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Abstract

Psychophysical experiments show that humans are better at perceiving rotation
and expansion than translation. These findings are inconsistent with standard
models of motion integration which predict best performance for translation [6].
To explain this discrepancy, our theory formulates motion perception at two lev-
els of inference: we first perform model selection between the competing models
(e.g. translation, rotation, and expansion) and then estimate the velocity using the
selected model. We define novel prior models for smooth rotation and expansion
using techniques similar to those in the slow-and-smooth model [17] (e.g. Green
functions of differential operators). The theory gives good agreement with the
trends observed in human experiments.

1 Introduction

As an observer moves through the environment, the retinal image changes over time to create mul-
tiple complex motion flows, including translational, circular and radial motion. Human observers
are able to process different motion patterns and infer ego motion and global structure of the world.
However, the inherent ambiguity of local motion signals requires the visual system to employ an ef-
ficient integration strategy to combine many local measurements in order to perceive global motion.
Psychophysical experiments have identified a variety of phenomena, such as motion capture and
motion cooperativity [11], which appear to be consequences of such integration. A number of com-
putational Bayesian models have been proposed to explain these effects based on prior assumptions
about motion. In particular, it has been shown that a slow-and-smooth prior, and related models, can
qualitatively account for a range of experimental results [17, 15, 16] and can quantitatively account
for others [7, 12].

However, the integration strategy modeled by the slow-and-smooth prior may not generalize to more
complex motion types, such as circular and radial motion, which are critically important for estimat-
ing ego motion. In this paper we are concerned with two questions. (1) What integration priors
should be used for a particular motion input? (2) How can local motion measurements be combined
with the proper priors to estimate motion flow? Within the framework of Bayesian inference, the
answers to these two questions are respectively based on model selection and parameter estimation.
In the field of motion perception, most work has focused on the second question, using parame-
ter estimation to estimate motion flow. However, Stocker and Simoncelli [13] recently proposed a
conditioned Bayesian model in which strong biases in precise motion direction estimates arise as a
consequence of a preceding decision about a particular hypothesis (left vs. right motion).



The goal of this paper is to provide a computational explanation for both of the above questions
using Bayesian inference. To address the first question, we develop new prior models for smooth
rotation and expansion motion. To address the second, we propose that the human visual system has
available multiple models of motion integration appropriate for different motion patterns. The visual
system decides the best integration strategy based upon the perceived motion information, and this
choice in turn affects the estimation of motion flow.

In this paper, we first present a computational theory in section (3) that includes three different in-
tegration strategies, all derived within the same framework. We test this theory in sections (4,5) by
comparing its predictions with human performance in psychophysical experiments, in which sub-
jects were asked to discriminate motion direction in translational, rotational, and expanding stimuli.
We employ two commonly used stimuli, random dot patterns and moving gratings, to show that the
model can apply to a variety of inputs.

2 Background

There is an enormous literature on visual motion phenomena and there is only room to summarize
the work most relevant to this paper. Our computational model relates most closely to work [17, 15,
7] that formulates motion perception as Bayesian inference with a prior probability biasing towards
slow-and-smooth motion. But psychophysical [4, 8, 1, 6], physiological [14, 3] and fMRI data [9]
suggests that humans are sensitive to a variety of motion patterns including translation, rotation, and
expansion. In particular, Lee et al [6] demonstrated that human performance on discrimination tasks
for translation, rotation, and expansion motion was inconsistent with the predictions of the slow-and-
smooth theory (our simulations independently verify this result). Instead, we propose that human
motion perception is performed at two levels of inference: (i) model selection, and (ii) estimating
the velocity with the selected model. The concept of model selection has been described in the
literature, see [5], but has only recently been applied to model motion phenomena [13]. Our new
motion models for rotation and expansion are formulated very similarly to the original slow-and-
smooth model [17] and similar mathematical analysis [2] is used to obtain the forms of the solutions
in terms of Greens functions of the differential operators used in the priors.

3 Model Formulation

3.1 Bayesian Framework

We formulate motion perception as a problem of Bayesian inference with two parts. The first part
selects a model that best explains the observed motion pattern. The second part estimates motion
properties using the selected model.

The velocity field {~v} is estimated from velocity measurements {~u} at discrete positions {~ri, i =
1, . . . N} by maximizing

p({~v}|{~u},M) =
p({~u}|{~v})p({~v}|M)

p({~u}|M)
, (1)

The prior
p({~v}|M) = exp(−E({~v}|M)/T ), (2)

differs for different models M and is discussed in section 3.2.

