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The heart exhibits incredible plasticity in response to both environmental and 

genetic alterations that affect workload. Over the course of development, or in response 

to physiological or pathological stimuli, the heart responds to fluctuations in workload by 

hypertrophic growth primarily by individual cardiac myocytes growing in size. Cardiac 

hypertrophy is associated with an increase in protein synthesis, which must coordinate 

with protein folding and degradation to allow for homeostatic growth without affecting 

the functional integrity of cardiac myocytes (i.e., proteostasis). This increase in the 

protein folding demand in the growing cardiac myocyte activates the transcription factor, 
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ATF6 (activating transcription factor 6α, an inducer of genes that restore proteostasis. 

Previously, ATF6 has been shown to induce ER-targeted proteins functioning primarily 

to enhance ER protein folding and degradation. More recent studies, however, have 

illuminated adaptive roles for ATF6 functioning outside of the ER by inducing non-

canonical targets in a stimulus-specific manner. This unique ability of ATF6 to act as an 

initial adaptive responder has bolstered an enthusiasm for identifying small molecule 

activators of ATF6 and similar proteostasis-based therapeutics. 
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Chapter 1: General Introduction 
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1.1. Introduction 

Cardiovascular disease (CVD) accounts for one in every three deaths in the US1. 

While various etiologies may contribute to the progression of CVD, they are generally 

associated with pathological left ventricular hypertrophy. Believed to be initially an 

adaptive compensatory response to maintain cardiac function and decrease ventricular 

wall tension, pathological cardiac hypertrophy can lead to a maladaptive remodeling of 

the heart during which there is thinning of the myocardium, chamber dilatation and a 

reduction in cardiac output and contractility, leading to eventual heart failure2,3. Despite 

improvements in clinical management, heart failure rates continue to represent the 

fastest-growing subcategory of CVD in an increasingly aging population4–7, accounting 

for more than 500,000 deaths per year and resulting in an incredible economic impact of 

100 billion USD per year7–9. While palliative measures are available and prescribed for 

patients to treat the symptoms associated with heart failure, aside from a heart 

transplant there is no clinically available curative therapy3. Furthermore, progress in 

therapeutic intervention is hindered by the lack of understanding of the molecular 

mechanisms underlying the pathophysiology of CVD and heart failure. 

Cardiac hypertrophy requires an increase in protein synthesis in cardiac 

myocytes, much of which is responsible for the sarcomere growth necessary to maintain 

or improve global cardiac contractile function10,11. This net increase in protein is 

determined primarily by the rates of the synthesis, folding and degradation machinery to 

allow for homeostatic growth without affecting the functional integrity of cardiac 

myocytes, as misfolded proteins can be toxic12–15. Thus, the protein-folding load must 

equal that of the protein folding capacity to avoid toxic accumulation of misfolded 
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proteins (proteostasis)16–18. Studies in both animal models and patients support 

imbalanced proteostasis as a primary driver of CVD and heart failure11. 

Proteostasis is maintained by intracellular pathways that coordinate protein 

synthesis and folding with the degradation of misfolded, potentially toxic proteins19,20. A 

majority of this protein synthesis occurs at the endoplasmic reticulum (ER), making it a 

major site of protein quality control21. Imbalances in proteostasis cause or exacerbate 

numerous pathologies, spawning interest in the exogenous manipulation of proteostasis 

as a therapeutic approach for such diseases22. ER proteostasis is regulated by the 

unfolded protein response (UPR), a stress-responsive signaling pathway comprising 

three sensors/effectors of protein misfolding, PERK (protein kinase R [PKR]-like ER 

kinase), IRE1 (inositol requiring enzyme 1), and ATF6 (activating transcription factor 

6α)23. Considerable evidence supports ATF6, a transcriptional regulator of ER 

proteostasis, as a viable therapeutic target for exogenous manipulation of 

proteostasis24–29. This review focuses on the therapeutic potential of ATF6 in 

maintaining cardiac myocyte proteostasis by inducing canonical and non-canonical 

gene targets in CVD and, more specifically, cardiac hypertrophy. 

1.2.1. Cardiac Hypertrophy in Health and Disease 

Cardiac myocytes, which comprise 85% of the heart mass, are responsible for 

generating the contractile force necessary for maintaining systemic blood flow of oxygen 

and nutrients30,31. The force-generating units of cardiac myocytes are tightly aligned 

sarcomeres that, in response to an increase in workload, grow via addition of sequential 

nascent sarcomeres in length and/or width, depending upon the nature of the 
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stimulus31. Cardiac myocytes are uniquely susceptible to damage associated with 

chronic increases in workload or stress, due to their limited potential to proliferate31. For 

this reason, hypertrophic growth via increased protein synthesis in cardiac myocytes is 

the primary mechanism whereby the heart reduces ventricular wall stress10,32. This 

hypertrophic growth was seen by physicians as initially a compensatory response 

mechanism, as it develops in accordance with Laplace’s law, dictating that increases in 

pressure or volume load-induced tension in the heart must be offset by an increase in 

myocardial and ventricular wall thickness33–36. While ongoing studies are beginning to 

question this concept and the necessity for cardiac hypertrophy primarily in response to 

pathological stimuli37, what is apparent is that the requisite increase in protein synthesis 

in any form of cardiac myocyte growth strains the protein-folding machinery in the heart. 

This strain must be abated for sustained cardiac function12–15.  

1.2.2. Developmental and Physiological Cardiac Hypertrophy 

Despite the connotation, a number of physiological conditions can provoke 

cardiac hypertrophy and dramatic changes to cardiac myocyte number and size, 

beginning with development31. As depicted in Fig. 1.1A, the pre- and post-natal heart 

grows in cardiac myocyte number, or hyperplasia38,39. However, this replicative capacity 

is lost in as little as four days after birth40, and continued increases in heart mass to 

meet an increasing circulatory demand are achieved through hypertrophic growth of 

preexisting cardiac myocytes41,42. This state of cell-cycle arrest of post-natal cardiac 

myocytes is associated with maturation of the gene programs governing isoforms of 

contractile proteins and calcium handling proteins, as well as a shift in the preferred 
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energy source for cardiac myocytes, from anaerobic glycolysis to an oxygen-dependent 

mitochondrial oxidative phosphorylation43. While the mechanism is still unclear, this 

adaptation is greatly influenced by nutritional, hemodynamic, humoral, and even oxygen 

tension changes from the environment in utero43. Upon the cessation of hyperplastic 

growth, the heart hypertrophies in an eccentric manner characterized by an overall 

increase in cardiac mass, as well as chamber volume. Due to this abrupt dependence 

on hypertrophic growth of cardiac myocytes, it is imperative for the protein-folding 

machinery to meet the demands of increases in protein synthesis. In fact, neonatal and 

adolescent cardiac myocytes exhibit a robust adaptive UPR and ATF6 activity, as 

evidenced by the finding that the expression of many of the components of the 

canonical gene panel regulated by ATF6 is relatively high in the young heart, compared 

to the adult and aged heart44,45. 

Normal growth of the heart during adolescence and adulthood is driven by 

physiological cardiac hypertrophy, a reactive growth occurring as a direct response to 

extrinsic stimuli necessitating an increase in cardiac output (Fig. 1.1B, Form 1)37,43,46. 

Similar to postnatal hypertrophy, pregnancy, and prolonged exercise induce greater 

circulatory demands that inevitably drive a concentric growth of the heart, characterized 

by a relative increase in wall thickness and cardiac mass, but little or no change in 

chamber volume43,46. Coordinately, while physiological stimuli elicit a concentric manner 

of cardiac myocyte hypertrophy, the sarcomeric growth in diameter and length is nearly 

proportional. Ironically, in the 19th century, this form of cardiac hypertrophy was thought 

to be pathological in nature and a result of overexertion, even being coined as “athlete’s 
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heart”47. Indeed, while well trained athletes can exhibit increases in cardiac mass by up 

to 60%, the transient nature of this form of heart growth, which can rapidly reverse upon  

hemodynamic unloading, was not conceived of until later on48,49. It is now known that 

growth of the myocardium as a result of pregnancy or exercise is not associated with 

heart failure progression and is adaptive in nature, due to the sustained or even 

increased cardiac output43.  

While adaptive, the increase in protein folding associated with physiological 

hypertrophy would be expected to strain the proteostasis network. However, studies 

have shown that not only is ATF6 activated to regulate an adaptive gene panel allowing 

for continued growth50, but also, exercise can revert many of the age-related symptoms 

leading to CVD, such as attenuated accumulation of misfolded protein aggregates 

within cardiac myocytes51. 



 7 

 

Figure 1.1- Types of cardiac hypertrophy.  

(A) Cross-section drawings are shown to demonstrate the growth of the heart during pre- and postnatal 
development. This developmental hypertrophy is depicted showing increases in both atrial (RA and LA) 
and ventricular (RV and LV) chamber blood volume (pink) and wall thickness (red areas are myocardium). 
Developmental cardiac hypertrophy from the neonatal stage to adulthood is characterized by both 
hyperplasia and hypertrophy, and since ATF6 is expressed in robust quantities during this period of 
development, the ER protein folding machinery is sufficient to support the protein-folding load. (B) The 
adult healthy heart undergoes three main types of cardiac hypertrophy: 1. Physiological hypertrophy is an 
adaptive and reactive process of concentric growth in response to chronic exercise and pregnancy. ATF6 
is robustly activated by this process, and the ER protein folding machinery is sufficient to support this form 
of hypertrophy. 2. Pathological hypertrophy is considered an adaptive and reactive process of concentric 
growth in response to pressure-overload or AMI. In the acute compensatory stages of this concentric 
growth, ATF6 is robustly activated by this process, and the ER protein folding machinery is sufficient to 
support this form of hypertrophy. This form of cardiac hypertrophy is reversible and a potential target of 
ATF6-based therapeutics. 3. Dilated cardiomyopathy and heart failure are either a result of chronic 
pathological hypertrophy or congenital defects. This is a passive process characterized by chamber 
dilatation and cardiac myocyte apoptosis and fibrosis. ATF6 and the protein folding machinery are not 
sufficient at this stage of maladaptive growth. 
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1.2.3. Pathological Cardiac Hypertrophy 

Pathological cardiac hypertrophy is a reactive response to either genetic or 

environmental/habitual diseases that primarily affect cardiac myocytes31,37. The two 

major effectors of pathological cardiac hypertrophy are biomechanical stress and 

neurohumoral factors, both increasing cardiac workload. Subsequently, intracellular 

signaling cascades associated with an increase in protein synthesis are activated, and 

thus increase protein folding demand37. If proteostasis is not maintained throughout this 

growth, the integrity of the cardiac myocyte structure and contractile function is severely 

impaired, leading to eventual heart failure (Fig. 1.1B, Forms 2 and 3). Hypertension 

and pressure-overload is the most important risk factor for heart failure, and data from 

the Framingham Heart Study demonstrated that the severity of hypertension and 

coordinate pathological cardiac hypertrophy is a prognostic indicator of heart failure 

risk37,52,53. Traditionally, hypertensive and pressure- or volume-induced cardiac 

hypertrophy is viewed as an adaptive response characterized by concentric growth of 

the heart and cardiac myocytes, as evidenced by a relative increase in wall thickness 

and mass without affecting chamber volume, as well as sarcomeric growth in diameter 

as opposed to length31,37. At this stage, there is minimal effect on cardiac output, and 

many of the symptoms are reversible, making it a prime target of therapeutic 

intervention. However, with prolonged stress, the heart undergoes an irreversible state 

of decompensation, characterized by chamber dilatation due to cardiac myocyte death, 

fibrotic remodeling, and immune cell infiltration, as well as a decreased cardiac output 

and compliance, leading to inevitable heart failure37. The dangers and pathogenesis of 

even early-stage concentric cardiac hypertrophy in response to hypertension have been 
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noted as early as the 19th century by William Osler and physicians observing the broken 

nature of this compensatory phase of remodeling that is coordinate with degenerating 

myocardium54. Late-stage decompensation impairs excitation-contraction coupling, thus 

increasing the risk of malignant arrythmia and death37. Continued research efforts are 

aimed at dissecting the adaptive signaling mechanisms underlying the initial 

compensatory phases of cardiac hypertrophy that decrease ventricular wall stress in 

accordance with Laplace’s law, while negating the maladaptive features associated with 

decompensation.  

Pathological hypertrophy can also be secondary to chronic conditions not directly 

linked to hemodynamic stress, such as coronary artery disease (CAD) and ischemic 

heart disease or injury, including acute myocardial infarction (AMI), where thrombotic 

coronary artery occlusion causes rapid, irreparable ischemic injury to the heart55–59. 

Much of the damage associated with AMI occurs from reperfusion injury, which, 

ironically, results from the only treatment option, primary percutaneous coronary 

intervention, or coronary angioplasty60. While reperfusion limits ischemic injury, which 

would otherwise be fatal, coronary angioplasty causes a rapid generation of reactive 

oxygen species (ROS) leading to cardiac myocyte death, due mainly to impaired 

proteostasis61,62. Since cardiac myocytes in adults are incapable of regeneration, AMI 

damage is essentially permanent and can set in motion a pathological remodeling of the 

heart, culminating eventually in heart failure and arrhythmogenesis3. 

More recently, a less well-defined form of pathological cardiac hypertrophy, heart 

failure with preserved ejection fraction (HFpEF), has emerged as an important 

pathology due to its clinical prevalence and association with ever increasing metabolic 
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diseases63. HFpEF is characterized by concentric cardiac hypertrophy without overt 

systolic impairment, and is associated with a patient population diagnosed with the 

comorbidities of obesity, type II diabetes mellitus and chronic hypertension63–65. While 

initially thought of as a form of diastolic heart failure, HFpEF is further characterized by 

impaired active myocardial relaxation and increased passive stiffness, as well as 

increased pulmonary capillary wedge pressures that can rise to levels above that of 

even hypertensive patients, or those with aortic stenosis66,67. However, 

underappreciated until more recently is the contribution of non-cardiac myocytes in the 

heart to the progression of HFpEF, namely endothelial cells, which lead to derangement 

of nitric oxide bioavailability, thus leading to cardiac myocyte hypertrophy subsequent to 

impaired Ca2+ handling63. HFpEF has also been directly linked to impaired proteostasis, 

as extracellular cardiac amyloid deposition and nitrosative stress strain the proteostasis 

network, resulting in protein damage that activates the adaptive UPR response 

pathway68,69. 

Given that the increase in the demands on the protein-folding machinery that is 

associated with cardiac hypertrophy, which has been shown to activate ATF6 and the 

adaptive UPR in order to maintain proteostasis and heart function, ATF6 becomes a 

potential therapeutic target for mitigation of the proteotoxicity associated with numerous 

models of CVD. 
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1.3.1. The ER Unfolded Protein Response in Cardiac Myocyte 

Proteostasis 

The increase in protein folding demand associated with nascent protein synthesis 

occurring during cardiac hypertrophy puts a strain on the global cellular framework 

responsible for balancing proteostasis, which is necessary to allow for proper cardiac 

myocyte growth and is critical to maintaining cardiac function10–15. Proteostasis is 

maintained by cellular networks that balance protein synthesis with proper folding, 

trafficking, and degradation15,70. Imbalances in this cellular framework can lead to the 

accumulation of proteotoxic misfolded protein aggregates and proteinopathies, 

contributing to a multitude of systemic diseases including CVD and cardiomyopathies, 

eventually leading to heart failure71–76. In addition to CVD, impaired proteostasis has 

been intimately linked to aging-related diseases thought to be a result of genetic and 

environmental derailment of the integrity of the proteome, fundamental to the 

progression of many neuronal-based diseases such as Alzheimer’s, Parkinson’s, and 

Huntington’s disease17. 

While the proteostasis framework encompasses numerous proteins comprising 

chaperones, foldases, and scaffolds (assisting in the proper folding and refolding of 

proteins), the focus of many research efforts aimed at designing proteostasis-based 

therapeutics has been on the ubiquitin-proteasome system (UPS) responsible for the 

clearance of aggregation-prone misfolded proteins30. In fact, considering that as many 

as 30% of nascent proteins during cardiac hypertrophy never reach their final folded 

conformations, and therefore, must be degraded either concurrently or very soon after 

translation, emphasizes the critical nature of the UPS in maintaining proteostasis77,78. 
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Furthermore, the majority of nascent proteins made during cardiac hypertrophy include 

sarcomeric proteins, calcium-handling proteins, or receptors destined for the 

sarcolemma, implicating the importance of not only the temporal kinetics of protein 

degradation, but also the spatial location of proteosomes relative to translational “hot-

spots” for maintenance of proteostasis during cardiac myocyte growth. 

1.3.2. ER Associated Degradation 

As many as 40% of nascent proteins are translated on ER-associated ribosomes, 

including secreted and membrane proteins requiring transit across the ER membrane 

during translation in conjunction with either co- or post-translational folding prior to 

terminal trafficking79. Due to the high volume of protein translation associated with the 

ER, the ER maintains proteostasis in part by eliminating terminally misfolded or excess 

proteins via the evolutionarily conserved ER-associated degradation (ERAD) pathway80. 

ER luminal chaperones recognize these potentially proteotoxic hazards, and ERAD is 

initiated via retrotranslocation of polypeptides from the ER membrane or lumen to the 

cytosol, a process requiring the AAA+-type ATPase valosin-containing protein (VCP) to 

be recruited to the ER surface via a VCP-adaptor protein (e.g., Vimp)81,82. This ‘ratchet’ 

effect for extracting proteins from the ER then allows ER-transmembrane E3 ubiquitin 

ligases (e.g., Hrd1) to mark them for proteasome-mediated degradation83,84. ERAD 

complex constituents recognize a vast array of misfolded proteins and while the 

mechanism of substrate recognition is still unclear, it is known that the constituents of 

the complex dictate a degree of substrate specificity. Thus, specific VCP-adaptor 
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proteins, such as Vimp, Derlin1, or Ufd1, that separately coordinate ERAD complex 

formation could recognize specific substrates. 

1.3.3. ER UPR 

Cardiac myocytes comprise the majority of the cellular mass of the myocardium 

and, within the ventricles, function primarily as the contractile unit required for pumping 

oxygenated blood into the circulation. Because of this dominant role, many studies have 

focused on sarcomeric and calcium-handling proteins as part of the contractile calcium 

handling process vital for cardiac myocyte contractility. However, the majority of 

sarcolemmal and secreted proteins integral to maintaining proper cardiac function via 

proper excitation-contraction coupling and endocrine/paracrine signaling under 

physiological conditions, as well as during cardiac hypertrophy, are made in the ER85,86. 

Furthermore, many post-translational modifications vital for proper protein function 

occur in the ER, namely glycosylation, disulfide bond formation, and proteolytic 

processing87,88. Thus, in the heart, etiologies related to CVD, including pressure- or 

volume-overload, and AMI place high demands on the ER protein folding machinery to 

maintain ER proteostasis. 

Under conditions in which the protein folding demand outweighs the capacity of 

the ER protein folding machinery, such as during hypertrophic cardiac myocyte growth, 

the UPR is activated14. Acute activation of the UPR balances proteostasis and 

maintains viability and function of cardiac myocytes primarily via genetic modification. 

The PERK, IRE1, and ATF6 arms of the UPR overlap to an extent, however, they each 

confer individualistic downstream signaling cascades aimed at restoring proteostasis23. 
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The PERK branch of the UPR functions primarily to phosphorylate the translation 

initiation factor, eIF2α on Ser-51 resulting in global arrest of 5′ cap-dependent protein 

translation in an attempt to acutely decrease the protein folding load89. Phosphorylation 

of eIF2α allows for the continued translation of a subset of mRNAs required for adaptive 

ER proteostasis. The role of PERK in CVD has been studied using a mouse model in 

which PERK has been selectively deleted in cardiac myocytes using a conditional gene 

targeting approach. These studies revealed that in a model of pressure overload-

induced heart failure, PERK was critical for attenuating fibrotic remodeling associated 

with excessive cardiac myocyte apoptosis and immune cell infiltration90. 

IRE1 functions primarily as an endonuclease responsible for splicing the Xbp1 

mRNA to a splice variant (Xbp1s) encoding an active transcription factor91. The 

nuclease ability of IRE1 can contribute to decreasing the protein folding load of the ER 

via cleavage of mRNAs localized to the ER membrane that are not critical for the 

adaptive UPR. This process is called regulated Ire1-dependent decay (RIDD)92. For the 

most part, the gene program induced by XBP1s overlaps to an extent with ATF6, 

comprised mostly of chaperones and ERAD components. However, studies using a 

transgenic mouse model to overexpress XBP1s specifically in cardiac myocytes have 

demonstrated that XBP1s confers protection against AMI injury and post-AMI cardiac 

remodeling by transcriptionally regulating non-canonical targets that are key 

components of the hexosamine biosynthetic pathway93. More recently, it was shown 

that XBP1s is protective in a novel murine model of HFpEF via its ability to induce those 

same proteins involved in O-GlcNAcylation69. XBP1s has an additional role in regulating 
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cardiac hypertrophy in response to pressure-overload via transcriptional induction of 

FKBP11, and thus regulating mTORC1 activity94. 

1.4.1. ATF6 and Proteostasis in the Heart 

Upon sensing an increase in protein folding demand, ATF6 acts as the primary 

adaptive responder that is liberated from the ER to act as an active transcription factor 

regulating a gene program that fosters the maintenance of proteostasis in cardiac 

myocytes95–97. In response to CVD and various hypertrophic growth stimuli in the heart, 

ATF6 is activated, which allows for homeostatic growth and regulation of proteostasis 

via transcriptionally inducing gene targets that function to either temper protein 

synthesis, fold nascent proteins, or degrade misfolded and surplus proteins50. 

1.4.2. ATF6 Activation 

The activation process of ATF6 is a tightly regulated process and, in the absence 

of proteostatic imbalance, exists as a 90 kD ER transmembrane protein (Fig. 1.2, Step 

1)98. As a primary sensor/effector of the UPR, ATF6 recognizes an increase in protein 

folding demand brought about by stressors such as pressure- or volume-overload, or an 

accumulation of misfolded proteins as occurs during an AMI. While the mechanism by 

which stimulus-specific stressors are differentially recognized and integrated by ATF6 

remains unclear, the primary activation process is mediated by the ER chaperone, 

GRP78, as well as protein disulfide isomerases (PDIs)97,99. ATF6 is kept inactive and 

retained in the ER via the binding of GRP78 to the ER-luminal domain of ATF6 cloaking 

a Golgi localization sequence100,101. Secondarily, inactive ATF6 exists in an oligomeric 

state via intermolecular disulfide bonding regulated by PDIs, such as PDIA5, and only 
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upon the reduction of the disulfide bonds97, and subsequent dissociation of 

GRP78100,101, can ATF6 monomerize and translocate to the Golgi, where it is cleaved 

via regulated intramembrane proteolysis by S1 and S2 proteases (Fig. 1.2, Step 2)102. 

This proteolysis liberates an N-terminal 50 kD fragment of ATF6 that is able to freely 

translocate to the nucleus via a nuclear localization sequence (Fig. 1.2, Step 3)98 where 

it recognizes and binds to promoter regions containing canonical ATF6 binding motifs, 

such as the ER stress element (ERSE)95. For the most part, ATF6 is known for 

regulating canonical gene targets as part of an adaptive panel destined for the ER and 

designed to regulate ER protein folding (Fig. 1.2, Steps 4 and 5) comprised of ER-

resident chaperones (e.g., GRP78), PDIs, and ERAD components (e.g., HRD1)11,14,16,18. 

However, recent studies have illuminated a remarkable ability of ATF6 to induce non-

canonical gene targets that were not previously known to be genes related to the UPR 

nor reside in the ER, but instead are induced by ATF6 in a stimulus-specific manner and 

localize to specific regions of cardiac myocytes including the lysosome50, peroxisome28 

and sarcolemma (Fig. 1.2, Step 6)103.  
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Figure 1.2- ATF6 activation and gene program induction.  

(1) In its inactive state, ATF6 is a 90kD ER transmembrane protein that is anchored in the membrane in 
oligomers via GRP78 and intermolecular disulfide bonding. (2) Upon stressors, like cardiac hypertrophy 
that increases protein synthesis and the protein folding demand or AMI that elevates cellular levels of 
reactive oxygen species (ROS), GRP78 dissociates from the ER luminal domain of ATF6 and the disulfide 
bonds are reduced allowing monomerization of ATF6, which allows the 90 kD form of ATF6 to translocate 
to the Golgi, where it is cleaved by S1P and S2P to liberate the N-terminal approximately 400 amino acids 
(50 kD) of ATF6 from the ER membrane. It is this unique sequence of activation steps that open a window 
of small molecule targeting and discovery of ATF6-based therapeutics. (3) The clipped form of ATF6 has a 
nuclear localization sequence, which facilitates its movement to the nucleus where it binds to specific 
regulatory elements in ATF6-responsive genes, such as ER stress response elements (ERSEs), and 
induces the ATF6 gene program. (4) The canonical ATF6 gene program comprises genes that encode 
proteins that localize to the ER, such as the chaperone, GRP78, or components of ERAD, HRD1 (5), 
where they fortify ER protein folding. (6) The non-canonical ATF6 gene program comprises genes that 
encode proteins not typically categorized as ER stress-response proteins, many of which localize to 
regions of the cell outside the ER. (7) Catalase is a potent antioxidant that localizes to the lumen of 
peroxisomes where it functions to (8) quench ROS. (9) Rheb is a small GTPase located on the surface of 
lysosomes that when bound to mTOR, (10) promotes mTORC1 activation and sustains protein synthesis. 
(11) SNAP23 is a t-SNARE protein crucial for (12) secretion of natriuretic peptides via large dense-core 
vesicles (LDCV) in response to hemodynamic stress. (13) Both the canonical and non-canonical ATF6 
gene programs coordinate to maintain cardiac myocyte proteostasis. 
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1.4.3. Early Findings of ATF6 in the Heart 

The initial studies of ATF6 in the heart came about somewhat serendipitously. 

During the investigation of gene induction in response to hypertrophic stimuli, it was 

discovered that ATF6 was a requisite binding partner of Serum response factor (SRF) 

allowing for subsequent recognition and binding to canonical SRF promotor motifs, 

serum response elements (SREs) and thus allowing for proper cardiac myocyte growth. 

This was a bit of foreshadowing, and the first indication that ATF6 could be required for 

cardiac hypertrophy104. 

Following these initial discoveries in cultured cardiac myocytes, the fascinating 

biochemistry of ATF6 quickly attracted attention, which led to considerable continued 

investigation. While at this time, it was still unclear if pathophysiological stimuli activated 

ATF6, what was apparent was the transient nature of its activity. Once activated, ATF6 

exhibits a robust influence on gene induction followed by its own rapid degradation105. In 

fact, the half-life of ATF6 was noted to be so short, it was actually an initial impediment 

for continued experimentation until proteasome inhibitors were used to decrease its 

degradation sufficiently to allow for detection. The rapid half-life was found to be directly 

correlated to its transcriptional induction capacity as domain mapping of ATF6 led to the 

identification of a unique 8 amino acid sequence shared with the rapidly-degraded viral 

transcription factor, VP16, and deletion of this motif not only attenuated transcriptional 

activity, but prolonged the half-life of ATF6105–107. Therefore, it appears that ATF6 was 

designed to be a rapid and transient adaptive response transcription factor, reasons for 

which are still unclear. 
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1.4.4. ATF6 Regulates an Adaptive Gene Panel in the Heart 

In an attempt to delineate a functional role for ATF6 and proteostasis in the heart, 

the first ATF6 transgenic mice were generated. These mice were designed so that 

ATF6 could be selectively expressed and activated at will27. As researchers were keenly 

aware of the importance of the transient nature of ATF6 activity, this transgenic mouse 

was designed such that ATF6 could be conditionally activated by fusing activated ATF6 

to the mutant mouse estrogen receptor (MER), unmasking of the ATF6 transactivation 

domain upon the introduction of tamoxifen. Upon initial study and characterization, it 

was discovered that similar to endogenous ATF6 in model cell lines, the ATF6-MER 

was rapidly degraded upon activation and was the first in vivo evidence of the 

“degraded-when-active” property of ATF627. Subsequent microarray analysis of 

ventricular extracts identified approximately 400 genes to be regulated by ATF6 using 

this transgenic mouse, the majority of which make up a canonical adaptive gene profile 

of ER-targeted proteins to regulate ER-protein folding108. 

While at this time, it was becoming more apparent that a number of pathological 

conditions, including pressure-overload, ischemia, and AMI could cause an imbalance 

in proteostasis and activate the UPR, many studies emerged focusing on a role of 

downstream targets of ATF6 in CVD. Hrd1, a ubiquitin E3 ligase and integral for the 

ERAD system, was demonstrated to modulate cardiac hypertrophy and to restore 

cardiac function in a pressure-overload model of heart failure, presumably by enhancing 

the degradation of proteotoxic misfolded proteins and thus promoting cardiac myocyte 

viability44. A separate ATF6-inducible target that contributes to the translocation of 

misfolded proteins out of the ER in the ERAD system, Derlin3, was shown to be 
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protective in cultured cardiac myocytes subjected to in vitro ischemia-reperfusion (I/R) 

and to enhance ERAD of terminally misfolded proteins in an ATF6-dependent 

manner109. Additional canonical targets of ATF6 identified in the ATF6-MER hearts 

included the protein disulfide isomerase, PDIA6110, which was shown to confer 

protection against in vitro I/R, as well as ER-resident chaperones, MANF and 

GRP78108,111,112. MANF and GRP78 became interesting targets of ATF6, as they not 

only were known to enhance ER protein folding, but despite both having ER-retention 

motifs anchoring them inside the ER, were demonstrated to be actively secreted from 

cultured cardiac myocytes upon only select stimuli known to deplete ER Ca2+.112 

Subsequent to their trafficking and secretion, MANF and GRP78 function adaptively in 

the extracellular matrix or at the sarcolemma via maintaining cardiac myocyte 

proteostasis113. Furthermore, GRP78 has drawn attention as a potential therapeutic 

target as an adaptive response protein conferring protection in the setting of AMI via 

activating the pro-survival kinase, Akt114, and enhance the cardiac hypertrophic 

response by activating the pro-growth transcription factor, GATA-binding protein 4 

(GATA4)115. 

1.5. ATF6 is an Adaptive Responder in CVD via Regulating Non-

canonical Genes 

1.5.1. ATF6 is Protective in Models of Acute Myocardial Infarction 

Studies highlighting the protective roles of canonical gene targets of ATF6 have 

further fortified interest in pursuing ATF6-based therapeutics in clinically relevant 
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disease models, namely AMI and pathological cardiac hypertrophy. Using the ATF6-

MER model described above, it was discovered that ATF6 could confer protection 

against a model of I/R injury using an ex vivo Langendorff perfused heart system27. 

ATF6 activation blunted infarction and preserved cardiac contractile function in an acute 

injury model being the first report demonstrating activated ATF6 could exert widespread 

protective effects in any tissue, in vivo. Coordinately, additional studies demonstrated 

that using the ATF6-MER model in which the transgene was conditionally expressed in 

mouse forebrain neurons mitigated infarct size during an acute murine ischemic stroke 

model via occlusion of the middle cerebral artery (MCAO)29. 

Despite several studies demonstrating the efficacy of ATF6 in mitigating AMI 

injury, the mechanism of how ATF6, an ER-resident transcription factor, could protect 

from reperfusion damage associated with AMI or stroke, most of which is caused by 

oxidative stress and ROS generated by mitochondria, remained elusive. Accordingly, to 

address this mechanism, recent studies used either a mouse model where ATF6 had 

been globally deleted (ATF6 KO)28 or generated a mouse model in which ATF6 is 

conditionally deleted only in cardiac myocytes (ATF6 cKO)116. Transcript profiling of 

ATF6 transgenic and ATF6 cKO mice revealed that in addition to genes encoding 

proteins that constitute the ER protein-folding machinery, ATF6 induces genes that 

encode proteins that do not even reside in the ER. One such group of genes encodes 

antioxidant proteins that reside outside the ER, including peroxisomal catalase (Fig. 1.2, 

Step 7). This was a surprise because it was the first time antioxidant genes were shown 

to be induced by ATF6 in any cell or tissue type, and the first study to identify ATF6 as a 

direct transcriptional inducer of the catalase gene. This study demonstrated that it is 
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through this non-canonical role that the scope of ATF6 action extends well beyond 

canonical UPR gene program to include proteostasis regulatory pathways, such as 

antioxidants, that can protect the heart from AMI damage (Fig. 1.2, Step 8). 

1.5.2. ATF6 is Required for Cardiac Myocyte Hypertrophy  

In considering other possible non-canonical roles for ATF6, a recent study set out 

to test whether the increase in protein synthesis and protein folding demand that occur 

during cardiac hypertrophy poses a challenge to the protein folding machinery, resulting 

in ATF6 activation50. Indeed, ATF6 was activated in mouse hearts subjected to 

conditions that mimic not only pathological (pressure-overload), but also physiological 

(exercise) cardiac myocyte growth. Using ATF6 cKO mice, it was demonstrated that 

ATF6 is required for heart growth and for maintaining cardiac function under both 

conditions. Furthermore, ATF6 was necessary to prevent the accumulation of misfolded 

proteotoxic aggregates during pressure overload-induced pathological cardiac 

hypertrophy (Fig. 1.3). The finding that ATF6 was required for exercise-induced 

physiological cardiac hypertrophy was surprising, as it’s a reactive growth process 

known to, if anything, decrease the accumulation of misfolded proteins, thus linking 

ATF6 activation primarily to the increase in protein synthesis. While many ATF6 

regulated genes may contribute to this effect, RNAseq and ChIP analysis identified one 

gene that had not previously been shown to be regulated by ATF6, i.e., Rheb. Rheb is 

an activator of mTORC1, a major inducer of protein synthesis and subsequent myocyte 

growth during pathological and physiological hypertrophy117. While not previously 

studied in the heart, constitutive mTORC1 activation via inhibition of the tuberous 
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sclerosis complex (TSC1/2), the negative regulator of Rheb, has been shown to activate 

the UPR in model cell lines118. Rheb expression increased and mTORC1 was activated 

during both physiological and pathological hypertrophy, but not in ATF6 cKO mouse 

hearts. AAV9-mediated ectopic expression of Rheb restored cardiac myocyte growth to 

ATF6 cKO hearts. Similar results were found in a more recent publication where blunted 

pressure overload-induced cardiac hypertrophy and an accelerated progression to heart 

failure in ATF6 cKO mice119. Thus, ATF6 plays a previously unappreciated role in 

cardiac hypertrophy via inducing the non-canonical target, Rheb (Fig. 1.2, Steps 9 and 

10). 
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Figure 1.3- Effect of cardiac myocyte-specific ATF6 deletion in mouse hearts subjected to acute 
pressure-overload.  

Mice in which ATF6 has been selectively deleted in cardiac myocytes were subjected to an acute model of 
pressure overload-induced cardiac hypertrophy. Confocal immunocytofluorescence microscopy analysis of 
mouse heart sections is shown for a cardiac myocyte marker, Cardiac troponin T (red), protein amyloid 
oligomers (green), and nuclei (blue). The accumulation of misfolded protein aggregates indicates the 
necessity of ATF6 to support the protein folding load during concentric cardiac hypertrophy. 

