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Statistical Consistency of Structural Learning in Networks and Graphical Models

Abstract

This dissertation aims to address the statistical consistency for two classical structural learning

problems, one is community detection in networks, and the other one is structural learning in

probabilistic graphical models. The methods studied in this dissertation are straightforward and

widely used. However, their statistical consistency has not been fully revealed, especially under

more sophisticated conditions that emerge in modern data analysis.

Chapter 2 discusses my joint work with Professor Xiaodong Li and Lihua Lei. We study the

hierarchy of communities in real-world networks under a generic stochastic block model, in which

the connection probabilities are structured in a binary tree. Under such model, we prove the strong

consistency of a standard recursive bi-partitioning algorithm under a wide range of model param-

eters, which include sparse networks with node degrees as small as O(log n). In addition, unlike

most of existing work, our theory covers multi-scale networks where the connection probabilities

may differ by orders of magnitude, which comprise an important class of models that are practically

relevant but technically challenging to deal with. Finally we demonstrate the performance of our

algorithm on synthetic data and real-world examples.

Chapter 3 discusses my work supervised by Professor Xiaodong Li and Professor Yu Hu. In

this work, we are interested in the problem of learning the directed acyclic graph (DAG) when

data are generated from a linear structural equation model (SEM) and the causal structure can be

characterized by a polytree. Under the Gaussian polytree models, we study sufficient and necessary

conditions on the sample sizes for the well-known Chow-Liu algorithm to exactly recover both the

skeleton and the equivalence class of the polytree, which is uniquely represented by a CPDAG. We

also consider extensions to the sub-Gaussian case, and then study the estimation of the inverse

correlation matrix under such models. Our theoretical findings are illustrated by comprehensive

numerical simulations, and experiments on benchmark data also demonstrate the robustness of

polytree learning when the true graphical structures can only be approximated by polytrees.
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CHAPTER 1

Overview

Nowadays, graphs or networks are ubiquitous in statistical learning. We are going to consider

two scenarios where graphs are playing an important role of understanding and explaining complex

systems with statistical tools. Firstly, the data itself appears in the form of a graph, for example,

social networks, where the nodes represent real entities and what we observe is whether any two

nodes are connected by edges or not. Secondly, graphs can be used to compactly describe the data

generating mechanism, where nodes represent random variables of interest and edges between nodes

imply conditional dependence or cause-effect relationship between variables. In the first case, we

focus on how to model and recover the hierarchically structured communities within a network, and

study the statistical consistency of a recursive spectral method. In the second case, we revisit the

classical Chow-Liu algorithm for learning a linear graphical model characterized by a polytree.

1.1. Consistency of Spectral Clustering on Hierarchical Stochastic Block Models

Community detection is an important problem in statistics, theoretical computer science and

physics. A widely studied theoretical model in this area is the stochastic block model (Abbe, 2017).

However, in real-world networks, the community structure is always hierarchical, which means

large communities at coarse level can be further partitioned at finer scale. To properly model such

hierarchy of communities in networks, we consider a general hierarchical stochastic block model that

has been proposed in Clauset et al. (2008) and Balakrishnan et al. (2011), in which the within and

between community connection probabilities are structured in a binary tree. Under such model, a

standard recursive spectral bi-partitioning algorithm is dividing the network into two communities

based on the Fiedler vector of the unnormalized graph Laplacian and repeating the split until a

stopping rule indicates no further community structures.

Even though there has been extensive work on theoretical analysis of spectral methods for

community detection in networks, the network models for theoretical analysis rarely encode the
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hierarchy. On the other hand, the current theoretical literature tackling hierarchical community de-

tection often has stringent conditions on the balance of the hierarchy, homogeneity of the connection

probabilities and sparsity of the network. In Chapter 2, we show the weak and strong consistency

of the recursive spectral bi-partitioning algorithm under a wider range of model parameters which

permits sparse networks and multi-scale connection probabilities.

The flexibility of our model poses technical challenges for bounding the perturbation of the

Fiedler vector of the unnormalized graph Laplacian under `2 and `∞ norms, which imply weak and

strong consistency respectively. To overcome the challenges, we propose novel techniques, such as a

novel decomposition of the graph Laplacian, and adapt the recently developed theory for entry-wise

perturbation of eigenspace (Lei, 2019). Our theoretical findings are validated by various simulations

under different hierarchies and different scales of the connection probabilities. We also demonstrate

the performance of our method on recovering both the community membership and hierarchical

structure with real-world examples.

This chapter is adapted from my joint work with Professor Xiaodong Li and Lihua Lei. The

preprint was posted on ArXiv on April, 2020 (Lei et al., 2020).

1.2. Learning Linear Polytree Structural Equation Models

In the latter part of this dissertation, we consider another important problem, structural learning

in probabilistic graphical models. Graphical models, especially with directed acyclic graphs(DAG),

has regained its popularity because of the prevalence of causal inference in the past decade. Given

the observations from a multivariate distribution, exactly recovering the underlying graph structure

is an essential step for subsequent inference and prediction. In Chapter 3, we focus on the how to

recover the skeleton and the equivalence class of the underlying graph, when data are generated from

a linear structural equation model which encodes polytree causal structure. Polytree is a special

kind of DAG without loops, and is tractable in inference with belief propagation.

The classical Chow-Liu algorithm (Chow and Liu, 1968) was used for structural learning of

polytree graphical model since Rebane and Pearl (1987). Instead of applying Chow-Liu algorithm to

the estimated mutual information as in Rebane and Pearl (1987), we apply it to the pairwise sample

correlation in Chapter 3. When the exogenous variables in the linear structural equation model
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follow Gaussian distribution, we provide sufficient conditions on the sample sizes to exactly recover

the skeleton and the equivalence class of the polytree. On the other hand, necessary conditions on

the required sample sizes for both skeleton and equivalence class recovery are also derived in terms

of information-theoretic lower bounds, which match the respective sufficient conditions and thereby

give a sharp characterization of the difficulty of these tasks. We extend the sufficient condition results

to the sub-Gaussian case and provide the error bound for inverse correlation matrix estimation given

that the equivalence class of the polytree is correctly recovered.

We compare our method with other structural learning approaches, namely the well-known PC

algorithm and hill climbing algorithm, on comprehensive synthetic data. The simulation results

agree with our theoretical findings. We also conduct such comparison on benchmark data where the

true graph is actually not polytrees, which shows that the Chow-Liu algorithm is quite robust to

the graphical structure in spite that it is tailored for polytrees. Thus this method can be universally

used to provide a good initial guess for structural learning of graphical models under proper sparsity

conditions.

This chapter is adapted from my joint work with Professor Xiaodong Li and Yu Hu. The

preprint was posted on ArXiv on July, 2021 (Lou et al., 2021).
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CHAPTER 2

Consistency of Spectral Clustering on Hierarchical Stochastic Block

Models

2.1. Introduction

Community structures of real-world networks are typically hierarchical. In a coauthor network,

it is not clear-cut whether all statisticians should be viewed as a single community — at a high

level of granularity, they can be combined with mathematicians, physicists, computer scientists, and

so on as quantitative scientists, while at a low level of granularity, they can be further split into

finer groups based on research areas. When the desired level of granularity is unknown a priori, a

hierarchy is a more informative representation of the relational information than a single partition

of the network. For example, to design a cluster-wise randomized experiment, an A/B test designer

can trade off the amount of interference (e.g., the number of edges between clusters) and effective

sample size (e.g., the number of clusters) by searching over the hierarchy.

Agglomerative community detection algorithms (e.g. Girvan and Newman, 2002) are intrinsi-

cally hierarchical because they are able to produce a dendrogram characterizing the hierarchy of

communities. However, bottom-up algorithms are sensitive to noise when amalgamating small clus-

ters at the beginning of the run. As a consequence, theoretical guarantees are hard to come by for

sparse and noisy networks. In contrast, divisive community detection algorithms, such as spectral

clustering, has been proved to recover the community structure theoretically under various sparse

network models (e.g. Abbe et al., 2015; Balakrishnan et al., 2011; Dasgupta et al., 2006; Jin, 2015;

Lei and Rinaldo, 2015; Li et al., 2018; McSherry, 2001; Rohe et al., 2011). However, the network

models for theoretical analysis rarely encode the hierarchy; often the communities are treated as

logically separate units. Algorithmically, most divisive algorithms which have been analyzed in
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theory are unable to produce a dendrogram. It is somewhat disappointing that hierarchical algo-

rithms typically have no theoretical guarantees (under practically reasonable assumptions) while

those justified in theory are often non-hierarchical algorithmically.

To mitigate this gap, one would need to consider a hierarchical clustering algorithm and study

its statistical properties under a hierarchical network model. There have been attempts on this

route, focusing on recursive divisive clustering algorithms, which recursively partition the network

based on a top-down algorithm. A handful of such algorithms have been shown to recover the

hierarchy under dense network models with average degree polynomial in n, where n is the number

of nodes (Balakrishnan et al., 2011; Dasgupta, 2016; Lyzinski et al., 2016). However, real-world

networks are typically much sparser. Dasgupta et al. (2006) analyzed a recursive spectral algorithm

under a network model with average degree O(log6 n). Apart from the artificial exponent, the

algorithm involves multiple tuning parameters with no recommended default values, making it hard

to implement in practice. Recently, Li et al. (2018) proposed the Binary Tree Stochastic Block

Model (BTSBM) which encodes a binary hierarchy among primitive communities in the spirit of

Clauset et al. (2008) and Balakrishnan et al. (2011). They analyzed a recursive spectral clustering

algorithm, which splits the network into two clusters based on the signs of the components in an

eigenvector of the adjacency matrix, under the BTSBM and showed it consistently recovers the

hierarchy when the average degree scales as O(log2+ε n) for ε > 0. The refined analysis by Lei

(2019) brought it down to the critical regime with an O(log n) average degree. Despite being able

to handle sparse networks, their analyses are based on a restrictive model which assumes a balanced

hierarchy and strict layer-wise homogeneity in connection probabilities.

In this chapter, we analyze a Laplacian-based recursive bi-partitioning algorithm. It recursively

splits the network into two based on the signs of the Fiedler vector (Fiedler, 1975), the eigenvector of

the unnormalized Laplacian (formally defined in Section 2.2) corresponding to the second smallest

eigenvalue. The procedure is repeated iteratively until a stopping rule indicates that there are no

further communities in any subgraphs. Li et al. (2018) suggested various stopping rules that work

reasonably well empirically and provided theoretical justification for certain ones. As shown by Li

et al. (2018), to getK communities, this algorithm is computationally more efficient than theK-way
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spectral clustering algorithm which splits the network into K communities at once, especially for a

large K.

For the theoretical analysis, we consider a more general hierarchical SBM that has been proposed

in Clauset et al. (2008) and Balakrishnan et al. (2011) to allow for an unbalanced hierarchy and

heterogeneous connection probabilities. We prove that the proposed algorithm consistently recovers

the hierarchy for sparse networks in the critical regime where the average degree scales as O(log n).

Notably, as opposed to Li et al. (2018) and most works on non-hierarchical SBMs, we do not require

all connection probabilities to be on the same scale; instead, we allow the connection probability

between communities closer on the hierarchy to be orders of magnitude larger than that between

communities farther apart. It makes our analysis more realistic since real-world networks are of-

ten multi-scale. Meanwhile, the theoretical analysis for clustering multi-scale networks becomes

much more challenging. To highlight our main theoretical contribution, we will not investigate the

performance of stopping rules in this chapter.

Our theory is built on (1) that the eigenvectors of the population Laplacian can identify the

hierarchy; and (2) an entry-wise perturbation bound showing that the Fiedler vector of the observed

Laplacian approximates the population version with a high accuracy. The first part generalizes

the result of Balakrishnan et al. (2011) on the Fiedler vector to the entire eigen-structure. The

second part rests on the recent development of `2→∞ eigenvector perturbation theory (Abbe et al.,

2017; Cape et al., 2019; Damle and Sun, 2020; Eldridge et al., 2017; Lei, 2019; Mao et al., 2017).

The challenge is twofold: dependence between entries in the Laplacian and multi-scale connection

probabilities. We tackle the first with the technique developed by Lei (2019), which, unlike most

other perturbation bounds for random matrices, allows certain dependency structure among the

entries. However, this technique alone is not enough to handle multi-scale networks. We overcome

this challenge by introducing novel techniques, and we will elaborate on them in Section 2.3.

2.1.1. Notation. We use [n] to denote the set {1, . . . , n} and ej to denote the j-th canonical

basis where the j-th element equals to 1 and all other elements equal to 0 (with the dimension

depending on the context). Vectors and matrices are boldfaced while scalars are not. We denote by

In the n×n identity matrix and by 1n the n×1 column vector with all entries 1. For any vector v,

let ‖v‖p denote its `p norm. For any matrixM , letMT
k denote the k-th row ofM , ‖M‖ its spectral
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norm, and ‖M‖F its Frobenius norm. Further, we denote by λ1(M), . . . , λn(M) the eigenvalues

of M in descending order, with u1(M), . . . ,un(M) being the corresponding eigenvectors. For two

sequences of real numbers {xn} and {yn}, we write xn = o(yn) or yn = ω(xn) if limn→∞
xn
yn

= 0,

xn = O(yn) or xn . yn if |xn| < C|yn| for some constant C. Likewise, xn = Ω(yn) or xn & yn

represents that there exists a constant C such that |xn| > C|yn|. Finally, we write xn � yn if

xn . yn and yn . xn.

2.2. A Hierarchical Stochastic Block Model

2.2.1. Model formulation. The Stochastic Block Model (SBM) proposed by Holland et al.

(1983) has been widely used to study the empirical performance and theoretical properties of com-

munity detection methods. An SBM can be characterized by a vector c = {c1, . . . , cn} ∈ {1, . . . ,K}n

encoding the community membership of each node and a symmetric matrix B ∈ [0, 1]K×K encod-

ing the connection probabilities between communities. The upper triangular part of the adjacency

matrix A has independent entries with Aij ∼ Bernoulli(Bcicj ) for any i ≤ j. By definition, the ex-

pected adjacency matrix, or equivalently the matrix of connection probabilities, can be represented

as

E[A] := P = ZBZ> − diag(ZBZ>) ∈ Rn×n,

where Z ∈ Rn×K denotes the membership matrix with the i-th row vector Zi = e>ci .

We consider a general Binary Tree Stochastic Block Model (BTSBM), which has been essentially

proposed in Clauset et al. (2008) and Balakrishnan et al. (2011) with slightly different emphasis.

Specifically, given a binary tree T with K leaf nodes, we represent each non-root node by a binary

string recording the moves along the (unique) path from the root to that node, with 0 denoting a

left move and 1 denoting a right move. For node s, let |s| denote the depth of s and (L(s), R(s))

its two children nodes. For a pair of nodes s1 and s2, we denote by A(s1, s2) their lowest common

ancestor. In such model, each node s on the binary tree T encodes two pieces of information. The

first is a subset of units Gs ⊂ {1, . . . , n}, with ns = |Gs|. The model assumes that G∅ = {1, . . . , n}

and {GL(s),GR(s)} forms a partition of Gs, i.e., GL(s) ∩ GR(s) = ∅ and GL(s) ∪ GR(s) = Gs. We refer

to the network encoded by a leaf node as a primitive community and the network encoded by an

internal node as a mega-community. The second piece of information is a connection probability
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ps ∈ [0, 1]. For each pair of units i 6= j, the model assumes that the connection probability between

this pair of nodes is

Pij = pA(c(i),c(j)),

where c(i) denotes the (unique) leaf node that contains i.

We illustrate in Figure 2.1 the above definitions by a toy example with n = 8 units and a binary

tree T with K = 5 leaf nodes. The left panel shows the sub-networks encoded by each node. It can

be read from the leaf nodes that c(1) = c(7) = 00, c(2) = 10, c(3) = c(8) = 011, c(4) = 010, and

c(5) = c(6) = 11. The right panel shows the connection probabilities. Since c(3) = 011, c(4) = 010,

and the lowest common ancestor of nodes 011 and 010 is 01, P34 = p01 = 0.04. Similarly, P38 =

p011 = 0.15,P31 = p0 = 0.03 and P35 = p∅ = 0.01.

Figure 2.1. Illustration of a general BTSBM with n = 8 units and K = 5 primitive
communities: (left) sub-network Gs; (right) connection probability ps.

Clearly, the hierarchical SBM defined above is a special case of SBM with K = 5 communities

and the between-community connection probability matrix is

B =



p00 p0 p0 p∅ p∅

p0 p010 p01 p∅ p∅

p0 p01 p011 p∅ p∅

p∅ p∅ p∅ p10 p1

p∅ p∅ p∅ p1 p11


.

Note that the BTSBM discussed in Li et al. (2018) is a restrictive special case of the model we study

here in that T is assumed to be full and balanced with ps = ps′ and ns = ns′ whenever |s| = |s′|.
8



Throughout the chapter we focus on general BTSBMs that satisfy the weak assortativity.

Definition 2.2.1. A general BTSBM (T , {ps : s ∈ T }, c(·)) is weakly assortative if and only if

ps < ps′ whenever s is the parent node of s′.

This is a natural property that is compatible with the intuitive explanations of hierarchies —

nodes that are closer on the hierarchy are more likely to be connected. The example in Figure 2.1

is weakly assortative. Li et al. (2018) also discussed the disassortative setting, though it is less

common than the assortative setting in practice.

We close this subsection with some notation that will be used repeatedly:

(2.1) p∗ = max
1≤i,j≤n

Pij , p̄∗ = max
1≤i≤n

1

n

n∑
j=1

Pij ,
¯
p∗ = min

1≤i≤n

1

n

n∑
j=1

Pij .

By definition, p∗ is the largest connection probability across the whole network, and np̄∗ (n
¯
p∗) is

the largest (smallest) expected degree. Obviously, p∗ ≥ p̄∗ ≥
¯
p∗.

2.2.2. Population unnormalized graph Laplacian. The observed unnormalized graph Lapla-

cian of a network is defined as

L = D −A,

where A ∈ {0, 1}n×n is the adjacency matrix and D = diag(A1n) is the diagonal matrix whose

diagonal entries are the node degrees. It is known that L is positive semidefinite. Let λ1 ≥ · · · ≥

λn−1 ≥ λn = 0 denote the eigenvalues of L, and u1, . . .un−1,un the corresponding unit eigenvectors.

Note that we always have un = 1√
n
1n. In the case λn−1 = 0, we choose un−1 to be any eigenvector

corresponding to λn−1 = 0 which is orthogonal to 1n.

As discussed in Section 2.1, our recursive spectral clustering algorithm splits the whole network

into two based on the signs of the Fiedler eigenvector un−1. Since L is an approximation of the

population unnormalized graph Laplacian L∗ = E[L], we shall study the eigenstructure of L∗ as

a stepping stone to prove the consistency of hierarchical clustering. Clearly, L∗ = diag(P1) − P .

As with the sample version, the eigenvalues and unit eigenvectors of L∗ are denoted as λ∗1 ≥ · · · ≥

λ∗n−1 ≥ λ∗n = 0 and u∗1, . . .u∗n−1,u∗n. Theorem 2.2.1 provides an elegant characterization of the

eigenstructure of L∗ under weak assortativity. The proof is relegated to Section 2.5.2.
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Theorem 2.2.1. Under a weakly assortative general BTSBM, defined in Section 2.2.1,

(1) λ∗n−1 = np∅ with multiplicity 1 and the entries of the corresponding eigenvector obeys

u∗n−1,i = ±


√
n1/(n0n) (i ∈ G0)

−
√
n0/(n1n) (i ∈ G1)

;

(2) λ∗n−2 = min{n1p1 + n0p∅, n0p0 + n1p∅};

(3) The number of eigenvalues, accounting for the multiplicity, that are strictly less than n
¯
p∗ is at

most K, the number of leaf nodes in T ;

(4) For any j with λ∗j < n
¯
p∗, ‖u∗j‖∞ ≤

√
ξ/n where

(2.2) ξ := max
s

n

ns
.

Here recall that ns is the number of nodes in the subgragh encoded by the tree node s.

Theorem 2.2.1 (1) implies that the entry signs of u∗n−1 encode the first split of the network.

Theorem 2.2.1 (1) and (2) have been proved in Balakrishnan et al. (2011) and we include them

here for completeness. In contrast, Theorem 2.2.1 (3) and (4) are new to the best of our knowledge.

Although the eigenvalues and eigenvectors other than the Fiedler eigenpair appear to be algorithmi-

cally irrelevant, they are crucially useful in our theoretical analysis on the strong consistency of the

clustering, especially for multi-scale networks whose connection probabilities have different scales.

The conclusions of the eigen-structure in Theorem 2.2.1 also hold under a more general hierarchical

SBM. We present the analogous theorem along with the proof in Appendix A.2.

2.3. Consistency of Recursive Spectral Clustering

2.3.1. Criteria for consistency. Recovering the hierarchy encoded by the tree is equivalent

to recovering all mega-communities and primitive communities. When primitive communities are

hard to be recovered, owing to either the small size or insufficient gap with others, it is still possible

to recover some mega-communities at the top levels of the tree, yielding a partial hierarchy that is

informative for downstream analysis. In either case, it is necessary to investigate the consistency of

the first split, that is, whether the Fiedler vector of the unnormalized graph Laplacian can partition

G∅ accurately into G0 and G1.
10



We primarily focus on the strong consistency which requires the partition to be exactly correct

with high probability. Without loss of generality, assume that un−1,1 ≥ 0 and u∗n−1,1 ≥ 0. By

Theorem 2.2.1, the strong consistency of the first split can be formally stated as

(2.3) P
(
sign(un−1,i) 6= sign(u∗n−1,i), for some i ∈ {1, . . . , n}

)
= o(1),

and it can be easily extended to the consistent recovery of the whole hierarchy under the general

BTSBM. Indeed, suppose we can identify a set of conditions under which the split at G∅ is strongly

consistent, replacing G∅ with G0 yields the conditions for G00 and G01 to be exactly recovered, because

the model for G0 is still a general BTSBM. Therefore, it is sufficient and necessary to investigate

the strong consistency of the first split in order to establish the exact recovery of the full or partial

hierarchy.

Another commonly studied criterion is the weak consistency which states that the misclustering

error is asymptotically vanishing, i.e.,

(2.4) min
a∈{−1,1}

1

n

n∑
i=1

I(sign(un−1,i) · sign(u∗n−1,i) = a) = oP(1).

In contrast to the strong consistency, the weak consistency of the first split does not carry over to

lower splits under a general BTSBM, because the recovered G0 might involve units from G1 and

hence the network model is no longer a general BTSBM. Nevertheless, we will still investigate the

weak consistency since it relies on weaker conditions, and is also an important stepping stone to

obtain strong consistency as we will explain later.

Both the strong and weak consistencies of the recursive spectral clustering under a general

BTSBM can be viewed as extensions of the traditional consistency result for spectral clustering

(e.g. Lei and Rinaldo, 2015) to a misspecified SBM that mistakenly assumes the number of clusters

to be 2 while K > 2 in truth.

