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ABSTRACT OF THE DISSERTATION

A Systematic Approach for Finding and Profiling Malware Source Code in Public Archives

by

Md. Omar Faruk Rokon

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2022

Dr. Michalis Faloutsos, Chairperson

How can we find malware source code and establish the similarity, influence, and phylogeny

of these malware? This question is motivated by a real need: there is a dearth of malware

source code, which impedes various types of security research. Our work is driven by

the following insight: public archives, like GitHub, have a surprising number of malware

repositories. This thesis spans three interrelated problems in this space. First, we address

the problem of scarcity of malware source code. We propose, SourceFinder, a supervised-

learning approach to identify repositories of malware source code efficiently. We evaluate

and apply our approach using 97K repositories from GitHub. Second, we propose Repo2Vec,

a comprehensive embedding approach to represent a repository as a distributed vector

by combining features from three types of information sources. As our key novelty, we

consider three types of information: (a)metadata, (b) the structure of the repository, and

(c) the source code. It enables ML techniques for similarity identification, clustering, and

classification tasks. We evaluate our approach with 1013 java repositories to find similarities

and clusters among them. Third, we propose PIMan, a systematic approach to quantify
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the influence among the repositories in a software archive by focusing on the social level

interactions. We introduce the concept of Plausible Influence which considers three types of

information: (a) repository level interactions, (b) author level interactions, and (c) temporal

considerations. We evaluate and apply our method using 2089 malware repositories from

GitHub spanning approximately 12 years. In our thesis, we use the data from GitHub

and three security forums. We show that our approach, SourceFinder identifies malware

repositories with 89% precision and 86% recall using a labeled dataset. We use SourceFinder

to identify 7504 malware source code repositories, which arguably constitute the largest

malware source code database. Second, we show that our method outperforms previous

methods in terms of precision (93%vs 78%), with nearly twice as many Strongly Similar

repositories and 30% fewer False Positives. We show how Repo2Vec provides a solid basis

for: (a) distinguishing between malware and benign repositories, and (b) identifying a

meaningful hierarchical clustering. For example, we achieve 98% precision and 96% recall

in distinguishing malware and benign repositories. We study the social level interaction

between two repositories and establish a plausible influence network among them. We find

that there is a significant collaboration and influence among the repositories in our dataset.

We argue that our approach and our large repository of malware source code can be a

catalyst for research studies, which are currently not possible.
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Chapter 1

Introduction

“Where can we find malware source code?” This question is motivated by a real

need: there is a dearth of malware source code, which impedes various types of security

research. Security researcher are always searching for an an extensive database of malware

source code for various real need, which is currently unavailable. Security researchers can

leverage malware source code to: (a) understand malware behavior and techniques, and

(b) evaluate security methods and tools. Also, the source code can be used to create the

groundtruth for assessing the effectiveness of different techniques, such as reverse engineering

methods.

Surprisingly, open source software archives, like GitHub, host many publicly-

accessible malware repositories. Security community has a fairly limited idea about the

opportunity to find malware source code and they are yet to explore the platform. In this

work, we focus on GitHub which is arguably the largest software storing and sharing plat-

form. As of October 2019, GitHub reports more than 34 million users [67] and more than
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32 million public repositories [65]. As we will see later in Chapter 3, there are thousands

of repositories that have malware source code, which seem to have escaped the radar of the

research community so far. We use a broad definition of malware to include any repository

containing software that can participate in compromising devices and supporting offensive,

undesirable and parasitic activities ranging from simply script-kiddies to tools and it may

contain the new, old, popular, variant of well-known malware to hacking tools or malware

framework.

Therefore, the question that we answer in this thesis is: “How can we find malware

source code and establish similarity, influence and phylogeny these malware?” The goal

here is to identify malware source code repositories, and establish similarity and influence

among them in a large archive, like GitHub and BitBucket. The input to the problem is an

online archive and the desired output is a database of malware repositories. The problem

consists of challenging sub-problems: (a) collecting an appropriate set of repositories from

the potentially vast archive, (b) identifying the repositories that contain malware, and (c)

profiling the repositories, for example, determining the similarity among the repositories,

establishing the influence and phylogeny of malware. In more detail, there are three distinct

types of information for each repository: (a) metadata (title, description, etc), (b) the actual

source code, and (c) the project directory structure. The problem statement can be captured

well in the following motivating questions:

Question 1: How can we identify malware repositories in online software archives?

Question 2: How can we profile the malware repositories, in terms of determining

similarity?
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Question 3: How can we establish plausible influence among the malware reposi-

tories?

We face several practical challenges in this thesis. First, we need to collect an

appropriate set of repositories from the potentially vast archive. Second, repository contains

unstructured and heterogeneous data. There is a lot of “noise”, lack of structure, and an

abundance of informal and hastily written text. The key challenge is to identify appropriate

data in a repository. Third, there is no ground-truth dataset. We need to create the ground

truth for evaluating the identification and classification methods. Fourth, another practical

challenge here is to represent the repository data into a numeric feature vectors to enable

ML approaches to compute the similarities and cluster among repositories. In addition,

combining vectors from different types of information, as we will do here, is also a challenge.

Also, another key challenge is developing a comprehensive approach for defining influence,

and even further, estimating the possibility that such an influence has occurred. Combining

these different types of information is a non-trivial task.

There is limited work for the problems as defined above. Malware repositories

have only been used opportunistically, and there has not been a study that focuses on

a systematic identification of malware repositories in online archives. There are several

efforts that maintain malware binary databases [5, 9] and extract higher-level information

from binaries [34, 53]. There are relatively few efforts [103, 133, 148, 205, 236] that focus on

establishing similarity between repositories, and most of them use either metadata or source

code level information, while none of them use the three types of information or provide

embedding which enables downstream ML tasks. We elaborate on previous works later.
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Our work is arguably the first effort to systematically identify malware source code

repositories from a massive public archive like GitHub. The key contributions in this thesis

are as follows. First, we propose a systematic approach, SourceFinder, to detect malware

source code repositories in public archive. We describe this in Chapter 3. Second, we

design and develop an embedding approach, Repo2Vec, to present the GitHub repositories

in a fixed length vector, and to quantify similarities between two repositories. We discuss

this in details in Chapter 4. Third, we propose PIMan, a systematic approach to establish

influence and phylogeny among a set of malware repositories in GitHub. We include this

in Chapter 5. Our key results are summarized in the following points.

(a) We identify 7504 malware source-code repositories with 89% precision,

which is arguably the largest malware source-code database available to the research com-

munity. We also create a curated database of 250 malware repositories, manually verified

and spanning a wide range of malware families. We study the fundamental properties and

trends of the malware repositories and their authors. The number of such repositories ap-

pears to be growing by an order of magnitude every 4 years, and 18 malware authors seem

to be “professionals” with a well-established online reputation.

(b) Repo2Vec outperforms prior works by a huge margin. We show that

our method outperforms previous methods in terms of precision (93% vs 78%), with nearly

twice as many Strongly Similar repositories and 30% fewer False Positives. We show how

Repo2Vec provides a solid basis for (a) distinguishing between malware and benign repos-

itories, and (b) identifying a meaningful hierarchical clustering. For example, we achieve

98% precision and 96% recall in distinguishing malware and benign repositories.

4



(c) PIMan models influence flexibly with a directed graph. Our approach

captures repository-level influence relationships with a flexible and informative plausible in-

fluence graph (PIGraph) which correlates with code-level similarity. We observe significant

collaboration and influence among the repositories in our dataset. Analyzing the influence

graph, we can find interesting lineage and clusters of influence. We find 19 repositories

that influenced at least 10 other repositories directly and spawned at least two “families”

of repositories.

We develop a systematic suit of capabilities for studying the malware repository

in online platforms. Our tools are capable of: (a) identifying malware repositories, and (b)

establishing similarity and influence among repositories. We present the largest malware

source code database with 7504 repositories to the security research community. We also

provide an embedding approach, Repo2Vec to enable ML for any repository analysis tasks.

Follow up research can expand on our work to (a) identify more malware source code repos-

itories in GitHub, GitLab, Gitee, and so on, (b) extensively classify the malware dataset

to families and target platform, (c) extend Repo2Vec capabilities for other programming

language such as Python, C/C++, etc. repositories. We believe that our methods can

be seen as a great foundation for security researchers who are always looking for malware

source code.
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Chapter 2

Our Datasets

Our work focuses on repository data from GitHub, the largest software archive

with roughly 30 million public repositories. We provide background information on GitHub

and the type of information that repositories have.

GitHub is a massive world-wide software archive, which enables users to share

code through its public repositories thus creating a global social network of interaction. For

instance, first, users can collaborate on a repository. Second, users often “fork” projects:

they copy and evolve projects. Third, users can follow projects, and “up-vote” projects using

“stars” (think Facebook likes). Although GitHub has many private repositories, there are

more than 32 million public software repositories.

We describe the key elements of a GitHub repository. A repository is equivalent

to a project folder, and typically, each repository corresponds to a single software project.

However, a repository could contain: (a) source code, (b) binary code, (c) data, (d) docu-

ments, such as latex files, and (e) all of the above.
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A repository in GitHub has the following data fields: a) title, b) description, c)

topics, d) README file, e) file and folders, f) date of creation and last modified, g) forks,

h) watchers, i) stars, and j) followers and followings, which we explain below.

a. Repository title: The title is a mandatory field and it usually consists of

less than 3 words.

b. Repository description: This is an optional field that describes the objec-

tive of the project and it is usually 1-2 sentences long.

c. Repository topics: An author can optionally provide topics for her reposi-

tory, in the form of tags, for example, ”linux, malware, malware-analysis, anti-virus”. Note

that 97% of the repositories in our dataset have less than 8 topics.

d. README file: As expected, the README file is a documentation and/or

light manual for the repository. This field is optional and its size varies from one or two

sentences to many paragraphs. For example, we found that 17.48% of the README files

in our repositories are empty.

e. File and folders: In a well-constructed software, the file and folder names

of the source code can provide useful information. For example, some malware repositories

contain files or folders with indicative names, such as ”malware”, ”source code” or even

specific malware types or names of specific malware, like mirai.

f. Date of creation and last modification: GitHub maintains the date of

creation and last modification of a repository. We find malware repository created in 2008

are actively being modified by authors till present.

g. Number of forks: Users can fork a public repository: they can create a clone

7



of the project. An user can fork any public repository to change locally and contribute

to the original project if the owner accepts the modification. The number of forks is an

indication of the popularity and impact of a repository. Note that the number of forks

indicates the number of distinct users that have forked a repository.

h. Number of watchers: Watching a repository is equivalent to ”following” in

the social media language. A ”watcher” will get notifications, if there is any new activity in

that project. The numbers of watchers is an indication of the popularity of a repository [45].

i. Number of stars: A user can ”star” a repository, which is equivalent to the

”like” function in social media [16], and places the repository in the users favorite group,

but does not provide constant updates as with the ”watching” function.

j. Followers: Users can also follow other users’ work. If A follows B, A will be

added to B’s followers and B will be added to A’s following list. The number of followers is

an indication of the popularity of a user [115].
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Chapter 3

SourceFinder: Finding Malware

Source-Code from Publicly

Available Repositories in GitHub

Security research could greatly benefit by an extensive database of malware source

code, which is currently unavailable. This is the assertion that motivates this work. First,

security researchers can use malware source code to: (a) understand malware behavior and

techniques, and (b) evaluate security methods and tools. In the latter, having the source

code can provide the groundtruth for assessing the effectiveness of different techniques,

such as reverse engineering methods. Second, currently, a malware source code database is

not readily available. By contrast, there are several databases with malware binary code,

as collected via honeypots, but even those are often limited in number and not widely

available. We discuss existing malware archives in Section 3.7.
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Figure 3.1: The steps of our work as a funnel: We identify 7.5K malware source code repositories

in GitHub starting from 32M repositories based on 137 malware keywords (Q137).

A missed opportunity: Surprisingly, software archives, like GitHub, host many

publicly-accessible malware repositories, but this has not yet been explored to provide

security researchers with malware source code. In this work, we focus on GitHub which is

arguably the largest software storing and sharing platform. As of October 2019, GitHub

reports more than 34 million users [67] and more than 32 million public repositories [65].

As we will see later, there are thousands of repositories that have malware source code,

which seem to have escaped the radar of the research community so far. We use a broad

definition of malware to include any repository containing software that can participate in

compromising devices and supporting offensive, undesirable and parasitic activities.

Why do authors create public malware repositories? This question mystified us:

these repositories expose both the creators and the intelligence behind the malware. In-

trigued, we conducted a small investigation on malware authors, as we discuss below.
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Problem: How can we find malware source code repositories in a large archive,

like GitHub? The input to the problem is an online archive and the desired output is a

database of malware repositories. The challenges include: (a) collecting an appropriate set

of repositories from the potentially vast archive, and (b) identifying the repositories that

contain malware. Optionally, we also want to further help researchers that will potentially

use these repositories, by determining additional properties, such as the most likely target

platform, the malware type or family etc. Another practical challenge is the need to create

the ground truth for validation purposes.

Related work: To the best of our knowledge, there does not seem to be any

study focusing on the problem above. We group related work in the following categories.

First, several studies analyze software repositories to find usage and limitations without any

focus on malware [43]. Second, several efforts create and maintain databases of malware

binaries but without source code [5,9]. Third, many efforts attempt to extract higher-level

information from binaries, such as lifting to Intermediate Representation (IR) [53], but it

is really difficult to re-create the source code [34]. In fact, such studies would benefit from

our malware source-code archive to evaluate and improve their methods. Taking a software

engineering angle, an interesting work [27] compares the evolution of 150 malware source

code repositories with that of benign software. We discuss related work in Section 3.7.

Contributions: Our work is arguably the first effort to systematically identify

malware source code repositories from a massive public archive. The contribution of this

work is three-fold: (a) we propose SourceFinder, a systematic approach to identify mal-

ware source-code repositories with high precision, (b) we create, arguably, the largest non-
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commercial malware source code archive with 7504 repositories, and (c) we study patterns

and trends of the repository ecosystem including temporal and author-centric properties

and behaviors. We apply and evaluate our method on the GitHub archive, though it could

also be used on other archives, as we discuss in Section 3.6.

Our key results can be summarized in the following points, and some key numbers

are shown in Figure 3.1.

a. We collect 97K malware-related repositories from GitHub, namely repos-

itories retrieved using malware keywords through GitHub’s API and employing techniques

to overcome several limitations. We also generate an extensive ground-truth with 2013

repositories, as we explain in Section 3.1.

b. SourceFinder achieves 89% precision. We systematically consider different

Machine Learning approaches, and carefully-created representations for the different fields

of the repository, such as title, description etc. We then systematically evaluate the effect

of the different features, as we discuss in Section 3.3. We show that we classify malware

repositories with a 89% precision, 86% recall and 87% F1-score using five fields from the

repository.

c. We identify 7504 malware source-code repositories, which is arguably

the largest malware source-code database available to the research community. We have

already downloaded the contents in these repositories, in case GitHub decides to deactivate

them. We also create a curated database of 250 malware repositories, manually verified and

spanning a wide range of malware types.

d. The number of new malware repositories in our data more than
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triples every four years. The increasing trend is interesting and alarming at the same

time.

e. We identify popular and influential repositories. We study the malware

repositories using three metrics of popularity: the number of watchers, forks and stars. We

find 8 repositories that dominate the top-5 lists for all three metrics.

f. We identify prolific and influential authors. We find that 3% of the

authors have more than 300 followers. We also find that 0.2% of the authors have more

than 7 malware repositories, with the most prolific author cyberthreats having created 336

repositories.

g. We identify and profile 18 professional hackers. We find 18 authors of

malware repositories, who seem to have created a brand around their activities, as they use

the same user names in security forums. For example, user 3vilp4wn (pronounced evil-pawn)

is the author of a keylogger malware in GitHub, which the author is promoting in the Hack

This Site forum using the same username. We present our study of malware authors in

Section 3.5.

Open-sourcing for maximal impact: creating an engaged community.

We intend to make our datasets and our tools available for research purposes at our website

[74]. Our vision is to create community-driven reference platform, which will provide: (a)

malware source code repositories, (b) community-vetted labels and feedback, and (c) open-

source tools for collecting and analyzing malware repositories. Our goal is to expand our

database with more software archives and richer information. Although authors could start

hiding their repositories (see Section 3.6), we argue that our already-retrieved database
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could have significant impact in enabling certain types of security studies [59,77,95].

3.1 Data Collection

The first step in our work is to collect repositories from GitHub that have a higher chance

of being related to malware. Extracting repositories at scale from GitHub hides several

subtleties and challenges, which we discuss below. Using the GitHub Search API, a user

can query with a set of keywords and obtain the most relevant repositories. We describe

briefly how we select appropriate keywords, retrieve related repositories from GitHub and

how we establish our ground truth.