 

 

 

 

 

 

 

ATF6cKO

50µm

Wild-Type Wild-Type ATF6cKO
Healthy Pressure-Overload



 25 

1.5.3. ATF6 Enhances Natriuretic Peptide Secretion and 

Hemodynamic Balance 

Recent unpublished work has found yet another non-canonical target of ATF6 in 

a model of volume overload-induced cardiac hypertrophy103. When mice were subjected 

to a high salt diet, which is known to increase cardiac afterload primarily via increased 

blood volume, ATF6 cKO mice displayed advanced cardiovascular pathology 

characterized by hemodynamic imbalance and decreased cardiac compliance. The 

heart responds to high salt-induced hypertension by increasing the secretion of atrial 

natriuretic peptide (ANP) from atrial myocytes. In this regard, ANP increases natriuresis 

and diuresis and thus, decreases blood pressure120–122. While it was found that ATF6 

did not affect cellular levels of ANP in atrial myocytes, ATF6 was found to be required 

for the regulated secretion of ANP from cultured atrial myocytes, as well as from mouse 

hearts. Mechanistically, ATF6 was shown to induce genes encoding proteins required 

for secretory granule exocytosis, including the t-SNARE, Snap23123,124. Ectopic 

expression of Snap23 in the setting of ATF6 loss-of-function restored regulated ANP 

secretion, while Snap23 knockdown in culture and in vivo mimicked the effects of ATF6 

deletion on ANP secretion. These results define a new ATF6-ANP molecular signaling 

axis whereby ATF6 induces a non-canonical gene program required for regulated 

secretion to maintain cardiac myocyte proteostasis (Fig. 1.2, Steps 11 and 12). 

Moreover, since Snap23 is required for regulated secretion of other neurotransmitters 

and peptides124, it is likely that ATF6 serves a more widespread, required role in the 

regulated secretion of neurotransmitters and peptides.  
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1.5.4. ATF6 Induces Stimulus-Specific Gene Programs 

Over the course of studying ATF6 in various types of CVD, it was found that 

ATF6 can be activated by diverse stimuli, not just misfolded proteins in the ER. These 

diverse ATF6 activators include oxidative stress and growth stimuli, each of which 

impact global proteome integrity, not just the ER proteome. Remarkably, during these 

various pathophysiological maneuvers, ATF6 activates unique gene programs, 

depending on the stimulus, and these programs serve stress-specific adaptive effects50. 

For example, oxidative stress results in ATF6-dependent induction of antioxidants, e.g., 

catalase, but growth regulators, e.g., Rheb. In contrast, growth stimuli activate growth 

regulators, but antioxidants. ATF6 gene deletion ablated the capacity for stimulus-

specific induction of these genes and promoter analysis demonstrated that ATF6 bound 

to consensus ERSEs in a stimulus-specific manner27,50. A series of studies have been 

published highlighting a novel role for the secreted extracellular matrix protein, 

Thrombospondin 4, in serving as an escort protein for ATF6 activation by competing 

with GRP78 for binding to ATF6′s luminal domain and facilitating its the trafficking and 

subsequent processing. Overexpression of Thrombospondin 4 leads to ATF6 activation 

and confers protection in models of AMI and pressure-overload via the adaptive gene 

panel induced by ATF6 consisting of genes involved in membrane expansion allowing 

for enhancing protein and vesicular trafficking125. This finding is further supported by 

work in model cell lines that demonstrate that ATF6 can be activated by sphingolipids 

(e.g., dihydrosphingosine and dihydroceramide) without evidence for increased protein 

folding demand or protein misfolding and activate a unique gene profile allowing for 

homeostatic membrane expansion126. A further surprising finding of this study was that 
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the activation mechanism in response to lipid accumulation was by virtue of a separate 

domain than that required for activation in response to the accumulation of misfolded 

proteins implicating, for the first time, specific domains of ATF6 required to activate 

downstream stimulus-specific gene programs. These data suggest that ATF6 is 

uniquely suited as a rapid sensor and responder to specific stress stimuli and capable of 

dictating genetic cellular reprogramming aimed at maintaining global proteostasis. 

1.6. Small Molecule ATF6-Activators Confer Protection Against 

Cardiovascular Disease 

As described throughout this review, maintaining cardiac myocyte proteostasis is 

vital for cellular viability and function, and ATF6 has demonstrated efficacy as a 

therapeutic target for CVD and cardiac hypertrophy27,50,116. Thus, a conceptual 

framework with specific research approaches was designed in an attempt to identify key 

proteostasis regulatory pathways via discovering non-canonical gene targets of ATF6 

using diverse animal models of various etiologies contributing to CVD. In coordination, 

lead candidate direct small molecule activators of ATF6 would be identified and 

validated for efficacy in small and large animal models of CVD and heart failure (Fig. 

1.4). However, small molecules, as regulators of transcription factors, have been an 

understudied topic of chemical biology, mainly due to fear of non-selectivity or lack of 

efficaciousness when interfering with transcriptional regulation127. Furthermore, 

targeting one of the three primary effectors of the ER UPR presents complications due 

to ambiguity concerning precise activation mechanisms and absence of known small 

molecule-binding sites97. However, recent studies identifying key methods of ATF6 
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activation have demonstrated the possibility of directing small molecule activators to 

these steps in the activation process (Fig. 1.2, Steps 1 and 2). 

Using a high throughput cell-based screen followed by medium-throughput 

transcriptional profiling and high-stringency filtering of a 644,971-compound small 

molecule library, several non-toxic molecules that activate ATF6 were found, one of 

which is named compound 147128. Compound 147 selectively activates ATF6, without 

effecting other UPR pathways, even in the absence of ER stress. An inhibitor of S1P, 

the Golgi protease that cleaves and activates ATF6, inhibited 147-mediated ATF6 target 

gene induction. Using “click” chemistry and forms of 147 with chemical handles, the 147 

interactome was defined in an attempt to demonstrate the mechanism by which it 

activates ATF6129. It was discovered that 147 binds PDIs, which regulate disulfide bond 

formation in the ER. The mechanism of activation of ATF6 involves the dissociation of 

ATF6 oligomers in the ER to form ATF6 monomers that are able to relocate to the Golgi 

where S1P and S2P cleave ATF6, resulting in its activation. Compound 147 inhibits a 

unique group of PDIs that reside in a complex with ATF6 in the ER, where they maintain 

ATF6 in its inactive state. In this study, it was shown that 147 facilitates the movement 

of ATF6 out of the ER via PDI inhibition and subsequent dissociation from ATF6.  

Given the robust protection, ATF6 confers during AMI and post-AMI remodeling, 

the effects of pharmacological activation of ATF6 with 147 in a mouse model of 

reperfusion damage was chosen for initial efficacy testing116. Intravenous administration 

of 147 concurrently with reperfusion robustly and selectively activated ATF6 and 

downstream genes of the ATF6 gene program, protected the heart from AMI injury, 

preserved cardiac function, and decreased infarct size when assessed 24 h after drug 
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administration/reperfusion. However, this protection was lost in ATF6 cKO mouse 

hearts. Thus, one dose of 147 concurrent with reperfusion was sufficient to induce the 

adaptive ATF6 gene program and provide protection from reperfusion damage during 

the first 24 h after AMI. Cardioprotection and ameliorated post-AMI cardiac hypertrophy 

was also observed in a similar experiment where heart damage and function were 

examined seven days after drug/reperfusion. Moreover, 147 had no deleterious effects 

in the absence of pathology, or in other tissues that were unaffected by reperfusion 

injury, an indicator of its safety. In fact, in the absence of AMI, 147 improved cardiac 

basal performance. This improvement was associated with the ability of just one 

administration of 147 to increase SERCA2a expression, resulting in improved Ca2+ 

uptake. Remarkably, by activating ATF6, 147 protected other tissues, including the 

brain, kidney, and liver, when they were subjected to maneuvers that induced 

reperfusion damage and impaired proteostasis. Moreover, administration of 147 every 

two to three days over a two-week timeframe had no untoward toxic effects in the heart, 

brain, liver, and pancreas. Thus, 147 selectively activates the ATF6 arm of the UPR in 

vivo, exhibiting significant potential as a therapeutic approach for treating AMI and 

reperfusion damage in a wide range of tissues116. 

Chapter 1, in part, is a reprint of the material as it appears in Cells in 2020. 

Blackwood, E.A., Bilal, A.S., Stauffer, W.T., Arrieta, A., and Glembotski, C.C. Designing 

novel therapies to mend broken hearts: ATF6 and cardiac proteostasis. Cells, 2020; 

9(3). The dissertation author was the primary author of this paper. 
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Figure 1.4- Approach to developing novel ATF6-based therapeutics.  

The therapeutic framework for developing ATF6-based therapeutics is conceptually simple in design. 
Three main research approaches are prioritized: 1) Expanding the scope of experimental animal models of 
various etiologies of heart disease in which ATF6 is studied. 2) Discovering other non-canonical targets of 
ATF6. 3) Using chemical biology to identify potent and specific small molecule activators of ATF6. 
Coordinately, these research approaches will converge into a streamlined experimental approach of 1) 
preliminary testing of lead small molecule activators in cell models of disease, in vitro, and 2) evaluating 
efficacy of these lead small molecule activators in small and large animal models, in vivo. 
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2.1. Introduction 

 ER stress causes accumulation of misfolded proteins in the ER, activating the 

transcription factor, ATF6, which induces ER stress response genes. Myocardial 

ischemia induces the ER stress response; however, neither the function of this 

response nor whether it is mediated by ATF6 is known. 

 Here, we examined the effects of blocking the ATF6-mediated ER stress 

response on ischemia/reperfusion (I/R) in cardiac myocytes and mouse hearts. 

 Knockdown of ATF6 in cardiac myocytes subjected to I/R increased ROS and 

necrotic cell death, which were mitigated by ATF6 overexpression. Under non-stressed 

conditions, WT and ATF6 knockout (KO) mouse hearts were similar. However, 

compared to WT, ATF6 KO hearts showed increased damage and decreased function 

upon I/R. Mechanistically, gene array analysis showed that ATF6, which is known to 

induce genes encoding ER proteins that augment ER protein-folding, induced numerous 

oxidative stress response genes not previously known to be ATF6-inducible. Many of 

the proteins encoded by the ATF6-induced oxidative stress genes identified here reside 

outside the ER, including catalase, which is known to decrease damaging ROS in the 

heart. Catalase was induced by the canonical ER stressor, tunicamycin, and by I/R in 

cardiac myocytes from WT but not in cardiac myocytes from ATF6 KO mice. ER stress 

response elements were identified in the catalase gene and were shown to bind ATF6 

in cardiac myocytes, which increased catalase promoter activity. Overexpression of 

catalase, in vivo, restored ATF6 KO mouse heart function to WT levels in a mouse 

model of I/R, as did AAV9-mediated ATF6 overexpression. 
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 ATF6 serves as a previously unappreciated link between the ER stress and 

oxidative stress gene programs, supporting a novel mechanism by which ATF6 

decreases myocardial I/R damage. 

2.2. Materials and Methods 

2.2.1. Cultured cardiac myocytes 

 Neonatal rat ventricular myocytes (NRVM) were isolated by enzymatic digestion 

of neonatal rat hearts and purified by Percoll density gradient centrifugation, as 

described1. Briefly, NRVM were prepared from 1 to 3 day-old Sprague-Dawley rat 

hearts using a neonatal cardiomyocyte isolation system (cat# LK003300, Worthington 

Biochemical Corp, Lakewood, NJ). Isolated cells were counted and collected by 

centrifugation at 250 xg for 5 min. Forty to 60 million cells were then resuspended in 2 

ml of red (with phenol red) 1x ADS buffer (116 mM NaCl, 20 mM HEPES, 769 µM 

NaH2PO4, 5.55 mM glucose, 5.37 mM KCl, 831 µM MgSO4, 0.002% phenol red, pH 

7.35 ± 0.5).  Stock Percoll was prepared by combining 9 parts of Percoll (cat# 17-0891-

02, GE healthcare, Piscataway, NJ) with 1 part of clear (without phenol red) 10x ADS.  

The stock Percoll was used to make the Percoll gradient for the top (density= 1.059 

g/ml; 1 part Percoll stock added to 1.2 parts clear 1x ADS) and bottom (density= 1.082 

g/ml; 1 part Percoll stock added to 0.54 parts red 1x ADS) layers.   The gradient, 

consisting of 4 ml top Percoll and 3 ml bottom Percoll, was set in a 15 ml conical tube 

by pipetting the top Percoll first, and layering the bottom Percoll gently underneath, and 

the cells (in 2 ml red 1x ADS buffer) were layered on the top.  Subsequently, the Percoll 

gradient was centrifuged at 1500×g for 30 min with no deceleration brake at 4oC. The 
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isolated myocytes, which concentrated in the layer located between the lower red ADS 

layer and the middle clear ADS layer, were carefully collected and washed twice with 50 

ml of 1x ADS, and were then resuspended in plating medium and counted. Following 

Percoll purification, myocytes were plated at the desired density on plastic culture plates 

that had been pre-treated with 5 µg/ml fibronectin for one hour. Cultures were then 

maintained in Dulbecco's modified Eagle's medium (DMEM)/F12 supplemented with 

10% fetal calf serum (FCS) and antibiotics (100 units/ml penicillin and 100 µg/ml 

streptomycin). 

2.2.2 Adenovirus  

 Construction of plasmid vectors encoding FLAG-tagged constitutively active 

ATF6 [ATF6𝛼(1-373)], called form 1 in this paper, partially active ATF6 [ATF6𝛼(39-

373)], i.e. form 2, inactive ATF6 [ATF6𝛼(94-373)], i.e. form 3, and empty vector AdV-

control (AdV-Con) has been previously described2. The ATF6 vectors were used to 

generate recombinant adenovirus (AdV) expressing different forms of ATF6 using 

AdEasy system as previously described3. AdV-mito-Hyper containing a mitochondria-

targeted Hyper protein was a generous gift from Dr. Junichi Sadoshima (New Jersey 

Medical School, NJ). Transduction was performed by incubating cultures overnight with 

the appropriate AdV at a multiplicity of infection of five.   

2.2.3. Immunoblotting  

 NRVM were lysed in RIPA buffer comprising 20 mM Tris-HCl (pH 7.5), 150 mM 

NaCl, 0.1% SDS, 0.5% deoxycholic acid, 1% Triton X-100, protease inhibitor cocktail 

(Roche Diagnostics, Indianapolis, IN) and phosphatase inhibitor cocktail (Roche 
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Diagnostics). Mouse heart tissues were homogenized in modified RIPA buffer with 1 % 

SDS. Lysates were clarified by centrifugation at 15,000 x g for 15 min at 4°C, and the 

protein concentration was determined using DC protein assay (Bio-Rad, Hercules, CA). 

Samples usually comprising 40 µg of protein were mixed with Laemmli sample buffer, 

boiled for 5 min, then subjected to SDS-PAGE followed by transferring onto PVDF 

membrane for immunoblotting analysis. To detect HMGB1 released from cells as a 

result of necrosis, 20 µl of culture media were analyzed by SDS-PAGE followed by 

immunoblotting for HMGB1. For ATF6 antibody validation, antibodies raised against the 

N-terminal of ATF6 were purchased from Proteintech (1:1000, cat# 24169-1-AP, 

Rosemont, IL), Abcam (1:1000, cat# ab37149, Cambridge, MA), Novus Biologicals 

(1:1000, cat# NBP1-40256, Littleton, CO), and Santa Cruz Biotechnology (1:500, cat# 

sc-14250, Dallas, TX).  An antibody raised against the C-terminal of ATF6 was 

purchased from Signalway (1:1000, cat# 32008, College Park, MD). An anti-KDEL 

antibody (1:8,000, cat# ADI-SPA-827 , Enzo Life Sciences, Farmingdale, NY) was used 

to detect GRP94, GRP78 and PDIA6, all of which have C-terminal KDEL sequences 

that cross-react with this antibody. Other antibodies used included anti-PARP (1:1000, 

cat# 9542, Cell Signaling, Danvers, MA), anti-catalase (1:1000, cat# ab16731, Abcam), 

anti-FLAG M2 (1:10,000, cat# F1804, Sigma-Aldrich, St. Louis, MO), anti-HMGB1 

(1:1000, cat# ab18256 Abcam), anti-CHOP (1:1000, cat# 5554, Cell Signaling), anti-

IRE1 (1:500, cat# sc-390960, Santa Cruz), anti-XBP1s (1:1000, cat# 619502, 

BioLegend, San Diego, CA), anti-phospho-PERK (1:1000, cat# 3179, Cell Signaling), 

anti-PERK (1:1000, cat# 3192, Cell Signaling), and anti-β-actin (1:1000, cat# sc-47778, 

Santa Cruz).   
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2.2.4. MTT and lactate dehydrogenase (LDH) assays 

 NRVM were plated in 96-well plates (1.5 x 104 cells/well) and treated with 

tunicamycin (TM) at 40 µg/ml for 48h, or with hydrogen peroxide (H2O2) at 37.5 µM for 

8h. Dose response experiments were carried out to determine that these were the 

optimal doses of TM and H2O2 for measuring the effects of ATF6 gain- and loss-of-

function on cell viability (MTT) and necrosis (medium LDH activity). Cell viability was 

measured using an MTT assay (Cell Proliferation Kit I, Roche Diagnostics), as 

previously described1. Media samples from H2O2-treated NRVM were collected for LDH 

activity assays, which were done using the CytoTox 96 Non-Radioactive Cytotoxicity 

Assay (Promega, Madison, WI), according to the manufacturer’s instructions.  

2.2.5. Isolation of adult mouse cardiac myocytes 

 Adult mouse ventricular myocytes (AMVM) were isolated essentially as 

previously described 4, 5. Briefly, hearts were rapidly cannulated via the ascending aorta, 

mounted on a perfusion apparatus and retrograde perfused at 3 ml/min for 4 min at 

37oC with heart medium (Joklik Modified Minimum Essential Medium; cat# M-0518, 

Sigma-Aldrich, supplemented with 10 mM HEPES, 30 mM taurine, 2 mM D-L-carnitine, 

20 mM creatine, 5 mM inosine, 5 mM adenosine, and 10 mM butanedione monoxime 

(BDM), pH 7.36). Collagenase digestion of hearts was performed by perfusing for 13 

min with heart medium supplemented with type 2 collagenase (50-60 mg; ~320U/ml, 

cat# LS004176, Worthington) and 12.5 µM CaCl2. Hearts were removed from the 

cannula and submerged in 2.5 ml of effluent collected off the heart during the 

collagenase digestion, and dissociated using forceps. Collagenase was neutralized by 
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adding 2.5 ml of heart medium supplemented with 10% FCS, and the final concentration 

of CaCl2 was adjusted to 12.5 µM. Cells were dissociated further by gently triturating for 

4 min.  The cell suspension was then filtered through a 100µm mesh filter and myocytes 

were allowed to sediment by gravity for 6 min at room temperature. The supernatant 

containing non-viable cells and non-myocytes was discarded and the remaining 

myocytes were resuspended in 5 ml of heart medium containing 5% FCS and 37.5 µM 

CaCl2. The concentration of CaCl2 in this suspension was slowly increased in a careful 

stepwise manner as follows: Step 1- add 50 µl of 10 mM CaCl2, mix gently, allow to sit 

for 4 min; Step 2- repeat Step 1; Step 3- add 100 µl of 10 mM CaCl2 and wait 4 min; 

Step 4- add 80 µl of 100 mM CaCl2 and wait 4 min. Cells were resuspended in plating 

medium (MEM medium; cat# 12350-039, Thermo Fisher Scientific, Waltham, MA, 1x 

insulin-transferrin-selenium; cat# 41400-045, Thermo Fisher, 10 mM HEPES, 100 

units/ml penicillin and 100 µg/ml streptomycin, 10 mM BDM and 4% FCS). Cells were 

plated at 5 x 104 cells per well in 12-well culture plates coated with laminin (10 µg/ml). 

After at least 2h, the medium was changed to maintaining medium (MEM medium, 1x 

insulin-transferrin-selenium, 10 mM HEPES, 1.2 mM CaCl2 and 0.01% bovine serum 

albumin, 25 µM blebbistatin. Cells were used for experiments 12-18h later. 

2.2.6. Simulated ischemia/reperfusion 

 NRVM or AMVM were subjected to simulated ischemia (sI) or simulated ischemia 

followed by simulated reperfusion (sI/R), as previously described6. Briefly, cells were 

placed into 12-well plates at 2 x 105 cells/well for NRVM, or 5 x 104 cells/well for AMVM. 

For sI of NRVM, medium was replaced with 0.5 ml of glucose-free DMEM containing 

2% dialyzed FCS. Cells were incubated at 0.1% O2 in a hypoxia chamber with an 
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oxygen controller (ProOx P110 oxygen controller, Biospherix, Parish, NY). To simulate 

reperfusion, medium was replaced with medium containing 17.5 mM glucose and cells 

were incubated at 21% O2. In some experiments, 5 mM N-acetyl cysteine (pH 7.5), a 

ROS scavenger, was added to the reperfusion medium. To examine the effects of sI/R 

on NRVM viability, cells were incubated in sI for 16h, followed by reperfusion for 24h. To 

examine the effects of sI/R on ROS generation in NRVM, cells were incubated in sI for 

8h, followed by reperfusion for 1h. To examine the effects of sI/R on AMVM viability, 

cells were incubated in DMEM supplemented with 100 units/ml penicillin, 100 µg/ml 

streptomycin, and 292 µg/ml glutamine for 3h, followed by reperfusion with maintaining 

medium for 24h. To examine the effects of catalase on sI/R-mediated death of AMVM, 

cultures were pre-treated with 100U/mL of PEG (polyethylene glycol)-conjugated-

Catalase, PEG-Catalase (Sigma cat# C4963) overnight, then PEG-Catalase was added 

into sI and sI/R media. Viable AMVM and were identified as calcein blue AM-positive 

(Thermo Fisher) and images were obtained using an IX70 fluorescence microscope 

(Olympus, Melville, NY). Numbers of viable, calcein blue AM-positive cells were counted 

using ImageJ or Image-Pro Plus software (Medium Cybernetics, Rockville, MD).  

2.2.7. Reactive oxygen species (ROS) production 

 The levels of intracellular ROS were determined with the CellROX Orange 

fluorescent dye (Thermo Fisher). After sI/R, NRVM were incubated with 5 µM CellROX 

Orange for 20 min at 37°C, and then washed with PBS. Images were obtained using a 

fluorescence microscope at a magnification of 20X. Fluorescence intensity (absorbance 

units) was determined using Image-Pro Plus software. To detect intracellular H2O2, 

NRVM were permeabilized with 40 µM digitonin. The resulting media containing 
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intracellular H2O2 were transferred to black 96-well plates. The levels of H2O2 were 

measured using Amplex Red Hydrogen Peroxide/peroxidase Assay Kit (Thermo Fisher) 

according to manufacturer’s instructions. Mitochondrial-specific H2O2 production was 

detected through the expression of mitochondria-specific HyPer protein using AdV mito-

Hyper as previously described7. 

2.2.8. Small interfering RNA (siRNA) transfection  

 Reverse transfection of siRNA duplexes into NRVM using TransMessenger 

Transfection Reagent (Qiagen, Valencia, CA) has been described previously1. Briefly, 

Percoll-purified NRVM (3 x 105 cells) were suspended in medium containing 2% FCS, 

incubated with 100 nM siRNA and transfection reagent followed by plating in 12-well 

plates for overnight. Medium was changed the next day. The sequence of siRNA 

targeting rat ATF6 was 5-GCUCUCUUUGUUGUUGCUUAGUGGA-3, and the 

sequence targeting rat catalase was 5-GGAACCCAAUAGGAGAUAAACUUAA-3 (cat# 

CatRSS302058, Stealth siRNA, Thermo Fisher). A non-targeting sequence (cat# 

12935300, Thermo Fisher) was used as a control siRNA.  

2.2.9. Malondialdehyde assay 

 Lipid peroxidation was determined by measuring the levels of malondialdehyde 

(MDA). Briefly, sI/R treated NRVM (6 x 105 cells) were scrapped into 0.5 ml of PBS, and 

sonicated on ice. MDA levels in cell lysates were measured using a TBARS assay kit 

(Cayman Chemical, Ann Arbor, MI) according to the manufacturer’s instructions.  
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2.2.10. Immunocytofluorescence (ICF) 

 NRVM- NRVM were plated and on fibronectin-coated glass chamber slides 

(Nunc Lab-Tek II Chamber Slide) as previously described1. After treatment, cells were 

fixed with -20°C methanol for 10 min, then blocked for 1h with SuperBlock blocking 

buffer (Thermo Fisher). Slides were then incubated overnight with an anti-ATF6 

antibody (1:50, cat# sc-166659, Santa Cruz)8, and an anti-�-actinin antibody (1:50, cat# 

GTX103219, GeneTex, Irvine, CA). Slides were subsequently incubated at room 

temperature for 90 min with the appropriate fluorophore-conjugated a secondary 

antibody including: Cy3-conjugated anti-mouse IgG (1:100), FITC-conjugated anti-goat 

IgG (1:100), or FITC-conjugated anti-rabbit IgG (1:100, Jackson ImmunoResearch 

Laboratories, West Grove, PA). Nuclei were counterstained for 1 min with Topro-3 

(1:1000, Thermo Fisher). Images were obtained using laser scanning confocal 

microscopy on an LSM 710 confocal laser scanning microscope (Carl Zeiss, 

Oberkochen, Germany).  

 AMVM- were plated in plating medium at 1.0x105 cells per chamber on laminin-

coated 4-chamber glass slides (Falcon). After 3h, the medium was changed to 

maintaining medium containing 25 μM blebbistatin. After 16h, the medium was replaced 

with 0.5 ml of medium appropriate for sI/R for the appropriate times (see above), or with 

medium containing tunicamycin (10 µg/ml) for 24h. After each treatment, AMVM were 

washed with PBS, fixed for 15 min with 4% paraformaldehyde, followed by 

permeabilization for 10 min with 0.5% Triton-X. For ATF6 staining, AMVM were fixed for 

10 min with -20°C methanol. Slides were blocked for 1h with SuperBlock, and then 

incubated with primary antibodies for 16h at 4oC. Primary antibodies used for staining 
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AMVM were anti-𝛼-actinin (1:200, cat# A7811, Sigma-Aldrich), anti-GRP78 (C-20, 1:30, 

cat# SC-1051, Santa Cruz), anti-catalase (1:100, Abcam), and anti-ATF6 (targeting to 

N-terminus of ATF6, 1:50, cat# sc-14250, Santa Cruz). Slides were incubated with 

appropriate fluorophore-conjugated secondary antibodies, followed by nuclei counter 

stain, as described above. 

 Adult mouse hearts were embedded and sectioned as previously described11. 

Briefly, mice were anesthetized and a catheter was inserted into the abdominal aorta. 

The aorta was retro-perfused with PBS followed by relaxation buffer containing CdCl2 

and KCl, fixed in neutral buffered 10% formalin. After 24h in formalin, the hearts were 

dehydrated in ethanol and embedded in paraffin. Five-µm sections of paraffin-

embedded hearts were heated in antigen retrieval citrate buffer (10mM; pH 6.0). The 

heart sections were then treated with blocking buffer (Thermo Scientific, cat# 37528) for 

1h at room temperature and then incubated with primary antibodies overnight at 4°C. 

Primary antibodies in this study included: anti-GRP78 (C-20, 1:30, cat# SC-1051, Santa 

Cruz), anti-catalase (1:50, Abcam), anti-ATF6 (targeting to N-terminus of ATF6, 1:50, 

cat# sc-14250, Santa Cruz), and anti-tropomyosin (1:200, cat# T9283, Sigma-Aldrich). 

Slides were incubated with appropriate fluorophore-conjugated secondary antibodies as 

described above for 90 min at room temperature (all at 1:100 dilutions). Nuclear marker 

counterstain, TO-PRO-3 (Thermo Fisher; 1:10000), was incubated for 15min at room 

temperature prior to application of coverslips fixed with Vectashield Hardset (Vector 

Labs, H1400).   

2.2.11. Echocardiography 
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 Echocardiography of WT and ATF6 KO mice was performed using an ultrasound 

imaging system (Vevo 2100 System, Fujifilm VisualSonics, Toronto, Ontario, Canada) 

as described1.  

2.2.12. In Vivo ischemia/reperfusion 

 Myocardial ischemia/reperfusion (I/R) was performed in vivo by 30 min of ligation 

of the left anterior descending coronary artery followed by 24h of reperfusion, as 

previously described9. Following I/R, 1% of Evans Blue was injected apically to 

determine the area at risk (AAR). Hearts were harvested and 1-mm sections of the 

hearts were stained with 1% triphenyl tetrazolium chloride (TTC) to measure infarcted 

area (INF) as previously described9. The AAR, INF and left ventricle area (LV) of digital 

images of heart sections were analyzed using ImageJ software. 

2.2.13. Ex vivo ischemia/reperfusion 

 Mouse hearts were isolated and subjected to global I/R as previously 

described10. Briefly, isolated hearts were mounted onto a Langendorff perfused heart 

apparatus. Global no-flow ischemia was performed for 20 min followed by reperfusion 

for 1 h. Left ventricular developed pressure (LVDP) was measured using a pressure 

sensor balloon and analyzed using Powerlab software (ADInstruments, Colorado 

Springs, CO).   

2.2.14. Intravenous Injections 

 For AAV9, C57/BL6 mice were anesthetized with 2% isoflurane and then injected 

via the lateral tail vein with 100 µl of AAV9-control or AAV9-3xFlag-ATF6𝛼(1-373) 
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containing 1x1011 viral particles, and then hearts were obtained after either 2 weeks for 

immunoblots (Fig. 6E), or after 2d for ex vivo I/R (Fig. 7J).  In other experiments, 

C57/BL6 mice were anesthetized with 2% isoflurane and then injected via the lateral tail 

vein with 100 µl of 1000u/kg PEG-Catalase (Sigma cat# C4963), or vehicle 16h before 

hearts were obtained and subjected to ex vivo I/R (Fig. 7G).  

2.2.15. Quantitative real-time PCR (qRT-PCR) 

 Total RNA was isolated from NRVM or hearts using Quick-RNA MiniPrep kit 

(Zymo Research, Irvine, CA) or RNeasy Mini kit (Qiagen), respectively. cDNA synthesis 

was performed using SuperScript III First-Strand Synthesis System (Thermo Fisher). 

qRT-PCR was performed using Maxima SYBR Green/ROX qPCR Master Mix in a 

StepOnePlus RT-PCR System (Thermo Fisher). The following primers were used: 

 

Rat Forward 5’ to 3’ Reverse 5’ to 3’ 

b-Actin CTTCCTTCCTGGGTATGGAATC CTGTGTTGGCATAGAGGTCTT 

Cat CTTTGAGGTCACCCACGATATT GTGGGTTTCTCTTCTGGCTATG 

Gpx1 TGAGAAGTGCGAGGTGAATG CCAGATACCAGGAATGCCTTAG 

Gpx3 CATTCGGCCTGGTCATTCT CAGCGGATGTCATGGATCTT 

Gpx4 GCAGGAGCCAGGAAGTAATC ACGCAGCCGTTCTTATCAA 

Prdx1 TGTAGCTCGACTCTGCTGATA GTCCCAATCCTCCTTGTTTCT 

Prdx2 ATGATGAGGGCATCGCTTAC TCAGGCTCACCGATGTTTAC 

Prdx3 CGCTCAGAGGTCTCTTCATTATT GTACTGGTGCTATGTGCTACTT 

Prdx4 GGGAAGGAACAGCTGTGATAA GATCCAGGCCAAGTGAGTAAA 

Prdx5 CAGAGCTGTTCAAGGACAAGA CCCAAAGAGAGACACCAAAGA 

Prdx6 CCTGGAGCAAGGACATCAAT GGAGTCAACCACTCTGAGAATC 
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Sod1 TGGGTTCCATGTCCATCAATA CAATCCCAATCACACCACAAG 

Sod2 CTGACCTGCCTTACGACTATG CTTGCAGTGGGTCCTGATTA 

Vimp GACCTTCTACTTCATCGGTCATC TCAGAACAGAAATCAGCCCTAC 

   

Mouse   

b-Actin GACGGCCAGGTCATCACTAT GTACTTGCGCTCAGGAGGAG 

Cat AACTGGGATCTTGTGGGAAAC GTGGGTTTCTCTTCTGGCTATG 

Grp78 CACGTCCAACCCCGAGAA ATTCCAAGTGCGTCCGATG 

Grp94 TCGTCAGAGCTGATGATGAAGT GCGTTTAACCCATCCAACTGAAT 

Pdia6 TGCCACCATGAATCAGGTTCT TCGTCCGACCACCATCATAGT 

 
 For the RT-PCR array, total RNA was isolated from Ad-Con or Ad-ATF6 form 1 

treated NRVM (5 x 105 cells) using miRNeasy Mini Kit (Qiagen). Synthesis of cDNA was 

performed using 500 ng of RNA and RT2 First Strand Kit (Qiagen). Rat Oxidative Stress 

RT2 Profiler PCR Arrays (Qiagen) were performed using RT2 SYBR Green ROX qPCR 

Mastermix in a StepOnePlus RT-PCR System according to the manufacturer’s 

instructions.  

