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Applications of Deep Learning

Automated Assessment of Vascular Tortuosity in Mouse
Models of Oxygen-Induced Retinopathy

Jimmy S. Chen, MD,1 Kyle V. Marra, MD, PhD,2,3 Hailey K. Robles-Holmes, BS,1 Kristine B. Ly, BS,5

Joseph Miller, MS,1 Guoqin Wei, PhD,2 Edith Aguilar, MD,2 Felicitas Bucher, MD, PhD,4 Yoichi Ideguchi, BS,2

Aaron S. Coyner, PhD,6 Napoleone Ferrara, MD,1 J. Peter Campbell, MD, MPH,6 Martin Friedlander, MD, PhD,2

Eric Nudleman, MD, PhD1

Objective: To develop a generative adversarial network (GAN) to segment major blood vessels from retinal
flat-mount images from oxygen-induced retinopathy (OIR) and demonstrate the utility of these GAN-generated
vessel segmentations in quantifying vascular tortuosity.

Design: Development and validation of GAN.
Subjects: Three datasets containing 1084, 50, and 20 flat-mount mice retina images with various stains used

and ages at sacrifice acquired from previously published manuscripts.
Methods: Four graders manually segmented major blood vessels from flat-mount images of retinas from OIR

mice. Pix2Pix, a high-resolution GAN, was trained on 984 pairs of raw flat-mount images and manual vessel
segmentations and then tested on 100 and 50 image pairs from a held-out and external test set, respectively.
GAN-generated and manual vessel segmentations were then used as an input into a previously published al-
gorithm (iROP-Assist) to generate a vascular cumulative tortuosity index (CTI) for 20 image pairs containing
mouse eyes treated with aflibercept versus control.

Main Outcome Measures: Mean dice coefficients were used to compare segmentation accuracy
between the GAN-generated and manually annotated segmentation maps. For the image pairs treated
with aflibercept versus control, mean CTIs were also calculated for both GAN-generated and manual vessel
maps. Statistical significance was evaluated using Wilcoxon signed-rank tests (P � 0.05 threshold for
significance).

Results: The dice coefficient for the GAN-generated versus manual vessel segmentations was 0.75 � 0.27
and 0.77 � 0.17 for the held-out test set and external test set, respectively. The mean CTI generated from the
GAN-generated and manual vessel segmentations was 1.12 � 0.07 versus 1.03 � 0.02 (P ¼ 0.003) and 1.06 �
0.04 versus 1.01 � 0.01 (P < 0.001), respectively, for eyes treated with aflibercept versus control, demonstrating
that vascular tortuosity was rescued by aflibercept when quantified by GAN-generated and manual vessel
segmentations.

Conclusions: GANs can be used to accurately generate vessel map segmentations from flat-mount images.
These vessel maps may be used to evaluate novel metrics of vascular tortuosity in OIR, such as CTI, and have the
potential to accelerate research in treatments for ischemic retinopathies.

Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed
in this article. Ophthalmology Science 2024;4:100338 ª 2023 by the American Academy of Ophthalmology. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Oxygen-induced retinopathy (OIR) is a mouse model for
ischemic retinopathies, such as retinopathy of prematurity
(ROP), a leading cause of childhood blindness. In the OIR
model, infant mice are exposed to hyperoxic conditions at
postnatal day 7 (P7), resulting in the vaso-obliteration (VO)
of retinal vasculature. These pups are subsequently trans-
ferred to room air at P12, resulting in relative hypoxia that
drives aberrant retinal neovascularization (NV), akin to the
2-phase pathophysiology seen in ROP.1e3 Historically,
clinical and laboratory evaluation of ROP and OIR has
ª 2023 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
been highly subjective and variable.4e6 Automated
methods, such as artificial intelligence (AI) models, have
been developed to identify features of ROP, such as zone,7

stage,8,9 and plus disease.10,11 However, fewer algorithms
exist to quantitatively evaluate disease features, such as
NV and VO, in OIR.5,12e14 This represents an important
gap in knowledge where AI-assisted analysis of disease
features in OIR could increase our understanding of
ischemic retinopathies and assist with developing novel
therapeutics.
1https://doi.org/10.1016/j.xops.2023.100338
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Prior algorithms for quantitative evaluation of NV and
VO have been developed using small data sets13 or have
required manual input14 and remain prone to issues of
variability and subjectivity in grading disease severity.12,14