Set Descriptions Size

Q1 Query set = {”malware”} 1

Q50 Query with 50 keywords with Q1⊂Q50 50

Q137 Query with 137 keywords with Q50⊂Q137 137

RD1 Retrieved repositories from query Q1 2775

RD50 Retrieved repositories from query Q50 14332

RD137 Retrieved repositories from query Q137 97375

LD1 Labeled subset of RD1 dataset 379

LD50 Labeled subset of RD50 dataset 755

LD137 Labeled subset of RD137 dataset 879

M1 Malware source code repositories in RD1 680

M50 Malware source code repositories in RD50 3096

M137 Malware source code repositories in RD137 7504

MCur Manually verified malware source code dataset 250

Table 3.1: Datasets, their relationships, and their size.
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A. Selecting keywords for querying: In this step, we want to retrieve repos-

itories from GitHub in a way that: (a) provides as many as possible malware repositories,

and (b) provides a wide coverage over different types of malware. For this reason, we se-

lect keywords from three categories: (a) malware and security related keywords, such as

malware and virus, (b) malware type names, such as ransomware and keylogger, and (c)

popular malware names, such as mirai. Due to space limitations, we will provide the full

list of keywords in our website at publication time for repeatability purposes.

We define three sets of keywords that we use to query GitHub. The reason is that

we want to assess the sensitivity of the number of keywords on the outcome. Specifically, we

use the following query sets: (a) the Q1 set, which only contains the keyword ”malware”;

(b) the Q50 set, which contains 50 keywords, and (c) the Q137 set which contains 137

keywords. The Q137 keyword set is a super-set of Q50, and Q50 is a superset of Q1. As

we will see below, using the query set Q137 provides wider coverage, and we recommend in

practice. We use the other two to assess the sensitivity of the results in the initial set of

keywords. We list our datasets in Table 3.1.

B. Retrieving related repositories: Using the Search API, we query GitHub

with our set of keywords. Specifically, we query GitHub with every keyword in our set

separately. In an ideal world, this would have been enough to collect all related repositories:

a query with ”malware” (Q1) should return the many thousands related repositories, but

this is not the case.

The search capability hides several subtleties and limitations. First, there is a

limit of 1000 repositories that a single search can return: we get the top 1000 repositories
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ordered by relevancy to the query. Second, the GitHub API allows 30 requests per minute

for an authenticated user and 10 requests per minute for an unauthenticated user.

Bypassing the API limitations. We were able to find a work around for the first

limitation by using ranking option. Namely, a user can specify her preferred ranking order

for the results based on: (a) best match, (b) most stars, (c) fewest stars, (d) most forks,

(e) fewest forks, (f) most recently updated, and (g) the least recently updated order. By

repeating a query with all these seven ranking options, we can maximize the number of

distinct repositories that we get. This way, for each keyword in our set, we search with

these seven different ranking preferences to obtain a list of GitHub repositories.

C. Collecting the repositories: We download all the repositories identified in

our queries using PyGithub [169], and we obtain three sets of repositories RD1, RD50 and

RD137. These retrieved datasets have the same ”subset” relationship that they query sets

have: RD1 ⊂ RD50 ⊂ RD137. Note that we remove pathological repositories, mainly repos-

itories with no actual content, or repositories ”deleted” by GitHub. For each repository, we

collect and store: (a) repository-specific information, (b) author-specific information, and

(c) all the code within the repository.

As we see from Table 3.1, using more and specialized malware keywords returns

significantly more repositories. Namely, searching with the keyword ”malware” does return

2775 repositories, but searching with the Q50 and Q137 returns 14332 and 97375 repositories

respectively.

D. Establishing the groundtruth: As there was no available groundtruth, we

needed to establish our own. As this is a fairly technical task, we opted for domain experts
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Labeled Dataset Malware Repo. Benign Repo.

LD137 313 566

LD50 326 429

LD1 186 193

Table 3.2: Our groundtruth: labeled datasets for each of the three queries, for a total of 2013

repositories.

instead of Mechanical Turk users, as recommended by recent studies [62]. We use three

computer scientists to manually label 1000 repositories, which we selected in a uniformly

random fashion, from each of our dataset RD137 and RD50 and 600 repositories from RD1.

The judges were instructed to independently investigate every repository thoroughly.

Ensuring the quality of the groundtruth. To increase the reliability of our groundtruth,

we took the following measures. First, we asked judges to label a repository only, if they

were certain that it is malicious or benign and distinct, and leave it unlabeled otherwise.

We only kept the repositories for which the judges agreed unanimously. Second, duplicate

repositories were removed via manual inspection, and were excluded from the final labeled

dataset to avoid overfitting. It is worth noting that we only found very few duplicates in

the order of 3-5 in each dataset with hundreds of repositories.

With this process, we establish three separate labeled datasets named LD137,

LD50, and LD1 starting from the respective malware repositories from each of our queries,

as shown in Table 3.2. Although the labeled datasets are not 50-50, they are representing

both classes reasonably well, so that a naive solution that will label everything as one class,

would perform poorly. By contrast, our approach performs sufficiently well, as we will see
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in Section 3.3.

As there is no available dataset, we argue that we make a sufficient size dataset

by manual effort.

3.2 Overview of our Identification Approach

Here, we describe our supervised learning algorithm to identify the repositories that contain

malware.

Step 1. Data preprocessing: As in any Natural Language Processing (NLP)

method, we start with some initial processing of the text to improve the effectiveness of the

solution. We briefly outline three levels of processing functionality.

a. Character level preprocessing: We handle the character level ”noise” by

removing special characters, such as punctuation and currency symbols, and fix Unicode

and other encoding issues.

b. Word level preprocessing: We eliminate or aggregate words following the

best practices of Natural Language Processing [97]. First, we remove article words and

other words that don’t carry significant meaning on their own. Second, we use a stemming

technique to handle inflected words. Namely, we want to decrease the dimensionality of

the data by grouping words with the same ”root”. For example, we group the words

”organizing”, ”organized”, ”organize” and ”organizes” to one word ”organize”. Third, we

filter out common file and folder names that we do not expect to help in our classification,

such as ”LEGAL”, ”LICENSE”, ”gitattributes” etc.

c. Entity level filtering: We filter entities that are likely not helpful in describing

the scope of a repository. Specifically, we remove numbers, URLs, and emails, which are
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often found in the text. We found that this filtering improved the classification performance.

In the future, we could consider mining URLs and other information, such as names of

people, companies or youtube channels, to identify authors, verify intention, and find more

malware activities.

Step 2. The repository fields: We consider fields from the repositories that

can be numbers or text. Text-based fields require processing in order to turn them into

classification features and we explain this below. We use and evaluate the following text

fields: title, description, topics, file and folder names and README file fields.

Text field representation: We consider two techniques to represent each text

field by a feature in the classification.

a. Bag of Words (BoW): The bag-of-words (BoW) model is among the most

widely used representations of a document. The document is represented as the number

of occurrences of its words, disregarding grammar and word order [234]. This model is

commonly used in document classification where the frequency of each word is used as

feature value for training a classifier [134]. We use the model with the count vectorizer and

TF-IDF vectorizer to create the feature vector.

In more detail, we represent each text field in the repository with a vector V [K],

where V [i] corresponds to the significance of word i for the text. There are several ways to

assign values V [i]: (a) zero-one to account for presence, (b) number of occurrences, and (c)

the TF-IDF value of the word. We evaluated all the above methods.

Fixing the number of words per field. To improve the effectiveness of our approach

using BoW, we conduct a feature selection process, χ2 statistic following best practices [174].
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The χ2 statistic measures the lack of independence between a word (feature) and a class.

A feature with lower chi-square score is less informative for that class, and thus not useful

in the classification. We discuss this further in Section 3.3. For each text-based field f ,

we select the top Kf words for that field, which exhibit the highest discerning power in

identifying malware repositories. Note that we set a value for Kf during the training stage

For each field, we select the value Kf , as we explain in Section 3.3.

b. Word embedding: The word embedding model is a vector representations

of each word in a document: each word is mapped to an M-dimensional vector of real

numbers [137], or equivalently are projected in an M-dimensional space. A good em-

bedding ensures that words that are close in meaning have nearby representations in the

embedded space. In order to create the document vector, word embedding follows two

approaches (i) frequency-based vectorizer(unsupervised) [182] and (ii) content-based vec-

torizer(supervised) [113]. Note that in this type of representation, we do not use the word

level processing, which we described in the previous step, since this method can leverage

contextual information.

We use frequency-based word embedding with word average and TF-IDF vector-

izer. We also use pre-trained model of Google word2vec [136] and Stanford (Glov) [161] to

create the feature vector.

Finally, we create the vector of the repository by concatenating the vectors of each

field of that repository.

Step 3. Selecting the fields: Another key question is which fields from the

repository to use in our classification. We experiment with all of the fields listed in the

20



Data Collection Section and we explain our findings in the next Section.

Step 4. Selecting a ML engine: We design ML model to classify the reposito-

ries into two classes: (i) malware repository and (ii) benign repository. We systematically

evaluate many machine learning algorithms [21, 140]: Naive Bayes (NB), Logistic Regres-

sion (LR), Decision Tree (CART), Random Forest(RF), K-Nearest Neighbor (KNN), Linear

Discriminant Analysis (LDA), and Support Vector Machine (SVM).

Step 5. Detecting source code repositories: In this final step, we want to

identify the presence of source code in the repositories. By June 2020, GitHub started

labeling repositories that contain source code. Therefore, one can simply filter out all

repositories that are not labelled as such.

As our study predates this GitHub feature, we developed a heuristic approach to

identify source code repositories independently, which we describe below. Our heuristic

exhibits 100% precision as validated by GitHub’s classification, as we will see in Section

3.3.

Our source-code classification heuristics works in two steps. First, we identify files

in the repository that contain source code. To do this, we start by examining their file

extension. If the file extension is one of the known programming languages: Assembly, C,

C++, Batch File, Bash Shell Script, Power Shell Script, Java, Python, C#, Objective-C,

Pascal, Visual Basic, Matlab, PHP, Javascript, and Go, we label it as a source file. Second,

if the number of source files in a repository exceeds the Source Percentage threshold

(SourceThresh), we consider that the repository contains source code.
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3.3 Evaluation: Choices and Results

In this section, we evaluate the effectiveness of the classification based on the proposed

methodology defined in Section 3.2. More specifically, our goal here is to answer the follow-

ing questions:

1. Repository field selection: Which repository fields should we consider in our anal-

ysis?

2. Field representation: Which feature representation is better between bag of words

(BoW) and word embedding and considering several versions of each?

3. Feature selection: What are the most informative features in identifying malware

repositories?

4. ML algorithm selection: Which ML algorithm exhibits the best performance?

5. Classification effectiveness: What is the precision, recall and F1-score of the clas-

sification?

6. Identifying malware repositories: How many malware repositories do we find?

7. Identifying malware source code repository: How many of the malware repos-

itories have source code?

Note that we have a fairly complex task: we want to identify the best fields,

representation method and Machine Learning engine, while considering different values for

parameters. What complicates matters is that all these selections are interdependent. We
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Representation Classification Accuracy

Range

Bag of Words with Count Vectorizer 86%-51%

Bag of Words with Count Vectorizer + Feature Selection 91%-56%

Bag of Words with TF-IDF vectorizer 82%-63%

Word Embedding with Word Average 85%-72%

Word Embedding with TF-IDF 85%-74%

Pretrained Google word2vec Model 76%-64%

Pretrained Stanford (Glov) Model 73%-62%

Table 3.3: Selecting the feature representation model: We evaluate all the representations across

seven machine learning approaches and report the range of the overall accuracy.

present our analysis in sequence, but we followed many trial and error and non-linear paths

in reality.

1. Selecting repository fields: We evaluated all the repository fields mentioned

earlier. In fact, we used a significant number of experiments with different subsets of the

features, not shown here due to space limitations. We find that the title, description,

topics, README file, and file and folder names have the most discerning power. We also

considered number of forks, watchers, and stars of the repository and the number of followers

and followings of the author of the repository. We found that not only it did not help, but

it usually decreased the classification accuracy by 2-3%. One possible explanation is that

the numbers of forks, stars and followers reflect the popularity rather than the content of a

repository.

2. Selecting a field representation: The goal is to find, which representation
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approach works better. In Table 3.3, we show the comparison of the range of classification

accuracy across the 7 different ML algorithms that we will also consider below. We find that

Bag of Words with the count vectorizer representation reaches 86% classification accuracy,

with the word embedding approach nearly matching that with 85% accuracy. Note that we

finetune the selection of words to represent each field in the next step.

Why does not the embedding approach outperform the bag of words? One would

have expected that the most complex embedding approach would have been the winner

and by a significant margin. We attribute this to the relatively small text size in most text

fields, which also do not provide well-structured sentences (think two-three words for the

title, and isolated words for the topics). Furthermore, the word co-occurrences does not

exist in the topics and file names fields, which is partly what makes embedding approaches

work well in large and well structured documents [68,123].

In the rest of this paper, we use the Bag of Words with count vectorizer to represent

our text fields, since it exhibits good performance and is computationally less intensive than

the embedding method.

3. Fixing the number of words per field. We want to identify the most

discerning words from each text field, which is a standard process in NLP for improving the

scalability, efficiency and accuracy of a text classifier [36]. Using the χ2 statistic, we select

the top Kf best words from each field.

To select the appropriate number of words per field, we followed the process below.

We vary Kf = 5,10,20,30,40 and 50 for title, topic and README file, and we find that the

top 30 words in title, 10 words in topic and 10 words in README file exhibit the highest
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accuracy. Similarly, we try Kf = 80, 90, 100, 110 and 120 for file names and Kf = 300, 325,

350, 375, 400, 425, 450 and 475 for the description field. We find that the top 100 words

for file and folder names and top 400 words for description field give the highest accuracy.

Note that we do this during training and refining the algorithm, and then we continue to

use these words as features in testing.

Thus, we select the top: (a) 30 words from the title, (b) 10 words from the topics,

(c) 400 words from the description, (d) 100 words from the file names, and 10 words from

the README file. This leads to a total of 550 words across all fields. For reference, we

find 9253 unique words in the repository fields of our training dataset. Reducing the focus

on the top 550 most discerning words per field increases the classification accuracy by as

much as 20% in some cases.

4. Evaluating and selecting ML algorithms: We find that Multinomial Naive

Bayes exhibits the best F1-score with 87%, striking a good balance between 89% precision

and 86% recall for the malware class among other machine learning classifier which we

considered. Detecting the benign class, we do even better with 92% precision, 94% recall

and 93% F1-score. By contrast, the F1-score of the other algorithms is below 79%. Note

that KNN, LR and LDA methods provide higher precision, but with significantly lower

recall. Thus, one could use these algorithms to get higher precision at the cost of lower

total number of repositories.

We use Multinomial Naive Bayes as our classification engine for the rest of this

study. We attempt to explain the superior F1-Score of the Naive Bayes in our context.

The main advantage of Naive Bayes over other algorithms is that it considers the features
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Figure 3.2: Assessing the effect of the number of keywords in the query: Precision, Recall and F1-

score of our approach on the LD137, LD50 and LD1 labeled datasets.

independently of each other for a given class and can handle large number of features

better. As a result, it is more robust to noisy or unreliable features. It also performs well

in domains with many equally important features, where other approaches suffer, especially

with a small training data, and it is not prone to overfitting [209]. As a result, the Naive

Bayes is considered a dependable algorithm for text classification and it is often used as the

benchmark to beat [227].

5. Assessing the effect of the query set: We have made the following choices

in the previous steps: (a) 5 text-based fields, (b) bag of words with count vectorization,

(c) 550 total words across all the fields, and (d) the Multinomial Naive Bayes. We perform

10-fold cross validation and report the precision, recall and F1-score in Figure 3.2 for our

three different labeled data sets. We see that the precision stays above 89% for all three

datasets, with a recall above 77%.
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Dataset Initial Malware Mal. + Source

RD1 2775 809 680

RD50 14332 3615 3096

RD137 97375 8644 7504

Table 3.4: The identified repositories per dataset with: (a) malware, and (b) malware and source

code.

It is worth noting the relative stability of our approach with respect to the keyword

set for the initial query especially between LD50 and LD137 datasets. The LD1 dataset we

observe higher accuracy, but significantly less recall compared to LD137. We attribute this

fact to the single keyword used in selecting the repositories in LD1, which may have lead

to a more homogeneous group of repositories. Interestingly, LD50 seem to have the lower

recall and F1-score even though the differences are not that large.

6. Identifying 8644 malware repositories: We use LD137 to train our Multi-

nomial Naive Bayes model and apply it on RD137 dataset. We find 8644 malware repos-

itories. We also apply the same trained model on RD1 and RD50 and find 809 and 3615

malware repositories respectively, but this repositories are included in the 8644. (Recall

that RD1 and RD50 are subsets of RD137).

7. Identifying 7504 malware source code repositories: As of June 2020, we

can use the source code labelling to identify such repositories. Here, we use this labelling

to validate our heuristic approach for completeness.

In deploying our heuristic, we set our Source Percentage threshold to 75%, meaning

that: if more than 75% of files in a repository are source code files, we label it as a source
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code repository. Applying this heuristic, we find that 7504 repositories are most likely source

code repositories in RD137. We use the nameM137 to refer to this group of malware source

code repositories. We find 680 and 3096 malware source code repositories in RD1 and RD50

as shown in Table 3.4. However, these are subset of M137, given that RD1 and RD50 are

subsets of RD137.