2.2.16. Adeno-Associated Virus Serotype 9 (AAV9) 

 AAV9 preparation was carried out essentially as previously described1. For 

generation of recombinant AAV9-control and AAV9-3xFlag-ATF6𝛼(1-373), shuttle 

vectors for these recombinants were constructed and co-transfected with AAV9 helper, 

pDG-9 (a gift from Dr. Roger Hajjar) into HEK293T cells to produce virus.  Two different 

expression constructs were prepared; AAV9-CMV-3xFlag-ATF6𝛼(1-373) and AAV9- 

CMVenhMLC800-3xFlag-ATF6𝛼(1-373). Similar results were obtained with each vector, 
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except the AAV9-CMV-3xFlag-ATF6𝛼(1-373) results in more robust expression than 

AAV9-CMVenhMLC800-3xFlag-ATF6𝛼(1-373). Since the recombinant AAV9 were 

prepared using similar strategies, only the preparation of AAV9-CMVenhMLC800-3xFlag-

ATF6𝛼(1-373) is described here. The shuttle vector, pTRUF-CMVenhMLC800, was 

constructed by modifying pTRUF12 (a gift from Dr. Roger Hajjar) by first removing the 

region encoding GFP that was down-stream of the IRES. New restriction sites were 

inserted into the multiple cloning site to include Nhe1, Pme1, Xho1, and Mlu1. The CMV 

promoter was replaced with a composite promoter comprised of an 800bp fragment of 

the MLC2v promoter downstream of a minimal region of the CMV enhancer (a gift from 

Dr. Oliver J. Muller).  AAV9 vectors with wild-type capsids were generated by co-

transfection of the helper plasmid, pDG-9. pTRUF-CMVenhMLC800-3xFlag-ATF6𝛼(1-

373) was created by sub-cloning the human 3xFlag-ATF6𝛼(1-373) cDNA from 

pcDNA3.1-3xFlag-ATF6𝛼(1-373). To prepare the recombinant AAV9, HEK293T cells 

were plated a density of 8x106 per T-175 flask and maintained in DMEM/F12 containing 

10%FBS, penicillin/streptomycin at 37°C and 5% CO2. For each virus preparation, 48 

flasks were used. Twenty-four hours after plating, cultures were transfected using 

Polyethylenimine “Max” (MW 40,000, Polysciences, cat# 24765) as follows: For each T-

175 flask, 15µg of helper plasmid and 5µg of pTRUF plasmid were mixed with 1 ml of 

DMEM:F12 (no antibiotics) and 160 µl of polyethylenimine (0.517 mg/ml), vortexed for 

30 seconds, and incubated for 15 min at room temperature.  This was then mixed with 

18 ml DMEM/F12 containing 2% FBS, penicillin/streptomycin then used to replace the 

media on the cultures. The cultures were then rocked intermittently for 15 minutes 

before incubation. Three days after transfection, the cells collected from six T-175 flasks 



 57 

were centrifuged at 500xg for 10 min, then resuspended in 10 ml of lysis buffer (150 mM 

NaCl, 50 mM Tris-HCL). The resuspended cells were then subjected to three rounds of 

freeze-thaw, followed by treatment with benzonase (1500 U of benzonase; Novagen) 

and 1 mM MgCl2 at 37°C for 30 min.  The cell debris was collected by centrifugation at 

3,400 x g for 20 min. The supernatant obtained from six T-175 flasks containing the 

AAV9 was then purified on an iodixanol gradient comprised of the following four phases:  

7.3 ml of 15%, 4.9 ml of 25%, 4 ml of 40%, and 4 ml of 60% iodixanol (Optiprep; Sigma-

Aldrich) overlayed with 10 ml of cell supernatant. The gradients were centrifuged in a 

70Ti rotor (Beckman Coulter) at 69,000 rpm for 1h using OptiSeal Polyallomer Tubes 

(Beckman Coulter). Virus was collected by inserting a needle 2 mm below the 40%-60% 

interface and collecting 4 or 5 fractions (~4ml) of this interface and most of the 40% 

layer.  The fractions were analyzed for viral content and purity by examining 10 µl of 

each fraction on a 12% SDS-PAGE gel (BioRad), followed by staining with InstantBlue 

(Expedeon) to visualize the viral capsid proteins, VP1, VP2 and VP3.  The virus was 

then collected from the fractions of several gradients and the buffer was exchanged with 

lactated Ringer’s using an ultrafiltration device, Vivaspin 20, 100kDa MWCO (GE 

Healthcare).  The final viral preparation was then fractionated on a 12% SDS-PAGE gel, 

stained with InstantBlue, and then compared with a similarly stained gel of a virus of a 

known titer. Alternatively, a qPCR was performed using a forward primer 

(AAGTCTCCACCCCATTGACGT) and reverse primer 

(AGGAGCCTGAGCTTTGATTCC), which spans the CMVenhMLC800 composite 

promoter. A pTRUF vector containing the CMV/MLC800 promoter was used as a 

standard to determine copy number. pTRUF-CMVenhMLC-empty was used to generate 
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an analogous control virus.  

2.2.17. Cloning and mutagenesis 

 The promoter region of the rat catalase gene spanning nucleotides -1161 to +131 

was amplified by PCR using ggaacgGGTACCTCACTGCCTTTATGGGCTTC as the 

forward primer, which introduced a Kpn1 site (lower case) just 5’ of rat catalase -1161, 

and ggaacgCTCGAGGTGTAGGATTGCGGAGCTG as the reverse primer, which 

introduced an Xho1 site just 3’ of rat catalase +131. Upper case nucleotides match 

those in the rat catalase gene. The amplified product was then cloned into pGL2p to 

generate rat-cat(-1161/+131)-Luc.  Truncated versions of rat-cat luciferase were cloned 

into pGL2p using a similar strategy and the same reverse primer coupled with the 

following forward primers:  

ggaacgGGTACCAAAGGAGCCATGAAGCTGAA (-689), 

ggaacgGGTACCACAGTGGGCCAAGTGACAAG (-410), and 

ggaacgGGTACCGTCCCCGAACTGTGACTCTC (-191) 

 to generate rat-cat(-689/+131)-Luc, rat-cat(-410/+131)-Luc and rat-cat(-191/+131)-Luc, 

respectively.  The underlined regions of these primers correspond to rat catalase gene 

sequences. Informatics analyses identified putative ER stress response elements in the 

rat catalase gene at nucleotide positions -979 to -962 and -194 to -184 in the rat 

catalase gene, which we called ERSE-2 and ERSE-1, respectively. These elements in 

rat-cat(-1161/+131)-Luc were mutated by site-directed mutagenes in ways predicted to 

ablate ATF6 binding using cat-ERSE-2 mut sense primer, 



 59 

CCCAAGGGATTGCAAACTTACAATTTTACCccgCTCTGTTACCcacTCTTTGTCAAATC

AAGAACAAGTTTTGGAGT  

and cat-ERSE-2 mut antisense primer,  

ACTCCAAAACTTGTTCTTGATTTGACAAAgagTGGGTAACAGAGcggGGTAAAATTGT

AAGTTTTGCAATCCCTTGGG 

cat-ERSE-1 mut sense primer, 

CGTTGCACAGAGGAcggttTaaCagAACTGTGACTCTCAG, and 

cat-ERSE-1 mut antisense primer, 

CTGAGAGTCACAGTTctGttAaccgTCCTCTGTGCAACG.  

PCR-based mutagenesis was performed using the QuikChange XL Site-Directed 

Mutagenesis Kit (Agilent Technologies, Santa Clara, CA). Lower case letters represent 

mutated nucleotides; upper case letters represent nucleotides that are identical to those 

in the rat catalase gene. 

2.2.18. Luciferase reporter assay 

 Suspended NRVMs were co-transfected by electroporation with one of the above 

reporter constructs along with pCH110 plasmids encoding SV40-beta-galactosidase 

and pGL2B, as described previously.5  NRVMs were plated overnight and then infected 

with different forms of AdV-ATF6, as described above.  NRVMs were lysed after 48 h, 

and the activities of luciferase and beta-galactosidase were measured using an 

Optocompt II luminometer (MGM Instruments, Hamden, CT) as described previously6.  
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2.2.19. Chromatin immunoprecipitation (ChIP)  

 ChIP assays were performed essentially as previously described11. Briefly, AdV-

FLAG-ATF6 form 1-infected NRVM (2 x 106 cells) were treated with fixing buffer (50 mM 

HEPES-KOH, pH 7.5, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, and 1% 

formaldehyde) for 10 min, quenched with 125 mM glycine, and scraped into ice-cold 

PBS. Cells were centrifuged, resuspended in lysis buffer (50 mM HEPES, pH 7.9, 140 

mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100, and protease 

inhibitor cocktail), and incubated on ice for 10 min. After centrifugation at 1,800 x g for 

10 min, the pellets were washed with buffer containing 10 mM Tris, pH 8.1, 200 mM 

NaCl, 1 mM EDTA, and 0.5 mM EGTA, resuspended in shearing buffer (0.1% SDS, 1 

mM EDTA, and 10 mM Tris, pH 8.1), and then transferred to microTUBEs (Covaris, 

Woburn, MA). Chromatin was sheared by sonication for 15 min using an M220 focused-

ultrasonicator (Covaris). Triton X-100 and NaCl were added to the final concentration of 

1% Triton and 150 mM NaCl followed by centrifugation at 16,000 x g for 10 min. 

Immunoprecipitation was performed by incubated 140 µl of sheared chromatin with 5 µg 

of anti-FLAG antibody (cat# F1804, Sigma-Aldrich) and 260 µl of immunoprecipitation 

buffer (0.1% SDS, 1 mM EDTA, 10 mM Tris, pH 8.1, 1% Triton X-100, and 150 mM 

NaCl) at 4°C overnight. Protein A/G magnetic beads (5 µl, BcMag, Bioclone, San Diego, 

CA ) were added to the mixtures and incubated at 4°C for 1.5 h. Magnetic beads were 

sequentially washed with low salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM 

EDTA, 20 mM HEPES-KOH, pH7.9, and 150 mM NaCl), high salt wash buffer with 500 

mM NaCl, LiCl wash buffer (100 mM Tris-HCl, pH 7.5, 0.5 M LiCl, 1% NP-40, and 1% 

deoxycholate acid), and TE buffer (10 mM Tris-HCl, pH 8.0 and 0.1 mM EDTA). 
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Immune complexes were eluted by incubating beads with proteinase K digestion buffer 

(20 mM HEPES, pH 7.9, 1 mM EDTA, 0.5% SDS, and 0.4 mg/ml proteinase K) at 50°C 

for 15 min. Formaldehyde crosslinking was reversed by incubating with 0.3 M NaCl and 

0.3 mg/ml RNase A at 65°C overnight. Samples were further incubated with 550 µg/ml 

proteinase K at 50°C for 1h. DNA was purified using NucleoSpin Gel and PCR Clean-up 

Kit (Macherey-Nagel, Bethlehem, PA) and eluted by 30 µl of water. Two µl of DNA was 

used for qRT-PCR analysis with primers targeting rat Cat ERSE-1 (5’-

CTACCCACCAATTAGTACCAAATAA-3’ and 5’-AGAAGGGACAGGATTGGAAG-3’), rat 

Cat ERSE-2 (5’-CACATTCTAGGGACAGTGTAGATG-3’ and 5’-

ACCTTGATTATGGGCTGTGG-3’) or the rat Pdia6 ERSE (5’-

CACATGAGCGAAATCCACAGA-3’ and 5’-ACTAGTCGAGCCATGCTGAT-3’). Pdia6 

served as a positive control for a known ATF6 target gene in cardiac myocytes11. ChIP 

signals obtained from the qRT-PCR were normalized to the input DNA.  
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2.3. Results 

 Initial studies in neonatal rat ventricular myocytes (NRVM) showed that the three 

forms of ATF6 (Fig. 2.1A), exhibited different abilities to increase expression of the well-

known ATF6-induced proteins, GRP94 and GRP78. The native N-terminal fragment of 

ATF6, ATF6(1-373), called form 1 here, which was expressed at approximately similar 

levels as endogenous ATF6, mimics the cleaved form of ATF6 and was the most potent 

inducer, while ATF6(39-373), form 2, which has about half of the transcriptional 
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activation domain missing, was partially active, and ATF6(94-373), form 3, which lacks 

all of the transcriptional activation domain was inactive (Fig. 2.1B GRP94 and GRP78). 

None of the three forms of ATF6 affected the other two branches of the ER stress 

response, as they did not increase PERK phosphorylation, nor did they induce XBP1 

splicing, an indicator of IRE1 activation. We also previously showed in HeLa cells that 

ATF6 exhibits a novel degraded-when-active property, such that the more 

transcriptionally active forms of ATF6 exhibit the shortest half-lifes5, 6. Consistent with 

those studies were our findings in NRVM showing that the transcriptional activity of 

ATF6 was inversely related to the expression level of ATF6 (Fig. 2.1B FLAG).  

 Given the differential effects of these forms of ATF6 on ER stress gene induction, 

they are potentially valuable reagents with which to discover cardiac myocyte functions 

that are regulated by ATF6-induced genes. For example, if these forms of ATF6 affect a 

particular myocyte function, such as survival, with the same rank-order that they affect 

ATF6 target gene expression, then it is likely that at least some ATF6 target genes 

contribute to those functions. As an example, we showed that in NRVM treated with the 

prototypical ER stressor, tunicamycin (TM), which induces ER protein misfolding by 

inhibiting protein glycosylation, the three forms of ATF6 decreased ER stress-induced 

cell death with the same rank-order that they induce ER proteins that reduce ER protein 

misfolding, e.g. GRP94 and GRP78 (Fig. 2.1C).  

 Next, we examined the effects of other stressors that are not typically considered 

to be inducers of ER protein misfolding and the canonical ER stress response, such as 

H2O2, which induces oxidative stress by increasing ROS levels. While ATF6 was 

expected to protect against ER stress-induced cell death, which is primarily apoptotic, 
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we anticipated that it would be ineffective against oxidative stress-induced cell death, 

which is primarily necrotic. Surprisingly, form 1 of ATF6 protected myocytes from H202-

induced cell death (Fig. 2.1D red), form 2 was without effect (Fig. 2.1D blue), while 

form 3, which exerts dominant-negative effects on endogenous ATF6 signaling, actually 

increased H2O2-induced myocyte death (Fig. 2.1D green). It is unclear why the relative 

effects of the three forms of ATF6 are somewhat different in response to TM vs H2O2, 

but one possibility is that the effects of ATF6 on H2O2-induced myocyte death might be 

due to induction of proteins that do not reside in the ER and do not directly affect ER 

protein folding, such as antioxidant proteins. Since ATF6 is not known for its ability to 

affect the expression of antioxidant genes, we focused on the antioxidant effects of 

ATF6 in more depth. 

 It has been shown that H2O2 kills myocytes by necrosis; accordingly, we 

examined the effects of the three forms of ATF6 on the media levels of LDH and 

HMGB1, which are measures of necrosis7, 8. Again, form 1 of ATF6 strongly decreased 

media levels of LDH and HMGB1, while the other forms had less of an effect (Fig. 

2.1E), indicating that activated ATF6 can inhibit H2O2-induced necrosis of cardiac 

myocytes. Since the deleterious effects of H2O2 are due to ROS, we tested the three 

forms of ATF6 in NRVM subjected to simulated ischemia/reperfusion (sI/R), a 

pathophysiological maneuver that increases mitochondrial-derived ROS . Similar to the 

findings with H2O2, form 1 of ATF6 exhibited the most significant ability to protect 

cardiac myocytes from sI/R-mediated death (Fig. 2.1F), and to decrease ROS 

generation during sI/R (Fig. 2.1G). Moreover, N-acetyl cysteine (NAC), a well-
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characterized ROS scavenger, mimicked the ability of form 1 of ATF6 to decrease ROS 

(Fig. 2.1G), indicating that ATF6 acted functionally like a ROS scavenger.  

 These findings suggested that there might be a previously unappreciated link 

between ER stress signaling by ATF6 and ROS reduction; moreover, since the 

damaging ROS produced during reperfusion are mostly generated in mitochondria11, 

the link could involve ATF6-mediated decreases in total cellular ROS. To examine 

whether this link also existed between endogenous ATF6 and ROS levels, NRVM were 

treated with siRNA to knockdown endogenous ATF6. Immunoblots showed that two 

different ATF6 siRNAs decreased the levels of full-length, p90 ATF6  and resulted in the 

absence of cleaved, p50 ATF6 upon TM treatment (Fig. 2.2A, p90 and p50 ATF6 

lanes 5-8). Importantly, siRNA-mediated ATF6 knockdown also blunted the induction of 

ATF6-inducible target genes, Grp94, Grp78 and PDIA6 (Fig. 2.2A GRP94, GRP78, 

PDIA6, lanes 5-8), but had no effect on activation of the other two branches of the ER 

stress response that are mediated by PERK and IRE-1.  Endogenous ATF6 is difficult to 

detect by immunoblotting.  

 ATF6 knockdown decreased cell viability in NRVM treated with either TM (Fig. 

2.2B) or H2O2 (Fig. 2.2C). Moreover, ATF6 knockdown increased necrotic cell death in 

response to H2O2 treatment, as determined by increased media levels of LDH (Fig. 

2.2D). Simulated ischemia was shown to activate ATF6 and downstream genes in 

NRVM, as evidenced by the conversion of p90 ATF6 to p50 ATF6 and the increased 

levels of canonical ATF6 target proteins, GRP94, GRP78 and PDIA6 (Fig. 2.2E sI). 

ATF6 activation appeared to persist during sI/R (Fig. 2.2E sI/R). ATF6 knockdown 

decreased viability in NRVM subjected to I/R, increased media levels of LDH and 
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HMGB1, increased ROS levels and increased malondialdehyde (MDA), the latter of 

which is a measure of ROS-associated lipid peroxidation12 (Fig. 2.2F-I). Treatment with 

NAC verified that ROS were generated upon sI/R (Fig. 2.2H). Thus, endogenous ATF6 

protected NRVM from the maladaptive effects of prolonged ER protein misfolding and 

ER stress by TM, as well as from the damaging effects of oxidative stress induced by 

H2O2 and sI/R.  
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Figure 2.1- Effects of ATF6 overexpression on ER- and oxidative stress in cultured cardiac myocytes.   
 
A, Diagram of the forms of ATF6 used in this study. B, Neonatal rat ventricular myocytes (NRVM) were infected with 
adenovirus (AdV) encoding either no protein (C), or one of the three forms of ATF6 shown, then immunoblotted using 
a FLAG antibody to detect the overexpressed ATF6, a KDEL antibody, which detects GRP94 and 78, or β-actin 
antibody. C-G, NRVM were infected with either control (C) or each of the ATF6-expressing AdV shown in A, then 
treated for 48h with TM (40 µg/ml) (C), 37.5 µM H2O2 for 8h (D, E), sI/R (F, G), and 5 mM N-acetyl cysteine (NAC) 
(G), followed by viability determination using an MTT assay, or by media enzyme assay to determine LDH activity, or 
ROS measurement with CellROX, as shown. * # † p<0.05 different than other values by ANOVA. 
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Figure 2.2- Effects of ATF6 knockdown on ER stress and oxidative stress in cultured cardiac myocytes.  
 
A, NRVM were transfected with a non-targeted siRNA (siCon), or an siRNA targeted to rat ATF6 (siATF6), and then 
treated without or with TM (10 μg/ml) for 24h, then immunoblotted for endogenous ATF6 (p90 and p50 ATF6), 
GRP94, GRP78, PDIA6 and β-actin. NRVM were treated similarly with siCon or siATF6 for all subsequent 
experiments in this figure, except (E). B, NRVM were treated for 48h without or with TM (40 μg/ml) followed by MTT 
for cell viability. * # † p<0.05 different from other values by ANOVA. C and D, NRVM were treated for 8h with H2O2, 
then examined by MTT for cell viability (C), or media assayed for LDH activity (D).  *#†‡ p<0.05 different than other 
values by ANOVA.  E, NRVM were subjected to Con, sI or sI/R, then extracts were immunoblotted for the proteins 
shown. F-I, NRVM were treated with sI/R then examined by calcein blue AM for cell viability, media LDH activity, 
ROS using CellRox, and malondialdehyde (MDA). * p<0.05 different from siCon by t-test. 
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 The effects of ATF6 deletion in the mouse heart have not been previously 

examined; therefore, to assess the effects of deleting ATF6, in vivo, ATF6 knockout 

mice (KO)3 were used;. Immunoblots confirmed the absence of p90 ATF6 in ATF6 KO 

mouse hearts compared to wild type (WT) mouse hearts (Fig. 2.3A). The ATF6 KO 

mice do not exhibit any overt phenotype under non-stressed conditions, developing 

normally through adulthood. Here, echocardiography confirmed that this was the case in 

the heart, demonstrating that all cardiac dimensions and contractile properties of the 

ATF6 KO mice were the same as WT mice. When mice were subjected to a model of 

surgical transient coronary artery occlusion, for 30 min followed by reperfusion for 24h, 

the area-at-risk was the same for both lines, however, infarct sizes were significantly 

larger in ATF6 KO mice following I/R (Fig. 2.3B). Moreover, after I/R, plasma LDH 

levels and tissue MDA levels were greater in ATF6 KO mice than in WT mice (Fig. 2.3C 

and 2.3D). Immunocytofluorescence and immunoblots of mouse heart tissue sections 

showed that I/R increased ATF6 and GRP78 in WT mice, but not in ATF6KO mice (Fig. 

2.4 and 2.5). Moreover, I/R did not activate PERK or IRE-1, as shown by the absence 

of phosphorylated PERK and spliced XBP1 (Fig 2.5). Additionally, examination of heart 

extracts for transcript levels of canonical ATF6 regulated genes showed that, compared 

to WT mouse hearts, there was 50% or less Grp94, Grp78 and PDIA6 mRNA in ATF6 

KO mouse hearts (Fig. 2.3E).  
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Figure 2.3- Effect of ATF6 gene deletion in hearts subjected to ischemia/reperfusion.  
 
A, WT (n = 4) or ATF6 KO (n = 4) mouse heart extracts were examined for ATF6 and β-actin by immunoblotting. To 
detect p90 ATF6 in mouse heart extracts, the antibody raised against the C-terminal of ATF6 was used. B, WT (n = 
7) or ATF6 KO (n = 6) mice were subjected to in vivo I/R, then hearts were assessed for damage; AAR = area at risk; 
LV = left ventricle; INF = infarcted area, * p<0.05 different than WT INF/AAR by t-test, C, plasma from WT (n = 3) and 
ATF6 KO (n = 3) mice assessed for LDH, * p<0.05 different than WT by t-test, or D, heart extracts from WT (n = 4) 
and ATF6 KO (n = 4) mice assessed for MDA ,* p<0.05 different than WT by t-test. E, WT (n = 3) and ATF6 KO (n = 
4) mouse hearts were subjected to in vivo I/R after which heart extracts were analyzed for Grp94, Grp78, and Pdia6 
mRNA levels, normalized to β-actin mRNA by qRT-PCR, * p<0.05 different than WT for each gene target by t-test. F, 
WT (n = 4) and ATF6 KO (n = 6) mouse hearts were subjected to ex vivo global ischemia/reperfusion and left 
ventricular developed pressure (LVDP) was determined before and after ischemia and presented as % of maximal 
function observed during equilibration for each mouse line, * p<0.05 different than ATF6 KO by t-test. 
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Figure 2.4- Effect of I/R on GRP78 expression in WT and ATF6 KO mouse hearts as determined by 
immunocytofluorescence.  
 
A, B, WT or C, D, ATF6 KO mice were subjected to I/R in vivo, after which hearts were obtained and sections were 
stained for GRP78 (green), tropomyosin (red), or TOPRO (blue). 
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Figure 2.5- Effect of I/R on markers of ER stress in WT and ATF6 KO mouse hearts as determined by 
immunoblotting.  
 
WT or ATF6KO mice were subjected to I/R in vivo, after which hearts were obtained and extracts were 
immunoblotted for p90 ATF6, GRP78, phospho-PERK (pPERK), total PERK (PERK), spliced XBP1 (XBP1s), IRE-1 
and 𝛽-actin.  
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 We also examined whether the effects of ATF6 deletion seen in vivo could be 

recapitulated in isolated hearts subjected to ex vivo I/R. Compared to WT mouse hearts, 

ATF6 KO mouse hearts were more susceptible to a loss of cardiac function following 

global ischemia, exhibiting a significantly reduced recovery of left ventricular developed 

pressure (LVDP) upon reperfusion (Fig. 2.3F). Thus, the effects of global ATF6 deletion 

on I/R damage were autonomous to the heart. 

 Next we examined the effects of ATF6 deletion in cardiac myocytes isolated from 

ATF6 KO mouse hearts. Examination of the ATF6 target gene product, GRP78, was 

consistent with these results; in WT mouse myocytes, GRP78 levels increased upon 

treatment with TM or sI/R (Fig. 2.6A and 5B). In contrast, myocytes isolated from ATF6 

KO mouse hearts showed no induction of GRP78 in response to TM or sI/R (Fig. 2.6C 

and D). Moreover, compared to myocytes from WT mouse hearts, myocytes from ATF6 

KO mouse hearts exhibited greater death in response to sI/R (Fig. 2.6E). Thus, the 

deleterious effects of ATF6 deletion on ATF6 target gene induction by TM or sI/R, as 

well as sI/R-mediated cell death, was observed in ATF6 KO mouse hearts in vivo and 

ex vivo, as well as in myocytes isolated from ATF6 KO mouse hearts. 
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Figure 2.6- Effect of ATF6 deletion on GRP78 expression and cell viability of isolated adult mouse ventricular 
myocytes.  
 
A-D, Myocytes were isolated from adult WT or ATF6 KO mice, subjected to sI/R, then fixed and examined by ICF for 
GRP78 (green), α-actinin (red) or TOPRO (blue). E, Myocytes were isolated from adult WT or ATF6 KO mice, then 
subjected to sI/R followed by determination of cell viability using calcein blue AM staining. n = 3 cultures for each 
treatment; shown is a representative experiment of three independent experiments, *# p<0.05 different than all other 
groups by ANOVA. 
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 Since ATF6 reduced ROS levels and protected cardiac myocytes and hearts 

against oxidative stress, we examined whether ATF6 overexpression in NRVM affected 

the levels of typical oxidative stress response genes. An initial survey of expression 

levels of several typical antioxidant genes, i.e. superoxide dismutase 1 and 2 (SOD1/2), 

glutathione peroxidase 1, 3 and 4 (Gpx1/3/4), and peroxiredoxin 1-4 and 6 (Prdx1-4/6) 

showed that compared to control, ATF6 had a very small effect on the expression of any 

of these genes (Fig. 2.7A). Accordingly, a wider range of oxidative stress response 

genes was assessed using a PCR gene array. Amongst the 84 genes represented in 

the array, ATF6 significantly changed the levels of 17 genes; eleven genes were 

increased by ATF6, including catalase (Cat), peroxiredoxin 5 (Prdx5) and Vimp (Fig. 

2.7B red), which encode antioxidant proteins, while 6 genes were decreased by ATF6 

(Fig. 2.7B green), most of which respond to oxidative stress, but do not encode 

antioxidants.  PCR was used to examine the expression of several key genes in the 

array upon which ATF6 had the most robust induction effects, Cat, Prdx5 and Vimp. 

Form 1 of ATF6 was the strongest inducer of all three genes, with much less induction 

being observed for forms 2 and 3 (Fig. 2.7C). These results suggested that ATF6 might 

directly transcriptionally induce these genes.  
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Figure 2.7- Analysis of oxidative stress gene expression.  
 
A and B, NRVM were infected with AdV-Con or AdV-ATF6 (form 1), then RNA was subjected to qRT-PCR for the 
genes shown (A), or analyzed with an oxidative stress gene array (B). Shown are only genes that were increased 
(red) or decreased (green) by ATF6. In A and B all values were p<0.05 different than control by t-test, unless marked 
ND (no difference).  C and D, NRVM were infected with the AdV-ATF6 shown, then RNA was isolated and analyzed 
for catalase (Cat), peroxiredoxin 5 (Prdx5), and Vimp mRNA by qRT-PCR (C), * # p<0.05 different than all other 
values for each target gene, and protein was analyzed for catalase levels by immunoblotting (D). E, WT mice were 
injected with AAV9-control or AAV9-CMV-FLAG-ATF6 form 1. Two weeks later, mice were sacrificed and hearts were 
analyzed for FLAG-ATF6, catalase, GRP78 and β-actin by immunoblotting.  F, NRVM were transfected with siCon or 
siCat RNAs; 48h later, culture extracts were examined for catalase and β-actin. G, H, NRVM were transfected with 
siCon or siCat RNA, subjected to sI/R, then analyzed for cell viability by calcein blue AM staining (G), or for ROS by 
Amplex Red (H). I, following I/R, WT (n = 3) and ATF6 KO (n = 4) mouse heart extracts were analyzed for Cat mRNA 
levels, normalized to β-actin mRNA by qRT-PCR. * p<0.05 different from siCon (G, H) or WT (I) by t-test. 
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 Since catalase is known to decrease I/R damage in the heart13, we probed 

deeper into the mechanism by which ATF6 mediated the induction of catalase, which 

has not been studied before. Immunoblots of NRVM treated with the three forms of 

ATF6 showed that catalase protein levels were increased most by form 1, followed by 

form 2 and then not at all by form 3 (Fig. 2.7D), consistent with the effects of these 

forms of ATF6 on catalase mRNA (Fig. 2.7C). Moreover, when mice were injected with 

a recombinant AAV9 that expresses form 1 of ATF6 in cardiac myocytes (Fig. 2.7E 

FLAG), immunoblots of heart extracts showed that catalase was robustly induced by 

ATF6 overexpression in the mouse heart, in vivo (Fig. 2.7E Catalase). As a control, we 

showed that AAV9-ATF6 also induced the known ATF6 target gene, GRP78 (Fig. 2.7E 

GRP78). Knocking down catalase in NRVM with siRNA (Fig. 2.7F) decreased cell 

viability and increased ROS generation in response to sI/R (Fig. 2.7G and 2.7H). 

Quantitative RT-PCR of mouse hearts subjected to I/R showed that, compared to WT 

mouse hearts, catalase was about half in ATF6 KO mouse hearts (Fig. 2.7I). While 

myocytes isolated from WT mouse hearts exhibited a strong induction of catalase by 

TM (Fig. 2.8A and 2.8B) or sI/R (Fig. 2.9A and 2.9B), catalase did not increase in 

myocytes isolated from ATF6 KO mouse hearts treated with either TM (Fig. 2.8C and 

Fig. 2.8D) or sI/R (Fig. 2.9C and 2.9D). ICF of mouse heart tissue sections showed that 

catalase increased in the hearts of WT mouse hearts subjected to I/R, in vivo, but not in 

ATF6 KO mouse hearts (Fig. 2.10A-D). Immunoblots verified the impaired induction of 

catalase in the hearts of ATF6 KO mice subjected to I/R, in vivo (Fig. 2.10E and 2.10F). 

In NRVM, catalase siRNA decreased the beneficial effects of ATF6 form 1, indicating 

that catalase is a major contributor of ATF6-mediated protection from I/R-induced cell 
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death in cardiac myocytes (Fig. 2.9E). Moreover, the increased susceptibility of ATF6 

KO myocytes to death upon I/R was rescued by treating them with a cell-permeable 

form of catalase, PEG-catalase, as previously described14, after which there was no 

difference in viability between myocytes from WT and ATF6 KO mouse hearts (Fig. 

2.9F). Treatment of mice with PEG-catalase in vivo, as previously described15, resulted 

in a similar rescue of LVDP in ATF6 KO mouse hearts subjected to ex vivo I/R, such 

that the performance of WT and ATF6 KO mouse hearts was indistinguishable (Fig. 

2.9G). This catalase-mediated rescue was also seen when LDH release and infarct size 

were measured in WT vs ATF6 KO mouse hearts subjected to ex vivo I/R (Fig. 2.9H 

and 2.9I). Moreover, the PEG-catalase rescue effect was recapitulated by AAV9-

mediated ATF6 overexpression in ATF6 KO mouse hearts (Fig. 2.9J). 
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Figure 2.8- Effect of TM on Catalase Expression in Cardiac Myocytes from WT and ATF6 KO Mouse Hearts.  
 
A, B, Myocytes were isolated from WT or C, D, ATF6 KO mouse hearts then treated without (A, C) or with TM (10 
µg/ml; 24h; B, D), then fixed and stained for catalase (Cat; green), 𝛼-actinin (red) or TOPRO (blue). 
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Figure 2.9- Effects of ATF6 deletion on catalase.  
 
A-D, Myocytes were isolated from adult WT (A, B) or ATF6 KO (C, D) mice, subjected to sI/R, then fixed and 
examined by ICF for catalase (green), α-actinin (red) or TOPRO (blue). E, NRVM were treated with siCon or siCat 
RNAs, as well as infection with the AdVs shown, then subjected to sI/R followed by determination of cell viability by 
calein blue AM staining. * p<0.05 different from all other values by ANOVA. F, Myocytes isolated from WT or ATF6KO 
mouse hearts were treated with vehicle or PEG-catalase, followed by sI/R, the viability was determined by calein blue 
AM staining. * p<0.05 different from WT by t-test. G-I, Mice were injected with vehicle or PEG-Cat for 16h, then hearts 
were subjected to ex vivo I/R and LVDP, LDH release, and infarct size were measured. In G, * p<0.001 different from 
WT vehicle or ATF6 KO vehicle at a given reperfusion time by two-way ANOVA. In H and I, * p<0.001 different from 
WT Con, by t-test. J, Mice were injected with AAV9-Con or AAV9-CMV-FLAG-ATF6 form 1 for 2d, then hearts were 
subjected to ex vivo I/R and LVDP was measured. * p<0.001 different from WT AAV9-Con or ATF6 KO AAV9-Con at 
a given reperfusion time by two-way ANOVA. 
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Figure 2.10- Effect of I/R on Catalase expression in WT and ATF6 KO mouse hearts as determined by 
immunocytofluorescence and immunoblotting.  
 
A, B, WT or C, D, ATF6 KO mice were subjected to I/R in vivo, after which hearts were obtained and sections were 
stained for Catalase (green), tropomyosin (red), or TOPRO (blue). E, Hearts from WT or ATF6 KO subjected to I/R in 
vivo were extracted and analyzed for catalase and 𝛽-actin by immunoblotting (n =4 mice per treatment). F, The 
immunoblots shown in E were quantified by densitometry. * p<0.05 different from WT Con by t-test. 
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 To further examine the mechanism by which ATF6 induces catalase, the 5’-

flanking sequence (5’-FS) of the rat Cat gene was scanned for a DNA sequence that 

might bind ATF6, so called ER stress response element (ERSE). Two such elements 

were found within 1,000 nucleotides 5’ of the Cat mRNA start site; we named these 

ERSE-1 (-194 to -184) and ERSE-2 (-979 to -962). To examine whether the rat Cat 5’-

flanking sequences conferred transcriptional induction in response to ATF6, truncated 

versions of the rat Cat 5’-FS were cloned in front of firefly luciferase and the abilities of 

co-transfected ATF6 form 1 to induce luciferase were examined in NRVM. Truncating 

from -1161 to -689 and to -410, which removed ERSE-2, had little effect on ATF6 

induction (Fig. 2.11A, constructs 1 - 3). However, a truncated form of rat Cat that 

removed ERSE-1 resulted in a significant decrease in ATF6-mediated luciferase 

induction (Fig. 2.11A, construct 4). In a second series of experiments, ERSE-1 and 

ERSE-2 were mutated in ways predicted to inhibit ATF6 binding (Fig. 2.11B, M1 and 

M2). When these reporters were co-transfected with the various forms of ATF6 into 

NRVM, the mutation in ERSE-2, i.e. M2, moderately decreased Cat promoter activity, 

while the mutation in ERSE-1, i.e. M1, or in both ERSE-1 and ERSE-2, i.e. M1/M2, 

showed greater reductions of ATF6-meidated transcriptional induction (Fig. 2.11C). 

Finally, a chromatin immunoprecipitation experiment showed that form 1 of ATF6 was 

able to bind to either ERSE-1 or ERSE-2 in myocytes (Fig. 2.11D). Thus, activated 

ATF6 can bind to putative ERSEs in the rat Cat gene regulatory region and confer 

transcriptional induction, demonstrating one mechanism by which ATF6 could protect 

cardiac myocytes from oxidative stress during I/R. 
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Figure 2.11- Effects of ATF6 on the catalase promoter.  
 
