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Algebraic Model Counting

Angelika Kimmiga,∗, Guy Van den Broeckb, Luc De Raedta

aDepartment of Computer Science, KU Leuven,
Celestijnenlaan 200a – box 2402, 3001 Heverlee, Belgium.

bUCLA – Computer Science Department,
4531E Boelter Hall, Los Angeles, CA 90095-1596A, USA.

Abstract

Weighted model counting (WMC) is a well-known inference task on knowledge
bases, and the basis for some of the most efficient techniques for probabilistic
inference in graphical models. We introduce algebraic model counting (AMC),
a generalization of WMC to a semiring structure that provides a unified view
on a range of tasks and existing results. We show that AMC generalizes many
well-known tasks in a variety of domains such as probabilistic inference, soft
constraints and network and database analysis. Furthermore, we investigate
AMC from a knowledge compilation perspective and show that all AMC tasks
can be evaluated using sd-DNNF circuits, which are strictly more succinct, and
thus more efficient to evaluate, than direct representations of sets of models.
We identify further characteristics of AMC instances that allow for evaluation
on even more succinct circuits.

Keywords: Knowledge Compilation, Model Counting, Logic

1. Introduction

Today, some of the most efficient techniques for probabilistic inference em-
ploy reductions to weighted model counting (WMC) both for propositional and
for relational probabilistic models (Park, 2002; Sang et al., 2005; Darwiche,
2009; Fierens et al., 2011; Van den Broeck et al., 2011). The resulting weighted
model counting task is often solved by a single pass over a propositional circuit,
which is a compact graphical representation of the models of interest. This
approach makes it possible to perform the possibly expensive knowledge com-
pilation step, that is, the construction of the circuit, only once, and to then
evaluate this circuit repeatedly, for instance, under different evidence or with
different parameters.

On the other hand, it is well-known that probabilistic inference as well as
many other tasks can be generalized to a sum of products computation over
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models with suitable operators from a semiring structure. This has led to com-
mon inference algorithms for a variety of different inference problems in many
fields, including parsing (Goodman, 1999), dynamic programming (Eisner et al.,
2005), constraint programming (Meseguer et al., 2006), databases (Green et al.,
2007), Bayesian inference (Bacchus et al., 2009), propositional logic (Larrosa
et al., 2010), networks (Baras & Theodorakopoulos, 2010) and logic program-
ming (Kimmig et al., 2011). The work presented here provides a unified view
on these two lines of work by introducing both a general definition of model
counting in a semiring setting and a solution approach for this task based on
knowledge compilation.

As our first contribution, we introduce the task of algebraic model counting
(AMC). AMC generalizes weighted model counting to the semiring setting and
supports various types of labels (or weights), including numerical ones as used
in WMC, but also sets (e.g., to collect relevant variables), Boolean formulae
(e.g., to obtain explicit representations of models), polynomials (e.g., for sen-
sitivity analysis in probabilistic models), and many more. It thus provides a
framework that covers many different tasks from a variety of different fields.
As our second contribution, we investigate how to solve AMC problems using
knowledge compilation. As AMC is defined in terms of the set of models of a
propositional logic theory, we can exploit the succinctness results of the know-
ledge compilation map of Darwiche & Marquis (2002). We show that AMC can
in general be evaluated using sd-DNNF circuits, which are more succinct, and
thus more efficient to evaluate, than a direct representation of the set of models.
Furthermore, we identify a number of characteristics of AMC tasks that allow
for evaluation on even more succinct types of circuits. Our results provide a
unified view on existing results, which also allows us to generalize well-known
insights for satisfiability and model counting in circuits to broad classes of AMC
tasks and to extend the task classification in algebraic Prolog (Kimmig et al.,
2011) to more succinct types of circuits. As our third contribution, we further
broaden the applicability of the AMC framework by linking it to semiring sums
of products defined over derivations, that is, sequences of possibly repeated
variables, instead of over models.

This paper is organized as follows. We introduce algebraic model counting
in Section 2. Section 3 provides task characteristics that allow for correct eval-
uation on specific classes of circuits and shows how these generalize previous
results. We discuss future work and conclude in Section 4.

2. Algebraic Model Counting

Our definition of algebraic model counting builds upon the well-known task
of weighted model counting for propositional logic theories. Given a proposi-
tional logic theory T over a set of variables V, an interpretation of V assigns
a truth value from the set {true, false} to every variable in V. The set M(T )
of models of theory T contains exactly those interpretations of V for which T
evaluates to true. We here view interpretations (and models) as sets of literals,
that is, for each variable v ∈ V, an interpretation contains either the positive
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literal v or the negative literal ¬v. We use L to denote the set of literals for the
variables in V. In weighted model counting, non-negative real-valued weights
are associated with all literals, and the weighted model count of a propositional
theory is obtained by multiplying these weights for each model of the theory,
and summing the results for all models.1

Definition 1 (Weighted Model Counting (WMC)). Given

• a propositional logic theory T over a set of variables V and

• a weight function w : L → R≥0, mapping literals of the variables in V to
non-negative real-valued weights,

the task of weighted model counting (WMC) is to compute

WMC(T ) =
∑

I∈M(T )

∏
l∈I

w(l). (1)

Algebraic model counting generalizes multiplication and summation of real-
valued weights to corresponding operations from an arbitrary commutative semi-
ring. It thus extends WMC to more general classes of weights, which are not
necessarily real-valued. To emphasize the latter, we use the terms labeling func-
tion and label in the context of algebraic model counting.

Definition 2 ((Commutative) Semiring). A semiring is a structure
(A,⊕,⊗, e⊕, e⊗), where

• addition ⊕ is an associative and commutative binary operation over the
set A,

• multiplication ⊗ is an associative binary operation over the set A,

• ⊗ distributes over ⊕,

• e⊕ ∈ A is the neutral element of ⊕, i.e., for all a ∈ A, a⊕ e⊕ = a,

• e⊗ ∈ A is the neutral element of ⊗, i.e., for all a ∈ A, a⊗ e⊗ = a, and

• e⊕ is an annihilator for ⊗, i.e., for all a ∈ A, e⊕ ⊗ a = a⊗ e⊕ = e⊕.

In a commutative semiring, ⊗ is commutative as well.