2.3.2. Main results. Intuitively, the clustering is consistent if un−1 is close to u∗n−1. We

will show the perturbation bound in `∞ and `2 norms under a weakly assortative general BTSBM,

implying the strong and weak consistencies, respectively. The detailed proofs are deferred to Section

2.5.
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Theorem 2.3.1 (`∞ perturbation). In the setting of Theorem 2.2.1, and further assume that

ξ = O(1), where ξ is defined in Equation (2.2). Then, for any fixed constant r > 0, there exists a

constant C`∞ that only depends on r and ξ, such that

√
n‖un−1sign(uTn−1u

∗
n−1)− u∗n−1‖∞ < min{

√
n0/n1,

√
n1/n0}

with probability at least 1− (10K + 4)n−r, provided the following two conditions:

Density gap min{n0(p0 − p∅), n1(p1 − p∅)} ≥ C`∞
√

(n0p0 + n1p1) log n,(2.5)

Degree variation (n(
¯
p∗ − p∅))4 ≥ C`∞(np̄∗)3 log n,(2.6)

where
¯
p∗ and p̄∗ are defined in (2.1).

Remark 1 (Strong consistency). Recalling Theorem 2.2.1 that
√
nmini |u∗n−1,i| = min{

√
n0/n1,

√
n1/n0},

Theorem 2.3.1 implies that the signs of the entries of u∗n−1 are preserved by un−1 with high proba-

bility under conditions (2.5) and (2.6). Therefore, the conditions in Theorem 2.3.1 imply the strong

consistency of the first split.

Remark 2 (Sparse networks). Theorem 2.3.1 includes the case of sparse networks. In fact,

conditions (2.5) and (2.6) can be simultaneously satisfied if n0 � n1 and

¯
p∗ � p̄∗ � (p0 − p∅) � (p1 − p∅) = O(log n/n),

in which case the expected degrees are on the order of O(log n).

Remark 3 (Degree variation). Here we briefly discuss the degree variation condition (2.6).

Consider the SBM with K = 2 again, where n0 � n1, p∅ = O(log n/n) and p0 = n−γ0 , p1 = n−γ1

with constants γ0, γ1 satisfying 0 < γ0 < γ1 < 1. Then the condition (2.5) is satisfied up to a

constant if γ1 < γ0+1
2 and the condition (2.6) will hold up to a constant if γ1 < 3γ0+1

4 . We should

admit these conditions may be improvable. For example, the two communities might be recoverable

if we let γ0 → 0 while γ1 → 1.

Remark 4 (Multi-scale networks). While most analyses of SBMs focus on the case where all

connection probabilities are of the same order, our Theorem 2.3.1 can deal with multi-scale networks

12



where the maximum degree parameter p̄∗ � p∅. For example, when ps � 1 for every leaf node s,

it is clear that the maximum and minimum degree parameters satisfy
¯
p∗ � p̄∗ � 1, and both the

density gap condition (2.5) and the degree variation condition (2.6) hold for large n even when

p∅, p0, p1 � log n/n. Our strong consistency result also guarantees adaptivity of graph Laplacian

based spectral clustering to multi-scale networks with degree heterogeneity, e.g., p∅, p0, p1 � log n/n

and p̄∗ = n−γ0 and
¯
p∗ = n−γ1 with 0 < γ1 <

3γ0+1
4 < 1.

As we will discuss in Section 2.3.3, the theoretical analysis for multi-scale networks is more

challenging. In fact, to obtain the same bound in Theorem 2.3.1, the off-the-shelf `∞ perturbation

bound by Lei (2019) on the Fiedler vector requires

n(min{p0, p1} − p∅) &
√
np̄∗ log n.

When p∅, p0, p1 � log n/n, p̄∗ must be O(log n/n), excluding any multi-scale network. For example,

consider the general BTSBM with K = 4, equal community sizes, and

B =


p00 p0 p∅ p∅

p0 p01 p∅ p∅

p∅ p∅ p10 p1

p∅ p∅ p1 p11


.

If we further assume p00 = p01 = p10 = p11 = p∗, then the maximum degree parameter satisfies

p̄∗ � p∗ due to weak assortativity, and thus the above eigengap condition implies nmin{p0, p1} &
√
np∗ log n. It does not hold if p∅, p0, p1 � log n/n but p∗ � log n/n. Note that p∗ measures

the connection probability within the primitive communities, the most connected groups on the

hierarchy. It is hence disappointing and unrealistic to restrict p∗ into the same order as p∅, p0 and

p1. In Section 2.3.3, we will explain why multi-scale networks are challenging to work with in theory,

and in Section 2.3.4 we will explain briefly how these challenges can be addressed.

The next result gives an `2 perturbation bound for the Fiedler vector.

Theorem 2.3.2 (`2 perturbation). Under the same setting of Theorem 2.2.1, for any fixed

r, c > 0,

‖un−1sign(uTn−1u
∗
n−1)− u∗n−1‖2 < c

13



with probability at least 1− 2n−r, provided that

(2.7) min{n0(p0 − p∅), n1(p1 − p∅)} ≥ C`2
√

(n0p0 + n1p1) log n

where C`2 is a sufficiently large constant that only depends on r and c.

Remark 5 (Beyond hierarchical SBM). While Theorem 2.3.2 is stated for general BTSBMs,

the result holds for a much broader class of networks such that

Pij


= p∅ (i ∈ G0, j ∈ G1)

≥ p0 (i, j ∈ G0)

≥ p1 (i, j ∈ G1)

,

where (p∅, p0, p1) satisfies the condition (2.7). The result will be stated formally in Appendix A.1.

Remark 6 (Balancedness). Theorem 2.3.2 yields an bound on the misclustering error for the

first split. Unlike the `∞ perturbation bound in Theorem 2.3.1, it does not require ξ = O(1). How-

ever, the misclustering rate result may rely on certain balancedness. Assume uTn−1u∗n−1 ≥ 0 without

loss of generality and letM = {i : sign(un−1,i) 6= sign(u∗n−1,i)}. Obviously, the misclustering error

is |M|/n. By Theorem 2.2.1 (1), for each i ∈M, we have

|un−1,i − u∗n−1,i| ≥
1√
n

min

{√
n1
n0
,

√
n0
n1

}
≥ 1√

nξ
,

where the last inequality uses the fact that min{n1/n0, n0/n1} ≥ min{n1, n0}/n ≥ 1/ξ. As a result,

|M|
n
≤ ξ

∑
i∈M

(un−1,i − u∗n−1,i)2 ≤ ξ‖un−1 − u∗n−1‖22 ≤ ξc2.

When ξ = O(1), Theorem 2.3.2 implies that ξc2 can be arbitrarily small when C`2 is sufficiently

large.

Remark 7 (Relaxed degree variation condition). The density gap condition (2.7) is essentially

the same as that for strong consistency, i.e., (2.5). However, the degree variation condition (2.6),

which is required for strong consistency, is not required for weak consistency.

Remark 8 (O(log n) degrees). For an SBM with K = 2 communities, the connection prob-

abilities p∅, p0, p1 only need to be ω(1/n) for weak consistency (Abbe, 2017; Zhao et al., 2012).
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Unfortunately, this cannot be achieved by spectral clustering based on the adjacency matrix or

graph Laplacian (Krzakala et al., 2013), for which the condition (2.7) is required up to constants

(e.g. Lei and Rinaldo, 2015). Nevertheless, we conjecture that the regularized spectral clustering,

with appropriately chosen level of regularization, works in this regime. For example, one can con-

sider removing the nodes whose degrees are greater than C0np
∗ for some constant C0. Le et al.

(2017) proved that the adjacency matrix for the remaining graph has tighter spectral concentration

around its population version. However, their theory does not directly apply to multi-scale hier-

archical SBMs. Moreover, it is unclear how the truncation threshold should be chosen in practice

since p∗ is unknown. We leave this intriguing research question for future work.

2.3.3. Main challenge to handle multi-scale networks. A standard technique to obtain

the `2 perturbation bound is via the Davis-Kahan sin Θ Theorem (Lemma 2.5.3), which implies

that

‖un−1sign(uTn−1u
∗
n−1)− u∗n−1‖2 .

‖L−L∗‖
λ∗n−2 − λ∗n−1

.

Similarly, a straightforward application of the recently developed `∞ perturbation bound for un-

normalized graph Laplacians (Lei, 2019) implies that, under additional regularity conditions and

substantial simplifications,

‖un−1sign(uTn−1u
∗
n−1)− u∗n−1‖∞ .

‖L−L∗‖
λ∗n−2 − λ∗n−1

‖u∗n−1‖∞ .
‖L−L∗‖
λ∗n−2 − λ∗n−1

· 1√
n

where the last inequality is implied by Theorem 2.2.1 (4). As a consequence, to obtain the O(1/
√
n)

`∞ perturbation bound in Theorem 2.3.1 and theO(1) `2 perturbation bound in Theorem 2.3.2 based

on these techniques straightforwardly, it is required that

(2.8) λ∗n−2 − λ∗n−1 & ‖L−L∗‖.

By Theorem 2.2.1 (1) and (2),

λ∗n−2 − λ∗n−1 = min{n0(p0 − p∅), n1(p1 − p∅)}.
15



The best available matrix perturbation inequality (Lemma 2.5.1) shows that

‖L−L∗‖ .
√
np̄∗ log n.

This bound cannot be improved when the average degrees of all nodes are the same in order, i.e.,

¯
p∗ � p̄∗. Therefore, to guarantee (2.8), it requires that

min{n0(p0 − p∅), n1(p1 − p∅)} &
√
np̄∗ log n.

As discussed in Section 2.3.2, the above condition is overly stringent, illustrating that the standard

techniques fail to handle multi-scale networks.

2.3.4. Proof ideas. To overcome the difficulty, we will introduce different novel techniques for

the `∞ and `2 perturbation bounds. We start with the `∞ perturbation. As illustrated above, the

main hurdle brought on by multi-scale networks is that the eigengap λ∗n−2− λ∗n−1 is local while the

perturbation ‖L− L∗‖ is global on the hierarchy. When p̄∗ � max{p0, p1}, the eigengap for un−1

is too small to yield a desirable eigenvector perturbation bound. Nevertheless, Theorem 2.2.1 (3)

and (4) imply that there are at most K eigenvalues below n
¯
p∗. By pigeonhole principle, there exists

j ≤ K such that

λ∗n−j+1 − λ∗n−j ≥
λ∗n−K − λ∗n−1

K
≥
n(

¯
p∗ − p∅)
K

& n(
¯
p∗ − p∅),

where the last inequality uses the fact that K ≤ maxs(n/ns) = ξ = O(1). Let Uj (resp. U∗j ) be the

Rn×j matrix including eigenvectors {un−1, . . . ,un−j} (resp. {u∗n−1, . . . ,u∗n−j}). Then the generic

`2→∞ bound proposed by Lei (2019), with substantial simplifications, implies that

‖UjOj −U∗j ‖2→∞ .
np̄∗
√
np̄∗ log n

{n(
¯
p∗ − p∅)}2

‖U∗j ‖2→∞,

where Oj ∈ Rj×j is an orthogonal matrix. The condition (2.6) and Theorem 2.2.1 (4) imply that

‖UjOj −U∗j ‖2→∞ .
1√
n
.

Assuming Oj = I, the above bound implies the desired `∞ perturbation bound for un−1 since

‖un−1 − u∗n−1‖∞ ≤ ‖Uj − U∗j ‖2→∞. This heuristic can be made rigorous by applying the `2
16



perturbation bound given in Theorem 2.3.2 and Davis-Kahan sin Θ Theorem, which show that

Oj ≈ I in some appropriate sense. In sum, we deduce the `∞ perturbation bound for the Fiedler

vector from a generic `2→∞ perturbation bound for a larger eigenspace with a large eigengap. This

also illustrates why we need the entire eigenstructure of L∗ even if the algorithm merely uses the

Fiedler vector.

As shown above, the `2 perturbation bound is key to establish the `∞ perturbation bound.

As aforementioned, the direct application of Davis-Kahan sin Θ Theorem fails because the matrix

perturbation error ‖L−L∗‖ is too large compared to the eigengap. However, instead of viewing L∗ as

the target and L−L∗ as the perturbation, we can replace L∗ by any matrix L̃ with un−1(L̃) = u∗n−1.

The Davis-Kahan sin Θ Theorem would imply a tighter bound if our selected L̃ satisfies

‖L− L̃‖ � ‖L−L∗‖.

Typically, it is difficult to construct an explicit L̃ without further structural assumptions on L∗.

However, we observe an intriguing property of unnormalized graph Laplacians that enables an easy

construction of L̃.

Lemma 2.3.3. Let L̃ be the unnormalized graph Laplacian of the pseudo-adjacency matrix Ã that

replaces the between-community edges by their common expectation p∅, i.e.,

Ãij =

 Aij (i, j ∈ G0, or i, j ∈ G1)

p∅ (otherwise)
.

Under the same setting as in Theorem 2.3.2, if C`2 is a sufficiently large constant that only depends

on r, with probability at least 1− n−r,

λn−1(L̃) = np∅ with multiplicity 1, and un−1,i(L̃) = u∗n−1.

By Lemma 2.3.3, L̃ preserves the (n − 1)-th eigenpair with high probability. Meanwhile, L

and L̃ only differ in the between-mega-community entries which are only determined by p∅. When

p∅ � p̄∗, it turns out that

‖L− L̃‖ .
√
np∅ log n� ‖L−L∗‖ �

√
np̄∗ log n.
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To apply Davis-Kahan sin Θ Theorem on the decomposition L = L̃+(L−L̃), we still need to bound

the eigengap of L̃. Since L̃ is a graph Laplacian, it also preserves the n-th eigenvalue. Therefore,

it remains to bound λn−2(L̃) from below. Note that E[L̃] = L∗. A natural lower bound can be

obtained via Weyl’s inequality:

λn−2(L̃) ≥ λn−2(L∗)− ‖L̃−L∗‖.

However, the multi-scale issue persists because λn−2(L∗) only involves (p∅, p0, p1) while ‖L̃ − L∗‖

involves all connection probabilities.

The only exception is when the binary tree T only involves two leaf nodes 0 and 1, in which

case the multi-scale issue disappears. As a result, it is sufficient to show that a deeper tree always

increases λn−2(L̃) compared to the simple 2-leaf tree. To this end, we can generate another graph

Ã′ by dampening the entries Ã, with E[Ã′] being the connection probability matrix corresponding

to the 2-leaf tree. This can be achieved by multiplying Ãij by a Bernoulli random variable with

parameter ps/Pij for any i, j ∈ Gs. Recalling that the unnormalized graph Laplacian becomes larger

in the positive semidefinite ordering when the adjacency matrix increases entrywise (Lemma 2.5.2),

we obtain that L̃ � L̃′, where L̃′ is the graph Laplacian for Ã′. By Weyl’s inequality,

λn−2(L̃) ≥ λn−2(L̃′) + λn(L̃− L̃′) ≥ λn−2(L̃′).

Therefore, we reduce the general BTSBM to the simple 2-leaf case and hence avoid the multi-scale

issue completely.

2.3.5. Comparison with previous theoretical results. Although consistency of graph

Laplacian-based spectral clustering under the general BTSBM has been studied by Balakrishnan

et al. (2011), their regularity conditions only hold for dense networks. In particular, they consider

weighted graphs with sub-Gaussian weights, including the Bernoulli weight in a network as a special

case whose sub-Gaussian parameter is 1. According to Theorem 1 in Balakrishnan et al. (2011), to

recover the first level of the hierarchy, they require γ4 4
√
n/ log n = ω(1) where γ = min{p0, p1}−p∅.

As a result, the minimal expected degree n
¯
p∗ = Ω(nmin{p0, p1}) = ω(n15/16). Therefore, their
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strong consistency guarantee is only valid for very dense networks. In contrast, our Theorem 2.3.1

holds for sparse networks with np̄∗ = Ω(log n).

On the other hand, Li et al. (2018) and Lei (2019) derive the analogue of Theorem 2.3.1 for the

adjacency matrix under a restrictive BTSBM where T is a full balanced binary tree and (ps, ns) =

(ps′ , ns′) whenever |s| = |s′|. Both analyses work for sparse networks; the former allows the expected

degree to be O(log2+ε n) for ε > 0 while the latter improves the dependence to the critical regime

O(log n). A crucial property of the restrictive BTSBM is the strict homogeneity in the expected

degrees, for which the population Laplacian has the same eigenvectors as the expected adjacency

matrix. In addition, both works consider the traditional setting where all connection probabilities

are of the same order and hence exclude multi-scale networks. Therefore, our analysis can be viewed

as a substantial generalization.

2.4. Experiments

2.4.1. Synthetic networks. We generate synthetic networks from general BTSBMs with T

being the simple binary tree presented in Figure 2.1 and different connection probabilities presented

in the top panels of Figure 2.2. Each model has n = 1000 units and 200 units in each primitive

cluster. The bottom panels of Figure 2.2 compares un−1(L), the Fiedler eigenvector of the unnor-

malized graph Laplacian, and un−1(L∗), the population Fiedler vector. This can be viewed as an

empirical check of the `∞ perturbation bound (Theorem 2.3.1) and the strong consistency of the

first split. As a comparison, we also plot u2(A), the eigenvector corresponding to the second largest

eigenvalue of the adjacency matrix, which is considered in Li et al. (2018) and Lei (2019).

Figure 2.2a shows a setting where the connection probabilities are roughly of the same order.

The signs of the Fiedler vector un−1(L) perfectly align with the mega-community memberships

given by the first split, while u2(A) messes up with the mega-community G0.

Figure 2.2b considers a highly multi-scale setting where p̄∗ �
¯
p∗. This poses a potential threat

to the degree variation condition (2.6) in Theorem 2.3.1. While the `∞ error of the Fiedler vector

grows substantially compared to Figure 2.2a, the signs of the entries still perfectly identify the

first split. An intriguing observation is the asymmetry of entrywise errors; whereas the overall

`∞ perturbation error is sufficiently large to flip the sign of an entry, it is mainly contributed by
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Figure 2.2. general BTSBMs (top) and the associated eigenvectors (bottom), in-
cluding un−1(L∗) (black), un−1(L) (red), and the u2(A) (blue)

“outbound” deviations that have no effect on the sign while “inbound” deviations that pull entries

to the other side of the axis are much smaller. This illustrates the potential suboptimality of our

strategy to deduce the strong consistency from a small `∞ perturbation error. The phenomenon

has been studied by Abbe et al. (2017) and Deng et al. (2020) for standard SBMs with K = 2 and

by Lei (2019) for BTSBM. We leave the refined analysis for general BTSBM for future work.

Figure 2.2c examines a slight misspecification of the balanced BTSBM studied in Li et al. (2018)

where the connection probabilities are identical within each level. Then u2(A) fails to identify the

first split while the Fiedler vector corresponding to the graph Laplacian works as desired. This

illustrates the sensitivity of adjacency matrix-based spectral clustering to the model misspecification.

Figure 2.2d presents a setting with tiny connection probabilities, resulting in a very sparse

network. In this case, the Fiedler vector exhibits a few spikes, thereby forcing the other values to be

small. We observe this pattern frequently in repeated experiments. This suggests that the eigengap

condition (2.5) fails to hold. In this case, it is not surprising that the performance, in terms of

strong or weak consistency, degrades drastically. Our observation is in line with Krzakala et al.

(2013) that spectral clustering based on the adjacency matrix or graph Laplacians cannot handle

networks that are too sparse.
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Figure 2.3. Unbalanced tree

We also consider the case when the binary tree in general BTSBM is more unbalanced. We

generate synthetic networks from general BTSBMs with T being a slightly different binary tree

with that in Figure 2.1, where we have three primitive clusters versus one primitive clusters in

the first split. The tree structure and associated connection probabilities are presented in Figure

2.3. The number of nodes in each primitive cluster is still 200. We compare the aforementioned

eigenvectors under different values of p1 in Figure 2.4.
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Figure 2.4. Eigenvectors including un−1(L∗) (black), un−1(L) (red), and the
u2(A) (blue) under different values of p1.

From Figure 2.4, we can observe that, as p1 increases, the Fiedler vector is less spiky and the

deviation of un−1(L) from un−1(L
∗) becomes smaller. In this case, n1 is much smaller than n0,

rendering the eigengap condition (2.5) harder to satisfy. Nevertheless, as long as p1 exceeds certain

threshold, the eigengap condition becomes plausible and the Fiedler vector is able to perfectly

identify the mega-communities G0 and G1.

2.4.2. Real-world networks. In this section, we compare recursive spectral bi-clustering al-

gorithms based on the adjacency matrix A, the unnormalized graph Laplacian L = D−A and the

normalized graph Laplacian N = I −D−1/2AD−1/2 on seven real-world networks, summarized in
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Table 2.1. All networks contain explicit information regarding the true community memberships,

which we use to evaluate the performance of clustering algorithms; see the references in the second

column of Table 2.1 for more details.

Dataset Source |V | |E| K dmin dmax d̄
Dolphins Lusseau et al. (2003) 62 159 2 1 12 5.129
Karate Zachary (1977) 34 78 2 1 17 4.588
Political books Krebs (unpublished) 92 374 2 1 24 8.130
Political blogs Adamic and Glance (2005) 1222 16714 2 1 351 27.355
UK faculty Nepusz et al. (2008) 79 552 3 2 39 13.975
Football Girvan and Newman (2002) 110 570 11 7 13 10.364
C. elegans Jarrell et al. (2012) 229 1085 6 1 34 9.585

Table 2.1. Seven network datasets

We evaluate the performance of clustering algorithms via the completeness score (Rosenberg

and Hirschberg, 2007), an external entropy-based cluster evaluation measure. A clustering result

satisfies the completeness if all vertices that are members of a true (primitive) community reside in

the same estimated community. Equivalently, each estimated community from a complete clustering

must be the union of a subset of true (primitive) communities. Grouping all of the vertices into

a single community is an extreme example of a complete clustering. The completeness score is

designed to measure the proximity to completeness. Suppose the true communities are V1, . . . , VK

and the estimated communities are V̂1, . . . , V̂K̂ , where K̂ might differ from K. The completeness

score is defined as

(2.9) c(V̂, V ) =

 1 if H(V̂ ) = 0

1− H(V̂ |V )

H(V̂ )
otherwise

,

where H(V̂ |V ) is the conditional entropy of the estimated clusters given the true community as-

signments and H(V̂ ) is the entropy of the estimated clusters, i.e.,

H(V̂ |V ) = −
K∑
i=1

K̂∑
j=1

|Vi ∩ V̂j |
n

log
|Vi ∩ V̂j |
|V̂j |

, H(V̂ ) = −
K̂∑
j=1

|V̂j |
n

log
|V̂j |
n
.

Clearly, the completeness score (2.9) takes value in [0, 1] and a value 1 implies that the clustering

is complete. This metric is invariant to label permutations and asymmetric in V and V̂ . The
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asymmetry renders the completeness score a proper metric to evaluate the performance of recovering

mega-communities.

Dataset A L N
Dolphins 0.470 1 0.883
Karate 1 0.840 0.840
Political books 0.823 0.869 0.869
Political blogs 0.675 0.007 0.012
UK faculty 0.765 0.908 1
Football 0.763 0.802 0.802
C. elegans 0.416 0.939 0.807

Table 2.2. Completeness scores for the first split

For each of the three recursive bi-partitioning algorithms, we compute the completeness score

for the first split. The results are reported in Table 2.2. Notably, the unnormalized graph Laplacian-

based algorithm performs well on all networks but Political blogs, which has substantially higher

degree variation as shown in Table 2.1. This partly corroborates our theory that the degree variation

plays an important role.

Next, we move deeper into the estimated hierarchy and evaluate the performance of (partial)

hierarchy recovery. For illustration, we investigate three networks: UK faculty, Football, and C.

elegans. We will examine the performance of the first few splits based on the completeness scores.