A, Truncations of the catalase 5’-flanking sequence driving luciferase, as shown (left), i.e. rat-cat(-1161/+131)-Luc, 
rat-cat(-689/+131)-Luc, rat-cat(-410/+131)-Luc and rat-cat(-191/+131)-Luc were tramsfected into NRVM which were 
then infected with AdV encoding form 1 of ATF6 or with a control AdV. Luciferase enzyme activity in AdV-ATF6-
infected cells was normalized to luciferase enzyme activity in AdV-Con-infected cells to determine the fold-induction 
by ATF6 (right), * p<0.05 different from control by t-test. B, Diagram of the locations of ERSE-2 and 1 in the catalase 
5’-flanking region, their sequences (upper case), and the mutations to those sequences (lower case). C, NRVM were 
transfected with plasmids encoding rat-cat(-1161/+131)-Luc WT, M2, M1 or M1/M2 and then infected with the ATF6-
expressing AdV, as shown; then, 48h later, luciferase levels were measured in extracts, *#† p<0.05 different than 
other values in WT or M2 by ANOVA. D, NRVM were infected with AdV encoding control or FLAG-ATF6 (form 1), and 
then ATF6 binding to endogenous ERSE-1 1 ERSE-2, as well as to the endogenous Pdia6 ERSE, previously studied 
and used here as a control, was examined by ChIP, * p<0.05 different than control by t-test. E, O2 is required for 
protein disulfide bond formation and protein folding in the ER. F, ATF6 links the ER stress response with the oxidative 
stress response. As O2 decreases during ischemia (red triangle), protein misfolding increases (green triangle), 
leading to adaptive ER stress, ATF6 activation and induction of catalase and other antioxidant proteins that decrease 
ROS generated in the mitochondria during reperfusion. 
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2.4. Discussion 

2.4.1. ATF6 Links the ER Stress Response and the Oxidative 

Stress Response 

 This study provides evidence supporting a newly described role for ATF6 as a 

molecular link between the ER stress and oxidative stress gene programs. Initially, we 

thought this role for ATF6 fit well with a potential connection between ER stress and 

oxidative stress involving protein disulfide bond formation. Protein disulfide bond 

formation, which takes place only in the ER, requires oxygen to fuel the redox couple 

between ER oxidoreductase 1 (Ero1) and the final enzyme involved in protein disulfide 

bond formation, protein disulfide isomerase (PDI)1, 16, 17 (Fig. 2.11E). This ER redox 

system results in the conversion of molecular oxygen to H2O2, which contributes to total 

cellular ROS, although a very small amount compared to the ROS generated by 

mitochondria18. There are three ER proteins thought to be responsible for neutralizing 

the H2O2 generated during protein disulfide bond formation in the ER; peroxiredoxin 4 

(Prx4), and glutathione perioxidases 7 and 8 (GPx7/8)16. Accordingly, when we first 

discovered that ATF6 had antioxidant activity, since ATF6 induces mostly ER proteins, 

we thought that ATF6 most likely exerted its antioxidant effects by inducing antioxidant 

proteins that reside in the ER, such as Prx4 and/or GPx7/8.  However, our results 

showed that these genes were minimally affected by ATF6, and that ATF6 had more 

robust effects on expression of 11 other genes, all but one of which encode antioxidant 

proteins that reside outside of the ER (Fig. 2.7). Thus, ATF6 can have widespread 

effects on antioxidant protein expression, even outside the ER, which increases the 
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scope of the functional impact of ATF6 well beyond improving ER protein folding. It 

might be of clinical relevance to acutely activate ATF6 during reperfusion, in vivo, but 

this would likely require the development of new methods that do not depend on ATF6 

overexpression. Although many of the antioxidant proteins induced by ATF6 may 

contribute in some way to reducing myocardial damage during I/R, we focused the 

mechanistic aspects of this study on catalase because of its ability to neutralize large 

quantities of ROS generated in various cellular locations, and because it has not 

previously been previously shown to be induced in an ATF6- and ER stress-dependent 

manner in any cell or tissue.  

2.4.2. Catalase is an Example of how ATF6 Regulates Antioxidant 

Protein Expression 

 Catalase is a 527 amino acid protein (rat) that resides mainly in peroxisomes. 

Peroxisomes generate and utilize H2O2 for oxidative purposes, including peroxidative 

detoxification and β-oxidation of fatty acids. Catalase is an important component of 

peroxisomes, because it neutralizes H2O2 that remains after the required peroxidative 

reactions have taken place. Catalase can also oxidize peroxynitrate, nitric oxide and 

organic peroxides.  In addition to peroxisomes, catalase has also been found in the 

cytosol and in cardiac mitochondria, however it has not been found in the ER. 

Moreover, it has been shown that in the heart, catalase overexpression in cardiac 

myocytes decreases I/R injury by reducing ROS levels13. 

 Here, we showed that, in cardiac myocytes, ischemia, which impairs ER protein 

disulfide bond formation and increases misfolded proteins, activates ATF6, which binds 
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to specific elements in the regulatory regions of the catalase gene and increases 

catalase transcription. We also showed that ATF6 can increase expression of other 

antioxidant proteins, supporting the hypothesis that, together with catalase these 

antioxidants decrease ROS and moderate myocardial damage during reperfusion 

(Figure 2.11F). In further support of this hypothesis was our finding that, compared to 

WT mouse hearts, the induction of catalase during I/R was impaired in ATF6KO mouse 

hearts. To the best of our knowledge, this is the first demonstration that catalase is 

induced in the heart by I/R in an ATF6-dependent manner. Since we showed that ATF6 

also induced two other antioxidant genes encoding proteins residing outside the ER, it 

appears that, during ER stress induced by ischemia, ATF6 is likely to be a direct 

transcriptional inducer of numerous antioxidant genes. 

2.4.3. Catalase is an ATF6-inducible ER Stress Response Gene 

 Previous studies, mostly in non-cardiac myocytes, have shown that catalase 

expression is regulated by the transcription factors Sp1, NF-Y and Foxo3a19. However, 

there have been no studies examining whether ATF6 can regulate catalase 

transcription. Here, we showed that there are two sites in the catalase regulatory region 

to which ATF6 can bind, ERSE-1 and ERSE-2.  Mutating ERSE-2 had less of an effect 

on catalase promoter activity than mutating ERSE-1, suggesting that ERSE-1, which 

lies proximal to the catalase promoter, is the major site through which ATF6 confers 

transcriptional induction in cardiac myocytes (Fig. 2.11A-D). Moreover, since catalase is 

induced upon treatment with the prototypical ER stressor, TM, and by the pathological 

ER stress, I/R, and since the ER stress transcription factor, ATF6, binds to and induces 

catalase transcription, we posit that catalase should be categorized as an ER stress 
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response gene. Consistent with the identification of catalase as an ER stress response 

gene is the apparent reduction of its expression as a function of development in the 

heart. We previously showed that the expression of several canonical ER stress 

response genes was much higher in neonatal rat cardiac myocytes than in adult rat 

cardiac myocytes20. The same appears to be true for catalase; here, immunoblotting 

showed relatively high levels of basal catalase in NRVM compared to adult mouse 

hearts (Figs. 2.7D and 2.7E). Therefore, like some other ER stress response genes, 

catalase expression appears to be relatively low in the adult heart, compared to the 

neonatal heart. This is underscored further by our finding that the ATF6 dependence of 

catalase expression was quite evident when adult mouse cardiac myocytes isolated 

from WT and ATF6 KO mice were treated with TM or sI/R and then immunostained for 

catalase (Fig. 2.8 and Fig. 2.9).  

2.4.4. Global Effects of ATF6 on Antioxidant Protein Expression 

 The antioxidant genes that were induced the most by ATF6 in this study were 

catalase, peroxiredoxin 5 (Prdx5) and Vimp. ATF6-mediated induction of these genes 

was validated using the three forms of ATF6; each gene was induced with a profile 

consistent with the direct effects of ATF6 on transcription (Fig. 2.7C). Like catalase, 

Prdx5 is not located in the ER lumen; however, it is unusual amongst other 

peroxiredoxins, in that it has been found in several cellular areas, including 

mitochondria, peroxisomes, cytosol and nucleus21. Prdx5 is a 213 amino acid protein 

(rat) that catalyzes the glutathione-mediated reduction of potentially damaging 

peroxides, providing a new mechanism by which the ATF6 branch of the ER stress 

response could contribute to decreasing ROS during myocardial reperfusion.  
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 Vimp is a 189 amino acid ER-transmembrane protein (rat) configured with most 

of its structure, including its catalytic domain on the cytosolic face of the ER22. Vimp, 

also known as SelS, is believed to interact with Hrd1 and other ER stress, ATF6-

regulated ER-transmembrane proteins that are involved in ER associated degradation, 

a process by which terminally misfolded proteins in the ER are degraded to mitigate 

their toxic effects. Vimp is one of only 24 selenoprotein genes in the mouse genome; in 

general, selenoproteins are known for their antioxidant roles as ROS scavengers23. 

However, the functions of selenoproteins and, in particular Vimp have not been studied 

in the heart. It is interesting to note that five of the 11 ATF6-inducible oxidative stress 

response genes identified in this study are selenoproteins. This is the first 

demonstration in any cell or tissue type that ATF6 has a global effect on selenoprotein 

expression, which provides even further linkage between the ATF6 branch of the ER 

stress response and the oxidative stress response. 

 In summary, previous studies showed that ectopic expression of activated ATF6 

can decrease I/R damage in the heart. However, neither the mechanism of this effect, 

nor whether endogenous ATF6 plays a role in myocardial I/R damage had been 

examined. Here, we determined functions for endogenous ATF6 in the heart, and found 

evidence of a previously unappreciated role for ATF6 as an inducer of antioxidant 

genes, which establishes a mechanistic link by which ATF6 can decrease myocardial 

I/R damage (Fig. 2.11F). 

Chapter 2, in part, is a reprint of the material as it appears in Circulation 

Research in 2017. Jin, J-K., Blackwood, E.A., Azizi, K., Thuerauf, D.J., Fahem, A.G., 

Hofmann, C., Doroudgar, S., and Glembotski, C.C. ATF6 Decreases Myocardial 
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Ischemia/reperfusion Damage and Links ER Stress and Oxidative Stress Signaling 

Pathways in the Heart. Circ. Res. 2017; 120(5):862-875. The dissertation author was a 

lead contributing investigator and author to the portions used in this text. 
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Chapter 3: ATF6 regulates cardiac hypertrophy by transcriptional 

induction of the mTORC1 activator, Rheb 
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3.1. Introduction 

ER stress dysregulates ER proteostasis, which activates the transcription factor, 

ATF6, an inducer of genes that enhance protein folding and restore proteostasis. Due to 

increased protein synthesis, it is possible that protein folding and, thus, ER proteostasis 

are challenged during cardiac myocyte growth. However, it is not known whether ATF6 

is activated, and if so, what its function is during hypertrophic growth of cardiac 

myocytes. Here we examined the activity and function of ATF6 during cardiac 

hypertrophy. 

We found that ATF6 was activated and ATF6-target genes were induced in mice 

subjected to an acute model of trans-aortic constriction (TAC), or to free-wheel exercise, 

which promote adaptive cardiac myocyte hypertrophy with preserved cardiac function. 

Cardiac myocyte-specific deletion of Atf6 (ATF6 cKO) blunted TAC- and exercise-

induced cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a 

role for ATF6 in compensatory myocyte growth. Transcript profiling and chromatin 

immunoprecipitation identified RHEB as an ATF6-target gene in the heart. RHEB is an 

activator of mTORC1, a major inducer of protein synthesis and subsequent cell growth. 

Both TAC and exercise upregulated RHEB, activated mTORC1, and induced cardiac 

hypertrophy in WT mouse hearts, but not in ATF6 cKO hearts. Mechanistically, 

knockdown of ATF6 in neonatal rat ventricular myocytes blocked phenylephrine (PE)-, 

and insulin-like growth factor 1 (IGF1)-mediated Rheb induction, mTORC1 activation, 

and myocyte growth, all of which were restored by ectopic RHEB expression. Moreover, 

AAV9-RHEB restored cardiac growth to ATF6 cKO mice subjected to TAC. Finally, 

ATF6 induced RHEB in response to growth factors, but not in response to other 
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activators of ATF6 that do not induce growth, indicating that ATF6 target gene induction 

is stress-specific. 

Compensatory cardiac hypertrophy activates ATF6, which induces Rheb and 

activates mTORC1. Thus, ATF6 is a previously unrecognized link between growth 

stimuli and mTORC1-mediated cardiac growth. 

3.2. Materials and Methods 

3.2.1. Laboratory animals 

 The research reported in this article has been reviewed and approved by the San 

Diego State University Institutional Animal Care and Use Committee (IACUC), and 

conforms to the Guide for the Care and Use of Laboratory Animals published by the 

National Research Council. ATF6-floxed (ATF6fl/fl) mice were a generous gift from Dr. 

Gokhan S. Hotamisligil. Briefly, ATF6-floxed mice were generated with a targeting 

construct flanking exons 8 and 9 of ATF6 with LoxP sequences on a C57B/6J 

background, as previously described1. In previous, unpublished studies with the ATF6fl/fl 

mice using a recombinant AAV9 that encodes Cre under the control of the cardiac 

troponin T promoter, no gender differences could be detected in terms of baseline or 

pathological remodeling, cardiac function or survival. Due to this observation and in an 

attempt to decrease the total number of mice needed to adequately power the study, 

only male mice were used. For some experiments, the numbers of animals to use was 

based on a predictive power analysis to achieve 5% error and 80% power, or using the 

resource equation method. In other experiments, the numbers of animals to use were 

determined practically, based on previous experiments designed to determine, for 
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example, surgery mortality rates and the approximate magnitude of changes in the 

measured parameters. Both the TAC and Free-Wheel exercise protocols were initially 

performed in our previously published global ATF6KO mice and all functional, 

morphological, and biochemical analysis performed in the manuscript were initially 

performed in these animals with large cohorts as a trial. Our previous experiments 

showed the surgical mortality rates to be <5%. For all experimentation, ATF6fl/fl or wild-

type littermates were randomized in a 1:1 ratio and assigned a coded number 

independent of the investigator.  

3.2.2. Animal numbers 

 A total of 184 mice were used for this study. ATF6fl/fl C57BL/6J mice injected with 

AAV9-Con (Con) (n=81) and their ATF6fl/fl littermates injected with AAV9-Cre (ATF6 

cKO) (n=80); for certain experimental paradigms Con and ATF6 cKO mice were 

subsequently injected with either AAV9-Con (n=37), AAV9-Rheb (n=13) or AAV9-ATF6 

(n=24); ATF6 TG C57BL/6J mice (n=4) and their non-transgenic littermates (n=3). Male 

wild-type C57BL/6J mice were purchased from Jackson Laboratories for the TAC time 

course experiment (n=16). All animals were fed ad libitum for all experimental purposes 

and kept on a traditional 12-hour light/dark cycle. All animal sacrifice and tissue harvest 

was consistently performed between the hours of 12pm-3pm when we have observed 

animals to be in a fasted and sedentary state.  
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3.2.3. Cultured cardiac myocytes (NRVM) and experimental 

design 

 Neonatal rat ventricular myocytes (NRVMs) were isolated via enzymatic 

digestion, purified by Percoll density gradient centrifugation, and maintained in 

Dulbecco's modified Eagle's medium (DMEM)/F12 supplemented with 10% fetal bovine 

serum (FBS) and antibiotics (100 units/ml penicillin and 100 µg/ml streptomycin) on 

plastic culture plates that had been pre-treated with 5 µg/ml fibronectin, as previously 

described2. For all NRVM experiments, plating density was maintained at 2.5 x 105 

cells/well on 12-well plates. Sixteen hours after plating, NRVM were subjected to 

respective treatments. For stimulated in vitro hypertrophy in NRVM, an initial period of 

serum starvation was implemented by replacing all culture media with 0.5 ml of glucose-

free DMEM for 48 hours. NRVM culture media was then replaced with DMEM/F12 

supplemented with BSA (1 mg/ml) containing either control, phenylephrine (50 µM) or 

IGF1 (100ng/ml) for an additional 48 hours. Experiments in which Lonafarnib (2 µM; 

Cayman Chemical, Cas#193275-84-2), rapamycin (20nM; Sigma-Aldrich), 

cyclohexamide (100 µg/ml; Sigma-Aldrich, Cat#C1988) or 4-phenylbutyrate (100 µM; 

Sigma-Aldrich, Cat#SML0309) were administered was performed as previously 

described 3-6, treatment was performed after serum starvation in conjunction with 

respective phenylephrine or IGF1 administration. Images were obtained with an IX70 

fluorescence microscope (Olympus, Melville, NY). For in vitro chemical UPR activation, 

sixteen hours after plating NRVM and AMVM were treated with tunicamycin (10 µg/ml) 

for 24 hours in DMEM/F12 supplemented with bovine serum albumin (BSA) (1 mg/ml) 

for NRVM. For in vitro ischemia/reperfusion (I/R), ischemia was simulated by replacing 
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all culture media with 0.5 ml of glucose-free DMEM containing 2% dialyzed FBS, then 

incubated at 0.1% O2 in a hypoxia chamber with an oxygen controller (ProOx P110 

oxygen controller, Biospherix, Parish, NY) for 8 hours or 3 hours for NRVM or AMVM, 

respectively, as previously described2. Reperfusion was simulated by replacing culture 

media with DMEM/F12 supplemented with BSA (1 mg/ml) for NRVM or maintaining 

media for AMVM and incubating at 21% O2 for an additional 24 hours. 

3.2.4. Immunoblotting 

 NRVM were lysed and subjected to immunoblot analysis, as previously 

described2. In brief, cultures were lysed with VC lysis buffer made from 20 mM Tris-HCl 

(pH 7.5), 150 mM NaCl, 0.1% SDS, 1% Triton X-100, protease inhibitor cocktail (Roche 

Diagnostics, Indianapolis, IN) and phosphatase inhibitor cocktail (Roche Diagnostics). 

Mouse heart tissues were homogenized in modified RIPA buffer with 2% SDS. Lysates 

were clarified by centrifugation at 15,000xg for 15 min at 4°C, and the protein 

concentration was determined using DC protein assay (Bio-Rad, Hercules, CA). 

Samples comprising 15 µg of protein were mixed with Laemmli sample buffer, boiled, 

then subjected to SDS-PAGE followed by transfer onto PVDF membranes for 

immunoblotting. Full-length Atf6 (p90) was detected with an antibody from SAB 

Signalway Antibody (1:1000, cat# 32008, College Park, MD), while active Atf6 (p50) 

was detected with an antibody from Proteintech (1:1000, cat# 24169-1-AP, Rosemont, 

IL). Other antibodies used include: anti-KDEL antibody (1:8,000, cat# ADI-SPA-827 , 

Enzo Life Sciences, Farmingdale, NY), which was used to detect GRP78, anti-IRE1 

(1:500, cat# sc-390960, Santa Cruz), anti-XBP1s (1:1000, cat# 619502, BioLegend, 

San Diego, CA), anti-phospho-PERK (1:1000, cat# 3179, Cell Signaling), anti-PERK 
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(1:1000, cat# 3192, Cell Signaling), anti-Gapdh (1:25000, cat# G109a, Fitzgerald 

Industries International Inc.), anti-β-actin (1:1000, cat# sc-47778, Santa Cruz), and anti-

FLAG (1:3,000, cat#F1804, Sigma-Aldrich, St. Louis, MO). The following antibodies 

were purchased from Cell Signaling (Danvers, MA): anti-RHEB (1:1,000, cat#13879s), 

anti-Phospho-mTOR (Ser2448, 1:1,000, cat#2971s), anti-mTOR (1:1,1000, cat#2972s), 

anti-Phospho-AKT (Ser473, 1:1,000, cat#9271s), anti-Phospho-ATK (Thr308, 1:1000, 

cat#13038s), anti-AKT (1:1,000, cat#9272s), anti-Phospho-S6K (1:1,000, cat#9205s), 

anti-S6K (1:1,000, cat#9202s), anti-Phospho-4EBP (1:1,000, cat#2855s), anti-4EBP 

(1:1,000, cat#9452s), anti-Phospho-TSC2 (Thr1462, 1:1000, 3617s), anti-TSC2 

(1:1000, 3990s), anti-Phospho-ERK1/2 (Thr202/Tyr204, 1:1000, 9101s), and anti-

ERK1/2 (1:1000, 9102s). 

3.2.5. Adenovirus 

 Recombinant adenoviruses (AdV) encoding 3XFLAG-tagged constitutively active 

ATF6, ATF6a(1-373), 3XFLAG-tagged transcriptionally dead ATF6, ATF6a(94-373), 

and 3XFLAG-tagged full-length inactive ATF6, ATF6a(1-670) were generated using 

AdEasy system essentially as previously described7.  Transduction of NRVM was 

performed by incubating cultures for 5 hours with the appropriate AdV at a multiplicity of 

infection of one. 

3.2.6. Plasmid transfection 

 Transfection of plasmids into NRVM was achieved using electroporation as 

previously described8. Briefly, 1 million NRVM were suspended in 300 µl DMEM/F12 

supplemented with BSA (1 mg/ml) and mixed with 10 µg of CMV-Flag-Rheb (AddGene 

plasmid #19996), or a Rheb promoter-luciferase construct of choice (see below), or an 



 99 

empty vector control plasmid. Subsequently, each mixture was then electroporated in a 

Bio-Rad gene pulser at 500 V, 25 microfarads, 100 Ω in a 0.2 cm gap cuvette. 

Transfected NRVM viability is approximately 50% and were then plated into four-

chamber Lab Tek chamber slides at 0.75x105 NRVM per 2 cm2 chamber.   

3.2.7. Rheb promoter-luciferase constructs 

 The promoter region of the rat RHEB gene spanning nucleotides -1067 to +123 

was amplified by PCR using ggatcgacgcgtcagtacgcctgttgcagaaa as the forward primer, 

which introduced an MluI site (underlined) just 5’ of rat RHEB -1067, and 

ggatcgctcgagcttggtagcCTgGTCAGC as the reverse primer, which introduced an Xho1 

site (underlined) just 3’ of rat RHEB +123. Upper case nucleotides match those in the 

rat RHEB gene. The amplified product was then cloned into pGL2p to generate rat-

RHEB(-1067/+123)-Luc. Truncated versions of rat-RHEB luciferase were cloned into 

pGL2p using a similar strategy and the same reverse primer coupled with the following 

forward primers: ggaacgacgcgtTCACCACCCACACTAAGC (-723), and 

ggaacgacgcgtGAACAGTGTCTCTCCTTGGC (-390) to generate rat-RHEB(-723/+123)-

Luc and rat-RHEB(-390/+123)-Luc, respectively.  Upper case nucleotides of these 

primers correspond to rat RHEB gene sequences. Informatics analyses identified 

putative ER stress response elements in the rat RHEB gene at nucleotide positions -

754 to -736 and -628 to -610 in the rat RHEB gene, which we called ERSE-2 and 

ERSE-1, respectively. These elements in rat-RHEB(-1067/+123)-Luc were mutated by 

site-directed mutagenesis in ways predicted to ablate ATF6 binding using RHEB-ERSE-

2 mut sense primer, 

CCCACAGTTCCTCAGaacatAATAAAGCTTAGTCAC 
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and RHEB-ERSE-2 mut antisense primer,  

GTGACTAAGCTTTATTatgttCTGAGGAACTGTGGG 

RHEB-ERSE-1 mut sense primer, 

GCCCGTCAGCTAGGGaacatCGCCTCACGCC, and 

RHEB-ERSE-1 mut antisense primer, 

GGCGTGAGGCGatgttCCCTAGCTGACGGGC.  

PCR-based mutagenesis was performed using the QuikChange XL Site-Directed 

Mutagenesis Kit (Agilent Technologies, Santa Clara, CA). Lower case letters represent 

mutated nucleotides; upper case letters represent nucleotides that are identical to those 

in the rat RHEB gene.  Plasmids were transfected into NRVM and luciferase activity 

was determined as previously described2.  

3.2.8. Luciferase reporter assay 

 Luciferase reporter assays were performed as previously described2. Briefly, 

suspended NRVMs were co-transfected by electroporation with Rheb promoter-

luciferase constructs described above, human-Hspa5(-284/+221), or rat-Catalase(-

1161/+131) promoter-luciferase constructs previously described2, 9 along with pCH110 

plasmids encoding SV40-beta-galactosidase and pGL2B, as described previously10. 

NRVMs were plated overnight and then infected with different forms of AdV-ATF6 or 

subjected to respective experimental paradigms.  NRVMs were lysed after 48 h, and the 

activities of luciferase and beta-galactosidase were measured using an Optocompt II 

luminometer (MGM Instruments, Hamden, CT).  
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3.2.9. Small interfering RNA (siRNA) transfection 

 Transfection of siRNA into NRVM was achieved using HiPerfect Transfection 

Reagent (Qiagen, Valencia, CA) following the vendor’s protocol as previously 

described2. Briefly, NRVM culture medium was replaced with DMEM/F12 supplemented 

with 0.5% FBS without antibiotics, 120 nM siRNA, and 1.25 µl HiPerfect / 1 µl siRNA, 

then incubated for 16 hours, after which the culture medium was replaced with 

DMEM/F12 supplemented with BSA (1 mg/ml) for an additional 48 hours. The following 

targeting siRNAs were used: rat ATF6 (assay ID# RSS315363, Stealth siRNA, Thermo 

Fisher), rat RHEB (assay ID#  RSS352522, Stealth siRNA, Thermo Fisher), rat PERK 

(assay ID#  s132055, Silencer Select siRNA, Thermo Fisher), and rat IRE1 (assay ID# 

RSS363210, Stealth siRNA, Thermo Fisher). A non-targeting sequence (cat# 

12935300, Thermo Fisher) was used as a control siRNA.   

3.2.10. Immunocytofluorescence (ICF) and immunohistochemistry  

 NRVM were plated on fibronectin and laminin-coated glass chamber slides, 

respectively as previously described2. Briefly, cells were fixed with 4% 

paraformaldehyde, followed by permeabilization with 0.5% Triton-X. Adult mouse hearts 

were paraffin-embedded after fixation in neutral buffered 10% formalin via abdominal 

aorta retroperfusion as previously described3. Primary antibodies used were anti-a-

actinin (1:200, cat# A7811, Sigma-Aldrich), anti-FLAG (1:200, cat#F1804, Sigma-

Aldrich), and anti-laminin (1:30, cat# L9393, Sigma-Aldrich). Slides were incubated with 

appropriate fluorophore-conjugated secondary antibodies (1:100, Jackson 

ImmunoResearch Laboratories, West Grove, PA) followed by nuclei counter stain 

Topro-3 (1:1000, Thermo Fisher). To validate specificity of FLAG staining, NRVM were 
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transfected with an empty vector plasmid and co-stained with the FLAG antibody as 

represented in the respective figures. Images were obtained using laser scanning 

confocal microscopy on an LSM 710 confocal laser scanning microscope (Carl Zeiss, 

Oberkochen, Germany). 

3.2.11. Quantitative real-time PCR (qRT-PCR) 

 Total RNA was isolated from NRVM or mouse hearts as previously described3 

using Quick-RNA MiniPrep kit (Zymo Research, Irvine, CA) or RNeasy Mini kit (Qiagen), 

respectively. cDNA synthesis was performed using SuperScript III First-Strand 

Synthesis System (Thermo Fisher). qRT-PCR was performed using Maxima SYBR 

Green/ROX qPCR Master Mix in a StepOnePlus RT-PCR System (Thermo Fisher). All 

qPCR probes were obtained from Integrated DNA Technologies, as previously 

described2, 6. Rheb-specific qPCR primers are listed below: 

 

Gene (rat) Forward Primer Reverse Primer 

Rheb - 1 CAGCAGGGCAGGATGAATA GCTTGCCGTGGATAACTTTAAT 

Rheb - 2 AAGATGCCTCAGTCCAAGTC GATCAGCTTGGTGAATGTGTTT 

   

Gene 

(mouse) 

  

Rheb - 1 CCATGGCAAGTTGTTGGATATG TCTTCATAGCTGATCACCCTTTC 

Rheb - 2 ACGTCTGACTCTGTCCAAATG TGCCAACAGGAGGCAATAA 
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3.2.12. Adeno-Associated virus serotype 9 (AAV9) 

 The plasmid encoding the human cardiac troponin T promoter driving Cre-

recombinase was provided as a gift from Dr. Oliver Muller9. AAV9 preparation was 

carried out as previously described2. Non-anesthetized 8-week old ATF6fl/fl mice were 

injected with 100 µL of AAV9-control or AAV9-cTnT-Cre containing 1x1011 viral particles 

via the lateral tail vein using a 27-guage syringe and housed for 2 weeks before either 

sacrifice or experimental initiation. To generate AAV9-FLAG-Rheb, a plasmid encoding 

FLAG-Rheb was obtained from Addgene (Addgene 19996).  The region of this construct 

containing FLAG-Rheb was excised with EcoR1 and Xho1, then, after addition of an 

EcoR1/Nhe1 linker, it was ligated into the Nhe1 and Xho1 sites of the AAV shuttle 

vector, pTRUF-CMVenhMLC800.  AAV9 were then prepared and administered as 

previously described in accordance with the respective experimental paradigms2. 

3.2.13. Chromatin immunoprecipitation (ChIP) 

 ChIP assays were performed essentially as previously described2, 11. Briefly, 

AdV-Con, AdV-FLAG-ATF6(1-373), or AdV-FLAG-ATF6(1-670) infected NRVM were 

treated with fixing buffer (50 mM HEPES-KOH, pH 7.5, 100 mM NaCl, 1 mM EDTA, 0.5 

mM EGTA, and 1% formaldehyde) for 10 min, quenched with 125 mM glycine, and 

scraped into ice-cold PBS. Cells were centrifuged, resuspended in lysis buffer (50 mM 

HEPES, pH 7.9, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton 

X-100, and protease inhibitor cocktail), and incubated on ice for 10 min. After 

centrifugation at 1,800 x g for 10 min, the pellets were washed with buffer containing 10 

mM Tris, pH 8.1, 200 mM NaCl, 1 mM EDTA, and 0.5 mM EGTA, resuspended in 

shearing buffer (0.1% SDS, 1 mM EDTA, and 10 mM Tris, pH 8.1), and then transferred 
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to microTUBEs (Covaris, Woburn, MA). Chromatin was sheared by sonication for 15 

min using an M220 focused ultrasonicator (Covaris). Triton X-100 and NaCl were added 

to the final concentration of 1% Triton and 150 mM NaCl followed by centrifugation at 

16,000 x g for 10 min. Immunoprecipitation was performed by incubated 140 μl of 

sheared chromatin with 5 μg of anti-FLAG antibody (cat# F1804, Sigma-Aldrich) and 

260 μl of immunoprecipitation buffer (0.1% SDS, 1 mM EDTA, 10 mM Tris, pH 8.1, 1% 

Triton X-100, and 150 mM NaCl) at 4°C overnight. Protein A/G magnetic beads (5 μl, 

BcMag, Bioclone, San Diego, CA) were added to the mixtures and incubated at 4°C for 

1.5 h. Magnetic beads were sequentially washed with low salt wash buffer (0.1% SDS, 

1% Triton X-100, 2 mM EDTA, 20 mM HEPES-KOH, pH7.9, and 150 mM NaCl), high 

salt wash buffer with 500 mM NaCl, LiCl wash buffer (100 mM Tris-HCl, pH 7.5, 0.5 M 

LiCl, 1% NP-40, and 1% deoxycholate acid), and TE buffer (10 mM Tris-HCl, pH 8.0 

and 0.1 mM EDTA). Immune complexes were eluted by incubating beads with 

proteinase K digestion buffer (20 mM HEPES, pH 7.9, 1 mM EDTA, 0.5% SDS, and 0.4 

mg/ml proteinase K) at 50°C for 15 min. Formaldehyde crosslinking was reversed by 

incubating with 0.3 M NaCl and 0.3 mg/ml RNase A at 65°C overnight. Samples were 

further incubated with 550 μg/ml proteinase K at 50°C for 1h. DNA was purified using 

NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel, Bethlehem, PA) and eluted by 

30 μl of water. Two μl of DNA was used for qRT-PCR analysis with primers targeting rat 

Rheb ERSE-1 (5’-CTGCACAGATTCCATTCTTCCC-3’ and 5’-TGTCTATACTTTAAATT-

3’), rat Rheb ERSE-2 (5’-TGACAGCCAACCTACAGCC-3’ and 5’-

GAAGCGCGGTCATTGGTG-3’), rat Hspa5 (5’-GGTGGCATGAACCAACCAG-3’ and 5’-

GCTTATATATCCTCCCCGC-3’), rat Cat (5’-CTACCCACCAATTAGTACCAAATAA-3’ 
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and 5’-AGAAGGGACAGGATTGGAAG-3’), rat Pdia6 ERSE (5’-

CACATGAGCGAAATCCACAGA-3’ and 5’-ACTAGTCGAGCCATGCTGAT-3’), rat HO-1 

(5’-GGGCTACTCCCGTCTTCCTG-3’ and 5’-CCTTTCCAGAACCCTCTACTCTACTC-

3’), or rat Gapdh (5’-ATGCGGTTTCTAGGTTCACG-3’ and 5’-

ATGTTTTCTGGGGTGCAAAG-3’). Pdia6 served as a positive control for a known ATF6 

target gene in cardiac myocytes while HO-1 and Gapdh served as negative controls. 

ChIP signals obtained from the qRT-PCR were normalized to the input DNA. 

3.2.14. 3H-Leucine incorporation and trichloroacetic acid 

precipitation of protein 

 NRVM 3H-Leucine incorporation was performed as previously described6. Briefly, 

NRVM were plated at a density of 2.5 x 105 cells/well on 12-well plastic culture plates. 

After 48 hours of serum starvation in DMEM/F-12, NRVM culture media was replaced 

with DMEM/F12 supplemented with BSA (1 mg/ml) containing either control, 

phenylephrine (50 µM), IGF1 (100ng/ml), or Lonafarnib (2 µM) for an additional 48 

hours. To this media was added 1 µCi of 3H-Leucine (PerkinElmer NET460A001MC L-

[3,4,5-3H(N)]-Leucine, 100 to 150 Ci/mmol). After 48 hours, the media was removed, 

cultures were washed 3 times with 1 ml DMEM/F-12 and cells were subsequently 

scraped from culture dishes with 0.5 ml of 25% trichloroacetic acid and transferred to 

1.5 ml microcentrifuge tubes. Protein precipitation was induced using 50 µl of a 10mg/ml 

solution of BSA and samples were allowed to freeze overnight. Upon thawing, 

precipitates were collected by centrifugation at 4˚C at ~20,000xg for 20 minutes. 

Supernatants were removed by manual aspiration and precipitated protein dissolved in 

200 µl of base buffer (1% Triton X-100, 1M NaOH) at 37˚C for two hours. Radioactivity 
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in solubilized material was quantified by scintillation counting in glass scintillation vials 

using 180 µl of solubilized protein into 10 ml of Ecoscint scintillation fluid. Each vial was 

counted for a minimum of 2 minutes with at least six separate myocyte cultures per 

treatment.    

3.2.15. Cultured cardiac myocyte area 

 NRVM (minimum of n=3 cultures per treatment) were visualized by phase-

contrast microscopy and images were obtained with an IX70 fluorescence microscope 

(Olympus, Melville, NY) as previously described6. Cell surface area was determined 

using NIH Image J software from a minimum of 100 cells per image using three 

separate fields from each cell culture.  

3.2.16. Transverse aortic constriction 

 Transverse aortic constriction (TAC) was performed as previously described6. 

Briefly, adult male mice were anesthetized using a 2% isofluorane/O2 mixture and 

intubated.  Mice were treated with buprenorphine (0.1 mg/kg IP) and a partial trans-

sternal thoracotomy performed using aseptic technique. An approximately 1.5 cm 

vertical left parasternal skin incision was made, underlying pectoralis muscle retracted, 

and the chest cavity entered through the fourth intercostal space. Using hooked 

retractors, adjacent ribs were retracted to expose the heart and aortic arch.  The aorta 

was isolated from annexed tissue, and the artery partially ligated between the 

innominate and left common carotid arteries with 6-0 silk. The calibrated constriction of 

the aorta was performed by placing a dull 27-gauge needle to the side of the artery, the 

ligature tied firmly to both the needle and the artery, and, subsequently, the needle was 

removed leaving a calibrated stenosis of the aorta.  Sham operated mice were exposed 
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to the same procedure, except that the aorta was not constricted. The thoracic cavity 

was closed and the animals were allowed to recover. Animals were injected once with 

buprenorphine (0.1 mg/kg IP) about 12 h after recovery in order to reduce any post-

operative discomfort. In case any animals displayed signs of pain or distress after this 

period, additional doses of buprenorphine were administered as needed. Immediately 

prior to sacrifice, animals were anesthetized and constriction levels were quantified by 

measuring alterations in Doppler velocities of the innominate and left carotid arteries 7 

days post-TAC, as previously described12. Mean carotid peak blood flow velocities were 

determined using a 20 MHz Doppler probe (Indus Instruments, Houston, TX) and ratios 

of innominate (RC) to left carotid (LC) were determined to evaluate consistency across 

animals in both SHAM and TAC groups. Just prior to sacrifice, post-TAC, animals were 

anesthetized and 0.5 mL of arterial blood were obtained via inferior vena cava puncture. 