Examples of commutative semirings can be found in columns 2–6 of Table 1;
these will be discussed below. Generalizing weighted model counting to labeling
functions defined over commutative semirings, we now define algebraic model
counting as follows:

Definition 3 (AMC Problem). Given

1The case where weights are associated with joint assignments to groups of variables, as in
factor graphs, can be mapped to the case considered here; cf. Section 2.2.
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• a propositional logic theory T over a set of variables V,

• a commutative semiring (A,⊕,⊗, e⊕, e⊗), and

• a labeling function α : L → A, mapping literals L of the variables in V to
values from the semiring set A,

the task of algebraic model counting (AMC) is to compute

A(T ) =
⊕

I∈M(T )

⊗
l∈I

α(l). (2)

That is, starting from semiring values associated with individual literals via
the labeling function, AMC assigns a value to each interpretation of the variables
by combining the values of corresponding literals with semiring multiplication,
and a value to the theory by combining values of all its models with semiring
addition.

2.1. Examples of AMC Tasks

To provide a better idea of the variety of tasks covered by this general
definition, we next discuss examples of AMC tasks based on semirings and
labeling functions found in the literature, as summarized in Table 1. Probably
the most basic instance of AMC is the evaluation of a Boolean formula for a given
interpretation (Bool), where the labeling function assigns the truth values given
by the interpretation to the literals, i.e., labels are Boolean, α(v) = true if v is
true in the given interpretation (and α(v) = false else), negative literals ¬v are
labeled ¬α(v), and those labels are combined using the usual Boolean semiring
with ⊕ = ∨ and ⊗ = ∧. In fact, this instance can be seen as providing the
basis for the evaluation of AMC tasks via knowledge compilation as discussed
in Section 3. Using the same Boolean semiring, but in combination with a
labeling function that assigns true to all literals, we obtain an instance of AMC
that corresponds to the satisfiability task of propositional logic (SAT).

As can already be seen from their definitions, weighted model counting
(WMC) itself is another instance of AMC, which combines non-negative real
numbers as labels with ordinary multiplication and addition. The well-known
task of model counting (#SAT) corresponds to the special case where all lit-
eral weights are 1 (and counts thus restricted to the natural numbers), whereas
probabilistic inference (Prob) in a setting where all variables are independently
assigned truth values at random restricts the labeling function of WMC to val-
ues from [0, 1] such that labels of positive and negative literals for each variable
sum to one, i.e., for every variable v, α(v) ∈ [0, 1] and α(¬v) = 1− α(v).

We can extend the Prob setting to an AMC task to perform sensitivity
analysis (Sens) by allowing the use of variables instead of constant probabilities
as labels, i.e., a positive literal v can be labeled with a value in [0, 1] as before,
or with variable v, and negative literals are still labeled α(¬v) = 1− α(v). The
corresponding semiring uses summation and multiplication of polynomials as ⊕
and ⊗, respectively. That is, the algebraic model count is an explicit function
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of the probabilities of the literals labeled with variables, which can directly
be evaluated for various choices of these model parameters. Still within the
same probabilistic setting, calculating the gradient with respect to one variable,
which is an important subtask in many parameter learning approaches, can be
formulated as AMC task as well (Grad). In this case, literal labels are tuples
(pi, gi) with pi ∈ [0, 1] the probability of the literal and gi the gradient with
respect to the kth variable2:

α(vi) =

{
(pi, 1) if i = k
(pi, 0) if i 6= k

(3)

α(¬vi) =

{
(1− pi,−1) if i = k
(1− pi, 0) if i 6= k

(4)

(a1, a2)⊕ (b1, b2) = (a1 + b1, a2 + b2) (5)

(a1, a2)⊗ (b1, b2) = (a1 · b1, a1 · b2 + a2 · b1) (6)

If the second element of the label denotes a cost, the GRAD semiring calculates
expected costs.

Another well-known task in the probabilistic setting is finding the probability
of the most likely model (MPE), which is formulated as AMC task by using the
Prob setting except for ⊕, which now is maximization rather than summation.

The next two settings, finding the length of the shortest path (S-Path) and
finding the width of the widest path (W-Path), are inspired by optimization
tasks in weighted networks.3 In both cases, positive literals are labeled with a
natural number, and negative literals with the neutral element e⊗ of the cor-
responding semiring multiplication, which ensures that the latter are not taken
into account when calculating labels of models. Furthermore, the choice of semi-
ring operators ensures that optimization ⊕ always selects the value of a model
containing a minimal set (w.r.t. cardinality) of positive literals (corresponding
to the edges on a path). In the case of shortest path, ⊗ sums labels of literals
and ⊕ minimizes over these sums, whereas in the case of widest path, ⊗ mini-
mizes over labels of literals (thus finding the narrowest part or bottleneck of a
path), and ⊕ maximizes over those.

The Fuzzy AMC task is closely related to W-Path, also using ⊕ = max
and ⊗ = min, but assigns values from the interval [0, 1] to literals, reflecting
their degree of membership in a fuzzy model. The algebraic model count then
corresponds to the highest minimal degree of membership of a literal in a model.
Similarly, kWeight is closely related to S-Path and also uses ⊕ = min, but
imposes an upper bound on the value of any model by restricting literal weights
to integers {0, . . . , k} and using bounded addition +k as ⊗. The algebraic model
count then is the minimal value of a model, or k if no model has a smaller value.

As illustrated by the OBDD< task, labels in AMC can also be complex struc-

2By using (n+ 1)-tuples, this can directly be extended to calculate gradients with respect
to n variables in parallel.

3We will discuss the relationship between algebraic path problems and AMC in Section 3.5.
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tures. OBDD< circuits, which are canonical representations of Boolean functions,
are a popular data structure in many fields of computer science, ranging from
hardware verification to artificial intelligence. To use them for AMC, we la-
bel each literal with its OBDD< circuit, and set ⊕ and ⊗ to disjunction and
conjunction on OBDD<, respectively.

