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Abstract

Electroceuticals provide promising opportunities for peripheral nerve regeneration, in terms 

of modulating the extensive endogenous tissue repair mechanisms between neural cell body, 

axons and target muscles. However, great challenges remain to deliver effective and controllable 

electroceuticals via bioelectronic implantable device. In this review, the modern fabrication 

methods of bioelectronic conduit for bridging critical nerve gaps after nerve injury are 

summarized, with regard to conductive materials and core manufacturing process. In addition, 

to deliver versatile electrical stimulation, the integration of implantable bioelectronic device is 

discussed, including wireless energy harvesters, actuators and sensors. Moreover, a comprehensive 

insight of beneficial mechanisms is presented, including up-to-date in vitro, in vivo and clinical 

evidence. By integrating conductive biomaterials, 3D engineering manufacturing process and 

bioelectronic platform to deliver versatile electroceuticals, the modern biofabrication enables 

comprehensive biomimetic therapies for neural tissue engineering and regeneration in the new era.
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1. Introduction

Peripheral nerve injuries (PNIs) constitute 2%–5% of trauma cases, leading to significant 

economical and psychosocial burden to the individuals and society [1-3]. For severe 

injuries, PNIs adversely affect behavior, mobility, sensations, perception of skin, muscle 

and joints resulting in long-term disability. Unlike central nervous system (CNS) injuries, 

which commonly yield failure of injured axons to regenerate, PNIs are followed by robust 

regeneration with higher possibility of recovery of sensory and motor functions [4]. The 

frequency of axon regeneration is dependent on various factors including alterations within 

the cell body, stability of growth cone, and the hindrance of damaged tissue between 

neuron and its end organ. In humans, axonal regeneration is typically shown as 1–2 

mm d−1 without additional treatments that can effectively accelerate the process [5]. This 

regenerative response is associated with widespread transcriptional and epigenetic changes 

in injured neurons [6, 7]. If the regeneration fails, however, the end organ such as motor unit 

would undergo irreversible degeneration 12–18 months after denervation [8]. Treatments of 

PNIs consist of surgical and non-surgical approaches and numerous modalities have been 

developed since the unsatisfactory outcome of severe PNIs remains a noteworthy clinical 

issue [9, 10] (figure 1). Among non-surgical modalities, numerous works have been studied 

including medication and phytochemicals [1, 11, 12]. Surgical therapeutic approaches for 

peripheral nerve recovery comprise a variety of techniques including direct repair [13, 

14], nerve grafting (autografts, allografts) [15, 16], nerve transfer [17, 18], fibrin glue 

[1, 14, 19], nerve conduits [14, 20-30] and cell-based therapy [12, 31-33]. Advantages 

and disadvantages of each technique have been widely discussed [1, 10]. Currently, novel 

treatments that have been reported include phytochemicals, optogenetics, fat grafting, tissue-

engineered nerve grafting and electrical nerve stimulation [6, 34-37].

For PNIs with a nerve defect or a gap needed to be bridged, autologous nerve graft 

remains the gold standard treatment. However, autografts have the drawback of donor site 

morbidity and limited supply. Other alternate methods are thus extensively explored. Nerve 

guidance conduits (NGCs) with the ease of various design such as combination of cell-based 

therapy or adjustment of the microenvironment with growth factors, gene therapy or tissue-

engineered graft are increasingly being considered as an alternative to nerve autografts [22, 

29, 31, 38].

Electroceuticals deliver electrical impulses targeting the neural circuits that regulate the 

body’s organs and functions, via either wearable or implantable electronic device [39, 

40]. As a new category of novel therapeutic approach, electroceuticals have applied and 

demonstrated therapeutic potential for ischemic stroke [41], Alzheimer’s disease [42], type 

I diabetes [43], wound healing [44], cardiovascular regulation [45], gastrointestinal tract 

disorder [46] and even developmental disorders [47]. In the field of peripheral nerve 

regeneration (PNR), electrical stimulation (ES) as a therapeutic intervention for PNIs has 

been studied for decades. Percutaneous ES has long been clinically applied as prevention of 

muscular atrophy [48]. As for ES focused on injured nerve after repair, the positive effects 

of brief, low-frequency ES on PNR was established in various animal experiments [12, 35, 

49]. This review will provide comprehensive information on (a) current animal and human 
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evidence of ES therapy; (b) fabrication of conductive materials and electronic devices; and 

(c) integration of these two fundamental components of electroceutical approaches.

2. Electroceuticals as novel approaches for PNR

The main pathologies of PNIs include a cascade of changes in both the local injured 

axon and the associated neurons. Wallerian degeneration, which initiates within 24–48 h 

following nerve injury, consists of active axon degeneration and myelin degradation at nerve 

distal to the injury site [50]. This process leads to the degradation of neurofilaments, the 

rearrangement of nerve’s cytoskeleton with detachment of axon terminals from the target. In 

the meantime, the neurons proximal to the injured sites undergo a form of polarized growth 

in order to reinnervate towards their targets [51, 52]. However, the injured neuron might 

undergo programmed cell death activated within 6 h in unfavorable situations regulated by 

various extrinsic and intrinsic factors [53].

This regenerative response is associated with wide-spread transcriptional and epigenetic 

regulations in the injured neurons, axons and target organs. Substantial advances have 

been established in terms of the coordinated actions of transcription factors, epigenetic 

modifiers and microRNAs, which are widely investigated in the peripheral nervous system 

in recent studies [4, 6, 7, 54]. To facilitate the extensive regenerative process after PNIs, 

a comprehensive strategy should be considered for systemwide neuromodulations from 

proximal neurons, local injured axons to distal target organs.