UK faculty is a personal friendship network of the academic staffs in a UK university, which

consists of three separate schools. These three separate schools are treated as the true primitive

communities; see Figure 2.5c. Figure 2.5a and 2.5b display the first and second splits given by

the recursive bi-partitioning algorithm based on the Fiedler vector. The first split separates the

green community from the others and achieves a high completeness score 0.908, suggesting that it

captures two meaningful mega-communities in this network. Unsurprisingly, The second split has

a lower completeness score because the connections within or between the red and blue vertices are

similar and thus it is harder to distinguish them. Compared to the ground truth, our algorithm

performs reasonably well in recovering both the primitive communities and the hierarchy.

Football is a network of American college football teams during the regular season Fall 2000. The

23



(a) First split (0.908) (b) Second split (0.735) (c) Ground truth

Figure 2.5. Spectral recursive bi-partition on the UK faculty network, with the
completeness scores in the parentheses

vertices represent teams and edges represent regular season games between the two teams they

connect. The teams are divided into “conferences” containing around 8 to 12 teams each, which

can be treated as the true primitive communities; see Figure 2.6d. Again, we apply the recursive

bi-partitioning algorithm based on the Fiedler vector. Here, we build a balanced hierarchy of depth

three without resorting to any stopping rule. Figure 2.6a - 2.6c show the first, second and third

level of an estimated hierarchy, with 2, 4, and 8 resulting clusters respectively. Each level has a

high completeness score, suggesting that the estimated hierarchy is meaningful.

(a) First level (0.802) (b) Second level (0.828) (c) Third level (0.810) (d) Ground truth

Figure 2.6. Spectral recursive bi-partition on the Football network, with the com-
pleteness scores in the parentheses

C. elegans is a neural network consisting of gap junctional synaptic connections in the posterior

nervous system of a single adult male of Caenorhabditis elegans, a primitive worm. The cells are

grouped according to the modules and categories described in Jarrell et al. (2012). Specifically,
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there are six types of cells: sensory neurons, interneurons, gender-shared neurons, command and

motor neurons, gender-shared muscle cells, sex-specific muscle cells. We treat the cell types as the

true primitive communities; see Figure 2.7d. Figure 2.7a shows the first split given by the spectral

bi-partition algorithm based on the Fiedler vector. It performs well in the first split as suggested by

the completeness score 0.939. Interestingly, the two mega-communities correspond to neurons and

muscle cells precisely. Figure 2.7b shows the second split, which has a degraded performance. As a

comparison, we also show the second split given by the normalized graph Laplacian in Figure 2.7c,

which has a higher completeness score. They mainly differ in whether the blue nodes are merged

with purple or red nodes.

(a) First split (0.939) (b) Second split (0.667) (c) Second split (0.752) (d) Ground truth

Figure 2.7. Spectral recursive bi-partition on the C. elegans network, with the
completeness scores in the parentheses. (a) and (b) are based on the unnormalized
graph Laplacian and (c) is based on the normalized graph Laplacian

2.5. Proofs of main results

2.5.1. Supporting lemmata.

Lemma 2.5.1 (Lemma 3.8 of Lei (2019)). Let L denote the unnormalized graph Laplacian of a

random unweighted graph with independent edges, and E(L) = L∗. Then for any r > 0, there exists

an absolute constant C(r) that only depends on r, such that, with probability at least 1− n−r,

‖L−L∗‖op ≤ C(r)

√(
max
1≤i≤n

L∗ii + log n

)
log n.
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Lemma 2.5.2 (Lemma 10 of Balakrishnan et al. (2011)). Let A and Ã be two adjacency matrices

with unnormalized Laplacians L and L̃, respectively. If Ãij ≥ Aij for any pair (i, j), then L̃−L is

positive semidefinite and λk(L̃) ≥ λk(L) for all k.

Lemma 2.5.3 (Theorem 2 of Yu et al. (2014), a variant of Davis-Kahan sin Θ Theorem). Let

A,A∗ ∈ Rn×n be symmetric matrices. Fix positive integers s, d and let U = (us(A), . . . ,us+d−1(A)) ∈

Rn×d and U∗ = (us(A
∗), . . . ,us+d−1(A

∗)) ∈ Rn×d. Further let Θ(U ,U∗) ∈ Rd×d denote the prin-

cipal angle matrix between the subspaces spanned by U and U∗. Then

inf
O∈Rd×d
OTO=Id

‖UO −U∗‖F = 21/2 ‖sin Θ(U ,U∗)‖F

≤
23/2d1/2 ‖A−A∗‖op

min{λs−1(A∗)− λs(A∗), λs+d−1(A∗)− λs+d(A∗)}
.

2.5.2. Proof of Theorem 2.2.1. We first state a more general result that characterizes the

entire eigenstructure of L∗ under the general BTSBM.

Lemma 2.5.4. Denote

g(s; T ) =

 1 (s is an internal node)

ns − 1 (s is a leaf node)
.

The eigenstructure of L∗ has the following properties:

(1) λ∗n = 0, u∗n = 1√
n

[1, 1, . . . , 1]> = 1n/
√
n, and λ∗n−1 > 0.

(2) For each node s = b1b2 . . . b|s|, let s(i) = b1b2 . . . b|s|−i and s(|s|) = ∅. Then

(2.10) λ∗(s; T ) , nsps +

|s|∑
i=1

(ns(i) − ns(i−1)
)ps(i) ,

is an eigenvalue of L∗ with multiplicity

∑
s′:λ∗(s′;T )=λ∗(s;T )

g(s′; T ).
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(3) The eigenspace corresponding to λ∗(s; T ) is spanned by

⋃
s′:λ∗(s′;T )=λ∗(s;T )

colspan
(
U(s′; T )

)
where U(s; T ) ∈ Rn×g(s;T ) such that

• if s is an internal node,

Ui(s; T ) =



√
nR(s)/nL(s)ns i ∈ GL(s)

−
√
nL(s)/nR(s)ns i ∈ GR(s)

0 otherwise

;

• if s is a leaf node, UGcs (s; T ) = 0(n−ns)×(ns−1) and UGs(s; T ) ∈ Rns×(ns−1) is any orthogonal

matrix with 1>nsUGs(s; T ) = 0>.

Lemma 2.5.4 can be verified through simple algebra. By Lemma 2.5.4, it is straightforward to

prove Theorem 2.2.1.

Proof of Theorem 2.2.1. (1) By Lemma 2.5.4, np∅ is an eigenvalue, corresponding to the

root node and g(∅; T ) = 1 since it is an internal node. Under weak assortativity, for any node

s ∈ T ,

λ∗(s; T ) > nsp∅ +

|s|∑
i=1

(ns(i) − ns(i−1)
)p∅ = np∅.

Therefore, λ∗n−1 = np∅ with multiplicity 1.

(2) By Lemma 2.5.4, n1p1 +n0p∅ and n0p0 +n1p∅ are both eigenvalues corresponding to node 1 and

0, respectively. For all other nodes s ∈ T , it is easy to show that λ∗(s; T ) > n0p0 + n1p∅ if s is

a descendant of node 0, and λ∗(s; T ) > n1p1 + n0p∅ if s is a descendant of node 1. Therefore,

λ∗n−2 must be their minimum.

(3) For each leaf node s, it is not hard to see that

λ∗(s; T ) =

n∑
j=1

pij , ∀i in the community s.

By definition,

λ∗(s; T ) ≥ n
¯
p∗.
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The number of eigenvalues that are at least n
¯
p∗, accounting for multiplicity, is at least

∑
leaf node s

g(s; T ) =
∑

leaf node s

(ns − 1) = n−K.

(4) Based on the previous part in this proof, if the eigenvalue λ∗j < n
¯
p∗, then λ∗j must correspond

to an internal node. Then the part (3) of Lemma 2.5.4 implies that

‖u∗j‖∞ =
1√
n

max

{√
nR(s)

nL(s)
,

√
nL(s)

nR(s)

}
≤
√
ξ

n
.

�

2.5.3. Proof of Lemma 2.3.3. Let Ã and Ã′ be defined as in Section 2.3.4, i.e.,

Ãij =

 Aij (i, j ∈ G0, or i, j ∈ G1)

p∅ (otherwise)
, Ã′ij =

 AijBij (i, j ∈ G0, or i, j ∈ G1)

p∅ (otherwise)
,

where {Bij : i < j} are independent Bernoulli random variables that are independent of A with

E[Bij ] = p0/E[Aij ] if i, j ∈ G0 and E[Bij ] = p1/E[Aij ] if i, j ∈ G1. Then Ã′ is the adjacency matrix

given by a general BTSBM with a 2-leaf tree and parameters (p∅, p0, p1). Further let L̃ and L̃′ be

their unnormalized graph Laplacians. Since Ãij ≥ Ã′ij for all pairs (i, j), by Lemma 2.5.2,

(2.11) λn−2(L̃) ≥ λn−2(L̃′).

Note that

max
1≤i≤n

E[L̃′ii] = max{n0p0 + n1p∅, n1p1 + n0p∅} ≤ n0p0 + n1p1.

By Weyl’s inequality and Lemma 2.5.1, with probability 1− n−r,

λn−2(L̃
′) ≥ λn−2(E[L̃′])− ‖L̃′ − E[L̃′]‖ ≥ λn−2(E[L̃′])− C(r)

√
(n0p0 + n1p1 + log n) log n.

By Lemma 2.5.4,

λn−2(E[L̃′]) = min{n0p0 + n1p∅, n1p1 + n0p∅} = np∅ + min{n0(p0 − p∅), n1(p1 − p∅)}.
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The condition (2.7) implies

(2.12) n0p0 + n1p1 ≥ C`2
√

(n0p0 + n1p1) log n =⇒ n0p0 + n1p1 ≥ C2
`2 log n.

When C`2 > max{1, 3C(r)},

λn−2(L̃
′) ≥ np∅ +

{
C`2 − C(r)

√
1 +

1

C2
`2

}√
(n0p0 + n1p1) log n

≥ np∅ +
C`2
2

√
(n0p0 + n1p1) log n(2.13)

By (2.11),

(2.14) λn−2(L̃) > np∅, with probability 1− n−r.

On the other hand, for any i ∈ G0,

(L̃u∗n−1)i =
n∑
j=1

L̃iju
∗
n−1,j =

√
n1
n0n

∑
j∈G0

L̃ij −
√

n0
n1n

∑
j∈G1

L̃ij .

By definition,

∑
j∈G0

L̃ij = L̃ii −
∑

j∈G0\{i}

Aij =
∑

j∈G1∪{i}

Aij = n1p∅ = −
∑
j∈G1

L̃ij .

Thus,

(L̃u∗n−1)i =

(√
n1
n0n

+

√
n0
n1n

)
n1p∅ =

√
n1
n0n

np∅ = (np∅)u
∗
n−1,i.

Similarly, for any i ∈ G1,

(L̃u∗n−1)i = (np∅)u
∗
n−1,i.

As a result, (np∅,u
∗
n−1) is an eigenpair of L̃. Since L̃ is an unnormalized Laplacian, 0 is always

an eigenvalue. Therefore, on the event (2.14), which occurs with probability at least 1 − n−r,

λn−1(L̃) = np∅ with multiplicity 1 and un−1(L̃) = u∗n−1.

2.5.4. Proof of Theorem 2.3.2. Let E denote the event given by (2.13). As shown in the

proof of Lemma 2.3.3,

P(E) ≥ 1− n−r,
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if C`2 > max{1, 3C(r)}. On the event E , by (2.11) and Lemma 2.3.3,

λn−1(L̃) = np∅, λn−2(L̃)− λn−1(L̃) ≥ C`2
2

√
(n0p0 + n1p1) log n, un−1(L̃) = u∗n−1.

Fix any ν > 0. Let

Lν = L+ νJ , L̃ν = L̃+ νJ , where J = I − 1

n
1n1Tn .

Since both L and L̃ are unnormalized graph Laplacians, λn(L) = λn(L̃) = 0,un(L) = un(L̃) =

1n/
√
n. In addition, for any ν > 0,

un−1(Lν) = un−1(L), un−1(L̃ν) = un−1(L̃),

and for j ≥ 1,

λn−j(Lν) = λn−j(L) + ν, λn−j(L̃ν) = λn−j(L̃) + ν.

On the event E ,

(2.15) min{λn−2(L̃)− λn−1(L̃), λn−1(L̃)− λn(L̃)} ≥ min

{
C`2
2

√
(n0p0 + n1p1) log n, np∅ + ν

}
.

By Davis-Kahan Theorem (Lemma 2.5.3),

‖un−1sign(uTn−1u
∗
n−1)− u∗n−1‖2 ≤

23/2‖Lν − L̃ν‖
min{λn−2(L̃)− λn−1(L̃), λn−1(L̃)− λn(L̃)}

≤ 23/2‖L− L̃‖

min
{
C`2
2

√
(n0p0 + n1p1) log n, np∅ + ν

}
By definition, L−L̃ can be formulated as L0−E[L0] where L0 is the unnormalized graph Laplacian

for an adjacency matrix A0 with

A0,ij =

 0 (i, j ∈ G0, or i, j ∈ G1)

Aij (otherwise)
.

By Lemma 2.5.1, with probability at least 1− n−r,

‖L− L̃‖ ≤ C(r)
√

(np∅ + log n) log n.
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Let ν = nmax{p1, p0}. Then

‖un−1sign(uTn−1u
∗
n−1)− u∗n−1‖2 ≤

25/2C(r)

C`2

√
(np∅ + log n) log n√
(n0p0 + n1p1) log n

.

By weak assortativity and (2.12),

√
(np∅ + log n) log n ≤

√
2(n0p0 + n1p1) log n.

Thus, with probability 1− 2n−r,

‖un−1sign(uTn−1u
∗
n−1)− u∗n−1‖2 ≤

8C(r)

C`2
.

The proof is completed by setting C`2 = max{1, 8C(r)/c} and replacing r with r + 1.

2.5.5. Proof of Theorem 2.3.1. Without loss of generality we assume uTn−1u∗n−1 ≥ 0. For

each j ∈ {1, . . . , n} such that λ∗n−j+1 < λ∗n−j , let U
∗
j ∈ Rn×j and Uj ∈ Rn×j denote the eigenvector

matrices (u∗n−1, . . . ,u
∗
n−j) and (un−1, . . . ,un−j), respectively. Define

Oj = sign(UT
j U

∗
j ),

where sign(M) denotes the matrix sign. Specifically, if UΣV T is the singular value decomposition

of M , then sign(M) = UV T . Since Oj ∈ Rj×j is an orthogonal matrix, we have

√
n‖UjOj −U∗j ‖2→∞ =

√
n‖Uj −U∗jOT

j ‖2→∞.

Let Oj,1,i denote the entry of Oj in the first row and i-th column and U∗j,−1 denote the matrix U∗j

with the first column u∗n−1 removed. Then

√
n‖Uj −U∗jOT

j ‖2→∞ ≥
√
n

∥∥∥∥un−1 − j∑
i=1

Oj,1,iu
∗
n−i

∥∥∥∥
∞

≥
√
n‖un−1 −Oj,1,1u∗n−1‖∞ −

√
n

√∑
i 6=1

O2
j,1,i‖U

∗
j,−1‖2→∞.
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Furthermore, we know that

√
n‖un−1 −Oj,1,1u∗n−1‖∞ =

√
n‖un−1 − u∗n−1 + u∗n−1 −Oj,1,1u∗n−1‖∞

≥
√
n‖un−1 − u∗n−1‖∞ −

√
n|1−Oj,1,1|‖u∗n−1‖∞

=
√
n‖un−1 − u∗n−1‖∞ − |1−Oj,1,1|max

{√
n1
n0
,

√
n0
n1

}
≥
√
n‖un−1 − u∗n−1‖∞ − |1−Oj,1,1|

√
ξ.

The second last equality invokes Theorem 2.2.1. Since Oj is orthogonal,

j∑
i=1

O2
j,1,i = 1 =⇒

∑
i 6=1

O2
j,1,i = 1−O2

j,1,1 ≤ 2(1−Oj,1,1).

Also notice that ‖U∗j,−1‖2→∞ ≤ ‖U∗j ‖2→∞. As a result,

√
n‖un−1 − u∗n−1‖∞

≤
√
n‖UjOj −U∗j ‖2→∞ +

√
2(1−Oj,1,1)

(√
n‖U∗j ‖2→∞

)
+ |1−Oj,1,1|

√
ξ.(2.16)

To further simplify the second and the third terms, letHj = UT
j U

∗
j with singular value decomposi-

tion Hj = Ūj(cos Θ(Uj ,U
∗
j ))V̄ T

j , where cos Θ(Uj ,U
∗
j ) = diag(cos θj1, . . . , cos θjj) and θji’s are the

principal angles between un−i and u∗n−i. By definition, Oj = ŪjV̄
T
j . As a result,

‖Hj −Oj‖ = ‖Ūj(I − cos Θj)V̄
T
j ‖ ≤ ‖I − cos Θ(Uj ,U

∗
j )‖.

For any θ ≤ π/2,

1− cos θ ≤ 1− cos2 θ = sin2 θ.

Therefore,

‖Hj −Oj‖ ≤ ‖ sin Θ(Uj ,U
∗
j ))‖2

On the other hand,

|1−Hj,1,1| = |1− uTn−1u∗n−1| = |(un−1 − u∗n−1)Tu∗n−1| ≤ ‖un−1 − u∗n−1‖2.
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As a consequence,

|1−Oj,1,1| ≤ |1−Hj,1,1|+ |Hj,1,1 −Oj,1,1|

≤‖un−1 − u∗n−1‖2 + ‖Hj −Oj‖ ≤ ‖un−1 − u∗n−1‖2 + ‖ sin Θ(Uj ,U
∗
j )‖2.

This together with (2.16) imply

√
n‖un−1 − u∗n−1‖∞

≤
√
n‖UjOj −U∗j ‖2→∞ +

(√
2‖un−1 − u∗n−1‖2 +

√
2‖ sin Θ(Uj ,U

∗
j )‖
) (√

n‖U∗j ‖2→∞
)

+
√
ξ
(
‖un−1 − u∗n−1‖2 + ‖ sin Θ(Uj ,U

∗
j )‖2

)
.

(2.17)

Let K̃ denote the number of eigenvalues that are strictly smaller than n
¯
p∗. By Theorem 2.2.1,

K̃ ≤ K. Since ξ = O(1), K = O(1). Then for any j ≤ K̃, by part (4) of Theorem 2.2.1,

‖U∗j ‖2→∞ .
1√
n
.

Thus, to prove
√
n‖un−1 − u∗n−1‖∞ < min{

√
n0/n1,

√
n1/n0}, it remains to prove

(2.18) ‖un−1 − u∗n−1‖2 ≤ c, ‖ sin Θ(Uj ,U
∗
j )‖ ≤ c,

√
n‖UjOj −U∗j ‖2→∞ ≤ c,

for a sufficiently small constant c that only depends on ξ for some 2 ≤ j ≤ K̃ with high probability.

The first bound ‖un−1−u∗n−1‖2 ≤ c has been proved in Theorem 2.3.2 if C`∞ ≥ C`2 . We will show

the other two bounds in the following subsections.

2.5.5.1. Choice of j via the pigeonhole principle. By definition of K̃, np∅ = λ∗n−1 ≤ · · ·λ∗n−K̃+1
<

n
¯
p∗ ≤ λ∗n−K̃ . Let

(2.19) δ∗j = min{n
¯
p∗, λ

∗
n−j−1} − λ∗n−j , j̃ = argmaxj≤K̃−1 δ

∗
j .

By Theorem 2.2.1, K̃ ≤ K and thus

(2.20) δ∗
j̃
≥ 1

K̃ − 1

K̃−1∑
j=1

δ∗j =
n(

¯
p∗ − p∅)
K̃

.
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Throughout the rest of the proof we will fix j = j̃ and depress the subscript j when no confusion

can arise. This option guarantees a sufficiently large eigengap so that the off-the-shelf technical

tools can be applied directly to obtain meaningful perturbation bounds.

For notational convenience, denote by Λ the diagonal matrix of the K̃ smallest eigenvalues, i.e.,

Λ = diag(λn−1, . . . , λn−j̃), Λ∗ = diag(λ∗n−1, . . . , λ
∗
n−j̃).

We write U ,O and U∗ for Uj̃ ,Oj̃ and U
∗
j̃
throughout the rest of the section. Similar to the proof

of Theorem 2.3.2, let

(2.21) Lν = L+ νJ , L∗ν = L∗ + νJ , where J = I − 1

n
1n1Tn .

Since 1TnU = 1TnU∗ = 0,

LνU = U(Λ + νI), L∗νU
∗ = U∗(Λ∗ + νI).

Throughout we take

(2.22) ν = np̄∗.

2.5.5.2. Bounding ‖ sin Θ(U,U∗)‖. Applying Lemma 2.5.1, we have

(2.23) ‖L−L∗‖ ≤ C(r)
(√

np̄∗ log n+ log n
)

with probability 1− n−r

Since δ∗
j̃
, the eigengap defined in (2.20), is invariant to ν, by Davis-Kahan Theorem (Lemma 2.5.3)

and (2.22),

‖ sin Θ(U ,U∗)‖ ≤ 2‖Lν −L∗ν‖

min
{
δ∗
j̃
, np∅ + ν

} =
2‖L−L∗‖

δ∗
j̃

≤ 2KC(r)

(√
np̄∗ log n+ log n

)
n(

¯
p∗ − p∅)

By the condition (2.6),

(2.24) (np̄∗)4 ≥ (n(
¯
p∗ − p∅))4 ≥ C`∞(np̄∗)3 log n =⇒ np̄∗ ≥ C`∞ log n.
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Thus, with probability 1− n−r,

‖ sin Θ(U ,U∗)‖ ≤ 2KC(r)

(√
np̄∗ log n+ log n

)
C

1/4
`∞

(np̄∗)3/4(log n)1/4

≤ 2KC(r)
1 + C

−1/2
`∞

C
`
1/2
∞

= 2KC(r)
(
C
−1/2
`∞

+ C−1`∞

)
.

Therefore, when C`∞ ≥ max{1, 4KC(r)/c},

‖ sin Θ(U ,U∗)‖ ≤ c,

with probability 1− n−r.

2.5.5.3. Bounding
√
n‖UO−U∗‖2→∞. We will apply Theorem 2.6 of Lei (2019) on Lν and L∗ν ,

defined in (2.21) with ν defined in (2.22). To be self-contained, we state the theorem in Appendix

A.3 together with all necessary definitions. We can prove the following result.

Lemma 2.5.5. Let U ,O,U∗ be defined as in Section 2.5.5.1. Fix any constant r, c > 0. Under the

same setting as in Theorem 2.3.1, if C`∞ is a sufficiently large constant that only depends on r and

c, with probability at least 1− (10K + 1)n−r,

√
n‖UO −U∗‖2→∞ ≤ c.

The proof is lengthy and hence relegated to Appendix A.3.

2.6. Conclusion and Discussion

In this chapter, we present a novel analysis of an unnormalized graph Laplacian-based recursive

spectral clustering algorithm for sparse networks. Under a broad class of hierarchical network

models, we show that the proposed algorithm is effective in both community detection and hierarchy

estimation. Both weak and strong consistencies for mega-communities are established based on novel

`2 and `∞ perturbation bounds of the Fiedler vector. Compared to earlier works on hierarchical and

non-hierarchical community detection, our result substantially relaxes the constraints on connection

probabilities, degree heterogeneity, and the hierarchical structure to handle sparse and multi-scale

networks with an unbalanced hierarchy.
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One limitation of our model is that the hierarchy is restricted to be a binary tree. Theoretically,

a binary tree cannot encode, for example, a 3-block SBM with equal between-community connection

probabilities due to the indistinguishability of the three primitive communities. However, the strict

homogeneity as above is arguably a rare corner case in practice. When the between-community

connection probabilities are mutually distinct, there exists a meaningful binary hierarchy in this

case. Indeed, if B12 = max{B12, B13, B23}, the two mega-communities on the first level of the

binary tree can be defined as {1, 2} and {3}. We can verify that all between-mega-community

connection probabilities are smaller than all within-mega-community connection probabilities in

this case. Although it is beyond a general BTSBM, some of our results can be possibly extended

to this case; see Remark 5 for instance. It would be interesting to investigate what hierarchical

structures can be equivalently formulated as a binary one.

