
UCLA
UCLA Electronic Theses and Dissertations

Title
Adaptive and Iterative Learning Control for Robot Trajectory Tracking

Permalink
https://escholarship.org/uc/item/2w76x6xd

Author
LEE, YU-HSIU

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2w76x6xd
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Adaptive and Iterative Learning Control for Robot Trajectory Tracking

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mechanical and Aerospace Engineering

by

Yu-Hsiu Lee

2019



© Copyright by

Yu-Hsiu Lee

2019



ABSTRACT OF THE DISSERTATION

Adaptive and Iterative Learning Control for Robot Trajectory Tracking

by

Yu-Hsiu Lee

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Los Angeles, 2019

Professor Tsu-Chin Tsao, Chair

This thesis develops adaptive and iterative learning control methods for robot trajectory

tracking applications. Specifically, iterative learning control is applied when a desired refer-

ence trajectory is known beforehand, and adaptive control is designed to cope with unknown

patient motion (disturbance) in Magnetic Resonance Imaging (MRI)-guided robot-assisted

intervention.

For robot manipulator tracking, a nested-loop Iterative Learning Control (ILC) is pro-

posed. This method requires only nominal kinematic parameters from factory setting, gives

fast convergence, and can be added on top of existing servo loop. The ILC learning archi-

tecture includes an inner loop that accounts for motor dynamics, and an outer loop that

addresses the static bias from the payload or imprecise kinematics. A data-based learning

filter design is extended to cope with motion constraint and multivariate systems. It is

experimentally verified on a 6-DOF serial robot that the proposed method mitigates the

maximum dynamic tracking error by an order of magnitude, and is applicable to different

payloads due to small system variation from torque shielding of gear reduction.

For tracking of general nonlinear dynamic systems, an efficient data-driven ILC algorithm

is proposed. As opposed to the model-based methods, for which nonlinear identification

and learning law design can be cumbersome, this method uses adaptive filter to implicitly

(and automatically) construct linearized system inverse for effective learning. An existing
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adjoint-based ILC for LTI system is also extended to cope with nonlinear dynamics, and

for comparative study. The SISO algorithms are simulated and experimentally validated

on a fully-actuated 2-DOF laboratory pendulum system. Algorithms are also developed to

circumvent the difficulty when adapting a right inverse for MIMO systems.

The automated MRI-guided intervention is motivated by the current procedural ineffi-

ciency from constraints posed by MR environment. As lots of researchers focus on either

MR-safe/conditional robot to augment the reach of the physician, or MR image tracking for

motion estimation of tissue/instrument, this work aims at addressing a more flexible setting:

use real-time MRI for instrument control when a target is in motion. It is enabled via the

integration of robot hardware, MRI sensing, and control techniques. On the control aspect,

we characterize the MR imaging process and the robot dynamics, then propose adaptive con-

trol schemes to overcome the system delay and high noise variance from MRI measurement.

The study is conducted on a hydrostatically actuated platform, which consists of a target

motion module that emulates respiratory motion, and an instrument manipulation module

regulating the instrument-target distance.
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T )wk∣∣2,

or equivalently, ∣∣wT
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CHAPTER 1

Introduction

Robot tracking is a relevant application in various manufacturing processes, such as part

assembly, welding, polishing, laser cutting, and so forth. As robots are known for their

manufacturing flexibility, there are also factors that could affect the tracking performance,

and thus finished workpiece quality. For example, the calibration accuracy, joint deflection,

and robot dynamics.

In Chapter 2, we consider the trajectory tracking of robot manipulator with geared

motors. Under the assumption that the actuator dynamics are decoupled and linear time-

invariant due to gear shielding, we develop a nested-loop ILC wherein the inner loop (using

motor encoder feedback) is for motor dynamic compensation, and the outer loop (using laser

tracker feedback) accounts for static bias due to calibration and joint deflection. For inner

loop, a data-based dynamic inversion method is proposed, featuring in simple implementa-

tion, and capabilities to incorporate motion constraints.

As real-world systems are often nonlinear and time/parameter-varying, the nonlinear

model identification, learning design, and convergence analysis can be a tedious task. There-

fore, in Chapter 3 we develop a novel data-driven ILC utilizing adaptive filtering. This

method addresses the nonlinearity via linearization around the trajectory, uses adaptive fil-

ter to automatically construct learning filter, and gives fast convergence by implicitly doing

system inverse identification. As a comparative study, a state-of-the-art data-driven ILC

using adjoint system is also extended for nonlinear dynamic systems.

Aside from the robot tracking where a desired trajectory is known beforehand, we will

also investigate image-guided robot-assisted intervention, specifically MRI-guided interven-

1



tion. MRI-guided intervention is of great interest for several reasons: first, some abnormal-

ities only appear on MRI; secondly, it provides excellent soft tissue contrast; thirdly, it is

not subject to ionized radiation exposure as X-ray and thus can be run continuously. Con-

ventionally, physician needs to move patient in and out of the scanner repeatedly to gain

patient access. This procedure requires several confirmation scans for incremental instru-

ment advancement, and it relies on breath holding of the patient to keep the target tissue

still. Clearly the real-time capability of MRI is not fully utilized, the image guidance is

sub-optimal, and the procedure can be time-consuming. In the past, most research groups

either focus on augmenting physician’s reach by MR-safe/conditional robots, or developing

tissue/instrument tracking algorithms for real-time diagnosis. Recently, some groups try to

perform closed-loop MRI-guided intervention for stationary target. However, a more flexible

setting will be conducting closed-loop intervention when the target is in motion.

In Chapter 4, we study the MRI-guided intervention with robotic system under dynamic

target setting. This is carried out on an MR-compatible hydrostatically actuated platform,

which consists of a target motion module that emulates human respiratory motion, and an

instrument manipulation module that controls the biopsy needle motion. Via modelling of

MRI and actuator dynamics, adaptive control is applied to address the unknown disturbance

(patient motion), image processing delay, and noisy MRI feedback. This is then experimen-

tally verified in MR environment with the hydrostatically actuated platform, showing great

promise towards fully-automated MRI-guided intervention.

Finally, in Chapter 5 we summarize the work presented, and list ongoing tasks and

possible future directions.
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CHAPTER 2

A Nested-Loop Iterative Learning Control for Robot

Manipulators

2.1 Trajectory Tracking of Robot Manipulators

Trajectory tracking of robot manipulators is of interest in industrial processes where high

positional accuracy is essential. Applications include welding, laser cutting, part assembly,

and glue dispensing. Most robot manipulators employ geared motors because they are cost

effective, light-weight, and have small system variation under torque disturbance. Nonethe-

less, this is at the expense of additional compliance and nonlinearity introduced by the gear

transmission. The end effector tracking performance is, therefore, subject to intrinsic and

extrinsic factors. Intrinsic factors include the accuracy of kinematic parameters, joint flexi-

bility, drive dynamics, and non-smoothness such as joint friction and gear backlash. Process

disturbances serve as an extrinsic error source.

Due to the repeated nature of these industrial processes, ILC for robot manipulators

has been investigated extensively for tracking application under repeated disturbances, see

[Tay04]. ILC is also an effective tool for parameter identification, for example, the work

by [ZLX15] suggests that ILC can also be used for kinematic parameter refinement along

the tracked path to enhance the positioning accuracy. The friction effect on the actuator, if

repeatable, can also be compensated by ILC. To address the joint flexibility, [MKM86] first

proposed the dual-stage learning on motor side and subsequently load side to give better

end effector tracking. Recently, [CT14] presents a simultaneous dual-stage learning of both

sides that result in more effective learning. [WZW18] formulates the simultaneous dual-
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Figure 2.1: Nested-loop learning structure.

stage learning as a two-degree-of-freedom robust controller design under system uncertainty

to achieve robust performance. These are classified as model-based approaches wherein

extensive system identification is needed to proceed with the learning filter design.

2.2 Nested-loop Learning Architecture

In this work, we adopt the nested-loop learning concept of [MKM86], and develop a learn-

ing structure that requires only nominal kinematic parameters and some simple system

responses. This approach assumes each drive unit is an independent linear single-input-

single-output (SISO) system because the sensed torque disturbance is attenuated by inverse

squared gear ratio, see [SHV06]. Another assumption is that as joint tracking error con-

verges, the end effector error is mostly attributed to static bias, such as imprecise kinematic

parameters, and deflection due to gravity, provided care is taken to avoid flexible mode ex-

citation. This structure is depicted in Fig. 2.1, wherein r∗ is the desired trajectory in task

domain, q∗0 is the joint reference generated by nominal inverse kinematics IK. The subscript

i and j denote outer and inner loop iteration indices, respectively. Note this is a multi-rate

system: at ith outer loop, the inner loop iterates, (j = 1⋯J) trying to invert drive dynamics

and make joint encoder values qi/j follow a reference q∗i . Upon convergence of the inner loop,

the end effector position error δri computed from laser tracker measurement yi is used to

generate path correction δqi for the next i + 1th outer loop iteration. Variables δqi = δqi(k)

and δri = δri(k) are time-dependent but the time index k is dropped for simplicity.
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Figure 2.2: A generic ILC structure.

The proposed scheme uses a data-based inversion technique for inner loop learning filter

design, which allows engineers to incorporate motion constraints, such as velocity, acceler-

ation, and jerk limits of the system. The resultant filter in finite impulse response (FIR)

representation provides good approximation of inversion, fast ILC convergence, and good

joint tracking performance. The outer loop learning matrix is simply inverse Jacobian, and

does not require additional identification. This scheme is command-based, which means it

alters only the joint commands sent to an existing position servo loop, making it readily

applicable without additional signal access.

2.3 Inner Loop: Data-based Dynamic Inversion

2.3.1 Inversion-based ILC

Consider a pre-stabilized plant G. The generic ILC update law in Fig. 3.1 can be written

as follows:

uj+1 = Q(z−1) [uj + F (z−1)ej]

= Q [uj + F (r − yj)]

= Q(1 − FG)uj +QFr

(2.1)

wherein r is the reference trajectory to be tracked, uj is the the control sequence, j is the

iteration index, yj is the the output sequence, ej is the tracking error, F is the learning filter,

and Q is a zero-phase low-pass filter for robustness.
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The recursion formula in Eqn. 2.1 is asymptotically stable if the convergence rate

γ ≜ ∣∣Q(1 − FG)∣∣∞ < 1, (2.2)

and the converged error e∞ in z-domain can be written as:

e∞ =
1 −Q(z−1)

1 −Q(z−1)[1 − F (z−1)G(z−1)]
r. (2.3)

See [NG02] for time and frequency domain stability criteria.

It is evident from Eqn. 2.2 and 2.3 that using system inversion as the learning filter, i.e.,

F = Ĝ−1, is advantageous: it results in zero convergence rate (γ = 0), namely the learning

process reaches steady state within one iteration. Also, within the bandwidth of Q (Q ≈ 1),

this gives zero tracking error (e∞ = 0).

Recent studies in comparing different inversion techniques employed in ILC can be found

in [TT15] and [ZO18]. They can be roughly categorized as 1) approximate inverse schemes,

e.g. ZPETC and ZMETC, 2) norm-optimal formulation, 3) optimal controller synthesis, e.g.

H2 and H∞, and 4) data-based inversion, see [TT15].

The approximate inverse schemes propose ad-hoc methods to deal with nonminimum-

phase zeros, but caution needs to be taken for nonminimum-phase zero locations and high-

frequency amplification, see [BPA12]. The norm-optimal formulation minimizes a quadratic

cost over a finite horizon N where N is the number of reference points. It is often described

in the lifted notations and the computational complexity is O(N3). In the re-formulation

proposed by [ZBK16], it can be regarded as a classic LQ tracking problem so that Riccati

recursion is made use of. The norm-optimal problem can then be solved efficiently with

O(N) complexity. The optimal controller synthesis approach solves for the inversion by the

well-developed state-space solutions to H2 and H∞ control problems.