2.1. Beneficial mechanisms of ES for PNR

ES as an advanced therapeutic approach for PNIs, has been approved for its promising role 

in promoting PNR with specific target effect. Percutaneous ES has long been clinically 

applied for the prevention of muscular atrophy [48]. With direct stimulation on the proximal 

site to the injured nerve, brief low-frequency (20 Hz) ES has revealed beneficial effects in 

various animal experiments [12, 35, 49]. Gordon presented the first randomized controlled 

trial, demonstrating the beneficial therapeutic outcomes of proximal ES on patients with 

severe carpal tunnel syndrome after surgical decompression. The clinical evidence of direct 

nerve ES enables the additional proximal benefits on neuronal cell, in terms of promoting 

PNR during nerve surgery on injury site [35]. In contrast to low-frequency (20 Hz) ES, 

kilohertz stimulation lead to reversible nerve block under the same stimulation amplitude, 

which was usually being applied to alleviate neuropathic pain (see full review in [55, 56]).

ES has been widely demonstrated to offer benefits in the regeneration of bone, cartilage, 

skin, spinal nerves, and peripheral nerves [57]. The current evidence indicates postsurgical 

or intraoperative single proximal ES (SP-ES) as a promising therapeutic strategy to promote 

PNR after a variety of injuries [35, 49, 58-62]. SP-ES in which the electrical stimulus is 

applied directly on the nerve stump proximal to the injured site, is validated in various 

animal studies. A single dose of brief (1 h), low frequency (20 Hz) ES, has been proved 

to amplify axon regeneration after nerve transection and microsurgical repair (figure 2(a)) 

[35, 60, 63, 64]. Moreover, a recent research reveals that brief (10 min) SP-ES can provide 

identical therapeutic benefits to the abovementioned 60 min protocol in an acute sciatic 

nerve transection/repair rat model and thus imply the translational potential for future 
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clinical application [65]. The current established mechanism of SP-ES contributing to the 

therapeutic effect of PNR involves increase of neurotrophic factors and upregulation of their 

receptors on neuronal cells, including brain derived neurotrophic factor (BDNF) [63, 66]. 

Subsequent elevation of intracellular cyclic adenosine monophosphate (cAMP) level and 

related cAMP response element binding protein pathway [67-69] further enhance expression 

of regeneration-associated genes, such as Talpha-1 tubulin and growth associated protein 

43 (GAP-43), resulting in axon regeneration [70-72]. One in vitro study has demonstrated 

that ES increases production of nerve growth factor (NGF) from Schwann cell (SC), leading 

to efficient axon remyelination [73]. In addition, a recent in vitro study discovers that ES 

triggering the p38 mitogen-activated protein kinase pathway in PC12 mutant cells, which 

plays an important role in promoting neurite outgrowth (figure 2(b)) [74].

2.2. Current evidence of SP-ES after nerve injury

Numerous animal studies and human trials present the therapeutic benefits of PNR from 

SP-ES (figure 2(c)) [6, 35, 59]. In 1983, Nix and Hopf first described the positive effect 

from direct ES on injured nerves and the affected muscles. Better twitch force, tetanic 

tension, and muscle action potential were observed 2 weeks after ES (4 Hz, daily) treatment 

in a rabbit nerve transection model [77]. Further animal studies showed that postsurgical 1 

h 20 Hz ES directly on injured nerve yield earlier recovery of motor and sensory functions 

in acute crush injury [78], transected femoral nerve [79, 80] and sciatic nerve in rats models 

[81, 82]. Moreover, in delayed nerve repair model of rats, a single session of 1 h ES 

at 20 Hz immediately after delayed nerve repair significantly increased the numbers of 

motoneurons reinnervating toward chronically denervated muscle [83]. Moreover, a recent 

research proposes that repetitive distal ES on nerve gap injury model, demonstrating the 

therapeutic potential on preservation of neuromuscular junction and improvement of motor 

function [84]. The current animal researches demonstrated the therapeutic evidence of SP-

ES, whether for the injury mechanism (crush or transection), nerve type (femoral or sciatic 

nerve), treatment timing (acute or chronic) and stimulation site (proximal or distal to injured 

nerve).

For human therapeutic evidence, to our knowledge, there are currently four randomized 

controlled trials regarding the therapeutic benefits of SP-ES for PNR (figure 2(d)). Two 

randomized controlled trial had conducted to examined the effect of SP-ES immediately 

after carpal tunnel [64] and cubital tunnel syndrome [76] release, demonstrating motor unit 

number estimates increased significantly by postoperative 1 and 3 years as compared to 

the control unstimulated group, respectively. Wong et al further revealed immediate effect 

of SP-ES after digital nerve repair with improved digit sensation and nearly full functional 

recoveries [34]. For patients undergoing oncologic neck dissection, intraoperative SP-ES 

(continuous 60 min, 20 Hz) to spinal accessory nerve contributed to significant improvement 

in electrophysiologic outcome and overall shoulder function at 12 months after surgery 

[75]. Despite all the above-mentioned beneficial evidences of SP-ES, several translational 

challenges remain in terms of optimization of stimulation dosage, feasibility in critical nerve 

gap injury, and the potential benefit of preconditioning ES [85]. In addition, an innovative 

bioelectronic platform that combines such bi-directional ES is also crucial in order to 

achieve PNR in the future.
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2.3. ES with conductive materials

Despite the abovementioned convincing evidence of proximal ES on PNR, the therapeutic 

evidence of ES on critical nerve gap remains unexplored due to limitations of biomaterials. 

NGC provides tissue engineered biomimetic tubular structures to bridge critical nerve 

gap when encountered and has drawn significant attention in terms of nerve tissue repair 

and regeneration (figure 2(e)). They can be made of natural or synthetic biopolymers 

such as chitosan, gelatin, collagen, polylactide, poly(lactic-co-glycolic acid) (PLGA), 

or polycaprolactone (PCL), which are designed to offer supportive mechanical and/or 

biochemical cues [29, 86, 87]. Either conductive or non-conductive biomaterials can be 

used as the scaffold of NGC. However, several issues should be still considered such as 

non-biodegradability, possible long-term in vivo toxicity, and non-homogeneous distribution 

of the conductive particles in neural tissue [21, 25, 29, 57, 88]. Recent development on 

implantable conductive materials and structure can offer the opportunity of delivering wide-

spread ES from the implantation site, with the additional advantage of minimal stimulus 

needed as compared to transcutaneous approach. The efficacy of the combination of ES with 

NGC has been explored in literature [20, 57, 62, 86, 89, 90]. Choices of different types 

of conductive biomaterials with minimum toxicity and development of an implantable or 

wearable electronic device with numerous designs of interface are both hot topics in the field 

of neural tissue engineering [57, 87, 88, 91].