Recently, Xiao et al5 developed a fully automated AI-
based pipeline to automatically segment and quantitatively
evaluate NV and VO using a sample of approximately 1000
flat-mount images of retinals from OIR mice.5Although
these algorithms have greatly increased the ability to
objectively evaluate disease in the OIR model, only one
study has attempted to evaluate vascular tortuosity,15 a key
feature of disease severity in OIR mice and with plus disease
in ROP.16,17 In this study, Scott et al15 validated an integral-
based tortuosity index using a computer-based image anal-
ysis algorithm on manually segmented flat-mounted mice
retina at P12, P14, and P17. However, these experiments
were performed on a small sample size at each time interval
and involved manual segmentation, which is time-
consuming and not scalable. Validation and automated
computation of a quantifiable metric of vascular tortuosity
would add a useful tool for the evaluation of OIR disease
severity that would mirror clinical evaluation of ROP.

We previously validated a computer-based image algo-
rithm called iROP-Assist,18 developed to calculate vascular
tortuosity in ROP, on flat-mount images from the OIR
model.19 We demonstrated that the cumulative tortuosity
index (CTI), a marker of overall vascular tortuosity in an
image, reflected the natural course of OIR and observed a
significant decrease in vascular tortuosity in retinas treated
with aflibercept (Eylea) compared with controls. Although
our study validated these experiments on larger sample
sizes of flat-mounted retinas, input into this algorithm also
required manual segmentation. Automating the quantifica-
tion of vascular tortuosity in OIR mice using AI remains a
key gap in knowledge that has the potential to establish a
standardized method for obtaining tortuosity measurements
that may improve the reproducibility and efficiency of OIR
experiments within and between laboratories.

The purpose of this proof-of-concept study was to
address this gap in knowledge by developing an AI model
capable of segmenting major blood vessels in retinal flat-
mount images from the OIR model, evaluating this
model’s generalizability, and demonstrating that generated
segmentation maps can be used in assessment of quantita-
tive vascular tortuosity metrics. In summary, the current
study aimed to create an automated pipeline for the stan-
dardized calculation of vascular tortuosity from a flat-
mounted image. This fully automated pipeline has the
novel potential to accelerate the quantification process of
vascular severity in OIR in a reproducible, objective
manner, increasing experimental throughput, and reducing
potential biases.
Methods

Training and Testing Data Set

Animal studies were previously reviewed and approved by the
Institutional Animal Care and Use Committees at both the Scripps
Research Institute and the University of California, San Diego.
2

Age-matched C57BL/6 mice (The Jackson Laboratory [JAX])
mice were subjected to normoxic (NOX) conditions or to the OIR
model as previously described.3,20 The data set used to train the
generative adversarial network (GAN) consisted of previously
published flat-mounted mice retinas20 as well as additional mice
raised using the same methodology and by the same authors.
Briefly, pups were exposed to an atmosphere containing 75%
oxygen from P7 to P12 and then returned to room air until
euthanized at prespecified time points: P12 (immediately), P17,
and P25. Many of the mice sacrificed at P17 may have also been
subjected to various therapeutics at various doses designed to
rescue the OIR model.20e22 Retinas were then dissected from
enucleated eyes by using fine brushes to separate and clean retina
from choroid and sclera. Retinas were fixed in 4% para-
formaldehyde on ice for 1 hour before overnight incubation with
Ca2þMg2þ and 10 mg Griffonia simplicifolia-Isolectin B4 (GS-
IB4, I21412, Thermo Fisher Scientific). After being cut into 4
leaflets, retinas were flat-mounted for imaging using a Zeiss 710
confocal laser-scanning microscope with ZEN 2010 software
(Zeiss) at 10� magnification and tile scanning (6 � 6 tiles).