The last two tasks in the table originate from probabilistic databases under
the positive relational algebra RA+ and are thus defined in terms of (possibly
repeated) positive literals only. We will discuss such algebraic derivation count
(ADC) tasks and their relation to AMC in Section 3.5. In contrast to S-Path
and W-Path, which also are instances of ADC originally, expressing Why
and RA+-provenance requires to bring the propositional theory into a specific
form; we will come back to the details in Section 3.5. Negative literals are
again labeled with the neutral element e⊗ of semiring multiplication. Why-
provenance (Why) collects the set of identifiers of all tuples an answer depends
on. It labels positive literals with α(v) = {v}, and uses set union as both ⊕
and ⊗. RA+-provenance constructs polynomials that also take into account the
number of times the tuples are used. Positive literals are labeled with α(v) = v,
and ⊕ and ⊗ are summation and multiplication on polynomials, respectively.
Both settings thus provide insight into the way answers to database queries have
been derived, and can be used for instance to understand unexpected answers
and to identify possible causes of wrong answers.

As a summary of this discussion, we obtain:

Theorem 1. Evaluation of Boolean formulae (Bool), satisfiability (SAT),
model counting (#SAT), weighted model counting (WMC), probabilistic in-
ference (Prob), sensitivity analysis (Sens), gradient (Grad), probability of
most likely states (MPE), shortest (S-Path) and widest (W-Path) paths,
fuzzy (Fuzzy) and k-weighted ( kWeight) constraints, and OBDD< construc-
tion are instances of AMC, with the semirings and labeling functions provided
in Table 1.

While all tasks listed in Table 1 are representative examples from the litera-
ture, cf. the references given in the table, this is by no means an exhaustive list
of semirings and labeling functions that can be used for AMC.

2.2. Related Work

As the examples discussed above illustrate, the AMC task shares its use of
semirings with a number of other tasks. The class of sum-of-products prob-
lems generalizes factor graphs to the algebraic setting, but uses factors over
discrete valued variables as basic building blocks (Bacchus et al., 2009), that
is, the task is to compute

⊕
I(V)

⊗n
i=1 fi(Ei), where I(V) are all possible value

assignments to the set of variables V, and the fi are functions on sets of vari-
ables Ei ⊆ V taking values from the underlying semiring. In this context, affine
algebraic decision diagrams (Sanner & McAllester, 2005) and AND/OR multi-
valued decision diagrams (Mateescu et al., 2008) have been used for inference
with real-valued semirings. It has been shown before that the factor representa-
tion can be transformed into a propositional logic representation by introducing
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additional variables corresponding to factors (Chavira et al., 2006; Sang et al.,
2005). Consider for example an algebraic factor f(x1, x2) associating a label
with each of the four joint assignments of Boolean variables x1 and x2:

x1 x2 f(x1, x2)

0 0 α00

0 1 α01

1 0 α10

1 1 α11

This factor could for instance represent the conditional probabilities Pr(x2|x1) =
f(x1, x2) for the edge x1 → x2 in a Bayesian network. In this case, the equiv-
alent AMC Prob task would consist of one logical equivalence for every row
of the table, e.g., θ01 ≡ ¬x1 ∧ x2 for the second row, and the labeling function
would assign α(θij) = αij , and α(l) = 1 for all other literals l. This principle
generalizes to arbitrary AMC tasks, where we use the neutral element of mul-
tiplication e⊗ instead of 1 as the label of all other literals. For more details on
the transformation, we refer to Chavira et al. (2006); Sang et al. (2005). The
restriction to two-valued variables allows us to directly compile AMC tasks to
propositional circuits without adding constraints on legal variable assignments
to the theory.

In soft constraint programming, additional constraints are imposed on the
semiring, which ensure that addition optimizes the degree of constraint satis-
faction (Meseguer et al., 2006). Wilson (2005) provides an algorithm that com-
piles semiring-based systems into semiring-labelled decision diagrams, which are
closely related to unordered binary decision diagrams (also known as free binary
decision diagrams or FBDDs), to compute valuations. Semiring-induced propo-
sitional logic labels clauses with semiring elements with a weight associated to
their falsification and is restricted to semirings whose induced pre-order is par-
tial (Larrosa et al., 2010). In algebraic Prolog (aProbLog), a semiring-labeled
logic program is reduced to AMC for inference (Kimmig et al., 2011).

In the context of knowledge compilation and algebraic frameworks, Fargier
& Marquis (2007) introduce valued negation normal form (VNNF), a general-
ization of NNF circuits from the Boolean domain to valuation structures over
ordered sets, and study the complexity of a range of queries and transforma-
tions on different subclasses of VNNFs. In contrast, we generalize a single task
(model counting) to the semiring setting and relate it to well-established sub-
classes of NNF. In both cases, properties of the circuit classes such as determinism
and decomposability (cf. Sec. 3) as well as of the valuation structure (such as
distributivity) play key roles.

While AMC sums over models, other tasks sum over sequences of possibly re-
peated variables. Examples include algebraic path problems (Baras & Theodor-
akopoulos, 2010), semiring parsing (Goodman, 1999), provenance semirings
for positive relational algebra queries in databases (Green et al., 2007), and
semiring-weighted dynamic programs (Eisner et al., 2005). We will discuss the
difference between such derivation-based settings and AMC in more detail in
Section 3.5.
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3. AMC using Knowledge Compilation

Propositional circuits represent Boolean formulae as rooted acyclic graphs
where terminal nodes are labeled with literals and inner nodes with Boolean
operators applied to their child nodes, cf. Figure 1 for examples. Given such a
representation, the underlying formula can be evaluated (as in the Bool task)
by a single bottom-up pass from the terminal nodes to the root, which first
assigns truth values to literals and then combines truth values of subcircuits
at each inner node. In their knowledge compilation map, Darwiche & Marquis
(2002) provide an overview of succinctness relationships between various types
of propositional circuits. Furthermore, they show which other reasoning tasks
in propositional logic, such as (weighted) model counting (#SAT/WMC) or
satisfiability checking (SAT), can be evaluated on which circuits in time poly-
nomial in the size of the circuit. In these cases, the operations performed during
circuit evaluation are adapted according to the problem at hand, for instance,
assigning weights to literals and replacing disjunction by summation and con-
junction by multiplication for WMC. Propositional circuits are often used as a
representation language in weighted model counting and similar tasks, includ-
ing for instance probability calculation and sensitivity analysis in probabilistic
databases (Jha & Suciu, 2011; Kanagal et al., 2011) and inference in probabilis-
tic and algebraic Prolog (Fierens et al., 2011; Kimmig et al., 2011).