The likelihood function
p({~u}|{~v}) = exp(−E({~u}|{~v})/T ) (3)

depends on the measurement process and is discussed in section 3.3.

The best model that explains measurement {~u} is chosen by maximizing the model evidence

p({~u}|M) =
∫
p({~u}|{~v})p({~v}|M)d{~v} (4)

which is equivalent to maximizing the posterior probability of the modelM (assuming uniform prior
on the models):

M∗ = arg max
M

P (M |{~u}) = arg max
M

P ({~u}|M)P (M)
P ({~u})

= arg max
M

P ({~u}|M). (5)



3.2 The Priors

We define three priors corresponding to the three different types of motion – translation, rotation, and
expansion. For each motion type, we encourage slowness and smoothness. The prior for translation
is very similar to the slow-and-smooth prior [17] except we drop the higher-order derivative terms
and introduce an extra parameter (to ensure that all three models have similar degrees of freedom).

We define the priors by their energy functions E({~v}|M), see equation (2). We label the models by
M ∈ {t, r, e}, where t, r, e denote translation, rotation, and expansion respectively. (We note that
the prior for expansion will also account for contraction).

1. slow-and-smooth-translation:

E({~v}|M = t) =
∫
λ(|~v|2 + µ|∇~v|2 + η|∇2~v|2)d~r (6)

2. slow-and-smooth-rotation:

E({~v}|M = r) =
∫
λ{|~v|2 + µ[(

∂vx
∂x

)2 + (
∂vy
∂y

)2 + (
∂vx
∂y

+
∂vy
∂x

)2] + η|∇2~v|2}d~r (7)

3. slow-and-smooth-expansion:

E({~v}|M = e) =
∫
λ{|~v|2 + µ[(

∂vx
∂y

)2 + (
∂vy
∂x

)2 + (
∂vx
∂x
− ∂vy
∂y

)2] + η|∇2~v|2}d~r (8)

These models are motivated as follows. The |~v|2 and |∇2~v|2 bias towards slowness and smoothness
and are common to all models. The first derivative term gives the differences among the models.
The translation model prefers constant translation motion with ~v constant, since ∇~v = 0 for this
type of motion. The rotation model prefers rigid rotation and expansion, respectively, of ideal form

{vx = −ω(y − y0), vy = ω(x− x0)}, {vx = e(x− x0), vy = e(y − y0) (9)

where (x0, y0) are the (unknown) centers, ω is the angular speed and e is the expansion rate. These
forms of motion are preferred by the two models since, for the first type of motion (rotation) we have
{∂vx

∂y + ∂vy

∂x = 0, ∂vx

∂x = ∂vy

∂y = 0} (independent of (x0, y0) and ω). Similarly, the second type of

motion is preferred by the expansion (or contraction) model since {∂vx

∂x −
∂vy

∂y = 0, ∂vx

∂y = ∂vy

∂x = 0}
(again independent of (x0, y0) and e).

The translation model is similar to the first three terms of the slow-and-smooth energy function
[17] but with a restriction on the set of parameters. Formally λ(|~v|2 + σ2

2 |∇~v|
2 + σ4

8 |∇
2~v|2)d~r

≈ λ
∑∞
m=0

σ2m

m!2m |Dm~v|2d~r. Our computer simulations showed that the translation model performs
similar to the slow-and-smooth model.

3.3 The Likelihood Functions

The likelihood function differs for the two classes of stimuli we examined: (i) For the moving dot
stimuli, as used in [4], there is enough information to estimate the local velocity ~u; (ii) For the
gratings stimuli [10], there is only enough information to estimate one component of the velocity
field.

For the dot stimuli, the energy term in the likelihood function is set to be

E({~u|~v}) =
N∑
i=1

|~v(~ri)− ~u(~ri)|2 (10)

For the gratings stimuli, see 2, the likelihood function uses the energy function

En({~u}|{~v}) =
N∑
i=1

|~v(~ri) · ~̂u(~ri)− |~u(~ri)||2 (11)

where ~̂u(~ri) is the unit vector in the direction of ~u(~ri) and normally it is the direction of local image
gradient.