As opposed to the model-based approaches listed above, data-based inversion techniques

feature in finding the inversion without any modeling. This usually provides satisfactory

inversion quality if the input data sufficiently excites system dynamics, and the output data

has high signal-to-noise ratio (SNR).
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2.3.2 Data-Based Inversion with Motion Constraints

In this work, we propose a method for dynamic inversion based on the technique developed

by [TT15] for several considerations. First, this approach suits for robot manipulators,

which have high SNR. Second, actuator limits and model uncertainty can be addressed using

frequency domain weighting. Thirdly, this method uses a FIR representation of system

dynamics directly from data and does not have model fitting error. Based on these, we

generalize the approach by the introduction of identification input design for which motion

constraints, such as joint limit and slew rate that are commonly seen in industrial servo

drives, can be taken into account.

The data-based inversion method by [TT15] is briefly summarized as follows, and is

visualized in Fig. 2.3:

1. Construct plant G(z−1) = Z{g[n]} ≈ ∑
Nfir

n=1 g[n]z
−n with FIR representation by one-step

subtraction of step response data.

2. Convolve g[n] with a smoothing window function w[n] and then pad the convolved

sequence gw[n] with sufficient zeros.

3. Compute discrete Fourier transforms (DFT) ofM(e−jωn) andGw(e−jωn) whereinM(z−1)

is a desired zero-phase reference model. Then, apply element-wise frequency domain

division to construct inversion F (e−jωn) =M(e−jωn)⊘Gw(e−jωn).

4. Perform inverse DFT to get f[n] = F−1{F (e−jωn)}. The inversion in FIR form is then

F (z−1) = Z{f[n]} = ∑
Nfir

n=1 f[n]z
−n.

The generalization of this method is first by observing that although the identification

procedure was developed for positional step response, namely a velocity impulse, higher

order step response data apply because G = Y
U =

Y (1−z−1)l
U(1−z−1)l , wherein l is the order of finite

difference(s). Also, by adjusting the amplitude of the command step size, higher order motion

constraints can be employed because numerical derivative is always finite with sampling time

Ts in the denominator.
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Figure 2.3: Procedure for data-based inversion construction.

In practice, the identification input can be heuristically designed as the follows. Assume

motion constraints, sensor noise statistics, and desired SNR are given. We start with a

position impulse whose amplitude is determined by the prescribed SNR, and then check if

all the motion constraints are met. If so, the amplitude of the impulse can be increased

until one of the constraints is activated, otherwise a pulse of next derivative (velocity) is

used instead, and the amplitude is adjusted in a similar fashion. Note using impulse of

higher derivatives will relax lower-order motion constraints, but at the expense of noise

amplification. This process repeats until a feasible impulsive reference is generated, or a

compromise on SNR needs to be made.

2.3.3 Extension to MIMO Systems

The point-by-point frequency domain division can also be extended to the multivariate case.

Because the transfer function matrices in general do not commute, the choice of inverse,

either left or right, makes difference in ILC performance. From the recursion of tracking

error:
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ej+1 = r −Guj+1

= r −G(uj + Fej)

= (I −GF )ej,

(2.4)

it is clear that we should use the system right inverse because it minimizes (I −GF ). If a

reference model M is used instead of identity, the frequency response of F at frequency grid

point ωk can be solved via:

[G(e−jωk)] [F (e−jωk)] = [M(e−jωk)] . (2.5)

For a two-input-two-output system the expanded form (argument e−jωk omitted) is:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G11 G12 0 0

G21 G22 0 0

0 0 G11 G12

0 0 G21 G22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F11

F21

F12

F22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1

0

0

M2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.6)

Note the resulting system of linear equations is block diagonal, so the complex matrix

F (e−jωk) can be obtained by solving 2 separate 2-by-2 sub-problems in parallel. Similarly,

for an m-input-m-output square system, this results in solving m decoupled m-by-m linear

systems, and each sub-problems produces a column of F (e−jωk):

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G11 ⋯ Gm1

⋮ ⋱ ⋮

G1m ⋯ Gmm

G11 ⋯ Gm1

⋮ ⋱ ⋮

G1m ⋯ Gmm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F11

⋮

Fm1

F12

⋮

Fm2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1

⋮

0

0

M2

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.7)
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Figure 2.4: Outer-loop learning structure with a converged inner loop.

Because the independence of sub-problems, parallelization is possible and the algorithm is

computationally tractable. If the system is non-square with ni inputs and no outputs, then

we can solve for least square solution if G is tall (no > ni) and full column rank, or least

norm solution if G is fat (no < ni) and full row rank. After Fij at each ωk is collected,

inverse Fourier transform is applied and a FIR representation ∑ fij[n]z−n for each channel

is recovered.

2.4 Outer Loop: Kinematic Inversion with Smooth Filtering

Here, we develop and analyze the outer loop ILC for static error that cannot be seen by joint

encoders. Suppose the outer loop update law has the following form:

δqi+1 =Q(δqi +Liδri), (2.8)

wherein δqi ∈ Rni is the joint command correction input at ith iteration, low-pass Q is for

noise attenuation, δri ∈ Rno is the end effector output, and Li is a learning matrix yet to be

determined.

In Eqn. 2.2, the converged inner loop can be regarded as a complementary sensitivity

Tr2y = 1 − Sr2e ≈
QM

1−Q(1−M) . This means qi ≈ q∗i if the spectrum of joint command q∗i is

within the bandwidth of Tr2y. Assume same reference model M and low-pass Q are used,

the nested-loop structure can thus be visualized as in Fig. 2.4, where the integrator Q
z−Q is
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with respect to the iteration index i. It is noted if Li is selected to be the inverse Jacobian

matrix, an approximation of inverse kinematics, it cancels out with the forward kinematics

block and the feedback loop behaves like an integrator with unity negative feedback, which

is stable.

Now we turn to the algebraic approach for the selection of Li. Suppose the output y is

mapped from input q through a static map y = f(q,p), wherein p contains the kinematic

parameters of the manipulator. Assume also the desired output is achieved by input qr and

true parameter vector pr so that yr = r∗ = f(qr,pr). Then, the task space error δri in Eqn.

2.8 can be expanded as follows:

δri = yr − yi

= f(qr,pr) − f(qi,p0)

= f(qi,p0) +Fq(qr − qi) +Fp(pr − p0) − f(qi,p0)

= Fq(qr − q0 − δqi) +Fp(pr − p0).

(2.9)

where Fq ≜ ∂
∂qf(q̄i,p0) and Fp ≜ ∂

∂pf(qi, p̄0). This is from mean value theorem with q̄i =

qi+τ1(qr−qi), p̄r = p0+τ2(pr−p0), and τ1, τ2 ∈ [0,1]. From line three to line four, qi = q0+δqi

is substituted.

Now substitute end effector error δri back in Eqn. 2.8:

δqi+1 =Q(I −LiFq)δqi

+QLiFq(qr − q0)

+QLiFp(pr − p0).

(2.10)

Suppose Fq is square (ni = no), Li = [ ∂
∂qf(q̄i,p0)]

−1 exists, and there is no parametric error

(pr = p0), then the recursion converges within one iteration with δq1 = qr − q0, provided

both qr and q0 are within the bandwidth of Q. For non-square Fq, Li can be solved via

least square if no > ni, or else other criterion needs be imposed for the case no < ni because

multiple solutions exist.
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In Eqn. 2.10, the first term can be interpreted as internal dynamics with system matrix

Q(I − LiFq), whereas the last two terms are forced excitation from static joint error and

kinematic bias, respectively. It should be noted for implementation the learning matrix is

approximated by inverse Jacobian J−1 = [ ∂
∂qf(qi,p0)]

−1, which is evaluated at qi instead of

q̄i. Therefore, the convergence rate ∣∣Q(I −LiFq)∣∣ degrades if the deviation is large.

2.5 Experimental Results

To demonstrate the efficacy of the nested-loop algorithm, a linear path in Cartesian space

which involves simultaneous motion of all six joints is chosen as in Fig. 2.5 and Fig. 2.6. The

maximum tip speed is 200 mm/s, and two different payloads, 686 g and 2732 g (corresponds

to 10 % and 40 % of maximum capacity) will be tested. This serial-type robot manipulator

AR-607 (Industrial Technology Research Institute, Taiwan) is controlled by a C/C++ based

MIO (Motion Intelligence Orchestration) unit running at 1 kHz. A laser tracker (AT901,

Leica) is used for outer loop ILC execution and end effector positional error evaluation. We

will first walk through the inner loop ILC design procedures, and then combine it with the

outer loop to show the overall performance.

2.5.1 Inner Loop ILC Design

Herein the inner loop ILC design procedures are demonstrated using joint J2 due to the

page limit. It is chosen because J2 is subject to the largest load variation with gravity as

investigated by [RHB09].

First, a reference model M and a low-pass filter Q are chosen as in Fig.2.7. M serves to

invert the system within limited bandwidth so that input saturation will not be triggered,

whereas Q ensures stability by attenuating the learning gain when (1 − FG) ≈ (1 −M)

becomes large. Since the validity of the inversion is limited by M , the bandwidth of Q

should be smaller or equal to that of M .

Secondly, an impulsive reference in Fig. 2.8 is used to sufficiently excite system dynamics.
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Figure 2.5: Serial-type robot under study and the linear test path in Cartesian workspace.

Magenta: robot initial configuration; black dashed line: linear test path; red

circle: tip position where the system is identified.

In this example, a constraint vmax = 20○/s is triggered for a velocity step, and thus system

FIR is acquired from the acceleration pulse.

Thirdly, following the procedures described in Sec. 2.3.2, the inversion is constructed as

in Fig. 2.9 and 2.10 wherein time- and frequency-domain responses are shown. Note that

FG ≈M(f[n]∗g[n] ≈m[n]) since F (f[n]) is an inversion (deconvolution) of G (g[n]) with

respect to M (m[n]). Note also the non-causality of F (f[n]) so that a zero-phase M (m[n])

can be achieved.

In Fig. 2.11, the effect of Q filter bandwidth is shown using the impulsive reference in

Fig. 2.8 as target profile. The reason of choosing such reference is because the converged

feedforward sequence can be used as refinement of system inversion. Though in this work the

improved learning filter is not employed, interested reader may refer to [CT17] for iterative

learning filter refinement. Clearly a conservative Q (5 Hz bandwidth) guarantees asymptotic

stability; however, this is at the expense of performance degradation. An aggressive Q (60

Hz bandwidth) may gives better learning transient, but it could result in divergence due to

the violation of stability criterion in high-frequency region. This study shows the trade-off
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Figure 2.6: Joint reference profiles associated with test path in Fig. 2.5. Red dashed line

shows the position where the joint is identified.
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Figure 2.8: Impulsive reference (velocity step) with motion constraints.
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between robustness and performance for Q selection.

To conclude this section, we conduct the inner-loop ILC using the joint profiles in Fig.

2.6. The convergence plot of experiment and simulation is shown in Fig. 2.12, where iteration

0 denotes the servo-loop performance. In this test, the experiment shows fast convergence,

which is a feature of inversion-based ILC. The reference model M and low-pass filter Q for

all six joints are as in Fig. 2.7, and will be employed for the proposed nested-loop ILC
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Figure 2.11: Effect of Q filter bandwidth on ILC convergence.
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Figure 2.12: Error convergence using the joint profiles in Fig.2.6

experiments hereafter.

2.5.2 Nested-Loop ILC Tracking Performance

For the nested-loop ILC experiment, outer and inner loop iteration numbers are chosen to

be I = 2 and J = 5, respectively. In inner loop, the algorithm updates feedforward input

ui/j for j = 1,⋯, J and q∗i is the target joint output. Upon inner loop convergence (j = J),

the outer loop computes the update for q∗i+1 = q
∗
0 + δq

∗
i+1 and q∗i+1 will be the target joint

output for the consecutive J inner loop iterations. We denote data set q0/0 and y0/0 for

servo-loop performance, which is independent of ILC recursion. The initialization of u0/1 is

from zero-input zero-output condition, and the result q0/1 shows inversion quality. This can

be seen by plugging u0 = 0, y0 = 0 into Eqn. 2.1. For initialization of ui+1/1, we select q∗i+1

for convenience; however, one can use ui+1/1 = Q[ui+1/J + F (q∗i+1 − qi/J)] to accelerate the

convergence.

To avoid vibration excitation, prior to the start of inner loop iteration a notch filter is
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Figure 2.13: Nested-loop ILC performance with 686 g payload. Top: tip error progres-

sion. Bottom: joint RMS error convergence.

automatically constructed. The algorithm utilizes the power spectral density (PSD) of laser

tracker measurement, and adjusts the corresponding notch location(s), bandwidth(s), and

depth(s) based on the prominence of the mode(s). This notch filter is combined with the

low-pass Q for zero-phase filtering.

