tool in scientific discovery and industrial 
application. For example, large accelerators are used in high energy physics and 
nuclear physics to study the fundamental structure and property of matter, to 
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discover new fundamental particles, and to understand the origin of the universe. 
Particle accelerators are also used to generate high brightness x-ray radiation 
and high-intensity neutron flux for research in material science, biology, 
chemistry, physics, and others. In industry, particle accelerators are used for 
radiotherapy, ion implantation, and other applications. 

Inside the particle accelerator, a train of charged particle beams are produced, 
confined, and accelerated to a range of energies (from MeV to TeV) for different 
applications. In the particle accelerator design and operation, one major area 
(beam dynamics) is to study the dynamic behavior of those charged particles 
inside the accelerator in order to minimize the loss of charged particles onto the 
pipe wall causing radioactivity, and to maximize the brightness of the beam to 
achieve best performance in high energy colliders and x-ray radiation light 
sources. To study the charged particle beam dynamics self-consistently, the 
particle-in-cell (PIC) method has been used in the particle accelerator 
community [1]-[8]. In this method, at each step, particles are deposited onto a 
computational grid to obtain charge density distribution in spatial domain. Then, 
the Poisson equation is solved on the grid in the moving beam frame to attain 
electric fields due to the Coulomb interaction of charged particles on the grid. 
These fields (also called space-charge fields) are then interpolated from the grid 
back to the particles and transformed to the laboratory frame following the 
relativistic Lorentz transform. The space-charge fields together with the external 
fields from the particle accelerator devices are used to advance particles. This 
step is repeated many times until the beam moves out of the accelerator or the 
maximum computing time is reached. The PIC method for beam dynamics 
simulation is usually computationally expensive since it tracks a large number of 
macroparticles (more than millions) and has to solve the Poisson equation 
self-consistently at each step. A number of parallel PIC beam dynamics codes 
using Message Passing Interface (MPI) were developed in the accelerator 
community for high intensity/high brightness beam simulations [2] [3] [4] [5] 
[6]. 

The pure MPI based parallel beam dynamics code is useful on parallel 
multi-processor computers. However, these massive parallel computers can be 
expensive. Meanwhile, the Graphics Processing Unit (GPU), which was 
originally developed for computer graphics and video game, now becomes a 
general-purpose computer processor and cost-effective for high-performance 
computing [9] [10] [11]. Moreover, one GPU contains several hundreds or even 
thousands of computing cores. For example, a single Nvidia GTX GPU consists 
of several Streaming Multiprocessor (SM), and each SM contains many 
computing cores. It uses high-bandwidth bus (~200 Gb/s) connecting the 
memory on chip to the computing cores and is optimized for simultaneous 
parallel calculations, particularly for single instruction multiple data (SIMD) 
operations [12]. Manufacturers of GPU have approaches to general-purpose 
computation with their own application program interfaces (API). The Compute 
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Unified Device Architecture (CUDA) is a parallel computing platform and 
programming model for GPUs developed by the NVIDIA [13] [14]. It enables a 
fast implementation of numerical models on a GPU and dramatically increases 
computing performance by harnessing the computing power of the GPU. 

A number of PIC codes (especially in plasma physics community) were 
implemented on GPUs in previous studies and significant improvement of 
computing performance was reported in [15]-[27]. Most of those studies focused 
on the performance optimization of the PIC code on a single GPU. However, as 
the size of problem increases (e.g. with the number of simulation particles >10 
millions), the memory of a single GPU (typically a few GB) can no longer store 
the problem for simulation, multiple GPUs are needed. Meanwhile, some 
large-scale high-performance computers such as Titan and Summit at Oak 
Ridge Leadership Computing Facility (OCLF) [28] [29] have multi-node hybrid 
architecture where each node contains one or multiple GPUs. In previous 
studies, multiple GPUs were used for electromagnetic plasma PICs [16] [19] [20]. 
To the best of our knowledge, there was no report on the implementation of a 
parallel particle accelerator beam dynamics PIC code on multiple GPU nodes. In 
this paper, the MPI based parallel beam dynamics PIC code, ImpactT [6], was 
implemented and optimized using the CUDA parallel computing platform on 
both a single GPU and multi-node GPU architectures. Using a single GTX 1060 
GPU, the code speeds up by more than 40 times compared with that running on 
an AMD Opteron 6134 CPU core. This is about twice faster than the original 
MPI version running on the 64-core AMD CPU computer. Besides the 
techniques used for single GPU optimization, we also tested two parallel 
strategies for multi-GPU performance optimization. 