In the following, we extend this approach to AMC, stating a single generic
evaluation algorithm that operates on a propositional circuit. Using knowledge
compilation for AMC allows one to only perform the expensive compilation
step once and to then evaluate the resulting circuit many times, for instance,
to repeatedly calculate gradients during parameter learning, to explore different
parameter combinations (by keeping some variables’ values fixed and varying
others) for sensitivity analysis, or to even perform different AMC tasks for the
same theory.

In this section, we use conjunction (∧), disjunction (∨), true (>), false
(⊥), and propositional literals to denote generic labels of propositional circuits.
Given an AMC task, evaluation interprets these as semiring multiplication (⊗),
semiring addition (⊕), the neutral element of semiring multiplication (e⊗), the
neutral element of semiring addition (e⊕), and the labels α(l) of these liter-
als, respectively. We first repeat the relevant knowledge compilation concepts,
closely following Darwiche & Marquis (2002).

Definition 4 (NNF). A sentence in negation normal form (NNF) over a set of
propositional variables V is a rooted, directed acyclic graph where each leaf
node is labeled with true (>), false (⊥), or a literal of a variable in V, and each
internal node with disjunction (∨) or conjunction (∧).

Definition 5 (Decomposability). An NNF is decomposable if for each conjunc-
tion node

∧n
i=1 φi, no two children φi and φj share any variable.

Definition 6 (Determinism). An NNF is deterministic if for each disjunction
node

∨n
i=1 φi, each pair of different children φi and φj is logically inconsistent.
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∧

∨

¬a b a ¬b

∧

(a) sd-DNNF

∨

∧

¬a ¬b a b

∨

(b) NNF

Figure 1: Example of an sd-DNNF and NNF circuit.

Definition 7 (Smoothness). An NNF is smooth if for each disjunction node∨n
i=1 φi, each child φi mentions the same set of variables.

DNNF, d-NNF, s-NNF, sd-NNF, d-DNNF, s-DNNF, and sd-DNNF are the sub-
sets of NNF satisfying (combinations of) these properties, where D stands for
decomposable, d for deterministic, and s for smooth. For instance, the circuit
in Figure 1a is in sd-DNNF, while the one in Figure 1b has none of the three
properties. DNF (disjunctive normal form) is the subset of NNF where every sen-
tence is a disjunction of conjunctions, and MODS is the subset of DNF where every
sentence is deterministic and smooth.

A key characteristic when comparing different subsets of NNF is their ability
to compactly represent propositional sentences, which is captured by the notion
of succinctness.

Definition 8 (Succinctness (Darwiche & Marquis, 2002)). Let L1 and L2 be
two subsets of NNF. L1 is at least as succinct as L2 iff there exists a polynomial p
such that for every sentence φ2 ∈ L2, there exists an equivalent sentence φ1 ∈ L1

with |φ1| ≤ p(|φ2|), where |φi| is the size of φi.

The algebraic model count A(T ) is defined as a summation over the set
of models M(T ) of a propositional theory T , which corresponds to the MODS

language in the knowledge compilation map. However, as MODS is exponentially
less succinct than any other representation of T included in the map, converting
to MODS in order to evaluate Equation (2) directly is undesirable. In the follow-
ing, we therefore establish a connection between characteristics of AMC tasks
and properties of the NNF circuits they can be evaluated on, resulting in the
classification scheme summarized in Table 2. The last three columns of Table 1
indicate for each example task which of the semiring characteristics it satisfies;
the tasks are also included in the corresponding field of Table 2.

The key idea underlying NNF evaluation is to perform a bottom-up pass
over the circuit, labeling each node with the value of the subcircuit rooted at
that node. For disjunction nodes, the values of all their children are combined
using ⊕, for conjunction nodes using ⊗.

Definition 9 (NNF Evaluation). The function Eval specified in Algorithm 1
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idempotent and
general ⊗ consistency-pres. (⊗, α)

neutral non-neutral neutral non-neutral
(⊕, α) (⊕, α) (⊕, α) (⊕, α)

DNNF s-DNNF NNF s-NNF

idempotent ⊕ (Th. 5) (Th. 3) (Th. 7) (Th. 7)
SAT, S-Path, MPE, Fuzzy, Bool,

W-Path kWeight OBDD<
d-DNNF sd-DNNF d-NNF sd-NNF

non-idempotent ⊕ (Th. 4) (Th. 2) (Th. 7) (Th. 6)
Prob, Sens, Grad #SAT, WMC

Table 2: Semiring characteristics and corresponding circuits that allow for correct AMC eval-
uation, with example tasks from Table 1.

Algorithm 1 Evaluating an NNF circuit N for a commutative semiring
(A,⊕,⊗, e⊕, e⊗) and labeling function α.

1: function Eval(N,⊕,⊗, e⊕, e⊗, α)
2: if N is a true node > then return e⊗

3: if N is a false node ⊥ then return e⊕

4: if N is a literal node l then return α(l)
5: if N is a disjunction

∨m
i=1Ni then

6: return
⊕m

i=1 Eval(Ni,⊕,⊗, e⊕, e⊗, α)
7: if N is a conjunction

∧m
i=1Ni then

8: return
⊗m

i=1 Eval(Ni,⊕,⊗, e⊕, e⊗, α)

evaluates an NNF circuit for a commutative semiring (A,⊕,⊗, e⊕, e⊗) and label-
ing function α.

Consider for example #SAT for the two circuits in Figure 1, which both
represent an exclusive OR of two variables. Evaluation of the sd-DNNF in Fig-
ure 1a, which in fact is a MODS representation, assigns label 1 to each leaf, 1·1 = 1
to each conjunction node, and 1 + 1 = 2 to the disjunction node at the root
and thus the entire circuit, which is correct. On the other hand, evaluation on
the general NNF in Figure 1b assigns 1 + 1 = 2 to each disjunction node and
2 ·2 = 4 to the conjunction node at the root. This overestimation is due to mod-
els shared by the children of the same disjunction node and variables shared by
the children of the conjunction node, as we will see in more detail in Section 3.2
and 3.3.