The experimental results are shown in Fig. 2.13 and Fig. 2.14 for 686 g and 2732 g

payload, respectively. The top plot shows the tip error progression for selected iterations.

Iteration 0/0 shows the nominal servo-loop (PID) performance, iteration 0/5 shows the

performance limit of inner loop ILC, and iteration 1/5 shows the converged result after

one outer-loop update. The lower part shows the RMS joint error convergence. The joint

tracking simulation is running on the FIR model acquired from the identification input. The

RMS error at iteration 0/1 illustrates the inversion quality, and the performance at iteration

1/1 and 2/1 is comparable to that of iteration 0/0 because they correspond to a command

update without any learning action. Note also the performance level from simulation is

varying for different outer loops. This is due to the update of the notch filtering.
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Figure 2.14: Nested-loop ILC performance with 2732 g payload. Top: tip error progres-

sion. Bottom: joint RMS error convergence.

The performance of the nested-loop ILC is summarized in Tab. 2.1, and note the outer

loop converges almost within one iteration. The error increase at iteration 2/5 for 2732 g

could be steady state oscillation, but requires more iterations for verification. The maxi-

mum error is mitigated by an order of magnitude, showing the effectiveness of the proposed

algorithm. We should mention that the system is identified without any payload, and the

configuration used is not on the test path as well. This verifies the assumption that the

disturbance torque sensed is mostly shielded by the gear ratio effect. In practice, to further

enhance tracking performance the dynamic inversion can be automated with some configu-

ration when payload or trajectory changes.

2.6 Conclusion

This chapter proposes a nested-loop ILC structure for industrial robot manipulators. It at-

tributes the dynamic error to the drives, and static error to imprecise kinematics as well as
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Table 2.1: Tip tracking error statistics of nested-loop ILC

Iteration

No.

686 g 2732 g

RMS Max. RMS Max.

0/0 0.9210 1.2033 0.8267 1.1614

0/5 0.2024 0.4735 0.2458 0.6184

1/5 0.0763 0.1452 0.0598 0.1577

2/5 0.0495 0.1383 0.0643 0.1672

*All values are in units of mm.

joint bias. The inner loop uses a data-based inversion for learning filter design that takes

motion constraints into account. The resultant filter does not require model reduction and

thus give rise to good inverse approximation and fast ILC convergence. The outer loop

ILC analysis is also given, which suggests using inverse Jacobian as learning matrix. To

demonstrate the proposed scheme, simulation and experimental studies are performed on a

serial six degree-of-freedom robot manipulator. This scheme requires only kinematic param-

eters of robot manipulators, showing effective learning and flexibility. Prospective future

research includes investigating learning strategies by incorporating time-varying dynamics

and coupling effect into account.
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CHAPTER 3

Data-driven ILC for Nonlinear Dynamical Systems

3.1 Tracking Control for Nonlinear Systems

Iterative learning control (ILC) is well suited for industrial processes that are repeated in

nature. The essence of ILC is that the error information from previous iteration is used to

update the control sequence for the next iteration, which amounts to an integral action over

iteration domain, and thus the tracking error is asymptotically zero in theory. Applications

of ILC can be found in machine tools [KK96], robot manipulators [WZW18], flatbed printers

[BWK16], wafer positioning systems [DB02], and so forth.

Many systems, however, are generally nonlinear and time-varying. For example, the

dynamics of robot manipulators are nonlinearly position- and velocity-dependent. To address

this, a common approach is to obtain a linearized model of the nonlinear system and apply

linear ILC [Gor02]. To ensure robustness of such ILC, extensive experiments are required to

quantify system variation as uncertainty [SPS14][VDB11]. It is also not trivial to justify the

nominal model on which linear ILC design is based. Another possibility is to adopt ILC law

for nonlinear systems such as Lyapunov-based [CHX08] and gain-scheduled [BWJ05][HXV14]

approaches. Nonetheless, these approaches rely on the knowledge of a nonlinear model, which

can be difficult and expensive to acquire.

In this work, we propose a data-driven approach that implicitly identifies the linear time-

varying (LTV) system inverse along the trajectory tracked. The system inverse is used as

learning filter for the error sequence, and so it has the fast convergence property of inversion-

based ILC algorithms [ZO18]. This is achieved by exploiting the tracking capabilities of
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Figure 3.1: Generic SISO ILC structure. uk = uk(t), yk = yk(t), r = r(t), and ek = ek(t)

are signals in R. F = F (z−1), Q = Q(z−1) are filters with z−1 the delay

operator.

adaptive filtering [Hay08], provided the system is linear and the variation is slow along

the trajectory. The approach is thus model-free because the adaptation accounts for the

system variation as time progresses. Another advantage is to avoid explicitly constructing

the system inverse, which greatly reduces the computation. The time-varying tap weights of

the adaptive filter also alleviates the memory usage.

3.2 Data-driven ILC for nonlinear SISO Systems

3.2.1 Preliminaries

Transfer Function Representation

Consider a single-input-single-output (SISO) stabilized plant g(⋅) that maps input vector u ∈

RN and initial state x0 into output sequence y ∈ RN , namely y = g(u,x0) or abbreviated as

y = g(u), with N the length of command sequence. Given initial input u0 = [u0(0),⋯, u0(N−

1)]T and desired trajectory r = [r(0),⋯, r(N −1)]T , a generic ILC process can be illustrated

as in Fig. 3.1, and put into the following filter representation:

uk+1(t) = Q(z−1) [uk(t) + F (z−1)ek(t)] , (3.1)

the subscript k = 0,1,⋯ is the iteration index, ek = r − yk is the tracking error, F is called

learning filter, Q is a low-pass filter that shuts off learning in high-frequency region. If

g(⋅) = G(z−1) is a linear process, namely yk(t) = G(z−1)uk(t), or yk = Guk as shorthanded,
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then Eqn. (3.1) can be expanded as follows:

uk+1 = Q(uk + Fek)

= Q[uk + F (r − yk)]

= Q(1 − FG)uk +QFr,

(3.2)

and thus ILC stability can be determined by the convergence rate γ:

γ ≜ ∣∣Q(1 − FG)∣∣∞ < 1. (3.3)

Eqn. (3.3) motivates inversion-based methods, for which F ≅ G−1 is the plant inverse.

If the inversion F is exact, the convergence rate γ = 0, meaning the ILC converges within

one step, and the converged error e∞ = 0 [ZO18]. If the inversion F is with respect to a

limited bandwidth zero-phase reference model M , namely FG =M , then the bandwidth of

Q should be selected to be equal or smaller than that of M to ensure Eqn. (3.3) is satisfied.

The reference model can incorporate delays for ILC preview action.

Lifted Representation

For LTV systems analysis, it is common to represent G with finite length N in the lifted

domain:

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h0(0) 0 ⋯ 0

h1(1) h1(1) ⋯ 0

⋮ ⋮ ⋱ 0

hN−1(N − 1) hN−1(N − 1) ⋯ h1(N − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.4)

in which hi(t) is the ith impulse response coefficient at instant t, and G(t, z−1) = ∑
∞
i=0 hi(t)z

−i.

If G is a linear-time-invariant (LTI) system, each diagonal has a constant value and G is

Toeplitz. Similarly, the stability condition can be derived in the lifted domain as [NG02]:

ρ (Q(I −FG)) < 1, (3.5)
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wherein ρ(⋅) is the maximum eigenvalue of a matrix. Moreover, monotonic convergence is

established when:

γ = σ̄ (Q(I −FG)) < 1, (3.6)

and σ̄ is the maximum singular value.

ILC Design for Nonlinear Time-varying System

For nonlinear time-varying system, one common design approach is to treat the system

variation as uncertainty and apply an LTI learning filter. As such, the stability condition in

Eqn. (3.3) can be rewritten as:

∣∣Q[1 − FG(1 +W∆)]∣∣∞ < 1, (3.7)

where g(⋅) = G(1+W∆) is substituted, W is a frequency weighting filter and ∆ is the phase

uncertainy with ∣∣∆∣∣∞ < 1. However, this approach is sacrificing performance for robust

stability. The question of which nominal model G should ILC be designed based on also

needs to be answered. And, lots of experiments are required to quantify the uncertainty so

that Eqn. (3.7) can be used.

Another approach to account for system variation is build a look-up table for F so that

the learning gain is scheduled in accordance with some system parameters [BWJ05][HXV14].

This approach improves the tracking performance significantly but further increases the

storage requirement. Considerable amount of experiments and off-line learning filter design

are needed.

As opposed to the model-based design approaches where either a model set of G’s or the

variation W∆ is needed, herein we introduce data-driven algorithms utilizing experimental

input-output data that implicitly determine the learning filter or matrix. Our proposed

approach which makes use of adaptive filtering will first be presented, showing how the
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-

Figure 3.2: Proposed SISO adaptive ILC: 1) Inject uk to the system and compute tracking

error ek = r − yk. 2) Error filtering utilizing adaptive filter: wk is the input

to excite system dynamics around yk, the nonlinear effect is mitigated by

subtracting yk obtained from step 1). The linearized plant G = G(t, z−1)

along yk and the adaptive inverse F = F (t, z−1) are both time-varying. 3)

The ILC command update for next iteration.

tedious identification of model-based design can be avoided, while maintaining the desirable

features as those inversion-based methods. As a comparison to state-of-the-art data-driven

ILC, an extension of adjoint-based approach [BO15] to nonlinear time-varying systems will

also be given and simulated.

3.2.2 SISO Adaptive ILC

A key step in inversion-based ILC algorithms is the computation of control correction, namely

the filtered error Fek. If the system is nonlinear and time-varying, the computation of F

can be intensive, and storage of look-up table for F ’s grows with the size of the trajectory

or the region of operation.
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In Fig. 3.2, an innovative data-driven ILC is presented to circumvent these difficulties.

The critical error filtering process is shown in step 2): by superimposing an excitation input

wk on the nominal input uk, the linearized time-varying system inverse F (t, z−1) is implicitly

identified along yk via adaptive filtering that minimizes:

min
F

∣∣(M − FG)wk∣∣2, (3.8)

wherein M is the reference model, G is the linearized plant, and F is the approximate inverse

under the assumption that variation of system dynamics is slow compared to adaptation.

The filtered error sequence is obtained by feeding ek through the copy filter Fcopy without

explicitly knowing F . Notice that the nonlinear effect is accounted for by subtracting the

term yk acquired from a separate experiment with only uk as input, as is shown in step 1)

of Fig. 1.

Going back to the lifted domain ILC update uk+1 = Q(uk+Fek), adaptive filtering can be

thought of as constructing the learning matrix F by filling in time-varying FIR coefficients

row by row:

F =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ 0 ⋯ 0

⋯ fm(t − 1) ⋯ 0

⋯ ⋯ fm(t) 0

⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.9)

where fm(t) = [fm−1(t),⋯, f0(t)] is the coefficient row vector. The complete algorithm can

be summarized in Algorithm 1.

Algorithm 1 (SISO adaptive ILC) Given an initial input u0 = r, and iteration index

k = 0, the algorithm is described as follows:

1. Conduct experiment with uk, and compute ek = r − yk.
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2. Superimpose excitation signal wk on uk, and conduct experiment as shown in step 2)

of Fig. 3.2 to obtain filtered error signal Fek.

3. Compute ILC update uk+1 = Q(uk + Fek).

4. Terminate iteration if stop criterion is met, otherwise increment iteration index k ←

k + 1 and go to step 1).

In practice, a training phase should be added at the beginning of the trajectory for

adaptive filter convergence. The choices of reference model M and low-pass filter Q serve as

design parameters as those in inversion-based algorithms. The energy and spectral spread

of perturbation/excitation sequence wk can be inferred from nominal servo performance and

an estimate of system bandwidth.

To conclude this section, we itemize the advantages enabled by the introduction of adap-

tive filtering:

● It is an inversion-based approach and therefore gives fast convergence and good tracking

performance.

● The adaptive filtering in step 2) of Algorithm 1 can be done off-line so long as g(uk+wk)

is stored. This alleviates the hardware requirement for real-time adaptive filtering.