We find that 100% of our source code repositories are also labeled as such by

GitHub. We argue that our heuristic could be useful for other software archives, which may

not provide the ”source code” label.

8. A curated malware source code dataset- MCur: As a tangible contri-

bution, we provide, MCur, a dataset of 250 repositories from the M137 dataset, which we

manually verify for containing malware source code and relating to a particular malware

type. Opting for diversity and coverage, the dataset spans all the identified types: virus,

backdoor, botnet, keylogger, worm, ransomware, rootkit, trojan, spyware, spoof, ddos, sniff,

spam, and cryptominer. We intend to constantly update and make our labeled malware

repositories publicly available [74].

3.4 A large scale study of malware

Encouraged by the substantial number of malware repositories, we study the distributions

and longitudinal properties of the identified malware repositories in M137.

Caveat: We provide some key observations in this section, but they should be

viewed as indicative and approximate trends and only within the context of the collected

repositories and with the general assumption that repository titles and descriptions are

reasonably accurate. In Section 3.6, we discuss issues around the biases and limitations
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that our dataset may introduce.

Figure 3.3: CCDF distributions of forks, stars and watchers per repository.

A. Identifying influential repositories. The prominence of a repository can

be measured by the number of forks, stars, and watchers. In Figure 3.3, we plot the

complementary cumulative distribution function (CCDF) of these three metrics for our

malware repositories.

Fork distribution: We find that 2% of the repositories seem quite influential

with at least 100 forks as shown in Figure 3.3. Recall that the fork counter indicates the

number of distinct users that have forked a repository. For reference, 78% of the repositories

have less than 2 forks.

Star distribution: We find that 2% of the repositories receive more than 250

stars as shown in Figure 3.3. For reference, 75% of the repositories have less than 3 stars.

Watcher distribution: In Figure 3.3, we find that 1% of the repositories have

more than 50 watchers. For reference, we observe that 84% of the repositories have less
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ID

Author #

Star

#

Fork

#

Watcher

Content of the Repository

1 ytisf 4851 1393 730 80 malware source code and 140

Binaries

2 n1nj4sec 4811 1307 440 Pupy RAT

3 Screetsec 3010 1135 380 TheFatRat Backdoor

4 malwaredllc 2515 513 268 Byob botnet

5 RoganDawes 2515 513 268 USB attack platform

6 Visgean 626 599 127 Zeus trojan horse

7 Ramadhan 535 283 22 30 malware samples

8 dana-at-cp 1320 513 125 backdoor-apk backdoor

Table 3.5: The profile of the top 5 most influential malware repositories across all three metrics with

8 unique repositories.

than 3 watchers. Note that these distributions are skewed, and follow patterns that can be

approximated by a log-normal distribution.

Which are the most influential repositories? We find that 8 repositories dominate

the top 5 spots across all three metrics: stars, forks, and watchers. We present a short

profile of these dominant repositories in Table 3.5. Most of the repositories contain a single

malware project, which is an established practice among the authors in GitHub [152, 212].

We find that the repository ”theZoo” [228], created by ytisf in 2014 is the most forked,

watched, and starred repository with 1393 forks, 730 watchers and 4851 stars as of October,

2019. However, this repository is quite unique and was created with the intention of being

a malware database with 140 binaries and 80 source code repositories.
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Influence metrics are correlated: As one would expect, the influence and pop-

ularity metrics are correlated. We use a common correlation metric, the Pearson Correlation

Coefficient (r) [17], measured in a scale of [−1, 1]. We calculate the metric for all pairs of

our three popularity metrics. We find that all of them exhibit higher positive correlation:

stars vs. forks (r = 0.92, p < 0.01), forks vs. watchers (r = 0.91, p < 0.01) and watchers

vs. stars (r = 0.91, p < 0.01).

B. Malware type and target platform. We wanted to get a feel for what type

of malware we have identified. As a first approximation, we use the keywords found in the

text fields to relate repositories in M137 with the type of malware and the intended target

platform. Our goal is to create the two-dimensional distribution per malware type and the

target platform as shown in Table 3.6. To create this table, we associate a repository with

keywords in its title, topics, descriptions, file names and README file fields of: (a) the 6

target platforms, and (b) the 13 malware type keywords.

How well does this heuristic approach work? We provide two different indications

of its relative effectiveness. First, the vast majority of the repositories relate to one platform

or type of malware: (a) less than 8% relate to more than one platform, and (b) less than 11%

relate to more than one type of malware. Second, we manually verify the 250 repositories

in our curated data MCur and find a 98% accuracy.

Below, we provide some observations from Table 3.6.

a. Keyloggers reign supreme. We see that one of the largest categories is

the keylogger malware with 679 repositories, which are mostly affiliated with Windows and

Linux platforms. We discuss the emergence of keyloggers below in our temporal analysis.
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Types
Target Platform

Wind. Linux Mac IoT Andr. iOS Total

Total 1592 1365 380 108 442 131 4018

keylogger 396 209 42 2 27 3 679

backdoor 181 227 37 11 51 4 511

virus 235 131 34 2 51 16 469

botnet 153 154 43 36 64 17 467

trojan 133 70 24 16 67 19 329

spoof 76 115 88 2 20 9 310

rootkit 55 163 13 2 19 3 255

ransomware 117 67 14 1 33 13 245

ddos 71 95 20 10 9 3 208

worm 61 45 18 5 25 18 172

spyware 45 22 6 6 38 16 133

spam 40 29 18 14 23 5 129

sniff 29 38 23 1 15 5 111

Table 3.6: Distribution of the malware repositories from M137 dataset based on the malware type

and malware target platform. This table demonstrates the repositories that fit with the criteria

defined in Section 3.4.

b. Windows and Linux are the most popular targets. Not surprisingly, we

find that the majority of the malware repositories are affiliated with these two platforms:

1592 repositories for Windows, and 1365 for Linux.

c. MacOS-focused repositories: fewer, but they exist. Although MacOS

platforms are less commonly targeted, we find a non-trivial number of malware repositories

for MacOS. As shown in Figure 3.6, there are 380 MacOS malware repositories, which is

roughly an order of magnitude less compared to those for Windows and Linux.

C. Temporal analysis. We want to study the evolution and the trends of mal-

ware repositories. We plot the number of new malware repositories per year: a) total

malware in Figure 3.4, b) per type of malware in Figure 3.5, and c) per target platform in

Figure 3.6. We discuss a few interesting temporal behaviors below.
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Figure 3.4: New malware repositories created per year.

a. The number of new malware repositories more than triples every

four years. We see an alarming increase from 117 malware repositories in 2010 to 620

repositories in 2014 and to 2166 repositories in 2018. We also observe a sharp increase of

70% between 2015 to 2016 shown in Figure 3.4.

b. Keyloggers started a super-linear growth since 2010 and are by far

affiliated with the most new repositories per year since 2013, but their rate of growth

reduced in 2018.

c. Ransomware repositories emerge in 2014 and gain momentum in

2017. Ransomware experienced their highest growth rate in 2017 with 155 new repositories,

while that number dropped to 103 in 2018.

d. Malware activity slowed down in 2018 across the board. It seems

that 2018 is a slower year for all malware even when seen by type ( Figure 3.5) and target

platform (Figure 3.6). We find that the number of new malware repositories has dropped

significantly in 2018 for most types of malware except virus, keylogger and trojan.
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Figure 3.5: New repositories per type of malware per year.

e. IoT and iPhone malware repositories become more visible after 2014.

We find that IoT malware emerges in 2015 and iPhone malware sees an increase after

2014 in Figure 3.6. We conjecture that this is possibly encouraged by the emergence and

increasing popularity of specific malware: (a) WireLurker, Masque, AppBuyer malware [39]

for iPhones, and (b) BASHLITE [222], a Linux based botnet for IoT devices. We find the

names of the aferemntioned malware in many repositories starting in 2014. Interestingly,

the source code of the original BASHLITE botnet is available in a repository created by

anthonygtellez in 2015.

f. Windows and Linux: dominant but slowing down. In Figure 3.6, we see

that windows and linux malware are flattened between 2017 and 2018. By contrast, IoT

and android repositories have increased.
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Figure 3.6: New malware repositories per target platform per year.

3.5 Understanding malware authors

Intrigued by the fact that authors create public malware repositories, we attempt to under-

stand and profile their behavior.

As a first step towards understanding the malware authors, we want to assess their

popularity and influence. We use the following metrics: (a) number of malware repositories

which they created, (b) number of followers, (c) total number of watchers on their reposi-

tories, and (d) total number of stars. We focus on the first two metrics here. We use the

notation top k authors for any of the metrics above, where k can be any positive integer to

referring to ”heavy-hitters”.

A. Finding influential malware authors. We study the distribution of the

number of malware repositories created and the number followers per author in following.

First, we find that 15 authors are contributing roughly 5% of all malware repos-

itories by examining the CCDF of the created repositories in Figure 3.7. From the figure,

we find an outlier author, cyberthreats, who doesn’t follow power law distribution [57], has
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Figure 3.7: CCDF of malware repositories per author.

created 336 malware repositories. We also find that 99% authors have less than 5 reposito-

ries.

Second, we study the distribution of the number of followers per author, but omit

the plot due to space limitations. The distributions is skewed with 3% (221) of the authors

having more than 300 followers each, while 70% of the authors have less than 16 followers.

B. Malware authors strive for an online ”brand”: In an effort to understand

the motive of sharing malware repositories, we make the following investigation.

a. Usernames seem persistent across online platforms. We find that many

malware authors use the same username consistently across many online platforms, such as

security forums. We conjecture that they are developing a reputation and they use their

username as a ”unique” identifier.

We identify 18 malware authors1, who are active in at least one of the three security

forums: Offensive Community, Ethical Hacker and Hack This Site, for which we happen to

1Note that this does not mean that the other authors are not doing the same, but they could be active
in other security forums or online platforms.
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have access to their data. We conjecture that at least some of these usernames correspond

to the same users based on the following two indications. First, we find direct connections

between the usernames across different platforms. For example, user 3vilp4wn at the ”Hack

This Site” forum is promoting a keylogger malware by referring to a GitHub repository [1]

whose author has the same username. Second, these usernames are fairly uncommon, which

increases the likelihood of belonging to the same person. For example, there is a GitHub

user with the name fahimmagsi, and someone with the same username is boasting about

their hacking successes in the ”Ethical Hacker” forum. As we will see below, fahimmagsi

seems to have a well-established online reputation.

b. “Googling” usernames reveals significant hacking activities. Given

that these GitHub usernames are fairly unique, it was natural to look them up on the

web at large. Even a simple Internet search with the usernames reveals significant hacking

activities, including hacking websites or social networks, and offering hacking tutorials in

YouTube.

We investigate the top 40 most prolific malware authors using a web search with

a single simple query: “hacked by <username>”. We then examine only the first page

of search results. Despite all these self-imposed restrictions, we identify three users with

substantial hacking related activities across Internet. For example, we find a number of

news articles for hacking a series of websites by GitHub users fahimmagsi and CR4SH

[211] [44]. Moreover, we find user n1nj4sec sharing a multi-functional Remote Access Trojan

(RAT) named “Pupy”, developed by her, which received significant news coverage in security

articles back in March of 2019 [143] [171]. We are confident that well-crafted and targeted
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searches can connect more malware authors with hacking activities and usernames in other

online forums.

3.6 Discussion

We discuss the effectiveness and limitations of SourceFinder.

a. Why is malware publicly available in the first place? Our investigation

in Section 3.5 provides strong indications that malware authors want to actively establish

their hacking reputation. It seems that they want to boost their online credibility, which

often translates to money. Recent works [48, 166, 181] study the underground markets of

malware services and tools: it stands to reason that notorious hackers will attract more

clients. At the same time, GitHub acts as a collaboration platform, which can help hackers

improve their tools.

b. Do we identify every malware repository in GitHub? Our tool can

not guarantee that it will identify every malware repository in GitHub. First, we can

only identify repositories that ”want to be found”: (a) they must be public, and (b) they

must be described with the appropriate text and keywords. Clearly, if the author wants

to hide her repository, we won’t be able to find it. However, we argue that this defeats

the purpose of having a public archive: if secrecy was desired, the code would have been

shared through private links and services. Second, our approach is constrained by GitHub

querying limitations, which we discussed in Section 3.1, and the set of 137 keywords that

we use. However, we are encouraged by the number and the reasonable diversity of the

retrieved repositories we see in Table 3.6.

c. Are our datasets representative? This is the typical hard question for
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any measurement or data collection study. First of all, we want to clarify that our goal is

to create a large database of malware source code. So, in that regard, we claim that we

accomplished our mission. At the same time, we seem to have a fair number of malware

samples in each category of interest, as we see in Table 3.6.

Studying the trends of malware is a distant second goal, which we present with

the appropriate caveat. On the one hand, we are limited by GitHub’s API operation, as

we discussed earlier. On the other hand, we attempt to reduce the biases that are under

our control. To ensure some diversity among our malware, we added as many words as we

could in our 137 malware, which is likely to capture a wide range of malware types. We

argue that the fairly wide breadth of malware types in Table 3.6 is a good indication. Note

that our curated dataset MCur with 250 malware is reasonably representative in terms of

coverage.

d. What is the overlap among the identified repositories? Note that our

repository does not include forked repositories, since GitHub does not return forked

repositories as answers to a query. Similarly, the breadth of the types of the malware

as shown in Table 3.6 hints at a reasonable diversity. However, our tool cannot claim that

the identified repositories are distinct nor is it attempting do so. GitHub does not restrict

authors from copying (downloading), and uploading it as a new repository. In the future,

we intend to study the similarity and evolution among these repositories.

e. Are the authors of repositories the original creator of the source

code? This is an interesting and complex question that goes beyond the scope of this

work. Identifying the original creator will require studying the source code of all related
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repositories, and analyzing the dynamics of the hacker authors, which we intend to do in

the future.

f. Are all the malware authors malicious? Not necessarily. This is an

interesting question, but it is not central to the main point of our work. On the one hand,

we find some white hackers or researchers, such as Yuval Nativ [230], or Nicolas Verdier [150].

On the other hand, several authors seem to be malicious, as we saw in Section 3.5.

g. Are our malware repositories in ”working order”? It is hard to know

for sure, but we attempt to answer indirectly. First, we pick 30 malware source codes and

all of them compiled and a subset of 15 of them actually run successfully in an emulated

environment as we already mentioned. Second, these public repositories are a showcase for

the skills of the author, who will be reluctant to have repositories of low quality. Third,

public repositories, especially popular ones, are inevitably scrutinized by their followers.

h. Can we handle evasion efforts? Our goal is to create the largest malware

source-code database possible and having collected 7504 malware repositories seems like

a great start. In the future, malware authors could obfuscate their repositories by using

misleading titles, and description, and even filenames. We argue that authors seem to want

their repositories to be found, which is why they are public. We also have to be clear: it is

easy for the authors to hide their repositories, and they could start by making them private

or avoid GitHub altogether. However, both these moves will diminish the visibility and

”street-cred” of the authors.

i. Will our approach generalize to other archives? We believe that

SourceFinder can generalize to other archives, which provide public repositories, like GitLab
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and BitBucket. We find that these sites allow public repositories and let the users retrieve

repositories. We have also seen equivalent data fields (title, description, etc). Therefore, we

are confident that our approach can work with other archives.

3.7 Related Work

There are several works that attempt to determine if a piece of software is malware, usually

focusing on a binary, using static or dynamic analysis [10, 46, 107, 186]. However, to the

best of our knowledge, no previous study has focused on identifying malware source code

in public software archives, such as GitHub, in a systematic manner as we do in this work.

We highlight the related work in the following categories:

a. Studies that need malware source code. Several studies [120, 189, 238]

use malware source code that are manually retrieved from GitHub repositories. Some

studies [27] [26] compare the evolution and the code reuse of 150 malware source codes

(with only some from GitHub) with that of benign software from a software engineering

perspective and study the code reuse. Overall, various studies [59, 95] can benefit from

malware source code to fine-tune their approach.

b. Mining and analyzing GitHub: Many studies have analyzed different

aspects of GitHub, but not with the intention of retrieving malware repositories. First,

there are efforts that study the user interactions and collaborations on GitHub and their

relationship to other social media in [80,109,164]. Second, some efforts discuss the challenges

in extracting and analyzing data from GitHub with respect to sampling biases [43,69]. Other

works [99,100] study how users utilize the various features and functions of GitHub. Several

studies [81, 170, 214] discuss the challenges of mining software archives, like SourceForge
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and GitHub, arguing that more information is required to make assertions about users and

software projects. Finally, some efforts [187, 194, 235, 236] study GitHub repositories, but

they focus on establishing a systematic method for identifying similarities, and use it to

identify classes of repositories (e.g. Android versus web applications). Most of these studies

use topic modeling, which is one of the approaches that we considered initially, but gave

poor results in our context, but we will revisit in the future.

c. Databases of malware source code: At the time of writing this paper, there

are few malware source code databases and are rarely updated such as project theZoo [228].