Images from this data set were split into a training and held-out,
internal test set in a 90:10 ratio. These data sets were stratified
based on time points and disease (NOX vs. OIR). Additionally, the
training and test set were stratified such that all images from a
particular mouse were limited to the training or test set only. A
second, external test set was compiled to assess the generalizability
of our model and consisted of a random subset of flat-mount im-
ages from OIRSeg, a database of OIR images collected by Xiao
et al.5 Data regarding the age of the mice at euthanization were not
collected for the OIRSeg data set.

Manual Segmentations

All images from the training set, held-out test set, and external test
set were manually segmented for large vessels emerging from the
optic disc by 4 graders (J.S.C., H.K.B., J.M., and K.L.). This
definition was chosen to capture vessels that researchers are most
likely to examine in evaluating the extent of vascular disease in
OIR. Capillaries, neovascular tufts, and areas of VO were not
segmented. To ensure that all graders segmented similarly, a small
cross-validation study was previously performed with 10 flat-
mount images and was evaluated both subjectively with manual
review and objectively using the dice coefficient, a measure of
overlapping pixels between manual segmentations by each
grader.19,23 Ultimately, this crossvalidation study demonstrated
that there was no statistically significant difference between each
graders segmented large vessels when assessed subjectively and
objectively and that these manual segmentations were suitable as
gold-standard labels for training an AI to automatically generate
vessel maps.

Training GANs for Automated Vessel
Segmentation

Pix2PixHD, an AI-based GAN developed to generate large, high-
resolution synthetic images from label maps, was used in this
study.24 We chose Pix2PixHD over U-Nets, which are
convolutional neural networks designed for segmentation,
because literature has demonstrated that both AI methods have
comparable segmentation accuracy24 and utility in generating
vessel segmentations from fundus images.25 In our study, we
trained Pix2PixHD in Python26 using a Nvidia K80 GPU.27 The
GAN was optimized using the Adam optimizer at a learning rate
of 10-6 for 100 iterations, followed by 100 additional iterations at
a learning rate linearly decaying to 0. All images in the training
set were loaded into the model pairwise (the original flat-mount



Figure 1. Study workflow. A, Flat-mounted images were manually segmented by 4 graders, and images underwent crossvalidation to ensure that they were
similarly graded. These images were then used to train a generative adversarial network (GAN), a type of deep learning algorithm, to automatically segment
large blood vessels. B, This GAN was validated on a held-out test set and external test set. A proof-of-concept experiment was performed to demonstrate
that the vessel maps generated by the GAN could be used in quantification of vascular tortuosity.
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image and manual vessel segmentation) at sizes of 512 � 512
pixels. Losses were monitored to ensure that no overfitting
occurred.

Testing

After GAN training was completed, flat-mounted images and their
accompanying manual segmentations from the held-out and
external test sets were loaded pairwise into the GAN. These vessel
maps were evaluated by an expert ophthalmologist (J.S.C.) and
objectively by comparison to the manual vessel maps using the
dice coefficient. Outputted images were reviewed for error
(i.e., missed vessels, inaccurate segmentation, etc.). After automated
segmentation, the mean dice coefficient and associated 95% confi-
dence intervals were reported for all images in a given data set.