● The adaptive filter has finite-impulse-response (FIR) structure with time-varying tap

coefficients, and so the storage is only proportional to m, the number of taps, instead

of the trajectory size N .

● The time-varying inverse is entirely data-driven by minimizing the criterion ∣∣(M −

FG)wk∣∣2 instead of an explicit construction. The well-developed fast adaptive al-

gorithms [Hay08], which have computation complexity O(m), making this approach

tractable.
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Improving Error Convergence Omitting the effect of smoothing matrix Q, from control

recursion uk+1 = (I − FLG)uk + FLr, the convergence rate is γ = σ̄(I − FLG), wherein the

subscript L denotes left inverse. Previously we have applied adaptive filter to construct FL

for fast convergence. However, since our goal is to enable fast error convergence, we should

instead look into error recursion:

ek+1 = (I −GFR)ek, (3.10)

wherein the subscript R denotes right inverse. In adaptive filtering theory, a right inverse

cannot be adapted directly [Hay08]. Our workaround is instead adapting the non-causal

GT , or its filter form G∗ = G(z, z) = ∑
∞
i=0 hi(t)z

i, which is often referred to adjoint system.

Because I − FT
RGT is identical to I − GFR, adapting on GT allows for having FT

R on the

left-hand side for adaptive filtering. From signal processing, GT is equivalent to TGT where

T ∈ RN×N is the time-reversal operator:

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ⋯ 1

⋮ ⋰ ⋮

1 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.11)

Assume nonlinearity has been addressed, shown in Fig. 3.3 is how the non-causal filtering

is used for ILC error filtering. The key idea is to first get an adjoint F ∗
R version of FR

by adapting G∗, then take adjoint again and FR = (F ∗
R)

∗ is recovered. The algorithm is

summarized in 2.

Algorithm 2 (SISO adaptive ILC with improved error convergence) Given an ini-

tial input u0 = r, and iteration index k = 0, the algorithm is described as follows:

1. Conduct experiment with uk, and compute ek = r − yk.

2. Superimpose excitation signal T wk on uk, remove nonlinearity by subtraction of yk,

then obtain linearized system response G∗wk by output time-reversal.
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1)

2)

Figure 3.3: ha

3. Use adaptive filter as in Fig. 3.3 to obtain filtered error signal Fek.

4. Compute ILC update uk+1 = Q(uk + Fek).

5. Terminate iteration if stop criterion is met, otherwise increment iteration index k ←

k + 1 and go to step 1).

3.2.3 SISO Adjoint ILC

Herein we review the adjoint-based ILC by [BO15], and extend it to nonlinear time-varying

systems. The essence of adjoint-based approach for linear systems is to utilize the adjoint

system GT as the learning matrix so that the ILC stability can be ensured by applying a

small learning gain ε:

ρ(I − εGTG) < 1. (3.12)

The selection of scalar ε becomes a simpler design problem because GTG is symmetric, or

equivalently, the filter form G∗G is zero-phase [YW05], and G∗ = ∑
∞
i=0 hi(t)z

i is the non-

causal system adjoint. The adjoint ILC is stabilizing so long as the learning gain ε is small

enough.
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Figure 3.4: Modified SISO adjoint/gradient ILC: 1) Inject uk to the system and compute

tracking error ek = r − yk. 2) Error filtering using system adjoint G∗. The

nonlinear effect is mitigated by subtracting yk obtained from step 1). 3) The

ILC command update for next iteration.

The error filtering process with adjoint operator is depicted in step 2) of Fig. 3.4, wherein

T is a time-reversal operator, and G is the linearized plant along yk. Note the same term

yk = g(uk) is subtracted as in Fig.3.2 to account for nonlinear effect because in general

g(uk + T ek) − g(uk) ≠ g(T ek) for a nonlinear mapping g(⋅). The complete algorithm can be

summarized in Algorithm 3. We also refer to it as gradient ILC because filtered error with

system adjoint is the gradient with respect to J = eTk+1ek+1, as will be shown later in this

section.

Algorithm 3 (SISO adjoint/gradient ILC) Given an initial input u0 = r, and iteration

index k = 0, the data-driven ILC with system adjoint as gradient can be described in the

following steps:

1. conduct experiment with uk, and compute ek = r − yk.

2. superimpose time-reversed error sequence T ek on uk, and conduct experiment as shown

in step 2) of Fig. 3.4 to obtain filtered error signal G∗ek.

3. compute ILC update uk+1 = uk + εG∗ek.
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4. terminate iteration if stop criterion is met, otherwise increment iteration index k ← k+1

and go to step 1).

The adjoint-based approach eliminates the need of learning filter F and low-pass filter

Q. The only design parameter is the choice of ε. The theoretical upper bound ε̄ can

be determined by ε̄ = 2∣∣G∗G∣∣−1∞ using ILC stability condition. However, the system gain

∣∣G∗G∣∣∞ is usually not known, and so usually a conservative learning gain is used, leading

to slow ILC convergence.

Quasi-Newton Method In [BKO18], an accelerated adjoint ILC for LTI systems is pro-

posed. This is by the optimization formulation with cost function J (uk) = eTk ek: From

optimality condition ∂J (uk+1)
∂uk+1

= 0, one can derive the famous Newton’s method:

arg minJ (uk+1) = uk − (
∂2J (uk+1)

∂u2
k+1

)

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(GTG)−1

⎛

⎝

∂J (uk+1)

∂uk+1
∣
uk+1=uk

⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−2GT ek

(3.13)

Note when inverse Hessian is replaced with identify, we recover adjoint as a gradient descent

method. Since the inverse Hessian is not directly accessible, in [BKO18] a data driven

estimate Bk is used instead, and the corresponding control update is as follows:

uk+1 = uk + εkBkG
Tek. (3.14)

The trial-varying update for Bk is from the famous Broyden-Fletcher-Goldfarb-Shannon

(BFGS) algorithm [Fle13]:

Bk+1 = Bk −
∆kζTk Bk +Bkζk∆T

k

∆T
k ζk

+ (1 +
ζTk Bkζk

∆T
k ζk

)
∆k∆T

k

∆T
k ζ

, (3.15)

where ∆k = uk −uk−1, ζk = vk − vk−1 with vk = 2GTek. And the iteration-varying gain:

εk =
∣∣vk∣∣2Bk

∣∣GBkvk∣∣2
, (3.16)
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is obtained by substituting Eqn. 3.14 into cost functional J (uk) = eTk ek. The accelerated

performance is at the expense of extra O(N2) computation complexity in inverse Hessian

estimate and another experiment with input Bkvk for determining the learning gain εk. This

accelerated method can be summarized in Algorithm 4. For more details, we refer readers

to the original work in [BKO18].

Algorithm 4 (SISO quasi-Newton ILC) Given an initial input u0 = r, B0 = I, and

iteration index k = 0, the adjoint-based ILC with Hessian estimate can be described in the

following steps:

1. conduct experiment with uk, and compute ek = r − yk.

2. superimpose time-reversed error sequence T ek on uk, and conduct experiment as shown

in Fig. 3.4 to obtain filtered error vector GTek.

3. compute Bk using Eqn. 3.15, conduct experiment as in step 2 to experimentally deter-

mine GBkvk, and compute learning gain εk = ∣∣vk∣∣2Bk
/∣∣GBkvk∣∣2.

4. compute ILC update uk+1 = uk + εkBkGTek.

5. terminate iteration if stop criterion is met, otherwise increment iteration index k ← k+1

and go to step 1.

3.2.4 Comparison of SISO Data-driven ILC Algorithms

Shown in Table 3.1 is the comparison of SISO data-driven ILC algorithms. The adaptive

ILC is inversion-based in nature and thus gives fast convergence. This is done by doing

interleaving system inverse identification between ILC iterations with efficient use of time-

varying FIR coefficients, as opposed to the Quasi-Newton method whose computation in

inverse Hessian update grows with the trajectory size N .
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Table 3.1: Comparison of SISO data-driven ILC algorithms. The methods “Adaptive”

and “Adaptive (Improved)” are original contribution of this work in Sec. 3.2.2.

“Gradient” and “Quasi-Newton” are the adjoint-based methods in Sec. 3.2.3

based on the work by [BKO18].

Method Adaptive Adaptive (Improved) Gradient Quasi-Newton

Type Recursive Recursive Batch Batch

Objective min
FL

∣∣(M − FLG)w∣∣2 min
FR

∣∣(M∗ − F ∗
RG

∗)w∣∣2 min
uk+1

eTk+1ek+1 min
uk+1

eTk+1ek+1

No. Experiments

for Error Filtering
1 1 1 2

System ID Yes Yes No For peak gain

Memory Usage

in System ID
m m N/A N2 + 2N

3.2.5 Simulation and Experimental Results

3.2.5.1 Simulation Results

Simulated System: Fully-actuated Furuta Pendulum To validate and compare data-

driven ILC algorithms in Sec. 3.2, a fully-actuated 2-DOF rotary pendulum is used as

simulation test bed as in Fig. 3.5. The prescribed joint motion is a limited-jerk profile

[EA01] with maximum speed of π/3 [rad/s]. The system is known for its rich dynamics,

which is both nonlinear and state-dependent. The equation of motion can be written as

follows:

J(q)q̈ +D(q, q̇)q̇ + G(q) = τ , (3.17)

wherein q represents joint angle vector, J(q) is the inertia matrix, D(q, q̇) contains the

Coriolis and damping term, G(q) is the gravitation, and τ is the motor torque input vector.
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Figure 3.5: Task and joint domain trajectory of the 2 DOF robot. The joint motion is a

jerk-limited profile with maximum speed of π/3 [rad/s].

These terms can be expanded as follows:

J11 = J1 +m2l
2
1 + [J2 +m2l

2
2]sin(q2)

2

J12 =m2l1l2cos(q2)

J21 =m2l1l2cos(q2)

J22 =m2l
2
2 + J2

D11 = b1

D12 =m2[l
2
2sin(2q2)q̇1 − l1l2sin(q2)q̇2] + J2sin(2q2)q̇1

D21 = −1/2[m2l
2
2 + J2]sin(2q2)q̇1

D22 = b2

G1 = 0

G2 =m2l2gsin(q2),

wherein the physical parameters are listed in Tab. 3.2. The system is actuated under 24 V

by direct drive DC motors MMG 98023 (Maxon motor) and 28DT12 222E (Portescap) for

base rotor and pendulum, respectively.
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Table 3.2: Parameters for dynamic model construction.

Physical parameter Notation Value

Rotor total inertia J1 1.13 × 10−3 [kg⋅ m2]

Rotor arm length l1 0.103 [m]

Pendulum mass m2 2.42 × 10−2 [kg]

Pendulum inertia J2 3.22 × 10−5 [kg⋅ m2]

Pendulum length l2 0.122 [m]

Friction coefficient b1, b2 10−4 [N⋅m⋅s rad−1]

Ground Rotor Pendulum

Encoder

MotorControl

Closed-loop

Plant:

Open-loop

Plant

-

Figure 3.6: Simulated model: a continuous-time open-loop plant and a stabilizing

discrete-time PID controller running at 100 Hz.

This continuous-time open-loop model is constructed in MapeSim (Maplesoft, Waterloo)

and simulated in Simulink (Mathworks, MA). The signal connections between simulation

blocks can be seen in Fig. 3.6: the motors apply torque (τ1, τ2) to two revolute joints, and

the joint angle output (q1, q2) is fed back to two PID controllers running at 100 Hz to stabilize

the plant so that the output y = [q1, q2]T follows command reference u. The PID gains for

q1 and q2 are (k1p, k
1
i , k

1
d) = (0.2,0.1,0.1) and (k2p, k

2
i , k

2
d) = (0.6,0.3,0.1), respectively. The

pre-stabilized plant g(⋅) is used for ILC simulation.

System variation along the desired state trajectory (qd, q̇d) is shown in Fig. 3.7. It can

be seen that the off-diagonal terms are 20 dB lower than the diagonal entries, and thus the

SISO ILC can be used and the cross-coupling is respected as repeated disturbance. The
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Figure 3.7: System variation along state trajectory (qd, q̇d). These magnitude plots are

acquired from ten linearized models with equally spacing joint angles from 0

to π.

magnitude plot also serves to determine the largest possible learning gain ε̄ = 2∣∣GTG∣∣−1, or

equivalently ε̄ = 2∣∣G∗G∣∣−1∞ , for the modified adjoint-based method in Algorithm 3.