To the best of our knowledge, there does not exist an active archive of malware source code,

where malware research community can get an enough number of source code to analyze.

d. Databases of malware binaries: There are well established malware binary

collection initiatives, such as Virustotal [213] which provides analysis result for a malware

binary. There are also community based projects such as VirusBay [216] that serve as

malware binary sharing platform.

e. Converting binaries to source code: A complementary approach is to try

to generate the source code from the binary, but this is a very hard task. Some works [52,53]

focus on reverse engineering of the malware binary to a high-level language representation,

but not source code. Some other efforts [35, 77, 183] introduce binary decompilation into

readable source code. However, malware authors use sophisticated obfuscation techniques

[178] [34,229] to make it difficult to reverse engineer a binary into source code.

f. Measuring and modeling hacking activity. Some other studies analyze

the underground black market of hacking activities but their starting point is security
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forums [48,166,181], and as such they study the dynamics of that community but without

retrieving any malware code.

3.8 Conclusion

Our work capitalizes on a great missed opportunity: there are thousands of malware source

code repositories on GitHub. At the same time, there is a scarcity of malware source code,

which is necessary for certain research studies.

Our work is arguably the first to develop a systematic approach to extract mal-

ware source-code repositories at scale from GitHub. Our work provides two main tangible

outcomes: (a) we develop SourceFinder, which identifies malware repositories with 89% pre-

cision, and (b) we create, possibly, the largest non-commercial malware source code archive

with 7504 repositories. Our large scale study provide some interesting trends for both the

malware repositories and the dynamics of the malware authors.

We intend to open-source both SourceFinder and the database of malware source

code to maximize the impact of our work. Our ambitious vision is to become the au-

thoritative source of malware source code for the research community by providing tools,

databases, and benchmarks.
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Chapter 4

Repo2Vec: A Comprehensive

Embedding Approach for

Determining Repository Similarity

Establishing a way to measure similarity between software repositories is an essen-

tial building block for studying the plethora of repositories in online Open Source Software

(OSS) platforms. These OSS platforms contain a massive number of repositories and engage-

ment of millions of users [139]. There are significant collaborations and code reuses [60,198]

on these platforms, which are openly supported and encouraged. Researchers are interested

in studying the dynamics of such repositories, which include the ability to identify: (a)

derivative repositories, (b) families of repositories, (c) the evolution of software projects,

and (d) coding and technology trends. GitHub is arguably the largest such platform with

more than 32 million repositories and 34 million users exhibiting significant collaborative
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Figure 4.1: Our approach outperforms the state of the art approach CrossSim in terms of precision

using CrossSim dataset. We also see the effect of different types of information that Repo2Vec

considers: metadata, adding structure, and adding source code information.

interactions [138].

How can we quantify the level of similarity between two repositories? This is the

problem that we address here. Focusing on GitHub, every repository consists of metadata,

source code, and auxiliary files. Given a repository, how can we identify the most similar

repositories among a large set? The input here is a large number of repositories and a

set of queries. The desired output is: (a) the most similar repositories for a given query

repository and (b) clusters of similar repositories. The key challenge here is to represent

the repository data into a numeric feature vectors to enable ML approaches to compute the

similarities and cluster among repositories. In addition, combining vectors from different

types of information, as we will do here, is also a challenge.

There are relatively few efforts that focus on establishing similarity between repos-
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itories, and most of them use either metadata or source code level information, while none of

them use the three types of information that we do here. First, LibRec [206], SimApp [37],

Collaborative Tagging [205], and RepoPal [236] utilize only metadata to find similarity

among repositories. Second, MUDABLUE [103] and CLAN [133] are two similarity com-

putation approaches using only source code of repositories as plain text. Third, Cross-

Sim [148, 149] proposes a graph representation to compute similarity between repositories

using both metadata and source code. We discuss the related work in more detail in Sec-

tion 4.6.

As our key contribution, we propose Repo2Vec, an embedding approach to rep-

resent software repositories with a multi-dimensional distributed continuous vector which

can be used to measure the similarity between repositories. We briefly describe the key

features of our approach. First, our method represents a repository as a distributed con-

tinuous vector in an embedding space. Second, we consider three types of information:

(a) metadata, (b) source code, and (c) the repository directory structure. Our approach

provides a flexible way to combine these three types using our default values which can be

customized to match the niche needs of a savvy user. The significance of our approach is

that it generates a relatively-low dimensional vector that can enable follow up repository

analysis. Such follow up studies can leverage the plethora of ML techniques: we provide a

proof of concept for two such applications here.

We deploy our approach and study the similarity on a malware dataset of 433

repositories and a benign dataset of 580 repositories. First, we demonstrate the effectiveness

of our method by comparing it against state of the art works. Second, we show how
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our Repo2Vec can enable algorithms for: (a) distinguishing between malware and benign

repositories, and (b) identifying a meaningful hierarchical clustering. The key results are

briefly discussed below.

a. Repo2Vec outperforms prior works. For this comparison, we select

the best approach to date, CrossSim, which has been shown to outperform previous ap-

proaches [103, 133, 236]. For consistency, we also follow their evaluation methodology and

use their dataset with 580 benign repository. We show that our approach identifies similar

repositories with 93% precision compared to 78% as shown in Figure 4.1. Further, our

approach finds nearly twice as many strongly similar repositories and 30% fewer False

Positives, as we see in Figure 4.6.

b. Metadata and structure provide significant performance. We assess

the information contribution of three types of information. Interestingly, we can identify

similarity fairly well without the use of source code as shown in Figure 4.1. Using only

metadata and structure leads to a 76% precision, which is comparable to the previous best

method, which uses source code.

c. Application: identifying malware repositories accurately. We show

that our approach can enable a supervised classification approach. We focus on distin-

guishing malware from benign repositories, which is a practical problem [175]. Using our

embedding, we can identify malware repositories with 98% precision and 97% recall, which

outperforms the previous approaches.

d. Application: identifying a meaningful hierarchy. We show that our ap-

proach can form the basis for a meaningful (unsupervised) hierarchical clustering of repos-
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itories. We show that the emerging structure aligns with their purpose and lineage. In

our evaluation, we focus at two levels of granularity: a coarse and a fine level with 3 and

26 clusters respectively. Using an LDA-based topic extraction method, we find that the

clusters are cohesive: more than 80% of the repositories per cluster have the same focus.

We discuss the clustering in Section 4.4.

Our work in perspective. Our approach can be seen as a first step towards the

use of embedding approaches in repository analysis. In fact, it can be seen as a general

framework where the selection of individual features can be driven by the intention of the

application. For example, one can focus on different primary features depending on whether

we want to identify: (a) plagiarism or function level similarity, (b) programming styles, or

(c) software intention.

4.1 Background

We provide some background on GitHub and describe embedding approaches, which we

extend and use later.

A. GitHub and its features. GitHub is a massive software archive, which en-

ables users to store and share code creating a global social network of interaction. Users can

collaborate on a repository by raising issues or forking projects, where they copy and evolve

projects. Users can follow projects, and “up-vote” projects using “stars”. We describe the

key elements of a GitHub repository here. A repository contains three types of information

(a) metadata, (b) project directory, and (c) source code files, which we explain below.
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a. Metadata: A repository in GitHub has a large number of metadata fields.

Most notable are: (a) title, (b) descriptions, (c) topics, and (d) readme file. All these fields

are optional and they are provided by the author. Commit and issues are other sources of

textual metadata which include messages about the specific functionality of the repository.

At the same time, there are metrics that capture the popularity of a repository including:

(a) stars, (b) forks, and (c) watches. As the text fields are provided by the repository

author, they can be unstructured, noisy, or missing altogether.

b. Source code: It is the core element of a software repository. A repository

contains software projects written in various programming languages such as C/C++, Java,

Python, and so on. These source codes are the logical centre of a software stored in a

repository.

c. Project directory structure: A well-crafted software repository follows

a best-practices directory structure containing dataset, source code, and other auxiliary

files. We hypothesize that the structure could be useful in establishing similarity between

repositories.

B. Embedding approaches. An embedding (a.k.a. distributed representation)

is an unsupervised approach for mapping entities, such as words or images, into a relatively

low-dimensional space by using a deep neural network on a large training corpus [114,137].

Although the method is unsupervised, it relies on ideally a large dataset, which is used to

“train” the neural network. The neural network develops a model of the dataset, which we

can think of as probabilities and correlations of its entities. Embedding approaches have

revolutionized research in several fields, such as Natural Language Processing (NLP) [114,
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137,161,162], computer vision [110], graph mining [70,145], and software analysis [6].

The power of an embedding is twofold: (a) it can simplify the representation of

a complex entity with diverse features, including categorical, and (b) it provides a way to

quantify entity similarity as a function of the distance of their corresponding vectors. An

efficient embedding has the following properties: (a) it gives a fixed and low dimensional

vector, and (b) it ensures that semantically similar objects are “close by” in the embedding

space.

a. Word embedding: word2vec. In the seminal word2vec work [137], we map

words to vectors in a way that similar words, such as “father” and “parent”, map to nearby

vectors. This similarity is established by “feeding” a large corpus of documents to the deep

neural network. In other words, the model captures word correlations by calculating the

probability with which a word can appear within a given neighborhood of words.

b. Document embedding: doc2vec. The doc2vec [114] is an unsupervised

embedding model for a variable length paragraph or document. The model takes a document

as input and maps it to an M-dimensional embedding vectors while doing a proxy task,

predicting target word or sampled words in the document.

In more detail, the document embedding model is based on the word embed-

ding [137] model. The main difference between them is the introduction of the document

id vector. Like word2vec, there are two types of doc2vec available: (a) Distributed Memory

Model of Paragraph Vectors (PV-DM) and (b) Distributed Bag of Words version of Para-

graph Vector (PV-DBOW). PV-DM is similar to the Continuous Bag of Words (CBOW)

model in word2vec. The PV-DBOW model is similar to the skip-gram model of word2vec.
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The document vector is calculated at the same time as the word vectors of the document.

Note that, PV-DM performs better for large, and well-structured documents. On the other

hand, PV-DBOW is considered a better choice for small and defective documents, as it is

computationally fast.

c. Code embedding: code2vec. Embedding approaches have also been pro-

posed for detecting code similarity. A recent approach is code2vec which maps a method

(or more generally a code snippet) of arbitrary length to an M-dimensional vector [6, 42].

The code2vec approach uses program structure explicitly to predicting program properties

and uses an attention based neural network that learns a continuous distributed vector

representation for the code snippet. As a result, one can compare and group code snippets.

The process is fairly involved as it attempts to capture the logical structure and flow of the

program and the sequence of commands. For example, the code is decomposed into a set

of paths based on its abstract syntax tree. The neural network learns simultaneously: the

representation of each path and how to aggregate a set of them. Due to space limitations,

we refer the interested reader to the original work [6].

d. Node embedding: node2vec. The node2vec [70] is a graph embedding ap-

proach for mapping a node in a network to an M-dimensional embedding vector. The model

maximizes the likelihood of preserving network neighborhoods of nodes using Stochastic

Gradient Descent (SGD).

In more detail, the model computes the embedding based on nodes neighborhoods.

First, the network structure is converted to a set of paths (node sequences) using a biased

random walk sampling strategy which combines Depth-First Sampling (DFS) and Breadth-
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First Sampling (BFS) for every nodes. The sampling strategy efficiently explores diverse

neighborhoods of a given node. These sets of paths can be analogized to the sentences in a

document. Then the model is trained on these node sequences with the skip-gram models

presented in word2vec [137] to get the vector representations for each node. For more details

about the model, we refer to the original paper [70].

4.2 Proposed Method

The main idea behind Repo2Vec is to combine the metadata, source code, and directory

structure of a repository and provide an embedding representation for the whole repository.

In fact, we create an embedding for each type of data, which we refer to as: (i) meta2vec

for metadata, (ii) source2vec for the source code, and (iii) struct2vec for the directory

structure. Our approach follows these four steps. In the first three steps, we create an

embedding vector for each of the three types of data, and in the fourth step, we combine

these into a repository embedding. The Repo2Vec pipeline is shown in Figure 4.2. We

explain each step of our approach in more detail below.

Step 1. Metadata embedding: meta2vec. We define meta2vec as mapping all

the metadata in a repository to an RM -dimensional embedding vector, MRM
. In meta2vec,

we follow three steps. First, we select the fields of metadata that we want to “summarize”

in embedding. Second, we preprocess the metadata text to remove noise. Finally, we adapt

the doc2vec approach to compute the embedding vector. The overview of meta2vec is shown

in Figure 4.3.
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Figure 4.2: Overview of the Repo2Vec embedding: (a) we create an embedding representation for

metadata, structure, and source-code, and (b) we combine them into an embedding that captures

all three types of information. Each embedding hides significant subtleties and challenges.

a. Field selection: We consider all the fields of metadata that contain descrip-

tive information regarding the content of a repository such as title, description, topics (or

tags), and readme file. Recall that all this information is provided by the author. There

are many ways to extract and combine textual information from each field. Here, we opt

to treat each metadata field as a paragraph and concatenate them to generate a document,

which we process as below. Note that we do not consider metrics that relates to the popu-

larity of a repository, since our intuition and initial results suggest that it is less helpful in

determining similarity.

b. Text preprocessing: Like any Natural Language Processing (NLP) method,

we start with necessary preprocessing of the text to improve the effectiveness of our ap-

proach. As metadata in a repository text fields are often noisy, we follow the NLP best

practices step which include removal of: (i) special characters e.g. ‘?’, and ‘!’, (ii) irrelevant
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Figure 4.3: The overview of the meta2vec embedding: (a) we collect the text from metadata fields,

(b) we combine them into a single document, (c) we preprocess the text in the document, and (d)

we map the document to a vector using an approach inspired by doc2vec.

words and numbers e.g. “URL”, “Email”, “123”, (ii) stopping words.

c. Repository meta vector generation: Wemap the metadata in a repository

to an RM -dimensional distributed vector, MRM
in this step. Following the basic principles

of doc2vec [114] approach, we adapt it to our needs and constraints here. Specifically, as

metadata in a repository often consists of unstructured text and is small in size, we employ

PV-DBOW, discussed in Section 4.1, because it performs better for small text dataset.

Step 2. Directory structure embedding: struct2vec. We define struct2vec

as mapping of repository directory structure to an RS-dimensional embedding vector, SRS
.

We compute struct2vec following three steps. First, we represent the directory structure

into a tree representation. Second, we generate node vectors employing node2vec. Third,

we synthesize node vectors into a single structure vector. The overview of struct2vec is

shown in Figure 4.4.
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a. Directory tree representation: A software repository in GitHub consists of

a standard directory structure with necessary data files and source code files. We consider

the directory structure and transform it into Tree representation to enable node2vec on

it. Note that, in order to nullify the effect of directory or file names in the mapping, the

representation does not include directory or file names in the tree.

b. Node vector generation: We map all nodes in the tree into an RS-

dimensional node embedding vector, NRS
, in this step. Following the properties of node2vec,

first, we convert the trees into a set of paths using a biased random walk sampling strategy

to include a diverse set of neighborhood nodes for a node. Then, we apply skip-gram models

on these paths to get vectors for all nodes.

c. Repository directory structure vector generation: We compute repos-

itory directory structure embedding vector, SRS
, by synthesizing the node vectors, NRS

,

in the tree. We follow column-wise aggregation method to synthesize these into a single

vector. In order to do that, we employ six aggregation functions: mean, mode, max, min,

sum, and standard deviation to compute a value for a column in the resultant vector.

Step 3. Source code embedding: source2vec. We define source2vec as an

embedding approach to represent the source code in a repository to an RC-dimensional

embedding vector. In source2vec, we employ the Java method embedding techniques and

a trained model with 15.3M methods discussed in Section 4.1. We follow three steps in

source2vec. First, we compute the RC-dimensional method code vectors for each method

in the source file available in a repository. Second, we aggregate these method vectors in

a single RC-dimensional file code vector. Finally, we compute the final RC-dimensional
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Figure 4.4: The overview of our struct2vec embedding: (a) we extract directory tree structure of

the repository, (b) we map each node into a vector following a node2vec approach, (c) we combine

the node embedding to create the structure embedding for the repository.

repository code vector for all the source files by another level of vector aggregation. The

pipeline of our approach is shown in Figure 4.5 and discussed below in details.

a. Method code vector generation: A software repository may have multiple

source code files and other files. First, each source file is decomposed into its methods. Next,

methods are preprocessed into AST paths, and context vectors which are the input to the

code2vec model. The model maps each method into an RC-dimensional embedding code

vector, MCRC
. These method vectors are then passed to the next stage of pipeline to be

aggregated into a single vector.

b. File code vector generation: After generating the method code vectors,

MCRC
, in a file, the task is now to aggregate them into an RC-dimensional file code vec-

tor, FCRC
. We follow a number of column-wise aggregation functions. The aggregation

functions that we investigate are mean, mode, max, min, sum, and standard deviation.