Blood was placed in heparin- and EDTA-coated vacutainer (BD Vacutainer) and 

centrifuged at 3000 rpm for 10 minutes and plasma samples were analyzed for cardiac 

troponin I with a Mouse cTnI High-Sensitivity ELISA kit (Life Diagnostics, Inc.). A 

calcineurin phosphatase activity assay was performed using a calcineurin tissue extract 

assay kit (cat#BML-AK816-0001, Enzo Life Sciences) according to the manufacturer’s 

protocol. Briefly, free phosphate was removed from LV tissue extracts by passing 

through a desalting column and calcineurin phosphatase activity was measured 

spectrophotometrically by detecting free phosphate released from the synthetic RII 

phosphopeptide.  
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3.2.17. Free-wheel exercise protocol 

 Free-wheel exercise protocol was performed as previously described13. Briefly, 

adult male mice were housed individually in cages containing rodent exercise wheels of 

a 5.356 in diameter (Model InnoWheel, BioServe) and provided with food and water ad 

libitum. The wheels were equipped with a digital magnetic counter to record revelations 

of the wheel during bouts of exercise. Sedentary mice were maximally house and 

provided with food and water ad libitum in cages not equipped with exercise wheels.  

3.2.18. Transthoracic echocardiography 

 Transthoracic echocardiography was performed using an ultrasound imaging 

system (Vevo 2100 System, Fujifilm VisualSonics, Toronto, Ontario, Canada) as 

described2. 

3.2.19. Transcript profiling and bioinformatics 

 ATF6 TG and non-transgenic littermates were treated with tamoxifen (10 mg/kg 

IP) daily for 5 days as previously described14. Total RNA was isolated from mouse left 

ventricular extracts and RNA sequencing was carried out on Illumina 

Nextseq at CellNetworks Deep Sequencing Core Facility at Heidelberg 

University. Sequencing adapter residues and low quality bases were removed from raw 

sequencing reads prior to all other analysis steps using Flexbar version 3.0.315. 

Subsequently, reads mapping to known ribosomal RNA species were excluded from 

further analyses using Bowtie2 version 2.3.0 with a custom rRNA-index and only 

keeping non-aligning reads16 . Principal read mapping against the mouse reference 

genome (mm10, ENSEMBL build 85) was performed with the STAR aligner, version 
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2.5.3a17 . The read-to-transcript assignment was carried out using the R package 

Rsubread version 1.24.218  and the ENSMBL gene annotation mm10/build85. The 

resulting count table was further processed with the edgeR R package19 to construct the 

list of differentially expressed genes. The final heatmap was generated using the 

pheatmap R package version 1.0.1020 .  

3.2.20. Statistics  

 For studies involving induction of myocardial hypertrophy through surgical TAC, 

cohort sizes were based on a predictive power analysis to achieve 5% error and 80% 

power using G*Power 3.1.9.3. Cell culture experiments were performed with at least 

three cultures for each treatment. Shapiro-Wilk tests were performed to examine data 

normality. Two-group comparisons were performed using Student’s two-tailed t-test, 

and all multiple group comparisons were performed using a one-way ANOVA with a 

Newman-Keuls post-hoc analysis. All analyses were performed using Prism 7.0e. 

mRNA and protein expression levels were normalized to either glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) or 𝛽-Actin. Where appropriate, a linear 

transformation was performed to set the result of control group (usually Con Sham) to 1, 

by dividing each group with the average obtained for their control group. Data are 

represented as mean with all error bars indicating ± SEM. *P<0.05, **P<0.01, #P<0.001.   
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3.3. Results 

3.3.1. ATF6 is required for cardiac myocyte hypertrophy in 

response to pressure overload 

 To examine the role of Atf6 in cardiac myocytes on heart growth, we generated 

an Atf6 conditional knockout mouse (ATF6 cKO) by injecting Atf6fl/fl mice with a 

recombinant AAV9 that encodes Cre under the control of the cardiac troponin T 

promoter (Fig. 3.1A). Compared to Atf6fl/fl injected with AAV9-Con, injection with AAV9-

CRE effectively reduced Atf6 mRNA from cardiac myocytes isolated from Atf6fl/fl mice, 

but not non-cardiac myocytes, or liver (Fig. 3.1B). Atf6fl/fl mice injected with AAV9-Con 

(Con) or AAV9-CRE (ATF6 cKO), were subjected to TAC and examined 7d later, when 

hypertrophic growth is maximal4 and structural remodeling is compensatory5, 6. TAC 

activated ATF6 in Con mouse hearts, as evidenced by increased levels of the active, 50 

kD form of ATF6 (Fig. 3.1C). This was unexpected, since ATF6 is not known to be 

activated in cardiac myocytes by any growth stimulus. Coordinate with ATF6 activation, 

TAC increased expression of numerous canonical ATF6 target genes (Fig. 3.1C-D; Fig. 

3.2A). As expected, ATF6 was undetectable in ATF6 cKO mouse hearts (Fig. 3.1C-D). 

TAC increased Con mouse heart weights, but, surprisingly, this growth effect was 

significantly blunted in ATF6 cKO mouse hearts (Fig. 3.1E). TAC increased Nppa and 

Nppb expression to similar extents in both Con and ATF6 cKO mice, while the induction 

of Myh7 and Col1a1 was slightly greater in the ATF6 cKO mice (Fig. 3.1F). This, 

coupled with the decrease in Atp2a2 i.e. SERCA2a in ATF6 cKO mice, suggests a 

blunted compensatory response in the absence of ATF6. In Con mouse hearts, cardiac 
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function, including fractional shortening was preserved, while chamber dimensions were 

unchanged after TAC (Fig. 3.1G; Table 3.1) and cardiac myocyte size was increased 

(Fig. 3.1H), consistent with the compensatory nature of cardiac hypertrophy in mice at 

this time after pressure overload7.  However, in contrast to Con, in ATF6 cKO mice 

subjected to TAC myocyte size was decreased compared to Con (Fig. 3.1H) and 

fractional shortening was impaired (Fig. 3.1G) with increased chamber dimensions, 

such as LVEDV and LVESV, despite high frequency Doppler measurements between 

right and left carotid arteries demonstrating consistent and identical pressure overload 

in TAC-operated Con and ATF6 cKO mice (Table 3.I).  Along with increased plasma 

levels of cTnI (Fig. 3.2B), these results are consistent with the initial stages of chamber 

dilation, as well as myocardial damage and decompensation in the ATF6 cKO mice. 

Thus, ATF6 is activated by pressure overload and is required for hypertrophy. 
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Figure 3.1- Effect of cardiac myocyte-specific ATF6 gene deletion in hearts of mice subjected to TAC. 
 
A, Protocol for AAV9 administration to ATF6fl/fl mice and TAC. B, ATF6 mRNA levels determined by qRT-PCR on 
isolated cardiac myocytes (CM), non-cardiac myocytes (NCM), and liver extracts from ATF6fl/fl mice injected with 
AAV9-Con (Con) or AAV9-CRE (i.e. ATF6 cKO) n=3. C, Immunoblot of LV extracts from Con or ATF6 cKO mice. D, 
mRNA for ATF6 target genes determined by qRT-PCR. E, Heart weight/tibia lengths (HW/TL). F, mRNA levels for 
fetal genes determined by qRT-PCR. Nppa , natriuretic peptide A); Nppb, natriuretic peptide B); Myh7, β-myosin 
heavy chain; Col1a1, Collagen 1A1; Atp2a2, Serca2a. G, Fractional shortening (%), determined by 
echocardiography, see Online Table 3.1. H, Confocal immunocytofluorescence microscopy (ICF)  analysis of mouse 
heart sections for laminin (green). Data are mean ± SEM. *P≤0.05, **P≤0.01, #P≤0.001 different from Con Sham, or 
from the value shown by the bar. 
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Figure 3.1 (continued)- Caption shown on previous page. 
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Figure 3.2- Effect of cardiac myocyte-specific ATF6 gene deletion in mice subjected to TAC.  
 
A, mRNA for ATF6 target genes was determined by qRT-PCR. B, Troponin I (cTnI) levels were measured in plasma 
samples collected from Con or ATF6 cKO mice. Data are represented as mean ± s.e.m. **P≤0.01, #P≤0.001. 
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Statistical analyses used a one-way ANOVA with a Newman-Keuls post-hoc analysis. 

1 = p��0.05 different from respective Sham 
2 = p��0.05 different from Con TAC 
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3.3.2. ATF6 is required for cardiac myocyte hypertrophy in 

response to exercise 

 To assess the breadth of the impact of ATF6 on heart growth, we examined the 

effects of cardiac myocyte-specific ATF6 deletion in mice subjected to free-wheel 

exercise8, 9 (Fig. 3.3A).  Similar to TAC, exercise surprisingly activated ATF6 and 

induced ATF6 target genes in Con, but not in ATF6 cKO mice (Fig. 3.3B-C). As 

expected, compared to Con sedentary mice, Con mice subjected to exercise exhibited 

increased heart weights and LV wall thickness, as well as myocyte size (Fig. 3.3D, 

3.3F; Table 3.2). While Nppa and Nppb were mildly increased, Atp2a2 was robustly 

increased by exercise in Con mouse hearts, and there was no change in Myh7 or 

Col1a1 (Fig. 3.3E); this gene profile is typical of adaptive cardiac hypertrophy in 

exercising mice7, 10. In contrast to Con, in ATF6 cKO mice subjected to exercise there 

was no change in heart weights or LV wall thickness (Fig. 3.3D; Table 3.2), reduced 

increases in myocyte size (Fig. 3.3F), and reduced induction of ATF6 target genes (Fig. 

3.3C). Compared to exercised Con mice, exercised ATF6 cKO mice showed no 

increase in Nppa, and neither Con nor ATF6 cKO mice showed significant changes in 

Nppb or Myh7.  Importantly, while Con mice exhibited decreased Col1a1 and increased 

Atp2a2 after exercise, which are beneficial genetic changes typical of this regime, the 

ATF6 cKO mice failed to adapt and had increased Col1a1 and no change in Atp2a2 

(Fig. 3.3E). Thus, ATF6 is activated by exercise and is required for compensatory 

hypertrophy in this exercise model.  
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Figure 3.3- Effect of cardiac myocyte-specific ATF6 gene deletion in hearts of mice subjected to free wheel 
exercise. 
 
A, Protocol for AAV9 administration to ATF6fl/fl mice and free wheel exercise. B, Immunoblot of LV extracts from Con 
or ATF6 cKO mice. C, mRNA levels for ATF6 target genes determined by qRT-PCR. D, Heart weights/tibia lengths 
(HW/TL). E, mRNA levels for fetal genes determined by qRT-PCR. F, ICF analysis of mouse heart sections for 
laminin (green). Data are mean ± SEM. *P≤0.05, **P≤0.01, #P≤0.001. Echocardiography details are in Table 3.2. 
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Figure 3.3 (continued)- Caption shown on previous page. 
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Statistical analyses used a one-way ANOVA with a Newman-Keuls post-hoc analysis. 

1 = p��0.05 different from respective Sedentary 
2 = p��0.05 different from Con Run 
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3.3.3. Rheb is an ATF6-inducible gene in the heart 

 Since there are no known Atf6-inducible genes that are required for cardiac 

myocyte growth, we turned to transcript profiling for clues to the identities of such 

genes. RNA sequencing of the hearts of our previously published transgenic mice that 

express activated ATF611 revealed that ATF6 induced 51 genes in the gene ontology 

category, small GTPase mediated signal transduction; this category includes the ras-

related small GTPase, Ras homologue enriched in brain (RHEB) (Fig. 3.4A; Fig. 3.5A). 

Rheb is required for activation of mTORC1, however, only in the presence of a growth 

stimulus. Accordingly, we focused on Rheb as a candidate gene through which ATF6 

might contribute to cardiac hypertrophy, pursuing the hypothesis that increased Rheb 

gene expression and subsequent mTORC1 activation under growth conditions are Atf6-

dependent.  The upregulation of RHEB by ATF6 in mouse hearts observed by RNA 

sequencing was confirmed by qRT-PCR (Fig. 3.5B). Consistent with ATF6 as a 

possible transcriptional inducer of Rheb was our finding that the Rheb promoter has two 

potential ATF6 binding sites, which we call ER stress response elements (ERSEs)-1 

and -2 (Fig. 3.4B). Chromatin immunoprecipitation (ChIP) showed that ATF6 binds to 

both sites in the RHEB gene in neonatal rat ventricular myocytes (NRVM) (Fig. 3.4C). 

The progressive decline in RHEB promoter activity in plasmids that encode 5’-truncation 

deletions of the rat RHEB promoter driving luciferase demonstrated the importance of 

these putative ERSEs in ATF6-mediated RHEB promoter activation (Fig. 3.5C). To 

mechanistically investigate the functional involvement of these ERSEs further, we 

mutated either or both ERSE (Fig. 3.4D). Mutating either ERSE decreased ATF6 RHEB 

promoter activation by ATF6, however, the promoter-proximal site, i.e. ERSE-1 
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appeared to have the largest effect (Fig. 3.4E).  To determine whether ATF6 is 

sufficient to induce Rheb in the heart, in vivo, mice were injected with a recombinant 

AAV9 that encodes activated ATF6, i.e. ATF6(1-373). qRT-PCR and immunoblotting 

demonstrated that activated ATF6 increased RHEB mRNA and protein in the heart (Fig. 

3.5D-F). These results are the first demonstration in any cell type that ATF6 induces 

RHEB, implicating ATF6 as a critical link between growth stimuli and mTORC1 

activation.  
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Figure 3.4- Regulation of Rheb Expression by ATF6. 

A, Heat map of transcript profiling showing z-score-transformed RPKM values (Reads Per Kilobase per Million 
mapped reads) with hierarchical clustering of transcripts of control and ATF6 transgenic mouse hearts. Differentially 
expressed genes with p values and FDR ≤0.05 and a subset of genes annotated with term GO:0007264 are shown. 
B, Locations of consensus ATF6-binding motifs, i.e. ER stress response elements 1 and 2 (ERSE-1 and 2) and their 
sequences in the RHEB gene 5’-flanking region. Nucleotide differences from canonical ERSE elements are bold. C, 
Neonatal rat ventricular myocytes (NRVM) were infected with AdV encoding control or FLAG-ATF6(1-373) [active 
form], and then ATF6 binding to endogenous ERSE-1 or ERSE-2, as well as to the endogenous PDIA6 ERSE, used 
here as a positive control, and the negative control targets heme oxygenase 1 (ho-1) and gapdh were examined by 
chromatin immunoprecipitation (ChIP) (n=3). D, Locations of ERSE-1 and 2 in the RHEB 5’-flanking region, their 
sequences (lower case), and the mutations that were made  (bold and upper case). E, NRVM were transfected with 
rat-rheb(-1067/+123)-Luc WT, M2, M1 or M1/M2 then infected with AdV FLAG-ATF6(1-373). Then, 48h later, 
luciferase activity was measured in extracts (n=6). F-H, mRNA for RHEB determined by qRT-PCR (F) and Rheb 
protein and mTOR pathway components measured by immunoblots (G) and quantified by densitometry (H) from Con 
or ATF6 cKO mouse heart extracts after 7 days of Sham or TAC. I-K, mRNA for RHEB determined by qRT-PCR (I) 
and Rheb protein and mTOR pathway components immunoblots (J) and quantified by densitometry (K) from Con or 
ATF6 cKO mouse heart extracts after 4 weeks of sedentary or free wheel exercise (Run). Data are mean ± SEM. 
*P≤0.05, **P≤0.01, #P≤0.001.  
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Figure 3.4 (continued)- Caption shown on previous page. 
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Figure 3.5- ATF6-dependent induction of Rheb in mouse hearts.  
 
A, Table of a subset of induced genes represented by respective gene symbols in ATF6 TG mice with p values and 
FDR <0.05 annotated with ensemble biological process term GO:0007264. B, mRNA for Rheb was determined by 
qRT-PCR using LV extracts from ATF6-transgenic (ATF6 TG) and non-transgenic littermates after 5 days of 
tamoxifen administration (10mg/kg), which activates ATF6 in this mouse line. C, Diagram of constructs encoding 
different truncated forms of the rat rheb 5’-flanking sequence driving luciferase, as shown (left), i.e. rat-rheb(-
1067/+123)-Luc, rat-rheb(-723/+123)-Luc, and rat-rheb(-390/+123)-Luc were transfected into NRVM which were then 
infected with AdV encoding ATF6(1-373) [active form], or with a control AdV. Luciferase enzyme activity in AdV-
ATF6-infected cells was normalized to luciferase enzyme activity in AdV-Con-infected cells to determine the fold-
induction by ATF6 (right). D, mRNA for Rheb was determined by qRT-PCR from LV extracts from mice treated 4 
weeks with AAV9-Con or AAV9-ATF6. E, F, Immunoblot (E) and densitometry quantification (F) of RHEB protein 
expression AAV9-Con or AAV9-ATF6 mouse heart extracts. Data are represented as mean ± s.e.m. *P≤0.05, 
**P≤0.01, #P≤0.001. 
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3.3.4. RHEB induction during pressure-overload and exercise 

requires ATF6 

 We found that RHEB was strongly induced in Con mice after either TAC or 

exercise, but not in ATF6 cKO mouse hearts (Fig. 3.4F-K). Thus, ATF6 is necessary for 

the upregulation of RHEB in these models of cardiac hypertrophy, in vivo. Since RHEB 

is required for mTORC1 activation in response to a growth stimulus, we assessed 

mTORC1 pathway activation. As expected, pressure-overload and exercise both 

activated mTORC1, as shown by increased phosphorylation of mTORC1 (Ser2448), 

p70 ribosomal S6 kinase (S6K; Thr389), and eukaryotic translation initiation factor 4E-

binding protein 1 (4E-BP1; Thr37/46); however, mTORC1 activation was blunted in 

ATF6 cKO mouse hearts (Fig. 3.4G, J), consistent with the key role for ATF6 in 

mTORC1 activation by growth stimuli. To examine whether ATF6 might affect other 

signaling pathways leading to mTORC1 activation, we assessed the phosphorylation of 

Akt on Ser308 and the phosphorylation of TSC2, both of which lie upstream of Rheb in 

the mTORC1 signaling pathway. We found that pressure overload increased 

phosphorylation of Akt (Thr308) and TSC2 (Thr1462), as expected; however, in contrast 

to Rheb expression, neither of these phosphorylation events were affected by ATF6 

deletion (Fig. 3.6A). Thus, the deficit in mTORC1 activation in ATF6 cKO mice must 

reside downstream of Akt and TSC2, i.e. Rheb. We also examined whether ATF6 

deletion affected other well known canonical hypertrophy signaling pathways, but found 

that neither phosphorylation of Akt on Ser473, Erk phosphorylation (Fig. 3.6A) or 

calcineurin activation (Fig. 3.6B) were affected by ATF6 deletion. These results pinpoint 

the growth deficit in the ATF6 cKO mouse hearts to the inability to upregulate Rheb.  
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Figure 3.6- Effects of ATF6 deletion on regulators of the mTORC1 pathway in hearts of mice subjected to 
TAC.  
 
A, Immunoblot of TSC2, AKT, and ERK1/2 protein phosphorylation and expression in LV extracts from Con or ATF6 
cKO mice after 7 days of Sham or TAC. B, Calcineurin activity as measured by free-phosphate release in LV extracts 
from Con or ATF6 cKO mice after 7 days of Sham or TAC. Data are represented as mean ± s.e.m. #P≤0.001. 
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3.3.5. RHEB is required for PE- and IGF1-induced cardiac 

myocyte growth 

 To explore the mechanistic relationship between ATF6 and RHEB we used 

RHEB and ATF6 loss-of-function approaches in NRVM treated with the a1-adrenergenic 

receptor agonist, phenylephrine (PE) or insulin-like growth factor 1 (IGF1), which 

recapitulate much of the intracellular signaling during pressure-overload or exercise-

induced hypertrophy, respecitvely12. Knocking down either ATF6 or RHEB abrogated 

the effects of PE or IGF1 on cardiac myocyte hypertrophy, fetal gene induction, ATF6 

target gene induction and mTORC1 signaling (Fig. 3.7A-E; Fig. 3.8A, 3.8C; Fig. 3.9A-

E; Fig. 3.8B), but had no effect on mTORC2 signaling, as assessed by phosphorylation 

of Akt on Ser-473 (Fig. 3.8D-E). To further substantiate the results with Rheb siRNA, 

we used a different Rheb loss-of-function approach involving the Rheb inhibitor, 

Lonafarnib13. Lonafarnib mimicked the effects of Rheb siRNA on PE- and IGF1-

mediated ATF6 activation, mTORC1 signaling, ATF6 gene induction and growth in 

NRVM (Fig. 3.10).  

 To complement ATF6 loss-of-function approach, we used a gain-of-function 

approach, examining the effects of ectopic expression of ATF6 and RHEB. In the 

absence of a growth stimulus, ectopic expression of ATF6 did not increase myocyte 

growth, as expected, due to the absence of mTORC1 activation under these conditions 

(Fig. 3.11A Con). Either PE or IGF1 increased myocyte growth, which was completely 

blocked by the mTORC1 inhibitor, rapamycin, as expected (Fig. 3.11A, PE and IGF1, 

red vs blue). Ectopic ATF6 augmented the growth-promoting effects of PE and IGF1, 



 130 

which were also completely blocked by rapamycin (Fig. 3.11A, PE and IGF1, black 

and green). Moreover, ectopic ATF6 slightly augmented PE- and IGF1-stimulated 

NRVM growth, however, it was not able to restore growth in cells treated with either 

RHEB siRNA or Lonafarnib (Fig. 3.11B-C). As expected, ectopic expression of RHEB 

had no effect in the absence of a growth stimulus; however, upon a growth stimulus, the 

loss of growth and mTORC1 activation seen with ATF6 siRNA were completely restored 

by ectopically expressed RHEB (Fig.  3.7F-H; Fig. 3.9F-H).  
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Figure 3.7- Effects of ATF6- and RHEB knockdown and ectopic Rheb expression on phenylephrine-induced 
hypertrophy in cultured cardiac myocytes.   
 
A-E, NRVM were transfected with a nontargeted siRNA (siCon) or with siRNAs targeted to either rat ATF6 (siAtf6) or 
RHEB (siRheb), and then treated ± phenylephrine (PE; 50µM) for 48 hours. A, Cell surface area was determined by 
photomicroscopy and morphometry (n=6). B, ICF of NRVM for α-actinin (blue) and TOPRO-3 (red). Bar = 50µm. C, 
qRT-PCR examination of Nppa and Nppb. Values are expressed as fold-of-control cardiac myocytes in the absence 
of PE (n=6). D, Immunoblot of NRVM. E, mRNA for ATF6 target genes determined by qRT-PCR. Values are 
expressed as fold-of-control myocytes in the absence of PE (n=3). F-H, NRVM were transfected with a control 
plasmid or a plasmid encoding Flag-Rheb and either siCon or siAtf6, followed by treatment ± PE for 48 hours. Cell 
surface area (F) was determined by morphometry after ICF (G). NRVM were stained for FLAG (green; isolated 
channel displayed in inset), α-actinin (blue), and TOPRO-3 (red). Bar = 50µm. Only FLAG-positive cells were used for 
cell surface area analysis (n=3). H, Immunoblot of NRVM. Data are mean ± SEM. *P≤0.05, **P≤0.01, #P≤0.001. 
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Figure 3.7 (continued)- Caption shown on previous page. 
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Figure 3.8- Effect of ATF6 and RHEB knockdown on the mTORC1 pathway at cardiac myocyte hypertrophy.  

A, C, NRVM were transfected with a nontargeted siRNA (siCon) or siRNAs targeted to rat ATF6 (siAtf6) or RHEB 
(siRheb), and then treated with or without phenylephrine (PE; 50µM) (A) or IGF1 (100ng/ml) (C) for 48 hours. A, B, 
Incorporation of 3H-leucine into TCA-precipitable protein in NRVM extracts was measured by scintillation counting. C, 
D, Immunoblot of NRVM. Phosphorylation of AKT on Ser473 is indicative of mTORC2 activity. E, mRNA for ATF6 
target genes was determined by qRT-PCR in coordination with target genes presented in Figure 4E. Data are 
represented as mean ± s.e.m. *P≤0.05, **P≤0.01, #P≤0.001. 
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Figure 3.8 (continued)- Caption shown on previous page. 
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Figure 3.9- Effects of ATF6- and RHEB knockdown and ectopic Rheb expression on insulin like growth factor 
1-induced hypertrophy in cultured cardiac myocytes.   

A-E, NRVM were transfected with siCon, siAtf6 or siRheb, then treated ± IGF1 (100ng/ml) for 48 hours. A, Cell 
surface area was determined by morphometry after ICF (n=6). B, ICF of NRVM for α-actinin (blue) and TOPRO-3 
(red). Bar = 50µm. C, qRT-PCR for Nppa and Nppb. Values are fold-of-control myocytes in the absence of IGF1 
(n=6). D, Immunoblot of NRVM. E, mRNA levels of ATF6 target genes determined by qRT-PCR. Values are fold-of-
control myocytes in the absence of IGF1 (n=3). F-H, NRVM were transfected with a control plasmid or a plasmid 
encoding Flag-Rheb and then either siCon or siAtf6, followed by treatment ± IGF1 for 48 hours. Cell surface area (F) 
was determined by morphometry after ICF (G). NRVM were stained for FLAG (green; isolated channel displayed in 
inset), α-actinin (blue) and TOPRO-3 (red). Bar = 50µm. Only FLAG-positive cells were used for cell surface area 
analysis (n=3). H, Immunoblot of NRVM. Data are mean ± SEM. *P≤0.05, **P≤0.01, #P≤0.001. 
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Figure 3.9 (continued)- Caption shown on previous page. 
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Figure 3.10- Rheb-inhibitor, Lonafarnib, inhibition of cardiac myocyte hypertrophy.  
 
A-C, NRVM were treated with or without PE (50µM) for 48 hours in the presence or absence of the Rheb inhibitor, 
Lonafarnib (2µM). A, Incorporation of 3H-leucine into TCA-precipitable protein in NRVM extracts was measured by 
scintillation counting. B, ICF of NRVM stained for α-actinin (blue) and TOPRO-3 (red). Bar = 50µm. C, Immunoblot of 
NRVM. D-E, NRVM were treated with or without IGF1 (100ng/ml) for 48 hours in the presence or absence of the 
Rheb inhibitor, Lonafarnib (2µM). D, Incorporation of 3H-leucine into TCA-precipitable protein in NRVM extracts was 
measured by scintillation counting. E, ICF of NRVM stained for α-actinin (blue) and TOPRO-3 (red). Bar = 50µm. 
Data are represented as mean ± s.e.m. *P≤0.05, **P≤0.01. 
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Figure 3.10 (continued)- Caption shown on previous page. 
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Figure 3.11- Effect of ATF6 overexpression on cardiac myocyte hypertrophy. 
  
A, NRVM were infected with AdV encoding control or FLAG-ATF6(1-373) [active form] and then treated with or 
without phenylephrine (PE; 50µM) or IGF1 (100ng/ml), with or without rapamycin (20nM) for 48 hours, as shown. Cell 
surface area was determined by photomicroscopy and morphometry, then expressed as mean ±  s.e.m after 
analyzing at least 100 cells per treatment per experiment. B-C, NRVM were transfected with a non-targeted siRNA 
(siCon) or siRNA targeted to rat RHEB (siRheb), and then infected with AdV encoding control or FLAG-ATF6(1-373) 
[active form]. NRVM were then treated with or without phenylephrine (PE; 50µM) (B) or IGF1 (100ng/ml) (C) with or 
without Lonafarnib (2µM) for 48 hours, as shown. Data are represented as mean ± s.e.m. *P≤0.05, **P≤0.01, 
#P≤0.001. 
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3.3.6. Mechanistic Relationship between Growth Signaling and 

the UPR  

 The unfolded protein response (UPR), which in addition to ATF6, is mediated by 

PERK and IRE1, is activated by the misfolding of proteins induced by a variety of 

chemical and pathophysiological treatments, most of these do not promote growth.  In 

fact, the UPR is not widely considered to be growth-promoting. Accordingly, since we 

found here that ATF6 can be activated during growth, we assessed how growth affected 

the other arms of the UPR. We found that PE and IGF1 activated all three arms of the 

UPR in a rapamycin-sensitive manner (Fig. 3.12A), indicating that mTORC1 activation 

is required for UPR activation during growth. We then individually knocked down ATF6, 

PERK and IRE1, and found that only ATF6 knockdown blunted growth (Fig. 3.12B-C). 

To ensure that the effects of ATF6 on growth are dependent on the transcriptional 

effects of ATF6, we showed that NRVM infected with AdV-ATF6(1-373) [active] 

exhibited increased growth in response to PE, especially when endogenous ATF6 was 

knocked down, however AdV-ATF6(94-373) [trancriptionally inactive] did not (Fig. 

3.12D). 
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Figure 3.12- mTORC1-dependent activation of the UPR during cardiac myocyte hypertrophy.  
 
A, Immunoblot of NRVM after treatment with or without phenylephrine (PE; 50µM) or IGF1 (100ng/ml), with or without 
rapamycin (20nM) for 48 hours, as shown. B, C, NRVM were transfected with siCon or siRNAs targeted to rat ATF6 
(siAtf6), PERK (siPerk), or IRE1 (siIre1) and then treated with or without phenylephrine (PE; 50µM) for 48 hours. Atf6, 
Perk (Eif2ak3) and Ire1 (Ern1) mRNA levels were determined by qRT-PCR (B), and cell surface area was determined 
by photomicroscopy and morphometry (C). D, NRVM were transfected with a nontargeted siRNA (siCon) or siRNA 
targeted to rat ATF6 (siAtf6) and were then infected with AdV encoding control, FLAG-ATF6(1-373) [active] or FLAG-
ATF6(94-373) [inactive due to deletion of transcriptional activation domain], then treated with or without 
phenylephrine (PE; 50µM) for 48 hours. Cell surface area was determined by photomicroscopy and morphometry, 
then expressed as mean ± s.e.m after analyzing at least 100 cells per treatment per experiment. Data are 
represented as mean ± s.e.m. *P≤0.05, **P≤0.01, #P≤0.001. 
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Figure 3.12 (continued)- Caption shown on previous page. 
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 Next, we examined the effect on mTORC1 signaling of other UPR stimulators 

that do not affect growth, such as tunicamycin (TM), which increases ER protein 

misfolding by inhibiting protein glycosylation in the ER.  In contrast to PE, activation of 

ATF6 by TM was not dependent on RHEB (Fig. 3.13A-B). Additionally, while RHEB 

knockdown blocked PE- and IGF1-mediated induction of ATF6 target genes, (Fig. 3.7E, 

5E), it had no effect on TM-mediated induction of ATF6 target genes (Fig. 3.13C).  

Thus, there are RHEB/growth-dependent and RHEB/growth-independent pathways that 

lead to ATF6 activation and induction of ATF6 target genes.  
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Figure 3.13- Examination of Rheb Requirement for Growth-dependent but not Growth-independent Activation 
of the ATF6. 

A-B, NRVM were transfected with siCon, siAtf6 or siRheb then treated ± tunicamycin (TM; 10µg/mL) (A) or PE 
(50µM) (B) for 24 hours, then analyzed for ATF6 activation by immunoblotting. C, mRNA levels for ATF6 target genes 
determined by qRT-PCR. Values are fold-of-control, i.e. not treated with TM (n=6). D, E, NRVM were transfected with 
siCon (D) or siAtf6 (E), then treated ± TM (10µg/mL), or PE (50µM) for 24 hours, or subjected to simulated 
ischemia/reperfusion (sI/R; 8 hours of sI, followed by 24 hours of reperfusion) and mRNA  for ATF6 target genes 
determined by qRT-PCR (n=6). F, Diagram of constructs that encode luciferase driven by the grp78, catalase, and 
rheb 5’-flanking region. G, H, NRVM were transfected with human-grp78(-284/+221)-Luc WT, rat-catalase(-
1161/+131)-Luc WT, or rat-rheb(-1067/+123)-Luc WT and then transfected with siCon (G) or siAtf6 (H), then treated ± 
TM (10µg/mL), or PE (50µM) for 24 hours, or subjected to sI/R and luciferase activity measured in extracts (n=6). I, J, 
NRVM infected with AdV FLAG-ATF6(1-670) (I) or control (J), and then ATF6 binding to the endogenous grp78, 
catalase, or rheb genes, as well as to the negative control gene, gapdh, examined by ChIP under the same 
experimental conditions described above (n=3). Data are mean ± SEM. *P≤0.05, **P≤0.01, #P≤0.001. 
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Figure 3.13 (continued)- Caption shown on previous page. 
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3.3.7. Stimulus-dependent Differential Induction of ATF6 Target 

Genes 

 We dived deeper into the mechanism of RHEB/growth-dependent and 

RHEB/growth-independent pathways of ATF6 activation. We previously showed that 

ATF6 induces some proteins targeted to the ER, where they enhance protein folding 

(e.g. HSPA5/GRP78), and others located outside the ER, where they serve other 

functions.  One example of the latter is our finding that I/R activates ATF6-dependent 

induction of catalase (CAT), which resides in peroxisomes and neutralizes damaging 

ROS. Here, we provide an additional example of an ATF6-inducible gene, RHEB, that 

encodes a protein that resides outside the ER.  Because of the differences in the 

locations and functions of Hspa5, Cat, and Rheb, we posited that they might be 

differentially induced by treatments that cause ER protein misfolding (TM), or oxidative 

stress (I/R) but do not induce growth, or to a treatment that induces growth (PE). While, 

for the most part, the mRNA levels for all three genes were increased by all the 

treatments, the quantitative nature of induction differed depending on the treatments, 

such that TM, sI/R, and PE had the greatest effects on induction of Hspa5, Cat, and 

Rheb, respectively (Fig. 3.13D). Notably, CAT induction was highly selective, showing 

an approximate 6-fold induction by sI/R, and much less induction by either TM or PE 

(Fig. 3.13D, Cat). Remarkably, RHEB induction was also highly selective, showing the 

least induction by TM or sI/R, while being induced by over 5-fold by PE (Fig. 3.13D, 

Rheb). Importantly, all of these effects depended on ATF6 (Fig. 3.13E).  

 To dissect this stimulus-dependent differential gene induction further, we showed 

that promoter/luciferase reporter constructs for Hspa5, Cat, and Rheb (Fig. 3.13F) were 



 147 

also differentially induced by TM, sI/R and PE, mimicking mRNA induction (Fig. 3.13G). 

Importantly, as with the mRNA, all of these effects depended upon ATF6 (Fig. 3.13H).  