To engineer a novel NGCs for electroceuticals, the electrical conductivity of the fabricated 

biomaterials provides a compelling solution to the current clinical difficulties [92]. To 

achieve this goal, the optimal dosage of ES and protocol are both important determining 

factors for the therapeutic effects of neuromodulation. It is reported that SP-ES effectively 

accelerates the regenerating motoneurons with a low frequency of 20 Hz for an hour a 

day [79, 83, 93]. However, a recent study applying single or two sessions of proximal ES 

on critical nerve gaps, observed that such ES can only promote sensorimotor recovery at 

the first session of ES when delivered at the time of reconstruction, with no benefit of a 

second delayed session of ES 4 weeks after the initial reconstruction [94]. Therefore, the 

exploration of the application of repetitive ES and the integration of conductive conduit with 

ES would be of great value. Various ES conditions such as electrical conductivity of the 

NGCs, charged voltage, current, and duration have been summarized in table 1. From this 

perspective, the standard protocol has not yet been established. Although not as efficient as 

autograft, ES plus conductive conduit indeed demonstrates significant therapeutic benefits. 

The following section will introduce both the in vitro and in vivo influence of the PNR from 

the combination of ES and functional electrically conductive conduit.

2.3.1. Beneficial evidence of neural cell response on conductive materials 
in vitro—Conductive NGCs aims to reconnect nerve defects physically and communicate 

biophysical signals for facilitating neural tissue outgrowth. Although conductive substrates 

support cellular activity with or without ES [106, 113], it has been found that they can 

enhance axon outgrowth when applied in conjunction with ES [90, 99]. Recently, it has 

been widely studied the effect of cell stimulation and behavior on electrically conductive 

materials. When electrical stimuli are applied to the injured nerves, the neuronal cells are 

activated, resulting in cellular responses such as proliferation, migration, differentiation, 
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neurite outgrowth, and remyelination, which extensively influence the peripheral nervous 

system [114].

SCs are a representative neuroglia cell to myelinate the axons in peripheral nervous system 

(PNS). It resides in peripheral nerve tissues, with important roles in chaperoning axon 

sprouting. More specifically, SCs activate proliferation and migration in the regeneration 

process by supporting axon growth and subsequent myelinization, resulting in nerve 

regeneration through the secretion of neurotrophic factors [115, 116]. Zhao et al evaluated 

the in vitro effect of ES on SCs, demonstrating enhanced viability, proliferation and 

migration, along with upregulated expression of neurotrophic factors (BDNF, NT-4/5, NGF, 

GDNF). Moreover, the constructed polypyrrole (PPy)/silk conductive NGC accompanying 

ES could effectively promote in vivo axonal regeneration and remyelination [98]. 

Accordingly, when NGCs is fabricated with electrical conductivity, it enables control of cell 

adhesion, migration and interaction of neural cells under an electric field. The in vitro cell 

responses in figure 3(a) showed that in the group adopting ES to the conductive matrix, SC 

growth, proliferation, and migration were significantly promoted than in the absence of ES. 

In addition, the remyelination by SCs was also facilitated by ES [107]. Figure 3(b) shows 

various histological benefits of conductive conduit with ES for sciatic nerve regeneration. 

It was observed that motor performance could be improved during rehabilitation by sciatic 

function index (SFI) analysis. This synergistic effect was more clearly demonstrated in the 

observation of immunostained images to evaluate regeneration of axonal growths in the 

conduits. With the electric field stimulation, the differentiation and elongation of neurons 

were enhanced on the conductive cross-linked poly(3,4-ethylene dioxythiophene) (PEDOT) 

substrate [117]. In addition, applied ES to the unidirectional aligned nanofiber matrix shows 

a synergetic effect for higher cell viability [98].

2.3.2. Electroceuticals to accelerate the nerve repair in vivo—As summarized in 

table 1, many groups have demonstrated the effect of this strategy using the transected 

sciatic nerve model in Sprague–Dawley (SD) rats. Researchers have investigated the 

accelerated regeneration of the sciatic nerve using over 10 mm nerve gap models in 150–

250 g adult rats. Conductive NGCs had shown considerable improvement compared to 

non-conductive NGC groups. ES used in non-conductive materials can only apply directly 

to cells and cannot provide a large area. Furthermore, the combinations of conductive NGCs 

with ES contributed to higher regenerative ability than the solely conductive NGCs group 

[89, 90, 95, 98, 107].

Song et al had demonstrated the beneficial effects of ES on 15 mm nerve gap injury bridged 

by conductive NGC (PPy/PLCL) [95]. It revealed remarkable regeneration capability, and 

there was identical outcomes in sciatic function index, nerve conduction velocity, distal 

compound motor action potential, and recovery rate of triceps muscle weight between 

the PPy/PLCL with ES group and autograft group. In addition, Huang et al explain that 

that localized ES enhances the migration ability of SCs that migrating into the conductive 

conduit (PPY/chitosan) paves the way for axon regeneration [90]. It has been shown that 

these ES therapies allow a synergistic effect not only through the electrical properties of the 

neural conduit but also through the longer and faster neural filaments with highly aligned 
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micropatterns [98]. So, the remarkable potential of this integrated strategy as electroceuticals 

suggests a promising future direction in PNS regeneration.

In summary, the integrated strategy of conductive NGC with ES shows substantial 

regeneration capacity comparable to autograft transplantation. Electroceuticals with 

conductive materials are promising therapeutic options in the future, providing both material 

and electrophysiological cues to support consequential PNR.

3. Fabrication of bioelectronic conduit

Providing well-developed conductive materials into the injured site is a key biotechnology 

to have synergic efficacy of regeneration without side effects and secondary damages. 

Conductive conduit implanted between the transected nerves can serve to use as an 

electrically conductive pathway for bilateral stimulation in the proximal and distal. 