Proof-of-Concept Assessment of Vascular
Tortuosity

We used a third data set subsetted from a previously published
study by Xin et al,28 which contained flat-mount retinal images
from OIR mice, which were injected intravitreally with an anti-
3



Table 1. Distribution of Images in the Training and Testing Sets

Data Set
Number of Images

at P12 NOX
Number of Images

at P12 OIR
Number of Images

at P17 NOX
Number of Images

at P17 OIR
Number of Images

at P25 NOX
Number of Images

at P25 OIR Total

Training set 38 27 28 815 45 31 984
Held-out testing set 4 3 3 83 4 3 100
External testing set

(OIRSeg)
Unknown Unknown Unknown Unknown Unknown Unknown 50

GAN ¼ generative adversarial network; NOX ¼ normoxic; OIR ¼ oxygen-induced retinopathy.
Flat-mount retinal images of mice euthanized at P12, P17, and P25 raised under both NOX and OIR were included in the training and held-out data set.
Although the data set was imbalanced toward P17 OIR mice, several of these eyes were subject to various therapeutics and doses designed to rescue the eyes
from OIR, representing a broad range of vascular tortuosity. Because the images in the OIRSeg were solely used to assess the segmentation performance of the
GAN, the age of the mice was not collected for the OIRSeg images.
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VEGF medication, aflibercept (Eylea, 2.5e25 mg), in 1 eye versus
immunoglobulin G control in the fellow eye.28 All images were
manually segmented, input into the GAN, and a segmented
vessel map was generated. These vessel maps were then input
into a computer-based image analysis algorithm, i-ROP
Assist,18,29 for calculation of the CTI. Statistical analysis on these
outputs was performed using R 4.0.5.30 A Wilcoxon signed-rank
test thresholded at P value of � 0.05 was performed to assess
statistically significant differences between the CTIs from the im-
ages treated with aflibercept versus IgG control. The overall
workflow of this study is shown in Figure 1.
Figure 2. Examples of vessel segmentation maps produced by a generative adve
performance was tested on a held-out test set. The dice coefficient was used to ev
and manual vessel segmentations. For the held-out test set, the dice coefficient
segment large vessels from the flat-mount images.

4

Results

Data Set

Overall, 1084 image pairs of flat-mount retinal images and
manual segmentations from the primary data set were
included in this study. This data set was further stratified
into the training set and held-out test set, consisting of 984
and 100 image pairs, respectively. Additionally, 50 images
from the OIRSeg data set were also included as an external
rsarial network (GAN). After the GAN was trained on the training set, its
aluate similarity in segmentation performance between the GAN-generated
was 0.75 � 0.27, demonstrating that the GAN had learned to accurately



Figure 3. Examples of segmented vessel maps produced by a generative adversarial network (GAN). The trained GAN was additionally tested on an
external test set, containing flat-mount images from the OIRSeg database that were not included in the training or held-out test set. The dice coefficient was
0.77 � 0.17, demonstrating that the GAN’s ability to segment large vessels from flat-mount images may have good generalizability to data sets from different
institutions.
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test set. The distribution of images in both of these data sets
is shown in Table 1.

Validation Results on the Held-out and External
Tests

Overall, the average dice coefficient between all manually
segmented and GAN-generated vessel maps was 0.75 �
0.27 and 0.77 � 0.17 for the held-out and external test sets,
respectively. Examples of GAN-produced vessel maps are
shown in Figure 2 and Figure 3. Additionally, manual
review of the test set images revealed reasons for
disagreement between the manual versus GAN-generated
vessel maps. The reasons included were identification of
vessels by the AI algorithm not segmented by the grader,
and vice versa, as well as discrepancies in tortuosity among
vessels segmented manually and automatically. Examples of
these errors are also seen in Figure 2 and Figure 3.