Following the procedure, the pipeline creates a single file code vector, FCRC
, and passes it
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Figure 4.5: The overview of our source2vec embedding: (a) we extract functions (methods) from

each source file, (b) we embed each function, (c) we combine each function embedding to create

an embedding for each file, and (c) we aggregate each file embedding to create the source-code

embedding for the repository.

to the next stage to create a single repository vector.

c. Repository code vector generation: At this stage of the pipeline,

source2vec aggregates all the RC-dimensional file code vectors, FCRC
for all source code

files available in the repository to a single RC-dimensional repository code vector, CRC
.

The pipeline follows same procedure like previous step, column-wise aggregation function

to get the repository code vector.

Step 4. Repo2Vec: Repository embedding.

We propose Repo2Vec to present a GitHub repository in an embedding vectors

using features from three types of information sources: metadata, source code, and project

directory structure following the pipeline shown in Figure 4.2.
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In this step, we combine metadata vector MRM
, directory structure vector SRS

,

and source code vector CRC
into repository vector ARx .

Combining the vectors of each information type is a challenge as many methods

exist following two types of approaches: (a) merging the numerical values into a single

vector, using the sum, average or median, etc, and (b) concatenating vectors to create a

“longer” vector. In both approaches one can consider weighting and normalizing to ensure

“fairness”. Here, we opt to use the concatenation approach as follows:

ARx = wM ∗MRM
+ wS ∗ SRS

+ wC ∗ CRC
(4.1)

where wM , wS and wC are the weights for the meta vector MRM
, structure vector

SRS
, and source code vector CRC

respectively, and these weights are in the range of [0, 1].

4.3 Experiments and Evaluation

We evaluate the effectiveness of Repo2Vec using real data and answer two questions.

Q.1: What is the effect of each information type? We want to quantify the

effect and contribution of the three information types in determining similarity.

Q.2: How does Repo2Vec compare to prior art? We compare our method

with CrossSim [148,149], which is arguably the state of the art approach and was shown to

outperform previous approaches [103,133,236].

4.3.1 Experimental Setup

We present the datasets and our evaluation approach.
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1. Datasets. We consider two datasets in our evaluation: (a) a dataset of benign

repositories, D ben, which was used in prior work [148, 149], and (b) a dataset of malware

repositories, D mal, collected by a prior repository analysis study [175].

a. Benign repositories D ben: This dataset consists of 580 Java repositories

from GitHub and was used in an earlier study introducing CrossSim [148]. We select this

dataset in order to make a fair and reproducible comparison with CrossSim. The dataset

spans various software categories such as: PDF processors, JSON parsers, Object relational

mapping projects, Spring MVC related tools, SPARQL and RDF, Selenium test, Elastic

search, Spring MVC, Hadoop, and Music player.

b. Malware repositories D mal: This dataset consists of 433 Java malware

repositories. The dataset is provided by the SourceFinder project [175], whose goal is

to identify and provide malware source code repositories. Here, we choose only the Java

language repositories, which are the focus of the CrossSim approach. The repositories have

a fairly wide coverage across malware families including: Botnets, Keyloggers, Viruses,

Ransomware, DDoS, Spyware, Exploits, Spam, Malicious code injections, Backdoors, and

Trojans.

2. Query-based evaluation. For consistency and fairness, we follow the evalu-

ation methodology and similarity metrics of prior work [148]. We conduct our evaluation

by using similarity queries as follows: a given repository, we want to identify its five most

similar repositories.

a. The query-set Q ben: For the sake of compatibility with CrossSim, Q ben

consists of the same query set of 50 repositories as CrossSim. The query set spans various
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domains e.g. SPARQL and RDF, Selenium test, Elastic search, Spring MVC, Hadoop, and

Music player.

b. The query-set Q mal: For the D mal dataset, we create a query-set by selecting

50 repositories uniformly at random. The query set includes various malware families such

as Keylogger, Botnet, DDoS, Ransomware, Virus, Backdoor, Trojan, etc.

3. Ground truth generation. We establish the groundtruth for each dataset

by manual evaluation and follow the scoring framework, which was used in prior work [148].

Namely, we use four categories of scores to label the level of similarity:

• Category 4: Strongly Similar (SS) repositories.

• Category 3: Weakly Similar (WS) repositories.

• Category 2: Weakly Dissimilar (WD) repositories.

• Category 1: Strongly Dissimilar (SD) repositories.

For consistency, we follow the convention of the previous study [148]: a repository

in category 3 or 4 is considered (sufficiently) similar or a True Positive. Conversely, a

repository in category of 1 or 2 is considered dissimilar or a False Positive.

For the evaluation, we opted to use experts, who are more reliable compared to

a Mechanical Turk platform for highly technical questions [62] . Specifically, we recruited

three computer science researchers with at least 3 years of Java programming experience.

The evaluators are given the target repository and the response of 5 repositories per query.

Note that the five repositories in each response are in random order to avoid introducing

biases. The evaluators assign a score among the four categories of scores to each repository
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in the responses. The evaluators were provided with context and information in order to

calibrate their criteria. The first and second evaluators independently assign a score to

each repository in the response. Later, the third evaluator acts as judge by rechecking and

finalizing their scores if their scores are not same for a query.

4. Evaluation metrics. For consistency, we adopt the metrics used in related

work [148], which we describe below.

a. Success rate: We say an answer to a query is successful, if one or more of the

returned repositories is similar to the above definition of similarity. The success rate is the

percentage of successful queries.

b. Precision: Precision is the percentage of the returned repositories which are

similar to their query repository. We compute the precision following the equation,

precision =
SS +WS

SS +WS +WD + SD
(4.2)

c. True and False Positives: Following the standard definitions, True Positives

for a query-set is the total number of similar repositories returned, while False Positives is

the number of non-similar repositories in the answers.

d. Ranking order correlation (ROC): We quantify the quality of the ranked

answer to the query using again a metric introduced in prior work. The intuition is to

”reward” an algorithm that returns highly similar repositories ranked higher. To quantify

this, we calculate the widely-used Spearman’s rank correlation coefficient r [197], which is

defined as:

r = 1− 6
∑

(di)
2

n(n2 − 1)
(4.3)
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where r is the coefficient, di is the difference between the two ranks of each repos-

itory, and n is the number of ranked repositories. The coefficient is in the range of [−1, 1],

with 1 implying perfect agreement, and -1 disagreement between the two rankings.

Comment: Given the way we formulate the query, the use of Recall is less relevant

here: we ask the algorithms to report only the top five most similar repositories. Formulating

a query we expect the methods to return all similar repositories is challenging for two

reasons. First, we would need an established ground-truth, since manual validation would

be labor-intensive. Second, there is no absolute way to define what constitutes “sufficiently

similar” repositories, while relative similarity is easier to define.

4.3.2 Deploying Repo2Vec

We implement our method, which we described in Section 4.2 using Python3.6 packages:

TensorFlow2.0.0, gensim PV-DBOW doc2vec. We discuss some implementation details and

parameter choices.

Selecting the embedding dimensions. We select 128 as the embedding vector

dimension for RM , RS , and RC , since well-established embedding techniques [6,70,114,137]

recommend this number for striking a balance between computational cost and effectiveness.

We use the same number of dimensions for the vector of each type of information for

fairness. Concatenating these three vectors creates a single Repo2Vec vector with Rx=384

dimensions. The above choices give good results as we will see later. In the future, we will

explore the effect of different vector dimensions.

Exploring the solution space via weight selection. The weights in equa-

tion 4.1 give us the ability to control the ”contribution” of each information type. Here,
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we focus on the following weight combinations, which give rise to three derivative algo-

rithms: (a) Repo2Vec M using only metadata with weights wM = 1, wS = 0, wC = 0;

(b) Repo2Vec MS using metadata and structure with weights wM = 1, wS = 1, wC = 0;

and, (c) Repo2Vec All using all three types of information with weights wM = 1, wS =

1, wC = 1.

In other words, we explore the effect of weights but in a coarse way. In the future,

we intend to explore non-integer weight combinations. Overall, our results suggest that

equal weights seem to work quite well, but a savvy user can customize them to achieve

optimal performance for niche problems.

Calculating the similarity. There are many different ways to calculate the

similarity in an embedding space as the inverse of their distance in that space. Here, we

use the widely used cosine similarity, which is often recommended for high dimensional

spaces [192], and yields great results here as well.

Selecting the right aggregation function to aggregate multiple vectors

into a single vector. As we see in Section 4.2, we introduce six column-wise aggregation

functions to aggregate vectors into a single vector. We find that mean aggregation function

performs better than others. In more detail, we evaluate the performance of all aggregation

functions: average, max, min, mode, sum, and standard deviation. We find that embedding

with mean aggregation shows highest 93% precision for D ben dataset and 95% precision

for D mal dataset. Max aggregation function shows the second best result 88% and 91%

precision for benign and malware dataset respectively. Other aggregation functions show

relatively lower precision for both dataset. In the remaining of the work, we use the mean
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D ben Dataset D mal Dataset

Method Success

Rate

Precision Success

Rate

Precision

Repo2Vec M 100% 62% 100% 67%

Repo2Vec MS 100% 76% 100% 82%

Repo2Vec All 100% 93% 100% 95%

Table 4.1: Performance comparison of our three variants of Repo2Vec. Using all three information

types (metadata, structure, and source code) provides significantly better results.

aggregation function.

4.3.3 Evaluation

We evaluate Repo2Vec in two ways. First, we assess the effect of each type of information

on the performance. Second, we compare our method against CrossSim [148], which is the

state of the art approach.

a. The effect of the information types: We evaluate the effect of information

types by comparing the performance of our three variants: Repo2Vec M, Repo2Vec MS,

and Repo2Vec All, which we defined earlier. We report the result in Table 4.1 for our three

Repo2Vec variations and both datasets. This evaluation leads to two main observations:

Observation 1: Using all three data types provides significantly better

performance. In the table, we see that Repo2Vec All achieves 93% and 95% precision

compared to 76% and 82% when only metada and structure information are used.
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Figure 4.6: Repo2Vec outperforms CrossSim significantly: it finds nearly twice as many Strongly

Similar repositories and 30% fewer False Positives.

Observation 2: Metadata and structure provide fairly good results. Al-

though Repo2Vec All performs best, Repo2Vec MS performs quite well especially if we

compare it with CrossSim on the same benign dataset and query-set shown in Table 4.2.

Note that the computational effort for using metadata and structure is significantly less

compared to analyzing the code.

b. Comparing Repo2Vec to the state of the art. We compare the best con-

figuration, Repo2Vec All, with CrossSim with respect to success rate, precision, confidence,

and ROC for the benign dataset D ben. We find that Repo2Vec outperforms CrossSim in

terms of precision and ROC and has the same success rate as CrossSim.
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Method Success Rate Precision Spearman’s

Coefficient (r)

CrossSim 100% 78% 0.23

Repo2Vec All 100% 93% 0.59

Table 4.2: Repo2Vec performs better in comparison of similarity approaches between Repo2Vec and

CrossSim for the D ben dataset.

Observation 3: Repo2Vec: higher precision and better ranking. The

results are presented in Table 4.2. Although CrossSim does well in terms of success rate,

its precision of 78% is significantly lower compared to the precision of 93% of Repo2Vec All.

Also, the ranking of similar repositories identified by Repo2Vec All is better than Cross-

Sim. We find that ROC = 0.59 for Repo2Vec All, and ROC = 0.23 for CrossSim, which

further suggests that Repo2Vec All is better at computing similarity among repositories.

Observation 4: Repo2Vec provides better quality results. Given that we

have four categories of similarity, we assess the quality of the results as follows. We plot

the returned repositories from each method per category in Figure 4.6. Considering cate-

gory 4 (strong similarity) only, Repo2Vec All identifies nearly 100% more such repositories!

Similarly, CrossSim reports 5 times more repositories in the strong dissimilarity category.

In conclusion, our comparison suggests that Repo2Vec outperforms CrossSim. The

evaluation is summarized in Table 4.2 and Figure 4.6. In addition, CrossSim was shown to

perform better than other related work RepoPal, CLAN, and MUDABLUE [148].
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4.4 Case Studies

In this section, we want to showcase how Repo2Vec can facilitate repository mining stud-

ies for specific applications considering both unsupervised and supervised techniques. We

consider two likely case studies: a) classifying repositories as benign or malicious, and b)

clustering a set of repositories.

4.4.1 Identifying malware repositories

We showcase the usefulness of our Repo2Vec in a supervised classification problem, which

is of interest to practitioners [175,194,235]. The question is to identify whether a repository

contains malware or benign code. We assess the effectiveness of our approach and we also

compare it with the state of the art method [175].

We create a dataset of 580 benign repositories from D ben and 433 malware repos-

itories from D mal collected and discussed in Section 4.3.

Method Accuracy Precision Recall F1 Score

SourceFinder 90% 89% 99% 94%

Repo2Vec 97% 98% 96% 97%

Table 4.3: Repo2Vec outperforms SourceFinder in malware repository classification

Using our Repo2Vec, we determine the embedding vector for each repository. For

the classification, one can use a plethora of ML approaches. Here, we use the Naive Bayes,

which is widely used for NLP classification problems [227], and, more importantly, it is also
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Figure 4.7: Hierarchical clustering of malware repositories. Horizontal line 1 cuts into 3 distinct

cluster of repositories and line 2 cuts into 26 distinct cluster of repositories

used by the most recent SourceFinder study [175]. With this selection, we want to focus

more on the effect of the features when comparing to the SourceFinder classification. We

implement the SourceFinder classifier, and apply it on our dataset.

We assess the classification performance using 10-fold cross validation. The results

are shown in Table 4.3. Our model classifies the malware and benign repositories with

98% precision and 96% recall which clearly outperforms the previous malware repository

classification study by SourceFinder [175].

4.4.2 Hierarchical clustering

Here we showcase whether our approach can lead to a meaningful clustering of repositories

creating the basis for an unsupervised solution. We consider the union of our two datasets,
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D mal and D ben dataset with a total of 1013 repositories.

First, we apply Repo2Vec on all the repositories and get the embedding vectors.

Second, we apply the widely-used agglomerative hierarchical clustering (AGNES) [142] on

the vectors of the repositories. Clearly, there are many different clustering techniques, but

note that our goal is to showcase the capability and not to propose a clustering method.

We show the resulting hierarchical clustering in Figure 4.7.

How meaningful is this clustering? Assessing the effectiveness of a hierarchical

clustering is challenging and it can depend on specific focus of a study. A related question is

at what levels of granularity we should focus. We provide indirect proof that our clustering

provides meaningful results.

Considering two levels of granularity. We analyze our hierarchical clustering

at two different levels of granularity, which are represented by two horizontal lines in Fig-

ure 4.7. The first line (Cut 1) corresponds to a coarse level of granularity and yields three

large clusters. The second line (Cut 2) corresponds to fine level of granularity and yields

26 smaller clusters.

We elaborate on how we select the two cuts in the dendogram in Figure 4.7.

First, we select Cut 1 to see if the clustering distinguishes the malware from the benign

repositories. Second, we select a Cut 2 in a way that optimizes the number of clusters. A

commonly-used approach is the elbow method [106]. The elbow or knee of a curve is a cutoff

point in the number of clusters versus sum of squared error (SSE) graph, where increasing

the number of cluster shows diminishing returns. Figure 4.8 shows that the elbow lies at

around K=26 clusters, which is how we select Cut 2.
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Figure 4.8: Determining optimal number of clusters. Diminishing returns of sum of squared error

(SSE) is shown at red circle.

Our goal is to profile the identified clusters at both levels of granularity. The

results are shown in Table 4.4 and 4.5.

1. Fine level cluster profiling: We want to evaluate the nature and the cohe-

siveness of the 26 clusters at this level. We extract the profile of each cluster in terms of

its focus and we present the results in Table 4.4. Our profiling consists of two steps: (a) we

identify the dominant keywords of the cluster and (b) we assess how aligned its repository

is to the profile cluster. In more detail, we identify the cluster topics using Latent Dirich-

let Analysis (LDA) topic modeling [22] on the metadata of each repository. Note that we

use a randomly selected subset of half of the repositories in the cluster. Second, we want

to identify the most dominant topic among all the candidate topics. The most dominant

topic is the one that appears in the most repositories of the cluster. We report that topic
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Cluster

No.

Number

of Repos

Dominant Repo

Family

Cluster

No.

Number

of Repos

Dominant Repo

Family
1 25 DDoS 14 10 Virus
2 27 Android Keylogger 15 58 Trojan and Spyware
3 42 Backdoor 16 33 REST API
4 32 Worms 17 48 Hadoop
5 44 Android Botnet 18 36 JSON Parser
6 55 Android Malware 19 45 Music Player
7 31 Rootkit 20 71 SPARQL
8 24 Java Keylogger 21 146 Elastic Search
9 32 Ransomware 22 54 Object Relational

Mapping
10 24 Whitehat Hacking 23 27 PDF Processor
11 15 Malicious Code In-

jection

24 25 Graph-Aided Searc

12 8 Android Trojan 25 31 Selenium
13 6 Android Backdoor 26 56 Spring MVC

Table 4.4: Fine-level clustering: the profile of the 26 repository clusters using a topic extraction

method. The color of the cluster is similar to that of Figure 4.7.