Our main results can also be interpreted as the adaptivity of graph Laplacian based spectral

clustering to inhomogeneous connection probabilities. The general BTSBM studied in this work is a

special case of inhomogeneous block models in which within-community connection probabilities are

greater than p while between-community connection probabilities are smaller than q < p. Note that

it is known that convex optimization approach would be adaptive to such inhomogeneous model

(Moitra et al., 2016), which is usually computationally expensive and sometimes involves sensitive

tuning parameters. It would be interesting to see whether certain spectral method also has such

adaptivity. In particular, we are interested in studying such adaptivity under either multi-scale

regime or the very sparse regime where the connection probabilities are on the order of ω(1/n).

Another important question is how degree heterogeneity degrades the performance of a clustering

algorithm. Degree heterogeneity is ubiquitous in real-world networks while most theoretical works

restrict the degrees to be on the same order. This work takes one step in mitigating the gap for a

specific spectral clustering algorithm. As discussed in Remark 3, the degree variation condition (2.6)

in Theorem 2.3.1 appears to be a mathematical artifact, but to relax it requires novel techniques

beyond our proof strategies summarized in Section 2.3.4. We leave this as an open problem and

look for affirmation or negation of our conjecture.

In terms of the technical proofs, as alluded to in Section 2.4, the `∞ perturbation bound is

only sufficient yet not necessary for the strong consistency of mega-communities recovery. Previous
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works (e.g. Abbe et al., 2017; Deng et al., 2020; Lei, 2019) suggest that the sign consistency is

strictly weaker than `∞ consistency for eigenvectors under certain special SBMs or BTSBMs. It is

mathematically intriguing to explore how those advanced techniques can be adapted to the more

heterogeneous BTSBMs.
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CHAPTER 3

Learning Linear Polytree Structural Equation Models

3.1. Introduction

Over the past three decades, the problem of learning directed graphical models from i.i.d. obser-

vations of a multivariate distribution has received enormous amount of attention since they provide

a compact and flexible way to represent the joint distribution of the data, especially when the asso-

ciated graph is a directed acyclic graph (DAG), which is a directed graph with no directed cycles.

DAG models are popular in practice with applications in biology, genetics, machine learning and

causal inference (Koller and Friedman, 2009; Sachs et al., 2005; Spirtes et al., 2000; Zhang et al.,

2013). There exists an extensive literature on learning the graph structure from i.i.d. observations

under DAG models. For a summary, see the survey papers Drton and Maathuis (2017); Heinze-

Deml et al. (2018). Existing approaches generally fall into two categories, constraint-based methods

(Pearl, 2009; Spirtes et al., 2000) and score-based methods (Chickering, 2002b). Constraint-based

methods utilize conditional independence test to determine whether there exists an edge between

two nodes and then orient the edges in the graph, such that the resulting graph is compatible

with the conditional independencies determined in the data. Score-based methods formulate the

structure learning task as optimizing a score function based on the unknown graph and the data.

A polytree is a connected DAG which contains no cycles even if the directions of all edges

are ignored. It has been popularly used in practice due to tractability in both structure learning

and inference. To the best of our knowledge, structure learning of polytree models was originally

studied in Rebane and Pearl (1987), in which the skeleton of the polytree is estimated by applying

the Chow-Liu algorithm (Chow and Liu, 1968) to pairwise mutual information quantities, a method

that has been widely used in the literature of Markov random field to fit undirected tree models.

Polytree graphical models have received a significant amount of research interests both empirically

and theoretically ever since, see, e.g., Dasgupta (1999); Huete and de Campos (1993); Ouerd et al.
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(2004). Skeleton recovery via Chow-Liu algorithm has also been used as an initial step for fitting

more general sparse DAGs; see, e.g., Cheng et al. (2002).

This chapter aims to study sample size conditions of the method essentially proposed in Rebane

and Pearl (1987) for the recovery of polytree structures, but we apply the Chow-Liu algorithm to

pairwise sample correlations rather than estimated mutual information quantities. In particular,

by restricting our study to the case of Gaussian linear structure equation models (SEM), we will

establish sufficient conditions on the sample sizes for consistent recovery of both the skeleton and

equivalence class for the underlying polytree structure. On the other hand, we will also establish

necessary conditions on the sample sizes for these two tasks through information-theoretic lower

bounds. Our sufficient and necessary conditions match in order in a broad regime of model param-

eters, and thereby characterize the difficulty of these two tasks in polytree learning. In addition, we

extend the results to the sub-Gaussian case, and establish an upper bound for the estimation error

of the inverse correlation matrix under the same models.

An important line of research that inspires our study is structure learning for tree-structured

undirected graphical models, including both discrete cases (Anandkumar et al., 2012a,b; Bresler and

Karzand, 2020; Heinemann and Globerson, 2014; Netrapalli et al., 2010) and Gaussian cases (Katiyar

et al., 2019; Nikolakakis et al., 2019; Tan et al., 2010; Tavassolipour et al., 2018). In particular,

conditions on the sample size for undirected tree structure learning via the Chow-Liu algorithm

have been studied for both Ising and Gaussian models (Bresler and Karzand, 2020; Nikolakakis

et al., 2019; Tavassolipour et al., 2018), and the analyses usually rely crucially on the so-called

“correlation decay” property over the true undirected tree. The correlation decay properties can

usually be explicitly quantified by the pairwise population correlations corresponding to the edges

of the underlying true tree. Based on this result and some perturbation results of pairwise sample

correlations to their population counterparts, sufficient conditions on the sample size for undirected

tree recovery with the Chow-Liu algorithm can be straightforwardly obtained.

In order to apply the above technical framework to study the sample size conditions for poly-

tree learning, a natural question is whether we have similar correlation decay phenomenon for the

polytree models. In fact, this is suggested in the seminal paper Rebane and Pearl (1987). To be con-

crete, under some non-degeneracy assumptions, it has been shown in Rebane and Pearl (1987) that
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there holds the “mutual information decay” over the skeleton of the underlying polytree. Roughly

speaking, the mutual information decay is a direct implication of the well-known “data processing

inequality” in information theory (Thomas and Joy, 2006). Restricted to the very special case of

Gaussian linear SEM, the mutual information decay is indeed equivalent to the property of popu-

lation correlation decay.

However, to obtain some meaningful sample complexity result, we need to quantify such correla-

tion decay explicitly as what has been done in the study of Chow-Liu algorithm for undirected tree

models (Bresler and Karzand, 2020; Nikolakakis et al., 2019; Tavassolipour et al., 2018). The mutual

information decay given in Rebane and Pearl (1987) holds for general polytree models, but one can

expect to further quantify such decay under more specific models. In fact, if we restrict the polytree

model to linear SEM, by applying the well-known Wright’s formula (Foygel et al., 2012; Nowzohour

et al., 2017; Wright, 1960), the population correlation decay property can be quantified by the pair-

wise correlations corresponding to the tree edges. Note that such quantification of correlation decay

holds even for non-Gaussian linear polytree SEM. This is interesting since in general mutual in-

formation decay does not directly imply population correlation coefficients decay for non-Gaussian

models. With such quantification of correlation decay over the underlying polytree skeleton, we

can apply the ideas from undirected tree structure learning to establish the sufficient conditions on

sample size for polytree skeleton recovery via the Chow-Liu algorithm. Roughly speaking, if the

maximum absolute correlation coefficient over the polytree skeleton is strictly bounded below 1,

Chow-Liu algorithm recovers the skeleton exactly with probability at least 1− δ when the number

of samples satisfies n > O( 1
ρ2min

log p√
δ
), where p is the number of variables and ρmin is the minimum

absolute population correlation coefficient over the skeleton.

To determine the directions of the polytree over the skeleton, the concept of CPDAG (Verma and

Pearl, 1991) captures the equivalence class of polytrees. We then consider the CPDAG recovery

procedure introduced in Verma and Pearl (1992) and Meek (1995), which is a polynomial time

algorithm based on identifying all the v-structures (Verma and Pearl, 1991). Therefore, conditional

on the exact recovery of the skeleton, recovering the CPDAG is equivalent to recovering all v-

structures. In a non-degenerate polytree model, a pair of adjacent edges form a v-structure if

and only if the two non-adjacent node variables in this triplet are independent, so we consider a
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natural v-structure identification procedure by thresholding the pairwise sample correlations over

all adjacent pairs of edges with some appropriate threshold. In analogy to the result of skeleton

recovery, we show that the CPDAG of the polytree can be exactly recovered with probability at

least 1− δ if the sample size satisfies n > O( 1
ρ4min

log p√
δ
).

Our sufficient condition on sample size for skeleton recovery is proportional to 1/ρ2min, whereas

that for CPDAG recovery is proportional to 1/ρ4min. One may ask whether this discrepancy correctly

captures the difference of difficulties for the two tasks, or it is just a mathematical artifact. By using

the Fano’s method, we show that n > O( log p
ρ2min

) is necessary for skeleton recovery, while n > O( log p
ρ4min

)

is necessary for CPDAG recovery. This means that we have sharply characterized the difficulties

for the two tasks.

This chapter is organized as follows: In Section 3.2, we will review the concept of linear polytree

SEM, the concepts of Markov equivalence and CPDAG, and the polytree learning method introduced

in Rebane and Pearl (1987) as well as the CPDAG recovery method introduced in Verma and Pearl

(1992) and Meek (1995). In Section 3.3, we will first explain the phenomenon of correlation decay

under linear polytree models, and then focus on the Gaussian polytree model and establish sufficient

conditions on sample sizes for both skeleton and CPDAG recovery. In addition, we will also establish

information-theoretic bounds as necessary conditions on sample sizes for these two tasks. In Section

3.4, we extend the sample size conditions to sub-Gaussian linear polytree models, and then give

an upper bound in the entry-wise `1 norm for the estimation of the inverse correlation matrix.

All proofs are deferred to Section 3.6. Our theoretical findings as well as empirical robustness of

polytree learning will be illustrated by numerical experiments in Section 3.5. A brief summary of

our work and some potential future research will be discussed in Section 3.7.

3.2. Linear Polytree Models and Learning

The aim of this section is to give an overview of the concepts of DAG models, linear polytree

models, equivalence classes characterized by CPDAG, and Chow-Liu algorithm for polytree learning.

Most materials are not new, but we give a self-contained introduction of these important concepts

and methods so that our main results introduced in the subsequent sections will be more accessible

to a wider audience.

41



3.2.1. Linear Polytree Models. Let G = (V,E) be a directed graph with vertex set V =

{1, 2, ..., p} and edge set E. We use i → j ∈ E to denote that there is a directed edge from node i

to node j in G. A directed graph with no directed cycles is referred to as a directed acyclic graph

(DAG). The parent set of node j in G is denoted as Pa(j) := {i ∈ V : i→ j ∈ E}. Correspondingly,

denote by Ch(j) := {k : j → k ∈ E} the children set of j.

Let X = [X1, . . . , Xp]
> be a random vector where each random variable Xj corresponds to

a node j ∈ V . The edge set E usually encodes the causal relationships among the variables.

The random vector X is said to be Markov on a DAG G if its joint density function (or mass

function) p(x) can be factorized according to G as p(x) =
∏p
j=1 p(xj |xPa(j)), where p(xj |xPa(j)) is

the conditional density/probability of Xj given its parents XPa(j) := {Xi : i ∈ Pa(j)}. We usually

refer to (G, p(x)) as a DAG model.

For any DAG, if we ignore the directions of all its directed edges, the resulting undirected graph

is referred to as the skeleton of the DAG. A polytree is a connected DAG whose skeleton does

not possess any undirected cycles. A polytree model is a multivariate probability distribution p(x)

that is Markov to a polytree T = (V,E). As mentioned in Introduction, polytree models are an

important and tractable class of directed graphical models, largely because they permit fast exact

inference.

Throughout this work, we restrict our discussion to an important sub-class of DAG models:

linear structure equation models (SEM), in which the dependence of each Xj on its parents is linear

with an additive noise. The parameterization of the linear SEM with directed graph G = (V,E)

would be Xj =
∑p

i=1 βijXi + εj =
∑

i∈Pa(j) βijXi + εj for j = 1, . . . , p, where βij 6= 0 if and only

if i → j ∈ E, and all εj ’s are independent with mean zero, usually with different variances. Let

B =
[
βij
]
∈ Rp×p and ε = [ε1, . . . , εp]

>. Then the SEM can be represented as

(3.1) X = B>X + ε.

Denote Cov(X) = Σ =
[
σij
]
∈ Rp×p and Cov(ε) = Ω = Diag(ω11, . . . , ωpp). Here Ω is diagonal

since all additional noises are assumed to be mutually independent. Note that when we say that a

linear SEM is associated to a polytree T = (V,E), this is in general stronger than Markov property,

since we can determine the directed edges in T from the non-zero patterns of B. In addition,
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if the noises εi’s are Gaussian, then the linear polytree model is referred to as a Gaussian linear

polytree model. Similarly, if εj ’s are sub-Gaussian, then the linear polytree model is referred to as a

sub-Gaussian linear polytree model.

3.2.2. Markov Equivalence and CPDAG. Let’s briefly review the concept of Markov equiv-

alence of DAGs. In fact, there are several equivalent definitions for this concept. The most intuitive

definition is perhaps the following: if any multivariate distribution p(x) that is Markov to G1 is

Markov to G2, and vice versa, then we say DAGs G1 and G2 are Markov equivalent. Characteri-

zation of Markov equivalence between DAGs through multivariate Gaussian distributions is given

in Ghassami et al. (2020). Another intuitive definition is from the concept of conditional indepen-

dence. Note that each DAG G entails a list of statements of conditional independence, which are

satisfied by any joint distribution Markov to G. Then two DAGs are equivalent if they entail the

same list of conditional independencies. In the present paper, the recovery of equivalence class of

DAG hinges on the following famous and neat result given in Verma and Pearl (1991): Two DAGs

are Markov equivalent if and only if they have the same skeleton and sets of v-structures, where a

v-structure is a node triplet i→ k ← j where i and j are non-adjacent.

An important concept to intuitively capture equivalence classes of DAGs is the completed par-

tially DAG (CPDAG): a graph K with both directed and undirected edges representing the Markov

equivalence class of a DAG G if: (1) K and G have the same skeleton; (2) K contains a directed

edge i → j if and only if any DAG G′ that is Markov equivalent to G contains the same directed

edge i → j. The CPDAG of G is denoted as K = CG. It has been shown in Chickering (2002a)

that two DAGs have the same CPDAG if and only if they belong to the same Markov equivalence

class.

It would be interesting to have some intuitions on what the CPDAG of a polytree looks like.

To this end, we introduce the following result, the proof of which can be found in Section 3.6.2.

Theorem 3.2.1. The undirected sub-graph containing undirected edges of the CPDAG of a

polytree forms a forest. All equivalent DAGs can be obtained by orienting each undirected tree of

the forest into a rooted tree, that is, by selecting any node as the root and setting all edges going

away from it.
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3.2.3. Polytree Learning. Amajor purpose of this chapter is to study the problem of polytree

learning, i.e., the recovery of the CPDAG of the polytree T = (V,E) under the linear SEM (3.1)

from a finite sample of observations. To be concrete, suppose that we have observed i.i.d. samples

X(1:n) = [X(1), . . . ,X(n)]> ∈ Rn×p generated from the linear SEM (3.1) that is associated to a

polytree T = (V,E). We aim to consistently recover the CPDAG of T , namely CT , from X(1:n).

The procedure of polytree learning we are considering in this chapter has been in principle

introduced in Rebane and Pearl (1987), but we use the sample correlation coefficients rather than

estimated mutual information quantities. For multivariate Gaussian distributions, of course, the

Chow-Liu algorithm applying to empirical mutual information quantities is the same as the one

applying to pairwise sample correlations. The key idea is to first recover the skeleton of the polytree

by applying the Chow-Liu algorithm (Chow and Liu, 1968) to the pairwise sample correlations of

the data matrix. After the skeleton is recovered, the set of all v-structures can be correctly identified

via a simple thresholding approach to pairwise sample correlations. Finally, the CPDAG can be

found by applying Rule 1 introduced in Verma and Pearl (1992), as guaranteed theoretically in

Meek (1995).

3.2.3.1. Chow-Liu Algorithm for Skeleton Recovery. To the best of our knowledge, it was first

proposed in Rebane and Pearl (1987) to recover the skeleton of a polytree by applying the Chow-

Liu algorithm introduced in Chow and Liu (1968) that was originally intended for undirected tree

graphical models. Notice that given we are interested in linear polytree models, we directly apply

the Chow-Liu algorithm to the sample correlations.

The Chow-Liu tree associated to pairwise correlations, which is the estimated skeleton of the

underlying polytree, is defined as below.

Definition 3.2.2 (Chow-Liu tree associated to pairwise sample correlations). Consider the lin-

ear polytree model (3.1) associated to a polytree T = (V,E), whose skeleton is denoted as T =

(V, E). Let Tp denote the set of undirected trees over p nodes. Given n i.i.d. samples X(1:n) =

[X(1), . . . ,X(n)]> ∈ Rn×p, we obtain the sample correlation ρ̂ij between Xi and Xj for all 1 ≤

i < j ≤ p. The Chow-Liu tree associated to the pairwise sample correlations is defined as the

maximum-weight spanning tree over the p nodes where the weights are absolute values of sample
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correlations:

(3.2) T CL = argmaxT =(V,E)∈Tp

∑
i−j∈E

|ρ̂ij |.

For tree-structured undirected graphical models, it has been established in Chow and Liu (1968)

that the maximum likelihood estimation of the underlying tree structure is the Chow-Liu tree

associated to the empirical mutual information quantities (which are used to find the maximum-

weight spanning tree). The rationale of applying Chow-Liu algorithm to polytree learning has been

carefully explained in Rebane and Pearl (1987), to which interested readers are referred. The step

of skeleton recovery can be summarized in Algorithm 1.

Algorithm 1 Chow-Liu algorithm
Input: n i.i.d. samples X(1:n)

Output: Estimated skeleton T̂ .
1: Compute the pairwise sample correlations ρ̂ij for all 1 ≤ i < j ≤ p;
2: Construct a maximum-weight spanning tree using |ρ̂ij | as the edge weights, i.e., T̂ = T CL

defined in (3.2).

It is noteworthy that Algorithm 1 can be implemented efficiently by applying the Kruskal’s algo-

rithm (Kruskal, 1956) to pairwise sample correlations |ρ̂ij | for the construction of maximum weight

spanning tree. The computational complexity for Kruskal’s algorithm is known to be O(p2 log p),

which is generally no larger than that for computing the sample correlations, which is O(p2n).

3.2.3.2. CPDAG Recovery. In the second part of the procedure of polytree learning, we aim

to extend the estimated skeleton T̂ = T CL to an estimated CPDAG of the underlying polytree T .

Intuitively speaking, this amounts to figuring out all the edges whose orientations can be determined.

The first step of this part is to identify all the v-structures. Recall that in the linear polytree

model (3.1), we assume that βij 6= 0 if and only if i→ j ∈ E, which implies the non-degeneracy of

the polytree. In this case, it has also been observed in Rebane and Pearl (1987) that, for any pair

of non-adjacent nodes i and j with common neighbor k, they form a v-structure i → k ← j if and

only Xi and Xj are mutually independent. Interestingly, the criterion of mutual independence can

be replaced with zero correlation under the linear polytree model, even under non-Gaussian models.

Then, we can determine the existence of a v-structure i → k ← j when the sample correlation
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|ρ̂ij | < ρcrit. The discussion on the practical choice of ρcrit is deferred to Section 3.5. Theoretical

discussions on the threshold will be elaborated in Sections 3.3 and 3.4.

After recovering all the v-structures, as aforementioned, it is guaranteed in Meek (1995) that the

CPDAG of the polytree can be recovered by iteratively applying the four rules originally introduced

in Verma and Pearl (1992). However, given our discussion is restricted to the polytree models,

Rules 2, 3, and 4 in Verma and Pearl (1992) and Meek (1995) do not apply. We only need to apply

Rule 1 repeatedly. This rule can be stated as follows: Orient any undirected edge j − k into j → k

whenever there is a directed edge i→ j coming from a third node i.

These two steps in the second part of polytree structure learning are summarized as Algorithm

2.

Algorithm 2 Extending the skeleton to a CPDAG
Input: Estimated skeleton Ŝ, sample correlations ρ̂ij ’s, critical value for correlation ρcrit.

Output: Estimated CPDAG Ĉ.
1: for Each pair of non-adjacent variables i, j with common neighbor k do
2: if |ρ̂ij | < ρcrit then
3: replace i− k − j in Ŝ by i→ k ← j

4: In the resulting graph, orient as many undirected edges as possible by repeatedly applying the
rule: orient an undirected edge j − k into j → k whenever there is a directed edge i → j for
some i.

3.3. Main Results for Gaussian Polytree Models

In this section, we discuss sample size conditions for the recovery of skeleton and CPDAG under

a Gaussian linear polytree model T = (V,E), and the sub-Gaussian case will be discussed in the

next section. We first establish a correlation decay property on the polytree skeleton by applying

the famous Wright’s formula.

3.3.1. Wright’s Formula and Correlation Decay on Polytree Skeleton. First, the poly-

tree learning method introduced in Section 3.2.3 depends solely on the marginal correlation coef-

ficients, and is thereby invariant to scaling. Therefore, without loss of generality, we can assume

that Xj ’s have unit variance for all j ∈ V , i.e. Σ is the correlation matrix. It is obvious that the

standardized version of a linear SEM is still a linear SEM. In fact, let D be the diagonal matrix
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with the j-th diagonal being the standard deviation of Xj . Then the standardized random variables

are D−1X, which satisfies

(3.3) D−1X = (DBD−1)>D−1X +D−1ε.

In other words, the standardized random variables admit a linear SEM with the coefficient matrix

B̃ = DBD−1 and the diagonal noise variance matrix Ω̃ = D−1ΩD−1 = D−2Ω. One should note

that B̃ and B correspond to the same DAG. When the variables are all variance-one, denoting the

pairwise correlations as ρij := corr(Xi, Xj), we have σij = ρij for all 1 ≤ i, j ≤ p.

Under the linear SEM (3.1), we know that B is permutationally similar to an upper triangular

matrix, which implies that all eigenvalues of I − B are 1’s, and further implies that I − B is

invertible. Then, (I −B)>X = ε implies X = (I −B)−>ε, and further implies that X is mean-

zero, and has covariance Σ = (I − B)−>Ω(I − B)−1. This suggests that we can represent the

entries of Σ by (βij) and (ωii). In fact, this can be conveniently achieved by using the Wright’s path

tracing formula (Wright, 1960). We first introduce some necessary definitions in order to obtain

such expression. A trek connecting nodes i and j in a directed graph G = (V,E) is a sequence of

non-colliding consecutive edges connecting i and j of the form

i = vLl ← vLl−1 ← · · · ← vL1 ← v0 → vR1 → · · · → vRr−1 → vRr = j.

