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a b s t r a c t

The price of solar PV systems has declined rapidly, yet there are some much lower-priced systems than
others. This study explores the factors that determine prices in these low-priced (LP) systems. Using a
data set of 42,611 residential-scale PV systems installed in the U.S. in 2013, we use quantile regressions to
estimate the importance of factors affecting the installed prices for LP systems (those at the 10th
percentile) in comparison to median-priced systems. We find that the value of solar to consumersea
variable that accounts for subsidies, electric rates, and PV generation levelseis associated with lower
prices for LP systems but higher prices for median priced systems. Conversely, systems installed in new
home construction are associated with lower prices at the median but higher prices for LP. Other vari-
ables have larger price-reducing effects on LP than on median priced systems: systems installed in
Arizona and Florida, as well as commercial and thin film systems. In contrast, the following have a
smaller effect on prices for LP systems than median priced systems: tracking systems, self-installations,
systems installed in Massachusetts, the system size, and installer experience. These results highlight the
complex factors at play that lead to LP systems and shed light into how such LP systems can come about.

Published by Elsevier Ltd.
1. Introduction

The global deployment of solar photovoltaics (PV) is on the rise,
motivated by a variety of policy interventions and falling solar
prices [1e3]. But the degree to which solar continues its rapid pace
of deployment and its resulting role in climate mitigation depends
on future price reductions [4e7]. Increasingly lower installed prices
will be important to help overcome the inherent grid-integration
limitations to time-variable PV output and to counteract declining
incentives and compensation rates [8e11]. As such, a key goal for
the solar industry, policymakers, and other decision makers is to
foster continued, dramatic declines in solar installed prices to
ensure a sizable future role for this technology in meeting energy
supply needs under carbon constraints.

A surprising feature of the PV market is that while the mean
ay, Golden, CO, 80401, USA.
Shaughnessy).
installed price has been decreasing rapidly, there is also consider-
able heterogeneity in the prices of installed systems, both across
and within markets [12e16]. Researchers have begun exploring
some of the reasons for this heterogeneity in PV pricing, focusing
on factors that influence prices at the median. Gillingham et al.
(2016), for example, broadly assess factors influencing PV system
price differences, including search costs, market competition,
installer experience and market share, incentive levels, market
characteristics, solar policy design, and PV system characteristics.
Other work investigates the impact of local permitting processes
[17,18], solar incentives [19e21], market concentration [22],
customer acquisition costs [12], and the influence of third-party
ownership (TPO) [23]. All of this previous work has focused on
understanding trends for mean or median PV systems.

The existence of a subset of low-priced (LP) systems in the left
tail of the installed price distribution generates two policy-relevant
research questions. First, what distinguishes LP systems from
higher-priced systems, and how can policymakers increase the
availability of LP systems? Second, what factors drive prices within

mailto:eric.oshaughnessy@nrel.gov
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Fig. 1. Probability distribution of installed PV prices 2013.
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LP systems, and howcan policymakersmake LP systems even lower
priced? Nemet et al. (2017) [16] address the first question, finding
that system characteristics, location, and policies have significant
effects on whether systems are priced below the 10th percentile of
the price distribution. Our study builds on the past literature by
addressing the second question. We statistically evaluate what
drives LP systems to be even lower priced. An improved under-
standing of the factors that drive prices in LP systems will help
policymakers identify further opportunities for installed price re-
ductions and deployment expansion.

Consistent with previous studies, we find that local PV policies
and incentives affect installed prices [15e21]. Our contribution
with this study is that policy appears to have differential effects on
LP systems. Previous work suggests that more generous local PV
incentives increase installed prices at the median [15]. Our study
finds that this relationship flips at the low end of the price distri-
bution: more favorable PV policy environments result in lower
prices for LP systems. Our findings indicate that PV policies have
complex influences on installed prices and that these effects vary at
different points in the price distribution.

In conducting this work, we analyze 42,611 residential-scale PV
systems installed in the United States in 2013, estimating the fac-
tors affecting installed prices for LP systems. We leverage the
sizable data set of system-level PV prices managed by Lawrence
Berkeley National Laboratory (LBNL).1 In order to help gauge the
possible drivers for achieving even lower prices, as might be
needed if solar is to play a major role in climate mitigation, we are
especially interested in knowingwhether these factors are different
from those affecting PV systems at the middle of the price distri-
bution. As such, we use quantile regressions to compare effects for
LP to those at the median.

2. Material and methods

Our overall approach in addressing these questions is to apply
quantile regressions to data on U.S. residential-scale PV
installations.