ILC Algorithm Setup Herein the tracking performance for four different ILC algorithms

listed in Table 3.1 are compared. One additional set of these algorithms are tested without

the inclusion of uk and −yk as those in step 2) of Fig. 3.2 and Fig. 3.4, namely the nonlinearity

is not properly addressed. This serves to illustrate the nonlinear effect when filtering the

error signal.

The adaptive filtering algorithm used here is a rotation-based recursive least square as in

[RB91], which is known for low computational complexity, good numerical robustness, and

fast convergence. The lattice filter structure of [RB91] also gives desirable order-recursive

property, namely the leading FIR coefficients retain optimality when the tap length is reduced

or extended. The number of FIR coefficients used is m = 25. The reference models M1 and

M2 are constructed by 8th-order Butterworth low-pass filters with bandwidth 4 Hz and 8

Hz, respectively. The same delay steps d1 = d2 = 3 are used in the reference models. The

low-pass filters Q1 and Q2 are the same as their corresponding reference models. Intuitively,

the pendulum drive has less inertia and thus higher bandwidth. The choice of M (or Q)
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Figure 3.8: ILC Error convergence for nonlinear system in Fig. 3.5. (i) Adaptive (Im-

proved): uses right inverse for improved error convergence as in Algorithm

2, (ii) Adaptive: proposed Algorithm 1 with adaptive filtering, (iii) Quasi-

Newton: adjoint-based method as in Algorithm 4, (iv) Gradient: adjoint-

based method as in Algorithm 3.

can also be experimentally estimated. For example, prior to algorithm execution step 2) in

Fig. 3.2 can be run with M = 1, namely ∣∣(1 − FG)wk∣∣2 is minimized. By comparing the

power spectral density of wk and (1−FG)wk, the validity of inversion, and thus bandwidth

of M (or Q) may be inferred. The excitation signals w1 and w2 are generated from normally

distributed random sequence with variance σ1 = σ2 = 5 × 10−2. As for the adjoint-based

methods, the learning gains ε̄1 = 0.95 and ε̄2 = 0.22 are computed based on the maximum

amplitude observed in Fig. 3.7. The quasi-Newton ILC is initialized with B0 = I.

Fig. 3.8 shows the overall joint RMS error convergence of different data-driven algorithms
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Figure 3.9: ILC error convergence when nonlinearity is not addressed, namely uk and −yk
are not included. (i) Adaptive (Improved): uses right inverse for improved

error convergence as in Algorithm 2, (ii) Adaptive: proposed Algorithm 1

with adaptive filtering, (iii) Quasi-Newton: adjoint-based method as in Al-

gorithm 4, (iv) Gradient: adjoint-based method as in Algorithm 3.
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Figure 3.10: Error progression for the proposed adaptive ILC.

introduced. It is noted the proposed adaptive ILC (solid and dashed blue lines) reaches

convergence much faster than the adjoint-based approaches owing to the effective inversion-

based learning. For the gradient method in Algorithm 3 (black solid line), the convergence

rate is much slower despite the maximum learning gain is used. The quasi-Newton method

in Algorithm 4 (red solid line) takes up to 25 iterations for convergence. The convergence

speed is not as fast as the adaptive ILC because the inverse Hessian estimate is constructed

by signals ∆k = uk−uk−1 and ζk = vk−vk−1 with vk = 2GTek, and is thus limited by spectrum

coverage of these signals.

In Fig. 3.9 when the nonlinear effect is not taken into account, the adjoint ILC (black

dashdotted line) diverges due to the nonlinearity. Such nonlinearity is, however, not very

strong because it resembles the convergence of the nonlinear case, and takes up to 40 it-

erations to start diverging. Similar degradation is also seen for the adaptive ILC (blue

dashdotted and dotted lines) and quasi-Newton ILC (red dashdotted line), wherein the algo-

rithm is able to maintain stability by approximating a nonlinear system with a linear filter,

only with slower convergence.

In Fig. 3.11, 3.10, 3.12, and 3.13 we present the error progression of Algorithm 2, 1, 4,

and 3, respectively. The proposed adaptive ILC algorithm has superior tracking performance

compared to the adjoint-based algorithms. It is also noted the adjoint-based method has

undesirable transient behavior at the end points. This is a consequence of the forward-
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Figure 3.11: Error progression for the proposed adaptive ILC with improved error con-

vergence.
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Figure 3.12: Error progression for the quasi-Newton ILC.
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Figure 3.13: Error progression for the gradient ILC.
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Figure 3.14: Shown is the ILC error convergence of the data-driven ILC algorithms. The

experiments are run on the 2-DOF pendulum illustrated in Fig. 3.5.

backward filtering GTG when the padding at two ends are not sufficiently long, leading

to mismatched initial conditions [Gus96], and it impedes the achievable performance level.

Although this can be addressed by padding more zeros, the computation complexity increases

accordingly for the accelerated adjoint-based method because the dimension of B grows with

trajectory length N .

3.2.5.2 Experimental Results

For experimental verification, the fully-actuated 2-DOF pendulum system in Fig. 3.5 is

built, and the adaptive ILC with improved error convergence is yet to be implemented. The

resultant ILC convergence for different data-driven algorithms are shown in Fig. 3.14. The

adaptive ILC outperforms other algorithms as expected, and the effect of nonlinearity can

degrade the performance or lead to divergence as discussed before. Note also the quasi-

Newton ILC triggers program stop due to excessive large command (comparable to the
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Figure 3.15: Shown is the condition number of Bk of accelerated adjoint ILC when static

friction of q1 is incorporated into the simulation model. Note the dramatic

increase at iteration k = 2 for the rotor.

reference signal size) in step 3 of Algorithm 4, despite the nonlinearity has been addressed.

The is caused by the large condition number of inverse Hessian estimate Bk, thus leading to

large signal Bkvk.

The large condition number of Bk is due to the static friction in the low-velocity region.

From the experiment, the smallest duty cycle to break the static friction of rotor q1 and

pendulum q2 are approximately 0.01 and 0.005, respectively. For the sake of demonstration,

we incorporate only the static friction of q1 into the simulation model. In simulation result,

similar behavior is observed: the sudden condition number increase is depicted in Fig. 3.15,

and the excessive intermediate signal Bkvk is shown in Fig. 3.16. Also note the nonzero

initial value of Bkvk of rotor and the subsequent active signal level.

This can also be explained from the BFGS update of Eqn. 3.15, which is rewritten as

follows:

Bk = (I −
∆ζT

ζT∆
)Bk−1 (I −

ζ∆T

ζT∆
) +

∆∆T

ζT∆
. (3.18)

The preservation of positive definiteness is under the assumption that ζT∆ > 0 (true for
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Figure 3.16: Shown is the resultant signal Bkvk from the ill-conditioned Bk in Fig. 3.15.

Recall the reference step size is only π ≈ 3.1416 [rad].

strictly convex objective). Recall the definition of ∆k = uk − uk−1, ζk = vk − vk−1 with

vk = 2GTek: if the error does not change in accordance with the control update (due to

friction), then ζT∆ ≈ 0, resulting in excessive intermediate signal Bkvk. One may mitigate

the effect by scaling down Bkvk, however, the problem of having ζT∆ ≈ 0 can still cause data

overflow. In [BKO18], it is recommended to superimpose the reference with a small constant

speed to avoid such region. This strategy would require additional mending for a general

motion profile, and may be applied to nonlinear system because superposition principle does

not hold.

3.3 Data-driven ILC for nonlinear MIMO Systems

In the case when coupling effect can longer be ignored, now we investigate the data-driven

ILC algorithms for MIMO systems. We will start with the MIMO adjoint ILC because the

adjoint operator will later be used for MIMO adaptive ILC.

3.3.1 MIMO Adjoint ILC

The MIMO adjoint ILC for nonlinear system is based on [BKO18], and interested readers

are referred to the original work developed for MIMO LTI systems. Here we will introduce
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the necessary materials to explain the extended algorithm. Specifically, we will show how to

obtain filtered error G∗ek where G∗ is conjugate transpose of the linearized system G. Note

G = G(t, z−1) ∈ Cno×ni is a transfer function matrix with ni inputs and no outputs.

From [BKO18], the adjoint G∗ is equivalent to

G∗ = Tni
(

ni

∑
i=1

no

∑
j=1
EijGEij)Tno , (3.19)

where Tn is a time-reversal operator that reverses n signal sequences, and Eij ∈ Rni×no is

a static system with ni outputs and no inputs. All elements in Eij are zero except (i, j)th

entry, which is one:

Eij =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0(i−1)×(j−1) 0(i−1)×1 0(i−1)×(no−j)

01×(j−1) 1 01×(no−j)

0(ni−1)×(j−1) 0(ni−1)×1 0(i−1)×(no−j).

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.20)

In y = GEiju, Eij selects the jth entry of u and apply it to the ith input of G whereas the rest

of the inputs to G are zero. The time-reversal operators Tni
and Tno deals with conjugation,

while the summation ∑
ni
i=1∑

no
j=1E

ij(⋅)Eij transposes the system.

The objective is to compute G∗ek by performing experiments on G. From Eqn. 3.3.1,

the indirect evaluation of G∗ is recast into ni ×no experiments. This procedure is illustrated

in step 2) of Fig. 3.17. For (i, j)th iteration, jth output error is reversed then superimposed

on ith input, and the corresponding output at jth output is collected after subtracting yk.

The ith input update is summed over j = 1,⋯, no iterations. A 2-by-2 (ni = no = 2) example

is shown in Fig. 3.18 to better demonstrate the procedure.

Quasi-Newton Method For computing the inverse Hessian estimate Bk and the maxi-

mum learning gain ¯varepsilon, the formulas are similar to Eqn. 3.15 and Eqn. 3.16. The

only difference is that ∆k = vec(uk) − vec(uk−1), ζk = vec(vk) − vec(vk−1), where the vec(⋅)

operator denotes concatenation of signals from all channels, and vec(uk),vec(vk) ∈ RniN×1.
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3)

1)
-

-+

iteration:

Figure 3.17: Modified MIMO adjoint-based algorithm: 1) Inject uk to the system and

compute tracking error ek = r − yk. 2) Error filtering using system adjoint

G∗. Matrix Tn is a time-reversal operator on n channels. The filtered error

for the ith input channel is (ērevk )i = ∑no
j=1 ē

rev
k,ij . In the (i, j)th iteration ērevk,ij

is collected by adding the jth channel reversed error erevk to ith channel

input, and extracted from the jth output after subtracting yk. 3) The ILC

command update for next iteration.
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-
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-

Figure 3.18: A 2-by-2 (ni = no = 2) example illustrating step 2) of the modified MIMO

adjoint-based algorithm. Notations (⋅)1 and (⋅)2 denote the first and second

channel of a signal.
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a)

b)

Figure 3.19: Adaptive filtering for (a) left inverse FL by min
FL

∣∣(M − FLG)w∣∣2, and (b)

right inverse FR by min
FR

∣∣(M −GFR)w∣∣2.

3.3.2 MIMO Adaptive ILC

Technical Difficulty for MIMO Extension Non-commutativity is the main difficulty

for extending adaptive ILC to MIMO systems. For systems G(z−1) ∈ Cno×ni and F (z−1) ∈

Cni×no , FG ≠ GF in general. From previous analysis in Sec. 3.2.2 and the method developed

in Algorithm 2, it has already been shown using a right inverse FR will result in better error

convergence. This, however, causes a problem for the adaptive filtering because the right

inverse cannot be adapted directly. As shown in Fig. 3.19, when adapting a FR the unknown

FR is sandwiched between G and w in the objective ∣∣(M −GF )wk∣∣2 = ∣∣Mwk −GFwk∣∣2, and

cannot be solved conveniently.

In the following, we will investigate how to obtain filtered error signal FRek for fast error

convergence. We will assume a linearized time-varying system response is available and the

nonlinearity has been addressed.

Adaptation with Adjoint Operator From MIMO adjoint ILC we have learned how to

obtain G∗ek from ek, namely how to get a filtered signal through a conjugate transposed

system by running ni×no experiments. In adaptive ILC, we can apply the same technique to

first obtain G∗wk from wk. Then, adaptation is performed to minimize ∣∣(M∗ − F ∗
RG

∗)wk∣∣2
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Table 3.3: Impulse response matrix for example system [H(z−1)] with three inputs, two

outputs, and two taps. The entry [(⋅ij)]t denotes tth tap coefficient from input

j to output i.