Therefore, a comprehensive understanding of conductive materials, optimal structure and 

fabrication will help us develop more effective electrotherapy. In this section, we discuss 

these issues for a promising therapeutic strategy and optimization.

3.1. Candidate raw materials for conductive nerve conduit

Nerve regeneration requires intrinsic ionized electric signals and is wrapped in a myelin 

sheath (nonconductor) to prevent leakage of ions from the axon to transmit biological 

signals. However, in severe nerve injuries, transplantation of synthetic scaffolds is required 

and axons are guided in specific directions. But so far, artificial structures have not yet 

been as conductivity natural ions and tissues. Therefore, for bioinspired-mimic properties, 

implantable conduits are recommended alternative candidate materials with electrical 

conductivity.

Conductive polymers are called π-conjugated polymers, resulting in a conductive 

biostructure due to mostly carbon bonding structures, forming a valence band and involving 

electrons moving easily [118]. These π-conjugated polymers, such as PPy, polyaniline 

(PANI), and PEDOT, exhibit conductivity when dopants are added through a redox reaction 

[119]. The electrical stimulus on the conductive polymers drives the dopant to move 

through the structure, creating polarons and allowing the charge to flow through [20]. 

However, these conductive polymers are not biodegradable and have poor solubility in most 

solvents. Currently, these conductive polymers are usually not used independently but used 

a combination with natural or synthetic polymers [89, 90, 95, 97, 98, 103, 120-124]. The 

biodegradable natural and/or synthetic polymers are partially absorbed, the non-degradable 

conductive polymers still retain the debris and circulate through the in vivo environment. 

Although the effect of short-term ES after surgery provides acceleration of nerve growth, 

it has limitation that is difficult to track non-degradable conductive polymer fragment after 

recovery [29]. For this reason, it could not be a complete alternative material despite the 

potential application of electrical signal transmission.

Carbon nanomaterial has high electrical conductivity and excellent mechanical properties. 

The nanosized structure and large surface area could serve as a promising strategy to 

enhance neuro-regeneration. Carbon nanotube (CNT) provide electrical conductivity in state 
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of dispersing on nanofiber that lead to improving cell proliferation of PC12 and SCs [125, 

126]. However, the biocompatibility of CNTs still remains argumentation due to poor clear 

evidence in safety. In several studies, authors do not agree that non-functionalized CNTs 

have biocompatibility to support neuronal growth and regeneration [113, 127, 128]. The 

studies of degradation rate, discharge, and safety of CNTs are remained works to overcome 

the current limitations in future applications. Likewise, graphene (GO) also improves the 

biological cue between the biocompatible scaffold and the cell membrane because GO has 

strong π-bonding and a large surface area, resulting in high electrical conductivity and 

promoting signal transduction and metabolic activity. Therefore, it significantly improves 

neuronal expression both in vitro and in vivo. Many studies support the remarkable 

regeneration effects by dispersing graphene oxide (GO) or reduced GO (rGO) in a scaffold 

matrix [106, 129, 130]. GO, when inserted into the body, tends to accumulate in organs 

such as the lungs, liver, and spleen, and exposure to GO can cause severe cytotoxicity 

and disease [131]. On the other hand, as the result that GO could be biodegraded in vivo 
by macrophages is still being presented [132], the debate about the application of carbon 

nanomaterials as biomaterials in the future is expected to continue.

Metal particles can be used as conductive biomaterials including nanoparticles of gold 

(Au), silver (Ag), and copper (Cu) [133, 134]. Composite materials, mixed with nano metal 

materials and hydrogel, improve mechanical strength and electrical conductivity, and the 

level of cell adhesion and proliferation are able to control by the concentration of metal 

material [135]. Furthermore, metals can completely and harmlessly dissolve, reabsorb, or 

degrade at the molecular level, known as transient electronics. Such transient metals include 

magnesium (Mg), zinc (Zn), tungsten (W), iron (Fe), molybdenum (Mo) [136]. These metals 

are considered good bioresorbable materials, but their corrosion mechanisms are completely 

different. There are concerns that consumption of oxygen and byproducts in the corrosion 

process may cause necrosis of the surrounding tissues, so a lot of care should be taken when 

employing metal materials [137]. Besides, the allowance of each metal is different in the 

organs, sex, and ages; therefore, quantitative and systematic studies should be followed.

Ionically conductive materials called hydrogels, inogels, or polyionic elastomers have been 

introduced as a new type of conductors that use charged ions rather than electrons to allow 

electrical signals [138]. In general, ion conductors have excellent stretchability, transparency, 

and biocompatibility [139]. For example, polyvinyl alcohol/hydroxypropyl cellulose/fiber 

hydrogel is fabricated with artificial nerves to deliver stable AC and tunable DC electrical 

signals in robot finger movements for complete recovery [32]. Conductive hydrogels are 

used as 3D printing materials and have the advantage of constructing complex shapes. 

The ability to efficiently collect strain and vibration signals has been proven through the 

fabrication of sensors with a complex structure [138]. Most of the research results are 

used as wearable sensors under in vitro conditions. So far, ionically conductive materials 

with excellent electrical conductivity and physical properties and at the same time excellent 

biocompatibility have not been introduced.

For electroceuticals, exploring conductive materials is a key strategy, but above all, the nerve 

conduit must be biocompatible, biodegradable, and biostable. Also, conductive materials 
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and/or composites must be applicable to the manufacturing process of conduit shapes, 

surface treatment, and internal micropatterns for guiding axon sprout.

3.2. Fabrication of a 3D conduit structure

Fabrication methods of fine-scaled cylindrical shapes with conductive materials were a 

critical obstacle to facilitating the functionalized conduit in a clinical application. Mold 

casting can provide the simplest and easiest way to fabricate the hollow tube structure. 