 These stimulus-specific effects of ATF6 on Hspa5, Cat, and Rheb could be due 

to the stimulus-dependent binding of ATF6 to the ERSEs in these genes. To test this, 

we developed a new method for measuring ATF6 binding to the HSPA5, CAT, and 

RHEB promoters in cells treated with TM, sI/R or PE. To this end we generated a 

recombinant AdV FLAG full-length p90 ATF6, i.e. ATF6(1-670), which remains in the 

ER in the absence of ER stress, and, therefore, can not bind to ERSEs. NRVM 

expressing FLAG-ATF6(1-670) were treated with TM, sI/R or PE, each of which induce 

the formation of the FLAG-tagged N-terminal, active p50 form of ATF6, so it can bind to 

ERSEs. ChIP demonstrated that the binding of ATF6 to these genes differed, 

depending on the stimulus, mimicking the mRNA induction and promoter activation (Fig. 

3.13I).  These effects were not seen with AdV encoding only FLAG, verifying ATF6-

specificity (Fig. 3.13J). This shows, for the first time in any cell type, that ATF6 can be 

activated by a broad spectrum of conditions that affect proteostasis in a variety of ways, 

yet the relative induction of ATF6 targets differs in a condition-dependent manner. 
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  3.3.8. Ectopic Expression of RHEB Restores Cardiac Growth to 

ATF6 cKO Mouse Hearts 

 Next, we assessed the effects of ectopic expression of RHEB in the heart, in vivo 

using a new recombinant AAV9-RHEB (Fig. 3.14A).  In ATF6 cKO mice, AAV9-RHEB 

effectively restored the loss of mTORC1 signaling, hypertrophic growth and cardiac 

function, as well as the hypertrophic and ATF6 gene programs in response to TAC (Fig. 

3.14B-F; Table 3.3). Thus, it is by increasing RHEB that ATF6 influences mTORC1 

signaling and subsequent cardiac myocyte growth, fetal gene expression and ATF6-

target gene expression. 
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Figure 3.14- Effect of cardiac myocyte-specific ectopic Rheb expression in ATF6 gene deleted mouse hearts 
subjected to TAC.   

A, Experimental protocol for AAV9 administration to ATF6fl/fl mice and TAC. B, Heart weights/tibia lengths (HW/TL). 
C, Fractional shortening (%), as determined by echocardiography, see Table 3.3. D, mRNA for fetal genes 
determined by qRT-PCR. E, mRNA for ATF6 target genes determined by qRT-PCR. F, Immunoblots of LV extracts. 
Data are mean ± SEM. *P≤0.05, **P≤0.01, #P≤0.001. 
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Figure 3.14 (continued)- Caption shown on previous page. 
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3.3.9. ATF6 Activation in Response to Growth Requires mTORC1 

Activation, Protein Synthesis and Protein Misfolding 

 To this point, mTORC1 and ATF6 activation were shown to be dependent on 

each other under the growth conditions examined. To account for this interdependence, 

we posited a temporal sequence of events, wherein the initial event is mTORC1 

activation, which depends on basal levels of Rheb (Fig. 3.15A, Step 1). This initial 

mTORC1 activation precedes, but drives initial increases in protein synthesis that place 

demands on the protein-folding machinery (Fig. 3.15A, Step 2), which activates ATF6. 

Then, ATF6 serves canonical- and non-canonical roles (Fig. 3.15A, Steps 3, 4), the 

latter of which includes RHEB induction (Fig. 3.15A, Step 5), which is necessary to 

sustain mTORC1 activation (Fig. 3.15A, Step 6) and the continued increases in protein 

synthesis that required for growth and cardiac myocyte hypertrophy (Fig. 3.15A, Step 

7). To examine this hypothesis, a TAC time course was carried out. At 3h of TAC, a 

time when mTORC1 is activated, but protein synthesis has not yet increased, mTORC1 

signaling was activated, but ATF6 was not activated and RHEB was not induced (Fig. 

3.15B, 3h). However, at both 2 and 7d of TAC, when protein synthesis is increased, 

mTORC1 signaling and ATF6 were activated, and RHEB was induced (Fig. 3.15B, 2d 

and 7d). As expected, heart weights increased as a function of TAC time from 3h to 7d 

(Fig. 3.15C; Table 3.4). Thus, mTORC1 activation occurred soon after TAC and 

preceded ATF6 activation.  Further supporting our hypothesis that initially, mTORC1 

activation precedes ATF6 activation were results of a 3h TAC experiment in ATF6 cKO 

mice, where, in contrast to longer times of TAC (i.e. 7d - Fig. 3.4G), the deletion of 
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ATF6 did not affect mTORC1 activation (Fig. 3.15D).  As expected, heart weights did 

not change under these conditions (Fig. 3.15E; Table 3.5).  

 Consistent with these results, when examining the effect of PE and IGF1 at the 

earliest time points, just prior to when protein synthesis is greatest in NRVM, knocking 

down ATF6 did not affect mTORC1 activation (Fig. 3.16A), but again, ATF6 activation 

was rapamycin-dependent (Fig. 3.16B). Moreover, inhibiting protein synthesis with 

cycloheximide had no effect on mTORC1 activation at these short times of PE or IGF1 

treatment, but impaired ATF6 activation and RHEB induction, indicating that protein 

synthesis is required for ATF6 activation and subsequent RHEB induction (Fig. 3.16C). 

Finally, in NRVM treated with the chemical chaperone, 4PBA, PE and IGF1 activated 

mTORC1 however, ATF6 was not activated and RHEB was not induced (Fig. 3.16D), 

indicating the increase in protein folding demand driven by increases in protein 

synthesis are responsible for activating ATF6. 
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Figure 3.15- Mechanism whereby ATF6 acts as a nodal regulator of both protein synthesis and protein 
folding during cardiac hypertrophy. 
 
A, Shown are the temporal sequence of steps involved in mediating the initial (Steps 1-4) and sustained (Steps 5-7) 
aspects of growth and the interdependent roles of mTORC1 and ATF6. B, C, Immunoblot of LV extracts (B) and 
heart weights/tibia lengths (HW/TL) (C) from WT mice subjected to TAC for 3 hours, 2 days, or 7 days. 
Echocardiography details in Table 3.4. D, E, Immunoblot of LV extracts (D) and heart weights/tibia lengths (HW/TL) 
(E) from Con or ATF6 cKO mice subjected to 3 hours of TAC. Echocardiography details in Table 3.5. Data are mean 
± SEM. *P≤0.05, #P≤0.001. 
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Table 3.4- TAC time course echocardiographic parameters for Wild-Type mice 

 

  3-Hours 2-Days 7-Days 
 Sham TAC TAC TAC 
 (n = 4) (n = 4) (n = 4) (n = 4) 
FS (%) 30.76±1.69 32.27±1.83 28.32±3.21 25.36±1.85 

EF (%) 59.11±2.58 61.40±2.64 54.95±4.98 50.51±3.001 

LVEDV (µl) 55.18±3.16 50.76±3.82 58.16±1.60 62.66±1.321 

LVESV (µl) 22.82±2.74 19.94±2.60 26.38±3.44 30.87±1.671 

LVIDD (mm) 3.62±0.08 3.49±0.11 3.70±0.04 3.82±0.031 

LVIDS (mm) 2.51±0.11 2.37±0.13 2.65±0.14 2.85±0.061 

PWTD (mm) 0.70±0.04 0.78±0.03 0.91±0.12 1.30±0.051 

PWTS (mm) 1.03±0.04 1.12±0.06 1.22±0.09 1.69±0.061 

AWTD (mm) 0.79±0.04 0.93±0.05 1.03±0.051 1.50±0.041 

AWTS (mm) 1.10±0.04 1.22±0.06 1.25±0.04 1.78±0.051 

HR (bpm) 517±11.32 503±13.78 509±11.75 517±7.18 

HW (mg) 121.05±5.23 158.95±4.051 162.90±3.391 208.50±10.041 

BW (g) 23.09±0.28 31.00±0.851 27.94±1.561 29.06±0.371 

TL (mm) 18.50±.0.29 23.50±0.291 21.50±0.501 22.75±0.251 

HW/BW (mg/g) 5.24±0.22 5.13±0.06 5.85±0.43 7.19±0.421 

HW/TL (mg/mm) 6.54±0.21 6.76±0.10 7.56±0.511 9.15±0.351 
 
 
FS = fractional shortening 
EF = ejection fraction 
LVEDV = left ventricular end diastolic volume 
LVESV = left ventricular end systolic volume 
LVIDD = left ventricular inner diameter in diastole 
LVIDS = left ventricular inner diameter in systole 
PWTD = left ventricular posterior wall thickness in diastole 
PWTS = left ventricular posterior wall thickness in systole 
AWTD = left ventricular anterior wall thickness in diastole 
AWTS = left ventricular anterior wall thickness in systole 
HR = heart rate in beats per minute  
HW = heart weight 
BW = body weight  
TL = tibia length 
HW/BW = heart weight/body weight 
HW/TL = heart weight/tibia length 
 

Statistical analyses used a one-way ANOVA with a Newman-Keuls post-hoc analysis. 

1 = p	≤	0.05 different from Sham 
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Table 3.5-  3-hour TAC echocardiographic parameters for Con and ATF6 cKO mice 

 

 Con ATF6 cKO Con ATF6 cKO 
 Sham Sham TAC TAC 
 (n = 5) (n = 4) (n = 5) (n = 4) 
FS (%) 34.06±2.95 33.88±3.13 31.91±1.57 31.59±3.66 

EF (%) 63.57±3.78 63.18±4.30 60.66±2.26 59.72±5.30 

LVEDV (µl) 51.52±3.83 58.55±2.44 61.47±4.92 63.15±5.20 

LVESV (µl) 18.28±1.23 21.79±3.28 24.33±2.86 26.21±5.31 

LVIDD (mm) 3.51±0.11 3.71±0.07 3.78±0.12 3.82±0.13 

LVIDS (mm) 2.30±0.06 2.46±0.15 2.57±0.12 2.63±0.23 

PWTD (mm) 0.84±0.08 0.76±0.07 0.72±0.05 0.81±0.06 

PWTS (mm) 0.90±0.23 1.16±0.18 1.08±0.05 1.16±0.07 

AWTD (mm) 0.86±0.10 0.90±0.09 0.88±0.04 0.93±0.04 

AWTS (mm) 1.77±0.16 1.24±0.08 1.21±0.04 1.22±0.04 

HR (bpm) 493±19.31 517±10.09 510±10.16 512±14.34 

HW (mg) 128.88±5.32 137.30±6.35 148.00±2.161 152.78±6.371 

BW (g) 24.58±0.88 25.88±1.04 26.58±0.40 28.16±0.651 

TL (mm) 19.40±.0.51 19.00±0.41 21.00±0.32 21.75±0.481 

HW/BW (mg/g) 5.24±0.11 5.31±0.16 5.58±0.15 5.42±0.14 

HW/TL (mg/mm) 6.65±0.25 7.23±0.23 7.06±0.16 7.02±0.22 
 
 
FS = fractional shortening 
EF = ejection fraction 
LVEDV = left ventricular end diastolic volume 
LVESV = left ventricular end systolic volume 
LVIDD = left ventricular inner diameter in diastole 
LVIDS = left ventricular inner diameter in systole 
PWTD = left ventricular posterior wall thickness in diastole 
PWTS = left ventricular posterior wall thickness in systole 
AWTD = left ventricular anterior wall thickness in diastole 
AWTS = left ventricular anterior wall thickness in systole 
HR = heart rate in beats per minute  
HW = heart weight 
BW = body weight  
TL = tibia length 
HW/BW = heart weight/body weight 
HW/TL = heart weight/tibia length 
 

Statistical analyses used a one-way ANOVA with a Newman-Keuls post-hoc analysis. 

1 = p	≤	0.05 different from respective Sham 
2 = p	≤	0.05 different from Con TAC 
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Figure 3.16- Protein synthesis-dependent activation of the UPR during cardiac myocyte hypertrophy.  
 
A, Immunoblot of NRVM transfected with a nontargeted siRNA (siCon) or with siRNA targeted to rat ATF6 (siAtf6) 
and then treated with or without phenylephrine (PE; 50µM) or IGF1 (100ng/ml) for 6 hours. B, Immunoblot of NRVM 
after treatment with or without phenylephrine (PE; 50µM) or IGF1 (100ng/ml), with or without rapamycin (20nM) for 6 
hours, as shown. C, Immunoblot of NRVM after co-treatment with or without cyclohexamide (CHX; 100µg/ml) and 
either phenylephrine (PE; 50µM) or IGF1 (100ng/ml) for 6 hours. D, Immunoblot of NRVM after pretreatment with 4-
phenylbutyrate (4-PBA; 100µM) for 24 hours and subsequent co-treatment with or without 4-PBA (100µM) and either 
phenylephrine (PE; 50µM) or IGF1 (100ng/ml) for an additional 6 hours. 
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Figure 3.16 (continued)- Caption shown on previous page. 
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3.4. Discussion 

3.4.1. ATF6 is Required for Growth of the Heart 

 While previous studies reported increased expression of a few ER stress genes 

in mouse models of pressure overload, implicating ER protein misfolding14-17, prior to 

our study here, neither the activation nor the roles for ATF6 in cardiac myocytes during 

cardiac growth had been examined. Here, we showed, for the first time that ATF6, a 

major mediator of the UPR, is activated by diverse growth stimuli and that ATF6 is 

required for growth of the heart in response to these stimuli. We determined that the 

mechanism of this effect involves ATF6-mediated induction of RHEB (Fig. 3.15A). It 

was surprising to find that ATF6 is required for heart growth, considering the UPR is not 

widely known to be involved in growth processes. However, this non-canonical role for 

ATF6 complements its canonical role as a sensor of misfolded proteins in the ER and, 

as such, a sensor of increases in protein folding demand, which occur during growth. 

Thus, ATF6 maintains proteostasis and proteome integrity when the heart is stimulated 

to grow in a compensatory manner.  

 We also found that, depending on the stimulus, ATF6 target genes are 

differentially expressed due to the unique effects that the stresses have on ATF6 

binding to, and thus, transcriptional activation of ATF6 target genes. Such differential 

ATF6 target gene induction by treatments that all activate ATF6 suggests that there are 

yet-to-be-described regulatory layers that fine-tune the ATF6 gene program to best 

adapt to the conditions. Some possible mechanisms that could contribute to this 

differential expression are beginning to emerge, as it has been shown that ATF6 can 



 160 

interact with other transcription factors, such as Nrf1, PGC1a and b, and ERRg,18-20 

which changes the transcriptional programming in ways that fine-tune ATF6 target gene 

induction. 

3.4.2. Rheb in the Heart 

 Rheb was originally documented as an mTORC1 activator in the brain21, this role 

has been demonstrated in numerous other tissues and organs2, 22, 23. Global deletion of 

Rheb is embryonic lethal, in part due to cardiac defects24, demonstrating the importance 

of Rheb-mediated mTORC1 activation in heart growth and development. The growth-

promoting effect of Rheb gain-of-function was demonstrated in adult rat ventricular 

myocytes transfected with adenovirus encoding Rheb25. However, overexpression of 

Rheb in transgenic mice increased infarct size, in part because Rheb inappropriately 

decreased autophagy, which is adaptive in this disease setting26.  Pharmacological 

inhibition of Rheb in mice subjected to TAC for three weeks was cardioprotective2.  

These findings differ from our study, perhaps because different times after TAC were 

studied, or different approaches to decreasing Rheb. It is also possible that Rheb 

induction and mTORC1 activation have different roles in a severe afterload-induced 

hypertrophy model, such that acute activation works in a compensatory manner, but 

chronic activation drives decompensation. The aMHC-CRE-dependent conditional 

deletion of Rheb from mouse cardiac myocytes resulted in atrophic hearts, heart failure, 

and death within 1-2 weeks after birth, a timeframe that aligns with the time of aMHC 

expression after birth1, 27.  Although there have been no studies prior to ours 

mechanistically connecting Atf6 with Rheb induction, one study in tumor cells28, and 



 161 

another in the setting of Huntington’s disease29, have implicated such a connection and, 

therefore, support the findings reported here. 

3.4.3. Feedback Regulation of ATF6-mediated Growth 

 Our study describes a mechanism whereby ATF6 matches protein synthesis with 

folding in times of increased growth; since this constitutes a positive feedback 

mechanism, we reason that there must also be mechanisms that interrupt this feedback, 

thereby limiting the rate of growth driven by the ATF6-Rheb-mTORC1 axis. One such 

mechanism might involve Rheb itself, which has been shown to activate PERK30. 

Mechanisms such as this underscore the complexities of proteostasis, raising questions 

about how Rheb switches from protein synthesis activator to inhibitor. 

3.4.4. Conclusions 

 The results of our study firmly place ATF6 in a critical position as a determinant 

of cardiac growth (Fig. 3.15A). Moreover, since ATF6 is ubiquitously expressed, our 

findings underscore the widespread importance of the ATF6-Rheb-mTORC1-growth 

signaling axis described here in non-cardiac cells and tissues in addition to the heart. 

Chapter 3, in full, is a reprint of the material as it appears in Circulation Research 

in 2019. Blackwood, E.A., Hofmann, C., Santo Domingo, M., Bilal, A.S., Sarakki, A., 

Stauffer, W., Arrieta, A., Thuerauf, D.J., Kolkhorst, F., Muller, O.J., Jakobi, T., Dieterich, 

C., Katus, H.A., Doroudgar, S., and Glembotski, C.C. ATF6 regulates cardiac 

hypertrophy by transcriptional induction of the mTORC1 activator, Rheb. Circ Res. 

2019; 124(1):79-93. The dissertation author was the primary investigator and author of 

this paper. 
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Chapter 4: Pharmacologic ATF6 Activation Confers Global 

Protection in Widespread Disease Models by Reprograming 

Cellular Proteostasis 
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4.1. Introduction 

 Pharmacologic activation of stress-responsive signaling pathways provides a 

promising approach for ameliorating imbalances in proteostasis associated with diverse 

diseases. However, this approach has not been employed in vivo. Here we show, using 

a mouse model of myocardial ischemia/reperfusion, that selective pharmacologic 

activation of the ATF6 arm of the unfolded protein response (UPR) during reperfusion, a 

typical clinical intervention point after myocardial infarction, transcriptionally reprograms 

proteostasis, ameliorates damage and preserves heart function. These effects were lost 

upon cardiac myocyte-specific Atf6 deletion in the heart, demonstrating the critical role 

played by ATF6 in mediating pharmacologically activated proteostasis-based protection 

of the heart. Pharmacological activation of ATF6 is also protective in renal and cerebral 

ischemia/reperfusion models, demonstrating its widespread utility. Thus, pharmacologic 

activation of ATF6 represents a proteostasis-based therapeutic strategy for ameliorating 

ischemia/reperfusion damage, underscoring its unique translational potential for treating 

a wide range of pathologies caused by imbalanced proteostasis.  

4.2. Materials and Methods 

4.2.1.Laboratory animals  

 The research reported in this article complies with all relevant ethical regulations 

and has been reviewed and approved by the San Diego State University Institutional 

Animal Care and Use Committee (IACUC), and conforms to the Guide for the Care and 

Use of Laboratory Animals published by the National Research Council. ATF6-floxed 
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mice were a generous gift from Gokhan S. Hotamisligil. Briefly, ATF6-floxed mice were 

generated with a targeting construct flanking exons 8 and 9 of ATF6 with LoxP 

sequences on a C57B/6J background, as previously described32. For preclinical efficacy 

testing of experimental compounds, wild-type (WT) 10-week old male or female 

C57B/6J mice were used (The Jackson Laboratory; Bar Harbor, ME). For some 

experiments we determined the numbers of animals to use based on a predictive power 

analysis to achieve 5% error and 80% power, or using the resource equation method33. 

In other experiments, the numbers of animals to use were determined practically, based 

on previous experiments designed to determine, for example, surgery mortality rates 

and the approximate magnitude of changes in the measured parameters. This was the 

case in experiments using ATF6 cKO mice. Our previous experiments showed that the 

variation in infarct size between litermates post-in vivo I/R surgeries was low, amounting 

to < 5%10. All animal work was performed at the same time of the circadian rhythm 

typical of animals housed on a 12-hour light-dark cycle with ad libitum feeding. All 

studies in which compound 147 was administered to mice were conducted such that the 

surgeon and data analyst were blinded to the group assignments. Prior to all 

experiments, animals were assigned codes by one investigator, while investigator #2 

was blinded to animal codes and nature of the treatments, e.g. control vs compound 

147, performed the surgeries and echocardiographic analysis. Investigator #3 analyzed 

the areas at risk and infarct regions for all cardiac, renal, and cerebral ischemia 

reperfusion injury models; as with investigator #2, this investigator was also blinded to 

the animal codes and treatments. Animals were not decoded until after all surgical, 

functional and histological analyses were fully analyzed and relevant statistical 
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assessments had been calculated for all parameters measured. For all animal 

experiments involving conditional knockout of ATF6, ATF6-floxed littermates were 

randomly assigned to receive AAV-control or AAV-Cre (1:1 ratio) to minimize mouse-to-

mouse variability. Animals involved in I/R experiments involving administration of either 

the control compound, or compound 147, wild-type 10-week old male or female 

C57B/6J littermates. Consistency and, therefore, minimal variability of infarct sizes 

following ex vivo and in vivo I/R studies was ensured through blinded measurements of 

areas at risk relative to total left ventricular areas, as described above. As a result, we 

observe a variation in AAR/LV within experimental groups of < 5%. For ex vivo I/R 

studies, mechanical error and variability were maintained as low as possible by 

minimizing the time between animal sacrifice and initiation of retroperfusion; our criteria 

is that this process must take less than 60 seconds. We find that this results in a 

relatively rapid progression to equilibration of heart function during ex vivo perfusion; 

our criteria for reaching equilibration of LVDP is < 15 min after initiation or retroperfusion 

on the Langendorff apparatus. 

 4.2.2. Patient samples  

Human heart explants were obtained from ventricular myocardium of patients 

with advanced ischemic heart failure. Control patient ventricular explants were obtained 

from non-failing donor hearts deemed unsuitable for transplantation for non-cardiac 

reasons. Samples were collected with informed consent and complying with all relevant 

ethical regulations as previously described34. All study procedures were approved by 

the University of Pennsylvania Hospital Institutional Review Board. 
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4.2.3. Adeno-associated virus serotype 9 (AAV9)  

The plasmid encoding the human cardiac troponin T promoter driving Cre-

recombinase was provided as a gift from Dr. Oliver Muller35. AAV9 preparation and 

injection were carried out as previously described10,24. Non-anesthetized 8-week old 

ATF6-floxed mice were injected with 100 µL of AAV9-control or AAV9-cTnT-Cre 

containing 1x1011 viral particles via the lateral tail vein using a 27-guage syringe and 

housed for 2 weeks before either sacrifice or experimental initiation.    

4.2.4. Adenovirus  

Construction of plasmid vectors encoding FLAG-tagged full length inactive ATF6 

[ATF6(1-670)], TCR-𝛼-HA, and empty vector (AdV-Con) has been previously 

described10,24.      

4.2.5. Cardiomyocyte isolation, culture and experimental design  

Neonatal rat ventricular myocytes (NRVM) were isolated via enzymatic digestion, 

purified by Percoll density gradient centrifugation, and maintained in Dulbecco's 

modified Eagle's medium (DMEM)/F12 supplemented with 10% fetal bovine serum 

(FBS) and antibiotics (100 units/ml penicillin and 100 µg/ml streptomycin) on plastic 

culture plates that had been pre-treated with 5 µg/ml fibronectin, as previously 

described10,24. For all NRVM experiments, plating density was maintained at 4.5 x 105 

cells/well on 12-well plates. Adult mouse ventricular myocytes (AMVM) were isolated 

from WT or ATF6 cKO mice 24 hours after IV injection of control compound (2mg/kg) or 

compound 147 (2mg/kg). AMVM isolation was performed by cannulating the ascending 

aorta, followed by retroperfusion and collagenase digestion, as previously described10. 
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For all experiments, AMVM were plated at a density of 5.0 x 105 cells/well on 24-well 

plates that had been pre-treated with laminin (10 µg/ml) and incubated in maintaining 

medium (MEM medium, 1x insulin-transferrin-selenium, 10 mM HEPES, 1.2 mM CaCl2 

and 0.01% bovine serum albumin, 25 μM blebbistatin) for 16 hours before initiating 

experiments as previously described10. Sixteen hours after plating NRVM and AMVM 

were treated with control compound (10 µM), compound 147 (10 µM) or tunicamycin (10 

µg/ml) for 24 hours in DMEM/F12 supplemented with bovine serum albumin (BSA) (1 

mg/ml) for NRVM, or maintaining media for AMVM. For in vitro ischemia/reperfusion 

(I/R), ischemia was simulated by replacing all culture media with 0.5 ml of glucose-free 

DMEM containing 2% dialyzed FBS with either the control compound (10 µM), or 

compound 147 (10 µM), then incubated at 0.1% O2 in a hypoxia chamber with an 

oxygen controller (ProOx P110 oxygen controller, Biospherix, Parish, NY) for 8 hours or 

3 hours for NRVM or AMVM, respectively, as previously described10. Reperfusion was 

simulated by replacing culture media with DMEM/F12 supplemented with BSA (1 

mg/ml) for NRVM or maintaining media for AMVM and incubating at 21% O2 for an 

additional 24 hours. NRVM and AMVM reperfusion media were supplemented with 

control compound (10 µM), compound 147 (10 µM) throughout the duration of the 

reperfusion period. Viability was determined as numbers of calcein-AM-labeled NRVM 

or rod-shaped calcein-AM-labeled AMVM, using calcein-AM green (Thermo Fisher). 

Images were obtained with an IX70 fluorescence microscope (Olympus, Melville, NY). 

Numbers of viable, calcein-AM green-positive cells were counted using ImageJ or 

Image-Pro Plus software (Medium Cybernetics, Rockville, MD). 
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4.2.6. Small interfering RNA (siRNA) transfection  

Transfection of siRNA into NRVM was achieved using HiPerfect Transfection 

Reagent (Qiagen, Valencia, CA) following the vendor’s protocol. Briefly, NRVM culture 

medium was replaced with DMEM/F12 supplemented with 0.5% FBS without antibiotics, 

120 nM siRNA, and 1.25 µl HiPerfect / 1 µl siRNA, then incubated for 16 hours, after 

which the culture medium was replaced with DMEM/F12 supplemented with BSA (1 

mg/ml) for an additional 48 hours. The sequence of siRNA targeting rat ATF6 was 5-

GCUCUCUUUGUUGUUGCUUAGUGGA-3, the sequence targeting rat catalase was 5-

GGAACCCAAUAGGAGAUAAACUUAA-3 (cat# CatRSS302058, Stealth siRNA, 

Thermo Fisher), and the sequence targeting rat grp78 was 5-

AGUGUUGGAAGAUUCUGA-3  (cat# 4390771, Stealth siRNA, Thermo Fisher) as 

previously described10. A non-targeting sequence (cat# 12935300, Thermo Fisher) was 

used as a control siRNA.   

4.2.7. Immunoblot analysis  

NRVM were lysed and subjected to immunoblot analysis, as previously 

described10. In brief, cultures were lysed with VC lysis buffer made from 20 mM Tris-HCl 

(pH 7.5), 150 mM NaCl, 0.1% SDS, 1% Triton X-100, protease inhibitor cocktail (Roche 

Diagnostics, Indianapolis, IN) and phosphatase inhibitor cocktail (Roche Diagnostics). 

Samples comprising 10 µg of protein were mixed with Laemmli sample buffer, boiled, 

then subjected to SDS-PAGE followed by transfer onto PVDF membranes for 

immunoblotting. Full-length Atf6 (p90) was detected with an antibody from SAB 

Signalway Antibody (1:1000, cat# 32008, College Park, MD), while active Atf6 (p50) 

was detected with an antibody from Proteintech (1:1000, cat# 24169-1-AP, Rosemont, 
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IL). Other antibodies used include: anti-KDEL antibody (1:8,000, cat# ADI-SPA-827 , 

Enzo Life Sciences, Farmingdale, NY), which was used to detect GRP78, anti-catalase 

(1:1000, cat# ab16731, Abcam), anti-IRE1 (1:500, cat# sc-390960, Santa Cruz), anti-

XBP1s (1:1000, cat# 619502, BioLegend, San Diego, CA), anti-phospho-PERK (1:1000, 

cat# 3179, Cell Signaling), anti-PERK (1:1000, cat# 3192, Cell Signaling), anti-Anp 

(1:4000, cat# T-4014 , Peninsula), anti-Gapdh (1:25000, cat# G109a, Fitzgerald 

Industries International Inc.), HA-probe F-7 (Santa Cruz, SC-7392; 1:1,000) and anti-

FLAG (1:3,000, cat#F1804, Sigma-Aldrich, St. Louis, MO). The oxidation state of ATF6 

in NRVM treated with 147 was analyzed by gel-shift essentially as previously 

described32. Briefly, cells were lysed in low-stringency lysis buffer comprising 20 mM 

Tris-HCl (pH 7.5), 150 mM NaCl, 1% Triton X-100, protease inhibitor cocktail (Roche 

Diagnostics, Indianapolis, IN) and phosphatase inhibitor cocktail (Roche Diagnostics) 

and 20 µM 4-Acetamido-4'-Maleimidylstilbene-2,2'-Disulfonic Acid, Disodium Salt (AMS) 

(Thermo Fisher, cat# A485). AMS binds covalently to reduced thiols, typically on 

cysteine residues, and increases their molecular mass in SDS-PAGE. Thus, proteins 

that exhibit an upward shift when analyzed under non-reducing conditions compared to 

reducing are considered to have reduced thiols.  

4.2.8. RT-qPCR  

Total RNA was extracted from left ventricular extract using the RNeasy Mini kit 

(Qiagen) as previously described10.  

4.2.9. Immunocyto- and immunohistochemistry  

NRVM and AMVM were plated on fibronectin and laminin-coated glass chamber 

slides, respectively as previously described10. In brief, cells were fixed with 4% 
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paraformaldehyde, followed by permeabilization with 0.5% Triton-X. Adult mouse hearts 

were paraffin-embedded after fixation in neutral buffered 10% formalin via abdominal 

aorta retroperfusion as previously described10. The infarct border zone was imaged in 

hearts subjected to surgical I/R. The infarct border zone was identified as an area that 

stained positively for the cardiac muscle protein, tropomyosin that was adjacent to an 

area that did not stain for tropomysin (infarct zone) due to the absence of viable 

myocytes.  The left ventricular free wall was imaged in sham and non-injured hearts. 

Primary antibodies used were anti-a-actinin (1:200, cat# A7811, Sigma-Aldrich), anti-

tropomyosin (1:200, cat# T9283, Sigma-Aldrich), anti-GRP78 (C-20, 1:30, cat# SC-

1051, Santa Cruz), anti-catalase (1:100, Abcam), anti-ATF6 (targeting to N-terminus of 

ATF6, 1:50, cat# sc-14250, Santa Cruz), and anti-cleaved caspase-3 (1:100, cat# D175, 

Cell Signaling). Slides were incubated with appropriate fluorophore-conjugated 

secondary antibodies (1:100, Jackson ImmunoResearch Laboratories, West Grove, PA) 

followed by nuclei counter stain Topro-3 (1:2000, Thermo Fisher). Images were 

obtained using laser scanning confocal microscopy on an LSM 710 confocal laser 

scanning microscope (Carl Zeiss, Oberkochen, Germany). 

4.2.10. ERAD Assay  

ER-associated degradation (ERAD) was determined using a C-terminal HA-

tagged version of the model chronic misfolded substrate, TCR-𝛼-HA as previously 

described24. 

4.2.11. Luciferase Secretion Assay  

Secretory capacity of cardiac myocytes was determined essentially as 

described36. Briefly, NRVM were cotransfected with pcDNA plasmid as well as p-SV-𝛽-
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galactosidase control vector and pCMV-GLuc plasmid (NEB, N8081S) using FuGENE6 

(2 µg cDNA, 2:1, FuGENE:cDNA). 

4.2.12. Chromatin immunoprecipitation (ChIP)  

ChIP assays were performed essentially as previously described10. Briefly, AdV-

FLAG-ATF6(1-670) infected NRVM were treated with fixing buffer (50 mM HEPES-

KOH, pH 7.5, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, and 1% formaldehyde) for 10 

min, quenched with 125 mM glycine, and scraped into ice-cold PBS. Cells were 

centrifuged, resuspended in lysis buffer (50 mM HEPES, pH 7.9, 140 mM NaCl, 1 mM 

EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100, and protease inhibitor cocktail), 

and incubated on ice for 10 min. After centrifugation at 1,800 x g for 10 min, the pellets 

were washed with buffer containing 10 mM Tris, pH 8.1, 200 mM NaCl, 1 mM EDTA, 

and 0.5 mM EGTA, resuspended in shearing buffer (0.1% SDS, 1 mM EDTA, and 10 

mM Tris, pH 8.1), and then transferred to microTUBEs (Covaris, Woburn, MA). 

Chromatin was sheared by sonication for 15 min using an M220 focused ultrasonicator 

(Covaris). Triton X-100 and NaCl were added to the final concentration of 1% Triton and 

150 mM NaCl followed by centrifugation at 16,000 x g for 10 min. Immunoprecipitation 

was performed by incubated 140 μl of sheared chromatin with 5 μg of anti-FLAG 

antibody (cat# F1804, Sigma-Aldrich) and 260 μl of immunoprecipitation buffer (0.1% 

SDS, 1 mM EDTA, 10 mM Tris, pH 8.1, 1% Triton X-100, and 150 mM NaCl) at 4°C 

overnight. Protein A/G magnetic beads (5 μl, BcMag, Bioclone, San Diego, CA ) were 

added to the mixtures and incubated at 4°C for 1.5 h. Magnetic beads were sequentially 

washed with low salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM 

HEPES-KOH, pH7.9, and 150 mM NaCl), high salt wash buffer with 500 mM NaCl, LiCl 
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wash buffer (100 mM Tris-HCl, pH 7.5, 0.5 M LiCl, 1% NP-40, and 1% deoxycholate 

acid), and TE buffer (10 mM Tris-HCl, pH 8.0 and 0.1 mM EDTA). Immune complexes 

were eluted by incubating beads with proteinase K digestion buffer (20 mM HEPES, pH 

7.9, 1 mM EDTA, 0.5% SDS, and 0.4 mg/ml proteinase K) at 50°C for 15 min. 

Formaldehyde crosslinking was reversed by incubating with 0.3 M NaCl and 0.3 mg/ml 

RNase A at 65°C overnight. Samples were further incubated with 550 μg/ml proteinase 

K at 50°C for 1h. DNA was purified using NucleoSpin Gel and PCR Clean-up Kit 

(Macherey-Nagel, Bethlehem, PA) and eluted by 30 μl of water. Two μl of DNA was 

used for qRT-PCR analysis with primers targeting rat Hspa5 (5’-

GGTGGCATGAACCAACCAG-3’ and 5’-GCTTATATATCCTCCCCGC-3’), rat Cat 

ERSE-1 (5’-CTACCCACCAATTAGTACCAAATAA-3’ and 5’-

AGAAGGGACAGGATTGGAAG-3’), rat Cat ERSE-2 (5’-

CACATTCTAGGGACAGTGTAGATG-3’ and 5’-ACCTTGATTATGGGCTGTGG-3’), rat 

Pdia6 ERSE (5’-CACATGAGCGAAATCCACAGA-3’ and 5’-

ACTAGTCGAGCCATGCTGAT-3’), rat HO-1 (5’-GGGCTACTCCCGTCTTCCTG-3’ and 

5’-CCTTTCCAGAACCCTCTACTCTACTC-3’), or rat Gapdh (5’-

ATGCGGTTTCTAGGTTCACG-3’ and 5’-ATGTTTTCTGGGGTGCAAAG-3’). Pdia6 

served as a positive control for a known ATF6 target gene in cardiac myocytes while 

HO-1 and Gapdh served as negative controls as previously described37. ChIP signals 

obtained from the qRT-PCR were normalized to the input DNA. 