The organization of the paper is as follows, after the Introduction, the PIC 
particle tracking model and the race condition on the GPU of the hybrid 
architecture computer are reviewed in Section 2. Then, we present the PIC code 
structure and its GPU optimization, especially the parallel depositor without 
conflict, in Section 3. After that, the performance of the PIC code on a single 
GPU and two multi-node GPUs is presented in Section 4. Finally, conclusions 
are drawn in Section 5. 

2. Multi-Particle Beam Dynamics PIC Model 

Inside particle accelerators, the charged particles evolve subject to the following 
equations:  

d
d

c
t γ
=

r p                              (1) 

d 1
d

q
t mc mγ

 
= + × 

 

p E p B                       (2) 

where ( ), ,x y z=r  denotes the particle spatial coordinates,  
( ), ,x y zp mc p mc p mc=p  the particle normalized mechanic momentum, m 

the particle rest mass, q the particle charge, c the speed of light in vacuum, γ  
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the relativistic factor defined by 1+ ⋅p p , t the time, ( ), , ,x y z tE  the electric 
field, and ( ), , ,x y z tB  the magnetic field. Here, the electric and the magnetic 
fields include both the space-charge fields from the solution of the Poisson 
equation and the external fields. 

The solution of the Poisson equation can be written as:  

( ) ( ) ( )
0

1, , , , , , , , , d d d
4

x y z G x x y y z z x y z x y zφ ρ′ ′ ′ ′ ′ ′ ′ ′ ′=
π ∫       (3) 

where G is Green’s function of the Poisson equation, ρ  is the charge density 
distribution function. For the charged particle beam inside the accelerator, the 
pipe aperture size is normally much larger than the size of the beam. In this case, 
an open boundary condition can be assumed for the solution of the Green’s 
function in the above equation. Here, the Green function is given by:  

( )
( ) ( ) ( )2 2 2

1, , , , ,G x x y y z z
x x y y z z

′ ′ ′ =
′ ′ ′− + − + −

         (4) 

Now consider a simulation of an open system where the computational 
domain containing the particles has a range of ( )0, xL , ( )0, yL  and ( )0, zL , 
and where each dimension is discretized using xN , yN  and zN  point, from 
Equaiton (3), the electric potentials on the grid can be approximated as:  

( ) ( ) ( )
1 1 10

, , , , , ,
4

yx zNN N
x y z

i j k i i j j k k i j k
i j k

h h h
x y z G x x y y z z x y zφ ρ′ ′ ′ ′ ′ ′

′ ′ ′= = =

= − − −
π ∑∑∑

  (5) 

where ( )1i xx i h= − , ( )1j yy j h= − , and ( )1k zz k h= − . The direct numerical 
summation of the above equation for all grid points can be very expensive and 
the computational cost scales as 2N , where x y zN N N N=  is the total number 
of grid points. Fortunately, this summation can be replaced by the summation in 
a periodic doubled computational domain. In this periodic doubled 
computational domain, the original Green’s function in the negative domain, i.e. 
( )G r− , is mapped to the extended domain following the periodic condition. 

The charge density in the extended domain is set to zero. In this periodic system 
with a new periodic Green’s function and charge density, the summation can be 
done efficiently using the Fast Fourier Transform (FFT) method whose 
computational cost scales as ( )( )logO N N . This new summation yields exactly 
the same values as the original summation inside the original domain [30]. 