Definition 10 (Correctness). Evaluating an NNF representation NT of a propo-
sitional theory T for a semiring (A,⊕,⊗, e⊕, e⊗) and labeling function α is a
correct AMC computation iff Eval(NT ,⊕,⊗, e⊕, e⊗, α) = A(T ).

In the following, we establish a general correctness result for AMC evalu-
ation on sd-DNNF circuits as well as properties of AMC tasks that guarantee
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correctness for various other subclasses of NNF. Given correctness, we inherit
the polynomial complexity results of the knowledge compilation map (Darwiche
& Marquis, 2002) for semiring operators with constant cost, cf. also Section 3.4.
Note however that there are semirings with more expensive operators. For in-
stance, labels in OBDD< may grow exponentially in the circuit size.

3.1. sd-DNNF Evaluation

We show that AMC evaluation is correct on sd-DNNF circuits. As these are
strictly more succinct than MODS representations, they allow for more efficient
inference.

Theorem 2 (sd-DNNF Evaluation). Evaluating an sd-DNNF representation of
the propositional theory T is a correct AMC computation.

Proof. We show that Eval(NT ,⊕,⊗, e⊕, e⊗, α) for an sd-DNNF representation
NT of the theory T computes A(T ) with respect to all variables in NT :

1. Line 2: A(>) =
⊕

I∈{∅}
⊗

l∈I α(l) = e⊗

2. Line 3: A(⊥) =
⊕

I∈{}
⊗

l∈I α(l) = e⊕

3. Line 4: A(l) =
⊕

I∈{{l}}
⊗

k∈I α(k) = α(l)

Due to associativity and commutativity of the semiring operators, operands of
each summation and each multiplication can be evaluated in arbitrary order.
We therefore restrict ourselves to binary disjunction and conjunction nodes here.
In the following, we assume we have already correctly evaluated the two subcir-
cuits φ1 and φ2 over sets of variables V1 and V2, respectively. Let the circuits’
sets of models with respect to those variables be M1 and M2. We now obtain:

4. Lines 5-6: Disjunction node φ1∨φ2: For φ1 = ⊥, we have A(⊥)⊕A(φ2) =
e⊕ ⊕A(φ2) = A(φ2) = A(⊥ ∨ φ2) by neutrality of e⊕ (and similarly for
φ2 = ⊥ by commutativity). As the circuit is deterministic, the φi cannot
be >. We now consider the case where none of the φi is ⊥ or >. As the
circuit is smooth, we have V1 = V2, and this is also the set of variables used
by the circuit rooted at the disjunction. The set of models of this circuit is
thusM(φ1∨φ2) =M1∪M2, which is a disjoint union due to determinism.
Therefore, A(φ1)⊕A(φ2) =

(⊕
I∈M1

⊗
l∈I α(l)

)
⊕
(⊕

I∈M2

⊗
l∈I α(l)

)
=⊕

M1∪M2

⊗
l∈I α(l) = A(φ1 ∨ φ2).

5. Lines 7-8: Conjunction node φ1∧φ2: For the case of φ1 = > (or symmetri-
cally φ2 = >), we have A(>)⊗A(φ2) = e⊗⊗A(φ2) = A(φ2) = A(>∧φ2)
by neutrality of e⊗. For the case of φ1 = ⊥ (or symmetrically φ2 = ⊥),
we have A(⊥) ⊗A(φ2) = e⊕ ⊗A(φ2) = e⊕ = A(⊥) = A(⊥ ∧ φ2) as e⊕

is an annihilator for ⊗. We now consider the case involving neither > nor
⊥ as one of the disjuncts. As V1 ∩ V2 = ∅ due to decomposability, we
obtain all models of the conjunction by combining each model of φ1 with
each model of φ2, that is,M(φ1 ∧ φ2) = {I1 ∪ I2|I1 ∈M1, I2 ∈M2}. To-
gether with distributivity, we get A(φ1)⊗A(φ2) =

(⊕
I∈M1

⊗
l∈I α(l)

)
⊗(⊕

I∈M2

⊗
l∈I α(l)

)
=
⊕
M(φ1∧φ2)

⊗
l∈I α(l) = A(φ1 ∧ φ2).

12



Clearly, the correctness of AMC evaluation on sd-DNNF depends on all three
properties of this subclass of NNF. On the other hand, circuits without these
properties may be exponentially smaller and thus allow for more efficient infer-
ence. In the following, we therefore analyze evaluation in the absence of these
properties, which allows us to identify characteristics of the semiring and la-
beling function that ensure correct evaluation on the corresponding classes of
circuits.

3.2. Evaluation on other Decomposable Circuits

If a circuit is not deterministic, children of a disjunction node may have
common models, in which case evaluation sums over such shared models multiple
times. For instance, consider the circuit in Figure 1b with Prob, α(a) = 0.6
and α(b) = 0.3. Evaluation on this circuit results in 0.6 + 0.3 = 0.9 for the right
disjunction node, while A(a∨b) = 0.6 ·0.3+(1−0.6) ·0.3+0.6 · (1−0.3) = 0.72.

Definition 11 (Idempotent Operator). A binary operator � over a set A is
idempotent iff ∀a ∈ A : a� a = a.

Theorem 3 (s-DNNF Evaluation). Evaluating an s-DNNF representation of the
propositional theory T for a semiring with idempotent ⊕ (a dioid) is a correct
AMC computation.

Proof. Reconsider point (4) of the proof of Theorem 2. Without determinism,
φ1 = > is possible, and with smoothness, we have φ2 = > in this case. Then,
A(>) ⊕ A(>) = e⊗ ⊕ e⊗ = e⊗ = A(>) = A(> ∨ >) as ⊕ is idempotent.
The proof for φ1 = ⊥ still holds. If both subformulae involve variables, with
smoothness, but without determinism, M1(φ1) ∪M2(φ2) is no longer a union
of disjoint sets, and A(φ1) ⊕ A(φ2) =

⊕
i=1,2

⊕
Mi

⊗
l∈I α(l) sums over the

models in M1(φ1) ∩ M2(φ2) twice. Due to associativity and commutativity,
this is correct for idempotent ⊕.