4.2.13. Ex vivo ischemia/reperfusion  

Hearts from WT or ATF6 cKO mice that had previously received 2 mg/kg IV 

administration of control compound or compound 147 were rapidly excised and 
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cannulated via the ascending aorta and subjected to global I/R, as previously 

described38. Here, the hearts were subjected to 20 minutes global no-flow ischemia 

followed by reperfusion for 1 hour. Left ventricular developed pressure (LVDP) was 

measured using a pressure sensor balloon placed into the left ventricle and analyzed 

using Powerlab software (ADInstruments, Colorado Springs, CO).   

4.2.14. In vivo myocardial ischemia/reperfusion  

Surgical myocardial I/R was performed as previously described10. Briefly, mice 

were anesthetized with 2% isoflurane and a thoracotomy was performed to isolate the 

heart, after which the left anterior descending coronary artery (LAD) was ligated with a 

6-0 Prolene suture for 30 minutes, followed by suture removal and either 24 hours or 7 

days of reperfusion. Regional ischemia was confirmed by visual inspection of the 

discoloration of the myocardium distal of the ligation, which is characteristic of impaired 

blood flow. Animals assigned as shams underwent the thoracotomy surgical procedure, 

but weren’t subjected to LAD ligation. Animals were randomly assigned to experimental 

groups prior to outset of the experiment by a single investigator, while the surgeon and 

data analyst were blinded to group assignments. Animals designated to receive either 

control compound or compound 147 at the time of reperfusion received 2 mg/kg of 

respective compounds via IV injection 5 minutes prior to release of the ligation. Twenty-

four hours after reperfusion, 1% of Evans Blue was injected apically to determine the 

area at risk (AAR). Hearts were harvested and 1-mm sections of the hearts were 

stained with 1% 2,3,5-triphenyltetrazolium chloride (TTC) to measure the infarcted area 

(INF) as previously described36. The AAR, INF and left ventricle area (LV) from digitized 

images of heart sections were analyzed using ImageJ software. For all infarct data 
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presented, respective AAR was normalized to total LV area and all compared 

experiments displayed the same AAR/LV ratios. A separate investigator analyzed the 

AAR, INF, and LV and was blinded to the animal assignments. Just prior to sacrifice, 

post-I/R, animals were anesthetized and 0.5 mL of arterial blood were obtained via 

inferior vena cava puncture as previously described33. Blood was placed in heparin- and 

EDTA-coated vacutainer (BD Vacutainer) and centrifuged at 1800 x g for 10 minutes 

and plasma samples were analyzed for cardiac troponin I with a Mouse cTnI High-

Sensitivity ELISA kit (Life Diagnostics, Inc.).  

4.2.15. In vivo renal ischemia/reperfusion  

Surgical renal I/R was performed as previously described39. Briefly, mice were 

anesthetized with 2% isoflurane and a 3cm incision was made upon the abdominal 

midline and the abdominal cavity entered via an incision along the linea alba. The right 

kidney was visualized and separated from surrounding connective tissue. The right 

ureter and right renal portal system was permanently ligated and a right unilateral 

nephrectomy performed. Subsequently, the left kidney was visualized and separated 

from surrounding connective tissue. A Bulldog Clamp (Fine Science Tools, Foster City, 

CA) was applied temporarily ligating the left renal portal system for a period of 30 

minutes. Global ischemia was confirmed by visual inspection of the discoloration of the 

kidney of the ligation, which is characteristic of impaired blood flow. After that duration, 

the Bulldog Clamp was removed and the abdomen closed with instant tissue adhesive. 

Animals were randomly assigned to experimental groups prior to outset of the 

experiment by a single investigator, while the data analyst was blinded to experiment 

assignments. Animals designated to receive either control compound or compound 147 
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at the time of reperfusion received 2 mg/kg of respective compounds via IV injection 5 

minutes prior to release of the ligation. Twenty-four hours after reperfusion, kidneys 

were harvested and 1-mm sections of the kidneys were stained with 1% TTC to 

measure the infarcted area (INF) as previously described39. Just prior to sacrifice, post-

I/R, animals were anesthetized and 0.5 mL of arterial blood were obtained via inferior 

vena cava puncture as previously described40. Blood was placed in heparin- and EDTA-

coated vacutainer (BD Vacutainer) and centrifuged at  1800 x g for 10 minutes and 

plasma samples were analyzed for creatinine as a measure of glomerular filtration rate 

and renal functional output with a Creatinine Assay kit (Abcam).   

4.2.16. In vivo cerebral ischemia/reperfusion  

Surgical cerebral I/R was performed as previously described11. Briefly, mice were 

anesthetized with 2% isoflurane and a 3 cm incision was made along the midline of the 

ventral surface of the neck along the left side of the trachea. The left external and 

internal carotid arteries were visualized and dissected from surrounding connective 

tissue without disturbing tangential nerves. An 8-0 catheter filament 10mm in length 

(Doccol Corporation) was inserted into the middle cerebral artery (MCA) via the internal 

carotid artery. This occluded blood flow to the MCA and was left in position for a period 

of 30 minutes. After that duration, the catheter was removed and the neck closed with 

instant tissue adhesive. Animals were randomly assigned to experimental groups prior 

to outset of the experiment by a single investigator, while the data analyst was blinded 

to experimentalassignments. Animals designated to receive either control compound or 

compound 147 at the time of reperfusion received 2 mg/kg of respective compounds via 

IV injection 5 minutes prior to release of the ligation. Twenty-four hours after 
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reperfusion, brains were harvested and 1-mm sections of the brains were stained with 

1% TTC to measure the infarcted area (INF) as previously described41. Just prior to 

sacrifice animals were assigned a behavioral score to assess the severity of 

neurological function and deficit as a result of the cerebral ischemia. The scoring was 

performed based on the Bederson Neurological Examination Grading System42, where 

a grade of 0 corresponded to a normal function with no observable deficit, grade 1 to a 

moderate deficit with animals exhibiting forearm flexion, grade 2 to a severe deficit with 

decreased resistance to a lateral push when suspended by the tail and lethargy, and 

grade 3 to a severe deficit with extreme lethargy and circling behavior in the cage. 

4.2.17. Hepatic triglyceride assay  

Hepatic triglyceride assay was performed as previously described43. Briefly, livers 

were harvested and 10mg extracts were homogenized and analyzed for triglyceride 

content using the EnzyChrom Triglyceride Assay Kit (BioAssay Systems).  

4.2.18. Transthoracic echocardiography  

Transthoracic echocardiography was performed using an ultrasound imaging 

system (Vevo 2100 System, Fujifilm VisualSonics, Toronto, Ontario, Canada) as 

described24. Diastolic function was determined as previously described40. Briefly, 

echocardiography coupled with pulse-wave Doppler was used to visualize trans-mitral 

flow velocities and were recorded by imaging the mitral orifice at the point of the mitral 

leaflets. Waveforms were recorded and analyzed for peak early- and late-diastolic 

transmitral flow velocities corresponding to E and A waves, respectively. 
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4.2.19. Acute isoproterenol myocardial damage  

Myocardial damage was induced by administering high-dose (200 mg/kg) 

isoproterenol via intraperitoneal injection in mice as previously described40.    

4.2.20. Malondialdehyde assay  

Lipid peroxidation was determined by measuring the levels of malondialdehyde 

(MDA) using a TBARS assay kit (Cayman Chemical, Ann Arbor, MI) according to the 

manufacturer’s instructions as previously described10. 

4.2.21. In vivo experimental compound administration  

Control compound and compound 147 were suspended to a final concentration 

of 0.2 mg/mL in 10% DMSO. Mice were weighed prior to administration of compounds 

and, subsequently, non-anesthetized 10-week old WT or ATF6 cKO mice were injected 

with ~250 µL of stock compounds via the lateral tail vein depending upon body mass to 

ensure accurate administration of 2 mg/kg. This dose was established in preliminary 

experiments with the control compound or compound 147 where it was shown to 

activate Atf6 in vivo; the prototypical UPR inducer, tunicamycin, which was also 

administered to mice at 2 mg/kg, as previously shown44 was used as a control. Since 

compound 147 and tunicamycin have similar molecular weights, this dose of 147 is near 

the molar equivalent of the typical dose of tunicamycin. It is relevant to note that for 

compound 147, a dose of 2 mg/kg is similar to FDA-approved cardiovascular drugs, 

such as many angiotensin-converting enzyme (ACE) inhibitors, which are used in small-

animal models at 2 mg/kg45.  
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4.2.22. Statistics  

For studies involving induction of myocardial damage, either through surgical I/R 

or isoproterenol administration, cohort sizes were based on a predictive power analysis 

to achieve 5% error and 80% power. All acute in vivo I/R studies in which compound 

147 were conducted such that the surgeon and data analyst was blinded to the group 

assignments. Two-group comparisons were performed using Student’s two-tailed t-test, 

and all multiple group comparisons were performed using a one-way ANOVA with a 

Newman-Keuls post-hoc analysis. Data are represented as mean with all error bars 

indicating ± s.e.m. *P≤0.05, **P≤0.01, ***P≤0.001.       

4.3. Results 

4.3.1. ATF6 in cardiac myocytes protects the heart from I/R injury 

 Given their roles in contraction, the viability of cardiac myocytes is crucial for 

heart function, and cardiac myocyte death during I/R leads to impairment of this 

function17. Accordingly, we examined the effects of I/R on proteostasis in isolated 

cardiac myocytes and in the mouse heart, positing that I/R disrupts proteostasis, leading 

to activation of all three arms of the UPR, and that the ATF6 arm induces genes that 

adaptively reprogram proteostasis, decrease myocyte death and provide 

cardioprotection from I/R damage (Fig. 4.1a). Consistent with this hypothesis was our 

finding that I/R activated ATF6, as well as the IRE1 and PERK arms of the UPR in 

cultured cardiac myocytes, albeit to a lesser extent than the chemical activator of the 

UPR, tunicamycin (TM) (Fig 4.2a-d). As a measure of ATF6 activation, we examined 

the expression of two known ATF6 target genes, glucose regulated protein 78 kDa 
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(Grp78), a well-studied ER HSP70 chaperone, also known as BiP21, which participates 

in ER protein folding, and catalase (Cat), a prominent member of a novel antioxidant 

gene program recently shown to be induced by ATF610. In accordance with the 

increased activity of ATF6 in response to I/R, both Grp78 and Cat were induced in 

cultured cardiac myocytes (Fig 4.2a, e, f, g).  
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Figure 4.1– ATF6 in cardiac myocytes protects the heart from I/R injury. 
 
a, Activation of the unfolded protein response (UPR) by ischemia/reperfusion (I/R) in the heart. b, Post-AMI cross 
section of the left ventricle of a mouse heart after I/R and TTC staining to identify the infarct region (black), border 
zone (red) CAT (cyan), tropomyosin (red), and nuclei (TOPRO-3) in the border zone of wild-type (WT) (c) or ATF6 
cKO (d) hearts subjected to either sham or I/R surgery with 24h of reperfusion. Tissue sections are representative 
images from one mouse per condition. Scale bar represents 50µm. e,f, Quantitative real-time PCR (qPCR) for Grp78 
or Cat in sham or border zone of post-I/R hearts in WT (n=6) (e), ATF6 cKO (n=6) (f). g,h, Infarct sizes (h) and 
plasma cardiac troponin I (cTnI) (i) in WT (n=3) and ATF6 cKO (n=4) mice post-I/R. i,j, Left ventricular developed 
pressure (LVDP) (i) and relative infarct sizes (j) post-ex vivo I/R (n=3). Data are represented as mean ± s.e.m. Two-
group comparisons were performed using Student’s two-tailed t-test, and all multiple group comparisons were 
performed using a one-way ANOVA with a Newman-Keuls post-hoc analysis. *P≤0.05, **P≤0.01, ***P≤0.001. 
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Figure 4.1 (continued)- Caption shown on previous page. 
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Figure 4.2– I/R activates the UPR. 
 
a, Immunoblots of neonatal rat ventricular myocytes (NRVM) for the proteins shown after I/R or tunicamycin (TM). b-
d, Quantification of immunoblots from NRVM subjected to normoxia or I/R. ATF6, IRE1, and PERK activation are 
displayed as ratios of active fragment ATF6 (50kd), spliced-XBP1 and phospho-PERK relative to ATF6 (90kd), IRE1, 
and PERK, respectively (n=3). e, Immunocytofluorescence (ICF) for GRP78 or CAT (green), alpha-actinin (red) and 
nuclei (TOPRO-3) in isolated adult cardiomyocytes (AMVM) post-I/R. Scale bar represents 50μm. f, g, Quantification 
of immunoblots for Grp78 (f) or Cat (g) from NRVM subjected to normoxia or I/R. Data are represented as 
mean ± s.e.m. Two-group comparisons were performed using Student’s two-tailed t-test, and all multiple group 
comparisons were performed using a one-way ANOVA with a Newman-Keuls post-hoc analysis. *P≤0.05, 
***P≤0.001. 
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 To examine the effects of deleting ATF6 specifically from cardiac myocytes, in 

vivo, we made an ATF6 conditional knockout mouse (ATF6 cKO) in which Atf6 was 

selectively deleted in cardiac myocytes of ATF6fl/fl mice using AAV9-cTnT-CRE (Fig 

4.3a, b). ATF6 cKO and wild type (WT) mice, the latter of which retain ATF6, were 

subjected to 30 min of surgical coronary artery ligation, followed by 24 hours of 

reperfusion (I/R), which mimics the reperfusion injury in AMI patients that occurs 

acutely, a time during which the extent of reperfusion injury is progressive22. In this 

model, I/R causes cardiac myocyte death and irreparable damage in the infarct zone 

(Fig. 4.1b, black), where blood flow has been completely occluded. However, cardiac 

myocytes adjacent to the infarct, in the border zone (Fig. 4.1b, red), are exposed to 

sub-lethal I/R and mount protective stress responses, such as the UPR, while the 

remote region (Fig. 4.1b, blue) is relatively unaffected13,23. Thus, protective stress 

responses in border zone myocytes conserve their viability, thereby reducing the size of 

the infarct. WT mice exhibited a robust activation of ATF6 in response to I/R, as 

evidenced by induction of the ATF6 target genes, Grp78 and Cat in the border zone of 

hearts subjected to acute I/R (Fig. 4.1c, e); however, this induction was lost in ATF6 

cKO mice (Fig. 4.1d, f). In contrast, the IRE1 target gene, Erdj4, and PERK target gene, 

Atf4, were similarly induced by I/R in WT and ATF6 cKO mouse hearts (Fig 4.3c, d). 

However, compared to WT, ATF6 cKO mice had increased infarct sizes and plasma 

cardiac troponin I (cTnI) (Fig. 4.1g, h), canonical indicators of cardiac injury, and 

exhibited increased lipid peroxidation (Fig 4.3e), a measure of ROS-mediated damage. 

Cardiac hemodynamics were also assessed in an ex vivo isolated perfused heart model 

that enables the precise measurement of the strength of cardiac pump function, i.e., left 
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ventricular developed pressure (LVDP), with each contraction in response to I/R injury10. 

ATF6 cKO mouse hearts exhibited significantly lower recovery of LVDP and larger 

infarcts than WT hearts (Fig. 4.1i, j). Collectively, these results show that ATF6 in 

cardiac myocytes protects the heart from I/R injury. Thus, while all three arms of the 

UPR were activated in the ischemic mouse heart, cardiac specific deletion of Atf6 

significantly increased heart damage in response to I/R, demonstrating the importance 

of the ATF6 arm of the UPR in mitigating I/R injury in the heart. 
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Figure 4.3– Endogenous ATF6 is cardioprotective in a model of an acute AMI. 
 
a, qPCR for atf6 in isolated adult mouse ventricular myocytes (AMVM), isolated cardiac fibroblasts, or liver extracts 
from WT (n=3) or ATF6 cKO (n=3) mice. b, Immunoblot for Atf6 and loading control, β-actin, and IHC staining for 
ATF6 (cyan), tropomyosin (red), and nuclei (TOPRO-3) in LV of WT or ATF6 cKO mice. Scale bar represents 50μm. 
c, d, qPCR for IRE1 downstream target, Erdj4, or PERK downstream target, Atf4 in the border zone of WT (c) (n=6) 
or ATF6 cKO (n=6) (d) hearts 24-hours after I/R. e, Malondialdehyde (MDA) in WT (n=3) and ATF6 cKO (n=3) mice 
24-hours post-I/R. Data are represented as mean ± s.e.m. Two-group comparisons were performed using Student’s 
two-tailed t-test, and all multiple group comparisons were performed using a one-way ANOVA with a Newman-Keuls 
post-hoc analysis. *P≤0.05, **P≤0.01, ***P≤0.001.  
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 In the days following AMI, the infarct continues to expand and remodels to 

become a fibrotic scar, so the detrimental effects of I/R on cardiac function and 

performance are often more pronounced a week after infarction13. Therefore, to 

examine the effect of Atf6 deletion on cardiac function and performance, mice were 

analyzed 7d after AMI. ATF6 cKO mice exhibited significantly reduced fractional 

shortening compared to WT, despite being aphenotypic at baseline (Fig. 4.4a; Table 

4.1). ATF6 cKO mice also exhibited exaggerated pathological cardiac hypertrophy and 

plasma cTnI (Fig. 4.4b, c). Notably, the levels of Grp78 and Cat were lower in ATF6 

cKO than WT mice at 7 days (Fig. 4.4d, e). When gene expression was examined at 1 

and 7d after MI, the induction of Atf6 and its target genes remained increased through 

7d post MI, although the level of induction was reduced compared to 1d post MI (Fig. 

4.4f), indicating that the adaptive effects of ATF6-induced genes are likely exerted for at 

least the first week following MI. Grp78 and Cat were also increased in hearts from 

patients with ischemic heart disease (Fig. 4.4g), supporting the relevance of the ATF6 

adaptive arm of the UPR in human pathology and validating the phenotypes observed in 

this mouse model of AMI.  

 Interestingly, I/R activated ATF6 less than tunicamycin, the latter of which is a 

strong, chemical inducer of ER protein misfolding and activator of the UPR (Fig 4.2a). 

Importantly, this result suggests that during I/R there is a reserve of inactive ATF6 that 

has the potential to be activated. Accordingly, we hypothesized that selective 

pharmacologic activation of ATF6 could supplement the modest ATF6 activation 

achieved upon I/R, and this supplemental ATF6 activation might enhance 

cardioprotection. 
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Figure 4.4– Endogenous ATF6 is cardioprotective in a model of a chronic AMI. 

a-e, Parameters from mice 7-days post I/R. a, Fractional shortening. Detailed analyses of echocardiography 
parameters are in Table 4.1 (n=5). b, Ratio of heart weight to body weight. c, Plasma cTnI. d, e, qPCR for Grp78 (d) 
or Cat (e) in border zone of mice (n=3). f, qPCR for Atf6 and ATF6 target genes Grp78, Grp94, and Cat in WT (n=3) 
and ATF6 cKO (n=3) mice either 1-day or 7-days after I/R. g, Quantitative real-time PCR (qPCR) for Grp78 or Cat in 
ventricular explants from control (n=10) or ischemic heart failure (n=10) patients. Data are represented as mean ± 
s.e.m. Two-group comparisons were performed using Student’s two-tailed t-test, and all multiple group comparisons 
were performed using a one-way ANOVA with a Newman-Keuls post-hoc analysis. *P≤0.05, **P≤0.01, ***P≤0.001. 
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Table 4.1-  7-day I/R echocardiographic parameters  

 

 WT ATF6 cKO WT ATF6 cKO 
 Baseline Baseline Post-I/R Post-I/R 
 (n = 5) (n = 5) (n = 5) (n = 5) 
FS (%) 34.17±1.74 36.09±1.55 25.43±1.381 21.36±1.091,2 

EF (%) 64.37±2.38 67.22±1.88 51.07±2.521 44.10±3.511,2 

LVEDV (µl) 41.46±2.83 36.03±3.95 43.69±4.34 55.36±4.781,2 

LVESV (µl) 14.86±1.62 11.59±1.06 17.61±4.42 32.22±3.511,2 

LVIDD (mm) 3.21±0.09 3.02±0.15 3.49±0.161 3.77±0.271,2 

LVIDS (mm) 2.11±0.09 1.92±0.07 2.60±0.121 2.83±0.271 

PWTD (mm) 1.47±0.13 1.43±0.10 0.97±0.151 1.03±0.131 

PWTS (mm) 1.56±0.13 1.63±0.15 1.21±0.191 1.17±0.141 

AWTD (mm) 0.90±0.05 0.92±0.08 0.72±0.041 0.73±0.061 

AWTS (mm) 1.26±0.06 1.22±0.07 1.14±0.06 1.10±0.051 

LV mass (mg) 102.70±7.81 91.73±7.45 106.53±6.30 115.43±4.291,2 

HR (bpm) 504±9.96 540±9.99 543±7.54 546±6.24 
 
 
FS = fractional shortening 
EF = ejection fraction 
LVEDV = left ventricular end diastolic volume 
LVESV = left ventricular end systolic volume 
LVIDD = left ventricular inner diameter in diastole 
LVIDS = left ventricular inner diameter in systole 
PWTD = left ventricular posterior wall thickness in diastole 
PWTS = left ventricular posterior wall thickness in systole 
AWTD = left ventricular anterior wall thickness in diastole 
AWTS = left ventricular anterior wall thickness in systole 
LV mass = left ventricular mass 
HR = heart rate in beats per minute 

 

Statistical analyses used a one-way ANOVA with a Newman-Keuls post-hoc analysis. 

1 = p	≤	0.05 different from respective Baseline 
2 = p	≤	0.05 different from WT Post-I/R 
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4.3.2. 147 activates ATF6 and its target genes in cardiac 

myocytes 

 The compound 147 was previously shown to specifically activate ATF6 in 

HEK293 cells through a canonical mechanism involving translocation of ATF6 from the 

ER to the Golgi, where it is cleaved by S1 and S2 proteases to release the active ATF6 

transcription factor20 (Fig. 4.5a). The translocation of ATF6 out of the ER during protein 

misfolding is known to require a reduction of the inter- and intramolecular disulfide 

bonds in ATF6; however, neither the effects of 147 on ATF6, nor its mechanism of 

action have been studied in cardiac myocytes. Here, in cultured cardiac myocytes, a 

control compound that closely resembles 147 (Fig. 4.5b), but does not activate ATF6, 

did not affect the disulfide bond status of ATF6, while 147 reduced intramolecular 

disulfide bonds in ATF6 (Fig. 4.5c, lanes 7-10). Moreover, while the control compound 

did not activate any of the UPR pathways, 147 activated ATF6, but not PERK or IRE1 

(Fig 4.6a-d). Thus, in cardiac myocytes, 147 induced the canonical reduction of 

disulfide bonds in ATF6, which is associated with ATF6 translocation to the Golgi. 

Coordinate with the generation of the active, nuclear form of ATF6 in the Golgi was our 

finding that 147 increased the nuclear translocation of ATF6 in cardiac myocytes (Fig. 

4.5d) and increased the specific cleavage and activation of ATF6 (Fig 4.6a, b, g). 

Mechanistically, 147 increased the association of ATF6 with known ATF6 binding sites 

in the Grp78 and Cat promoters (Fig. 4.5e), and 147 increased GRP78 and CAT (Fig 

4.6a, e, f). Intravenous administration of 147 activated ATF6 and increased Grp78 and 

Cat expression in WT mouse hearts; however, this effect was completely absent in 

ATF6 cKO mice (Fig. 4.5g-j; Fig 4.6h). As a testament to the ability of 147 to activate 
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only the ATF6 arm of the UPR was our finding that 147 had no effect on the expression 

levels of the IRE1 or PERK targets, Erdj4 or Atf4 in either WT or ATF6 cKO mouse 

hearts (Fig 4.6i, j). Thus, 147 selectively activates the ATF6 arm of the UPR in the 

heart, in vivo, as it does in cultured cardiac myocytes.  
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Figure 4.5– 147 selectively activates ATF6 in the heart. 

a, Diagram of hypothetical mechanism of ATF6 activation by 147. b, Chemical structure of synthetic control 
compound and compound 147. c, Immunoblot of ATF6 and GAPDH in NRVM 24-hours after treatment with 
compound 147 or TM in fully-reducing condition (lanes 1-6) or non-reducing conditions (lanes 7-12). Shift exhibited in 
Atf6 in TM-treated cells in full-reducing conditions is typical of de-glycosylated ATF6. d, Immunocytofluorescence 
(ICF) of ATF6 (green), alpha-actinin (red) and nuclei (TOPRO-3) in NRVM 24-hours after treatment with compound 
147. Scale bar represents 50µm. e, Chromatin immunoprecipitation (ChIP-qPCR) of known ATF6 target promoter 
binding elements (ERSE) for Grp78 (hspa5), cat, and negative control targets Heme oxygenase 1 (ho-1) and gapdh 
NRVM infected with AdV encoding Flag-ATF6 (1-670) 24-hours after treatment with compound 147(n=3). f, ICF of 
GRP78 and CAT (green), alpha-actinin (red) and nuclei (TOPRO-3) in AMVM 24-hours after treatment with 
compound 147. g, h, qPCR for Grp78 (n=6) or Cat (n=3) in LV of WT (g) or ATF6 cKO (h) hearts 24-hours post-
treatment with control or 147. i,j, IHC staining of GRP78 or CAT (cyan), tropomyosin (red), and nuclei (TOPRO-3) in 
left ventricle (LV) of WT (i) or ATF6 cKO (j) hearts 24-hours post-treatment with control or 147. Tissue sections are 
representative images from one mouse per condition. Scale bar represents 50µm. Data are represented as mean ± 
s.e.m. Two-group comparisons were performed using Student’s two-tailed t-test, and all multiple group comparisons 
were performed using a one-way ANOVA with a Newman-Keuls post-hoc analysis. *P≤0.05, **P≤0.01, ***P≤0.001. 
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Figure 4.5 (continued)- Caption shown on previous page. 
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Figure 4.6– 147 is selectively activates ATF6. 
 
a, Immunoblots of UPR target proteins from NRVM 24-hours after treatment with compound 147 or tunicamycin (TM). 
b-f, Quantification of immunoblots of NRVM treated with control or 147 (n=3). g, Immunoblot of NRVM infected with 
AdV encoding Flag-ATF6 (1-670) 24-hours after treatment with control or compound 147. Samples were performed in 
coordination with ChIP in Fig. 3e. h, Immunoblots of UPR target proteins from LV of WT (n=6) or ATF6 cKO (n=6) 
hearts 24-hours after treatment with control or 147. i, j, qPCR for Erdj4 or Atf4 in LV of WT (i) or ATF6 cKO (j) hearts 
24-hours after treatment with control or 147. Data are represented as mean ± s.e.m. Two-group comparisons were 
performed using Student’s two-tailed t-test, and all multiple group comparisons were performed using a one-way 
ANOVA with a Newman-Keuls post-hoc analysis. *P≤0.05, **P≤0.01, ***P≤0.001. 
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4.3.3. 147 improves ER proteostasis and decreases oxidative 
stress 
 Mechanistically, we examined whether 147 could replicate the breadth of 

adaptive effects of ATF6 on ER proteostasis, such as increasing ER associated protein 

degradation (ERAD), which removes potentially toxic terminally misfolded proteins, 

increasing folding and subsequent secretion of proteins made in the ER, and enhancing 

protection against ER protein misfolding. 147 increased ERAD, as measured by the rate 

of degradation of ectopically expressed TCRa24 (Fig. 4.7a, b), increased the folding and 

secretion of protein from the ER pathway (Fig. 4.7c), and protected cells from death in 

response to ER protein misfolding induced by tunicamycin (Fig. 4.7d); importantly, all of 

these effects were lost upon knockdown of Atf6. Next we explored whether 147 could 

replicate the adaptive effects of ATF6 against oxidative stress, in vitro. 147 significantly 

improved the survival of cardiac myocytes subjected to I/R (Fig. 4.7e) and decreased 

ROS-mediated damage (Fig. 4.7f). Importantly, these effects of 147 were lost upon 

knockdown of Atf6. Thus, 147 replicated a broad spectrum of the adaptive effects of 

ATF6 on proteostasis and oxidative stress. Moreover, all of these effects required 

endogenous ATF6, demonstrating the ATF6-dependent mechanism of action of 147. 
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Figure 4.7– 147 improves proteostasis and decreases oxidative stress in an ATF6-dependent manner. 

a, b, NRVM were infected with AdV-HA-T-cell antigen receptor alpha-chain (TCR𝜶; an ER-transmembrane protein 
that is chronically misfolded and degraded by ERAD), treated with siCon or siAtf6 and either control or 147 for 24-
hours prior to cyclohexamide for 0, 0.5 or 1h. Densitometry of the HA-TCR𝜶 immunoblots at the respective times (a) 
and ERAD at the 0.5-hour time point (b) are shown (n=2). c, Secretory proteostasis assayed in NRVM when 
transfected with Gaussia luciferase and treated with siCon or siAtf6, and either control or 147 for 24-hours. Medium 
was collected and luciferase activity was measured (n=3). d, NRVM were transfected with siCon or siAtf6, then 
treated with or without TM, control or 147 for 24h, after which viability was determined (n=4). e, f, NRVM were 
transfected with siCon or siAtf6, treated with or without control or 147 for 24h, then I/R, after which viability (e) and 
MDA (f) were measured. g, Viability of I/R-treated cultured adult cardiomyocytes isolated from WT (n=3) or ATF6 
cKO (n=3) mice 24-hours post-treatment with control or 147. h,i, LVDP (h) and relative infarct sizes (i) of WT or ATF6 
cKO mice treated 24h with control or 147 then ex vivo I/R. Data are represented as mean ± s.e.m. Two-group 
comparisons were performed using Student’s two-tailed t-test, and all multiple group comparisons were performed 
using a one-way ANOVA with a Newman-Keuls post-hoc analysis. **P≤0.01, ***P≤0.001. 
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Figure 4.7 (continued)- Caption shown on previous page. 
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4.3.4. 147 in vivo protects cardiac myocytes and hearts in vitro  

 To determine whether 147 retained its ability to protect myocytes in vivo, mice 

were treated for 24h with either the negative control compound or 147, after which 

cardiac myocytes were isolated and subjected to I/R in culture. Compared to the 

negative control, myocytes from 147-treated WT mice exhibited increased viability when 

subjected to I/R in vitro (Fig. 4.7g, left); however, this benefit was absent in myocytes 

from ATF6 cKO mice (Fig. 4.7g, right). Thus, when administered in vivo, 147 retained 

its ability to protect cardiac myocytes from I/R damage in culture, and this protection 

was mediated through endogenous ATF6. To determine whether the protection seen in 

isolated cardiac myocytes had any effect in the intact heart, hearts from WT and ATF6 

cKO mice that had been treated for 24h with 147 were examined in the ex vivo I/R 

model. Compared to control, hearts from 147-treated WT mice had greater LVDP 

recovery and smaller infarct sizes (Fig. 4.7h, blue vs red; 4.7i, left). Notably, 147 

exhibited neither of these beneficial effects in hearts from ATF6 cKO mice (Fig. 4.7h, 

gray and black; 4.7i, right). Thus, when administered to mice, 147 protected cardiac 

myocytes, and decreased I/R injury of the heart while preserving cardiac function. 

Furthermore, all of these beneficial effects of 147 were dependent upon endogenous 

ATF6 in cardiac myocytes. 

4.3.5. 147 transiently activates ATF6 in the heart  

 To begin to understand the temporal dynamics of the function of 147 in mice, a 

time course of gene induction was performed. Atf6 and its target genes were induced at 

the earliest time point examined, i.e. 8h, reaching a maximum 24h after administration 
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and falling back to baseline values by 7d after administration (Fig. 4.8a). Furthermore, 

pharmacokinetic studies in and revealed a relatively rapid clearance of 147 from plasma 

(Fig. 4.8b), supporting the further examination of multiple dosing strategies. 

Accordingly, several dosing strategies spanning 7 days were used to examine the 

temporal dynamics of the effects of 147 on ATF6 target gene induction in the hearts of 

mice that were not subjected to I/R were examined using several dosing protocols 

spanning 7 days (Fig. 4.9a). Mice were injected with the negative control compound or 

147 either twice, at days 0 and 4 (Experiments 1 and 2, respectively), or 147 was 

injected only once, at day 0 (Experiment 3). Compared to Experiment 1, Experiment 2 

but not 3 resulted in increased the expression of the ATF6-regulated genes Grp78 and 

Cat (Fig. 4.9b, c, e) but not the IRE1-regulated Erdj4 or the PERK-regulated Atf4 (Fig 

4.10a, b).  These results indicated that 147-mediated induction of ATF6-target genes is 

transient, as gene expression was increased 3d after administration, but returned back 

to baseline 7d after administration.  

 Interestingly, Experiment 2 significantly enhanced cardiac performance (Fig. 