We define the left-hand side of τ as Left(τ) = vLl ← · · · ← v0, the right-hand side of τ as

Right(τ) = v0 → · · · → vRr , and the head of τ as Hτ = v0. A trek τ is said to be a simple trek if

Left(τ) and Right(τ) do not have common edges.

Denoting the sets of simple treks Sij = {τ : τ is a simple trek connecting i and j in G}, the

following rules (Foygel et al., 2012; Nowzohour et al., 2017; Wright, 1960) express the off-diagonal

entries of the covariance matrix Σ as a summation over treks:

σij =
∑
τ∈Sij

σHτHτ
∏

s→t∈τ
βst for i 6= j.

Now let us simplify the above trek rules under the linear polytree models with standardized

variables. In a polytree model, any two nodes i and j are connected by a unique path, which is
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either a simple trek or a path with collision. As a direct consequence of the trek rules introduced

above, we have the following result.

Lemma 3.3.1. Consider the linear polytree model (3.1) with the associated polytree T = (V,E)

over p nodes, i.e., βij 6= 0 if and only if i → j ∈ E. Also assume that Xj has unit variance for all

j ∈ V . Then, given {βij}1≤i,j≤p, we have the following results regarding the entries of Σ and Ω:

(1) For any i 6= j,

(3.4) ρij = σij =


∏

s→t∈τij
βst the path connecting i and j is a simple trek;

0 otherwise,

where τij is the simple trek connecting i and j when there is one.

(2) The diagonal entries of Ω are given by

(3.5) ωjj = 1−
∑

i∈Pa(j)

β2ij , j = 1, . . . , p.

Remark 1. Here Eq. (3.5) can be derived by the following simple argument: Since T is a

polytree, all variables in Pa(j) are independent and are also independent with εj . Evaluating the

variance on both sides of Xj =
∑

i∈Pa(j)
βijXi + εj leads to Eq. (3.5).

Note that i → j ∈ E (or j → i ∈ E) is a simple trek itself. Then Lemma 3.3.1 implies that

ρij = σij = βij( or βji). Then Lemma 3.3.1 implies the following corollary.

Corollary 3.3.2. Consider the linear polytree model (3.1) with the associated polytree T = (V,E)

over p nodes. The pairwise population correlation coefficients satisfy that

(3.6) ρij =


∏

s→t∈τij
ρst the path connecting i and j is a simple trek

0 otherwise.

Remark 2. We need to emphasize that in this corollary the assumption that the variables

X1, . . . , Xp have unit variances is unnecessary. One can simply use (3.3) to standardize the lin-

ear polytree and then obtain (3.6), which still holds for the original linear SEM since correlation

coefficients are invariant under standardization.
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3.3.2. Connection to Correlation Decay on Undirected Gaussian Tree Models. A

noteworthy fact is that undirected tree models (Markov random fields) can be viewed as special

cases of polytree DAGs. Suppose T = (V, E) is an undirected tree. An undirected tree model is a

multivariate distribution satisfies

p(x) =

p∏
i=1

pi(xi)
∏

(i,j)∈E

pij(xi, xj)

pi(xi)pj(xj)
.

If we choose any node in a tree as the root, then we can transform the undirected tree into a unique

rooted tree, i.e., a directed tree in which each non-root node has a unique parent node. Without

loss of generality, let’s choose node 1 as the root, and let T = (V,E) be the resulting rooted tree,

which implies that E is the skeleton of E. Then we can rewrite the joint pdf/pmf as

p(x) = p1(x1)

p∏
i=2

pi(xi)
piPa(i)(xi, xPa(i))

pi(xi)pPa(i)(xPa(i)))
= p1(x1)

p∏
i=2

piPa(i)(xi, xPa(i))

pPa(i)(xPa(i)))
=

p∏
j=1

p(xj |xPa(j)),

which is the polytree model according to the rooted tree T = (V,E). Similarly, one can show that

a undirected Gaussian tree model can be viewed as a Gaussian linear polytree model.

Since an undirected Gaussian tree model can be represented as a Gaussian linear polytree model

according to a rooted tree, any two nodes are connected by a simple trek as there are no colliding

edges. Then Eq. (3.6) becomes ρij =
∏

s→t∈τij
ρst for any i 6= j. This is exactly the correlation

decay property used in the literature to study the sample complexity for undirected tree structure

learning, see, e.g. Bresler and Karzand (2020); Nikolakakis et al. (2019); Tavassolipour et al. (2018).

We aim to apply the similar techniques employed in these works to derive sufficient conditions on

the sample size for polytree learning.

3.3.3. Skeleton and CPDAG Recovery for Gaussian Models. For the convenience of

quantifying the correlation decay rates, we need the following definitions.

Definition 3.3.3. In a standardized linear polytree model (3.1), let ρmin and ρmax be the minimum

and maximum absolute correlation over the tree skeleton, that is

ρmin := min
i→j∈E

|ρij |, ρmax := max
i→j∈E

|ρij |.
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It is noteworthy that in general we cannot assume that ρmin is independent of n or p. In fact,

the second part of Lemma 3.3.1 gives rise to the following relationship between the noise variance

and the correlation coefficients with parents for each node:
∑

i∈Pa(j)
ρ2ij < 1, which further implies the

following corollary.

Corollary 3.3.4. Let d∗ represent the highest in-degree for a polytree. Then ρmin <
1√
d∗
.

In contrast, it is reasonable to assume ρmin to be a positive constant independent of p under the

undirected tree-structured Gaussian graphical model, since after transforming it to a rooted tree as

in Section 3.2.1, the highest in-degree satisfies d∗ = 1.

3.3.3.1. Skeleton Recovery. We now introduce a sufficient condition on the sample size for skele-

ton recovery under the Gaussian linear polytree model, in which the independent noise variables

satisfy εj ∼ N (0, ωjj) for j = 1, . . . , p. Then by X = (I −B)−>ε, we know that X is also mul-

tivariate Gaussian. This fact will help quantify the discrepancy between population and sample

pairwise correlations as characterized in Lemma 3.6.1.

Theorem 3.3.5. Consider a Gaussian linear SEM (3.1) associated to a polytree T = (V,E), in

which all variables have variance one. Also, assume ρmin > 0 and ρmax < 1. Denote by T̂ (X(1:n))

the estimated skeleton from the Chow-Liu algorithm (3.2) and by T the true skeleton from the

polytree T . For any δ ∈ (0, 1), we have P(T̂ (X(1:n)) 6= T ) < δ, provided

(3.7) n >

(
8

ρ2min(1− ρ2max)
+

1

2

)(
log

3p2

2δ(1− ρmax)7/2
+ log n

)
+ 4.

Moreover, if we further assume n < p10 and ρmax < 0.95, then a sufficient condition for the exact

skeleton recovery with probability at least 1−δ is n > C0 log(p/
√
δ)/ρ2min for some absolute constant

C0.

Remark 3. The assumption that all variables have variance one can be removed since both the

algorithm and polytree structure are scaling invariant.

Remark 4. With the assumptions ρmin > 0 and ρmax < 1, Eq. (3.6) implies strict correlation

decay over the tree skeleton, i.e., the population correlation coefficient between any two non-adjacent

variables Xi and Xj is strictly smaller than that between any two consecutive variables on the
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unique path between Xi and Xj in terms of absolute value. Putting this property and Lemma

3.6.1 together, we can derive the above sufficient condition on sample size for skeleton recovery by

standard techniques in the literature of undirected tree learning, e.g., Bresler and Karzand (2020);

Nikolakakis et al. (2019); Tavassolipour et al. (2018). We will give a self-contained proof in this

chapter. The crux for the proof is Lemma 3.6.2 that guarantees the exact recovery of tree skeleton

by Chow-Liu algorithm provided the sample correlation decay over the tree.

Remark 5. The above condition implies some dependence of the sample size on the maximum

in-degree d∗. In fact, together with Corollary 3.3.4, the sample size condition is essentially n ≥

O(d∗ log(p/
√
δ)) if ρmin � 1/

√
d∗.

Remark 6. As discussed in Section 3.3.2, Gaussian undirected tree models are equivalent to

Gaussian linear rooted polytree models, so it is permissible to assume that ρmin = Ω(1) and 1 −

ρmax = Ω(1). In this case, the sufficient condition on sample size for skeleton recovery in Theorem

3.3.5 is n = O(log(p/
√
δ)). Note that Gaussian undirected tree structure learning based on the

Chow-Liu algorithm has been studied in a recent work (Nikolakakis et al., 2019), in which the

sufficient condition on the sample size is n = O(log4(p/δ)).

3.3.3.2. CPDAG Recovery. As described in Section 3.2.3.2, after obtaining the estimated skele-

ton, the next step is to identify all v-structures by comparing ρij for all node triplets i − k − j in

the skeleton with a threshold ρcrit. Then the orientation propagation rule described in Algorithm 2

can be applied iteratively to orient as many undirected edges as possible. If both the skeleton and

v-structures are correctly identified, the orientation rule will be able to recover the true CPDAG,

i.e. equivalence class (Meek, 1995).

Theorem 3.3.6. Consider a Gaussian linear SEM (3.1) associated to a polytree T = (V,E), in

which all variables have variance one. Also, assume ρmin > 0 and ρmax < 1. Denote by Ĉ(X(1:n))

the estimated CPDAG from the entire algorithm in Sections 3.2.3.1 and 3.2.3.2 with threshold ρcrit,

and by CT the true CPDAG from the polytree T . Denote γ = min
{
ρmin
3 , 1−ρmax

2

}
ρmin. For any

δ ∈ (0, 1), on an event with probability at least 1 − δ, we have |ρ̂ij − ρij | < γ for any i < j and
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Ĉ(X(1:n)) = CT , provided γ < ρcrit < ρ2min − γ and

(3.8) n >

(
2

γ2
+

1

2

)(
log

3p2

2δ(1− ρmax)7/2
+ log n

)
+ 4.

Moreover, if we further assume n < p10 and ρmax < 0.95, then a sufficient condition for the exact

CPDAG recovery with probability at least 1−δ is n > C0 log(p/
√
δ)/ρ4min for some absolute constant

C0.

Remark 7. Again, the assumption that all variables have unit variance can be removed due to

the scaling invariance of the algorithm and the polytree structure.

Remark 8. It is noteworthy to observe the difference between the sample size conditions in

Theorems 3.3.5 and 3.3.6. In particular, if ρmin � 1/
√
d∗, the above sufficient condition on sample

size for CPDAG recovery is essentially n ≥ O(d2∗ log(p/
√
δ)), while recall that the sample size

condition for skeleton recovery is n ≥ O(d∗ log(p/
√
δ)).

Remark 9. In spite of the above implicit dependence on the maximum in-degree, the sufficient

condition on the sample size does not rely on the maximum out-degree except for n & log p. Note

that most existing theory on general sparse DAG recovery usually requires the sample size to be

greater than the maximum neighborhood size, e.g., Theorem 2 of Kalisch and Bühlman (2007). Our

result demonstrates the benefit by exploiting the polytree structures.

3.3.4. Information-theoretic Lower Bounds on the Sample Size. In this subsection, we

will establish necessary conditions on the sample size for both skeleton and CPDAG recovery under

Gaussian linear polytree models. In particular, we will use Fano’s method to derive information-

theoretic bounds.

Theorem 3.3.7. Let C(ρmin) be a collection of Gaussian linear polytree models, such that

ρmin := mini→j∈E |ρij | is fixed and satisfies 0 < ρmin < 1/
√
p. In each model out of this class,

assume that ρmax := maxi→j∈E |ρij | < 1/2. Assume p ≥ 10. Suppose that C(ρmin) is indexed by

θ, with corresponding polytree Tθ, covariance matrix Σθ, tree skeleton Tθ, and CPDAG CTθ . Then
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for any skeleton estimator T̂ , there holds

sup
θ∈C(ρmin)

PΣθ(T̂ (X(1:n)) 6= Tθ) ≥ 1/2

provided n < (log(p− 2)− 2)/ρ2min. Moreover, for any CPDAG estimator Ĉ, there holds

sup
θ∈C(ρmin)

PΣθ(Ĉ(X(1:n)) 6= CTθ) ≥ 1/2

provided n <
(

log (p−1)(p−2)
2 − 2

)
/(5ρ4min).

Compare Theorem 3.3.7 with Theorems 3.3.5 and 3.3.6, we can conclude that our derived

sufficient conditions on the sample sizes for the recovery of both skeleton and CPDAG are sharp.

3.4. Extension to Sub-Gaussian Models and Inverse Correlation Matrix Estimation

3.4.1. Sub-Gaussian Case. We now move to the sub-Gaussian case for the linear SEM (3.1)

associated to a polytree T = (V,E), in which we replace the Gaussian assumption with the following

sub-Gaussian assumption imposed on the independent noise variables.

Assumption 3.4.1. ε1, . . . , εp are independent mean-zero sub-Gaussian random variables satisfying

E[eλεi ] ≤ e
1
2
λ2κωii for all λ ∈ R, where κ is some constant and ωii = var(εi). In other words, the

squared sub-Gaussian parameter of εi is upper bounded by κωii.

Remark 10. If εi is a mean-zero Gaussian random variable, then κ = 1.

Remark 11. Assumption 3.4.1 actually implies the linear invariance for the parameter κ. In

fact, any linear combination X := a1ε1 + a2ε2 + . . .+ apεp satisfies

E[eλX ] = E[eλ(a1ε1+...+apεp)] = E[eλ(a1ε1)] · · ·E[eλ(apεp)]

≤ exp

[
λ2κ

2

(
a21ω11 + . . .+ a2pωpp

)]
= e

λ2κ
2

var(X), ∀λ ∈ R,

which implies thatX is a sub-Gaussian random variable whose sub-Gaussian parameter is controlled

by κvar(X). This fact can be applied to the components of the feature variables X = (I −B)−>ε

and their standardized counterparts X̃ = D−1(I−B)−>ε. As before,D is a diagonal matrix whose

diagonal entries are the standard deviations of X1, . . . , Xp.
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Recall that in the Gaussian case the discrepancy between population and sample pairwise corre-

lations are quantified in Lemma 3.6.1. For the sub-Gaussian case, such discrepancy is quantified in

Lemma 3.6.4. Combining it with the correlation decay property in Corollary 3.3.2, we can establish

the following CPDAG exact recovery result under the sub-Gaussian case. Given the proof is exactly

the same as that of Theorem 3.3.6, we skip the detailed argument and directly give the statement.

Theorem 3.4.2. Consider the sub-Gaussian linear SEM (3.1) associated to a polytree T =

(V,E), in which Assumption 3.4.1 is assumed to be true. Also, assume ρmin > 0 and ρmax <

1. Denote by Ĉ(X(1:n)) the estimated CPDAG from the entire algorithm discussed in Sections

3.2.3.1 and 3.2.3.2 with threshold ρcrit, and by CT the true CPDAG of the polytree T . Denote

γ = min
{
ρmin
3 , 1−ρmax

2

}
ρmin. For any δ ∈ (0, 1), on an event with probability at least 1−δ, we have

|ρ̂ij − ρij | < γ for any i < j and Ĉ(X(1:n)) = CT , provided γ < ρcrit < ρ2min − γ and

n > 2 max

{
128κ2(2 + γ)2

γ2
,
8κ(2 + γ)

γ

}
log

4p2

δ
.

3.4.2. Inverse Correlation Matrix Estimation. In this section, let’s consider the linear

polytree SEM and also assume the event described in either Theorem 3.3.6 or Theorem 3.4.2, that

is, the true CPDAG is exactly recovered, and |ρ̂ij − ρij | < γ for any i < j. Under this situation, we

are interested in recovering the inverse correlation matrix of the polytree model, which can be used to

estimate the partial correlations, and is thereby useful in constructing undirected graphical models

empirically with some tuning threshold. To estimate the inverse correlation matrix, due to scaling

invariance of population and sample correlations, without loss of generality, we assume that all Xi’s

have unit variances. Then the inverse correlation matrix is Θ := Σ−1 = (I−B)Ω−1(I−B>). The

major goal of this subsection is to study how well we can estimate Θ.

At first, let’s choose one realization from the equivalence class represented by this CPDAG, and

still refer to it as T with no confusion. By Θ = (I −B)Ω−1(I −B>), the elements in the inverse
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correlation matrix Θ are given by

θij =



−βij/ωjj if i→ j ∈ T

−βji/ωii if j → i ∈ T

βikβjk/ωkk if i→ k ← j ∈ T

0 otherwise,

for i 6= j

θjj =
1

ωjj
+

∑
k∈Ch(j)

β2jk
ωkk

, for j = 1, . . . p.

Notice that the k in i→ k ← j ∈ T must be unique in a polytree.

Since all variables have unit variance, it has been explained in Section 3.3.1 that for each

i→ j ∈ T , βij is actually the correlation coefficient ρij between Xi and Xj , so we can represent the

entries of the inverse correlation matrix by the correlation coefficients over the polytree as

θij =



−ρij/ωjj if i→ j ∈ T

−ρji/ωii if j → i ∈ T

ρikρjk/ωkk if i→ k ← j ∈ T

0 otherwise,

for i 6= j(3.9)

θjj =
1

ωjj
+

∑
k∈Ch(j)

ρ2jk
ωkk

, for j = 1, . . . p.(3.10)

where ωjj = 1−
∑

i∈Pa(j)
ρ2ij for j = 1, . . . , p.

A natural question is whether we can represent the inverse correlation matrix only through the

CPDAG CT . This question is important given we can only hope to recover CT by the algorithms

introduced in Sections 3.2.3.1 and 3.2.3.2. We first give a useful lemma, which explains for what

kind of node j, the noise variance ωjj = 1 −
∑

i∈Pa(j)
ρ2ij is well-defined on the CPDAG CT , i.e.,

invariant to any particular polytree chosen from the equivalence class.

Lemma 3.4.3. Denote by CT the true CPDAG of the polytree T . We denote by Vm the collection

of nodes j such that there is at least one undirected edge i − j in CT . On the other hand, we

denote Vd the collection of nodes j such that all its neighbors are connected to it with a directed
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edge in CT . This means that Vm and Vd form a partition of all nodes. Then, we have the following

properties:

(1) For each j ∈ Vm, there is no i satisfying i→ j ∈ CT .

(2) For each j ∈ Vm and any polytree T ′ within the equivalence class CT , j has at most one

parent in T ′.

(3) For each j ∈ Vd, since the set of parents of j is determined by the CPDAG CT , the

corresponding noise variance ωjj = 1−
∑

i∈Pa(j)
ρ2ij is well-defined.

(4) Combining the third property and the contrapositive of the first property, we know for

each i → j ∈ CT , we have j ∈ Vd, and the corresponding noise variance ωjj is thereby

well-defined.

We omit the proof since this result can be directly implied by the fact that v-structures are

kept unchanged in all polytrees within the equivalence class determined by CT . Then the following

result shows that the inverse correlation matrix can be represented by the pairwise correlations on

the skeleton as well as the CPDAG.

Lemma 3.4.4. Let Vm and Vd be the partition of all nodes defined in Lemma 3.4.3. Then, the

inverse correlation matrix can be represented as

θij =



−ρij/ωjj if i→ j ∈ CT

−ρji/ωii if j → i ∈ CT

−ρij/(1− ρ2ij) if i− j ∈ CT

ρikρjk/ωkk if i→ k ← j ∈ CT

0 otherwise,

for i 6= j

and

θjj =


1
ωjj

+
∑

j→k∈CT

ρ2jk
ωkk

, j ∈ Vd,

1 +
∑

j−k∈CT

ρ2jk
1−ρ2jk

+
∑

j→k∈CT

ρ2jk
ωkk

, j ∈ Vm.

Here ωjj = 1−
∑

i∈Pa(j)
ρ2ij is well-defined in all of the above formulas, since Pa(j) is well-defined for

any j ∈ Vd.
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The result can be obtained relatively straightforward by the facts listed in Lemma 3.4.3. How

to obtain the formula of θjj for j ∈ Vm from (3.10) may not be too obvious, since for polytree

corresponding to CT , j may have one or zero parent. It turns out that these two cases lead to the

same formula given in the lemma. We omit the detailed argument for the proof.

Based the above lemma, we can give an estimate of the inverse correlation matrix through

pairwise sample correlations over the estimated tree skeleton in combination with the estimated

CPDAG ĈT :

(3.11) θ̂ij =



−ρ̂ij/ω̂jj if i→ j ∈ ĈT

−ρ̂ji/ω̂ii if j → i ∈ ĈT

−ρ̂ij/(1− ρ̂2ij) if i− j ∈ ĈT

ρ̂ikρ̂jk/ω̂kk if i→ k ← j ∈ ĈT

0 otherwise,

for i 6= j

and

(3.12) θ̂jj =


1
ω̂jj

+
∑

j→k∈ĈT

ρ̂2jk
ω̂kk

, j ∈ V̂d,

1 +
∑

j−k∈ĈT

ρ̂2jk
1−ρ̂2jk

+
∑

j→k∈ĈT

ρ̂2jk
ω̂kk

, j ∈ V̂m.

Here V̂d and V̂m are similarly defined as in Lemma 3.4.3. Also, for any j ∈ V̂d, we have ω̂jj =

1−
∑

i∈P̂ a(j)
ρ̂2ij , where P̂ a(j) is the estimated parent set determined in the estimated CPDAG ĈT .

Finally, we introduce our result regarding the estimation error bounds of inverse correlation

matrix estimation defined above.

Theorem 3.4.5. Consider the linear polytree SEM (3.1) where Xj has unit variance for each

j ∈ V . Denote by Ĉ(X(1:n)) the estimated CPDAG and by CT the true CPDAG from the polytree T .

For ε > 0, consider the events Eρ(ε) = {|ρ̂ij − ρij | ≤ ε, ∀i→ j ∈ T} and ECT = {Ĉ(X(1:n)) = CT }.

Then on the event Eρ(ε)∩ECT , the estimated inverse correlation matrix defined in (3.11) and (3.12)

satisfies
p∑
j=1

|θ̂jj − θjj | ≤ C0

(
d∗p

ω2
min

)
ε,
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and ∑
i 6=j
|θ̂ij − θij | ≤ C0

(
d2∗p

ω2
min

)
ε,

for some absolute constant C0 provided ε < ωmin/(4d∗). Here d∗ = max{dinj : j ∈ Vd} ∨ 1 and

ωmin = min{ωjj : j ∈ Vd} ∧min{1− ρ2ij : i− j ∈ CT }, both of which only depend on CT .

Remark 12. Under Gaussian or sub-Gaussian cases, the event Eρ(ε) ∩ ECT occurs with high

probability when the sample size is enough. Taking Theorem 3.3.6 for instance, when the suf-

ficient sample size condition is satisfied, Eρ(ε) ∩ ECT occurs with high probability with ε =

min
{
ρmin
3 , 1−ρmax

2

}
ρmin.

Remark 13. Here d∗ and ωmin have clear interpretations for any polytree T ′ chosen from the

equivalence class determined by CT . In fact, for each j ∈ Vm, there holds dinj ≤ 1 in T ′, so d∗ is

the maximum in-degree of T ′. Again, for each j ∈ Vm, it is easy to verify that ωjj ≥ min{1− ρ2ij :

i− j ∈ CT }, so we know ωjj ≥ ωmin for j = 1, . . . , p, i.e., ωmin is a uniform lower bound of the noise

variances of ε1, . . . , εp induced by any polytree within the equivalence class.