If a circuit is not smooth, the children of a disjunction node may use different
sets of variables. Each model of a child node corresponds to a set of models
for the full set of variables, but evaluation on a non-smooth circuit ignores the
labels of unmentioned variables. For instance, consider the circuit in Figure 1b
with MPE, α(a) = 0.6 and α(b) = 0.3. Evaluating the right disjunction node
of this circuit results in max(0.6, 0.3) = 0.6, while A(a∨ b) = max(0.6 · 0.3, (1−
0.6) · 0.3, 0.6 · (1− 0.3)) = 0.42.

Definition 12 (Neutral (⊕, α)). A semiring addition and labeling function pair
(⊕, α) is neutral iff ∀v ∈ V : α(v)⊕ α(¬v) = e⊗.

For instance, the semiring addition and labeling function of the Prob task in
Table 1 are neutral, as for all v ∈ V, we have α(v)⊕α(¬v) = α(v)+(1−α(v)) =
1 = e⊗ in this case.
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Theorem 4 (d-DNNF Evaluation). Evaluating a d-DNNF representation of the
propositional theory T for a semiring and labeling function with neutral (⊕, α)
is a correct AMC computation.

Proof. Reconsider point (4) of the proof of Theorem 2. The cases involving >
or ⊥ still hold. For the remaining case of both subformulae involving variables
to be correct, the sum of the AMCs computed by the children over their sets of
variables Vi has to be equal to the AMC of the entire disjunction over the full
set of variables V1 ∪ V2. Given the child AMC AVi(φi), adding a variable v to
Vi replaces each model I of φi by two models I+ = I ∪ {v} and I− = I ∪ {¬v}.
Due to distributivity, commutativity and the neutral sum property, the algebraic
sum of these two models equals the AMC of the original model:

AVi∪{v}(I) = AVi∪{v}(I
+)⊕AVi∪{v}(I

−)

= (α(v)⊕ α(¬v))⊗
⊗
l∈I

α(l)

=
⊗
l∈I

α(l) = AVi(I)

Evaluation therefore computes AV1(φ1)⊕AV2(φ2) = AV1∪V2(φ1)⊕AV1∪V2(φ2),
which due to determinism is equal to AV1∪V2(φ1 ∨ φ2).

Note that from a complexity point of view, non-neutral (⊕, α) does not
influence the tractability of inference, as any NNF can be smoothed in polytime
preserving determinism and decomposability (Darwiche & Marquis, 2002).

The previous two results can directly be combined for DNNF circuits that are
neither smooth nor deterministic.

Theorem 5 (DNNF Evaluation). Evaluating a DNNF representation of the propo-
sitional theory T for a semiring and labeling function with idempotent and neu-
tral (⊕, α) is a correct AMC computation.

Proof. Reconsider point (4) of the proof of Theorem 2. Due to neutral (⊕, α),
values for all children of a disjunction node (including>) are correct with respect
to the full set of variables (cf. proof of Theorem 4). Due to idempotent ⊕,
multiple occurrences of the same model do not influence the result (cf. proof of
Theorem 3).

This completes the left part of Table 2, where no conditions are imposed on
semiring multiplication.

3.3. Evaluation on Non-Decomposable Circuits

If a circuit is not decomposable, the children of a conjunction node may
share variables. In this case, simply combining results for all pairs of their
models may produce results corresponding to (multi-)sets of literals that are not
models, because they either contain contradicting literals, or several copies of
the same literal, which results in erroneous extra multiplications. For instance,
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in Figure 1b, {¬a, b} is a model of both disjunction nodes, and {a, b} of the
right one only. The conjunction node sums among others the products α(¬a)⊗
α(b)⊗ α(a)⊗ α(b), which does not correspond to a model, and α(¬a)⊗ α(b)⊗
α(¬a)⊗ α(b), where labels of both literals are multiplied twice.

Definition 13 (Consistency-Preserving (⊗, α)). A semiring multiplication and
labeling function pair (⊗, α) is consistency-preserving iff ∀v ∈ V : α(v)⊗α(¬v) =
e⊕.

For instance, Boolean evaluation (BOOL) is consistency-preserving, as α(v)∧
¬α(v) = false = e⊕.

Theorem 6 (sd-NNF Evaluation). Evaluating an sd-NNF representation of the
propositional theory T for a semiring and labeling function with idempotent and
consistency-preserving (⊗, α) is a correct AMC computation.

Proof. Reconsider point (5) of the proof of Theorem 2. The set of models
of φ1 ∧ φ2 contains exactly all pairwise combinations of models of its parts
that agree on all shared variables. The circuit evaluates the AMC of φ1 ∧ φ2
as A(φ1) ⊗ A(φ2), which due to distributivity is the sum over all pairwise
combinations of models. Without decomposability, each such combination I
contains two literals for each v ∈ V1 ∩ V2. As ⊗ is associative, commutative
and idempotent, repeated occurrences of a literal l in ⊗i∈Iα(i) do not affect the
result. If {l,¬l} ⊆ I, ⊗i∈Iα(i) includes a multiplication by α(l) ⊗ α(¬l) = e⊕,
which in a semiring means ⊗i∈Iα(i) = e⊕. Such inconsistent I thus do not
contribute to the semiring sum.

Theorem 6 affects only conjunction nodes, whereas Theorems 3, 4 and 5
only affect disjunction nodes. Their combination thus extends our results to
non-decomposable circuits that do not satisfy (one of) the other two properties
either:

Theorem 7 (s-NNF, d-NNF, and NNF Evaluations). For a semiring and label-
ing function with idempotent and consistency preserving (⊗, α), evaluating the
following representation of the propositional theory T is a correct AMC compu-
tation:

• s-NNF if ⊕ is idempotent

• d-NNF if (⊕, α) is neutral

• NNF if (⊕, α) is idempotent and neutral

This completes the right part of Table 2, where using non-decomposable
circuits is possible as a consequence of restrictions on semiring multiplication.
Given a new AMC instance, this table allows one to immediately choose the
appropriate type of circuit for efficient evaluation. Table 2 provides this classi-
fication for the examples discussed earlier, cf. Table 1.
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neutral (⊕, α) non-neutral (⊕, α)
idempotent ⊕ DNF s-DNF

non-idempotent ⊕ d-DNF sd-DNF

OBDD s-OBDD

Table 3: Overview of AMC settings used in algebraic Prolog (Kimmig et al., 2011).