Using the above mathematical equations, a schematic diagram of a single step 
of the PIC model in the beam dynamics simulation is shown in Figure 1. First, 
the charged particles are deposited onto the mesh grid to obtain charge density 
distribution on the grid. Next, the field on the grid is obtained by solving the 
Poisson equation using the above FFT based convolution method and 
interpolated back to individual particle location. Finally, the particles are pushed 
using the electric and magnetic fields including both the self-consistent 
space-charge fields and the external fields by solving Equations (1) and (2) using 
a numerical integrator. This loop repeats for many times until the stopping 
criterion is reached. 
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Figure 1. A single step of the PIC model. 

 

To implement the above beam dynamics PIC model onto the multi-node 
hybrid architecture, the race condition arises and may lead to wrong results 
during the deposition stage due to the use of multiple threads in the GPU. The 
race condition occurs when two or more threads access shared data in a memory 
and try to write in it simultaneously [31] [32]. Usually in a multi-thread 
scheduling system, threads can be scheduled at any sequence, so coders cannot 
determine the order in which the threads would attempt to access the shared 
data. Therefore, the results are dependent on the thread scheduling algorithm, 
i.e. both threads are “racing” to access and change the data. To avoid the race 
condition, it’s necessary to sort the particle with respect to the grid before the 
deposition by dividing the grid into smaller tiles, as shown in Figure 2. Each tile 
is associated with a thread and each tile contains a number of grid points. 
Assuming N is the number of tiles, we declare N arrays corresponding to N tiles 
and assign the particle data into each array. At each step, the particles are sorted 
into different tiles after the particle advance. In this way, each thread handles 
particles in the corresponding tile without the race condition. A flow chart of the 
PIC algorithm including the reordering is shown in Figure 3. In the following 
section, we will describe the components which are different from the original 
PIC algorithm, as marked yellow in Figure 3. 

3. Implementation on Multiple GPUs 

The implementation of the particle accelerator beam dynamics simulation code 
on GPUs is discussed in this section. The particles are distributed among 
multiple GPUs uniformly (in the replication method) or based on their spatial 
positions (in the domain-decomposition method) [33]. With the particles on 
each GPU, we will reorder them into individual tile to avoid the race condition. 
Then, those particles are deposited onto a computational grid to obtain the 
charge density distribution on the grid. Next, the Poisson equation is solved on 
the grid to attain the space-charge fields. Finally, those fields together with the 
external fields are used to push the particles in phase space. 
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Figure 2. A schematic plot of tiles with computational grids. 

 

 

Figure 3. A flow of the PIC chart with the particle reordering. 

3.1. Reorder 

The implementation of pusher, kicker, and depositor on multiple GPUs were 
done by distributing the total number of particles among the GPUs. However, 
the particles must be reordered (i.e. sorted) at each time step before the particle 
deposition to avoid the race condition, which is not very straightforward since it 
is highly irregular and hard to execute in parallel. Here we use a buffer array as a 
temporary storage. 

Firstly, the arrays nhole and ndirec are declared to handle the indices and the 
number of particles that would leave the current tile to each direction, as shown 
by the orange arrows in Figure 4. The nhole is preallocated at a given size, which 
determines the maximum number of particles leaving these current tiles. The 
size is determined by the available GPU memory size. If the number of particles 
leaving a tile exceeds the maximum number, an exception would rise and the 
code would stop. In this case, the user should use a smaller number of particles 
or run the code on a GPU with larger memory size. 
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Figure 4. A schematic plot of particle reordering for different tiles. 

 

Secondly, the particles leaving a tile are copied into an ordered global buffer: 
pbuff. Same as nhole, the size of pbuff is also determined by the maximum 
number of particles that would leave the current tile. With a running sum to the 
ndirec, we can know the memory address where we would put the particles to, 
so the particles going to the same direction are stored contiguously. 

Thirdly, for each tile, we could know how many particles would move in and 
where they are located in pbuff by the nhole and ndirec of the neighbor tiles. If 
there is a particle that leaves this tile, the hole left would be filled by the 
incoming particle first. After all holes are filled, the new incoming particle is put 
to the end of the particle array. If there are still holes left after including all 
incoming particles, some particles at the bottom of the array are moved upward 
to fill in the holes to ensure that the particles in this tile always occupy a 
contiguous memory. 