[h11]0 [h12]0 [h13]0 [h11]1 [h12]1 [h13]1

[h21]0 [h22]0 [h23]0 [h21]1 [h22]1 [h23]1

with adaptive filter F ∗
R. As our goal is to obtain FRek, another ni × no filtering steps is

performed. This MIMO algorithm is illustrated in Fig. 3.20.

Adaptation with Fast Transpose Filtering The adaptive ILC with adjoint requires ni×

no experiments and ni ×no adaptations. Herein we make use of the “fast transpose” method

proposed in [Ple01] to obtain FRek with single experiment and adaptation. The technique

introduced here rely on a key observation: if the adaptation is run on the transposed system,

namely minimizing (MT − F T
RG

T ) with respect to some signal, then the transpose of the

adaptive filter will be the system right inverse because (MT − F T
RG

T )T ↔ (I −GFR). This

is illustrated in Fig. 3.21 with a reference model M to make it more general.

This efficient method makes a direct transposed copy of the adaptive filter instead of indirect

signal manipulation. As a result, tedious experiments can be avoided. The transposed copy

is through re-organization of the components of the impulse response matrices. This is

demonstrated by a simple example as in [Ple01], which considers a system [H(z−1)] with

three inputs, two outputs, and two taps. The weight matrix are visualized in Tab. 3.3.

Taking the z transform, this can be written as:

[H(z−1)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

H11(z−1) H12(z−1) H13(z−1)

H21(z−1) H22(z−1) H23(z−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.21)

where each entry is a transfer function with two taps. The transposed system is then:
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1)
-

2)

3)

4)

Figure 3.20: Proposed MIMO data-driven ILC with adaptive filtering: 1) Inject uk to

the system and compute tracking error ek = r−yk. 2) With wk, make use of

the same procedure described in MIMO adjoint-based algorithm (see step

2) in Fig. 3.17) obtain G∗wk. Note ni×no experiments are needed. 3) Error

filtering utilizing adaptive filter: With wk and G∗wk, adapt F ∗
R. Since the

desired output is FRek, again we make use of the adjoint by running ni ×no
offline adaptations. 4) The ILC command update for next iteration.
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-

Figure 3.21: Adapting a MIMO linear controller FR that minimizes ∣∣(MT −F T
R Ĝ

T )wk∣∣2,

or equivalently, ∣∣wT
k (M −ĜFR)∣∣2. Model Ĝ can either be offline determined

or online identified.

Table 3.4: Impulse response matrix for system [H(z−1)]T

[h11]0 [h21]0 [h11]1 [h21]1

[h12]0 [h22]0 [h12]1 [h22]1

[h13]0 [h23]0 [h13]1 [h23]1

[H(z−1)]T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H11(z−1) H21(z−1)

H12(z−1) H22(z−1)

H13(z−1) H23(z−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.22)

and the corresponding weight matrix can be visualized in Tab. 3.4.

Compared to the algorithm in Fig. 3.20, the adaption is with respect to Ĝ = G in the

identification step 3) in Fig. 3.22. Therefore, performance degradation can be expected. It

is also interesting to point out the fast transpose method has no effect on adapting a SISO

right inverse because there is no channel permutation for SISO systems, whereas adjoint

adaptation does have a SISO counterpart.

3.3.3 Comparison of MIMO Data-driven ILC Algorithms

Shown in Table 3.1 is the comparison of MIMO data-driven ILC algorithms. The fast

convergence of the proposed adaptive ILC has been established from the inversion-based
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Figure 3.22: Proposed efficient MIMO data-driven ILC with adaptive filtering: 1) Inject

uk to the system and compute tracking error ek = r − yk. 2) Inject wk to

excite system dynamics around yk, and collect linearized filtered excitation

signal Gwk by subtracting yk. Note only single experiment is needed. 3)

Error filtering utilizing adaptive filter: With wk and GTwk, adaptively iden-

tify system estimate Ĝ. Then, the transposed copy ĜT
copy is used to adapt

transposed right inverse F T
R . The filter F T

R is again copied and transposed

to obtain FRek. The transposed copy uses the fast transpose algorithm by

I/O channel manipulation. Note only single adaptation is needed. 4) The

ILC command update for next iteration.
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Table 3.5: The methods “Adaptive”, “Adaptive (Improved)”, and “Adaptive (Efficient)”

are original contribution of this work in Sec. 3.3.2. “Gradient” and “Quasi-

Newton” are the adjoint-based methods in Sec. 3.2.3 based on the work by

[BKO18].

Method Adaptive Adaptive (Improved) Adaptive (Efficient) Gradient Quasi-Newton

Type Recursive Recursive Recursive Batch Batch

Objective min
FL

∣∣(M − FLG)w∣∣2 min
FR

∣∣(M∗ − F ∗
RG

∗)w∣∣2 min
FR

∣∣(MT − F T
RG

T )w∣∣2 min
uk+1

eTk+1ek+1 min
uk+1

eTk+1ek+1

No. Experiments

for Error Filtering
1 ni × no 1 ni × no ni × no + 1

System ID Yes Yes Yes No For peak gain

Memory Usage

in System ID
ninom ninom ninom N/A (niN)2 + 2niN

nature. Note the number of additional experiments needed is comparable to or much less

than existing adjoint-based algorithms. The memory usage stays competitive because time-

varying FIR coefficients are used.

3.3.4 Simulation Results

To demonstrate the MIMO algorithms, we revisit the 2-DOF laboratory pendulum example

in Fig. 3.5. The parameter settings are the same as in Sec. 3.2.5.1 except ε̄ = 0.22 from

the MIMO system peak gain, and m = 20 is used to distinguish the performance when less

taps are used. Shown in Fig. 3.23 is the ILC error convergence. First note the superior

performance of the proposed MIMO adaptive ILC with right inverse, which are labelled

“Adaptive (Improved)” and “Adaptive (Efficient)”. Slow convergence results when a left

inverse is used, labelld “Adaptive”. The performance degradation in “Adaptive (Efficient)”

is attributed to the fact the adaption is on Ĝ rather than G, as shown in Fig. 3.22 step 2).

The adjoint-based methods do not have sufficient system excitation, and thus the convergence

speed is limited as in the SISO case.
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Figure 3.23: Error convergence for different MIMO data-driven ILC algorithms. (i)

Adaptive (Improved): uses right inverse for improved error convergence

with the scheme in Fig. 3.20, (ii) Adaptive (Efficient): uses right inverse

for improved error convergence with the scheme in Fig. 3.22, (iii) Adaptive:

use left inverse with the scheme in Fig. 3.19(a), (iv) Quasi-Newton: uses

adjoint filtering in Fig. 3.17 with data-driven inverse Hessian, (v) Gradient:

uses adjoint filtering in Fig. 3.17.
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3.4 Conclusion

In this chapter we present a novel data-driven ILC algorithm, adaptive ILC, for nonlin-

ear dynamical systems. Via the introduction of adaptive filtering, linearized time-varying

inversion along trajectory facilitates the error filtering process in ILC without explicitly

knowing the inversion. The adaptive ILC is fast converging, computationally tractable, and

memory/resource efficient in contrast to gain-scheduled ILC methods. As a comparison to

other data-driven algorithm, we also include an extension of the adjoint-based ILC algo-

rithms. Through simulation and preliminary experiments on a fully actuated 2 DOF rotary

pendulum, it is shown the adaptive ILC gives significant improvement in terms of error

convergence. MIMO adaptive ILC algorithms are also studied, wherein two methods are

proposed to circumvent the difficulty of directly adapting a right inverse.

Our ongoing tasks include the experimental validation of MIMO algorithms, design guide-

lines for the selecting excitation input, reference model, and low-pass filter, also a systematic

study of algorithm robustness against non-smoothness, such as input deadzone and static

friction.
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CHAPTER 4

MRI-guided Robot-assisted Intervention

4.1 Image-guided Intervention with MRI

Image-guided intervention uses real-time tracking of target tissue and instrument to guide

the surgical procedure in an accurate and timely fashion. Noninvasive imaging modalities,

as opposed to direct line-of-sight visualization with cameras, can access imagery of internal

structures, and enables minimally invasive procedure for fast recovery. Magnetic resonance

imaging (MRI), amongst existing modalities, offers high contrast and image quality of soft

tissues [TMT07]. It allows for multiplanar imaging, and can be run continuously because it

is not subject to ionizing radiation exposure as X-ray computer tomography (CT).

Despite MRI has numerous advantages, in clinical practice the real-time imaging capa-

bility is not fully utilized for intervention. A major reason is the space restriction of the

closed-bore scanner [KGM15], which demands the clinician to move the patient outside of

the scanner for incremental instrument manipulation, and inside for confirmation several

times for instrument positioning [WNL08]. The high field strength inside the scanner poses

another difficulty for the development of the assisting device. Ferromagnetic materials are

prohibited due to dangerous projectile motion from magnetic pull, and conductive materials

could have undesirable heating due to eddy current effect. Moreover, if electric compo-

nents are used, they could either inject noise into the scanner’s receiver, leading to image

degradation, or malfunction because of the field imposed by the scanner [GYC06, Fis15].

In response to these engineering challenges, MR safe or conditional robotic platforms

are developed for accurate instrument manipulation under intraoperative MRI. Two main
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Figure 4.1: Shown is the system architecture for a general MRI-guided robotic system.

streams for the actuation of a robotic platform are ultrasonic motors (USM) and pneumatics.

Benefits of USM include high torque output and precision, but comes with a price of signal

degradation and shielding requirement [FKI08]. Pneumatic actuation features complete MR

stealth, yet the performance is limited by the low stiffness and dependency on the line length.

Recently, a promising alternative with faster system response is hydrostatic transmission

[WGB14, MW19]. With the introduction of rolling diaphragm that circumvents the trade-off

between sealing and friction in conventional piston-cylinder set, success has been reported

for accurate needle placement [MSL16, MSL17, BFG17]. A thorough literature review of

existing robots used in MR environment can be found in [AHF15, MCS18].

Although robotic platforms significantly augment the reach of a clinician, there are other

practical issues. The target may be biased from the pre-procedural scan due to patient

motion [Fis15], and the instrument can deviate from the desired pose due to instrument-tissue

interaction and robot structural compliance. Moreover, MRI as a sensor is low frame rate

(typically 5-20 Hz), subject to tracking error (variance 0.25-1.5 mm), and has delay (200-600

ms) from image reconstruction and processing, posing additional challenge for the instrument

motion control. Recently, closed-loop motion control under continuous intraoperative MRI
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guidance has been investigated in [PKL15, MSK17, WSG18], however, it is assumed the

target is almost stationary (e.g. prostate) and the dynamics only comes from the instrument

control device. As involuntary and respiratory motion remain in organs such as livers and

lungs, this prolongs the procedure, makes it error-prone for MRI-guided intervention. Such

assumption also poses safety concern when the instrument goes to unintended region.

In this work, we aim at filling the gaps to enable real-time MRI-guided instrument motion

control when target motion is present, as illustrated in Fig. 4.1. This is achieved via the

following contributions:

1. The integration of real-time MRI tracking and motion control algorithm, setting a

milestone for fully-automated image-guided intervention.

2. Modeling, analysis, and motion controller design for the dynamic tracking problem.

3. In MR environment, experimentally verify with an one-degree-of-freedom hydrostati-

cally actuated platform, including a target motion module emulating respiratory mo-

tion and an instrument manipulation module following the target.

4.2 Hydrostatically-actuated Research Platform

Herein we present the one-degree-of-freedom hydrostatically actuated platform [SLCed] that

allows for MRI-feedback motion control study inside the scanner. The platform, as depicted

in Fig. 4.2, is composed of two modules: 1) an instrument manipulation module for inter-

vention, and 2) a target motion module emulating tissue motion. The goal is to use MRI

feedback and generate compensating signal on the instrument driver so that the relative posi-

tion of instrument tip and a tracked point on the motion module end effector is maintained.

The electronic components, including motors, power amplifiers, and micro-controllers are

placed in the equipment room for MR safety. The remote actuation is via fluid hydrostatics

as in [SLM17].