4.9d; Experiment 1 vs 2; Table 4.2), which could be partly due to 147-dependent 

increases in Atp2a2 expression (Fig 4.10c). Atp2a2 encodes SERCA2a, an adaptive 

SR/ER-localized calcium ATPase previously shown to be ATF6-inducible in the heart25 

and to improve contractility in heart failure patients26. None of the 147 dosing protocols 

resulted in cardiac pathological remodeling (Fig 4.10d; Table 4.2), cardiotoxicity, as 

evidenced by no increased plasma cTnI (Fig 4.10e) or cardiac pathology-associated 

genes, such as Nppa, Nppb, Col1a1 or Myh7 (Fig 4.10f). Furthermore, no apparent 

deficits were observed in any of the experiment upon inspection of the liver or kidneys 
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when steatosis and glomerular filtration rate were assessed by hepatic triglyceride 

accumulation and creatinine clearance, respectively (Fig 4.10f, g). These results 

indicate a time course of gene induction and no toxic side effects of 147 that support the 

efficacy of 147 when administered in the setting of an I/R injury, either as a single dose 

or as part of a serial dosing regimen. 
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Figure 4.8– 147 acts transiently in vivo. 

a, qPCR for Atf6 and ATF6 target genes Grp78, Grp94, and Cat in WT (n=5) mice either 8-hours, 1-day, or 7-days 
after a single bolus venous injection of 147 (2 mg/kg). b, 147 plasma concentration-time curve in mice receiving 2 
mg/kg via venous injection. Blood was collected at baseline and 5-min, 15-min, 30-min, 1-hour, 2-hours, and 4-hours 
post injection (n=4 mice per timepoint). Data are represented as mean ± s.e.m. Two-group comparisons were 
performed using Student’s two-tailed t-test, and all multiple group comparisons were performed using a one-way 
ANOVA with a Newman-Keuls post-hoc analysis. *P≤0.05, **P≤0.01, ***P≤0.001. 
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Figure 4.9– 147 gene induction timecourse in vivo. 

a, Experimental design testing the effects of 147 in WT untreated mice. Red bars depict the bolus administration of 
the control compound, while blue bars depict the bolus administration of 147. b, c, qPCR for Grp78 (b) or Cat (c) in 
LV of mice from indicated experiments (n=3). d, Percent increase in fractional shortening. Detailed analyses of 
echocardiography parameters are in Table 4.2 (n=5). e, IHC staining of GRP78 or CAT (cyan), tropomyosin (red), 
and nuclei (TOPRO-3) in LV of mice from respective experiments. Tissue sections are representative images from 
one mouse per condition. Scale bar represents 50µm. Data are represented as mean ± s.e.m. Two-group 
comparisons were performed using Student’s two-tailed t-test, and all multiple group comparisons were performed 
using a one-way ANOVA with a Newman-Keuls post-hoc analysis. *P≤0.05, **P≤0.01. 
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Figure 4.10– 147 exhibits no deleterious effects, in vivo. 

a-c, qPCR for Erdj4 (a), Atf4 (b), and Atp2a2 (c) following experimental design in Fig. 4.9a. d, Ratio of heart weight to 
body weight (n=5). e, Plasma cTnI (n=5). f, qPCR for cardiac pathology genes: Nppa (black), Nppb (red), Col1a2 
(blue), and Myh7 (green) following experimental design in Fig. 4.9a (n=3). g, Triglyceride levels in liver extracts from 
mice following experimental design in Fig. 4.9a (n=5). h, Plasma creatinine from mice following experimental design 
in Fig. 4.9a (n=5). Data are represented as mean ± s.e.m. Two-group comparisons were performed using Student’s 
two-tailed t-test, and all multiple group comparisons were performed using a one-way ANOVA with a Newman-Keuls 
post-hoc analysis. ***P≤0.001. 
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Table 4.2-  Compound 147 7-day Time Course echocardiographic parameters  

 

 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 
 Baseline Baseline Baseline 7-day 7-day 7-day 
 (n = 5) (n = 5) (n = 5) (n = 5) (n = 5) (n = 5) 
FS (%) 34.00±2.56 25.34±1.58 27.68±1.90 35.21±2.17 34.44±2.111 31.73±4.11 
EF (%) 64.51±3.30 51.55±2.63 55.29±3.22 66.16±2.77 65.61±2.721 60.51±5.83 
LVEDV (µl) 30.40±6.89 33.83±6.27 32.46±5.61 30.01±2.98 21.61±1.471 32.26±3.46 
LVESV (µl) 10.22±1.50 16.30±3.03 14.89±3.16 10.27±1.39 7.30±0.321 13.04±2.82 
LVIDD 
(mm) 

2.78±0.23 2.91±0.22 2.87±0.20 2.81±0.11 2.46±0.071 2.88±0.13 

LVIDS 
(mm) 

1.82±0.11 2.17±0.16 2.08±0.18 1.82±0.11 1.61±0.031 1.98±0.17 

PWTD 
(mm) 

1.66±0.08 1.40±0.19 1.37±0.14 1.17±0.111 1.80±0.031 1.40±0.26 

PWTS 
(mm) 

1.76±0.05 1.67±0.17 1.45±0.10 1.43±0.121 2.01±0.091 1.61±0.10 

AWTD 
(mm) 

1.01±0.04 1.02±0.08 0.98±0.02 0.91±0.03 0.88±0.01 0.95±0.04 

AWTS 
(mm) 

1.22±0.13 1.19±0.05 1.20±0.06 1.29±0.04 1.16±0.07 1.21±0.11 

LV mass 
(mg) 

105.21±4.51 107.38±6.23 93.15±5.72 80.24±3.781 99.78±1.89 97.21±11.04 

HR (bpm) 543±9.05 493±14.51 488±40.29 522±2.761 515±10.32 520±5.38 
 
 
FS = fractional shortening 
EF = ejection fraction 
LVEDV = left ventricular end diastolic volume 
LVESV = left ventricular end systolic volume 
LVIDD = left ventricular inner diameter in diastole 
LVIDS = left ventricular inner diameter in systole 
PWTD = left ventricular posterior wall thickness in diastole 
PWTS = left ventricular posterior wall thickness in systole 
AWTD = left ventricular anterior wall thickness in diastole 
AWTS = left ventricular anterior wall thickness in systole 
LV mass = left ventricular mass 
HR = heart rate in beats per minute 

 

Statistical analyses used a one-way ANOVA with a Newman-Keuls post-hoc analysis. 

1 = p	≤	0.05 different from respective Baseline 
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4.3.6. 147 protects the heart from I/R injury in vivo 

 Next, the effects of 147 were examined in an in vivo model of I/R damage in the 

heart 7d after reperfusion (Fig. 4.11a). In Experiments 1 and 2, the negative control 

compound or 147, respectively, were administered 24h prior to AMI, with a second dose 

at reperfusion and a third dose 4 days later. In Experiment 3, 147 was administered at 

reperfusion and again 4 days later. In Experiment 4, 147 was administered only one 

time, at reperfusion. Given the transient nature of 147, we designed our multiple-dose 

strategy so that it mimics a therapeutic approach used for treating AMI patients as soon 

as possible after the infarction, to mitigate the initial reperfusion damage to the heart, as 

well as days later to ameliorate the detrimental effects of continued expansion of infarct 

damage and cardiac remodeling in the infarct and infarct border zones on heart pump 

function. Strikingly, cardiac performance was preserved to similar extents in all 

experiments involving 147 (Fig. 4.11b), as was the ability of 147 to reduce cardiac 

hypertrophy, which is a pathological response to I/R in this model (Fig. 4.11c). 147 

decreased plasma cTnI in all of the experiments, though somewhat less so in 

Experiments 3 and 4 (Fig. 4.11d). Importantly, 147 preserved diastolic cardiac function 

and left ventricular volumes in all of the experiments (Fig. 4.11e-g; Table 4.3), showing 

that 147 impeded the progression toward heart failure. In Experiments 2 and 3, the 

beneficial structural and functional effects were accompanied by increased expression 

of the ATF6-regulated genes, Grp78 and Cat (Fig. 4.11h-i; Fig. 4.12a) but not Erdj4 

and Atf4 (Fig. 4.12b, c). However, in Experiment 4, the levels of Grp78 and Cat were 

comparable to control treated animals, as expected, given the transient nature of 147-

mediated gene induction seen in a previous experiment (see Fig. 4.9). Moreover,  I/R 



 208 

induced cardiac pathology genes (Fig. 4.12d, Sham vs Experiment 1), as expected; 

however, these effects were blunted by 147 (Fig. 4.12d, Experiments 2-4). In addition, 

decreased levels of pro-apoptotic cleaved caspase-3 were seen in Experiments 2-4 

(Fig. 4.12e), indicating that 147 protected myocytes from apoptosis during I/R. Thus, 

pharmacologic ATF6 activation at reperfusion ameliorated pathologic cardiac 

dysfunction in response to I/R injury. 
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Figure 4.11– 147 improves cardiac performance 7d post-AMI. 

a, Experimental design for testing the effects of 147 in the hearts of mice subjected to 30 min of myocardial infarction, 
then examined 7d after the initiation of reperfusion. Red bars depict the bolus administration of the control compound, 
while blue bars depict the bolus administration of 147. b, f, g, Echocardiographic parameters of fractional shortening 
(b), LV end diastolic volume (LVEDV) (f) and LV end systolic volume (LVESV) (g) (n=5). Detailed analyses of 
echocardiography parameters are in Table 4.3. c, Ratio of heart weight to body weight (n=5). d, Plasma cTnI (n=5). 
e, Diastolic function as determined by pulse wave Doppler (PW) technique to analyze E and A waves (n=5). h, i, 
qPCR for Grp78 (h) or Cat (i) in LV of mice from indicated experiments at culmination of study (n=3). Data are 
represented as mean ± s.e.m. Two-group comparisons were performed using Student’s two-tailed t-test, and all 
multiple group comparisons were performed using a one-way ANOVA with a Newman-Keuls post-hoc analysis. 
*P≤0.05, **P≤0.01, ***P≤0.001. 
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Figure 4.11 (continued)- Caption shown on previous page. 
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Figure 4.12– 147 decreases pathological remodeling 7d post-AMI. 

a, IHC staining for GRP78 or CAT (cyan), tropomyosin (red), and nuclei (TOPRO-3) in left ventricular free wall of 
sham hearts or the border zone of hearts from respective trials of experimental design in Fig. 4.11a. Tissue sections 
are representative images from one mouse per condition. Scale bar represents 50μm. b, c, qPCR for Erdj4 (b) or Atf4 
(c) in border zone of mice from Experiments 1-4 of the chronic I/R protocol shown in Fig. 4.11a (n=3). d, qPCR for 
cardiac pathology genes: Nppa (black), Nppb (red), Col1a2 (blue), and Myh7 (green) in border zone of mice from 
Experiments 1-4 of the chronic I/R protocol shown in Fig. 4.11a (n=3). Statistics represent significance of entire gene 
sets for each trial from that of separate experiments. e, IHC staining for cleaved caspase-3 (cyan), tropomyosin (red), 
and nuclei (TOPRO-3) in LV free wall of sham hearts or the border zone of hearts from indicated experiments of 
experimental design in Fig. 4.11a. Tissue sections are representative images from one mouse per condition. Scale 
bar represents 50μm. Data are represented as mean ± s.e.m. Two-group comparisons were performed using 
Student’s two-tailed t-test, and all multiple group comparisons were performed using a one-way ANOVA with a 
Newman-Keuls post-hoc analysis. *P≤0.05, **P≤0.01. 

0

1

2

3

4

5

0

1

2

3

4

5

d

Exp 1 Exp 2 Exp 3

Col1a1Nppa
Myh7Nppb

Exp 1 2 3

Ta
rg

et
/β

-a
ct

in
 m

R
N

A

ns

**

a Sham

Sham

*
b c

Exp 1 2 3

ns

E
rd
j4

/β
-a
ct
in

 m
R

N
A

Exp

A
tf4

/β
-a
ct
in

 m
R

N
A

*

Exp 1 Exp 2 Exp 3e Sham

4 1 2 3 4

3 3 33 3 3 33

Exp 4

Exp 4

4
0

5

10

15

20

25

TR
O

P
O

M
Y

O
S

IN
G

R
P

78
TR

O
P

O
M

Y
O

S
IN

C
AT

A
LA

S
E

TR
O

P
O

M
Y

O
S

IN
C

L-
C

A
S

PA
S

E
 3



 212 

 

St
at

is
tic

al
 a

na
ly

se
s 

us
ed

 a
 o

ne
-w

ay
 A

N
O

VA
 w

ith
 a

 N
ew

m
an

-K
eu

ls
 p

os
t-h

oc
 a

na
ly

si
s.

 

1 
= 

p�

�0

.0
5 

di
ffe

re
nt

 fr
om

 re
sp

ec
tiv

e 
Ba

se
lin

e 
2  =

 p
�

�0
.0

5 
di

ffe
re

nt
 fr

om
 T

ria
l 4

 P
os

t-A
M

I 
 

FS
 =

 fr
ac

tio
na

l s
ho

rte
ni

ng
 

EF
 =

 e
je

ct
io

n 
fra

ct
io

n 
LV

ED
V

 =
 le

ft 
ve

nt
ric

ul
ar

 e
nd

 d
ia

st
ol

ic
 v

ol
um

e 
LV

E
SV

 =
 le

ft 
ve

nt
ric

ul
ar

 e
nd

 s
ys

to
lic

 v
ol

um
e 

LV
ID

D
 =

 le
ft 

ve
nt

ric
ul

ar
 in

ne
r d

ia
m

et
er

 in
 d

ia
st

ol
e 

LV
ID

S 
= 

le
ft 

ve
nt

ric
ul

ar
 in

ne
r d

ia
m

et
er

 in
 s

ys
to

le
 

PW
TD

 =
 le

ft 
ve

nt
ric

ul
ar

 p
os

te
rio

r w
al

l t
hi

ck
ne

ss
 in

 d
ia

st
ol

e 
PW

TS
 =

 le
ft 

ve
nt

ric
ul

ar
 p

os
te

rio
r w

al
l t

hi
ck

ne
ss

 in
 s

ys
to

le
 

AW
TD

 =
 le

ft 
ve

nt
ric

ul
ar

 a
nt

er
io

r w
al

l t
hi

ck
ne

ss
 in

 d
ia

st
ol

e 
AW

TS
 =

 le
ft 

ve
nt

ric
ul

ar
 a

nt
er

io
r w

al
l t

hi
ck

ne
ss

 in
 s

ys
to

le
 

LV
 m

as
s 

= 
le

ft 
ve

nt
ric

ul
ar

 m
as

s 
H

R
 =

 h
ea

rt 
ra

te
 in

 b
ea

ts
 p

er
 m

in
ut

e 

  

!"
#$
%&
'(
)*
&&+
,-
.,
/0
1&
2'
3&
3*
1"
4&
5
6
7&%
89
,8
":
1;
,<
:"
.9
;8
&.
":
"-
%=
%:
>&
&

!

!
"#
$%
&!'
!

"#
$%
&!(
!

"#
$%
&!)
!

"#
$%
&!*
!

"#
$%
&!'
!

"#
$%
&!(
!

"#
$%
&!)
!

"#
$%
&!*
!

!
+%
,-
&$.
-!

+%
,-
&$.
-!

+%
,-
&$.
-!

+%
,-
&$.
-!

/0
,1
23
4
5!

/0
,1
23
4
5!

/0
,1
23
4
5!

/0
,1
23
4
5!

!
6.
!7
!(
8!

6.
!7
!(
8!

6.
!7
!(
8!

6.
!7
!(
8!

6.
!7
!(
8!

6.
!7
!(
8!

6.
!7
!(
8!

6.
!7
!(
8!

9:
!6;

8!
<<
=>
?@
A=
'(
!
<'
=B
C@
(=
(?
!
<A
=A
A@
C=
<B
!

<<
=(
?@
'=
**
!

AA
=)
>@
A=
<B

!"
<<
=A
B@
<=
>B

#"
A?
=>
(@
C=
(*

!$
#"

<C
=<
'@
<=
CB

#"

D9
!6;

8!
)<
='
A@
<=
)'
!
)(
=>
(@
*=
AC
!
)A
=A
C@
A=
C?
!

)A
=A
'@
)=
AB
!

(>
='
>@
<=
*(

!"
)A
=*
'@
'=
<*

#"
(*
=>
*@
'=
A<

#"
)>
=>
<@
'=
*'

#"

EF
DG

F!
6µ
&8!

A(
=)
(@
A=
*>
!
<C
=>
)@
'=
A>
!
<C
=C
A@
'=
('
!

')
=C
(@
<=
''
!

'(
=)
B@
A=
(?

!"
<<
=?
C@
A=
<<

#"
AB
='
'@
(=
AA

!$
#"

'>
='
)@
>=
()
C!
$#
"

EF
D:
F!

6µ
&8!

B=
)?
@C
=B
*!

CC
='
)@
<=
'>
!
CA
=C
(@
A=
<*
!

C?
=A
>@
<=
?>
!

AC
=>
A@
<=
'B

!"
C(
=B
A@
'=
)>

"
C>
=?
>@
*=
**
!

C(
=<
<@
A=
?<
!

EF
5G
G
!

6H
H
8!

A=
)<
@>
=C
C!

A=
?'
@>
=C
)!

A=
?<
@>
=C
*!

<=
<(
@>
=C
C!

<=
'<
@>
=C
(!
"

<=
>A
@>
=C
C#
"

A=
*)
@>
=C
B#
"

<=
C?
@>
=>
?#
"

EF
5G
:!

6H
H
8!

C=
**
@>
=C
<!

C=
?*
@>
=A
)!

C=
B<
@>
=C
)!

A=
A(
@>
=A
A!

A=
'>
@>
=C
)!
"

A=
C(
@>
=C
*#
"

C=
?(
@>
=C
A#
"

A=
C'
@>
=C
C#
"

/I
"G
!

6H
H
8!

C=
'*
@>
=C
>!

C=
<'
@>
=>
?!

C=
'<
@>
=C
C!

>=
BC
@>
=C
(!

C=
((
@>
=>
*!

C=
'A
@>
=C
'!

C=
C*
@>
=A
?!
$#
"

>=
BB
@>
=C
(#
"

/I
":
!

6H
H
8!

C=
*<
@>
=>
?!

C=
)>
@>
=C
B!

C=
)(
@>
=C
C!

C=
<(
@>
=C
)!

C=
)B
@>
=>
'!

C=
?B
@>
=A
A!

C=
)<
@>
=A
<!

C=
<A
@>
=C
)!

3I
"G
!

6H
H
8!

>=
??
@>
=>
A!

C=
>A
@>
=>
?!

>=
??
@>
=>
<!

C=
>C
@>
=>
'!

>=
?*
@>
=>
'!

C=
>'
@>
=>
B#
"

>=
?<
@>
=>
?!

C=
C)
@>
=C
(!

3I
":
!

6H
H
8!

C=
CA
@>
=>
(!

C=
<C
@>
=>
B!

C=
C*
@>
=>
(!

C=
A?
@>
=>
)!

C=
C*
@>
=>
'!

C=
'<
@>
=C
A#
"

C=
C(
@>
=>
)!

C=
'(
@>
=A
>!

EF
!H
%,
,!

6H
J8
!

B>
=?
A@
C=
A)
!
B*
=)
?@
<=
<<
!
B'
=C
A@
(=
(A
!
BC
=>
<@
CA
=C
?!

CA
)=
<>
@*
='
<!
"
CC
<=
<B
@A
='
<!
$#
"
CC
?=
AA
@'
=B
)!
"

!
CA
(=
(*
@(
=*
'!
"

K
L
!

6M
NH

8!
(A
A@
C>
=(
'!

(C
*@
A>
='
>!

('
(@
)=
??
!

(<
(@
CC
=?
>!

(>
*@
CC
=<
A!

(A
B@
B=
'(
!

'B
A@
A'
=(
>!

(A
*@
*=
C>
!

! ! ! ! ! ! ! ! ! ! !



 213 

4.3.7. 147 is beneficial in a wide range of disease models in vivo 

 Next, we examined the effects of 147 following 24h of administration, an 

important time at which AMI patients are often treated by coronary angioplasty. 

Additionally, since ATF6 is expressed in all cells, we posited that it might be effective in 

tissues in addition to the heart. Accordingly, in addition to the heart, we determined the 

effects of 147 in the liver, kidney and brain. 147 activated ATF6 target genes in all four 

of the tissues, as evidenced by significant increases in of Grp78 and Cat (Fig. 4.13a, b), 

although the magnitude of the responses varied somewhat between tissues. The 

functionality of 147-mediated activation of ATF6 in the liver was evident in that it 

significantly reduced ER protein misfolding, measured by XBP1 splicing, in mice that 

had been injected with tunicamycin; this beneficial effect was lost upon genetic deletion 

of ATF6 (Fig. 4.13c).  Additional evidence of the functionality of 147 in the liver was 

evident in its ability to reduce hepatic triglycerides, the latter of which are a hallmark of 

hepatic steatosis, which demonstrates improved ER proteostasis in the liver (Fig. 4.13d, 

blue); this beneficial effect of 147 was also lost upon deletion of ATF6 (Fig. 4.13d, 

black).      

 Next, to examine the functional effects of 147 in the various tissues, the control 

compound or 147 were administered, as shown in Figure 4.13e, and the effects were 

examined on tissue damage in the heart via the acute I/R model, the kidney via 

transient unilateral renal portal system occlusion, and in the brain via transient unilateral 

middle cerebral artery occlusion. Throughout the studies, the surgeon and the data 

analyst were blinded to the animal assignments, which were predetermined by a 

separate investigator. Remarkably, even when administered only at the time of 
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reperfusion, 147 significantly decreased infarct sizes in all three tissues when measured 

24h after I/R (Fig. 4.13f-h; Fig. 4.14a). Moreover, 147 decreased plasma cTnI and 

creatinine, which are biomarkers of cardiac and kidney damage, respectively, and it 

improved behavioral indicators of post-ischemic neurological deficit (Fig. 4.13i-k). As 

expected, since 24h after reperfusion is too short for structural remodeling there was no 

observable functional deficit on cardiac performance, chamber size, or pathological 

hypertrophy, as monitored by echocardiography (Table 4.4). As further proof of 

concept, this experiment was replicated in female mice and, again, both Experiments 2 

and 3 conferred protection as evidenced by reduced infarct sizes and plasma cTnI (Fig. 

4.14b, c). Importantly, these beneficial effects of 147 in response to myocardial acute 

I/R were not seen in ATF6 cKO mice, further emphasizing that 147-mediated protection 

of the heart required ATF6 activation (Fig. 4.14d, e). Interestingly, the beneficial effects 

of 147 were also seen in a different AMI model induced by acute administration of the b-

adrenergic receptor agonist, isoproterenol, which is known to cause widespread 

oxidative damage and cardiac myocyte death in mice at this dose (Fig. 4.14f-h).  

 Thus, when administered at the time of injury, 147 was able to protect a wide 

range of tissues from I/R damage, emphasizing the broad spectrum of potential 

applications for this compound as a transcriptional regulator of the ATF6 arm of the 

UPR and subsequent reprogramming of proteostasis, in vivo. 
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Figure 4.13– 147 exerts widespread protection in multiple organ systems. 

a, b, qPCR for Grp78 (a) or Cat (b) in left ventricular, liver, kidney, and brain extracts from WT mice 24-hours post-
treatment with control or 147 (n=3). c, Ratio of transcript levels of Xbp1s to Xbp1 as determined by qPCR in liver 
extracts from WT or ATF6 KO mice 24-hours post-treatment with control or 147 and then treated with 2mg/kg of TM 
for designated periods of time (n=3). d, Triglyceride levels in liver extracts from WT or ATF6 KO mice 24-hours post-
treatment with control or 147 and then treated with 2mg/kg of TM for 12-hours (n=3). e, Experimental design for 
testing the effects of 147 in the hearts of mice subjected to 30 min of myocardial infarction, then examined 24h after 
the initiation of reperfusion. Red bars depict the bolus administration of the control compound, while blue bars depict 
the bolus administration of 147. f-h, Relative infarct sizes in the heart (f) (n=6-7 for each experiment, as shown), 
kidney (g), and brain (h) (n=4-5 for each experiment, as shown) of male mice 24h after reperfusion. i-k, Plasma cTnI 
(i) (n=6-7 for each experiment, as shown), plasma creatinine (j), and neurological score based on the Bederson 
system of behavioral patterns post-cerebral ischemic injury of male mice 24h after reperfusion of respective injury 
models (n=4-5 for each experiment, as shown). Data are represented as mean ± s.e.m. Two-group comparisons 
were performed using Student’s two-tailed t-test, and all multiple group comparisons were performed using a one-
way ANOVA with a Newman-Keuls post-hoc analysis. **P≤0.01, ***P≤0.001. 
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Figure 4.13 (continued)- Caption shown on previous page. 
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Figure 4.14– 147 is protective in multiple models of myocardial damage. 

a, Representative images of TTC-stained post-I/R hearts from Experiments 1-3 of the acute I/R protocol shown in Fig. 
4.13e. b, c, Relative infarct sizes (b) and plasma cTnI (c) of female mice 24-hours after reperfusion when following 
the acute I/R protocol shown in Fig. 4.13e (n=3-4 for each experiment, as shown). d, e, Relative infarct sizes (d) and 
plasma cTnI (e) of ATF6 cKO mice 24-hours post-I/R when following experimental Experiments 1 (Con) and 2 (147) 
of the acute I/R protocol (n=4). f, Experimental design for testing the effects of 147 in a different model of a AMI using 
isoproterenol. g-h, Relative infarct sizes (g), and plasma cTnI (h) (n=4-5 for each experiment, as shown). Data are 
represented as mean ± s.e.m. Two-group comparisons were performed using Student’s two-tailed t-test, and all 
multiple group comparisons were performed using a one-way ANOVA with a Newman-Keuls post-hoc analysis. 
*P≤0.05, **P≤0.01, ***P≤0.001. 
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Figure 4.14 (continued)- Caption shown on previous page. 
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Table 4.4-  Compound 147 24-hour AMI echocardiographic parameters  

 

 Trial 8 Trial 9 Trial 10 Trial 8 Trial 9 Trial 10 
 Baseline Baseline Baseline Post-AMI Post-AMI Post-AMI 
 (n = 3) (n = 4) (n = 4) (n = 3) (n = 4) (n = 4) 
FS (%) 35.07±1.61 33.01.91±2.75 30.94±2.75 34.06±2.41 34.70±1.13 30.27±1.86 

EF (%) 66.14±2.43 63.07±4.04 60.61±4.18 64.60±3.49 65.61±1.35 58.99±2.88 

LVEDV 
(µl) 

32.00±8.38 30.74±3.75 23.34±2.70 29.22±3.21 32.17±3.63 39.03±5.671 

LVESV 
(µl) 

11.32±3.68 11.70±2.38 9.40±1.93 10.73±2.34 10.92±0.81 16.46±3.141 

LVIDD 
(mm) 

2.83±0.29 2.83±0.15 2.54±0.12 2.77±0.12 2.89±0.13 3.11±0.201 

LVIDS 
(mm) 

1.85±0.23 1.91±0.16 1.76±0.15 1.84±0.14 1.88±0.05 2.18±0.191 

PWTD 
(mm) 

1.40±0.16 1.38±0.25 1.60±0.08 1.30±0.13 1.27±0.04 1.31±0.071 

PWTS 
(mm) 

1.61±0.13 1.78±0.17 1.77±0.10 1.66±0.13 1.61±0.08 1.53±0.091 

AWTD 
(mm) 

1.07±0.03 0.95±0.07 0.97±0.12 1.10±0.03 0.97±0.04 0.97±0.11 

AWTS 
(mm) 

1.32±0.05 1.29±0.10 1.19±0.06 1.31±0.05 1.36±0.06 1.22±0.06 

LV 
mass 
(mg) 

129.50±7.91 120.70±17.09 122.45±6.31 125.02±5.62 119.03±11.24 136.04±4.341 

 

HR 
(bpm) 

535±14.75 533±15.94 528±12.36 535±16.33 478±20.51 544±10.22 

 
 
FS = fractional shortening 
EF = ejection fraction 
LVEDV = left ventricular end diastolic volume 
LVESV = left ventricular end systolic volume 
LVIDD = left ventricular inner diameter in diastole 
LVIDS = left ventricular inner diameter in systole 
PWTD = left ventricular posterior wall thickness in diastole 
PWTS = left ventricular posterior wall thickness in systole 
AWTD = left ventricular anterior wall thickness in diastole 
AWTS = left ventricular anterior wall thickness in systole 
LV mass = left ventricular mass 
HR = heart rate in beats per minute 

 

Statistical analyses used a one-way ANOVA with a Newman-Keuls post-hoc analysis. 

1 = p	≤	0.05 different from respective Baseline 
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4.4. Discussion 

 After an AMI, upon reconstituting blood flow reperfusion damage begins almost 

immediately and continues for at least 3 days27. The initial reperfusion damage is 

thought to be due ROS generation by mitochondria in the myocardium, while the longer 

term damage may be due to multiple mechanisms, including continued ROS generation 

by the infiltration of inflammatory cells into the infarct zone13,28.  Therefore, an effective 

therapy for AMI should function over a timeframe spanning at least 3 days. While a 

number of potential therapies that act acutely to minimize reperfusion damage have 

been tested, many of them have failed to move through the drug development process 

and there is still no clinically available intervention15. At the outset of the current study 

we posited that this might be because most of the previous therapeutics function only 

during the initial stages of reperfusion, losing efficacy in the ensuing days. Furthermore, 

many of the initial trials performed in small animals have not tested therapies at times 

that accurately mimic typical clinical interventions (i.e. during coronary angioplasty) and 

have not adhered to the FDA’s Good Laboratory Practices (GLP). Accordingly, in 

addition to addressing these points in the design of our animal experiments here, we 

examined the therapeutic function after both 1 and 7d of reperfusion. We also set out to 

develop a therapeutic approach that would exert beneficial effects through multiple 

mechanisms in various cellular locations, which we felt would broaden the potential 

utility to include different tissues and widen the scope to multiple proteostasis-based 

pathologies. In this regard, we focused on ATF6, since it adaptively reprograms ER 

proteostasis by inducing a wide range of protective response genes that encode 

proteins, such as catalase and grp78, which act to mitigate ROS-induced damage, as 
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well as emending ROS-independent proteostasis pathways, respectively (Fig. 4.15). 

Using this strategy, we found that selective pharmacologic activation of only the ATF6 

arm of the UPR with 147 in mice acted within 1d to reduce reperfusion damage in the 

heart, although it is also possible that 147 might also reduce damage during ischemia. 

Moreover, we found that 147 acted after 7d to preserve cardiac function. This timing of 

these beneficial effects is consistent with the timing of adaptive ATF6-target gene 

induction and the reperfusion damage that takes place over this same time frame, 

although we cannot rule out an effect of 147 on reducing damage during ischemia. In 

addition to demonstrating its efficacy in the ischemic heart, we found that 147 protected 

the liver in a mouse model of dysregulated hepatic proteostasis, and it protected the 

kidneys and brain in models of renal and cerebral I/R damage. These findings, together 

with a recent report showing that 147 enhances the differentiation of human embryonic 

stem cells29, support the broad therapeutic potential of pharmacologic activation of 

ATF6 for treating a wide range of proteostasis-based pathologies in various tissues.  

 In terms of its suitability as a pharmacologic agent, 147 exhibits many desirable 

properties.  For example, 147 is highly specific, serving as the first example of a 

compound that selectively activates only one arm of the UPR, ATF6, which is well 

known for exerting mainly beneficial effects in many different cell types. 147 is highly 

efficacious in vivo, functioning at a dose similar to many other cardiovascular drugs and 

has the capacity to cross the blood brain barrier. Moreover, 147 does not exhibit any 

apparent toxicity or deleterious off-target effects in vivo. Both the efficacy and tolerance 

of 147 can be attributed in large part to the high-stringency, cell-based transcriptional 

profiling that was done in the initial screening to ensure that 147 specifically activates 
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only the ATF6 arm of the UPR, instead of global UPR activation20. The relatively 

transient activation of ATF6 by 147 in vivo is also potentially advantageous, since many 

stress-signaling pathways, including the UPR, can be beneficial initially, but damaging 

upon chronic activation30. Since I/R only partially activates ATF6, the remaining inactive 

ATF6 provides a therapeutic reserve for 147 to activate, allowing it to boost adaptive 

ATF6 signaling pathways in multiple tissues, in vivo. Remarkably, we found that 147 

exerted beneficial effects in the hearts of mice that were not subjected to any injury 

maneuvers, underscoring the safety, and perhaps even benefits of the compound in 

healthy tissues. Thus, while future pharmacokinetic and toxicology studies will address 

further details of 147 action, it is clear from the results presented here that 147 is easily 

administered, well tolerated, acts quickly, boosts an endogenous adaptive 

transcriptional stress signaling pathway, and has no apparent off-target or untoward 

effects, all of which are attributes of an excellent candidate for therapeutic development.  

 Impaired proteostasis contributes to numerous pathologies and even impacts 

aging31. Thus, global improvement of proteome quality through pharmacologic activation 

of defined transcriptional regulators of proteostasis should ameliorate a broad range of 

proteostasis-based diseases. Recent findings showing that the sphere of influence of 

the UPR, in particular, the ATF6 arm of the UPR, extends well beyond the ER to 

reprogram proteostasis in many cellular locations10, support the potential broad 

spectrum of impact of pharmacologic compounds, like 147. The results presented here 

provide proof-of-principle that this type of pharmacologic correction can be achieved 

with well-characterized compounds, such as 147 that selectively activate a specific 

protective aspect of UPR signaling. 
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Chapter 4, in full, is a reprint of the material as it appears in Nature 

Communications in 2019. Blackwood, E.A., Azizi, K.M., Thuerauf, D.J., Paxman, R., 

Plate, L., Wiseman, L., Kelly, J., and Glembotski, C.C. Pharmacologic ATF6 activation 

confers global protection in widespread disease models by reprogramming cellular 

proteostasis. Nat Commun, 2019; 10:187. The dissertation author was the primary 

investigator and author of this paper. 
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Figure 4.15– 147 mediates both ROS-dependent and ROS-independent protection globally.   

Proposed mechanism whereby 147 confers widespread global protection within the cell through activation of ATF6 to 
act both in a canonical and non-canonical manner to protect against ROS-dependent and ROS-independent 
challenges to proteostasis. 
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5.1. Conclusions 

Cardiac hypertrophy is an adaptive response to an increase in cardiac workload, 

either in a physiological or pathological manner. In order to maintain contractile function 

during growth, sarcomeric expansion in cardiac myocytes must be associated with 

proteostatic balance so as not to disrupt the integrity of the proteome with accumulation 

of toxic misfolded protein aggregates. ATF6 has been shown to be a primary adaptive 

sensor and responder to cardiac hypertrophy. In this setting, ATF6 induces both 

canonical and non-canonical gene panels associated with the balance of protein 

synthesis, folding, trafficking, and degradation. The recently demonstrated ability of 

ATF6 to be rapidly and transiently activated to induce adaptive genes specific to the 

stimulus or stressor has garnered great enthusiasm as a prime target for small 

molecule-based activators. Until recently, ATF6 has been a part of a class of proteins 

previously believed to be “undruggable”, but with research efforts detailing the 

mechanism of activation of ATF6 and stringent assays of small molecule library 

screening, the identification of ATF6-based therapeutics has taken great strides and 

shown promising efficacy in small animal models of CVD and other systemic 

proteostasis-based diseases (e.g., Compound 147). 

Still, ongoing research efforts must be aimed at understanding the mechanism of 

activation and action of ATF6 during various etiologies of CVD, so as to better design 

small molecules and better predict possible untoward effects of chronic ATF6 activation. 

One of the biggest questions remaining is the mechanism by which ATF6 chooses the 

gene program it influences during various pathologies. All non-canonical genes 
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discovered to date that ATF6 induces in a stimulus-specific manner possess canonical 

ATF6-binding motifs in the proximal promoter region (ERSEs). ATF6 has been known to 

dimerize with other transcription factors as part of its transcriptional engagement 

including: SRF (serum response factor), Nrf1 (nuclear respiratory factor 1), PGC1α and 

β (peroxisome proliferator-activated receptor gamma coactivator 1-alpha and -beta), 

and ERRγ (estrogen-related receptor gamma). It would be enlightening to understand 

the dynamics of the nuclear ATF6-interactome in response to these various 

pathophysiological stimuli. 

Furthermore, the finding that the expression levels of ATF6 and other essential 

components of the adaptive UPR decrease as a function of age, while the propensity for 

developing cardiac pathology increases as a function of age has highlighted a glaring 

need for continued studies of ATF6 function. The age-dependent decline in ATF6 has 

led to the exploration of therapeutic approaches aimed at enhancing ATF6 activity in the 

aged, pathologic heart in hopes of improving proteostasis thereby enhancing cardiac 

myocyte contractility, and reducing the progression to heart failure characterized by the 

accumulation proteotoxic aggregates, fibrosis, and decreased cardiac compliance.  

The development of proteostasis- and ATF6-based therapeutics is still in its 

infancy and reflecting on the incredible advancement in developing small molecule 

activators in a relatively short period of time provides a great deal of optimism as the 

field of proteostasis continues to develop. Hopefully, compounds like 147 will act as 

catalysts for the design of future studies aimed at targeting the UPR for treating CVD 

and other systemic diseases. 
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