Cluster

No.

Number

of Re-

pos

Cluster

Type

Cluster Description

1 433 Malware The D mal malware repositories

2 33 Benign Cluster 16 from the fine granularity with

REST API repositories

3 547 Benign The D ben repositories.

Table 4.5: Coarse-level clustering: the profile of the three clusters. The color of the cluster is similar

to that of Figure 4.7.
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in table 4.4. The cohesiveness of the cluster is substantial: at least 80% of the inspected

repositories are clearly members of the family of the cluster. Finally, as an extra optional

step, we manually investigate the repositories to verify the accuracy of the profile.

This process gives us both cohesive and “focused” clusters. Most of the clusters

contain repositories from narrowly-defined malware or benign software families, such as

Android Botnet, Keyloggers, Trojan, DDoS, Backdoor, Hadoop, Json parser, Elastic Search,

and Spring MVC.

We provide an indication of an insight that can be extracted here. Interestingly, the

largest malware cluster (cluster 15) with 58 repositories contains repositories from Trojan

and spyware malware families. A Trojan malware program is similar to spyware except

that it is packaged as another program. This observation can give rise to the following

hypothesis: could Trojan and Spyware have more in common than we thought?

2. Coarse level cluster profiling: The overarching observation is that the three

clusters of this level correspond correctly to different software domains as shown in Table 4.5.

We find that following clusters: (a) the D mal, malware repositories, (b) the D ben, benign

repositories, and (c) REST API related benign repositories, which correspond to cluster

16 in the fine granularity clustering. The fact that the unsupervised clustering separated

malware and benign repositories suggests that malware and benign software are different.

The only exception seems to be the REST API cluster 16, which would have been bundled

with the malware repositories if we have created a two cluster decomposition. We argue

that the REST API repositories seem to resemble ddos and botnet malware (opening and

listening to ports etc).
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4.5 Discussion

In this section, we discuss the scope, extensions, and limitation of our study.

a. What are the limitations of Repo2Vec? As Repo2Vec is a comprehensive

approach with data from three different sources, it performs even if every data source is not

present. However, we believe unstructured software repositories with evasive metadata and

obfuscated source code might fool Repo2Vec. In this case, previous works might perform

better as these mostly depend on the graph connection of repositories.

b. Will our approach generalize to other programming language repos-

itories? Our approach is generalizable and extendable for all programming languages,

though accuracy levels may vary. First, code2vec [6] can be extended to other program-

ming languages, and the researchers seem to have plans to expand to other languages.

Second, two information types, metadata, and structure, are fairly programming-language

independent. Furthermore, from Table 4.1, we can see that even using only these two

information types, we can achieve reasonably good performance.

c. What will happen if the quality of metadata is low or misleading? If

metadata becomes unreliable, we could decrease its weight in our algorithm. At the same

time, we find that developers have an inherent motivation to provide quality metadata.

First, these repositories are part of the developers professional persona, and part of one’s

professional portfolio or resume. Second, these repositories are public, therefore there is an

intention to make them both easy to find and easy to use. The bragging rights of having

a popular repository is a strong motivation to provide informative metadata. Hence, the

number of these type of repositories tend to be very low. We only have 1 in 580 (0.17%)
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repositories in D ben, and 3 in 433 (0.69%) repositories in D mal with an empty metadata.

Also, as Repo2Vec is a comprehensive approach with data from three information sources,

even if metadata is unavailable, it will perform sufficiently.

d. Why is GitHub search not sufficient to identify similar repositories?

GitHub only allows the retrieval of repositories based on the keywords. Though it is very

useful, GitHub’s query capability is not answering the problem that we address here. First,

it does not support query by example: “find the most similar repositories to this repository”.

Second, it does not provide the ability to measure similarity between a pair of repositories

or rank a group of repositories based on similarity to a given repository. Third, the service

does not seem to use source-code which as we saw, provides significant improvement.

e. Are our datasets representative? This is the typical hard question to

answer for any measurement study. We attempt to answer the question by making two

statements. First, we evaluate our approach with the same dataset of 580 repositories

(D ben) used by well-known prior studies [148, 149]. This dataset attempts to include

repositories from ten different families as listed in Table 4.4. Second, our D mal dataset

includes 13 types of malware families listed in the same table. In the future, we intend to

collect more repositories in our dataset and include more programming languages. The key

bottleneck is the creation of groundtruth.

f. Should we consider the popularity metrics? So far, we did not consider

the popularity metrics of the repositories, such as the number of stars, watches, and forks.

While we intend to examine what information we can extract from such metrics, we argue

that they will mostly help in finding the representative or influential repositories. Our
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preliminary analysis suggests that popularity does not provide information w.r.t. the type

of the repository. As a proof of concept, we can consider an initial and a forked repository:

they are most likely nearly identical, but their popularity metrics can vary significantly.

4.6 Related Work

Studying the similarity among software repositories has gained significant attention in the

last few years. Most studies differ from our approach in that: (a) they do not incorporate

all types of data present in a repository, (b) they do not present a feature vector keeping

the semantic meaning of the metadata, source code, and structure of a repository, and (c)

their approaches are not suitable for other ML classification tasks such as repository family

classification, malware and benign repository classification, etc. We discuss the related work

briefly below.

a. Software similarity computation: The prior studies in software similarity

computation can be classified mainly into three groups based on the data they use: (a)

high level meta data [37, 205, 206, 236], (b) low level source code [103, 133], and (c) the

combination of both high and low level data [148,149].

In an earlier study [205], authors utilize repository tags to compute the similarity

among repositories written in different languages. Capturing the weights of tags present in

a repository, they create the feature vector and apply cosine similarity to compute the sim-

ilarity. Later, [206] proposes a library recommendation method, LibRec, using association

rule mining and collaborative filtering techniques. It searches for the similar repositories to

recommend related libraries for developers. Another effort [37] proposes SimApp to identify
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mobile applications with similar semantic requirements. A recent approach, RepoPal [236],

utilizes readme file, and stars property of GitHub repositories to compute the similarity

between two repositories.

On the other hand, MUDABLUE [103] is the first automatic approach to cat-

egorize the software repositories using Latent Semantic Analysis (LSA) on source code.

Considering the source code as plain text, they create a identifiers-software matrix and

apply LSA on it to compute the similarity. Later, another study [207] categorizes the soft-

ware repositories applying Latent Dirichlet Allocation (LDA) on the source codes. A recent

study named CLAN [133] computes the similarity between repositories by representing the

source code files as a term-document matrix (TDM) where every class represents a row and

the repositories are the columns.

Finally, a very recent study [148, 149] proposes CrossSim, a graph based similar-

ity computation approach using both high level star property and API call references in

source code files in a repository. Utilizing the mutual relationship, they represent a set of

repositories as a graph and compute the similar repositories of a given repository from the

graph. However, their work is limited by the external library call which may fool as the

similarity will largely depends on it. Another study [28] has confirmed that CrossSim may

identify dissimilarity based on external API usage while internally implementing similar

functionalities.

b. Embedding approaches: NLP-based techniques have been well established

to mine and represent summarized information from GitHub repositories [86–88, 90, 91].

However, a recent advancement in NLP has opened a whole new way of feature repre-
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sentation, a neural network based feature learning approach for discrete objects. First,

introduction of word2vec [137], a continuous vector representation of words from very large

corpus, has paved the way. Later, another study named doc2vec [114] introduces a dis-

tributed representation of variable length paragraph or documents. More recently, the

embedding concept is being shared in other domains and has gained enormous success in

effective feature representation such as graph embedding [70, 145], topic embedding [153],

tweet embedding [51], and code embedding [6, 79,101,202].

4.7 Conclusions

We present Repo2Vec, an approach to represent a repository in an embedding vector uti-

lizing data from three types of information sources: (a) metadata, (b) repository structure,

and (c) source code available in a repository. The main idea is to aggregate the embedding

representations from these three types of information. Our work can be summarized in the

following points:

1. A highly effective embedding: Repo2Vec is a comprehensive embedding approach,

which enables us to determine similar repositories with 93% precision.

2. Improving the state of the art: Our approach outperforms the best known

method, CrossSim, by a margin of 15% in terms of precision. Also, it finds nearly

twice as many Strongly Similar repositories and 30% less False Positives.

3. Facilitating the identification of malware: Our approach can classify the malware

and benign repositories with 98% precision outperforming previous studies.
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4. Enabling meaningful clustering: Our approach identifies a tree hierarchy of repos-

itories that aligns well with their purpose and lineage.

In the future, we first plan to extend the work with a larger dataset and a more

extensive ground truth dataset. In fact, we would like to help develop a community-wide

benchmark that will facilitate further research. Second, we would like to extend our work

to other programming languages, which hinges mostly on developing a code2vec capability

for other languages. It would be interesting to see if different languages lend themselves to

embedding representations the same way we are able to do here with Java.
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Chapter 5

PIMan: A Comprehensive

Approach for Establishing

Plausible Influence among

Software Repositories

Determining the influence among software repositories is an essential building block

for studying the dynamics of software evolution and collaboration in online Open Source

Software (OSS) platforms. These OSS platforms contain a massive number of repositories

and facilitate the engagement of millions of users [139]. GitHub is arguably the largest such

platform with more than 32 million repositories and 34 million users exhibiting significant

collaborative interactions [176]. As these are open source coding platforms, there are no

restrictions for users to create new repositories. Naturally, it attracts users with varied
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Figure 5.1: Our approach captures plausible influence between repositories in a tuneable and visually

powerful way. We show: (a) the dense PIGraph with lower influence threshold, PIScore ≥ PIT =

0.25 with 426 nodes, and 1191 edges, and (b) the sparse PIGraph with higher influence threshold,

PIScore ≥ PIT = 0.7 with 6 nodes, and 7 edges.

expertise levels, and they develop their own software, and also copy and duplicate other

repositories. As a result, there is a significant collaboration and code reuse [60, 198] in

these platforms. Researchers are interested in studying the dynamics of the ecosystem at

the repository level, which could reveal insights into software evolution. Interestingly, there

is also a significant malware development activity within public repositories, which could

be valuable for security analysts [86, 175]. Therefore, we decide to focus on establishing

influence among malware repositories in our work.

Given two repositories, how can we quantify the level of influence between them

by analyzing their platform-level interactions? This is the problem that we address here.

We can identify the following types of interactions: (a) an author can “appreciate” the

repository of another author by starring it, watching it, and commenting on it, (b) an
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author can follow another author, and (c) an author can fork popular repositories in the

archive. The key challenge is developing a comprehensive approach for defining influence,

and even further, estimating the possibility that such an influence has occurred.

Combining these different types of information is a non-trivial task. Note that

here we define influence which is a much broader concept than, say, code-level similarity

which obviously overlaps with influence but is ultimately different. In fact, our intention is

to explore the interplay between influence and code-level similarity. Establishing similarity

at the code level is an open research question in its own right and here we only employ it

as an indirect validation of our influence metric in this study. Once we can quantify the

influence between two repositories, we can understand the influence interactions for a group

of repositories.

The challenge: the elusive nature of influence. We want to stress that the

goal is to identify the likelihood of influence between repositories as it is hard to prove

influence with certainty. First, the concept of influence is inherently challenging and goes

beyond the code-level similarity. For example, author A can be inspired by repository

R, even copy it initially, but then improve it substantially. The final repository can have

minimal code level similarity with the repository R. Second, it is nearly impossible to

establish influence even if we define it in a very strict sense: author A copies (parts of)

repository R of author B. For example, we can think of a scenario where authors A and B

emulate or copy a third repository (or some other source). So even if two copied repositories

are identical, that does not prove that one has influenced the other in a strict sense. However,

we argue that the likelihood of influence will be very helpful in studying software evolution
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and collaboration patterns.

There are relatively few efforts that focus on establishing influence among repos-

itories. Most efforts typically focus on one or a few high-level metrics such as forking

relationships and number of stars, or the focus on influence and popularity of authors.

First, there are efforts that study the popularity and importance of repositories [84, 173]

using a limited number of readily available metrics such as star and fork relationships. How-

ever, these works do not focus on the likelihood of influence between a pair of repositories.

Second, there are studies [83,86,175] that focus on the author-author level interactions and

popularity and not on the repository-repository level. Finally, there are efforts that study

code-level similarity, which we view as complementary to our work. We discuss related work

in more detail in the Section 5.5.

As our key contribution, we propose PIMan1, a comprehensive multi-dimensional

approach to identify pair-wise plausible influence at the repository level. First, our

method quantifies the pair-wise influence of repositories considering most social-interaction

dimensions comprehensively: (a) repository level interactions, (b) author level interactions,

and (c) temporal considerations. Second, our method generates a Plausible Influence Graph

(PIGraph) for a group of repositories, where an edge between two repositories exists if the

Plausible Influence Score (PIScore) of these repositories is greater than the Plausible

Influence Threshold (PIT). Our approach is a comprehensive and flexible way to combine

the multifaceted information using either our default or customized parameter values, tuned

to match the niche needs of study.

We deploy our approach on a dataset of 1013 malware repositories from GitHub [175]

1PIMan stands for Plausible Influence Modeling and Analysis.
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and study the influence relationship of its repositories. These repositories have been cre-

ated during a span of approximately 12 years which can capture the long-term effects and

phenomena. Although our approach can be applied to any type of repository, focusing on

malware repositories: (a) hones in on a rather well-defined community, and (b) could man-

ifest practical value in combating cyber-crime. Our key results can be summarized in the

following points.

a. PIMan models influence flexibly with a directed graph. Our approach

captures repository-level influence relationships with a flexible and informative plausible

influence graph (PIGraph). In Figure 5.1, we illustrate the descriptive power of our

approach by looking at different levels of influence using the PIT threshold. For PIT = 0.25,

we get a dense graph of 426 nodes and 1191 edges, whereas for PIT = 0.7, the graph contains

6 nodes and 7 edges. By tuning this threshold, we can hone in on different intensity levels

of influence. In addition, we show that our PIScore is significantly different from other

straightforward metrics of popularity (see Figure 5.9).

b. Plausible influence as a proxy for code-level similarity. We show

that our definition of influence correlates with code-level similarity as shown in Figure 5.5

(Spearman coefficient, ρ = 0.79, and p− value = 1.26e− 19). We consider the following as

an indirect validation of our approach: (a) our quantification of influence is reasonable and

(b) it can provide useful results, e.g. pointing us to repositories with actual collaboration

and overlap at the code level.

c. Finding evidence of significant collaboration. We observe significant

collaboration and influence among the repositories in our dataset. First, we identify 28
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connected components in our plausible influence graph (PIT = 0.25). We find that 71%

of the components have less than 5 repositories, while 7% components have more than 15

repositories. In addition, the top 10 most influential repositories have directly influenced

260 repositories in a non-trivial way (PIT = 0.25). In fact, the most influential repository

has directly influenced 67 repositories.

d. Revealing emerging structures and families. Analyzing the influence

graph, we can find interesting lineage and clusters of influence. We find 19 repositories

that influenced at least 10 other repositories directly and spawned at least two “families”

of repositories. For example, the repository “vaginessa/android-overlay-malware-example”

is a highly influential information-crawler android malware created on June 17, 2015. It

influenced 10 repositories directly and spawned three families of malware: (a) ransomware

with 3 repositories, (b) malware for stealing user credentials, such as keyloggers, with 4

repositories, and (c) RAT malware with 3 repositories.

Our work in perspective. Our approach is an essential capability towards under-

standing the dynamics and evolution of online platforms at the repository level. In fact, it

can be seen as a powerful component that can complement other features such as popularity

or similarity at the code level, which capture related but different aspects of the repositories.

5.1 Background

Our work focuses on GitHub, the largest open-source software archive. Here, we provide

some background on the repository information that are available in GitHub.
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A. The information in GitHub. GitHub is a massive software hosting platform,

that enables users to create public repositories to store, share, and collaborate on projects,

and provisions a good number of features for the users to do different social networking

interactions. The following describes the key elements of a GitHub repository and its

author.

1. Repository features: A repository contains the following types of information.

a. Metadata: A repository in GitHub has a large number of metadata fields. The

most notable ones are: (a) title, (b) description, (c) topics, and (d) readme file. All these

fields are optional, and are provided by the author. As the text fields are provided by the

repository author, they can be most often unstructured, noisy, or missing altogether.

b. Source code: The core element of a software repository is its source code. The

repository can contain the software projects which are written in various programming

languages such as C/C++, Java, and Python.

2. Social interaction features: It is helpful to group social interactions into

repository and author level features.

a. Repository level interaction: GitHub provides functionality for social interaction

at the repository level. A repository can be (a) starred, (b) watched to get notification about

the updates, (c) receive comments, and (d) forked by other authors.

b. Author level interaction: GitHub enables authors to create a profile by adding

social information. Authors can follow other authors which is a direct indication of interest

and appreciation. As such, one would expect that followers are likely to be influenced by

that author and her repositories.
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These two types of interaction define the repository popularity in GitHub which

we quantify as RepoPop. Note that the repository versus author level features is not that

strict; as for example starring a repository by author A implicitly conveys appreciation for

both the repository and the author.