More specifically, rods are placed in the core of the mold to create inner cavities. Then, 

injection of the prepared composite solutions into the rest of the casting mold serves hollow 

conduit structure, followed by demolding after complete solidification (figure 4(a) (i)). In 

addition, mold casting of a biodegradable polymer with carbon material can improve nerve 

conduction instead of non-conductive materials [106, 140]. The number of internal rods 

allows multi-channeled conduits as well as the single lumen, as shown in figure 4(a) (ii). The 

freeze-dried sponge-based conduit can even improve permeability by forming small pores 

on the cylinder wall [141]. The inner surface-to-volume ratio increased with more channels 

resulting in larger axon diameter and myelination thickness in the in vivo study.

However, the restriction of internal rods in various shapes and homogeneous channels 

should be overcome. It is also challenging to fabricate a microchannel because there is a 

risk of shape deformation or collapse during the demolding process via dissolving or pulling 

out. Therefore, optimization of the size, number, and position of internal rods will be a key 

feature to improve axon guidance as to future works.

A hollow structure can be created by rolling the sheet onto cylindrical rods. This strategy 

enables forming a conduit shape by pulling out the rod after wrapping it with a rectangular 

electrical conductive sheet. Figure 4(b)(i) shows that multi-channel conduits can be 

manufactured according to the size and number of rods for channel formation [142]. There 

is a limit to downsize to the required regenerated nerve. This handwork means atypical 

and may vary the guiding ability of axon sprouting depending on skill level. Here, there 

is an interesting study of the automatically roll-up method using shape-memory materials. 

When triggered by a core body temperature of 37 °C, it is restored to a tubular shape of 

a multichannel conduit (figure 4(b)(ii)). Angiogenesis and blood vessel formation could be 

promoted by forming a microchannel of the prepared sheet with nanofiber which provides 

more space for cell proliferation, migration, and neural tissue regeneration [143]. Although 

it is still difficult to construct a uniform structure with more fined channels, this has infinite 

potential with prepared nanopatterning for morphology cues.

Electrospinning is one of the most useful methods for producing nanofiber network 

sheets improving permeability during neuro-regeneration. The electrostatic field deforms 

the polymer droplets on the nozzle tip into a cone shape, and if the electrostatic force 

exceeds the surface tension, a charged jet is ejected. At this time, when a high voltage 

is applied to both the capillary nozzle tip and the substrate, the polymer nanofibers 

forward the ground plate of the counter collector, and a thin fiber network is deposited 

(figure 4(c)(i)). It generally has collected randomly nanofiber. Randomly nanopores only 

provide permeability, but not topographical cues. For this reason, various attempts have 

been trying to manufacture nanofibers with aligned directionality (figure 4(c)(ii)). Highly 
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aligned vertical and horizontal, and randomly oriented nanofibers on the single matrix 

induce the directionality and proliferation of neural cells. Randomly oriented nanofibers 

allow increasing mechanical properties [152]. This method is an effective strategy that can 

provide directional guidance at the nanoscale. It can be applied in various ways, such as 

directly jetting using a composite solution containing conductive materials [126] or coating 

the collected sheet after electrospinning [95, 153]. Either way, well-fabricated nanofibrous 

substrates could offer superior potential on PNR by neuronal expansion and topographical 

guide cues.

Simultaneous extrusion of the two materials using a dual nozzle allows a hollow shell 

structure by selective removing the core part (figure 4(d)(i)). This cost-effective and rapid 

construction method is a useful technique to control the inner channel by controlling the 

materials’ feed rate. However, since a thin nozzle is placed inside the outer nozzle, if the 

outer shell’s space becomes narrow, the fluid may not flow due to the rheological limitation. 

As a result, it may be challenging to manufacture fine-scaled conduits. Figure 4(d) (ii) shows 

that a conduit has a diameter of about 2.5 mm, and the shell part is composed of a pore 

structure for permeability. The electrical conductivity, swelling, degradation rate, mechanical 

properties, and cell proliferation ability can be controlled by the composition of the shell 

material [146]. In general, co-axial extrusion has the advantage of easily controlling the 

thickness of the shell according to the extrusion feed rate of the core and shell, but it is 

difficult to construct multiple channels. Therefore, it is suitable for manufacturing artificial 

blood vessels as well as NGC that requires a single channel. It will be exponential effect 

doubled when collaborating with electrospinning or 3D printing techniques.

Previous descriptions of traditional methods for manufacturing conduits are suitable for 

producing standardized simple lumen shapes. Therefore, it is challenging to build the 

freeform shapes of conduits or handle a complicated structure. Additive manufacturing 

allows us to construct tailored complex geometry for individual nerve injuries.

Recently, for the nozzle-based 3D plotting method, the extruded filament is deposited 

through the nozzle to consolidate while moving along the preprogrammed tool path (figure 

4(e)(i)). This technique makes it possible to print cell-laden filaments so that more bioactive 

structures can be constructed. The extrusion-based 3D printing method has a low resolution 

because the depends on the thickness of the extruded filament through the nozzle. Attempts 

have been fabricated to develop the resolution by increasing the extrudability with high 

temperatures to facilitate extrusion [154]. However, there are still challenges to mimicking 

nerves.

Alternatively, the studies related to the manufacture of scaffolds using a stereolithography-

based 3D printing technique have been started. Stereolithography-based printing can 

fabricate a fine multi-lumen architecture because of its higher resolution than extrusion-

based 3D printing. This advanced approach aims at customized treatment by accurately 

scanning and rapidly fabricating damaged nerve areas. It suggests that it can be built 

as human nerve-sized with complex structures (figure 4(e)(ii) above) [155]. There are 

several biodegradable, 3D printable composite solutions for artificial nerve fabrication. 

The synthetics of photocurable copolymers and water-soluble hydrogel composite have 
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opened a new process paradigm for constructing microchannels in artificial nerves. This 

presents the possibility of constructing a physical space of under 450 μm required for 

axon regeneration [156] unable to traditional fabrication methods. The conduit fabricated 

as shown in figure 4(e)(ii) below has sufficient flexibility and sufficient strength to resist 

compression modulus or sutures. A photo-initiator was added to produce a printable 

composite and reported unprecedented speed based on establishing a rapid continuous 3D 

direct light Pprocessing (DLP) printing platform [141]. Clinical application of 3D printed 

conduit upgrades fabrication technique and expands the scope of application of in vitro and 

in vivo platforms for personalized medical care for patients.