2.1. Data sources

We begin with data from LBNL's Tracking the Sun (TTS) report
series [24]. For TTS, individual PV system installation data is
collected for over 400,000 systems from 59 PV incentive programs,
accounting for about two thirds of all PV installations in the US
since 1998. The data includes the systems' total system transaction
price, which is the principal variable of interest in this analysis,
installation date, location (zip codes or street addresses), incentive
levels, customer segment, third party ownership, installer infor-
mation, as well as a number of other system characteristics. Ref.
[24] contains a comprehensive description of the TTS data set.

We extend the TTS dataset for this analysis by constructing new
variables from installation dates, locations, and installer informa-
tion. This includes the number of active installers in the county; the
aggregate, discounted county-level experience for installers; the
consumer value of solar (present value of all incentives and elec-
tricity bill savings over the lifetime of the system, based on simu-
lated PV generation, average utility electricity rates, calculated and
reported incentive levels); module and inverter price indices from
Ref. [25]; and a number of socio-economic and demographic vari-
ables associated with the zip code or county where the PV system is
1 This paper is part of a larger body of research conducted by LBNL, University of
TexaseAustin, University of WisconsineMadison, Yale University, and the National
Renewable Energy Laboratory that is exploring U.S. PV system price variability.
installed, such as household density, income, and wages from the
U.S. Census [26], and the U.S. Bureau of Labor Statistics [27]. We
include variable definitions in the Supporting Information (SI).
2.2. Variables and restrictions

We restrict this data set by including only systems with the
following characteristics: installed in 2013 (for the most recent
data), between 1 and 15 kWDC (for residential scale), and with
installed prices between $1 and $25/W (to eliminate outliers). The
limitation to 2013 data was based on the lengthy data collection
and cleaning process involved for the large and complex TTS
dataset. The U.S. PV market has grown since 2013 but has not un-
dergone significant changes that would undermine the validity of
our findings based on the dates of the data. Further, we drop sys-
tems with incomplete information, e.g., on county and installer
name. We include Third Party Owned (TPO) systems but exclude
those with prices based on “appraised” value (n ¼ 19,765). Rather
than reflecting actual transactions, appraised value prices are based
on companies' idiosyncratic formulae and thus do not convey
meaningful information about the transacted price of an installa-
tion; these are reported by vertically integrated solar installers who
install and own TPO systems and hence do not have transaction
prices to report. Exclusion of appraised value systems increases our
confidence in the modeled results (see SI). The resulting data set
includes complete information on 42,611 installed residential-scale
systems,2 and consists of customer-owned PV systems and TPO
systems that do not report appraised values but instead report
transaction prices between the installer and the third-party owner.
Fig. 1 shows the probability distribution of installed prices for these
systems. We include summary statistics for all variables in the SI.
2.3. Quantile regression approach

Because we are particularly interested in understanding the
factors that affect systems with the lowest prices, we use a quantile
regression approach [28]. Rather than estimating amodel to predict
the conditional mean price, this approach weighs positive and
negative error terms differently to predict outcomes at any quan-
tile. For example, we can target prices with larger negative error
terms, such as the 10th percentile. To represent LP systems, we use
the 10th percentile, where installed price, P¼ $3.46/W, and employ
the specification used in Nemet et al. (2017)[16], which uses re-
gressors for competition variables (COMP), firm (FIRM) and market
2 Included in the dataset are only systems 1e15 kW in size, typical of residential
installations but also including smaller commercial installations.



Fig. 2. Components of the consumer value of solar for all systems.
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(MKT) characteristics, policies (POL), PV system attributes (SYS-
TEM), and binary variables (B):

Pijst ¼ b0 þ b1COMPist þ b2FIRMjst þ b3MKTist þ b4POList
þ b5SYSTEMist þ Bþ eijst (1)

for each installation i, installer firm j, state s, and date t. COMP is a
vector of competition variables, which consists of the number of
active installers and county-level concentration Herfindahl-
Hirschman index (HHI). FIRM includes county-level experience,
market share, and installer scale. MKT includes: household density;
whether the customer is residential, commercial, or other; whether
the system is third-party or customer owned; as well as income for
the zip code. POL includes four policy variables: the value of solar to
consumers (discussed below and in SI), percent of incentives
coming from solar renewable energy credits (SREC), interconnec-
tion score, and sales tax. SYSTEM is a vector of installation char-
acteristics including system size (and size squared), average
module and inverter hardware costs, a zip-code level wage index,
Fig. 3. Disaggregation of value o

Fig. 4. Value of solar disaggrega
and module efficiency. It also includes binary variables for tracking,
building integrated PV (BiPV), new construction, battery backup,
self-installation, micro-inverters, Chinese panels, and thin-film
panels. We add separate binary variables, B, for the state and the
month of application for the installation. We arrange our specifi-
cations to avoid including highly collinear pairs, e.g., installer scale
and experience; zip-code-level education, income, and wages. The
supplementary information contains further details on the variable
definitions.