Shown in Fig. 4.3 is the instrument manipulation module. The double-acting fluid ac-
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Figure 4.3: Instrument manipulation module. The insertion is controlled by a motor

placed in the equipment room (actuated DOF marked in blue). The ad-

justable frame has three slots and thumb screws for instrument-target align-

ment in three translational DOFs (marked in green).

tuator uses rolling diaphragm as both sealing and guiding element. Detailed design and

characterization can be found in [SLCed]. Through rack and pinion coupling to the motor

output, the instrument (18 Gauge biopsy needle) tip can be modulated by the motion con-

troller. The end effector of this module is mounted on a manually adjustable frame for initial

alignment of feedback control study.

Shown in Fig. 4.4 is the target motion module based on the same fluid actuator. This

module is used to reproduce reconfigurable and repeatable (0.31 mm precision) ground truth

motion, e.g. patient breathing. The stroke length is 25.4 mm, and can be mechanically

amplified via pulley mechanism as reported in [SLM17]. In [SLM17], it is shown that it can

track profiles with different frequencies (0.2-0.85 Hz) with sub-pixel resolution of MRI (< 0.5

mm) via feedforward learning control. The end effector is coupled to a cart, which has four

grooved wheels sitting on two round rails made of copper rods. Mounted on top of the cart

is a acrylic phantom box containing a Delrin target plate. The phantom is filled with gel
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Figure 4.4: Target motion module. The emulated motion is replayed, and visualized by

a gel-filled box containing a target plate. There are three needle guides on

the side allowing instrument access inside the box. The platform sits on four

grooved wheels and the motion is constrained by two round guide rails.

so the target plate is MR visible. Three plastic needle guides are on the side of the box to

provide instrument access.

4.3 Sensing and Modeling of MRI

4.3.1 Multi-object Tracking

The multi-object tracking is implemented based on the real-time MRI pipeline established on

a 3T MRI scanner (Prisma, Siemens Healthineers, Erlangen, Germany). The golden angle-

ordered radial spoiled gradient echo sequence [LLM19] is applied to image the gel phantom on

the target motion module in the coronal slice. Simultaneously, the needle inserting into the

phantom is visualized passively due to the needle-induced susceptibility artifact. The real-

time MRI data are streamed and reconstructed online using an open source reconstruction

platform (Gadgetron) [HS13]. Then each image frame is passed into the image processing

module to extract the needle motion and target motion on the phantom using template

matching method as in [LLM19]. This is depicted in Fig. 4.19, and the motion coordinate
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(X: left-right, Y : superior-inferior) represents the relative displacement of either needle

or target to its location on initial image frame. A communication link (TCP/IP) is built

between the image processing module and robotics control module at 10 Hz.

4.3.2 Modeling of MRI

The image tracking process introduces processing delay, as well as tracking error as it deviates

from the truth motion. As MRI feedback plays a critical rule in image-guided motion control,

herein we develop an MRI model for high fidelity simulation when evaluating different control

algorithms.

From experiment, the total MRI delay is determined to be 250 ms via temporal corre-

lation, with 100 ms from image reconstruction and 150 ms from image tracking. This is

cross-validated using a ground truth timestamp, generated by trigger signal converter (see

[LLM19] for details). By comparing MR output to a truth measurement, the error can be

regarded as the noise introduced by MRI. In Fig. 4.5, the error histograms suggest that

they can be approximated as zero-mean normally distributed random processes. The MR

tracking for needle has a larger variance because the feature size is smaller and more sensitive

to background noise. To sum up, the MR imaging process can be modelled by a delay with

additive noise, see Fig. 4.6 b). Note this is the image tracking induced noise, and should

not be confused with the image background noise level.

4.4 Controller Design

The generic objective of MRI-guided intervention is to maintain a prescribed relative position

between a target and the instrument. We will consider the challenging case for which the

needle tip is regulated at a specified point on a moving target, and design a instrument

motion controller. The target motion is assumed to be rigid body translation as described

in Sec. 4.3.

Herein a Proportional-Integral (PI) controller is first designed, serving as the baseline

62



 = 0.049

 = 0.498

-2 -1 0 1 2

Error [mm]

0

50

100

150

200

250

S
am

p
le

s

 = -0.048

 = 0.275

-2 -1 0 1 2

Error [mm]

0

50

100

150

200

250

S
am

p
le

s

a) Needle imaging error distribution b) Target imaging error distribution

Figure 4.5: Shown is the needle and target imaging tracking error distribution (vndl =

y−ytrue and vtrgt = r−rtrue) with fitted Gaussian density function N ∼ (µ,σ).

The error is the difference of MR measurement from a truth (laser encoder)

measurement outside scanner.

performance. Then, various add-on structures based on Adaptive Inverse Control (AIC)

[Wid87] are investigated. These algorithms are first tested in simulation environment, and

then verified by hardware-in-the-loop emulation on the physical instrument manipulation

module. In the following, the sampling rate is chosen to be 10 Hz as the first harmonic of

normal breathing is approximately 0.1-0.2 Hz.

4.4.1 Baseline PI Control

The MRI feedback PI control is shown in Fig. 4.6 a), wherein Pmot is the motor dynamics,

Cmot the motor stabilizing controller, Ptrans the transmission dynamics, DMR the MRI delay,

vndl the needle MR noise, and CPI the baseline controller to be designed. The derivative

control term is discarded due to known high image tracking variance (see Fig. 4.5) of MRI.

To identify the open-loop model GmotPtran for design purpose, the transport delay in

Ptran is first measured to be 50 ms via temporal correlation. Using the prior knowledge of

motor loop Gmot and transmission dynamics (see [GGB04]), system order can be estimated.

Then, a grey-box model fitting using frequency response data (FRD) from sine sweeping
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Figure 4.6: Shown in a) is the block diagram of the baseline PI control. Gmot is is

referred to as “open-loop” and uses only motor encoder feedback. G is the

outer loop that utilizes MRI feedback. Reference r can be predetermined,

e.g. step input, or the target motion measured from the MRI. In b), the

MRI processing (of either needle or target) is modelled as some delay with

additive noise.

experiment is performed as in Fig. 4.7.

The PI control design shown here utilizes typical optimization technique. The cost func-

tion is the Integral Time Absolute Error (ITAE) J = ∑k k∣e(k)∣ to penalize the steady-state

error with respect to a step reference. The optimizer are proportional and integral gains,

initialized by standard Ziegler-Nichols method. Gradient-descent method is used for cost

minimization, and the iterative process is visualized in Fig. 4.8. The resultant controller has

a gain margin of 6.43 dB and 58.8○ phase margin.

To verify the result from offline design, the impulse response from PI design is compared to

the MR experimental result (by one-step shift and subtraction of step response experiment),

as shown in Fig. 4.9. The discrepancy is mostly attributed to transmission loss, either from

mechanism or tubing, and is why an MRI feedback control is needed. Note the 300 ms delay

due to MR image processing and transmission inherent in the system, which can result in

significant phase error. In the following, add-on adaptive control will be employed to provide

predictive action to enhance tracking performance. This will be added to the experimentally
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Figure 4.9: Shown is the impulse response predicted from PI design and the experimental

result acquired using MRI feedback.

acquired Finite Impulse Response (FIR) model ĜMR
ndl (solid line in Fig. 4.9).

4.4.2 Add-on Adaptive Control

The typical breathing motion is pseudo-periodic, and the center frequency of normal breath-

ing (0.1-0.2 Hz) is unknown beforehand and may change over time [SRB91]. As there are also

MRI delay and measurement noise, the dynamic target tracking problem becomes challeng-

ing. Herein we present three different adaptive control configurations similar to the study in

[TCC12], and explains how they could adapt to the dynamic nature of the task using linear

prediction.

First shown in Fig. 4.10 is the adaptive feedforward scheme. The adaptation is recursively

solving the following:

min
Cff

∣∣Hff(1 −CffĜ)y∣∣2 (4.1)

wherein Ĝ is the the pre-stabilized closed-loop model, Cff is a FIR filter whose tap weights
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Figure 4.10: Block diagram of adaptive feedforward control.

are determined by the Recursive Least Squares (RLS) algorithm that minimize the error in

inverting Ĝ with respect to the reference signal sensed r, and Hff is a high-pass filter that

penalizes the high-frequency contents of the control effort due to noisy r. This algorithm

constructs a feedforward controller Cff that best inverts the model regarding the reference

history up to date. As the breathing profile is not purely stochastic, this provides some

prediction capability in the dynamic tracking.

Shown in Fig. 4.11 is the adaptive feedback scheme. Again the RLS algorithm is used to

minimize ∣∣Hfb(1 −CfbĜ)η∣∣2, where the auxiliary signal η = e + ĜCfbη. With some algebraic

manipulation this can be rewritten as:

min
Cfb

∣∣Hfb(1 −CfbĜ)(1 −CfbĜ)−1e∣∣2

=min
Cfb

∣∣Hfbe∣∣2

(4.2)

where Cfb is the feedback controller to be adapted, e is the needle-to-target error from MRI,

w is the external disturbance (e.g. resistance from substrate medium), and Hfb is a frequency

weighting that prevents excessively active control without introducing additional delays from

linear-phase low-pass filtering, as is investigated in [PGT09]. In effect, the feedback controller

Cfb uses signal η for predicting disturbance, breathing profile y, so that error e is minimized.

When these two channels are combined into a single controller, the structure of Fig. 4.12

is created. The transfer function from profile r and disturbance w to error e can be shown
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Figure 4.11: Block diagram of adaptive feedback control.

.
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Figure 4.12: Block diagram of joint adaptive feedforward-feedback control.
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to be

e =
(1 −CffG)(1 −CfbĜ)

1 +Cfb(G − Ĝ)
r

−
1 −CfbĜ

1 +Cfb(G − Ĝ)
w.

(4.3)

It can be seen that as long as (1 − CfbĜ) is small, the joint operation can achieve both

reference tracking and disturbance rejection.

For the adaptive filter implementation, a rotation-based algorithm [RB91] is used with

lattice filter structure. The order-recursive property, namely the leading FIR coefficients

retain optimality when the tap length is reduced or extended, is tractable for filter order

selection. A simulation example is shown in Fig. 4.13 where the order of Cff in Fig. 4.10 is

to be determined. The RMS value of true tracking error etrue = rtrue − ytrue is shown as filter

order changes. Clearly, the RMS error is decreasing as the filter order increases, as pointed

out by the order-recursive property, and ten taps should be sufficient. The order of other

configurations are determined similarly. For high performance, 20th order filter is used for

all configurations.

In Fig. 4.14, we also demonstrate the importance of frequency weighting by simulating

the effect of Hff in Fig. 4.10. The high-pass weighting Hff is chosen so because the frequency

range for normal breathing is approximately 0.1-0.2 Hz. Because the the noisy content of

yMR
trgt in Eqn. 4.1 is suppressed, the control effort is mostly in the low-frequency region,

resulting in smaller tracking error.

4.4.3 Hardware-in-the-loop Emulation

Our objective is to regulate the distance between a dynamic target and a controlled instru-

ment. Considering the accessibility and setup cost in MRI suite, algorithms introduced in

this section are first tested on the benchtop. This benchtop study includes the physical

instrument manipulation module, with the end effector position ytrue measured by a laser
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Figure 4.13: Simulating the effect of adaptive filter order of Cff on tracking RMS error.

Two waveforms, middle and bottom plots in Fig. 4.20 are tested. The

fluctuation after 10th order is due to the stochastic nature of the MRI noise.

encoder. The target motion rtrue is artificially generated from pre-recorded breathing mo-

tion using high resolution offline image tracking. Both true target rtrue and end effector

ytrue positions are corrupted via the MR image tracking model, delay plus additive Gaussian

noise, as discussed in Sec. 4.3, to emulate MR output r and y. This hardware-in-the-loop

emulation is illustrated in Fig. 4.15.

Shown in Fig. 4.16 is the tracking error history of the algorithms presented in this

section. The reference profile tracked is the same as the middle plot in Fig. 4.20. The initial

large error up to 15 second for adaptive controllers (FF, FB, and FF+FB) is from software

protection, limiting the control effort so that input is not saturated in the learning phase.