B. Fundamental techniques and algorithms. We provide an overview of

two fundamental techniques that we leverage in our work: (i) Repo2Vec [176] to represent a

repository into a vector and (ii) HackerScope [85,86] to identify popular authors in GitHub.

1. Code-level similarity - RepoSimScore: Quantifying repository similarity at the

code level is not trivial. For validation purposes, we will rely on Repo2Vec [176], an em-

bedding approach that represents a GitHub repository in an M-dimensional vector utilizing

data from three types of information sources that enables the repository similarity computa-

tion, classification, and clustering tasks. An embedding (a.k.a. distributed representation)

is an unsupervised approach for mapping entities, such as words or images, into a relatively

low-dimensional space by using a deep neural network on a large training corpus [114,137].

The approach combines the repository metadata, the code, and the directory structure of

the repository to estimate RepoSimScore, the similarity between two repositories.

2. Determining node significance in a directed graph: Several approaches exist

for capturing the significance of interacting nodes in a complex network. In our case, the

interactions are captured by a directed graph, which points to the use of hyperlink-induced

topic search algorithm [85, 86, 122]. The algorithm used in these previous studies identifies

influential authors by incorporating a HITS approach on the Author-Author graph which

captures the interactions of the authors as we will discuss later.
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C. Datasets. Our main dataset is D All, which consists of 2089 Java malware

repositories collected by a prior study [176] to whom we are grateful whose goal is to

transform a GitHub repository into an M-dimensional embedding vector and determine

the similarity between two repositories. The dataset covers a fairly wide range of malware

families including: Botnets, Keyloggers, Viruses, Ransomwares, DDoS, Spywares, Exploits,

Spam, Malicious code injections, Backdoors, and Trojans. We conduct some additional

crawling of data (Using GitHub REST API) for each repository, as the initial dataset

was missing some repository features that we intend to use here, namely the identity of

authors interacting with a repository. The dataset contains 433 original repositories and

1656 fork repositories. In Section 5.2, we discuss how we leverage the existence of these fork

relationships in our study.

We create three datasets which we use to tune parameters and validate assump-

tions. First, we create D 50 by randomly selecting 50 pairs of repositories with RepoSimScore ≥

0.8. Second, we create D F50 by randomly selecting 50 pairs of forked repository. Third,

we create dataset D 3Levels as follows. We randomly select 90 pairs of repositories from

three ranges of RepoSimScore: (a) 30 pairs from range [0-0.25), (b) 30 pairs from range

[0.25-0.75), and (c) 30 pairs from range [0.75-1.00].

5.2 Proposed Method

The main idea behind PIMan is to create a directed weighted graph among repositories

by computing Plausible Influence Score, PIScore. Our approach can be summarized in

three steps. In the first step, we compute the influence score across three dimensions: (a)

87



Symbol Description

PIMan Plausible Influence Modeling and Analysis

PIGraph Plausible Influence Graph

PIScore Plausible Influence Score between two repositories

PIT Plausible Influence Threshold to create PIGraph

TPIScore Total Plausible Influence Score for a repository

RepoSimScore Code-level Similarity Score between two repositories

RepoPop Repository Popularity combining number of stars, forks, and watches

RAI Repository-Author interaction score

AAI Author-Author interaction score

APop Author Popularity score in the network

D All Dataset with 2089 repositories

D 50 Dataset of 50 repository pairs with RepoSimScore ≥ 0.8

D F50 Dataset of random 50 forked pairs of repository

D 3Levels Dataset of 90 pairs of repositories within 3 ranges of RepoSimScore

Table 5.1: Table of symbols used in this work.

repository-author interaction, (b) author-author interaction, and (c) author popularity in

the network. In the second step, we calculate the Plausible Influence Score (PIScore) using

the weighted summation of influence scores from these three dimensions. Finally, we create

a directed graph where an edge is added between two repositories if their PIScore satisfies

a defined threshold, PIT. The overview of our approach is shown in Figure 5.2.

Step 1. Computing three influence scores. For a given ordered pair of

repositories R1 by author A1 and R2 by author A2, we want to quantify the likely influence

of repository R1 on R2. We compute the influence score for the repositories considering

three dimensions: R1-A2 interaction, A1-A2 interaction, and popularity score of author A1.
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Figure 5.2: The overview of PIMan: (a) we define and collect dataset, (b) for all pairs of repositories

in the dataset D All, we compute three influence scores RAI, AAI and APop from repository-author

relationship, author-author relationship, and author popularity in the network, (c) we combine three

influence scores to get the Plausible Influence Score (PIScore) for each pair, and (c) we create the

directed influence graph among the repositories using the PIScore value.

Handling forked repositories. A forked repository starts as an exact replica

of the initial repository, and therefore we consider this as a substantial influence, although

a forked repository can evolve over time. Therefore, our approach would translate fork

repositories to a higher PIScore value.

In the remainder of this section, we focus on the more challenging case of non-

forked repositories. In the context of our study, we opt to use these fork repositories for

validation. Specifically, we pretend that we are not aware of forking relationships, and

conduct our influence estimation independently. However, we leverage the knowledge of

fork relationships in selecting weight for Equation 5.7 using our dataset D F50.

a. Repository-Author interaction: We consider all repository level inter-

actions from author A2 to repository R1, and calculate the influence score for repository-

author interaction, RAI. First, we compute the Starring Score (SS), Forking Score (FS),
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Watching Score (WS), and Commenting Score (CS). Here, the Starring Score is equal 1

(SS = 1) if author A2 stars repository R1, otherwise it will be 0 (SS = 0). Similarly,

we compute (FS), (WS), and (CS) to capture forking, watching, and issue commenting

interaction score. Finally, we normalize the score to keep it in the [0,1] range by arithmetic

mean of these four scores.

We can combine these scores into a single score using many different ways and by

giving different weights to individual scores. Here we decide to first explore using the equal

weights to all scores, therefore using the following formula:

RAI =
SS + FS +WS + CS

4
(5.1)

As we will see later, this way of calculating the score gives good results. In the

future, we explore the use of weights and other ways to combine the individual scores.

b. Author-Author interaction: We consider significant interactions from

author A2 to author A1 to calculate an influence score (AAI) based on the author-author

interactions. First, we compute the Following Score (FS), Other Repository Fork Score

(FSOR
), Other Repository Star Score (SSOR

), Other Repository Watch Score (WSOR
),

Other Repository Comment Score (CSOR
) if author A2 follows author A1, A2 forks, stars,

watches any repository of A1 (except R1), and A2 comments on any repository of A1 (except

R1), respectively. Finally, we assign the normalized mean influence score to AAI for the

aforementioned interactions.

As above, we combing the individual scores giving the same importance using the

formula below:
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AAI =
FS + FSOR

+ SSOR
+WSOR

+ CSOR

5
(5.2)

In future, we intend to consider other ways to combine these interactions.

c. Author popularity: In GitHub, popular authors get more attention and are

more likely to influence other authors. The prominence of an author here can be captured

by several aggregate metrics such as the number of followers, the total number of stars

across all their repositories, etc. as we described previously. As a result, quantifying the

overall prominence of an author is not trivial. In order to compute the score, we extend the

approach that we mentioned earlier in the Section 5.1.

c.1. Generating the author-author interaction graph. We create a graph to

capture the network-wide interaction among authors. In more detail, we define a weighted

labeled multi-digraph where the nodes are the authors, and we consider six types of rela-

tionships that are represented by directed edges with different labels (u, v) from author u

to v. These edges can be: (a) a follower edge: when u follows v, (b) a fork edge: when u

forks a repository of v, (c) a star edge: when u stars a repository of v, (d) a watch edge:

when u watches a repository of v, (e) a contribution edge: when u contributes code in a

repository of v, and (f) a comment edge: when u raise a issue comment in a repository of

v. These relationships capture the most substantial author-level interactions.

c.2. Edge weight calibration. The above multigraph consists of six different

relationships, whose “significance” as an interaction differs. For example, it is “cheaper” to

star a repository compared to forking it, which shows intention to use and modify the original

code. We want to appropriate weigh the importance of each relationships and, to do this,
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Figure 5.3: An algorithm to compute Producer Score, PS and Connector Score, CS in a weighted

multi-digraph of repository authors.

we consider how rare each relationship is. Intuitively, a rare relationship should get higher

importance. Specifically, we consider the weight of a type of edge inversely proportional to

a measure of its relative frequency. We calculate the average degree dtype for each type of

edge, and normalize it dividing by the minimum average degree dmin. We get the weight for

each type of edge following the equation wtype =
dmin
dtype

: (i) follower edge weight, wfollower =

dmin
dfollower

, (ii) fork edge weight, wfork = dmin
dfork

, (iii) star edge weight, wstar =
dmin
dstar

, (iv) watch

edge weight, wwatch = dmin
dwatch

, (v) contribution edge weight, wcontribution = dmin
dcontribution

, and

(vi) comment edge weight, wcomment =
dmin

dcomment

c.3. Author popularity score computation. We define two roles of an author

in the ecosystem: (a) producer, who creates repositories, and (b) connector, who interacts

with the other authors by following them, and starring, forking, watching, and commenting
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on their repositories. To quantify the popularity of the author depending on the roles played,

we associate each node u with two values: (a) producer score, PSu, and (b) connector

score, CSu. The algorithm iteratively updates the producer and connector scores until (i)

they converge, or (ii) tolerance threshold is reached. Algorithm 5.3 provides the high-level

pseudo-code of our approach to compute PS and CS. First, we initialize PSu and CSu to

value 1.0. Second, we iteratively update values as follows:

(i) for all nodes v with a directed edge to u, (v, u):

PSu =
∑
v

w(v, u) ∗ CSv (5.3)

(ii) for all nodes z with a directed edge from u, (u, z):

CSu =
∑
z

w(u, z) ∗ PSz (5.4)

(iii) we normalize PSu and CSu,

∑
u

PSu +
∑
u

CSu = 1 (5.5)

We repeat this step until the values converge. For convergence, we set a tolerance

threshold for the change of the value of any node.

Finally, we take a threshold TP for PSu score and TC for CSu score, and (i) if

PSu ≥ TP and CSu ≥ TC , the author is highly active and popular, (ii) if PSu ≥ TP

and CSu < TC , the author is highly active by just creating repositories, (iii) if PSu < TP

and CSu ≥ TC , the author is highly active in starring, forking, watching and commenting,

and (iv) if PSu < TP and CSu < TC , the author is not active. These two scores capture

different aspect of authors popularity. Hence, we will get the combined network-wide author

93



Figure 5.4: An algorithm to compute the Plausible Influence Score of repository R1 to R2.

popularity score as follows,

APop = PSu + CSu (5.6)

while in the future we will consider other ways to combine these two scores.

Step 2. Plausible influence score (PIScore). We attribute the influence score

of repository R1 to repository R2 as PIScore (R1, R2).

a. Combining the influence scores. Algorithm in Figure 5.4 provides the

high-level pseudo-code of the basic workflow to get the score. We define the PIScore of

R1 to R2 to be the weighted sum of the three scores from repository-author interaction,

author-author interaction, and author popularity score. We compute PIScore using the

following equation,
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PIScore = wRA ∗ RAI + wAA ∗AAI + wA ∗APop (5.7)

where wRA, wAA and wA are the weights for the score derived from the repository-

author interaction, author-author interaction, and author popularity. We discuss in detail

how we calibrate these weights in the next section.

b. Temporal considerations. In general, we propose to adjust the influence

score by considering other practical considerations. The most critical is time. The key idea

is simple: a recent repository cannot have influenced a repository in the past. However, the

implementation can hide several subtleties. We outline two approaches.

Approach 1. We can simply consider the creation time of a repository as a sufficient

indication for creating a temporal order. In this approach, if the creation time of repository

R2 (T2) is earlier than that of repository R1 (T1), the plausible influence score (PIScore)

of R1 to R2 is set to zero. Otherwise, we use the influence score as calculated above.

Approach 2. We can consider a “temporal phases of influence” where we recognize

that: (a) repositories are created over time, (b) the effect of time can be a real value

between zero or one. In other words, we can have a multi-step weight where for different

time differences of the repository creation DTcreation = T1−T2 we can have different values

for a modifying factor Temporal Modifying Factor (TMF) within [0,1]. For example:

one rule could be: if DTcreation > −2 weeks, then TMF = 1, which means we “allow” a

repository to influence the repository that was created 2 weeks earlier. The rationale is

that software development takes time. Another thought is to consider that a really old

repository is less likely to influence a recent repository, say 8 years later, given the fast pace
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of evolution in software and techniques, so if DTcreation > 8 years, then TMF = 0.2. We

can then adjust the PIScore by multiplying it with TMF .

Given time and space constraints, we adopted approach 1 in our work, which seems

to give meaningful results. In the future, we intend to develop a sophisticated temporal

consideration framework. However, such a framework will need to be grounded on observed

properties of repositories, such typical duration, temporal properties of the intensity of

development as seen by the commits in the code, and observations on how authors interact

with other repositories, e.g. how often does an author stars a 8-year-old repository.

Step 3. Creating the PIGraph: We create the PIGraph as a directed weighted

graph that captures the plausible influence among repositories. Formally, we define a di-

rected weighted graph: PIGraph(V,E), where V is the repository set, E is the set of edges,

and we denote the weight of an edge e as w(e). We consider an edge e between repositories

R1 to R2, if PIScore(R1, R2) (the influence score of R1 to R2) is greater than or equal to

a threshold PIT, and assign the weight of the edge w(e) = PIScore(R1, R2).

After generating the PIGraph, each node can be an influencer (having outgoing

edges), an influencee (having incoming edges), or both. We use the term influence outde-

gree to refer to the number of outgoing edges of a node. We also define Total Plausible

Influence score, TPIScore, of a repository to be the sum of the weights of all its outgoing

edges. Both these metrics capture the network-wide influence of a node as we discuss later.
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5.3 Tuning and Evaluating Our Approach

We present a systematic approach to select appropriate values for the weight parameters of

our approach and we evaluate the effectiveness of PIMan.

A. Tuning the author popularity parameters. As we saw in the Section 5.2,

the author network consists of six different relationships which show significantly different

distribution. To provide appropriate importance, we make the weight of a type of edge

inversely proportional to the measure of its relative frequency. We calculate the average

degree of dtype for each type of edge: (i) dfollower = 0.96, (ii) dstar = 0.60, (iii) dfork = 1.98,

(iv) dwatch = 1.01, (v) dcontributor = 0.36, and (vi) dcomment = 0.29. We define the weight

for each type, wtype, by normalizing the average degree using the minimum average degree,

that is wtype = dmin
dtype

. Here, the minimum average degree dmin = dcomment = 0.29. This

way, we set (i) following edge weight: wfollower = 0.30, (ii) star edge weight: wstar = 0.48,

(iii) fork edge weight: wfork = 0.15, (iv) watch edge weight: wwatch = 0.29, (v) contributor

edge weight: wcontributor = 0.8, and (vi) comment edge weight: wcomment = 1.0.

Furthermore, we calculate the popularity of authors, APop, by combining the Pro-

ducer Score (PS) and Connector Score (CS) which are calculated following the Algorithm

5.3. The algorithm iteratively updates PS and CS for each node in the network. For the

convergence, we set a tolerance threshold of 10−10 for the change of the value of any node.

After 522 iterations, we obtain the converged values of PS and CS for each author. Finally,

we assign the sum of PS and CS as the author popularity (APop) and rank the authors

based on the derived popularity scores.

B. Tuning the weights for the PIScore computation. Here, we explain how
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we can systematically determine appropriate weights to ensure that each type of influence

is considered adequately in Equation 5.7.

a. Weight selection: We choose the weight for each type of influence by “train-

ing” the weights to reflect the likelihood that there is code-level similarity between the

repositories. Specifically, we use a set of repositories for which we have RepoSimScore, the

code-level similarity, as we discussed in the Section 5.1. We use the Spearman correlation

coefficient [197] between the influence score of each dimension and code-level similarity.

Note that we only do this once to calibrate the weights.

In more detail, we calculate the weights in two steps by using our D 50 dataset.

First, we calculate the correlation coefficient between RepoSimScore and influence score of

each dimension for each pair of repository in D 50 dataset. We find that RAI (Influence

Scores of repository-author interaction) is positively correlated to the RepoSimScore (Spear-

man coefficient, ρRA = 0.38 and p-value = 3.82e-9). By contrast, the correlation coefficient

of Influence Scores of author-author interaction (AAI) and author popularity (APop) to

the RepoSimScore are ρAA = 0.15 with p-value = 1.53e-12 and ρA = 0.06 with p-value =

1.92e-8 respectively. Finally, we measure the weights in a way that reflects the ratio of the

corresponding ρ values, while the sum of the three weights should be equal to one, which

leads us to the following weights: wRA = 0.65, wAA = 0.25 and wA = 0.10, which we use in

Equation 5.7.

b. Validating our weight selection. We further evaluate the effectiveness

of the weight selection of Equation 5.7 with dataset D F50 which consists of pairs of

forked repositories. The assumption is that forked repositories are supposed to be highly
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Figure 5.5: The Plausible Influence Score (PIScore) is highly correlated with the code-level similarity

(RepoSimScore) (Spearman coefficient, ρ = 0.79, and p-value = 1.26e-19) using the D 3Levels

dataset.

influenced by the original repositories as we discussed earlier. We find that the repository-

author interaction score (RAI) is the most relevant dimension as the Spearman correlation

coefficient with respect to RepoSimScore is ρ = 0.52 with p-value = 3.32e-11, whereas the

values for AAI and APop are ρ = 0.22 with p-value = 1.46e-8 and ρ = 0.09 with p-value =

2.73e-8 respectively. These coefficient scores validate that the repository-author relationship

is the most relevant dimension in identifying influence among repositories which is why we

correctly consider it with a higher weight in our approach as we describe above.