3.5. Numerical Experiments

To illustrate the feasibility and quantitative performance of the polytree learning method, we

implement Algorithms 1 and 2 in Python and test on simulated data (Section 3.5.1). We further test

on commonly used benchmark datasets (Section 3.5.2) to assess the robustness and applicability

to real-world data. In all experiments, we set the threshold ρcrit (Algorithm 2) for rejecting a

pair of nodes being independent based on the testing zero correlation for Gaussian distributions.

Specifically, ρcrit =
√

1− 1
1+t2

α/2
/(n−2) , where tα/2 is the 1 − α/2 quantile of a t-distribution with

df = n − 2, and we use α = 0.1. As comparisons, we run these same data using two basic and

representative structural learning methods: the score-based hill-climbing (Gámez et al., 2011) and

the constraint-based PC algorithm (Spirtes et al., 2000). We use R implementations of these two

algorithms from bnlearn and pcalg packages, respectively, along with all the default options and

parameters. An α = 0.01 is used for the PC algorithm as recommended in Kalisch and Bühlman

(2007). All codes are available at https://github.com/huyu00/linear-polytree-SEM.
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We assess the results by comparing the true and inferred CPDAGs G and Ĝ. On the skeleton

level, there can be edges in G that are missing in Ĝ, and vice versa Ĝ can have extra edges. For

the CPDAG, we consider a directed edge to be correct if it occurs with the same direction in both

CPDAGs. For an undirected edge, it needs to be undirected in both CPDAGs to be considered

correct. Any other edges that occur in both CPDAGs are considered having wrong directions. With

these notions, we can calculate the False Discovery Rate (FDR) for the skeleton as |extra|
|Ĝ|

, and for

the CPDAG as |extra|+|wrong direction|
|Ĝ|

. Here |extra| is the number of extra edges, |Ĝ| is the number of

edges in Ĝ and so on. To quantify the overall similarity and taken into account the true positives,

we calculate the Jaccard index (JI), which is |correct|+|wrong direction|
|G∪Ĝ|

= |correct|+|wrong direction|
|missing|+|Ĝ|

for the

skeleton, and |correct|
|G|+|Ĝ|−|correct|

for the CPDAG.

3.5.1. Testing on Simulated Polytree Data. Here we briefly describe how we generate

linear polytree SEMs. Additional implementation details can be found in Section 3.5.3. First,

we generate a polytree by randomly assigning directions to a random undirected tree. Next, the

standardized SEM parameters βij ’s (as in Lemma 3.3.1) are randomly chosen within a range, which

in turn determine ωii (Eq. (3.5)). Motivated by the theoretical results (Theorems 3.3.5 to 3.3.7),

we make sure that in the above procedures, the generated SEM satisfies ρmin ≤ |βij | ≤ ρmax,

the maximum in-degree is din
max, and ωmin ≤ ωii for all i ∈ V . Here ρmin, ρmax, d

in
max, ωmin are

pre-specified constants (values used are listed in Fig. 3.1 caption).

Figures 3.1 and 3.2 show the performance for p = 100 and n ranging from 50 to 1000. We see

that the polytree learning performs much better than the hill-climbing, and overall has an accuracy

similar to or better than that of the PC algorithm. For small sample size less than 400, the PC

algorithm has a smaller FDR for skeleton recovery than the polytree learning, but this is likely at

the expense of the true positive rate, as reflected by the similar or lower JI of the PC algorithm

comparing to the polytree learning (Panels BD of Figs. 3.1 and 3.2). As ρmin becomes smaller or as

din
max increases, the accuracy of the polytree learning decreases, which is consistent with the theory

(Theorems 3.3.5 to 3.3.7). For the hill-climbing and the PC, the accuracy is less affected by ρmin

or din
max (Fig. 3.1 vs Fig. 3.2). Interestingly, the running time of the PC algorithm is significantly

affected by din
max: the running time increases 40 folds when din

max changes from 10 to 20 (Table 3.3),

and the code may even fail to stop (running for more than 8 hours) when din
max = 40 (data not
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shown). This phenomenon can be explained by the relationship between the maximal number of

neighbors and the maximal number of iterations in the PC algorithm; see Proposition 1 of Kalisch

and Bühlman (2007). On the other hand, the polytree learning is significantly more favorable in

terms of running time. It is up to 80 times faster than the slowest alternative algorithm (Table 3.3)

and, importantly, has a running time that is constant across the SEM parameters (this is also true

for all other experiments described later).

3.5.2. Testing on DAG Benchmark Data. The ALARM dataset (Beinlich et al., 1989) is a

widely used benchmark data. The true DAG (Fig. 3.3) has 37 nodes and 46 edges, hence there has

to be at least 10 edges missing in the inferred polytree. In fact, a three-phase algorithm initialized

by polytree learning has been demonstrated to be effective on this data (Cheng et al., 2002). We

simply conducted the polytree learning algorithm introduced in Sections 3.2.3.1 and 3.2.3.2, and

found that it still performs better than hill-climbing and PC algorithm in terms of the metrics

(Table 3.1) as well as intuitively by the resulting graph (Fig. 3.3). At n = 5000, it even achieves

the best possible accuracy for skeleton recovery as polytree learning can achieve (10 missing edges

and 0 extra).

n = 500 Correct Wrong d. Missing Extra FDR sk. JI sk. FDR CPDAG JI CPDAG
Polytree 28.0 4.0 14.0 4.0 0.11 0.64 0.22 0.52
Hill-climbing 24.0 17.0 5.0 60.0 0.59 0.39 0.76 0.2
PC 14.0 17.0 15.0 13.0 0.3 0.53 0.68 0.18
n = 5000 Correct Wrong d. Missing Extra FDR sk. JI sk. FDR CPDAG JI CPDAG
Polytree 25.0 11.0 10.0 0.0 0.0 0.78 0.31 0.44
Hill-climbing 27.0 18.0 1.0 62.0 0.58 0.42 0.75 0.21
PC 24.0 17.0 5.0 12.0 0.23 0.71 0.55 0.32

Table 3.1. Performance on ALARM data. See text for the details of the accuracy
measures: the number of correct, missing, extra and wrong direction edges, FDR and
Jaccard index for skeleton and CPDAG. The best results across the three algorithms
are in bold.

Another benchmark we test is the ASIA dataset (Lauritzen and Spiegelhalter, 1988), which is

a simulated DAG dataset with eight nodes. Note that the ground truth is sparse but not exactly a

polytree. At n = 500 samples, the performance of polytree learning is comparable to that of hill-

climbing and PC algorithm, while the hill-climbing gives the best result at n = 5000 (Table 3.2).

We illustrate the comparison intuitively by plotting the most likely inference outcomes of each

algorithm across the bootstrap trials in Fig. 3.4 (where we resample n observations from the original
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Figure 3.1. Performance on the polytree simulated data at p = 100 and the maxi-
mum in-degree din

max = 10. The results from the algorithms are represented by solid
lines and dot markers (polytree), dash lines and triangle markers (hill-climbing), and
dash-dot lines and square markers (PC). Colors correspond to three different values
of ρmin. The rest of the SEM parameters are: ρmax = 0.8, and ωmin = 0.1). Pan-
els A,C show the FDR (the smaller the better) for skeleton and CPDAG recovery.
Panels B,D show the Jaccard Index (the larger the better). For each combination
of the SEM parameters, we randomly generate a polytree, the detailed generation
of the βij ’s and ωii’s are described in Section 3.5.3. Then we draw iid samples from
the SEM of different sizes (the x-axis, n = 50, 100, 200, 400, 600, 800, 1000) and re-
peat 100 times. Each point on the curves is averaged over the 100 repeats and the
errorbars are 1.96 times the standard error of the mean (many are smaller than the
marker).

5000 samples). Note the polytree learning graph (occurs at 23%) is the best possible result it can

achieve. This is because at least one edge must be missing by polytree learning, and the v-structure

involving B, E, D can no longer be identified once missing the edge ED, leading to BD being

undirected.
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Figure 3.2. Same as Fig. 3.1 but for a maximum in-degree of din
max = 20.

3.5.3. Details on polytree data generation. In simulated polytree data, we draw i.i.d.

samples from a Gaussian linear SEM with a polytree structure. First, we generate an undirected

tree with p nodes from a random Prufer sequence. The Prufer sequence which has a one-to-one

correspondence to all the trees with p nodes is obtained by sampling p−2 numbers with replacement

from {1, 2, . . . , p}. Next, a polytree is obtained by randomly orienting the edges of the undirected

tree. We also ensure that one of the nodes has a specified large in-degree din
max. This is done by

making a node i occur at least din
max − 1 times in the Prufer sequence, so the node will have degree

at least din
max in the undirected tree. We then orient all edges connected to i by selecting din

max of

them to be incoming edges. The rest of the edges in the tree are oriented randomly as before.

In the next step, we choose the value of the standardized βij corresponding to the correlation

matrix (as in Lemma 3.3.1). Note that once βij ’s are given, ωii are determined by Eq. (3.5).

Motivated by the theoretical conditions on n, p such as those in Theorems 3.3.5 and 3.3.6, we
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Figure 3.3. Comparing the true CPDAG of the ALARM data and the inferred one
from the three algorithms at n = 5000. There are 37 nodes and 46 edges in the true
CPDAG.

choose βij according to some pre-specified values ρmin and ρmax, and study the effects of these

parameters on the recovery accuracy. To avoid ill-conditioned cases, we require that ωii ≥ ωmin,

where ωmin is another parameter. This adds constraints on βij ,
∑p

j=1 β
2
ij ≤ 1−ωmin, in addition to

ρmin ≤ |βij | ≤ ρmax. We sample β2ij uniformly among the set of non-negative values satisfying the

above inequality constraints. This sampling is implemented by drawing β2ij , (corresponding to all

the edges in the polytree) sequentially in a random order as min(ρ2max, ρ
2
min +vjx), where x is drawn

from the beta distribution B(1, d̃in
j ). Here d̃in

j is the number of incoming edges to node j whose β2ij

has not yet been chosen, and vj = 1 − ωmin − din
j ρ

2
min −

∑
k β

2
kj , where the sum is over all edges
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n = 500 Correct Wrong d. Missing Extra
Polytree 3.56(1.47) 2.24(1.42) 2.2(0.85) 1.2(0.85)
Hill-climbing 4.11(1.62) 2.31(1.29) 1.58(0.82) 1.29(0.97)
PC 3.67(0.86) 1.54(0.9) 2.78(0.65) 0.14(0.42)
n = 5000 Correct Wrong d. Missing Extra
Polytree 4.31(1.42) 2.17(1.36) 1.52(0.51) 0.52(0.51)
Hill-climbing 6.96(0.92) 0.33(0.68) 0.7(0.57) 0.88(0.97)
PC 4.56(1.03) 1.81(1.02) 1.63(0.53) 0.15(0.37)

(continue)
n = 500 FDR sk. JI sk. FDR CPDAG JI CPDAG
Polytree 0.17(0.12) 0.64(0.13) 0.49(0.21) 0.33(0.17)
Hill-climbing 0.16(0.11) 0.7(0.13) 0.46(0.21) 0.38(0.21)
PC 0.02(0.06) 0.64(0.09) 0.31(0.17) 0.39(0.11)
n = 5000 FDR sk. JI sk. FDR CPDAG JI CPDAG
Polytree 0.07(0.07) 0.77(0.11) 0.38(0.2) 0.43(0.18)
Hill-climbing 0.1(0.1) 0.83(0.12) 0.13(0.15) 0.78(0.18)
PC 0.02(0.05) 0.78(0.07) 0.29(0.17) 0.47(0.14)

Table 3.2. Performance on ASIA data. The accuracy measures (the number of cor-
rect, missing, extra and wrong direction edges, FDR and Jaccard index for skeleton
and CPDAG; see text) are averaged over 1000 bootstraps (resampling n observa-
tions) and the standard deviations are in the parentheses. The best results across
the three algorithms are in bold.

Figure 3.4. The true CPDAG and the typical inferred CPDAG with n = 5000
samples. We plot the most likely inferred graph across 1000 bootstraps for each
algorithm, which occurs at 23% (polytree), 44% (hill-climbing), 42% (PC), respec-
tively.

k → j whose β2kj have already been chosen, din
j is the total number of incoming edges to j. The

use of beta distribution here is based on the fact of the order statistics of independent uniformly

distributed random variables. As an exception, we first set two |βij | values to attain equality in

the constraints by ρmin and ρmax before choosing the rest of βij ’s according to the above sampling

procedure. For ρmax, we randomly choose a node i that satisfies ρ2min(din
i − 1) + ρ2max ≤ 1 − ωmin,

din
i > 0 (always exists if ρ2max + ωmin ≤ 1 and the minimum nonzero in-degree is 1), and set one of

its incoming edges to have |βji| = ρmax. For ρmin, we choose a node among the rest of nodes with
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(Unit: sec) Polytree p = 100,
dinmax = 10

Polytree p = 100,
dinmax = 20

ASIA p = 8 ALARM p = 37

Polytree 0.01 0.01 0.01 0.01
Hill-climbing 0.87 1.00 0.01 1.48
PC 0.07 2.86 0.03 0.53

Table 3.3. Running time comparison. The columns correspond to the SEM data
in Figs. 3.1 and 3.2 (polytree), Table 3.1 (ALARM) and Table 3.2 (ASIA). n = 5000
for the AISA and ALARM. The running time is for one inference (averaged across
trials/bootstraps when applicable). All computation is done on a 2019 i7 quad-core
CPU desktop computer.

din
k > 0 and set |βlk| = ρmin for one of its incoming edges. Lastly, a positive or negative sign is given

to each βij with equal probability. After the βij ’s (i.e., matrix B) are chosen (and hence Ω), the

zero mean Gaussian samples X are drawn according to X = (I −B)−>ε.

3.6. Proofs

3.6.1. Supporting Lemmata. Here we introduce some important results that would be help-

ful for proving our main results.

Lemma 3.6.1 (Kalisch and Bühlman (2007), Lemma 1). Consider the Gaussian linear polytree

SEM (3.1) with ρmax < 1. For any 0 < γ ≤ 2, there holds

sup
i 6=j

P(|ρ̂ij − ρij | ≥ γ) ≤ C1(n− 2) exp

(
(n− 4) log

(
4− γ2

4 + γ2

))
,

where C1 =
(1−ρ2min)

3/2(3−ρmax)

(1−ρmax)7/2
. This further implies that

P

 ⋂
1≤i<j≤p

{|ρ̂ij − ρij | < γ}

 ≥ 1− C1

(
p

2

)
(n− 2) exp

(
(n− 4) log

(
4− γ2

4 + γ2

))
.

Note that ρmin is only defined over the skeleton.

Lemma 3.6.2 (e.g. Bresler and Karzand (2020), Lemma 6.1 and Lemma 8.8). Let T be the skeleton

of true polytree T = (V,E) and T̂ be the estimated tree through Chow-Liu algorithm (3.2). If an

edge (w, w̃) ∈ T and (w, w̃) /∈ T̂ , i.e. this edge is incorrectly missed, then there exists an edge

(v, ṽ) ∈ T̂ and (v, ṽ) /∈ T such that (w, w̃) ∈ pathT (v, ṽ) and (v, ṽ) ∈ pathT̂ (w, w̃). On such an

error event, we have |ρ̂vṽ| ≥ |ρ̂ww̃|.
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Lemma 3.6.3 (Harris and Drton (2013), Lemma 7). Let (X,Y ) be a bivariate random vector with

mean zero and covariance matrix Σ. Denote the empirical covariance matrix with Σ̂n from an i.i.d.

sample of size n. If Σ is positive definite with Σ11,Σ22 ≥ 1 and ‖Σ̂n − Σ‖max < t < 1, where

‖ · ‖max represents the elementwise maximum absolute value of a matrix, then for the population

and sample correlation between X and Y , we have

|ρ̂XY − ρXY | <
2t

1− t
.

Lemma 3.6.4. AssumeXi andXj are jointly distributed mean-zero sub-Gaussian random variables

whose sub-Gaussian parameters are controlled by κVar(Xi) and κVar(Xj), respectively. Assume

we have i.i.d. samples from their joint distribution as (X
(1)
i , X

(1)
j ), ..., (X

(n)
i , X

(n)
j ). Then, for any

0 < γ ≤ 2, their population and sample correlation coefficients satisfy

P(|ρ̂ij − ρij | > γ) ≤ 8 exp

{
−n

2
min

{
γ2

128κ2(2 + γ)2
,

γ

8κ(2 + γ)

}}
.

Proof. Notice that both population and sample correlation coefficients are scaling invariant.

Therefore, WLOG, we can assume that Var(Xi) = Var(Xj) = 1. Remark 11 implies that their

sub-Gaussian parameters are both controlled by κ.

It is known that X2
i is sub-Exponential with parameters (32κ2, 4κ) (Honorio and Jaakkola,

2014). In other words, it holds that

E[eλ(X
2
i −E[X2

i ])] ≤ e16κ2 , ∀|λ| ≤ 1

4κ
.

Note that our assumption gives E[X2
i ] = Var(Xi) = 1. By sub-Exponential tail bound, for any

t > 0,

P

(∣∣∣∣∣ 1n
n∑
l=1

(X
(l)
i )2 −Var(Xi)

∣∣∣∣∣ > t

)
≤ 2 exp

{
−n

2
min

{
t2

32κ2
,
t

4κ

}}
.

Similarly, we have

P

(∣∣∣∣∣ 1n
n∑
l=1

(X
(l)
j )2 −Var(Xj)

∣∣∣∣∣ > t

)
≤ 2 exp

{
−n

2
min

{
t2

32κ2
,
t

4κ

}}
.

For the covariance term between Xi and Xj , note that XiXj =
(Xi+Xj)

2−(Xi−Xj)2
4 . Since Xi and

Xj are sub-Gaussian variables, we have that Xi ± Xj are both sub-Gaussian with parameter 4κ.
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Then, the sub-Exponential tail bound can be applied to (Xi ±Xj)
2 to obtain the following result.

P

(∣∣∣∣∣ 1n
n∑
l=1

X
(l)
i X

(l)
j − Cov(Xi, Xj)

∣∣∣∣∣ > t

)

≤P

(∣∣∣∣∣ 1

4n

n∑
l=1

(X
(l)
i +X

(l)
j )2 − 1

4
E(X

(1)
i +X

(1)
j )2

∣∣∣∣∣ > t

2

)

+ P

(∣∣∣∣∣ 1

4n

n∑
l=1

(X
(l)
i −X

(l)
j )2 − 1

4
E(X

(1)
i −X

(1)
j )2

∣∣∣∣∣ > t

2

)

≤4 exp

{
−n

2
min

{
t2

128κ2
,
t

8κ

}}
.

Denote by Σij and Σ̂ij
n the population and sample covariance matrices of Xi and Xj , respectively.

A union bound gives

P(‖Σ̂ij
n −Σij‖max > t) ≤ 8 exp

{
−n

2
min

{
t2

128κ2
,
t

8κ

}}
.

Applying Lemma 3.6.3 and setting t = γ
2+γ for some 0 < γ ≤ 2, we have

P(|ρ̂ij − ρij | > γ) ≤ P
(
‖Σ̂ij

n −Σij‖max >
γ

2 + γ

)
≤ 8 exp

{
−n

2
min

{
γ2

128κ2(2 + γ)2
,

γ

8κ(2 + γ)

}}
.

�

3.6.2. Proof of Theorem 3.2.1.

Proof. Each connected component of the undirected edges is a sub-graph of the polytree G’s

skeleton, thus is a tree. If a node of the tree also has directed edges, they must be outgoing according

to Line 6 of Algorithm 2 (Rule 1 in Meek (1995)). This means that when we convert each undirected

tree into a rooted tree, it does not create any additional v-structures in the resulting DAG G′. So

the original CPDAG is also the CPDAG of G′, i.e., G′ is equivalent to G. On the other hand,

if G′ is an equivalent DAG, for each undirected tree T in the CPDAG, let i be a source node of

T according to G′. Then T in G′ must be a rooted tree with i being the root to avoid having

v-structures within T (and hence contradicting with G′ shares the same CPDAG). This shows that
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all equivalent class members can be obtained by orienting undirected trees into rooted trees and

completes the proof. �

3.6.3. Proof of Theorem 3.3.5.

Proof. Denote γ = ρmin(1− ρmax)/2. Consider the event

E =
⋂

1≤i<j≤p
{|ρ̂ij − ρij | < γ}.

By Lemma 3.6.1, we have

P(E) ≥ 1− C1

(
p

2

)
(n− 2) exp

(
(n− 4) log

(
4− γ2

4 + γ2

))
,

where C1 =
(1−ρ2min)

3/2(3−ρmax)

(1−ρmax)7/2
.

Consider any undirected edge (w, w̃) ∈ T and any non-adjacent pair (v, ṽ) such that (w, w̃) ∈

pathT (v, ṽ). According to Corollary 3.3.2, there are two possible cases. If pathST (v, ṽ) corresponds

to a simple trek in the polytree T , then ρvṽ consists of the product among several correlation

coefficients containing ρww̃. Hence |ρvṽ| ≤ |ρww̃|ρmax. On the contrary, if pathT (v, ṽ) is not a

simple trek in T , then we have ρvṽ = 0. Overall, we can obtain an upper bound for |ρvṽ| − |ρww̃|.

(3.13) |ρvṽ| − |ρww̃| ≤ |ρww̃|(ρmax − 1) ≤ ρmin(ρmax − 1).

Under the event E, the triangular inequality gives that

|ρ̂vṽ| − |ρ̂ww̃| = |ρ̂vṽ| − |ρvṽ|+ |ρvṽ| − |ρww̃| − (|ρ̂ww̃| − |ρww̃|)

≤ |ρ̂vṽ − ρvṽ|+ |ρ̂ww̃ − ρww̃|+ |ρvṽ| − |ρww̃|

< 2γ + ρmin(ρmax − 1) = 0.(3.14)

Notice that this holds uniformly for any undirected edge (w, w̃) ∈ T and any non-adjacent pair

(v, ṽ) such that (w, w̃) ∈ pathT (v, ṽ).

Under the event T̂ (X(1:n)) 6= T , by Lemma 3.6.2, we know there is an edge (w, w̃) ∈ T and a

non-adjacent pair (v, ṽ), such that (w, w̃) ∈ pathT (v, ṽ) while |ρ̂vṽ| ≥ |ρ̂ww̃|. Then we have

E ⊂ {T̂ (X(1:n)) = T }.
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It suffices to study the tail probability of E, which satisfies

C1(n− 2) exp

(
(n− 4) log

(
4− γ2

4 + γ2

))(
p

2

)
≤ C1 exp

(
(n− 4) log

(
4− γ2

4 + γ2

))
np2

2
.

Then we have P(E) < δ by requiring the sample size to satisfy

n > log

(
(1− ρ2min)3/2(3− ρmax)np2

2(1− ρmax)7/2δ

)
/ log

(
4 + γ2

4− γ2

)
+ 4.

This condition can be implied by the sample complexity condition (3.7) by the equality log(1+x) ≥
x

1+x for any positive x. �

3.6.4. Proof of Theorem 3.3.6.

Proof. With γ = min
{
ρmin
3 , 1−ρmax

2

}
ρmin, consider the event

E′ =
⋂

1≤i<j≤p
{|ρ̂ij − ρij | < γ}.

By Lemma 3.6.1, we have

P(E′) ≥ 1− C1

(
p

2

)
(n− 2) exp

(
(n− 4) log

(
4− γ2

4 + γ2

))
,

where C1 =
(1−ρ2min)

3/2(3−ρmax)

(1−ρmax)7/2
. Similar to the argument in Theorem 3.3.5, under this event the the

Chow–Liu algorithm recovers the true skeleton of the polytree exactly, i.e.,

E′ ⊂ {T̂ (X(1:n)) = T }.