Vascular Tortuosity Comparison of Mice treated
with Aflibercept vs. Control

A total of 36 images pairs of flat-mount retina images and
their associated manually segmented vessel maps, consisting
of 18 flat-mount retina images from eyes treated with afli-
bercept and 18 images from eyes treated with immuno-
globulin G control, were input into the GAN. Cumulative
tortuosity indices for each GAN-generated vessel map were
then calculated using iROP-Assist. The mean CTI calculated
using the manual vessel segmentations when comparing
eyes treated with aflibercept versus control was 1.12 � 0.07
versus 1.03 � 0.02 (P < 0.001). The mean CTI calculated
using the GAN-generated vessel segmentations when
comparing eyes treated with aflibercept versus control was
1.06 � 0.04 versus 1.01 � 0.01 (P ¼ 0.003; Fig 4). There
was a statistically significant difference between CTIs
calculated from the GAN-generated and manually
segmented vessel maps for the aflibercept group (P < 0.001)
and control group (P ¼ 0.01). On error analysis, the GAN
was noted to segment fewer vessels than manual segmen-
tations and tended to exclude dimly stained vessels. Varia-
tions in number of vessels segmented between the
representative control and aflibercept images may be
because of grader variation and variations in mice
vasculature.

Discussion

In this study, we developed a GAN to automatically
segment large blood vessels from flat-mounted retina
images from the OIR model and used these images to
calculate the CTI for eyes treated with aflibercept and IgG
control. This study has following 3 key findings: (1)
GANs can accurately segment large blood vessels from
flat-mount images; (2) our GAN performed well on a
5



Figure 4. Comparison of cumulative tortuosity indices (CTIs) for flat-mount images of mice treated with and without aflibercept. A, Representative
images of synthetic vessel maps and their corresponding flat-mount images and manual vessel maps. Variations in number of vessels segmented between
the representative control and aflibercept images may be because of grader variation and variations in mice vasculature. B, Despite a statistically sig-
nificant difference in generated CTIs between manual and synthetic vessel maps, synthetic vessel maps generated both manually and by the GAN both
demonstrated statistically significant differences in vascular tortuosity in mice who were treated with aflibercept versus that of controls. These differences
between GAN-generated and manually segmented vessels maps were likely in part due to the GAN consistently segmenting fewer vessels, likely learning
that some of the vessels segmented by humans were not necessarily major vessels. Error bars represent standard error of the mean. *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001.
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diverse set of images and have good generalizability; and
(3) GAN-produced vessel segmentation maps can be used
to quantify vascular tortuosity in experiments using the
OIR model to investigate the effects of therapeutics on
this parameter.

The first key finding is that GANs can accurately
segment major blood vessels from flat-mount images. Our
model achieved a dice coefficient of 0.75 � 0.27 and 0.77
� 0.17 on our held-out and external data sets, representing
excellent segmentation performance compared with
manual segmentation. These results suggest that GANs can
learn complex patterns of vasculature from flat-mount
retinal images accurately. Although AI models have
previously been developed to segment vessels from human
fundus photographs,31,32 ultra-widefield fundus
6

photographs,33 and fluorescein angiography,34,35 there is a
dearth of AI models trained to segment vasculature in flat-
mount retinal images. Prior work has largely focused on
vessel segmentation based on computer-based image
analysis algorithms,13,15 but widespread use of these
algorithms has been limited because of sample size,
disease diversity, and need for manual input. The model
presented here was trained with a robust data set. A
majority of images in the data set were collected at P17
at the peak of NV in the OIR model, which is the most
common time point when quantifying the effects of
therapeutics. Many of these images ranged in disease and
vascular severity based on the therapeutic intervention.
Additionally, we included age-matched controls at P12,
P17, and P25 for both NOX and OIR to diversify our
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training data set. This work presents numerous benefits,
including obviating the need for manual segmentation,
which is time-consuming, difficult, and labor intensive.
Additionally, synthetic vessel maps generated from this
GAN may be used in the future to analyze vascular tortu-
osity and dilation, 2 key features of plus disease in ROP
and OIR. Future work may evaluate how these vessel maps
can be used to augment our understanding of the patho-
physiology of OIR and its response to therapeutics.