C. Evaluating our approach: We present our effort to establish whether our

influence metric provide reasonable results.

Plausible Influence and code-level similarity. We find that our definition of

influence correlates relatively strongly with code-level similarity as shown in Figure 5.5. In
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more detail, we use the dataset D 3Levels, where each level in that group corresponds to

low, medium, and high RepoSimScore as explained earlier. (Note that dataset D 3Levels

is different than D 50, which we used earlier to determine the weights.) We then calculate

the influence score between every pair of repositories in D 3Levels. (Note that we select

the relationship with the highest influence between R1-R2 and R2-R1). We plot the average

influence score per pair and RepoSimScore per pair grouped by level for ease of viewing.

We see that the two scores are strongly correlated. Using the original data points, we find a

Spearman coefficient ρ = 0.79 with p-value = 1.26e-19, which indicates a robust correlation.

To investigate further, we manually assess 10 randomly selected pairs with high in-

fluence scores. For example, we find that “androidtrojan1/android trojan” and “vaginessa/android-

overlay-malware-example” have high RepoSimScore. We also find that author “vaginessa”

follows, stars and forks 5 of repositories of author “androidtrojan1”, which leads to a high

influence score.

Note that, in the next section, we will provide additional indications that our

approach provides interesting and meaningful results. Specifically, we apply our method

on the D All dataset which provides several interesting observations. We argue that: (a)

these observations are useful and insightful, (b) they are aligned with and corroborated by

other approaches.

5.4 Study: Results and Insights

We apply PIMan on our dataset and discuss the key findings.
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Figure 5.6: Increasing the PIT threshold reduces the PIGraph network size keeping only higher

influence edges.

5.4.1 Part 1. Studying the PIGraph

A. The effect of the influence threshold PIT on the PIGraph. We create the

directed influence graph among the repositories in the dataset following the steps described

in the Section 5.2. We add an edge from repositoryR1 to repositoryR2 if PIScore(R1, R2) ≥

PIT. We study the PIGraph for different threshold values and plot the graph properties:

average degrees, number of nodes, and number of edges in Figure 5.6. It implies that

increasing the threshold reduces the size of the network. In addition, it also exhibits the

highly influential characteristics when the threshold PIT ≥ 0.40. Figure 5.1 shows that our

model produces (a) the dense PIGraph having the threshold PIT ≥ 0.25 with 426 nodes

and 1191 edges, and (b) the sparse PIGraph having the threshold PIT ≥ 0.7 with 6 nodes

and 7 edges.
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Observation: The above plot in Figure 5.6 provides some guidance for selecting

a value for the threshold parameter PIT. We observe that the distribution of the graph

properties creates a knee in the range between 0.1 and 0.35. In order to ensure non-trivial

influence, we use a value of 0.25 in the rest of our work unless otherwise stated.

Indirect validation: We argue that this analysis suggests that our influence metric

captures a reasonable breadth of behaviors contingent on the PIT threshold. Capturing a

breadth of behaviors is a desirable property for a modeling approach.

B. The distribution of repository influence. The number of directly influ-

enced repositories follows a skewed distribution with several extremely influential reposito-

ries. Here, we focus on studying the PIGraph (PIT = 0.25) and we focus on the edges that

represent direct influence: we use the term influence outdegree of a repository to refer

to the number of directly influenced repositories for a given PIGraph. We find 39% of the

repositories having zero direct influence on other repositories while 8% of the repositories

influenced at least 20 repositories. In aggregate, the top 10 most influential repositories have

directly influenced 260 repositories in a non-trivial way. Furthermore, the most influential

repository has directly influenced 67 repositories.

C. Influence: intensity versus the number of repositories. The Total

Plausible Influence score (TPIScore) provides a different way to capture influence by also

considering the intensity of influence. We explore the relationships between TPIScore and

number of directly influenced repositories (outdegree) by producing the scatterplot shown

in Figure 5.7. There is a strong, arguably linear, correlation between the two metrics.

In addition, this plot can help us identify “niche” repositories with a “cult” following:

102



Figure 5.7: Number of directly influenced repositories (Outdegree) vs Total Plausible Influence

(TPIScore) exhibits a linear correlation for D 50 dataset.

repositories with relatively small outdegree but high influence. As an example, repository

“tiagorlampert/sAINT” is highly influential (TPIScore = 6.71) with only 12 influencees.

5.4.2 Part 2. Clusters and Lineage of Influence

A. Finding evidence of collaboration. We want to identify the relationships and groups

of high influence. Overall, we observe significant collaboration and influence among the

repositories in our dataset. First, we identify 28 connected components in PIGraph (PIT =

0.25). We find that 71% of the components have less than 5 repositories while 7% of

components have more than 15 repositories. This is a strong indication of substantial

collaboration among the repositories, especially if we consider that we have already set a

high threshold for the influence in the graph.

Indirect validation: How cohesive are these components? To answer this question,

103



Figure 5.8: Lineage and influence: an influential information-collection malware repository spawned

three fairly distinct malware sub-families. Here we show only the directly influenced repositories.

we manually analyze a set of components selected randomly. We find one component with

16 repositories exclusively focused on Android malware, while another component with

235 repositories contained three different families of malware. We argue that this is an

additional indication that our approach provides meaningful results.

B. Lineage: highly influential repositories spawn multiple repository

“families”. In our analysis, we investigate the effect of highly influential repositories, and

observe the following phenomenon. We find 19 repositories that have influenced at least 10

repositories directly, and have spawned at least two malware “families”. For example, the

repository vaginessa/android-overlay-malware-example is a highly influential information

crawler android malware created on June 17, 2015. It influences 10 repositories directly and

has spawned three families of malware: (a) user credential stealing malware, (b) ransomware
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malware, and (c) remote access trojan (RAT) malware. Figure 5.8 depicts the lineage story

of vaginessa/android-overlay-malware-example.

Figure 5.9: The Total Plausible Influence score (TPIScore) of a repository is significantly different

from the popularity of the repository (RepoPop). We show the normalized scores for dataset D 50.

5.4.3 Part 3. Repository Influence and Popularity

A. Total influence score, TPIScore captures different aspects compared to repos-

itory popularity metrics. We compare the repository influence computed by PIMan and

GitHub popularity metrics, RepoPop. First, we create the PIGraph for our dataset with a

reasonable influence score, PIT = 0.25. This creates an influence graph with 426 nodes and

1191 edges. We calculate TPIScore, the total influence score considering the outgoing edge

weights for all nodes. Second, we identify the influential repositories based on RepoPop, the

popularity metrics of GitHub. We compute the sum of: (i) number of stars, (ii) number of
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forks, and (iii) number of watches to determine the total popularity score for a repository.

We rank the repositories according to the popularity score.

In Figure 5.9, we show the comparison between total influence score, TPIScore,

and repository popularity score, RepoPop for the repositories in the D 50 dataset. The two

scores exhibit significant differences, and seem fairly uncorrelated. We argue that influence

provides a significantly different perspective compared to popularity.

No Influential repositories using PIMan Popular repositories using RepoPop

1 00aj99/AndroidMalware-Example tiagorlampert/sAINT

2 CCrashBandicot/android- trojan adonespitogo/AdoBot

3 CCrashBandicot/Android-KeyLogger M1Dr05/IsTheApp

4 molotof/sAINT tomgersic/AndroidKey-Logger

5 5l1v3r1/AndroidRansom-Ware Mandyonze/Droid-Sentinel

6 CristianTuretta/MAD-Spy PanagiotisDrakatos/Java-Ransomware

7 tiagorlampert/sAINT harshalbenake/Android-Elite-Virus

8 Mandyonze/Droid-Sentinel moloch–/Yoshimi-Botnet

9 androidtrojan1/ android trojan androidtrojan1/ android trojan

10 un4ckn0wl3z/Psyber-Project siberas/sjet

Table 5.2: Top 10 influential repositories identified by PIMan and popularity metric RepoPop (which

combines stars, forks, and watches) in our D All.

B. Influential repositories by TPIScore versus those ranked by repository

popularity. We want to understand the relationship between influence and popularity of

repositories. We show the top 10 repositories identified by both approaches in Table 5.2.

We find that the top 10 most influential repositories have influenced 260 repositories when

the influence is substantial, PIT = 0.25. Comparing the two lists in the table, we see
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that the two approaches have identified different sets of repositories. They have only three

repositories in common, and they also differ in their ranking ([7,8,9] versus [1,5,9]). This

indicates that the concept of influence captures a different perspective than popularity.

That is not to say that one is better than the other: the two concepts are related but not

identical.

5.5 Related Work

There are relatively few efforts that focus on establishing influence between repositories,

especially at the “social” level that we consider here. We discuss the related work below

grouped in broad areas of focus.

A. Studies of author level roles in GitHub. The efforts in this group have fo-

cused on identifying influential authors and not repositories, as we do here. There are some

works [31, 125] that studies the ecosystem of developers to measure the social-coding col-

laboration in GitHub. Focusing on popularity at the author level, some efforts [23,96] have

surveyed developers to study influential users to understand how normal users are influenced

by highly influential users on GitHub. Another effort [124] has proposed a ranking-based

approach to identify influential authors which can be applied to a heterogeneous network.

A recent work [83] has proposed a Following-Star-Fork-Activity based approach to measure

user influence in the GitHub developer social network. A more recent work [86] studies influ-

ential authors in network considering a Following-Fork-Contribution-Comment relationship

in a hacker ecosystem in GitHub. However, our work focuses on establishing influence in the

repository level considering (i) repository-author interaction, (b) author-author interaction,
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and (iii) author popularity in the network.

B. Studies on repository popularity. Most prior efforts focus on quantifying

and predicting repository popularity, which is not exactly the same as influence. A recent

work [173] has proposed an approach to predict repository popularity using starring and

following relationships. There are efforts [13, 204] who have used PageRank to identify

popular repositories by analyzing the social coding interaction graph, where two nodes are

connected, if the corresponding projects have at least one common developer. Another

work [128] uses network centrality measures to identify influence among Python language

repositories where the network is created based on the inter-dependencies between projects

which are parsed from the setup.py files. Another effort [84] has studied repository influence,

but focused only on starring relationships, which ignores many other interactions.

None of these works have addressed the problem as formulated here and in the

comprehensive fashion of all the relationships that we use in our work.

C. Studies on code-level similarity of repositories on GitHub. Several

efforts study code-level similarity, which we view as complementary to our work. First,

there are efforts that utilize: (a) metadata [206, 236], (b) the source code [8, 103, 133], (c)

both metadata and source code [148, 149]. A recent work [176], Repo2Vec, proposes an

embedding approach to measure the similarity between repositories considering three types

of information: (a) metadata, (b) source code, and (c) the repository directory structure.

This is the approach that we use to compute similarity at the code level.

D. Studies of malware repositories on GitHub. For completeness, we

provide a quick overview of studies that focus on malware on GitHub. Some earlier ef-

108



forts [120,238] have manually collected a small number of malware repositories from GitHub

for research purposes. More recently [175] developed a systematic method to classify repos-

itories as malware or benign and identified the malware source code database that we are

using here. Other studies [85,86] have analyzed the hacker ecosystem in GitHub and other

online security forums and identified the roles and dynamics among authors.

5.6 Conclusions

We present PIMan, a comprehensive approach to establish plausible influence among a set

of repositories. Our approach combines three types of information: (a) repository level in-

teraction, (b) author level interaction, and (c) temporal considerations. Once we determine

the pair-wise influence score, we can create a network-wide influence interaction for the

repositories.

The high-level contribution of our work can be summarized in the following points:

a. A step towards defining inter-repository social-level influence: With

our definition of influence, we capture social interactions in a comprehensive way. Our

initial results show that the influence is correlated with code-level similarity. Our plan is to

thoroughly study the interplay between the influence defined in our study and the code-level

similarity.

b. Flexible and powerful representation of influence using PIGraph: We

develop the Plausible Influence Graph (PIGraph) in a systematic way, and propose different

algorithmic and analysis techniques to extract useful information and insights.

c. Identifying lineage and families of influence: We showcase the capabil-

109



ities of our approach by identifying interesting lineage relationships and repository groups

rendering significant influence among them. The intention is to highlight the great potential

for useful and insightful analysis that our approach can enable.

In the future, we plan to expand the work as follows. First, we will study the

relationship between influence and code-level similarity. Second, we will expand our analysis

to other types of software: (a) we will compare benign software development with malware

software and (b) we will analyze in depth focused software branches, e.g. data mining

software, android apps, etc. Third, we will closely study the malware ecosystem on GitHub

as this could provide significant information in combating cyber-crime.

Finally, we intend to open-source our code and datasets to maximize the impact

of our work and facilitate follow up research.
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Chapter 6

Conclusions

Our thesis proposes and develops a systematic suit of methods to extract action-

able information from online platforms. We develop robust tools to (a) mine important

“events”, (b) facilitate a hierarchical cluster extraction, and (c) model the dynamics of an

ecosystem (here, malware authors). Our approaches have the following main advantages:

(a) we develop complete tools for each of our methods which provide visual and intuitive

information and can be operated even by a savvy users, (b) our tools can operate in unsu-

pervised way without any apriori knowledge, (c) critical hierarchical patterns can also be

discovered using one of our methods, and (d) we can track the hackers across platforms and

understand their dynamics by profiling them.

Our study concludes in three key takeaway messages: (a) online platforms hide

significant amount of security related important information which can be mined system-

atically and can be used even for early detection of critical events, (b) hackers leave online

footprints, collaborate among themselves, brag about their hacking successes even in secu-
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rity forums and can be spotted using our tool, (c) malware development are on the rise

targetting even macOS and iOS which are thought to be safer. Our initial findings are just

the beginning of a promising future effort that can shed light on this online malware author

ecosystem, which spans software repositories and security forums.

The current work thus can be seen as a building block that can enable new research

directions. Follow-up efforts can use our approach to (a) detect emerging trends, (b) monitor

malicious activity, (c) develop new capabilities on top of our methods, and (d) identify

influential hackers towards safeguarding the Internet.
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repositories. Journal of Systems and Software, 142:237–247, 2018.

[215] VentureBeat. Github passes 100 million repositories. https://venturebeat.com/

2018/11/08/github-passes-100-million-repositories/. [Online; accessed 13-
October-2019].

[216] VirusBay. A web-based, collaboration platform for malware researcher. Online:
https://beta.virusbay.io/, 2019.

[217] Hanna M Wallach. Topic modeling: beyond bag-of-words. In Proceedings of the 23rd
international conference on Machine learning, pages 977–984. ACM, 2006.

[218] Chi Wang, Xueqing Liu, Yanglei Song, and Jiawei Han. Towards interactive con-
struction of topical hierarchy: A recursive tensor decomposition approach. In ACM
SIGKDD, pages 1225–1234, 2015.

[219] Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of
the American statistical association, 58(301):236–244, 1963.

[220] Dawid Weiss. Quantitative analysis of open source projects on sourceforge. In Proceed-
ings of the First International Conference on Open Source Systems, Genova, pages
140–147. Citeseer, 2005.

[221] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. Twitterrank: finding topic-
sensitive influential twitterers. In Proceedings of the third ACM international confer-
ence on Web search and data mining, pages 261–270, 2010.

[222] Wikipedia. Linux based botnet bashlite. https://en.wikipedia.org/wiki/

BASHLITE/. [Online; accessed 08-February-2020].

[223] WS. Wilders security website. https://www.wilderssecurity.com/, March, 2020
2020. [accessed July-2020].

130

https://www.namepros.com/threads/hacked-by-muslim-hackers.950924/
https://www.namepros.com/threads/hacked-by-muslim-hackers.950924/
https://hashnode.com/
https://venturebeat.com/2018/11/08/github-passes-100-million-repositories/
https://venturebeat.com/2018/11/08/github-passes-100-million-repositories/
https://en.wikipedia.org/wiki/BASHLITE/
https://en.wikipedia.org/wiki/BASHLITE/
https://www.wilderssecurity.com/


[224] Joicymara Xavier, Autran Macedo, and Marcelo de Almeida Maia. Understanding
the popularity of reporters and assignees in the github. In SEKE, 2014.

[225] Hangjun Xu. An algorithm for comparing similarity between two trees. arXiv preprint
arXiv:1508.03381, 2015.

[226] Ji Xu, Guoyin Wang, and Weihui Deng. Denpehc: Density peak based efficient
hierarchical clustering. Information Sciences, 373:200–218, 2016.
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