It suffices to show that by choosing ρcrit that satisfies γ < ρcrit < ρ2min − γ in Algorithm 2, all

v-structures are correctly identified on the event E′. Let’s consider all node triplets i−k−j in T . If

the ground truth is i→ k ← j, we know that ρij = 0 and then on E′ we have |ρ̂ij | ≤ γ ≤ ρcrit. This

means the v-structure is identified by Algorithm 2. In contrast, if the ground truth is i ← k ← j

or i ← k → j or i → k → j, Corollary 3.3.2 implies that |ρij | = |ρik||ρkj | ≥ ρ2min, and then on E′

there holds |ρ̂ij | ≥ |ρij | − γ ≥ ρ2min − γ > ρcrit. This means this triplet is correctly identified as

a non-v-structure. In sum, we know that on the event E′, we identify all the v-structures exactly.

Then the CPDAG of T can be exactly recovered by Algorithm 2 as guaranteed in Meek (1995).
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Finally, we have

P(Ĉ(X(1:n)) 6= CT ) ≤ P((E′)c) ≤ C1

(
p

2

)
(n− 2) exp

(
(n− 4) log

(
4− γ2

4 + γ′2

))
.

Then, we know that P(Ĉ(X(1:n)) 6= CT ) ≤ δ under the sample size condition (3.8) by the same

argument in Theorem 3.3.5.

�

3.6.5. Proof of Theorem 3.3.7.

Proof. The key idea is to apply Fano’s method to appropriate sub-classes of C(ρmin) to es-

tablish the intended information-theoretic lower bounds for both skeleton and CPDAG recovery.

Generally speaking, let CM = {T1, . . . , TM} be a sub-class of polytree models C(ρmin) whose respec-

tive covariance matrices are denoted as Σ(T1), . . . ,Σ(TM ). Let model index θ be chosen uniformly

at random from {1, . . . ,M}. Given the observations X(1:n) ∈ Rn×p, the decoder ψ estimates the

underlying polytree structure with maximal probability of decoding error defined as

perr(ψ) = max
1≤j≤M

PΣ(Tj)

(
ψ(X(1:n)) 6= Tj

)
.

By Fano’s inequality (Thomas and Joy, 2006), the maximal probability of error over CM can be

lower bounded as

inf
ψ
perr(ψ) ≥ 1− I(θ;X(1:n)) + 1

logM
.

Given all involved distributions are multivariate Gaussian, we will apply the following entropy-based

bound of the mutual information that can be found in Wang et al. (2010):

I(θ;X(1:n)) ≤ n

2
F (C), where

(3.15) F (C) := logdet(Σ)− 1

M

M∑
j=1

logdet(Σ(Tj))

and the averaged covariance matrix Σ := 1
M

∑M
j=1 Σ(Tj).

Lower Bound for Skeleton Recovery. In the following we consider a class of polytree models

CM = {T1, . . . , TM} whereM = p−2. These polytrees share p−2 common directed edges 1→ (p−1),
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2→ (p− 1), ..., (p− 2)→ (p− 1). For the (p− 1)-th directed edge, we let p→ 1 in T1, p→ 2 in T2,

..., p → (p − 2) in Tp−2. Also, we assume that all variables have variance one, and the correlation

coefficients on the skeleton are all ρ that satisfies 0 < ρ < 1√
p . Here we write ρ = ρmin for simplicity.

Note that the polytrees in this sub-class of C(ρ) (defined in the statement of Theorem 3.3.7) have

distinct skeletons, so

inf
T̂

sup
θ∈C(ρmin)

PΣθ(T̂ (X(1:n)) 6= Tθ) ≥ inf
ψ

max
1≤j≤M

PΣ(Tj)

(
ψ(X(1:n)) 6= Tj

)
.

We can easily obtain the formula for each covariance Σ(Tj) for j = 1, . . . ,M by using Corollary

3.3.2. For example, for T1, we have

Σ(T1) =



1 0 . . . 0 ρ ρ

0 1 . . . 0 ρ 0
...

...
. . .

...
...

...

0 0 . . . 1 ρ 0

ρ ρ . . . ρ 1 ρ2

ρ 0 . . . 0 ρ2 1


:=

 A B

B> D



The Schur complement of A = I is thereby

D −B>A−1B =

1− (p− 2)ρ2 0

0 1− ρ2

 .
Then det(Σ(T1)) = det(A) det(D − B>A−1B) = (1 − ρ2)(1 − (p − 2)ρ2). Similarly, for all j =

1, . . . , p− 2, there holds det(Σ(Tj)) = (1− ρ2)(1− (p− 2)ρ2).

On the other hand, the average covariance is

Σ =
1

p− 2

p−2∑
j=1

Σ(Tj) =



1 0 . . . 0 ρ ρ/(p− 2)

0 1 . . . 0 ρ ρ/(p− 2)
...

...
. . .

...
...

...

0 0 . . . 1 ρ ρ/(p− 2)

ρ ρ . . . ρ 1 ρ2

ρ/(p− 2) ρ/(p− 2) . . . ρ/(p− 2) ρ2 1


.
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As with above, we can use Schur complement to obtain det(Σ) = (1 − ρ2/(p − 2))(1 − (p − 2)ρ2).

Plug these results into (3.15), we have

F (C) = log

(
1 +

(p− 3)ρ2

(p− 2)(1− ρ2)

)
≤ (p− 3)ρ2

(p− 2)(1− ρ2)
≤ (p− 3)ρ2

(p− 2)(1− 1/p)
≤ ρ2.

Then perr ≥ 1 − (n2ρ
2 + 1)/ log(p − 2). To ensure perr > 1/2, we only need to require 1 − (n2ρ

2 +

1)/ log(p− 2) > 1/2, which is equivalent to n < (log(p− 2)− 2)/ρ2.

Lower Bound for CPDAG Recovery. Let’s now consider another class of polytree models CM =

{T1, . . . , TM} where M =
(
p−1
2

)
. All polytrees in this class are stars with hub node p, and p is

directed to all but two nodes in {1, . . . , p− 1}. In T1, the directed edges are 1→ p, 2→ p, p→ 3,

p→ 4, ..., p→ (p− 1). In T2, the directed edges are 1→ p, p→ 2, 3→ p, p→ 4, ..., p→ (p− 1).

And so on until in TM , the directed edges are p→ 1, p→ 2, ..., p→ (p−3), (p−2)→ p, (p−1)→ p.

Also, assume that all variables have variance one, and the correlation coefficients on the skeleton

are all ρ that satisfies 0 < ρ < 1
2 . Again, we write ρ = ρmin for simplicity. Although the polytrees

in this sub-class of C(ρ) have the same skeletons, but they have distinct CPDAGs since they have

distinct sets of v-structures. Therefore,

inf
Ĉ

sup
θ∈C(ρmin)

PΣθ(Ĉ(X(1:n)) 6= CTθ) ≥ inf
ψ

max
1≤j≤M

PΣ(Tj)

(
ψ(X(1:n)) 6= Tj

)
.

Again, we have the formula for each covariance Σ(Tj) for j = 1, . . . ,M by using Corollary 3.3.2.

For example, for T1, we have

Σ(T1) =



1 0 ρ2 . . . ρ2 ρ

0 1 ρ2 . . . ρ2 ρ

ρ2 ρ2 1 . . . ρ2 ρ
...

...
...

. . .
...

...

ρ2 ρ2 ρ2 . . . 1 ρ

ρ ρ ρ . . . ρ 1


Recall that in a linear polytree model there holds Σ = (I − B)−>Ω(I − B). Since B can be

transformed to a strict upper triangular matrix by permuting the p nodes, we know that det(I−B) =
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1. Then

det(Σ) = det(Ω) =

p∏
j=1

ωjj =

p∏
j=1

1−
∑

i∈Pa(j)

ρ2ij

 .

Then for j = 1, . . . ,M , there holds det(Σ(Tj)) = (1− ρ2)p−3(1− 2ρ2), which implies that

logdet(Σ(Tj)) = (p− 3) log(1− ρ2) + log(1− 2ρ2).

On the other hand, we have

Σ =
1

M

M∑
j=1

Σ(Tj) =



1 M−1
M ρ2 . . . M−1

M ρ2 ρ

M−1
M ρ2 1 . . . M−1

M ρ2 ρ
...

...
. . .

...
...

M−1
M ρ2 M−1

M ρ2 . . . 1 ρ

ρ ρ . . . ρ 1


:=

 A B

B> D

 .

The Schur complement of D = 1 is

Σ/D = A−BD−1B> ==


1− ρ2 −ρ2/M . . . −ρ2/M

−ρ2/M 1− ρ2 . . . −ρ2/M
...

...
. . .

...

−ρ2/M −ρ2/M . . . 1− ρ2


.
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It’s easy to obtain all the eigenvalues of Σ/D: 1 − p+1
p−1ρ

2 with multiplicity 1 and 1 − p(p−3)
(p−1)(p−2)ρ

2

with multiplicity p− 2. Plug these results into (3.15), we have

F (C) = log

(
1− p+ 1

p− 1
ρ2
)

+ (p− 2) log

(
1− p(p− 3)

(p− 1)(p− 2)
ρ2
)

− log(1− 2ρ2)− (p− 3) log(1− ρ2)

= log

(
1− p+ 1

p− 1
ρ2
)

+ (p− 2) log

(
1 +

2

(p− 1)(p− 2)

ρ2

1− ρ2

)
+ log

(
1 +

ρ2

1− 2ρ2

)
≤ −p+ 1

p− 1
ρ2 +

2

p− 1

ρ2

1− ρ2
+

ρ2

1− 2ρ2

= −p+ 1

p− 1
ρ2 +

2

p− 1

(
ρ2 +

ρ4

1− ρ2

)
+ ρ2 +

2ρ4

1− 2ρ2

=
2

p− 1

ρ4

1− ρ2
+

2ρ4

1− 2ρ2
< 5ρ4,

where the first inequality is due to log(1+x) ≤ x, and the second inequality is due to the assumption

that ρ2 < 1/4 and p ≥ 10. As with the case of skeleton recovery, we know that perr > 1/2 as long

as we require that

n <
1

5ρ4

(
log

(p− 1)(p− 2)

2
− 2

)
.

�

3.6.6. Proof of Theorem 3.4.5.

Proof. In the CPDAG CT , we denote coPa(j) := {i : ∃k, s.t. i → k ← j ∈ CT } and refer to

it as the co-parent set of node j. Let’s first study the off-diagonal entries of the inverse correlation

matrix. We can represent the estimation error as

∑
i 6=j
|θ̂ij−θij | =

p∑
j=1

 ∑
i→j∈CT

|θ̂ij − θij |+
∑

j→i∈CT

|θ̂ij − θij |+
∑

i−j∈CT

|θ̂ij − θij |+
∑

i∈coPa(j)

|θ̂ij − θij |

 .

Due to the symmetry of the inverse correlation matrix, we have

p∑
j=1

∑
j→i∈CT

|θ̂ij − θij | =
p∑
j=1

∑
j→i∈CT

|θ̂ji − θji| =
p∑
i=1

∑
i→j∈CT

|θ̂ij − θij | =
∑
j∈Vd

∑
i→j∈CT

|θ̂ij − θij |.
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Then,

∑
i 6=j
|θ̂ij − θij | = 2

∑
j∈Vd

∑
i→j∈CT

|θ̂ij − θij |+
∑
j∈Vm

∑
i−j∈CT

|θ̂ij − θij |+
p∑
j=1

∑
i∈coPa(j)

|θ̂ij − θij |.

For each node j ∈ Vd, recall that dinj denotes its in-degree. Lemma 3.4.4 implies that

|ω̂jj − ωjj | = |
∑

i∈Pa(j)

(ρ̂2ij − ρ2ij)| ≤
∑

i∈Pa(j)

|ρ̂2ij − ρ2ij | ≤ 2
∑

i∈Pa(j)

|ρ̂ij − ρij | ≤ 2dinj ε.

Then

∑
i→j∈CT

|θ̂ij − θij | =
∑

i→j∈CT

∣∣∣∣ ρ̂ijω̂jj − ρij
ωjj

∣∣∣∣
≤

∑
i→j∈CT

1

ω̂jj
|ρ̂ij − ρij |+ |ρij |

∣∣∣∣ 1

ω̂jj
− 1

ωjj

∣∣∣∣
≤ dinj

ε(ωjj + 2ρmaxd
in
j )

(ωjj − 2dinj ε)ωjj
,

∑
i−j∈CT

|θ̂ij − θij | =
∑

i−j∈CT

(
ρ̂ij

1− ρ̂2ij
− ρij

1− ρ2ij

)

≤
∑

i−j∈CT

[
|ρ̂ij − ρij |

1− ρ̂2ij
+ |ρij |

∣∣∣∣∣ 1

1− ρ̂2ij
− 1

1− ρ2ij

∣∣∣∣∣
]

≤
∑

i−j∈CT

3ε

(1− ρ2ij)(1− ρ2ij − 2ε)
,

and

∑
i∈coPa(j)

|θ̂ij − θij | =
∑

i∈coPa(j)

∣∣∣∣ ρ̂iki ρ̂jkiω̂kiki
−
ρlkiρjki
ωkiki

∣∣∣∣
≤

∑
i∈coPa(j)

1

ω̂kiki
|ρ̂iki ρ̂jki − ρikiρjki |+ |ρikiρjki |

∣∣∣∣ 1

ω̂kiki
− 1

ωkiki

∣∣∣∣
≤

∑
i∈coPa(j)

(2ρmax + ε)εωkiki + 2ρ2maxd
in
ki
ε

(ωkiki − 2dinkiε)ωkiki
,

where ki denotes the v-node such that j → ki ← i is a v-structure in CT .
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∑
i 6=j
|θ̂ij − θij | ≤ 2

∑
j∈Vd

(ωjj + 2ρmaxd
in
j )dinj ε

(ωjj − 2dinj ε)ωjj
+
∑
j∈Vm

∑
i−j∈CT

3ε

(1− ρ2ij)(1− ρ2ij − 2ε)

+

p∑
j=1

∑
i∈coPa(j)

(2ρmax + ε)εωkiki + 2ρ2maxd
in
ki
ε

(ωkiki − 2dinkiε)ωkiki

≤
ε

[ ∑
j∈Vd

(2dinj + 4(dinj )2) +
∑
j∈Vm

∑
i−j∈CT

3 +
p∑
j=1

∑
i∈coPa(j)

(2 + ε+ 2dinki )

]
(ωmin − 2d∗ε)ωmin

.

The facts
∑
j∈Vd

dinj ≤ p − 1 and 0 ≤ dinj ≤ d∗ imply that
∑
j∈Vd

(dinj )2 ≤ pd∗. It is also obvious that

2
∑
j∈Vd

dinj +
∑
j∈Vm

∑
i−j∈CT

1 = 2(p− 1). Moreover, by counting the number of v-structures, there holds

p∑
j=1

∑
i∈coPa(j)

dinki = 2
∑

k∈Vd:dink ≥2

dink

(
dink
2

)
≤ pd2∗

and
p∑
j=1

∑
i∈coPa(j)

1 = 2
∑

k∈Vd:dink ≥2

(
dink
2

)
≤ pd∗.

Putting the above together, we have

∑
i 6=j
|θ̂ij − θij | ≤

(7 + 6d∗ + 2d2∗)pε

(ωmin − 2d∗ε)ωmin
.

Let’s move on to the diagonal entries of the inverse correlation matrix. For each j ∈ Vd,

|θ̂jj − θjj | =

∣∣∣∣∣∣ 1

ω̂jj
− 1

ωjj
+

∑
j→k∈CT

(
ρ̂2jk
ω̂kk
−
ρ2jk
ωkk

)∣∣∣∣∣∣
≤
∣∣∣∣ 1

ω̂jj
− 1

ωjj

∣∣∣∣+
∑

j→k∈CT

[
|ρ̂2jk − ρ2jk|

ω̂kk
+ ρ2jk

∣∣∣∣ 1

ω̂kk
− 1

ωkk

∣∣∣∣
]

≤
2dinj ε

(ωjj − 2dinj ε)ωjj
+

∑
j→k∈CT

[
2ε

ωkk − 2dink ε
+ ρ2max

2dink ε

(ωkk − 2dink ε)ωkk

]

≤
2dinj ε

(ωjj − 2dinj ε)ωjj
+

∑
j→k∈CT

2ε(ωkk + ρ2maxd
in
k )

(ωkk − 2dink ε)ωkk
.
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Similarly, for each j ∈ Vm,

|θ̂jj − θjj | =

∣∣∣∣∣∣
∑

i−j∈CT

(
ρ̂2ij

1− ρ̂2ij
−

ρ2ij
1− ρ2ij

)
+

∑
j→k∈CT

(
ρ̂2jk
ω̂kk
−
ρ2jk
ωkk

)∣∣∣∣∣∣
≤

∑
i−j∈CT

[
|ρ̂2ij − ρ2ij |

1− ρ̂2ij
+ ρ2ij

∣∣∣∣∣ 1

1− ρ̂2ij
− 1

1− ρ2ij

∣∣∣∣∣
]

+
∑

j→k∈CT

[
|ρ̂2jk − ρ2jk|

ω̂kk
+ ρ2jk

∣∣∣∣ 1

ω̂kk
− 1

ωkk

∣∣∣∣
]

≤
∑

i−j∈CT

2ε

(1− ρ2ij)(1− ρ2ij − 2ε)
+

∑
j→k∈CT

2ε(ωkk + ρ2maxd
in
k )

(ωkk − 2dink ε)ωkk
.

Combine the above together,

p∑
j=1

|θ̂jj − θjj | ≤
∑
j∈Vd

2dinj ε

(ωjj − 2dinj ε)ωjj
+
∑
j∈Vm

∑
i−j∈CT

2ε

(1− ρ2ij)(1− ρ2ij − 2ε)

+

p∑
j=1

∑
j→k∈CT

2ε(ωkk + ρ2maxd
in
k )

(ωkk − 2dink ε)ωkk

≤ 2ε

(ωmin − 2d∗ε)ωmin

2
∑
j∈Vd

dinj +
∑
j∈Vm

∑
i−j∈CT

1 +

p∑
j=1

∑
j→k∈CT

dink

 .

Similar to the case of off-diagonal entries, we have

p∑
j=1

|θ̂jj − θjj | ≤
2(2 + d∗)pε

(ωmin − 2d∗ε)ωmin
.

�

3.7. Discussions

This chapter studies the problem of polytree learning, a special case of DAG learning where

the skeleton of the directed graph is a tree. This model has been widely used in the literature for

both prediction and structure learning. We consider the linear polytree model, and consider the

Chow-Liu algorithm (Chow and Liu, 1968) that has been proposed in Rebane and Pearl (1987)

for polytree learning. Our major contribution in this theoretical work is to study the sample

size conditions under which the polytree learning algorithm recovers the skeleton and the CPDAG
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exactly. Under certain mild assumptions on the correlation coefficients over the polytree skeleton,

we show that the skeleton can be exactly recovered with probability at least 1 − δ if the sample

size satisfies n > O( 1
ρ2min

log p√
δ
), and the CPDAG of the polytree can be exactly recovered with

probability at least 1− δ if the sample size satisfies n > O( 1
ρ4min

log p√
δ
). We also establish necessary

conditions on sample size for both skeleton and CPDAG recovery, which are consistent with the

sufficient conditions and thereby give sharp characterization of the difficulties for these two tasks.

In addition, under the event of exact recovery of CPDAG, we also establish the accuracy of inverse

correlation matrix estimation. Under the component-wise `1 metric, we give an estimation error

bound that relies on the estimation error of pairwise correlations, the minimum noise variance ωmin,

and the maximum in-degree d∗.

There are a number of remaining questions to study in future. It would be interesting to study

how to relax the polytree assumption. In fact, the benchmark data analysis (Section 3.5.2) is very

insightful, since it shows that the considered Chow-Liu based CPDAG recovery algorithm, which

seemingly relies heavily on the polytree assumption, could lead to reasonable and accurate structure

learning result when the ground truth deviates from a polytree to some degree. This inspires us

to consider the robustness of the proposed approach against such structural assumptions. For

example, if the ground truth can only be approximated by a polytree, can the structure learning

method described in Sections 3.2.3.1 and 3.2.3.2 lead to an approximate recovery of the ground

truth CPDAG with theoretical guarantees?

When the ground truth DAG is a polytree, our result Theorem 3.4.5 regarding inverse correlation

matrix estimation relies on the assumption that the ground truth of the CPDAG must be exactly

recovered. Naturally, we wonder whether this is necessary. In other words, if the sample size is

not large enough and the CPDAG is thereby unable to be recovered exactly, can we still obtain

an accurate estimate of the inverse correlation matrix? Which method should be used for such

estimate?

As aforementioned, polytree modeling is usually used in practice only as initialization, and post-

processing could give better structural recovery result. A well-known method of this type is given

in Cheng et al. (2002) without theoretical guarantees. An interesting future research direction is to
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include such post processing steps into our theoretical analysis, such that our structural learning

results (e.g., Theorems 3.3.6) hold for more general sparse DAGs.
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APPENDIX A

Appendix for Chapter 2

A.1. `2 Perturbation Theory for Fiedler Vector Under Unrestricted Heterogeneity

Within Mega-Communities

Theorem A.1.1. Let (G0,G1) denote a partition of {1, . . . , n}, with n0 = |G0| and n1 = |G1|,

and A ∈ {0, 1}n×n the adjacency matrix such that

E[Aij ]


= p∅ (i ∈ G0, j ∈ G1)

≥ p0 (i, j ∈ G0)

≥ p1 (i, j ∈ G1)

,

where p∅ < min(p0, p1). Further let un−1 and u∗n−1 denote the Fiedler vector of A and E[A],

respectively. Then, for any fixed r > 0, there exists a constant B`2(r) that only depends on r such

that, with probability at least 1− 2n−r,

‖un−1sign(uTn−1u
∗
n−1)− u∗n−1‖2 ≤ B`2(r)

√
(np∅ + log n) log n

min{n0(p0 − p∅), n1(p1 − p∅)}
.

Proof. Note that the proofs for Lemma 2.3.3 and Theorem 2.3.2 do not rely on the modelling

assumptions within the mega-communities, except that Pij ≥ p0 if i, j ∈ G0 and Pij ≥ p1 if i, j ∈ G1.

Therefore, the proofs carry over to Theorem A.1.1. �

A.2. Eigen-structure for Two-layer Hierarchical SBMs

In Theorem 2.2.1, we give a full description of the eigenstructure for the population unnormalized

graph Laplacian under general BTSBMs. The demonstration of strong consistency, which is shown

by Theorem 2.3.1, heavily depends on this population eigenstructure. In this section, we reveal that

the results in Theorem 2.2.1 hold under a more general SBM without hierarchical structure within

mega-communities, so as Theorem 2.3.1.
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Recall that in the inhomogeneous stochastic block model introduced in Remark 5, there are

two mega-communities G0 and G1. In this section, we assume that each mega-community is a SBM

itself. More specifically, let’s assume that the subgraph G0 follows a SBM with K0 communities,

and the subgraph G1 follows a SBM with K1 communities. These K := K0 + K1 communities are

referred to as the primitive communities, whose sizes are denoted as l1, . . . , lK , respectively. As a

result, we have n0 = l1 + · · ·+ lK0 and n1 = lK0+1 + · · ·+ lK . To combine a standard SBM with the

aforementioned inhomogeneous block model together, the K ×K connection probability matrix is

assumed to satisfy

(A.1) Bst


= q (1 ≤ s ≤ K0, K0 + 1 ≤ t ≤ K)

≥ p0 (1 ≤ s, t ≤ K0)

≥ p1 (K0 + 1 ≤ s, t ≤ K)

.