It has been reported to improve CNS regeneration via precisional medicine of biomimetic 

scaffolds such as the construction of 3D micro-architecture [157]. However, to our 

knowledge, there is no reports for manufacturing conductive conduits by stereolithography-

based 3D printing by far. Therefore, this advanced manufacturing technique needs further 

study toward functional conduits for ES coupling, in terms of higher resolution and suitable 

properties for nerve bridges.

4. Integration of bioelectronic ES platform at the device level

Currently, it is limited to temporary and unsustainable stimulation through a wire-to-

percutaneous electrode connection from an external power device. These percutaneous 

electrodes cannot be fully implanted, and the wires exposed to the outside of the skin may 

cause secondary infection after surgery, leading to a poor prognosis. Therefore, the needs 

of the fully fixation method are required for successful electroceuticals, which demands 

highly wireless power transfer. Here, we will introduce several wireless platforms, including 

energy harvesters from external power, actuators transmitting energy to tissue, and sensors 

for monitoring biosignals.

4.1. Energy harvester with wireless control

Recent implantable bioelectronic device research has focused on miniaturized and wireless 

energy transportation to operate devices battery-free because of the limited capacity of it. To 

facilitate operating battery-free devices, there is an in vivo energy harvester (IVEHS) that 

accumulates the energy generated in vivo such as piezoelectric, triboelectricity, automatic 

wristwatch, biofuel, endocochlear potential, optical energy [167-171]. However, these 

have poor output, conversion efficiency, and poor durability [172]. Therefore, we need 

transmission from a stable external power supply to an efficient wireless platform of in 
vivo devices, and there are several strategies; ultrasonic (figure 5(a)(i)), induced current by 

radiofrequency (RF) (figure 5(a)(ii)), and optogenetics (figure 5(a) (iii)).

Since the wireless stimulation devices are fully implanted nearby the sciatic nerve, they 

must be fabricated minimalize and flexible. Figure 5(a) presents illustrations of each energy 

harvester. They have an external power source external to the body and wirelessly harvest 

power from a receiver placed inside the body. Through optimal matching between the 

transmitter and receiver, the triggered energy is transmitted via the receiver to the actuator 

contacted with the sciatic nerve. All types of harvesters turned out to be feasible to harvest 

enough power to activate nerve stimulation. There is a miniature wireless peripheral nerve 
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stimulator (6.5 mm3) called stim dust operated by ultrasonic. They succeeded in converting 

harvested ultrasonic waves with 82% peak chip efficiency, indicating that they can be 

operated with low power [158]. In particular, in the case of figure 4(a)(ii), all substances 

are composed of bioabsorbable materials and absorbed from the body, and released out of 

the body after full recovery with nerve stimulation [159]. In addition, near-infrared (NIR) 

light is a highly efficient energy source that is optically driven and controlled since it has 

high transmittance in biological tissues (655–900 nm). The flexible system Integration (SI) 

product validation (PV) arrays that build up the device generate power when illuminated 

by NIR light. At this time, the stimulation is activated by transmitting a signal to the 

connected optogenetic stimulator. They show that remote control can be efficiently delivered 

to optogenetic devices wirelessly through skin tissue [160].

Compared to IVEHS, these devices need to generate external power, but they are stable 

wireless communication systems with high efficiency electrically and functionally. Although 

it has the challenge of further extending the working distance in the future, these are 

innovative technologies that can allow long stimulation periods enabling the complete 

implantation of devices.

4.2. Actuator

The harvested energy could be delivered to the in vivo tissue in various forms. Research 

on implantable electroceuticals related to signal transmission at the nervous system and 

nerve regeneration through electrical signals is actively studied. Figure 5(b)(i) presents the 

piezoelectric thin film nanogenerator connected to the cuff for sciatic nerve stimulation. In 

general, the potential for stimulus is quite weak with harvested energy from the movement 

of the body or organs. Here, a programmable ultrasonic-driven stimulator combined with a 

battery-free thin-film nanogenerator for peripheral nerves was introduced to increase electric 

power. The piezoelectric thin film nanogenerator using ultrasound as an external energy 

source successfully achieved direct ES of the sciatic nerve in mice [161].

In the Choi et al study, a flexible expansion electrode and a targeted peripheral nerve target 

device were constructed by connecting RF power harvester that receives electricity from 

an external induction coil (figure 5(b)(ii)). It is encapsulated with bioabsorbable dynamic 

covalent polyurethane, which has excellent mechanical elasticity for in-vivo movement 

and provides minimal expansion, enabling powerful operation without limiting its working 

lifetime. As for the electrical interface, the exposed Mo electrodes surrounding the nerve 

were connected to the PLGA tubular conduit to perform nerve stimulation efficiently. 

Energy harvester, electrode, and conduit are all absorbent materials, and after the initial ES 

treatment, they completely decomposed in the body. Unlike the previously known concept of 

proximal nerve stimulation for regeneration, this bio-device prove a beneficial effect applied 

to the distal part of the damaged nerve to improve muscle strength and function and increase 

peripheral blood to recover nerve damage [162].

Optogenetic stimulation of the peripheral nervous system is a novel approach to motor 

control, sensory transmission, and pain block. However, it needs to be careful about the 

temperature change during optical stimulation. When the temperature increases, partial heat 

causes block of nerve signals, which can lead to irreversible nerve damage [173]. Figure 
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5(b)(iii) shows an optical nerve device for both optogenetic stimulation and synchronous 

monitoring of peripheral nerve neural activity using a single cuff electrode. The role of 

optogenetics is to stimulate sensitive genes with specific wavelengths of light optically. 

The increasing temperature during optical stimulation led to fatalities, but this actuator was 

found not to affect nerve tissue damage during signal recording with changes only in the 

range of 24 °C–26 °C. The device was suitable for monitoring neural activity and optical 

stimulation in transgenic mice [163].

4.3. Sensor

A wireless system that integrates with external power supply and internal energy harvester 

is evolving into in situ sensors to monitor vital signs beyond the stage of tissue stimulation. 