3. Results

We first provide descriptive comparisons in Section 3.1 to
contextualize the evaluative results. The results of the quantile
regressions are presented in Section 3.2.

3.1. Descriptive comparisons

Before interpreting the quantile regression results, it helps to
understand two aspects of the data descriptively, the consumer
value of solar and third party ownership-the first because it is
important for the research questions and results, and the second
because it bifurcates the data set. The following descriptives pro-
vide context for interpreting the subsequent regression results.

3.1.1. Consumer value of solar
Consumer value of solar measures the sum of up-front tax

credits and rebates (federal investment tax credit [ITC], state ITC,
rebates) and lifetime revenue streams (utility bill savings, SRECs,
performance-based incentives, feed-in tariffs) accruing to a system
f solar components by state.

tion by system price decile.



G.F. Nemet et al. / Renewable Energy 114 (2017) 1333e13391336
(Fig. 2).
Value of solar varies geographically according to incentive

availability, local retail rates, and local solar resources (Fig. 3).
Utility bill savings are the primary contributor to value of solar in
most states, comprising about 64% of the value of solar of an
average systemehighest in California, lowest in Florida (utility bill
savings in Florida are replaced by feed-in tariff revenue).

The mean value of solar of LP systems is about $0.68/W lower
than non-LP systems (t¼ 27), due primarily to a $0.67/W difference
in mean utility bill savings (t¼ 24) (Fig. 4). However, previous work
has found that LP systems are associated with higher value of solar
when controlling for state fixed effects and other covariates [16].
This change in effect is driven strongly by dynamics in California.
Due in part to steeper tiered rate structures in northern California
(the PG&E utility service area), average utility bill savings are about
$2.70/W higher in California than in other states (Fig. 3). California's
disproportionate representation among non-LP systems (about 68%
of non-LP systems compared to 34% of LP systems) drives a negative
value/LP relationship without state fixed effects [16], indicating
that higher value of solar PV systems are more likely to be non-LP.
However, within California, utility bill savings are about $0.79/W
higher for LP than for non-LP systems (t¼ 21), contributing to a sign
flip for the value/LP relationship when including state fixed effects.
In the quantile regressions, we assess the value/LP relationship
further, and in the discussion consider differences between
northern and southern California.

Spatially variable factors, such as value of solar, can drive
geographic price variability. In general, system prices are higher in
California, especially southern California, and relatively lower in
other major markets such as Arizona and New Jersey (Fig. 5). Low
prices in Arizona and New Jersey, which also happen to be rela-
tively low value of solar states, further drive a negative value/LP
correlation at the national level. However, our quantile regression
models, which include state fixed effects to control for unobserved
state differences, effectively measure state-level relationships be-
tween value of solar and installed prices. The most prominent
state-level value/price relationship is in California, a relationship
we discuss in the concluding section.

3.1.2. Third-party ownership
System ownership (host-owned vs. TPO) is another spatially

heterogeneous factor that could explain geographic price variation.
Fig. 5. County-level mean system prices ($/W). Left panel show
System ownership trends vary considerably across states, from six
states with no TPO (due in part to restrictive state policies) to as
high as 87% TPO in New Jersey (Fig. 6). Of the five states with at least
100 TPO systems in the data, TPO systems are less likely to be LP in
two states (CA, NY) andmore likely to be LP in three states (AZ, MA,
NJ). As noted above, these data exclude appraised value TPO
systems.

3.2. Quantile regressions

Applying quantile regressions to Equation (1) and our data, we
obtain estimates for the effect of determinants of installed prices at
several quantiles of the price distribution. We first compare the
results across percentiles for our preferred model specification and
then assess the robustness of these results to alternative specifi-
cations. For all of these results, the dependent variable is the
installed price per watt. To address our research questions, we
focus throughout on changes in the sizes and signs of the significant
results in comparing LP systems to non-LP systems.