3.4. Discussion

The results summarized in Table 2 provide a unified view on a number of
known results. They generalize the complexity results for evaluation of SAT
and #SAT using knowledge compilation to broad classes of tasks, provide more
succinct types of circuits for inference in algebraic Prolog, and show that all
circuits that are practically relevant for AMC are well-studied in the knowledge
compilation map. We now address these points in more detail.

First, Darwiche & Marquis (2002) show that SAT is correctly evaluated
in polynomial time on DNNF, while #SAT is correctly evaluated in polynomial
time on d-DNNF, as the required smoothing to obtain an sd-DNNF is possible
in polynomial time. We generalize these results to broad classes of semirings,
always ensuring correctness, and, as discussed above, preserving polynomial
time complexity as long as each semiring operation has constant cost. More
specifically, our Theorem 5 generalizes correctness of DNNF evaluation from SAT
to all commutative semirings and labeling functions with idempotent and neutral
(⊕, α), and our Theorem 2 generalizes correctness of sd-DNNF evaluation from
#SAT to arbitrary commutative semirings and labeling functions. As part of
their tractability study of inference in weighted bases, that is, propositional
theories with penalties on unsatisfied formulae, Darwiche & Marquis (2004)
have shown that the weight of a weighted base in normal form, that is, with
all penalties on literals, can efficiently be computed on its DNNF representation.
This directly translates to an instance of AMC with ⊕ = min and ⊗ = + that
satisfies our criteria for DNNF evaluation.

Second, Kimmig et al. (2011) reduce inference in algebraic Prolog (aProbLog)
to AMC evaluation on disjunctive normal form (DNF). For non-idempotent ad-
dition, a DNF whose conjunctions are not mutually exclusive is then compiled
into an ordered binary decision diagram (OBDD). For non-neutral (⊕, α), circuits
are smoothed before evaluation. This results in the settings listed in Table 3.
Table 2 uses the same characteristics of semiring operators and labeling func-
tion, but does not require to transform the theory to a DNF as starting point.
The left half of Table 2 directly generalizes the aProbLog scheme to strictly
more succinct superclasses of circuits, namely (s-)DNNF instead of (s-)DNF,
and (s)d-DNNF instead of (s)d-DNF or (s-)OBDD. As probabilistic inference in
ProbLog has recently been improved by replacing OBDD-based approaches with
weighted model counting on sd-DNNF (Fierens et al., 2011), our results promise
practical improvements for aProbLog as well.

Third, we observe that while there are interesting inference tasks that are
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correctly evaluated on the more succinct class of DNNF instead of the general
sd-DNNF evaluation, the conditions for correct evaluation on non-decomposable
circuits are too strict in most practical cases. This is in line with the knowledge
compilation map, which excludes non-decomposable circuits (with the exception
of the most general class NNF) as they do not support any of the studied tasks
in polytime (Darwiche & Marquis, 2002).

Fourth, extending weighted model counting towards negative probabilities
makes it possible to use existential quantification when defining probabilistic
models based on first order logic (Van den Broeck et al., 2014; Beame et al.,
2015). The correctness of this generalization follows immediately from our re-
sults.

Finally, we note that our results imply general complexity bounds for AMC
in terms of the size of the original logical theory T . For example, when T is
given in conjunctive normal form (CNF), an equivalent sd-DNNF can be compiled
in time polynomial in the size of T and exponential in its treewidth (Darwiche,
2001). Hence, all AMC tasks in CNF with constant-cost⊕ and⊗ can be evaluated
in time polynomial in the size and exponential in the treewidth of T , and are
thus tractable for bounded treewidth. Similar results for (d-)NNF state that
these circuits can be compiled starting from CNF or DNF in time polynomial in
the size of T (Darwiche & Marquis, 2002, Lemma A.8).

3.5. AMC and Algebraic Derivation Counting

While AMC is a sum over models, or sets of literals, many other semiring-
based tasks require a sum over derivations, that is, sequences of possibly re-
peated variables. Examples include algebraic path problems (Baras & Theodor-
akopoulos, 2010), semiring parsing (Goodman, 1999), provenance semirings
for positive relational algebra queries in databases (Green et al., 2007), and
semiring-weighted dynamic programs (Eisner et al., 2005). We refer to this
type of task as algebraic derivation counting (ADC), and restrict the discussion
to the case of finite, distinct sequences.

Definition 14 (ADC Problem). Given

• a set S of finite sequences of variables from a set V,

• a commutative semiring (A,⊕,⊗, e⊕, e⊗), and

• a labeling function δ : V → A, mapping variables in V to values from the
semiring set A,

the task of algebraic derivation counting (ADC) is to compute

D(S) =
⊕

(v1,...,vn)∈S

n⊗
i=1

δ(vi). (7)

For instance, consider a graph with three nodes s, t and r, and three directed
edges e1 = (s, t), e2 = (s, r) and e3 = (r, t). A derivation in this context is a
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path in the graph represented as its sequence of edges, e.g., (e2, e3) represents
the path from s to t via r. The ADC of the set of all paths from s to t in the
graph is then given by

D({(e1), (e2, e3)}) = δ(e1)⊕ (δ(e2)⊗ δ(e3)) (8)

For instance, if δ assigns a cost to every edge, we could use the S-Path or W-
Path semirings to compute the cost of the shortest or widest path, respectively.

As a second example, consider the following context free grammar, where we
add the variable we will use to refer to an application of the rule in a derivation
in parentheses:

S → aS (s1) A → AA (a1)
S → AA (s2) A → a (a2)
S → ε (s3)

The word aa has two leftmost derivations in this grammar: S → aS → aaS →
aa, using the rule sequence (s1, s1, s3), and S → AA → aA → aa, using
(s2, a2, a2). The ADC of this set of derivations is given by

D({(s1, s1, s3), (s2, a2, a2)}) = (δ(s1)⊗δ(s1)⊗δ(s3))⊕(δ(s2)⊗δ(a2)⊗δ(a2)) (9)

For instance, using the probability semiring, this corresponds to computing the
probability of aa in a probabilistic context free grammar with these rules.4

While both ADC and AMC are semiring sums over semiring products, their
key difference is that computing ADC is based on the structure of a set of
sequences of positive variables, whereas computing the AMC is based on the
models of a propositional theory represented as an arbitrary NNF. Nevertheless,
it is possible to map each of the tasks onto the other, as we will show now.