This is to observe how to interpret and control the electrophysiological activity of the 

body to prove the therapeutic effect in the target tissue. In future work, it is expected to 

develop into a patient-customized medical device capable of nerve stimulation and sensing 

simultaneously.

Seo et al show the design of a miniature receiver device working by ultrasound system 

(figure 5(c) (i)). This neural sensor recorded the electromyogram (EMG) response elicited 

from the gastrocnemius muscle in rats. The data were recorded for 20 ms around the 

stimulation window through stimulation with 200 μs duration and 6 s pulse. Monitoring 

could be continued indefinitely on the anesthesia, and there was no deterioration in 

the quality of the recordings even after continuous measurements for 30 min. Also, the 

difference between wireless and wired data was within ±0.4 mV, and the minimum signal 

detected by the sensor was about 0.25 mV. They proved that ultrasound effectively delivered 

energy to mm-scale devices through high-fidelity electromy-gram and electroneurogram 

signals [164].

Here, the Li group manufactured a neural impedance sensor for long-term monitoring of 

regeneration status for 42 d (figure 5(c)(ii)). Specifically, an implantable microsystem was 

inserted to observe the time-lapse variation of nerve impedance after wrapping the cuff 

electrode in an 8 mm injured sciatic nerve rat model. This system resulted in increasing 

myelin fiber density by offering long-term stimulation to accelerate nerve fiber growth 

as well as impedance evaluation to understanding as time goes by nerve regeneration. 

Continuous muscle stimulation can lead to better functional neural connections to reduce 

muscle atrophy and improve functional recovery [165].

The Vasudevan group further improved long-term monitoring by acquiring area mapping 

records with 16 sites records (figure 5(c) (iii)). They evaluated the changes in neural 

function through weekly in vivo impedance measurements and recordings. Although it 

was possible to achieve low-yield neural recordings of action potentials by floating 

microelectrode arrays in PNS, long-term recording performance was limited due to lead wire 

failure. After implantation, structural problems in which significant damage to the electrode 

and insulator, limiting continued reliability, but it is still expected to broadly expand the 

scope of application in the future by enabling evaluation and monitoring of the performance 

characteristics of neural arrays [166].
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4.4. Optimize the therapeutic parameter

Despite the excellent neuro-regenerative effects of non-pharmacological electroceuticals, we 

still have not found a comprehensive and clinical therapeutic option. In the regeneration 

of damaged nerves, the degree of regenerative ability differs from the size and type of 

defect, location, age, and sex. Therefore, it is difficult to explain the set as ‘standard’ as 

the parameter of 1 h, 20 Hz, 0.1 ms for various conditions [85]. So far, evaluation is being 

performed under numerous healthy SD rats rather than clinical considerations. We need 

systematically strict investigation with more detailed conditions through multiple simple 

models. We may need the help of biocomputational tools for optimizing ES parameters 

and device design using artificial intelligence and machine learning in the future. But, 

this is a challenging issue because it needs numerous training samples are required for 

the utilization of deep learning applications. One of the approaches is to collect training 

data from computer simulation experiments. Another one might be meta-learning which 

learns to quickly adapt to a new environment with just a few samples [174]. Ultimately, 

optimizing parameters is a ‘key factor’ for boosting the therapeutic effect and applying 

clinical application.

5. Challenges and future works

Despite the remarkable potential of conductive NGCs to deliver ES for nerve regeneration, 

there is few optimal guideline of electroceuticals. As shown in table 1, the electrical 

properties (e.g. conductivity, impedance, resistance) employed in each research vary 

extensively. The biological reaction at nerveconduit interface might also increase the 

conductive variation, such as impedance and biofluid acumination. In addition, the 

evaluation of the electroreaction to the disrupted nerve being connected to the NGCs is 

not standardized. Furthermore, it should be recognized that the surface of NGCs is exposed 

to the bio-fluid directly, which does not fully deliver charges by causing electrical leakage 

in in vivo environment. Actual axons are encapsulated by an insulator called the myelin 

sheath, which increase neural activity of axon and prevent the leakage of electric signal. 

However, most conductive conduits are designed without this precise structure, which may 

cause a decrease in the efficiency of ES. In addition, the technical limitations of fabricating 

inner channels in a micro-scale allows only single-lumen type structures as nerve bridges, 

rather than multichannel structure. Researches on optimal pore size and channel structure 

through material combination and fabrication process are also important factors to increase 

mass transportation of nutrients and oxygen which are essentials for nerve regeneration. 

In a long-term implantation to mimic severe nerve injuries, the large nerve gap (>10 mm) 

requires sustainable mechanical and electrical properties during the designed degradation 

lifetime. The conductive and bioresorbable materials, including conductive hydrogels within 

the hollow NGCs should be carefully evaluated to prove the complete biosafety and 

biocompatibility, according to well-established protocol.

From the clinical perspective, the bioelectronic platform should be biocompatible, 

bioresorbable, miniaturized, and with ease of implantation under minimal invasive 

procedures. Different from other bioelectronic device designed for brain or spine, strong 

mechanical sustainability with stretchable property is crucial for peripheral nerve system, 
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owning to its nature of high degree of mobility and pressure loading. Considering about the 

possibility of incomplete nerve regeneration or the formation of neuroma-in-continuity at 

the critical nerve gap, the detection of nerve action potential via implantable bioelectronic 

device can bring decisive information for the progress of nerve regeneration. In order to 

further investigate the underlying mechanisms of ES on PNR, several advanced technology 

can be expect to explore the full spectrum of peripheral nerve system, such as (a) single 

cell RNA sequencing for better understanding of cell responses, cell-cell interactions with 

unprecedented spatial and temporal resolutions; (b) biocomputational tools such as artificial 

intelligence and machine learning to help optimize the therapeutic parameters and device 

design. Furthermore, the versatile adjustment of the dosage of electroceuticals according 

to real-time nerve sensing will open a new era of precisional medicine as theranostic 

bioelectronic platform for electroceuticals in the future.