The procedures can be summarized as follows:  
 Step 1: Write the indices of particles leaving a tile and their direction to nhole 

and ndirec.  
 Step 2: Particles leaving a tile are copied into an ordered global buffer: pbuff.  
 Step 3: According to nhole and ndirec, the buffer data is copied back into 

particle array.  
With those procedures, there would be no race condition because each thread 

only handles its own tile and buffer. 

3.2. Depositor 

After the particles reordering, the memory locations of the particles in the same 
tile are arranged contiguously. In this way, each thread can handle the particles 
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in a tile without thread conflict to obtain the local density distribution rhoTile. 
Then, the global density distribution rho is attained by combining all local 
rhoTiles, as shown in Figure 5. 

When using multiple GPUs, we have two options. One is to have different 
GPUs handle different spatial subdomains and communicate before and after 
deposition, which is called domain decomposition method. The other one is to 
let all GPUs deposit the particles onto the entire domain and performs a 
communication afterwards, which we call data replication method. 

In the following, an example using 4 GPUs is shown to compare these two 
methods with the assumption that the total number of grid points is 
64 64 64× × , and the number of tiles is 16 16 16× ×  so that each tile contains 
4 4 4× ×  grid points. 

3.2.1. Domain Decomposition Method 
In the domain decomposition method, each GPU only needs to process the 
corresponding domain. Now that the number of tiles is 16 16 16× × , the domain 
size for each GPU would be 4 16 16× ×  tiles when running on 4 GPUs. 
However, this method requires prior sorting of the particles with respect to the 
subdomains to ensure that the particle data is located in the memory of correct 
GPU, thus additional communication and computation is necessary. The 
procedure is as follows: 

1) Move particles among different GPUs.  
(a) Pick particles. Each thread handles a tile, so we have 4 16 16 1024× × =  

threads. It is less than the core number on a GPU, and we are unable to fully 
utilize the GPU. 

(b) Communication among GPUs  
i) Copy from GPU memory to host node memory. The total amount of data to 

be copied is ( )4 16 16 1nGPU nPtcMax× × × − × , in which nPtcMax  is the max 
number of particles to be transferred to another GPU.  

ii) Communication through MPI send/receive.  
iii) Copy from host memory to GPU memory. The total amount of data to be 

copied is same as above. 
 

 

Figure 5. A schematic plot of deposition and combination. 
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2) Reorder particles inside the GPU, as shown in Section 3.1.  
3) Deposit inside the GPU. It should be noted that the number of particles on 

each GPUs is different, so it may take a longer time to deposit.  
4) Gather the particle density among GPUs.  
a) Copy 16 64 64× ×  grid points from GPU memory to host memory.  
b) Communicate 64 64 64× ×  grid points through MPI Allgether.  
c) Copy 16 64 64× ×  grid points from host memory to GPU memory.  

3.2.2. Data Replication Method 
In the replication method, all GPUs contain the same number of particles and do 
the same work. Compared with domain decomposition method, it eliminates the 
need to exchange particle data among GPUs. The process is as follows, each 
corresponding to that from the domain decomposition method above. 

1) No sorting among different GPUs.? 
2) Reorder particles inside the GPU, with 16 16 16 4096× × =  tiles per GPU. 
3) Deposit inside the GPU. Since the first step is to sort the particles in the 

GPU, the number of particles on each GPU is the same, the number of grid 
points is 64 64 64× × . 

4) Gather the particle density among GPUs.  
a) Copy 64 64 64× ×  grid points from GPU memory to host memory. 
b) Communicate 64 64 64× ×  grid points through MPI AllReduce. 
c) Copy 64 64 64× ×  grid points from host memory to GPU memory. 
Comparing two methods, the domain decomposition method has extra 

communications in the first step, which results in a smaller amount of 
computational workload in the following steps. However, it might not be worthy 
costing communication to get less computation since the scalability of the PIC 
code is mainly limited by the memory bandwidth and the communication speed, 
not to mention that in the domain decomposition method the GPUs cannot be 
fully utilized for a typical problem size. So, in the code and the following 
performance test, the replication method is chosen for the depositor. 