Here we focus on the steady-state performance, and note first the add-on adaptive controllers

improve the baseline PI performance. Secondly, the adaptive feedback (FB) performs the

worst amongst three adaptive schemes. This is because PI control has already used the noisy

feedback y (see Fig. 4.6), and having another feedback with the same noisy measurement
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Figure 4.14: Simulating the effect of high-pass weighting Hff on tracking error Power

Spectral Density (PSD). Dashed lines are the frequency weighting functions,
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attenuated by penalizing the high frequency content from MRI noise.
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Figure 4.15: This shows the benchtop setup emulating MR feedback by corrupting a

fictitious target reference and instrument end effector measurement using

the MRI model described in Sec. 4.3.
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(see Fig. 4.11) limits the improvement. This also explains why joint adaptive feedforward-

feedback (FF+FB) does not do better than adaptive feedforward (FF) alone, as most of

the low-frequency disturbance is already compensated by PI and the inclusion of feedback

path introduces additional noise. In the next section, we will implement the most promising

adaptive feedforward controller in MR environment.

4.5 Experimental Results

The system architecture is shown in Fig. 4.17. The instrument manipulation module and the

target motion module described in Sec. 4.2 are controlled by National Instrument PXI-7833R

and myRIO real-time targets, respectively. The end effector positions are sensed by the MR

scanner, and the image is processed at 10 Hz on a host laptop that generates compensation

signal, also at 10 Hz, to the instrument manipulation module. This host laptop also sends

learned feedforward signal to the target motion module, which is independently controlled

at 200 Hz, to reproduce pre-recorded breathing profile.

Shown in Fig. 4.18 is the test setup for motion synchronization of the dynamic target

and the needle. The needle enters a plastic needle guide and is inserted into the gel-filled

phantom. The tracked point on the target plate is the midpoint of the open slot aligned

with the edge. It is chosen so that the needle tip always stays in the gel-filled region (MR

visible) without colliding with the target plate. Detailed dimensions of the phantom can be

found in Fig. 4.19, which also shows the pixel image with target and needle streamed from

the MRI station.

The tracking results with the adaptive feedforward control (Fig. 4.10) for three different

profiles are shown in Fig. 4.20. The experimental procedure is as follows: the real-time MR

streaming is first established, then the target motion module is initiated with prescribed

breathing profile, thereafter the adaptive control signal is gradually ramping in to prevent

input saturation and large transient. The steady state performance is summarized in Tab.

4.1, which agrees well with the simulation results.
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reference profile in the middle plot of Fig. 4.20. Algorithms discussed in

Sec. 4.4 are examined. The RMS error is calculated for t > 40 seconds.
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    platform setup in MRI scanner
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Figure 4.18: The experimental setup for MRI feedback motion control study. The goal

is to keep the needle tip at the target point at all times.
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Table 4.1: Needle tracking error statistics (calculated for t > 60 sec in Fig. 4.20) under

closed-loop MRI feedback with adaptive feedforward control (see Fig. 4.10).

Profile

Frequency [Hz]

Max.

Error [mm]

Mean

Error [mm]

RMS

Error [mm]

0.07
Sim. 3.393 0.152 1.077

Exp. 3.510 0.191 1.132

0.11-0.13
Sim. 4.431 0.138 1.165

Exp. 4.095 0.139 1.197

0.17-0.19
Sim. 6.923 0.526 2.035

Exp. 6.727 0.378 2.180
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Figure 4.20: Tracking result y (in Y direction in Fig. 4.19) of adaptive feedforward

control on 0.07 Hz (top), 0.11-0.13 Hz (middle), and 0.17-0.19 Hz (bottom)

profiles, respectively. Delayed r is obtained by delaying signal r with system

transmission and processing delays.
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Figure 4.21: Error distribution of the steady-state (t > 60 s) tracking error in Fig. 4.20.

Shown further in Fig. 4.21 and Fig. 4.22 are the spatial distribution and power spectral

density (PSD) of steady-state tracking error in Fig. 4.20. First notice how the spread widens

as the profile becomes more challenging. Also note the prominent mode ( 0.2 Hz) in PSD

for aggressive profile (0.17-0.19 Hz) due to the phase delay.

To demonstrate the effect of prediction from adaptive feedforward, a delayed reference

signal (Delayed r) is also depicted in Fig. 4.20. This represents the performance of a

perfect actuator with only processing delay. In Tab. 4.2, we see that the RMS error of

adaptive feedforward is mitigated compared to the pure delay system, and is attributed to

the predictive action.

To evaluate the feasibility for automated MRI-guided intervention, shown in Fig. 4.23 is

the survival function with respect to the steady-state (t > 60 s) absolute tracking error from

Fig. 4.20. In clinical practice, the smallest target size is about 5 mm diameter. For liver,

lesion size less than 5 mm are usually benign [AND09]. Therefore, a 2.5 mm absolute error is

acceptable and is drawn as the vertical red line. We see only a < 5% chance this requirement

is not met for mild profiles, whereas it is about 15% for the aggressive profile (0.17-0.19 Hz).

In the following, we will use our high fidelity simulation model to study how the limiting

factors may be improved to make the performance comparable to those mild profiles.
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Figure 4.22: Power spectral density of the steady-state (t > 60 s) tracking error in Fig.

4.20.

Table 4.2: Tracking RMS error (calculated for t > 60 sec in Fig. 4.20) with adaptive

feedforward and the pure delay system.

Profile

Frequency [Hz]

Scheme

Tested

RMS

Error [mm]

0.07
Adaptive FF 1.113

Pure Delay 1.410

0.11-0.13
Adaptive FF 1.197

Pure Delay 1.543

0.17-0.19
Adaptive FF 2.171

Pure Delay 2.465
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Figure 4.23: Survival function with respect to absolute tracking error. For a given ∣e0∣

on x-axis, the y-axis value denotes the probability Pr(∣e∣ > ∣e0∣), namely the

chance of having absolute error larger than ∣e0∣.

4.6 Discussion

Now we examine two performance limiting factors, the system delay and the needle noise

variance (see Fig. 4.5) induced by image processing, using the aggressive profile in the bottom

plot of Fig. 4.20. Fig. 4.24 shows the simulation results. The range of delay is chosen so

because MRI has a 100 msec acquisition time, and with image processing a 200-400 msec

total delay is common [LLM19]. The lower bound for needle noise variance is set to be the

same as the target noise variance 0.275 mm because this sub-pixel image tracking with large

feature size is considered the best performance with current real-time MRI technology. It

can be seen decreased delay results in improvement because the prediction horizon is shorter.

Interestingly, when the needle noise variance decreases, the FB scheme improves significantly.

This is because the adaptive feedback scheme in Fig. 4.11 utilizes heavily corrupted y in

both inner loop and the adaptive loop, and thus is affected the most. The FF+FB is less

sensitive because part of the control action is compensated by the feedforward controller. If

both limits in delay and needle noise are achieved, the maximum tracking error on aggressive

profile is reduced by 50%, and Pr(e > 2.5mm) < 10%, comparable to the results of those

mild ones. It should be noted that in the simulation G = Ĝ is used so it appears feedforward
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Figure 4.24: Effect of system delay and needle tracking variance on different adaptive

control schemes. The original system delay is 300 msec, and the variance of

needle imaging noise is 0.498 mm. Note in simulation we assume G = Ĝ.

alone performs the best, but in reality modeling error exists and joint operation should give

the best performance if the needle variance can be further mitigated.

4.7 Conclusion

The results of the paper can be summarized as follows:

1. Fully-automated dynamic target tracking in MR environment is realized via the in-

tegration of robotic platform, MR image tracking, and adaptive control algorithm.

Navigating an instrument with image feedback can thus be more effective and stream-

lined.

2. Modeling of the MR image acquisition process and instrument manipulation module

dynamics. With the high fidelity models, add-on adaptive controllers are analyzed,

simulated, and validated.

3. Implementation of the adaptive controller on a hydrostatically actuated platform in

MRI scanner. Breathing profiles with different spectral properties are tested and cross-

validated by simulation. Limiting factors are also discussed.
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Future work include several aspects. First is the hardware: multi-DOF platforms for both

robot and target. Second is the MR sensing. We have developed a needle tracking algorithm

[LRL19] that could account for a more general rigid body motion, and is working on the

automated scanning plane alignment when the needle changes posture. In our recent work

[LLM19] it is also shown possible to improve tracking accuracy and mitigate time delay via

multi-rate fusion. If the sensing can be improved, a higher control rate could be used to deal

with rapidly changing breathing profiles. Also, currently we do not assume any knowledge

of the profile tracked. It is possible to include an internal model for breathing to further

improve the tracking performance.
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CHAPTER 5

Summary

In this research inversion-based control methods are studied for different systems and appli-

cations.

In Chapter 2, we study the tracking application of robot manipulator. Because the

actuator dynamic compensation alone cannot guarantee end effector path accuracy due to

static bias, either from imprecise kinematics or joint deflection. Therefore, a nested-loop

iterative learning algorithm is proposed with an inner-loop motor dynamic compensation

and an outer-loop static bias correction. The inner loop learning filter requires only simple

impulsive inputs and has no fitting loss. Motion constraints of the system can also be

incorporated. The outer loop uses robot inverse Jacobian for effective learning to cancel out

static bias without exciting vibration modes. This is experimentally verified on a 6-DOF

serial robot and the error is mitigated by an order of magnitude (≈ 50µm) under variant

payload. The following topics can be pursued going forward:

1. When the cross-coupling and system variation cannot be ignored, the system becomes

multivariate and cross-coupled. An effective interpolation strategy of system inversion

can further improve the performance.

2. Because the laser tracker is expensive to set up, a cost effective end effector perfor-

mance evaluation is of practical interest. For example, vision-based sensor, inertia

measurement [JTK09], and proximity sensor.

3. Another interesting aspect is when there exhibits robot-workpiece and/or robot-robot

interaction. Position-based control is likely to induce large force, and therefore the

82



interaction needs to be addressed in the baseline controller as well as ILC design.

In Chapter 3, we propose a novel data-driven iterative learning control for nonlinear

dynamic systems. Aiming to address the nonlinearity of real-world systems and mitigate the

burden of tedious identification and control design process, this idea utilizes adaptive filter

to identify the system inversion of the linearized system along the trajectory. Because this

approach is inversion-based, it has fast convergence and good tracking performance. Also,

the tracking capability and existing “fast” rotation-based adaptive filtering algorithm allows

a memory efficient and computationally tractable implementation. A comparative study

is given with the extension of an existing adjoint-based method for LTI systems [BKO18].

This is demonstrated on a 2-DOF laboratory robot with simulation and experimental results,

showing the superior performance of the proposed adaptive ILC. Algorithms for multivariate

systems are also developed and validated via simulation. The ongoing tasks include:

1. The implementation and comparative study of the MIMO algorithms.

2. A design guideline for excitation input, reference model, and low-pass filter selection.

Proof of ILC convergence for general or a class of nonlinear systems.

3. A qualitative study of the non-smooth effect on each algorithm, for example, the effect

of friction, dead zone, and finite word length.

In Chapter 4, we study the MRI-guided automated intervention, wherein the goal is

to regulate the distance between a dynamic target and an instrument. This is set up as

a unknown disturbance (target motion) rejection problem, and adaptive control schemes

are investigated for their prediction capability. The concept is tested on a hydrostatically-

actuated research platform, embodying an instrument manipulation module for intervention,

and a target motion module emulating tissue motion [SLM17]. Through modeling of MR

image processing and instrument module dynamics, the real-time MRI feedback motion

control is simulated and experimentally verified in MR environment, showing great promise

towards fully-automated MRI-guided intervention.
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From the results of this study, the following recommendations can be made going forward:

1. Currently the adaptive control does not assume any knowledge of the breathing profile.

However, the respiratory motion is not purely stochastic. Prediction can be made based

on some model forms, either on the sensing side or the control side, to further enhance

the performance.

2. With the knowledge of the transmission dynamics from motor output to end effector

output, one can fuse the knowledge of encoder-based prediction and MR measurement

to acquire better estimate. As the signal-to-noise-ratio improves, higher control rate

can be used to extend system bandwidth.

3. A multi-degree-of-freedom robot and dynamic phantom development for a more rele-

vant clinical setting.

4. For general instrument motion, image tracking algorithm needs to account for rigid

body motion and to adaptively align the scanning plane with the instrument so that

MRI can keep track of.
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