In addressing research question 1 (which factors are associated
with lower prices among LP systems?), Fig. 7 below summarizes the
results for our preferred specification. On the left side are all vari-
ables for which the coefficients are significant at the 95% level using
quantile regressions targeting the 10th percentile of the price dis-
tribution. The variables above the dashed line are continuous and
those below are binary. The x-axis shows the effect on prices at the
10th percentile of the price distribution ($3.46/W) as blue bars and
at the median ($4.68/W) as white bars. We use the median to
represent other (non-LP) systems. Themagnitudes on the x-axis are
the effects on prices of moving from the 5th percentile to the 95th
percentile for continuous variables. For example, at the 10th
percentile, increasing system size from 3 kW (the 5th percentile) to
10 kW (the 95th percentile) reduces price by $0.27/W. The effect
shown for system size combines both linear and quadratic terms for
size. For the binary variables the values show the effect of shifting
the variable from null to positive. For example, at the 10th
percentile, third party ownership increases prices by $0.25/W
compared to customer ownership. We include the coefficients for
our preferred specifications at the 10th, 25th, 50th, 75th, and 90th
percentiles in the SI. Among the continuous variables we see the
largest effects on 10th percentiles prices from system size, value of
solar, and share of value coming from solar renewable energy
s 5 western states and right panel shows 8 eastern states.



Fig. 6. Percentage of TPO systems by state (percentage of TPO systems that are LP in parentheses).

Fig. 7. Sizes of effects for significant variables in base model. Values indicate change in price from moving from 5th percentile to 95th percentile for each variable.
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credits (SRECs), as well as inverter and module prices. We note that
inverter prices were more dynamic than modules prices during
2013. For the binary variables, the largest factors increasing prices
were tracking systems, building integrated PV, and being installed
in Massachusetts. The largest price-reducing effects were from
commercial, self-installations, and thin film, as well as being
installed in Arizona, Nevada, and Florida.

For research question 2 (are the factors different for LP systems
than for median priced systems?) we focus on results in which the
blue bars and white bars divergeeas evidenced either by different
signs or large (>50%) differences in magnitude. One can see in Fig. 7
that two variables in particular stand out: consumer value of solar
and new construction. For LP systems, moving from 5th percentile
of value of solar ($3.39/W) to the 95th percentile ($8.32/W) reduces
installed price by $0.27/W, approximately 8%. In contrast, value of
solar has the opposite effect at the median; a higher value of solar
increases the prices of systems by $0.23/W at the median. By
separating the effects on LP vs. those on non-LP systems, this result
reconciles two apparently conflicting results in previous work:
previous work on mean priced systems found that value of solar is
associated with increased prices [15] while work on LP systems
found a statistically significant effect in the opposite direction [16].
Similarly, new construction has opposing effects for LP and non-LP
systems. Installations on new homes make LP systems $0.18/W
more expensive than installations on existing homes. For median
priced systems, prices for installations on new construction are
$0.68 less than on existing homes. Note that this is a large effect,
reducing the price of median priced systems by 15%.

We also find results with a large change in the absolute value of
the effect, without a change in direction. The following variables
have effects that are at least $0.25/W larger for LP systems than
median priced systems: Arizona, Florida, commercial, and thin film
modules. These four variables are more important for the prices of
LP systems than for non-LP systems and all four have negative



Fig. 8. Net system cost (install price e value of solar) for 25,073 systems in California.
High net system costs in southern California, especially around Los Angeles, indicate
higher prices and lower value of solar relative to northern California. Lowest and
highest 1% of net system costs excluded to enhance visual clarity.
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effects on prices. Other variables are significant (with directions in
parentheses) but are less important for LP systems than for median
priced systems: tracking (þ), self-installations (�), Massachusetts
(þ), system size (�), and installer experience (�). These five vari-
ables all have effects that are $0.25/W smaller for LP than for non-
LP systems. They are thus more important for median priced sys-
tems than for LP systems.

In the SI we include robustness checks that employ alternative
model specifications.We drop the state dummy variables, use other
variables for competition and installer firm characteristics, add
module characteristics (which are only available for a subset of the
data), and include appraised value systems. We note that the
directional change (from 10th to 50th percentile of all systems) in
value of solar and new construction is robust to dropping the state
dummies. The effects of those two variables are also robust to the
other alternative specifications, with the exception of adding data
on module characteristics (module efficiency and whether it was
produced in China). Adding these additional data to the model,
however, requires us to drop 9500 observations (or 22% of all sys-
tems in the main model). With module data added to the models,
new construction changes from positive to negative (for LP sys-
tems). This could result from the use of higher efficiency (and more
expensive) modules in new construction, which we do see in the
data. It could also result from a change in the mix of systems
involved in dropping one quarter of the observations; these drops
are not randomly distributed but involve dropping entire incentive
programs that do not collect these data.