Reducing AMC to ADC. Reducing an AMC task to an ADC task is straightfor-
ward. The set of variables in the ADC task contains one variable for each literal
in the AMC task, labeled with that literal’s label. For each model of the AMC
theory T , the ADC derivation set S contains one sequence enumerating exactly
the variables corresponding to the literals in the model. Then, Equation (7)
and Equation (2) have the same structure, and the ADC of the translation thus
equals the original AMC.

However, this reduction is clearly not desirable from a complexity point of
view, as it requires bringing T into MODS form. Alternatively, one could adapt
the semiring used. For instance, Baras & Theodorakopoulos (2010) provide
an ADC encoding of network reliability under probabilistic edge failure, that
is, the Prob AMC task for a positive propositional formula. They essentially
modify multiplication to filter repeated literals from derivations (i.e., repeated
edges from cyclic paths), and addition to subtract shared models of its operands

4Note that the input to ADC is a set of finite derivations, not the grammar, i.e., ADC does
not solve the parsing problem.
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(i.e., subgraphs containing multiple paths), which, while operating on the ADC
structure, drastically increases complexity of these operations. Under which
general conditions such transformations are possible is an open question.

Reducing ADC to AMC. To reduce an arbitrary ADC task to AMC, we con-
struct a propositional theory that has one model for every sequence in the ADC
task. The construction (a) systematically uses different variables for repeated
occurrences of the same variable in a derivation, and (b) makes explicit that (re-
named) variables not appearing in a derivation do not contribute to the semiring
product by adding their negation, labeled with e⊗, to the derivation. That is, if
variable v occurs at most k times in any sequence s ∈ S, we introduce k copies
v1, . . . , vk, all labeled with δ(v). Thus, Equation (9) becomes

D({(s11, s21, s13), (s12, a
1
2, a

2
2)}) = (δ(s11)⊗ δ(s21)⊗ δ(s13))⊕ (δ(s12)⊗ δ(a12)⊗ δ(a22))

Clearly, this construction in general does not change the ADC. Second, we
expand derivations to all variables by adding negative literals, labeled with e⊗5:

D({(s11, s21, s13,¬s12,¬a12,¬a22), (s12, a
1
2, a

2
2,¬s11,¬s21,¬s13)})

=(δ(s11)⊗ δ(s21)⊗ δ(s13)⊗ δ(¬s12)⊗ δ(¬a12)⊗ δ(¬a22))

⊕ (δ(s12)⊗ δ(a12)⊗ δ(a22)⊗ δ(¬s11)⊗ δ(¬s21)⊗ δ(¬s13))

This step again maintains the ADC, as can easily be verified using the properties
of commutative semirings. Furthermore, as we now have a 1-1-correspondence
between derivations and models, setting α to δ and T to the disjunction of the
conjunctions of elements in derivations, i.e.,

(
s11 ∧ s21 ∧ s13 ∧ ¬s12 ∧ ¬a12 ∧ ¬a22

)
∨(

s12 ∧ a12 ∧ a22 ∧ ¬s11 ∧ ¬s21 ∧ ¬s13
)
, completes the reduction to AMC.

While this two-step reduction from ADC to AMC on a MODS representation
is possible for any commutative semiring and ADC labeling function δ, for some
semirings, AMC effectively selects the desired model for a derivation without
need to make this explicit in the propositional theory.

First, for commutative semirings and labeling functions with idempotent,
consistency-preserving (⊗, α) and idempotent, neutral (⊕, α) such as for in-
stance OBDD<, neither variable renaming nor model restriction are required. The
reason is that repetition within derivations is handled by idempotent ⊗, whereas
idempotent, neutral (⊕, α) implies that summing out unmentioned variables
maps them to the label of the negative literal, e⊗ (cf. Theorem 5). However, as
noted above, such tasks are rare.

Second, if derivations do not contain repeated variables, there is no need to
rename variables. If furthermore ⊕ is idempotent and (⊕, α) is neutral, as in the
first case, we do not need to explicitly restrict models. This is for instance the
case for the S-Path and W-Path semirings in Table 1. Intuitively, if we do not
restrict models, instead of directly summing over the products for all (acyclic)

5Strictly speaking, ADC would require new, positive variables for those negative literals,
but we use negation for ease of exposition.
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paths, AMC additionally sums for each path over all subgraphs containing that
path, but the properties of the semiring and labeling function ensure that the
results coincide. For instance, as absent edges are labeled with the minimal
value 0 in shortest path, among all graphs containing the same path, semiring
addition (using min) effectively selects the one containing no additional edges.

On the other hand, the Why and RA+ semirings also listed in Table 1 do
not fall into this category (as can be verified by inspecting the properties of
their definitions), but require the full translation. Intuitively, Why collects all
variables appearing in derivations, or, in its original database context, all tuples
contributing to a query answer. Evaluating this on all models instead of the
models constructed in the translation would result in the full set of variables
(all tuples in the database) instead of just the relevant ones. RA+ refines
Why by constructing a polynomial that keeps track of how often each variable
(positively) contributes to each derivation. Again, summing over all extensions
of a derivation would add too much information to the result.

4. Conclusions and Future Work

We have introduced the task of algebraic model counting, which generalizes
weighted model counting to a semiring setting and thus to various types of
labels, including numerical ones as used in WMC, but also sets, polynomials, or
Boolean formulae. We have shown that evaluating AMC is correct on sd-DNNF

circuits, which are known to be more succinct than the MODS language used in
the problem definition. Furthermore, we have provided characteristics of AMC
tasks that guarantee correct evaluation on more succinct classes of circuits,
which provides a means of directly choosing a circuit type that allows for efficient
inference given a new AMC task. AMC also provides a unified view on a number
of known results as well as a framework to connect algebraic derivation counts
to AMC tasks.

Given the results presented here, it is worth investigating which other al-
gebraic representations can be reduced to algebraic model counting. Another
line of future work concerns the introduction of additional operators that would
make it possible to express additional tasks, for instance, partial MAP, which
requires a maximization operator in addition to summation and multiplication.
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