3.3. Poisson Solver 

After depositing the particles onto the grid, the next step is to solve the Poisson 
equation on the grid. The main part of the Poisson solver is the FFT. In the GPU 
implementation, we used NVIDIA’s CUDA Fast Fourier Transform Library 
(cuFFT) [34] to do this. Similar to the depositor, there are two ways to execute 
the Poisson solver on multi-GPUs. One is the domain decomposition method, 
which refers to the PIC program on the CPU and uses different processors to 
handle different spatial subdomains; The other is the replication method to 
directly make all GPUs do the same work. Because the Poisson solver is a critical 
and time-consuming part of the entire code, we have implemented and 
compared both methods. 

The advantage of domain decomposition method is that by using multi-GPUs 
to process different spatial subdomains, each GPU will have less computation 
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work load and thereby the speed of the program will be improved. The drawback 
is that domain decomposition method requires communication among different 
GPUs. Currently, the GPUs cannot directly exchange information among each 
other, especially between different nodes. This has to be carried out through the 
host(CPU), which means that the communication requires three steps: copy data 
from the GPU to the host(CPU), communicate among CPUs, and copy data 
back from the CPU to the GPU. 

Assuming that the grid points in the directions of X, Y and Z are xN , yN  
and zN  respectively, when performing the FFT in the X direction, the array 
length of the transform would be xN , and the number of transformations 
would be y zN N× . If we use 4 GPUs, the GPU 1 needs to process data as  

[ ] [ ]0
4

rho y
x z

N
N N

 
 
 

→ . Similarly, the data for GPU 2, 3, and 4 would be  

[ ] [ ]
4

ho 2
4

r y y
x z

N N
N N

 
→ 

 
, [ ] [ ]2

4
o 3

4
rh y y

x z

N N
N N

 
→ 

 
, and  

[ ] [ ]3
4

rho y
x y z

N
N N N

 
 
 

→ . Each GPU only needs 
4

y
z

N
N×  transforms. Ideally,  

it would take only a quarter of the time to run on 4 GPUs compared with that on 
a single GPU. However, after the Fourier transform in X direction, additional 
data moving is required for the Y-direction operation. Currently, the data on  

each GPU is [ ] ( ) ( ) [ ]1rho
4 4

y y
x z

N N
N n n N

 
 → 
 

− , but the data needed for the 

Fourier transform in Y direction is ( ) ( ) [ ]1
4

r
4

ho x x
y z

N N
n n N N       
− → . Data  

transposing and exchanging among GPUs would be necessary. Since the GPUs 
cannot communicate with each other directly, we need to copy the data from the 
GPU back to the CPU memory and communicate on the CPU side, which will 
takes extra time. So the efficiency of the domain decomposition method in 
comparison to the replication method will depend on the difference between the 
extra data moving time and the reduced computation time. More detailed 
performance comparison will be presented in the performance study Section 4. 

3.4. Particle Pushing 

As the particles are put into different tiles after the particle reordering and 
deposition, we have two strategies to parallelize the particle pushing. One is to 
parallelize by tiles just like the depositor, while the other one is to arrange 
particles data back to a compact format and push in a typical parallel mover. A 
test was done and showed that pushing particles by tiles results in a load 
imbalance in the situation where some tiles contain much more particles than 
others. So, despite additional time of copying data, we arrange the particles data 
back to the compact format. The particle pushing can be summarized as: Step 1, 
arrange particles back to compact format array dev_ray [N] [6]; Step 2, push and 
kick particles; Step 3, arrange particles to tile format array dev_ray_tile for next 
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reordering and deposition. 