3.4 MAP estimator of velocities

The MAP estimate of the velocities for each model is obtained by solving
~v∗ = arg max

~v
p({~v}|{~u},M) = arg min

~v
{E({~u|~v}) + E({~v}|M)} (12)

For the slow-and-smooth model [17], it was shown using regularization analysis [2] that this solution
can be expressed in terms of a linear combination of the Green functionG of the differential operator
which imposes the slow-and-smoothness constraint (the precise form of this constraint was chosen
so that G was a Gaussian).

We can obtain similar results for the three types of models M ∈ {t, r, e} we have introduced in this
paper. The main difference is that the models require two vector valued Green functions ~GM1 =
(GM1x, G

M
1y) and ~GM2 = (GM2x, G

M
2y), with the constraint that GM1x = GM2y and GM2x = GM1y . These

vector-valued Green functions are required to perform the coupling between the different velocity
component required for rotation and expansion, see figure (1). For the translation model there is no
coupling required and so GM2x = GM1y = 0.

Figure 1: The vector-valued Green function ~G = (G1, G2). Top panel, left-to-right:
GM=t

1x , GM=r
1x , GM=e

1x for the translation, rotation and expansion models. Bottom panel: left-to
right: GM=t

2x , GM=r
2x , GM=e

2x for translation, rotation, and expansion models. Observe that the GM1x
are similar for all models, GM=t

2x vanishes for the translation model (i.e. no coupling between veloc-
ity components), andGM=r

2x andGM=e
2x both have two peaks which correspond to the two directions

of rotation and expansion. Recall that GM1y = GM2x and GM2y = GM1x.

The estimated velocity for the M model is of the form:

~v(~r) =
N∑
i=1

[αi ~GM1 (~r − ~ri) + βi ~G
M
2 (~r − ~ri)], (13)

For the dot stimuli, the {α}, {β} are obtained by solving the linear equations:
N∑
j=1

[αj ~GM1 (~ri − ~rj) + βj ~G
M
2 (~ri − ~rj)] + αi~e1 + βi~e2 = ~u(ri), i = 1, . . . N, (14)

where ~e1, ~e2 denote the (orthogonal) coordinate axes. If we express the {α}, {β} as two N-dim
vectors A and B, the {ux} and {uy} as vectors U = (Ux, Uy)T , and define N × N matrices
gM1x, g

M
2x, g

M
1y , g

M
2y to have components GM1x(~ri − ~rj), GM2x(~ri − ~rj), GM1y(~ri − ~rj), GM2y(~ri − ~rj) re-

spectively, then we can express these linear equations as:(
gM1x + I gM2x
gM1y gM2y + I

)(
A
B

)
=
(
Ux
Uy

)
(15)

Similarly for the gratings stimuli,(
g̃M1x + I g̃M2x
g̃M1y g̃M2y + I

)(
A
B

)
=
(
Ux
Uy

)
(16)



in which g̃M1x is the matrix with components G̃M1x(~ri − ~rj) = [~GM1 (~ri − ~rj) · ~̂u(ri)]~̂ux(ri), and
similarly for g̃M1y , g̃M2x and g̃M2y .

3.5 Model Selection

We re-express model evidence p({~u}|M) in terms of (A,B):

p({~u}|M) =
∫
p({~u}|A,B,M)p(A,B)dAdB (17)

We introduce new notation in the form of 2N × 2N matrices: gM =
(
gM1x gM2x
gM1y gM2y

)
, similarly for

g̃M .

The model evidence for the dot stimuli can be computed analytically (exploiting properties of multi-
dimensional Gaussians) to obtain:

p({~u}|M) =
1

(πT )N
√

det(gM + I)
exp[− 1

T
(UTU − UT gM

gM + I
U)] (18)

Similarly, for the gratings stimuli we obtain:

p({~u}|M) =
1

(πT )N

√
det(gM )√
det(Σ̃)

exp[− 1
T

(UTU − UT g̃M Σ̃−1(g̃M )TU)] (19)

where Σ̃ = (g̃M )T g̃M + gM .

4 Results on random dot motion

We first investigate motion perception with the moving dots stimuli used by Freeman and Harris
[4], as shown in figure (2). The stimuli consist of 128 moving dots in a random spatial pattern.
All the dots have the same speed in all three motion patterns, including translation, rotation and
expansion. Our simulations first select the correct model for each stimulus and then estimate the
speed threshold of detection for each type of motion. The parameter values used are λ = 0.001,
µ = 12.5, η = 78.125 and T = 0.0054.
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Figure 2: Moving random dot stimuli. Left panel: translation; middle panel: rotation; right panel:
expansion.