We refer to such a hierarchical SBM as Two-layer Hierarchical SBM, although it includes a general

class of hierarchical models, with the general BTSBM as a special case.

As with before, here we also need the following notations in establishing relevant theory.

p∗ = max
1≤i,j≤n

Pij , p̄∗ = max
1≤i≤n

1

n

n∑
j=1

Pij ,
¯
p∗ = min

1≤i≤n

1

n

n∑
j=1

Pij .

Noting P = E[A], p∗ is the largest connection probability across the whole network, and np̄∗ (n
¯
p∗)

is the largest (smallest) expected degree. Obviously, p∗ ≥ p̄∗ ≥
¯
p∗.

As an analogy to Theorem 2.2.1, we have the following results under the more general two-layer

hierarchical SBM. Also note that the first two items have also been proven in Balakrishnan et al.

(2011).

Theorem A.2.1. Under the K-group two-layer hierarchical SBM (A.1) with parameters q, p0, p1

and community sizes l1, . . . , lK , the eigenvalues and eigenvectors of the population graph Laplacian

L∗ satisfy

(1) λ∗n−1 = nq with multiplicity 1 and the entries of the corresponding eigenvector u∗n−1 obeys

u∗n−1,i = ±


√
n1/(n0n) (i ∈ G0)

−
√
n0/(n1n) (i ∈ G1)

;
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(2) λ∗n−2 ≥ min{n1p1 + n0q, n0p0 + n1q};

(3) λ∗n−K ≥ n
¯
p∗;

(4) For any j with λ∗j < n
¯
p∗, ‖u∗j‖∞ ≤ max1≤s≤K

√
1/ls.

Proof of Theorem A.2.1. (1) It is easy to verify that u∗n−1 defined above is an eigenvector of

L∗ with eigenvalue nq. We will show that nq is the second smallest eigenvalue with multiplicity

1.

Suppose P ′ is an n× n matrix such that

P
′
ij =


p0 (i ∈ G0, j ∈ G0)

p1 (i ∈ G1, j ∈ G1)

q (otherwise)

.

Let L′ denote the corresponding unnormalized graph Laplacian. It can be verified through

simple algebra that λn−1(L
′
) = nq and λn−2(L

′
) = min{n1p1 + n0q, n0p0 + n1q}. Note that

L∗ − L′ is also a Laplacian matrix, which means λn(L∗ − L′) = 0. By Wely’s Inequality,

λ∗n−1 ≥ nq and λ∗n−2 ≥ min{n1p1 + n0q, n0p0 + n1q} > nq. Therefore, nq is the second smallest

eigenvalue of L∗ with multiplicity 1.

(2) See the proof of (1).

(3) Let C1, C2, . . . , CK represent node sets for the K primitive communities. Without loss of gen-

erality, we assume the nodes have been properly ordered such that C1 = {1, . . . , l1}, C2 =

{l1 + 1, . . . , l1 + l2} and so on. For any i ∈ Cs, s = 1, . . . ,K, the expected degree of i is

d∗s =
∑K

t=1 ltBst. Considering the sub-matrix of L∗ at Cs rows and Cs columns, denoted by

L∗Cs×Cs , it is easy to verify that 1ls is an eigenvector of L∗Cs×Cs , and the other ls− 1 eigenvectors

which are orthogonal to 1ls have the same eigenvalue d∗s. For any v ∈ Rls in the eigenspace of

d∗s, extending v into Rn by filling all additional coordinates with 0, v becomes an eigenvector

of L∗ with eigenvalue d∗s. Hence d∗s is an eigenvalue of L∗ with multiplicity at least ls − 1,

s = 1, . . . ,K. So λ∗n−K is at least mins{d∗s} = n
¯
p∗.

(4) Continue with the proof of (3). We have specified n−K eigenvectors of L∗. Now let us examine

the other K eigenvectors in a constructive way.
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First, if we write the population Laplacian as L∗ = D∗ − P , then the diagonal entries of

D∗ are d∗s for s = 1, . . . ,K with multiplicities l1, . . . , lK . Suppose v = [w11
>
l1
, . . . , wK1>lK ]> be

an eigenvector of L∗, i.e. L∗v = λv for some λ ∈ R. Then for each s = 1, . . . ,K, there holds

(A.2) d∗sws −
K∑
t=1

ltBstwt = λws.

Define the diagonal matrix D̃ ∈ RK×K whose diagonal entries are d̃s = d∗s/n for s =

1, . . . ,K. Define another diagonal matrix D̃l ∈ RK×K whose diagonal entries are d̃ls = ls/n.

Also define L̃ = D̃ − BD̃l. Then Equation (A.2) becomes L̃w = λ
nw. In other words,

w = [w1, . . . , wK ]> is an eigenvector of L̃ with corresponding eigenvalue λ/n. Note that L̃ is

diagonalizable since

(D̃l)
1
2 L̃(D̃l)−

1
2 = (D̃l)

1
2 D̃(D̃l)−

1
2 − (D̃l)

1
2B(D̃l)

1
2

is symmetric and thereby diagonalizable, which means L̃ has K eigenvectors. Based on each

of them, we can construct an eigenvector of L∗ by repeating the s-th element ls times, i.e.

v = [w11
>
l1
, . . . , wK1>lK ]>. Obviously, eigenvectors in such form are orthogonal to the n − K

eigenvectors specified in the proof of (3) and span the orthogonal complement. Thus for any

λ∗j < n
¯
p∗, the corresponding u∗j must take such form and satisfy ‖u∗j‖∞ ≤ maxs

√
1/ls.

�

With an argument similar to the proof of Theorem 2.3.1, we can obtain the following result:

Theorem A.2.2 (`∞ perturbation). Under the K-group two-layer hierarchical SBM (A.1) with

parameters q, p0, p1 and community sizes l1, . . . , lK , assume further that ξ = maxs
n
ls

is a constant.

Then, for any fixed constant r > 0, there exists a constant C`∞ that only depends on r and ξ, such

that
√
n‖un−1sign(uTn−1u

∗
n−1)− u∗n−1‖∞ < min{

√
n0/n1,

√
n1/n0}
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with probability at least 1− (10K + 4)n−r, provided the following two conditions:

Density gap min{n0(p0 − q), n1(p1 − q)} ≥ C`∞
√

(n0p0 + n1p1) log n,

Degree variation (n(
¯
p∗ − q))4 ≥ C`∞(np̄∗)3 log n,

where
¯
p∗ and p̄∗ are defined in (2.1).

A.3. `2→∞ Perturbation Theory for Unnormalized Laplacians

A.3.0.1. A Generic `2→∞ Perturbation Bound. In this subsection, we rephrase the weaker ver-

sion Theorem 2.6 of Lei (2019), discussed in their Remark 2.3, by only keeping the parts that are

relevant to our purpose. Throughout this section, we consider two generic symmetric real matrices

G and G∗ with

(A.3) E = G−G∗.

Let λ1 ≥ λ2 ≥ . . . ≥ λn and λ∗1 ≥ λ∗2 ≥ . . . ≥ λ∗n be the eigenvalues of G and G∗, respectively.

Given positive integers s and r, let

(A.4) Λ = diag(λs+1, λs+2, . . . , λs+r), Λ∗ = diag(λ∗s+1, λ
∗
s+2, . . . , λ

∗
s+r).

Let U ,U∗ ∈ Rn×r be a matrix of eigenvectors such that

(A.5) GU = UΛ, G∗U∗ = U∗Λ∗.

To state the generic bound, we define the following quantities.

• Modified perturbation matrix Ẽ:

Ẽ = G−Σ− (G∗ −Σ∗)

where

Σ = diag(G), Σ∗ = diag(G∗).

• Condition number κ∗:

(A.6) λ∗max = λmax(Λ∗), λ∗min = λmin(Λ∗), κ∗ = λ∗max/λ
∗
min.
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• Effective eigengap ∆∗:

(A.7) ∆∗ , min{sep∗, λ∗min},

where sep∗ = min{λ∗s − λ∗s+1, λ
∗
s+r − λ∗s+r+1} and λ∗0 =∞, λ∗n+1 = −∞.

The assumptions for the generic bound are stated below.

A1 For any δ ∈ (0, 1),
minj∈[s+1,s+r] |Λ∗jj |

minj∈[s+1,s+r],k∈[n] |Λ∗jj − Σkk|
≤ Θ(δ),

with probability at least 1− δ for some deterministic function Θ(δ) > 0.

A2 For any δ ∈ (0, 1), there exists a random matrix G(k) ∈ Rn×n such that

dTV

(
P(Ẽk,G(k)),PẼk

× PG(k)

)
≤ δ/n.

where dTV denotes the total variation distance and it holds simultaneously for all k and all

contiguous subsets S ⊂ [r] that

‖G(k) −G‖op ≤ L1(δ),
‖(G(k) −G)U‖op

λ∗min

≤ (κ(Λ∗)L2(δ) + L3(δ)) ‖U‖2→∞,

with probability at least 1− δ for some deterministic functions L1(δ), L2(δ), L3(δ).

A3 There exists deterministic functions λ−(δ), E+(δ), Ẽ∞(δ), such that for any δ ∈ (0, 1), the

following event holds with probability at least 1− δ:

‖Λ−Λ∗‖max ≤ λ−(δ), ‖EU∗‖op ≤ E+(δ), ‖Ẽ‖2→∞ ≤ Ẽ∞(δ).

A4 There exists deterministic functions b̃∞(δ), b̃2(δ) > 0, such that for any δ ∈ (0, 1), k ∈ [n], and

fixed matrix W ∈ Rn×j̃ ,

‖ẼT
kW ‖2 ≤ b̃∞(δ)‖W ‖2→∞ + b̃2(δ)‖W ‖op, with probability at least 1− δ/n.

A5 ∆∗ ≥ 4 (Θ(δ)σ̃(δ) + L1(δ) + λ−(δ) + E+(δ)) where

(A.8) η̃(δ) = Ẽ∞(δ) + b̃∞(δ) + b̃2(δ), σ̃(δ) = {κ∗L2(δ) + L3(δ) + 1}η̃(δ) + E+(δ).
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Theorem A.3.1 (Theorem 2.6 of Lei (2019), Remark 2.3). Under assumptions A1 - A5,

‖Usign(UTU∗)−U∗‖2→∞ ≤ C
{

Θ(δ)

λ∗min

‖EU∗‖2→∞ +

(
E+(δ)2

(∆∗)2
+

Θ(δ)σ̃(δ)

∆∗

)
‖U∗‖2→∞

+
Θ(δ)(b̃2(δ) + ‖G∗ −Σ∗‖2→∞)E+(δ)

λ∗min∆∗

}
,

with probability at least 1−B(r)δ, where C is a universal constant (that can be chosen as 136) and

(A.9) B(r) = 10 min{r, 1 + log2 κ
∗}.

A.3.0.2. Proof of Lemma 2.5.5. Let G = L + νJ and G∗ = L∗ + νJ . Now we verify each of

assumptions A1 - A5. We add the subscript ν into all quantities defined in Supplement A.3.0.1 to

highlight their dependence on ν, including Λν ,Σν ,Θν (or Λ∗ν ,Σ
∗
ν ,Θ

∗
ν), and Eν , Ẽν , L1,ν , L2,ν , L3,ν ,

Ẽ∞,ν , E+,ν , λ−,ν , b̃∞,ν , b̃2,ν , κ∗ν , ∆∗ν , η̃ν , σ̃ν . We remove the subscript ν when ν = 0. Moreover, we

let

(A.10) M(δ) =
√
np̄∗ log(n/δ) + log(n/δ), R(δ) = log(n/δ) + j̃.

By definition (2.19), j̃ ≤ K̃ ≤ K = O(1). In each of the following steps, δ is always set to be n−r.

Unless otherwise specified, a & b (a . b) iff a ≥ Cb (a ≤ Cb) for some constant C that only depends

on r and ξ. To apply Theorem A.3.1 in Supplement A.3.0.1, we need to verify Assumptions A1 -

A5.

Checking Assumption A1: We recall Lemma 3.12 of Lei (2019), rephrased for our purpose.

Lemma A.3.2. Let Θ(δ) be defined in assumption A1 in Supplement A.3.0.1. Further let

Θ∗ =
minj∈[n−j̃,n−1] |Λ∗jj |

minj∈[n−j̃,n−1],k∈[n] |Λ∗jj − Σ∗kk|
.

Then Θ(δ) ≤ 5Θ∗ if

min
j∈[n−j̃,n−1],k∈[n]

|Λ∗jj − Σ∗kk| ≥ 5M(δ).
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In this case, Λ∗jj < n
¯
p∗ for all j ∈ [n− j̃, n− 1] and Σ∗kk ≥ n

¯
p∗ for all k ∈ [n]. Thus,

min
j∈[n−j̃,n−1],k∈[n]

|Λ∗jj − Σ∗kk| = min
k∈[n]

Σ∗kk − max
j∈[n−j̃,n−1]

Λ∗jj = n
¯
p∗ − λ∗n−j̃ .

By definition of j̃ and equation (2.20),

n
¯
p∗ − λ∗n−j̃ ≥

n(
¯
p∗ − p∅)
K

.

By definition,

Λ∗ν,jj = Λ∗jj + ν, Σ∗ν,kk = Σ∗kk +
n− 1

n
ν.

Thus,

min
j∈[n−j̃,n−1],k∈[n]

|Λ∗ν,jj − L∗ν,kk| ≥
n(

¯
p∗ − p∅)
K

− ν

n
.

By the condition (2.6) and (2.24),

n(
¯
p∗ − p∅)
K

≥
C

1/4
`∞

(np̄∗)3/4(log n)1/4

K
≥ C`∞

K
log n.

If C`∞ ≥ 3ξ ≥ 3K,
n(

¯
p∗ − p∅)
K

≥ 2 ≥ 2p̄∗.

By the definition (2.22) of ν,
ν

n
= p̄∗ ≤

n(
¯
p∗ − p∅)
2K

.

As a result,

min
j∈[n−j̃,n−1],k∈[n]

|Λ∗ν,jj − L∗ν,kk| ≥
n(

¯
p∗ − p∅)
2K

.

On the other hand, by (2.24),

M(n−r) ≤ (r + 1)
(
1 + C−1`∞

)√
np̄∗ log n.

By the condition (2.6) and (2.24) again, if C1/2
`∞
≥ 20ξ(r + 1) ≥ 20K(r + 1),

n(
¯
p∗ − p∅)
2K

≥
C

1/4
`∞

(np̄∗)3/4(log n)1/4

2K
≥
C

1/2
`∞

√
(np̄∗) log n

2K
≥ 5M(n−r).
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Therefore,

(A.11) Θν(n−r) ≤ 5Θ∗ν ≤
5(np∅ + ν)

n(
¯
p∗ − p∅)/2K

.
np̄∗

n(
¯
p∗ − p∅)

.

Checking Assumption A2: We recall Lemma 3.10 of Lei (2019).

Lemma A.3.3. There exists G(1), . . . ,G(n) satisfying A2 for G = L with

L1(δ) .M(δ), L2(δ) = 1, L3(δ) .
np̄∗ + log(n/δ)

λmin(Λ∗)
,

where . only hides absolute constants and L1(δ), L2(δ), L3(δ) are defined in Assumption A2 in

Supplement A.3.0.1.

In this case, let

G(k)
ν = G(k) + νJ .

Then it is easy to see that

G(k)
ν −Lν = G(k) −L.

Therefore, Lemma A.3.3 holds for any ν > 0. Let δ = n−r, we have

(A.12) L1,ν(n−r) .
√
np̄∗ log n, L2,ν(n−r) . 1, L3,ν(n−r) .

np̄∗ + log n

np∅ + ν
.
np̄∗ + log n

np̄∗
. 1,

where the last inequality uses (2.24).

Checking Assumption A3: We recall Lemma 3.8 of Lei (2019).

Lemma A.3.4. Assumption A3 is satisfied for G = L with

Ẽ∞(δ) .
√
np̄∗ +

√
log(n/δ), E+(δ), λ−(δ) .M(δ),

where . only hides absolute constants and Ẽ∞(δ), E+(δ), λ−(δ) are defined in Assumption A3 in

Supplement A.3.0.1.
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Since Λν = Λ + νI and Λ∗ν = Λ∗+ νI, Λν −Λ∗ν = Λ−Λ∗ is invariant to ν. Similarly, Eν = E

and Ẽν = Ẽ. Thus Lemma A.3.4 holds for any ν > 0. By (2.24),

(A.13) Ẽ∞,ν(n−r) .
√
np̄∗, E+,ν(n−r), λ−,ν(n−r) .

√
np̄∗ log n.

Checking Assumption A4: We recall Lemma 3.7 of Lei (2019).

Lemma A.3.5. Assumption A4 is satisfied for G = L with

b̃∞(δ) .
R(δ)

α logR(δ)
, b̃2(δ) .

√
p∗R(δ)(1+α)/2

α logR(δ)
,

where . only hides absolute constants and b̃∞(δ), b̃2(δ) are defined in Assumption A4 in Supplement

A.3.0.1.

As with Assumption A3, Ẽ is invariant to ν. Thus Lemma A.3.5 holds for any ν > 0. Let

α = 1/ logR(δ). Since j̃ ≤ K = O(1),

(A.14) b̃∞,ν(n−r) . R(n−r) . log n, b̃2,ν(δ) .
√
R(δ)p∗ .

√
(log n)p∗ .

√
(log n)p̄∗.

where the last inequality uses the fact that p̄∗ ≥ (maxns)p
∗/n.

Checking Assumption A5: We first refer the readers to Supplement A.3.0.1 for the definitions

of κ∗,∆∗, η̃(δ) and σ̃(δ). By definition,

(A.15) κ∗ν =
λmax(Λ∗ν)

λmin(Λ∗ν)
=
λ∗
n−j̃ + ν

np∅ + ν
. 1,

and

(A.16) ∆∗ν = min{ν, n
¯
p∗ − λn−j̃+1} ≥ min

{
ν,
n(

¯
p∗ − p∅)
K

}
=
n(

¯
p∗ − p∅)
K

.

By definition of η̃, (A.13) and (A.14),

η̃ν(n−r) .
√
np̄∗ + log n.
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By (A.12), (A.13) and (2.24),

(A.17) σ̃ν(n−r) . η̃(n−r) +
√
np̄∗ log n .

√
np̄∗ + log n+

√
np̄∗ log n .

√
np̄∗ log n.

By (A.11), (A.12) and (A.13),

Θν(n−r)σ̃ν(n−r) + L1,ν(n−r) + λ−,ν(n−r) + E+,ν(n−r)

.
np̄∗

n(
¯
p∗ − p∅)

√
np̄∗ log n+

√
np̄∗ log n .

np̄∗

n(
¯
p∗ − p∅)

√
np̄∗ log n.

By (A.16) and the condition (2.6), if C`∞ is sufficiently large,

(A.18) ∆∗ν ≥ 4
(
Θν(n−r)σ̃ν(n−r) + L1,ν(n−r) + λ−,ν(n−r) + E+,ν(n−r)

)
,

Thus, Assumption A5 is satisfied.

Final Result:

In the previous five steps, we show that Assumption A1 - A5 are satisfied under the condition (2.6),

if C`∞ is sufficiently large. By Theorem A.3.1, with probability 1−B(j̃)n−r,

‖Usign(UTU∗)−U∗‖2→∞(A.19)

.
Θν(n−r)

λmin(Λ∗ν)
‖EνU∗‖2→∞ +

(
E2

+,ν(n−r)

(∆∗ν)2
+

Θν(n−r)σ̃ν(n−r)

∆∗ν

)
‖U∗‖2→∞

+
Θν(n−r)E+,ν(n−r)

∆∗ν

b̃2,ν(n−r) + ‖L∗ν −Σ∗ν‖2→∞
λmin(Λ∗ν)

.

To bound ‖EνU∗‖2→∞, we recall Lemma 3.9 of Lei (2019).

Lemma A.3.6. Let M(δ) and R(δ) be defined in (A.10). Then with probability 1− δ,

‖EU∗‖2→∞ . (M(δ) + j̃)‖U∗‖2→∞ +
√
R(δ)p∗.

Note that Eν = E. When δ = n−r, by (2.24),

(A.20) ‖EνU∗‖2→∞ .
√
np̄∗ log n‖U∗‖2→∞ +

√
(log n)p̄∗ .

√
np̄∗ log n‖U∗‖2→∞,

90



where the last line uses the fact that
√
n‖U∗‖2→∞ ≥ 1.

Now we derive bounds for other terms. By (A.11) and the definition (2.22) of ν,

(A.21)
Θν(n−r)

λmin(Λ∗ν)
≤ Θν(n−r)

ν
.

1

n(
¯
p∗ − p∅)

Furthermore, by (A.11), (A.13), (A.16) and (A.17),

E2
+,ν(n−r)

(∆∗ν)2
+

Θν(n−r)σ̃ν(n−r)

∆∗ν
.

np̄∗ log n

(n(
¯
p∗ − p∅))2

+
np̄∗
√
np̄∗ log n

(n(
¯
p∗ − p∅))2

.
np̄∗
√
np̄∗ log n

(n(
¯
p∗ − p∅))2

,(A.22)

where the last inequality uses (2.24). For the third term, note that

L∗ν −Σ∗ν = L∗ −Σ∗ + νJ − n− 1

n
νI.

Thus,

√
n‖L∗ν −Σ∗ν‖2→∞ ≤

√
n‖L∗ −Σ∗‖2→∞ +

√
nν‖J − n− 1

n
I‖2→∞

≤
√
n‖L∗ −Σ∗‖2→∞ + ν ≤ np̄∗ + ν . np̄∗.(A.23)

Furthermore, by (A.14),

(A.24)
√
nb̃2,ν(n−r) .

√
np̄∗ log n.

Putting (A.20) - (A.24) together and using the fact that
√
n‖U∗‖2→∞ � 1, we obtain that

√
n‖Usign(UTU∗)−U∗‖2→∞

.

√
np̄∗ log n

n(
¯
p∗ − p∅)

+
np̄∗
√
np̄∗ log n

(n(
¯
p∗ − p∅))2

+
np̄∗
√
np̄∗ log n

(n(
¯
p∗ − p∅))2

np̄∗

np̄∗

.

√
np̄∗ log n

n(
¯
p∗ − p∅)

+
np̄∗
√
np̄∗ log n

(n(
¯
p∗ − p∅))2

(i)

.
(np̄∗)3/4(log n)1/4

n(
¯
p∗ − p∅)

+
np̄∗
√
np̄∗ log n

(n(
¯
p∗ − p∅))2

(ii)

.
np̄∗
√
np̄∗ log n

(n(
¯
p∗ − p∅))2

,
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where (i) uses (2.24) and (ii) uses the condition (2.6). As a consequence, there exists a constant C

that only depends on r and ξ such that

√
n‖Usign(UTU∗)−U∗‖2→∞ ≤ C

np̄∗
√
np̄∗ log n

(n(
¯
p∗ − p∅))2

.

By the condition (2.6) again,

√
n‖Usign(UTU∗)−U∗‖2→∞ ≤

C√
C`∞

.

If C`∞ ≥ C2/c2,
√
n‖Usign(UTU∗)−U∗‖2→∞ ≤ c,

with probability 1− (B(j̃) + 1)n−r ≥ 1− (10K + 1)n−r.
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