4. Performance Tests 

The performance of the beam dynamics GPU code on hybrid computer 
architectures was tested on a single GPU, a multi-noide GPU cluster Titan, and a 
GPU cluster SummitDev [35] [36]. Titan is a multi-node hybrid architecture 
supercomputer located at Oak Ridge National Laboratory (ORNL). It has 18,688 
nodes each containing a 16-core AMD Opteron 6274 CPU with 32 GB of 
memory and an NVIDIA Tesla K20X GPU with 6 GB of memory [28]. Each 
Titan GPU contains 2688 CUDA cores at 732 MHz. The SummitDev system is 
an early access system of ORNL’s next supercomputer Summit [29]. Each 
SummitDev node has 2 IBM POWER8 CPUs and 4 NVIDIA Tesla P100 GPUs. 
Each GPU contains 3584 cores and 16 GB memory. Before the performance 
study of the entire code on those GPUs, we first tested the performance of the 
Poisson solver which is usually the most time-consuming part of the code on 
Titan. 

4.1. Performance Test of the Poisson Solver 

We first tested the time spent on solving the Poisson equation on Titan using the 
domain decomposition method with 64 64 64× ×  grid points, as shown in 
Figure 6. The blue line is the total time, and the different columns represent the 
time spent on different parts of the Poisson solver. The total time scales 
reasonably well with an increasing number of GPUs, and reaches the minimum 
with 32 GPUs, after which the time for transpose and communication becomes 
dominant. The time needed for copying data between CPU and GPU is reduced 
almost linearly with the number of GPUs, while the time for communication 
among the CPU nodes decreases up to 32 GPUs but begins to increase after the 
communication becomes dominant. Looking into the detail, we can see that the 
computation time only takes a very small fraction of the total time, while the 
time for copying data between CPU and GPU and the communication among 
nodes dominates the total time. 

We then tested this parallel strategy using larger problem size. Figure 7 shows 
the solver time as a function of GPUs with 128 128 128× ×  grid points. It is seen  
 

 
Figure 6. The scalability of the Poisson solver under domain decomposition method 
using 64 64 64× ×  grid points. 
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Figure 7. The scalability of the Poisson solver under domain decomposition method 
using 128 128 128× ×  grid points. 
 
that in this case, the minimum time is reached with 128 GPUs since the amount 
of computation becomes larger. However, using the domain decomposition 
method, the minimum computing time of the solver in both 64 64 64× ×  and 
128 128 128× ×  cases is still larger than the computing time on a single GPU 
without data copying and communication, which will be the time using the 
replication method. This minimum total computing time is mainly limited by 
the memory bandwidth between the CPU and the GPU and the communication 
speed among the CPU nodes. So, this parallelization strategy would not be very 
useful until the system has large enough memory bandwidth to copy data. It is 
expected the next generation GPU from NVIDIA would allow direct copy 
technology, which can directly communicate among multiple GPUs and will 
reduce the data copying time significantly. In that case, it would be more 
efficient to use the domain decomposition parallel strategy in the Poisson Solver. 
At present in the following performance study, the replication method is used to 
let all GPUs run the same Poisson solver. 

4.2. Performance Study on a Single GPU 

The performance of the GPU beam dynamics PIC code is first tested on a single 
NVIDIA GeForce GTX 1060 GPU with 6GB memory size. As a comparison, we 
also run the CPU code on an AMD Opteron(TM) Processor 6376 with 2.3 GHz 
clock speed. The speedup is calculated by the CPU runtime divided by the GPU 
runtime. In this performance test, the grid number is 64 64 64× ×  while the 
particle number varies from 16 thousand to 1.6 million. 

Figure 8 shows the speedup as a function of the number of particles using the 
single GPU. For small problem size, the speed up of the entire PIC code is over 
50 and decreases to about 30 as the number of particles increases to 1.6 million. 
There is a large variation in the speedup of individual function of the code. The 
speedup of some functions, such as depositor, pusher&kicker, and output, 
increases with the increase of the particle number. However, the speedup of the 
Poisson solver, colored as orange in Figure 8, is about 64 and is independent of 
the change of the particle number. The light blue and dark blue columns are the 
speedups of the depositor and the diagnostic output of the charged particle beam  
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Figure 8. Speedup of the beam dynamics GPU PIC Code on a single GPU versus the 
number of particles. 
 