The second key finding is that our GAN performed well
on a diverse set of images and may have good generaliz-
ability. High segmentation performance was achieved on 2
different testing data sets by 2 different laboratories.
Therefore, our model may be useful in a variety of labora-
tory settings, although further evaluation of this model on
more diverse data sets is needed to validate this claim. This
is incredibly important because previous generalization
studies on high-performing AI models for the diagnosis of
diabetic retinopathy have demonstrated significantly
decreased performance in diverse human populations.36 The
generalization performance of our model confers additional
benefits to OIR research, including the ability to potentially
compare vascularity between images from different
laboratories, which may promote data sharing among
researchers. Of note, there were discrepancies between the
GAN-generated and manually segmented vessel maps. For
example, in both Figure 2 and Figure 3, the GAN
consistently segmented fewer vessels than the human
graders. Additionally, the GAN was observed to have
slightly decreased performance with dimly stained vessels
(Fig 2). These discrepancies may be in part because
human graders included branches of major vessels that the
GAN did not view as important, which may also affect
calculations of CTI between the GAN-generated and
manual vessel segmentations. Additionally, although all
vessels were manually segmented in a binary manner (i.e.,
pixels represented vessels or not), the GAN outputted seg-
mentations in a probabilistic manner (i.e., likelihood a pixel
represented a vessel). Although we did not modify any
hyperparameters regarding thresholding in our GAN, our
images likely seem more binary because of our segmenta-
tion methodology, which may limit the performance of the
GAN during training (i.e., learning to replicate the binary
input). Training on probabilistically labeled segmentations
has recently shown to improve segmentation performance
and represents an avenue for future work.37

The third key finding is that GAN-produced vessel
segmentation maps can be used to quantify vascular tor-
tuosity in experiments using the OIR model to investigate
the effects of therapeutics on this parameter. In our
proof-of-concept experiment, we demonstrated that
GAN-generated vessel maps can be used to calculate a
quantitative metric of vascular tortuosity, CTI. Cumulative
tortuosity index calculations using both GAN-generated
and manual vessel segmentation maps both demonstrated
that aflibercept rescued vascular tortuosity compared with
control. Altogether, our work represents a first step into
introducing a novel vascular tortuosity metric, CTI from
the iROP-Assist model, as an adjunct to NV and VO in
evaluating the efficacy of therapeutics in OIR. Vascular
tortuosity is an important pathophysiologic hallmark in
ischemic retinopathies that current models of OIR do not
assess. In previous work, we demonstrated that vascular
tortuosity was correlated with NV in OIR mice at patho-
physiologically relevant time points (P12, P17, and
P25).19,23 The standardized quantitative assessment of
vascular tortuosity using CTI developed here may
provide an important additional metric while assessing
the efficacy of various therapeutics across diverse
laboratory settings. This work also addresses the gap of
subjective disease assessment that has existed in several
clinical ophthalmic diseases, including glaucoma38,39 and
ROP.40,41 In infants, AI-assisted assessment of plus dis-
ease has resulted in a vascular tortuosity metric that may
decrease subjectivity in clinical disease assessment inter-
nationally.42 We expect that these data will reduce
subjectivity in this commonly used experimental model.
Nevertheless, future work is needed to assess the fidelity
of quantitative vascular tortuosities based on synthetic
vessel maps from other laboratories.

This study has additional limitations that future work
may address. Our data set was imbalanced toward P17 im-
ages of OIR mice. Although this is in part due to the
retrospective use of images collected to evaluate therapeu-
tics at the peak of disease in OIR, future work is needed to
evaluate the performance of this model across all spectrums
of disease and age. Second, because of the vascular
complexity within flat-mount images, we chose to segment
larger vessels only. More research is needed to assess
whether complete segmentation of the vasculature,
including capillaries, is feasible and adds to assessment to
vascular tortuosity.

Overall, GANs can be trained to accurately segment large
blood vessels from flat-mount images that can be integrated
into a pipeline for calculating vascular tortuosity from these
synthetic images. This work has the potential to accelerate
our ability to assess responses to novel therapeutics devel-
oped in the laboratory using vascular tortuosity as a
biomarker, which in turn may improve our ability to treat
ischemic retinopathies. Further validation of this tool and
the vascular tortuosity metric will be needed in diverse
settings before widespread implementation.
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