4.1 Model selection

Model selection results are shown in figure (3). As speed increases in the range of 0.05 to 0.1, model
evidence decreases for all models. This is due to slowness term in all model priors. Nevertheless the
correct model is always selected over the entire range of speed, and for all 3 type of motion stimuli.
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Figure 3: Model selection results with random dot motion. Plots the log probability of the model as
a function of speed for each type of stimuli. left: translation stimuli; middle: rotation stimuli; right:
expansion stimuli. Green curves with cross are from translation model. Red curves with circles are
from rotation model. Blue curves with squares are from expansion model.

4.2 Speed threshold of Detection

As reported in [4], humans have lower speed threshold in detecting rotation/expansion than trans-
lation motion. The experiment is formulated as a model selection task with an additional “static”
motion prior. The “static” motion prior is modeled as a translation prior with µ = 0 and λ sig-
nificantly large to emphasize slowness. In the simulation, λ = 0.3 for this “static” model, while
λ = 0.001 for all other models.

At low speed, the “static” model is favored due to its stronger bias towards slowness, as stimulus
speed increases, it loses its advantage to other models. The speed thresholds of detection for different
motion patterns can be seen from the model evidence plots in figure (4), and they are lower for
rotation/expansion than translation. The threshold values are about 0.05 for rotation and expansion
and 0.1 for translation. This is consistent with experimental result in [4].
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Figure 4: Speed threshold of detection. Upper left panel: model evidence plot for translation stimuli.
Upper right panel: model evidence plot for rotation stimuli. Lower left panel: model eviddence plot
for expansion stimuli. Lower right panel: bar graph of speed thresholds.



5 Results on randomly oriented gratings

5.1 Stimuli

When randomly oriented grating elements drift behind apertures, the perceived direction of motion
is heavily biased by the orientation of the gratings, as well as by the shape and contrast of the aper-
tures. Recently, Nishida and his colleagues developed a novel global motion stimulus consisting of
a number of gratings elements, each with randomly assigned orientation [10]. A coherent motion
is perceived when the drifting velocities of all elements are consistent with a given velocity. Ex-
amples of the stimuli used in these psychophysical experiments are shown in left side of figure (6).
The stimuli consisted of 728 gratings (drifting sine-wave gratings windowed by stationary Gaus-
sians). The orientations of the gratings were randomly assigned, and their drifting velocities were
determined by a specified global motion flow pattern. The motions of signal grating elements were
consistent with global motion, but the motions of noise grating elements were randomized. The
task was to identify the global motion direction as one of two alternatives: left/right for translation,
clockwise/counterclockwise for rotation, and inward/outward for expansion. Motion sensitivity was
measured by the coherence threshold, defined as the proportion of signal elements that yielded a
performance level of 75% correct.

Similar stimuli with 328 gratings were generated to test our computational models. The input for
the models is the velocity component perpendicular to the assigned orientation for each grating, as
illustrated in the upper two panels of figure (5).
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Figure 5: Randomly-oriented grating stimuli and estimated motion flow. Upper left panel: rotation
stimulus (with 75% coherence ratio). Upper right panel: expansion stimulus (with 75% coherence
ratio). Lower left panel: motion flow estimated from stimulus in first panel with rotation model.
Lower right panel: motion flow estimated from stimulus in second panel with expansion model.

5.2 Result

The results of psychophysical experiments (middle panel of figure 6) showed worse performance
for perceiving translation than rotation/expansion motion [6]. Clearly, as shown in the third panel
of the same figure, the model performs best for rotation and expansion, and is worst for translation.
This finding agrees with human performance in psychophysical experiments.

6 Conclusion

Humans motion sensitivities depend on the motion patterns (translation/rotation/expansion). We
propose a computational model in which different prior motions compete to fit the data by levels
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Figure 6: Stimulus and results. Left panel: illustration of grating stimulus. Blue arrows indicate the
drifting velocity of each grating. Middle panel: human coherence thresholds for different motion
stimuli. Right panel: Model prediction of coherence thresholds which are consistent with human
trends.

of inference. This analysis involves formulating two new prior models for rotation and expansion
model and deriving their properties. This competitive prior approach gives good fits to the empirical
data and accounts for the dominant trends reported in [4, 6].

Our current work aims to extend these findings to a range of different motions (e.g. affine motion)
and to use increasingly naturalistic appearance/intensity models. It is also important to determine
if motion patterns to which humans are sensitive correspond to those appearing regularly in natural
motion sequences.
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