6. Conclusions

Both bio-engineered nerve conduit or electroceuticals has shown beneficial evidences in 

PNR for 20 years. Recent advances on biomaterials empower the modern bioresorbable and 

conductive nerve conduit, which enables to deliver versatile therapeutic electroceuticals. 

The biofabrication to integrate conductive nerve conduits with ES platform can offer 

versatile stimulation dosage, depending on the injury type, timing and progress of nerve 

regeneration. The modern bioelectronic platform for electroceuticals integrates the cutting-

edge technology of tissue engineering and biofabrication to develop the future theranostic 

bioelectronic devices for regenerative precision medicine.
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Figure 1. 
Current treatment options for promoting PNR. The state-of-art of multi-modality approaches 

to repair or reconstruct PNI include surgical, non-surgical and physical stimulation. Surgical 

intervention includes all kinds of microsurgical repair, nerve graft, nerve/muscle transfer. 

Non-surgical approach includes pharmaceuticals, various synthetic growth factors and 

cell-based therapies. Physical stimulation consists of optogenetics, ultrasound, microwave, 

radiofrequency and electroceuticals. Biomaterial approaches include synthetic NGCs, 

hydrogel and controlled release drug-containing vehicles.

Maeng et al. Page 25

Biofabrication. Author manuscript; available in PMC 2023 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Current evidence of electroceuticals for PNR. (a) Therapeutic stimulation parameters and 

application of brief ES. (b) Proposed mechanism of peripheral nerve ES. (c) Current 

established in vivo evidence for transection/crush injuries at sciatic/femoral nerves of rodent 

and rabbits. (d) Current human evidence among median nerve [64], digital nerve [34], spinal 

accessory nerve [75] and ulnar nerve [76]. (e) Choice of NGC with electroceuticals.
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Figure 3. 
The in vitro and in vivo beneficial effects of neural regeneration with combined conductive 

conduit and ES. (a) Neural cell response on the electrical field; in vitro. Illustration of 

various cell activity by ES on the conductive substrate. Reprinted from [107], Copyright 

(2019) with permission from Elsevier. (b) Electroceuticals to accelerate nerve repair; in 
vivo. Illustration of phenomena by ES in sciatic nerve repair. From [112] Reprinted with 

permission from AAAS. Reprinted from [107], Copyright (2019) with permission from 

Elsevier.
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Figure 4. 
Various methods of constructing a nerve guidance conduit (NGC) with a cylindrical 

structure comprising single or multi-channel. (a) Mold casting; (i) representative illustration 

of the injection molding process and microstructure image of the manufactured conduit. 

Reprinted with permission from [140]. Copyright (2017) American Chemical Society. (ii) 

NGCs tube manufactured in various shapes according to the size and number of cores 

and location. Reprinted with permission from [141]. Copyright (2017) American Chemical 

Society. (b) Roll-up sheet; (i) schematic diagram of the rolled-up process using sheet and 

rod spacer (above) and manufactured conduit (below). [142] John Wiley & Sons. [original 

copyright notice]. (ii) Approach using electrospun shape memory nanofibers. The sheet 

keeps temporarily plane and then triggered by a physical temperature at 37 ° C to form 

a cylindrical conduit. Reprinted with permission from [143]. Copyright (2020) American 

Chemical Society. (c) Electrospinning; (i) illustration of dual electrospinning method. [142] 

John Wiley & Sons. [Original copyright notice]. Nano network conduits can be produced 

by jetting a polymer solution through a capillary nozzle with high voltage and depositing 

nanofibers in the collector. (ii) Photograph and microstructure of the electrospun NGCs. 

Reprinted from [144], Copyright (2019), with permission from Elsevier. (d) Co-axial 

extrusion; (i) schematic diagram of co-axial extrusion using a dual nozzle composed of 

inner and outer nozzles. Reproduced from [145], with permission from Springer Nature. 
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(ii) The tube structure is produced by removing the core part of the extruded cylindrical 

filament. [146] Taylor & Francis Ltd. http://tandfonline.com. (e) Additive manufacturing 

(3D printing); (i) nozzle extrusion-based 3D plotting technique according to designed 

toolpath. [147] John Wiley & Sons. [Original copyright notice]. Reprinted with permission 

from [148]. Copyright (2015) American Chemical Society. (ii) Schematic diagram of the 

stereolithography based additive manufacturing using photocurable solution. Reprinted from 

[149], Copyright (2019), with permission from Elsevier. Stereolithography can provide 

customized therapy options for complex-shaped nerves defect. [150] John Wiley & Sons. 

[Original copyright notice]. Optical image of 3D printed NGCs, which has high flexibility. 

Reprinted from [151], Copyright (2018), with permission from Elsevier.
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Figure 5. 
Integration between bioelectronics conduit and wireless platforms to efficient energy 

transmittance for improving neural regeneration. (a) Energy harvester with wireless control; 

(i) ultrasound-based wireless platform. © 2018 IEEE. Reprinted, with permission, from 

[158]. (ii) The induced current by radiofrequency (RF) signal from an external coil. 

Reproduced from [159], with permission from Springer Nature. (iii) Optogenetic wirelessly 

powered device by near-infrared (NIR) light. Reprinted from [160], Copyright (2021), 

with permission from Elsevier. (b) Actuator; (i) ultrasound-driven piezoelectric thin film 

nanogenerator. Reprinted from [161], Copyright (2021), with permission from Elsevier. (ii) 

Stretchable, bioresorbable electronic stimulator worked by induced current. Reproduced 

from [162], with permission from Springer Nature. (iii) Compact optical nerve cuff electrode 

for neural stimulation and monitoring. Reproduced from [163], with permission from 

Springer Nature. (c) Sensor; (i) nervous recording system with ultrasonic neural dust. 

Reprinted from [164], Copyright (2016), with permission from Elsevier. (ii) Long-term 

nerve impedance monitoring microsystem. © 2013 IEEE. Reprinted, with permission, from 

[165]. (iii) Multi-sites long-term recording electrodes. Reproduced from [166]. © IOP 

Publishing Ltd. All rights reserved.
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