information. The GPU’s depositor also includes the particle reordering 
operation. Because of the irregularity of reordering, the speedup of depositor is 
relatively low. The diagnostic output also contains the calculation of the statistics 
of beam distribution. The reason for low speedup is due to the limit of output 
bandwidth. The relatively low speedups of the depositor and the output reduce 
the speedup of the entire code. The speedup of the entire code decreases when 
the particle number becomes larger. The reason is that the time consumed by the 
depositor, which has a lower speedup, dominates when the particle number 
becomes larger, as shown in Figure 9. 

4.3. Performance Study on Multi-Node GPUs 

After testing on a single GPU, we ran performance test of the GPU PIC code on 
the multi-node Titan GPUs. Figure 10 shows the results with 1.6 million 
particles. The total computing time decreases with the increase of the GPU 
number, and reaches the minimum with 32 GPUs. This is because the time 
consumed by pusher&kicker and depositor become dominant in the large 
particle number case as seen in Figure 9. Those functions scale well on multiple 
GPUs as the number of particles on each GPU becomes less, the amount of 
computation decreases too. 

We further tested the performance of the GPU PIC code using a larger 
number of particles, 16 million particles. The total computing time as a function 
of the number of GPUs is shown in Figure 11. It is seen that the scalability of 
the code improves and the minimum computing time reaches 64 GPUs in this 
test. In the example above, we could not run the test on 1 or 2 GPUs due to the 
limit of the GPU memory size. Unlike CPU memory, which can be easily 
extended, the GPU memory is fixed in a given GPU model. Ideally, for a GPU 
with memory size of 6 GB, the maximum particle number is about 80 million. 
Here, each particle has 9 attributes and each is stored as a double precision 
number. However, it is not practical to attain this number in the real simulation 
since multiple copies of the particle array are used in the code. This is also 
affected by the fragment of the GPU memory. Besides the computing efficiency, 
the limit of memory size is another reason why we need to use multiple GPUs. 
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Similar to the scaling study on Titan, we also carried out a scaling study of the 
GPU PIC code on SummitDev, a more advanced GPU-accelerated early user test 
supercomputer at OCLF. In this computer, the direct communication among 
multiple GPUs are not enabled yet. Figure 12 shows the total computing time as 
a function of the number of GPUs with 1.6 million particles. The total time 
decreases with the increase of GPUs, and reaches the minimum with 16 GPUs. 
Compared with the same problem size running on the Titan, it takes 50% less 
time due to the improved hardware capability. Figure 13 shows the results with 
16 million particles. Limited by the GPU memory size, the code cannot run on 
one GPU. In this case, the total computing time monotonically decreases due to 
the availability of a larger amount of computation. 
 

 
Figure 9. The percentage of time taken by each part of the program with different 
number of particles. 
 

 

Figure 10. The scalability of the PIC code using 64 64 64× ×  grid points and 1.6M 
particles on Titan. 
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Figure 11. The scalability of the PIC code using 64 64 64× ×  grid points and 16M 
particles on Titan. 
 

 

Figure 12. The scalability of the PIC code using 64 64 64× ×  grid points and 1.6M 
particles on SummitDev. 
 

 

Figure 13. The scalability of the PIC code using 64 64 64× ×  grid points and 16M 
particles on SummitDev. 

5. Conclusion 

A multi-particle parallel beam dynamics simulation code based on the PIC 
method was implemented and optimized on hybrid multi-node GPU 
architectures using the CUDA parallel computing platform. The GPU code 
structure and the parallel strategy were discussed to avoid race condition and to 
achieve better performance. On a single GPU card, we achieved a maximum 
speedup of more than 50 compared with a single CPU core. The GPU PIC code 
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also shows reasonably good scalability (up to 64 GPUs) on multi-node GPU 
clusters Titan and SummitDev when the particle number is moderate. This 
scalability will further improve with the use of a large number of particles (>100 
million), which is needed in some high-resolution accelerator beam dynamics 
applications. 
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