4. Discussion

We use quantile regression models to regress installed PV sys-
tem prices on an array of characteristics of PV systems, markets,
and the industry. Motivated by policy and societal goals to reduce
the installed PV prices, our quantile regression approach allows us
to look at differences in the effects between LP and non-LP systems.
Both the consumer value of solar and the new construction vari-
ables have especially different effects; in fact, both have the
opposite effect on prices for LP and for median-priced systems.
These results have important implications for what can be expected
from policy given that installed price reductions are a goal. Previous
findings indicated that more favorable solar policy environments
increase customer value of solar and installed prices at the median
[15]. In contrast, we find that the effect flips for LP systems: higher
incentive levels reduce prices at the low end of the installed price
distribution. Together, these results imply that subsidies (the main
way value of solar can be changed) reduce low-end prices but in-
crease prices at the mid-range. Evaluating solar subsidy programs
thus needs to take these differential effects into account. Subsidies
may be effective at reducing low-end prices in the near term but
one should not expect them to reduce median prices. Conversely,
evaluations of programs to install solar on new homes need to
consider that these programs are likely to be successful in reducing
prices for average systems, but not for LP systems. These results are
generally very robust to alternative specifications. One minor
exception is new construction. Specifically, one alternative model
suggests that the higher efficiency modules that tend to be used in
new construction may explain the result that new construction
leads to higher prices for LP systems.

The robustness of the value of solar results is especially inter-
esting in light of previous work showing that the signs of the value
of solar coefficients are sensitive to the inclusion of state dummies
[15,16]. But here, with quantile regressions, we find that even in
models inwhich the state dummies are dropped, the results are the
same: the value of solar coefficient is negative for LP systems and
positive at the median (see SI). This may be due to the prevalence of
LP systems at both ends of the value of solar distribution, as illus-
trated below.

In particular, differences between California's two major utility
service territories provide an explanation for the conflicting value
of solar results. Mean utility bill savings in the Pacific Gas& Electric
(PG&E) service territory (mostly northern California) are about
$1.45/W higher than utility bill savings in the Southern California
Edison (SCE) service territory due to PGE's steeper tiered rate
structure, as of 2013. Further, average prices are about $0.06/W
lower in PG&E than in SCE (t ¼ 4.5), and PG&E systems are 60%
more likely to be LP (t ¼ 9.3). The contrast between the PG&E and
SCE service territories establishes a strong positive value/LP rela-
tionship within California, which comprises 65% of the observa-
tions. To look at prices and value of solar simultaneously we
calculate net system cost (install price e value of solar) for each
system. PG&E systems are associated with lower net system costs
while SCE systems are associated with higher net system costs
(Fig. 8).

At the same time, high value of solar is simultaneously associ-
ated with LP systems and high-priced systems in both California
service territories. In California, systems with a value of solar above
$6.00/W (about 46% of systems) are about 87% more likely than
lower value of solar systems to fall into either extreme of the Cal-
ifornia system price distribution (t ¼ 26) (Fig. 9). While the dy-
namics between northern and southern California explain the
positive value/LP relationship observed in Nemet et al. (2017)[16],
the simultaneous relationship between value of solar and LP and
high-priced systems in California helps explain the results of the
current study. As posited in our previous work, high value of solar
environments may provide conditions that foster both LP and high-
priced systems.
5. Conclusion

Many factors, including local policy environments, affect the
installed prices of residential solar PV systems.We find that some of
these factors affect prices in different ways at different points in the



Fig. 9. Installed price distribution of high value of solar systems (value of solar > $6/W) in California. The uniform distribution should fall along the 10% line; however, the dis-
tribution shows clear clustering in both tails.
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price distribution. Specifically, though previous studies have found
that the consumer value of solar increases prices at the median,
through a quantile regression we find that more favorable PV pol-
icies and incentive reduce prices at the low end of the price dis-
tribution. Given that price reductions are a stated policy goal by the
federal government, as well as by some state incentive programs,
this study elucidates the factors that might make low-priced sys-
tems even less expensive. This analysis has focused on the 12
months of installations in 2013, a period when prices were rather
stable. Ultimately, it will be important to identify the effects of
policy (e.g. via the value of solar) on the long-term evolution of PV
pricesewith a special emphasis on the drivers of prices for systems
at the low end of the price distribution. This will help enable
improved assessments of the effects of policy on these longer-term
goals and thus inform future polices on how most effectively to
stimulate further PV price reductions.
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